1 /*
2  * Copyright 2011 (c) Oracle Corp.
3 
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sub license,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the
12  * next paragraph) shall be included in all copies or substantial portions
13  * of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Author: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
24  */
25 
26 /*
27  * A simple DMA pool losely based on dmapool.c. It has certain advantages
28  * over the DMA pools:
29  * - Pool collects resently freed pages for reuse (and hooks up to
30  *   the shrinker).
31  * - Tracks currently in use pages
32  * - Tracks whether the page is UC, WB or cached (and reverts to WB
33  *   when freed).
34  */
35 
36 #if defined(CONFIG_SWIOTLB) || defined(CONFIG_INTEL_IOMMU)
37 #define pr_fmt(fmt) "[TTM] " fmt
38 
39 #include <linux/dma-mapping.h>
40 #include <linux/list.h>
41 #include <linux/seq_file.h> /* for seq_printf */
42 #include <linux/slab.h>
43 #include <linux/spinlock.h>
44 #include <linux/highmem.h>
45 #include <linux/mm_types.h>
46 #include <linux/module.h>
47 #include <linux/mm.h>
48 #include <linux/atomic.h>
49 #include <linux/device.h>
50 #include <linux/kthread.h>
51 #include <drm/ttm/ttm_bo_driver.h>
52 #include <drm/ttm/ttm_page_alloc.h>
53 #ifdef TTM_HAS_AGP
54 #include <asm/agp.h>
55 #endif
56 
57 #define NUM_PAGES_TO_ALLOC		(PAGE_SIZE/sizeof(struct page *))
58 #define SMALL_ALLOCATION		4
59 #define FREE_ALL_PAGES			(~0U)
60 /* times are in msecs */
61 #define IS_UNDEFINED			(0)
62 #define IS_WC				(1<<1)
63 #define IS_UC				(1<<2)
64 #define IS_CACHED			(1<<3)
65 #define IS_DMA32			(1<<4)
66 
67 enum pool_type {
68 	POOL_IS_UNDEFINED,
69 	POOL_IS_WC = IS_WC,
70 	POOL_IS_UC = IS_UC,
71 	POOL_IS_CACHED = IS_CACHED,
72 	POOL_IS_WC_DMA32 = IS_WC | IS_DMA32,
73 	POOL_IS_UC_DMA32 = IS_UC | IS_DMA32,
74 	POOL_IS_CACHED_DMA32 = IS_CACHED | IS_DMA32,
75 };
76 /*
77  * The pool structure. There are usually six pools:
78  *  - generic (not restricted to DMA32):
79  *      - write combined, uncached, cached.
80  *  - dma32 (up to 2^32 - so up 4GB):
81  *      - write combined, uncached, cached.
82  * for each 'struct device'. The 'cached' is for pages that are actively used.
83  * The other ones can be shrunk by the shrinker API if neccessary.
84  * @pools: The 'struct device->dma_pools' link.
85  * @type: Type of the pool
86  * @lock: Protects the inuse_list and free_list from concurrnet access. Must be
87  * used with irqsave/irqrestore variants because pool allocator maybe called
88  * from delayed work.
89  * @inuse_list: Pool of pages that are in use. The order is very important and
90  *   it is in the order that the TTM pages that are put back are in.
91  * @free_list: Pool of pages that are free to be used. No order requirements.
92  * @dev: The device that is associated with these pools.
93  * @size: Size used during DMA allocation.
94  * @npages_free: Count of available pages for re-use.
95  * @npages_in_use: Count of pages that are in use.
96  * @nfrees: Stats when pool is shrinking.
97  * @nrefills: Stats when the pool is grown.
98  * @gfp_flags: Flags to pass for alloc_page.
99  * @name: Name of the pool.
100  * @dev_name: Name derieved from dev - similar to how dev_info works.
101  *   Used during shutdown as the dev_info during release is unavailable.
102  */
103 struct dma_pool {
104 	struct list_head pools; /* The 'struct device->dma_pools link */
105 	enum pool_type type;
106 	spinlock_t lock;
107 	struct list_head inuse_list;
108 	struct list_head free_list;
109 	struct device *dev;
110 	unsigned size;
111 	unsigned npages_free;
112 	unsigned npages_in_use;
113 	unsigned long nfrees; /* Stats when shrunk. */
114 	unsigned long nrefills; /* Stats when grown. */
115 	gfp_t gfp_flags;
116 	char name[13]; /* "cached dma32" */
117 	char dev_name[64]; /* Constructed from dev */
118 };
119 
120 /*
121  * The accounting page keeping track of the allocated page along with
122  * the DMA address.
123  * @page_list: The link to the 'page_list' in 'struct dma_pool'.
124  * @vaddr: The virtual address of the page
125  * @dma: The bus address of the page. If the page is not allocated
126  *   via the DMA API, it will be -1.
127  */
128 struct dma_page {
129 	struct list_head page_list;
130 	void *vaddr;
131 	struct page *p;
132 	dma_addr_t dma;
133 };
134 
135 /*
136  * Limits for the pool. They are handled without locks because only place where
137  * they may change is in sysfs store. They won't have immediate effect anyway
138  * so forcing serialization to access them is pointless.
139  */
140 
141 struct ttm_pool_opts {
142 	unsigned	alloc_size;
143 	unsigned	max_size;
144 	unsigned	small;
145 };
146 
147 /*
148  * Contains the list of all of the 'struct device' and their corresponding
149  * DMA pools. Guarded by _mutex->lock.
150  * @pools: The link to 'struct ttm_pool_manager->pools'
151  * @dev: The 'struct device' associated with the 'pool'
152  * @pool: The 'struct dma_pool' associated with the 'dev'
153  */
154 struct device_pools {
155 	struct list_head pools;
156 	struct device *dev;
157 	struct dma_pool *pool;
158 };
159 
160 /*
161  * struct ttm_pool_manager - Holds memory pools for fast allocation
162  *
163  * @lock: Lock used when adding/removing from pools
164  * @pools: List of 'struct device' and 'struct dma_pool' tuples.
165  * @options: Limits for the pool.
166  * @npools: Total amount of pools in existence.
167  * @shrinker: The structure used by [un|]register_shrinker
168  */
169 struct ttm_pool_manager {
170 	struct mutex		lock;
171 	struct list_head	pools;
172 	struct ttm_pool_opts	options;
173 	unsigned		npools;
174 	struct shrinker		mm_shrink;
175 	struct kobject		kobj;
176 };
177 
178 static struct ttm_pool_manager *_manager;
179 
180 static struct attribute ttm_page_pool_max = {
181 	.name = "pool_max_size",
182 	.mode = S_IRUGO | S_IWUSR
183 };
184 static struct attribute ttm_page_pool_small = {
185 	.name = "pool_small_allocation",
186 	.mode = S_IRUGO | S_IWUSR
187 };
188 static struct attribute ttm_page_pool_alloc_size = {
189 	.name = "pool_allocation_size",
190 	.mode = S_IRUGO | S_IWUSR
191 };
192 
193 static struct attribute *ttm_pool_attrs[] = {
194 	&ttm_page_pool_max,
195 	&ttm_page_pool_small,
196 	&ttm_page_pool_alloc_size,
197 	NULL
198 };
199 
ttm_pool_kobj_release(struct kobject * kobj)200 static void ttm_pool_kobj_release(struct kobject *kobj)
201 {
202 	struct ttm_pool_manager *m =
203 		container_of(kobj, struct ttm_pool_manager, kobj);
204 	kfree(m);
205 }
206 
ttm_pool_store(struct kobject * kobj,struct attribute * attr,const char * buffer,size_t size)207 static ssize_t ttm_pool_store(struct kobject *kobj, struct attribute *attr,
208 			      const char *buffer, size_t size)
209 {
210 	struct ttm_pool_manager *m =
211 		container_of(kobj, struct ttm_pool_manager, kobj);
212 	int chars;
213 	unsigned val;
214 	chars = sscanf(buffer, "%u", &val);
215 	if (chars == 0)
216 		return size;
217 
218 	/* Convert kb to number of pages */
219 	val = val / (PAGE_SIZE >> 10);
220 
221 	if (attr == &ttm_page_pool_max)
222 		m->options.max_size = val;
223 	else if (attr == &ttm_page_pool_small)
224 		m->options.small = val;
225 	else if (attr == &ttm_page_pool_alloc_size) {
226 		if (val > NUM_PAGES_TO_ALLOC*8) {
227 			pr_err("Setting allocation size to %lu is not allowed. Recommended size is %lu\n",
228 			       NUM_PAGES_TO_ALLOC*(PAGE_SIZE >> 7),
229 			       NUM_PAGES_TO_ALLOC*(PAGE_SIZE >> 10));
230 			return size;
231 		} else if (val > NUM_PAGES_TO_ALLOC) {
232 			pr_warn("Setting allocation size to larger than %lu is not recommended\n",
233 				NUM_PAGES_TO_ALLOC*(PAGE_SIZE >> 10));
234 		}
235 		m->options.alloc_size = val;
236 	}
237 
238 	return size;
239 }
240 
ttm_pool_show(struct kobject * kobj,struct attribute * attr,char * buffer)241 static ssize_t ttm_pool_show(struct kobject *kobj, struct attribute *attr,
242 			     char *buffer)
243 {
244 	struct ttm_pool_manager *m =
245 		container_of(kobj, struct ttm_pool_manager, kobj);
246 	unsigned val = 0;
247 
248 	if (attr == &ttm_page_pool_max)
249 		val = m->options.max_size;
250 	else if (attr == &ttm_page_pool_small)
251 		val = m->options.small;
252 	else if (attr == &ttm_page_pool_alloc_size)
253 		val = m->options.alloc_size;
254 
255 	val = val * (PAGE_SIZE >> 10);
256 
257 	return snprintf(buffer, PAGE_SIZE, "%u\n", val);
258 }
259 
260 static const struct sysfs_ops ttm_pool_sysfs_ops = {
261 	.show = &ttm_pool_show,
262 	.store = &ttm_pool_store,
263 };
264 
265 static struct kobj_type ttm_pool_kobj_type = {
266 	.release = &ttm_pool_kobj_release,
267 	.sysfs_ops = &ttm_pool_sysfs_ops,
268 	.default_attrs = ttm_pool_attrs,
269 };
270 
271 #ifndef CONFIG_X86
set_pages_array_wb(struct page ** pages,int addrinarray)272 static int set_pages_array_wb(struct page **pages, int addrinarray)
273 {
274 #ifdef TTM_HAS_AGP
275 	int i;
276 
277 	for (i = 0; i < addrinarray; i++)
278 		unmap_page_from_agp(pages[i]);
279 #endif
280 	return 0;
281 }
282 
set_pages_array_wc(struct page ** pages,int addrinarray)283 static int set_pages_array_wc(struct page **pages, int addrinarray)
284 {
285 #ifdef TTM_HAS_AGP
286 	int i;
287 
288 	for (i = 0; i < addrinarray; i++)
289 		map_page_into_agp(pages[i]);
290 #endif
291 	return 0;
292 }
293 
set_pages_array_uc(struct page ** pages,int addrinarray)294 static int set_pages_array_uc(struct page **pages, int addrinarray)
295 {
296 #ifdef TTM_HAS_AGP
297 	int i;
298 
299 	for (i = 0; i < addrinarray; i++)
300 		map_page_into_agp(pages[i]);
301 #endif
302 	return 0;
303 }
304 #endif /* for !CONFIG_X86 */
305 
ttm_set_pages_caching(struct dma_pool * pool,struct page ** pages,unsigned cpages)306 static int ttm_set_pages_caching(struct dma_pool *pool,
307 				 struct page **pages, unsigned cpages)
308 {
309 	int r = 0;
310 	/* Set page caching */
311 	if (pool->type & IS_UC) {
312 		r = set_pages_array_uc(pages, cpages);
313 		if (r)
314 			pr_err("%s: Failed to set %d pages to uc!\n",
315 			       pool->dev_name, cpages);
316 	}
317 	if (pool->type & IS_WC) {
318 		r = set_pages_array_wc(pages, cpages);
319 		if (r)
320 			pr_err("%s: Failed to set %d pages to wc!\n",
321 			       pool->dev_name, cpages);
322 	}
323 	return r;
324 }
325 
__ttm_dma_free_page(struct dma_pool * pool,struct dma_page * d_page)326 static void __ttm_dma_free_page(struct dma_pool *pool, struct dma_page *d_page)
327 {
328 	dma_addr_t dma = d_page->dma;
329 	dma_free_coherent(pool->dev, pool->size, d_page->vaddr, dma);
330 
331 	kfree(d_page);
332 	d_page = NULL;
333 }
__ttm_dma_alloc_page(struct dma_pool * pool)334 static struct dma_page *__ttm_dma_alloc_page(struct dma_pool *pool)
335 {
336 	struct dma_page *d_page;
337 
338 	d_page = kmalloc(sizeof(struct dma_page), GFP_KERNEL);
339 	if (!d_page)
340 		return NULL;
341 
342 	d_page->vaddr = dma_alloc_coherent(pool->dev, pool->size,
343 					   &d_page->dma,
344 					   pool->gfp_flags);
345 	if (d_page->vaddr) {
346 		if (is_vmalloc_addr(d_page->vaddr))
347 			d_page->p = vmalloc_to_page(d_page->vaddr);
348 		else
349 			d_page->p = virt_to_page(d_page->vaddr);
350 	} else {
351 		kfree(d_page);
352 		d_page = NULL;
353 	}
354 	return d_page;
355 }
ttm_to_type(int flags,enum ttm_caching_state cstate)356 static enum pool_type ttm_to_type(int flags, enum ttm_caching_state cstate)
357 {
358 	enum pool_type type = IS_UNDEFINED;
359 
360 	if (flags & TTM_PAGE_FLAG_DMA32)
361 		type |= IS_DMA32;
362 	if (cstate == tt_cached)
363 		type |= IS_CACHED;
364 	else if (cstate == tt_uncached)
365 		type |= IS_UC;
366 	else
367 		type |= IS_WC;
368 
369 	return type;
370 }
371 
ttm_pool_update_free_locked(struct dma_pool * pool,unsigned freed_pages)372 static void ttm_pool_update_free_locked(struct dma_pool *pool,
373 					unsigned freed_pages)
374 {
375 	pool->npages_free -= freed_pages;
376 	pool->nfrees += freed_pages;
377 
378 }
379 
380 /* set memory back to wb and free the pages. */
ttm_dma_pages_put(struct dma_pool * pool,struct list_head * d_pages,struct page * pages[],unsigned npages)381 static void ttm_dma_pages_put(struct dma_pool *pool, struct list_head *d_pages,
382 			      struct page *pages[], unsigned npages)
383 {
384 	struct dma_page *d_page, *tmp;
385 
386 	/* Don't set WB on WB page pool. */
387 	if (npages && !(pool->type & IS_CACHED) &&
388 	    set_pages_array_wb(pages, npages))
389 		pr_err("%s: Failed to set %d pages to wb!\n",
390 		       pool->dev_name, npages);
391 
392 	list_for_each_entry_safe(d_page, tmp, d_pages, page_list) {
393 		list_del(&d_page->page_list);
394 		__ttm_dma_free_page(pool, d_page);
395 	}
396 }
397 
ttm_dma_page_put(struct dma_pool * pool,struct dma_page * d_page)398 static void ttm_dma_page_put(struct dma_pool *pool, struct dma_page *d_page)
399 {
400 	/* Don't set WB on WB page pool. */
401 	if (!(pool->type & IS_CACHED) && set_pages_array_wb(&d_page->p, 1))
402 		pr_err("%s: Failed to set %d pages to wb!\n",
403 		       pool->dev_name, 1);
404 
405 	list_del(&d_page->page_list);
406 	__ttm_dma_free_page(pool, d_page);
407 }
408 
409 /*
410  * Free pages from pool.
411  *
412  * To prevent hogging the ttm_swap process we only free NUM_PAGES_TO_ALLOC
413  * number of pages in one go.
414  *
415  * @pool: to free the pages from
416  * @nr_free: If set to true will free all pages in pool
417  * @use_static: Safe to use static buffer
418  **/
ttm_dma_page_pool_free(struct dma_pool * pool,unsigned nr_free,bool use_static)419 static unsigned ttm_dma_page_pool_free(struct dma_pool *pool, unsigned nr_free,
420 				       bool use_static)
421 {
422 	static struct page *static_buf[NUM_PAGES_TO_ALLOC];
423 	unsigned long irq_flags;
424 	struct dma_page *dma_p, *tmp;
425 	struct page **pages_to_free;
426 	struct list_head d_pages;
427 	unsigned freed_pages = 0,
428 		 npages_to_free = nr_free;
429 
430 	if (NUM_PAGES_TO_ALLOC < nr_free)
431 		npages_to_free = NUM_PAGES_TO_ALLOC;
432 #if 0
433 	if (nr_free > 1) {
434 		pr_debug("%s: (%s:%d) Attempting to free %d (%d) pages\n",
435 			 pool->dev_name, pool->name, current->pid,
436 			 npages_to_free, nr_free);
437 	}
438 #endif
439 	if (use_static)
440 		pages_to_free = static_buf;
441 	else
442 		pages_to_free = kmalloc(npages_to_free * sizeof(struct page *),
443 					GFP_KERNEL);
444 
445 	if (!pages_to_free) {
446 		pr_err("%s: Failed to allocate memory for pool free operation\n",
447 		       pool->dev_name);
448 		return 0;
449 	}
450 	INIT_LIST_HEAD(&d_pages);
451 restart:
452 	spin_lock_irqsave(&pool->lock, irq_flags);
453 
454 	/* We picking the oldest ones off the list */
455 	list_for_each_entry_safe_reverse(dma_p, tmp, &pool->free_list,
456 					 page_list) {
457 		if (freed_pages >= npages_to_free)
458 			break;
459 
460 		/* Move the dma_page from one list to another. */
461 		list_move(&dma_p->page_list, &d_pages);
462 
463 		pages_to_free[freed_pages++] = dma_p->p;
464 		/* We can only remove NUM_PAGES_TO_ALLOC at a time. */
465 		if (freed_pages >= NUM_PAGES_TO_ALLOC) {
466 
467 			ttm_pool_update_free_locked(pool, freed_pages);
468 			/**
469 			 * Because changing page caching is costly
470 			 * we unlock the pool to prevent stalling.
471 			 */
472 			spin_unlock_irqrestore(&pool->lock, irq_flags);
473 
474 			ttm_dma_pages_put(pool, &d_pages, pages_to_free,
475 					  freed_pages);
476 
477 			INIT_LIST_HEAD(&d_pages);
478 
479 			if (likely(nr_free != FREE_ALL_PAGES))
480 				nr_free -= freed_pages;
481 
482 			if (NUM_PAGES_TO_ALLOC >= nr_free)
483 				npages_to_free = nr_free;
484 			else
485 				npages_to_free = NUM_PAGES_TO_ALLOC;
486 
487 			freed_pages = 0;
488 
489 			/* free all so restart the processing */
490 			if (nr_free)
491 				goto restart;
492 
493 			/* Not allowed to fall through or break because
494 			 * following context is inside spinlock while we are
495 			 * outside here.
496 			 */
497 			goto out;
498 
499 		}
500 	}
501 
502 	/* remove range of pages from the pool */
503 	if (freed_pages) {
504 		ttm_pool_update_free_locked(pool, freed_pages);
505 		nr_free -= freed_pages;
506 	}
507 
508 	spin_unlock_irqrestore(&pool->lock, irq_flags);
509 
510 	if (freed_pages)
511 		ttm_dma_pages_put(pool, &d_pages, pages_to_free, freed_pages);
512 out:
513 	if (pages_to_free != static_buf)
514 		kfree(pages_to_free);
515 	return nr_free;
516 }
517 
ttm_dma_free_pool(struct device * dev,enum pool_type type)518 static void ttm_dma_free_pool(struct device *dev, enum pool_type type)
519 {
520 	struct device_pools *p;
521 	struct dma_pool *pool;
522 
523 	if (!dev)
524 		return;
525 
526 	mutex_lock(&_manager->lock);
527 	list_for_each_entry_reverse(p, &_manager->pools, pools) {
528 		if (p->dev != dev)
529 			continue;
530 		pool = p->pool;
531 		if (pool->type != type)
532 			continue;
533 
534 		list_del(&p->pools);
535 		kfree(p);
536 		_manager->npools--;
537 		break;
538 	}
539 	list_for_each_entry_reverse(pool, &dev->dma_pools, pools) {
540 		if (pool->type != type)
541 			continue;
542 		/* Takes a spinlock.. */
543 		/* OK to use static buffer since global mutex is held. */
544 		ttm_dma_page_pool_free(pool, FREE_ALL_PAGES, true);
545 		WARN_ON(((pool->npages_in_use + pool->npages_free) != 0));
546 		/* This code path is called after _all_ references to the
547 		 * struct device has been dropped - so nobody should be
548 		 * touching it. In case somebody is trying to _add_ we are
549 		 * guarded by the mutex. */
550 		list_del(&pool->pools);
551 		kfree(pool);
552 		break;
553 	}
554 	mutex_unlock(&_manager->lock);
555 }
556 
557 /*
558  * On free-ing of the 'struct device' this deconstructor is run.
559  * Albeit the pool might have already been freed earlier.
560  */
ttm_dma_pool_release(struct device * dev,void * res)561 static void ttm_dma_pool_release(struct device *dev, void *res)
562 {
563 	struct dma_pool *pool = *(struct dma_pool **)res;
564 
565 	if (pool)
566 		ttm_dma_free_pool(dev, pool->type);
567 }
568 
ttm_dma_pool_match(struct device * dev,void * res,void * match_data)569 static int ttm_dma_pool_match(struct device *dev, void *res, void *match_data)
570 {
571 	return *(struct dma_pool **)res == match_data;
572 }
573 
ttm_dma_pool_init(struct device * dev,gfp_t flags,enum pool_type type)574 static struct dma_pool *ttm_dma_pool_init(struct device *dev, gfp_t flags,
575 					  enum pool_type type)
576 {
577 	char *n[] = {"wc", "uc", "cached", " dma32", "unknown",};
578 	enum pool_type t[] = {IS_WC, IS_UC, IS_CACHED, IS_DMA32, IS_UNDEFINED};
579 	struct device_pools *sec_pool = NULL;
580 	struct dma_pool *pool = NULL, **ptr;
581 	unsigned i;
582 	int ret = -ENODEV;
583 	char *p;
584 
585 	if (!dev)
586 		return NULL;
587 
588 	ptr = devres_alloc(ttm_dma_pool_release, sizeof(*ptr), GFP_KERNEL);
589 	if (!ptr)
590 		return NULL;
591 
592 	ret = -ENOMEM;
593 
594 	pool = kmalloc_node(sizeof(struct dma_pool), GFP_KERNEL,
595 			    dev_to_node(dev));
596 	if (!pool)
597 		goto err_mem;
598 
599 	sec_pool = kmalloc_node(sizeof(struct device_pools), GFP_KERNEL,
600 				dev_to_node(dev));
601 	if (!sec_pool)
602 		goto err_mem;
603 
604 	INIT_LIST_HEAD(&sec_pool->pools);
605 	sec_pool->dev = dev;
606 	sec_pool->pool =  pool;
607 
608 	INIT_LIST_HEAD(&pool->free_list);
609 	INIT_LIST_HEAD(&pool->inuse_list);
610 	INIT_LIST_HEAD(&pool->pools);
611 	spin_lock_init(&pool->lock);
612 	pool->dev = dev;
613 	pool->npages_free = pool->npages_in_use = 0;
614 	pool->nfrees = 0;
615 	pool->gfp_flags = flags;
616 	pool->size = PAGE_SIZE;
617 	pool->type = type;
618 	pool->nrefills = 0;
619 	p = pool->name;
620 	for (i = 0; i < 5; i++) {
621 		if (type & t[i]) {
622 			p += snprintf(p, sizeof(pool->name) - (p - pool->name),
623 				      "%s", n[i]);
624 		}
625 	}
626 	*p = 0;
627 	/* We copy the name for pr_ calls b/c when dma_pool_destroy is called
628 	 * - the kobj->name has already been deallocated.*/
629 	snprintf(pool->dev_name, sizeof(pool->dev_name), "%s %s",
630 		 dev_driver_string(dev), dev_name(dev));
631 	mutex_lock(&_manager->lock);
632 	/* You can get the dma_pool from either the global: */
633 	list_add(&sec_pool->pools, &_manager->pools);
634 	_manager->npools++;
635 	/* or from 'struct device': */
636 	list_add(&pool->pools, &dev->dma_pools);
637 	mutex_unlock(&_manager->lock);
638 
639 	*ptr = pool;
640 	devres_add(dev, ptr);
641 
642 	return pool;
643 err_mem:
644 	devres_free(ptr);
645 	kfree(sec_pool);
646 	kfree(pool);
647 	return ERR_PTR(ret);
648 }
649 
ttm_dma_find_pool(struct device * dev,enum pool_type type)650 static struct dma_pool *ttm_dma_find_pool(struct device *dev,
651 					  enum pool_type type)
652 {
653 	struct dma_pool *pool, *tmp, *found = NULL;
654 
655 	if (type == IS_UNDEFINED)
656 		return found;
657 
658 	/* NB: We iterate on the 'struct dev' which has no spinlock, but
659 	 * it does have a kref which we have taken. The kref is taken during
660 	 * graphic driver loading - in the drm_pci_init it calls either
661 	 * pci_dev_get or pci_register_driver which both end up taking a kref
662 	 * on 'struct device'.
663 	 *
664 	 * On teardown, the graphic drivers end up quiescing the TTM (put_pages)
665 	 * and calls the dev_res deconstructors: ttm_dma_pool_release. The nice
666 	 * thing is at that point of time there are no pages associated with the
667 	 * driver so this function will not be called.
668 	 */
669 	list_for_each_entry_safe(pool, tmp, &dev->dma_pools, pools) {
670 		if (pool->type != type)
671 			continue;
672 		found = pool;
673 		break;
674 	}
675 	return found;
676 }
677 
678 /*
679  * Free pages the pages that failed to change the caching state. If there
680  * are pages that have changed their caching state already put them to the
681  * pool.
682  */
ttm_dma_handle_caching_state_failure(struct dma_pool * pool,struct list_head * d_pages,struct page ** failed_pages,unsigned cpages)683 static void ttm_dma_handle_caching_state_failure(struct dma_pool *pool,
684 						 struct list_head *d_pages,
685 						 struct page **failed_pages,
686 						 unsigned cpages)
687 {
688 	struct dma_page *d_page, *tmp;
689 	struct page *p;
690 	unsigned i = 0;
691 
692 	p = failed_pages[0];
693 	if (!p)
694 		return;
695 	/* Find the failed page. */
696 	list_for_each_entry_safe(d_page, tmp, d_pages, page_list) {
697 		if (d_page->p != p)
698 			continue;
699 		/* .. and then progress over the full list. */
700 		list_del(&d_page->page_list);
701 		__ttm_dma_free_page(pool, d_page);
702 		if (++i < cpages)
703 			p = failed_pages[i];
704 		else
705 			break;
706 	}
707 
708 }
709 
710 /*
711  * Allocate 'count' pages, and put 'need' number of them on the
712  * 'pages' and as well on the 'dma_address' starting at 'dma_offset' offset.
713  * The full list of pages should also be on 'd_pages'.
714  * We return zero for success, and negative numbers as errors.
715  */
ttm_dma_pool_alloc_new_pages(struct dma_pool * pool,struct list_head * d_pages,unsigned count)716 static int ttm_dma_pool_alloc_new_pages(struct dma_pool *pool,
717 					struct list_head *d_pages,
718 					unsigned count)
719 {
720 	struct page **caching_array;
721 	struct dma_page *dma_p;
722 	struct page *p;
723 	int r = 0;
724 	unsigned i, cpages;
725 	unsigned max_cpages = min(count,
726 			(unsigned)(PAGE_SIZE/sizeof(struct page *)));
727 
728 	/* allocate array for page caching change */
729 	caching_array = kmalloc(max_cpages*sizeof(struct page *), GFP_KERNEL);
730 
731 	if (!caching_array) {
732 		pr_err("%s: Unable to allocate table for new pages\n",
733 		       pool->dev_name);
734 		return -ENOMEM;
735 	}
736 
737 	if (count > 1) {
738 		pr_debug("%s: (%s:%d) Getting %d pages\n",
739 			 pool->dev_name, pool->name, current->pid, count);
740 	}
741 
742 	for (i = 0, cpages = 0; i < count; ++i) {
743 		dma_p = __ttm_dma_alloc_page(pool);
744 		if (!dma_p) {
745 			pr_err("%s: Unable to get page %u\n",
746 			       pool->dev_name, i);
747 
748 			/* store already allocated pages in the pool after
749 			 * setting the caching state */
750 			if (cpages) {
751 				r = ttm_set_pages_caching(pool, caching_array,
752 							  cpages);
753 				if (r)
754 					ttm_dma_handle_caching_state_failure(
755 						pool, d_pages, caching_array,
756 						cpages);
757 			}
758 			r = -ENOMEM;
759 			goto out;
760 		}
761 		p = dma_p->p;
762 #ifdef CONFIG_HIGHMEM
763 		/* gfp flags of highmem page should never be dma32 so we
764 		 * we should be fine in such case
765 		 */
766 		if (!PageHighMem(p))
767 #endif
768 		{
769 			caching_array[cpages++] = p;
770 			if (cpages == max_cpages) {
771 				/* Note: Cannot hold the spinlock */
772 				r = ttm_set_pages_caching(pool, caching_array,
773 						 cpages);
774 				if (r) {
775 					ttm_dma_handle_caching_state_failure(
776 						pool, d_pages, caching_array,
777 						cpages);
778 					goto out;
779 				}
780 				cpages = 0;
781 			}
782 		}
783 		list_add(&dma_p->page_list, d_pages);
784 	}
785 
786 	if (cpages) {
787 		r = ttm_set_pages_caching(pool, caching_array, cpages);
788 		if (r)
789 			ttm_dma_handle_caching_state_failure(pool, d_pages,
790 					caching_array, cpages);
791 	}
792 out:
793 	kfree(caching_array);
794 	return r;
795 }
796 
797 /*
798  * @return count of pages still required to fulfill the request.
799  */
ttm_dma_page_pool_fill_locked(struct dma_pool * pool,unsigned long * irq_flags)800 static int ttm_dma_page_pool_fill_locked(struct dma_pool *pool,
801 					 unsigned long *irq_flags)
802 {
803 	unsigned count = _manager->options.small;
804 	int r = pool->npages_free;
805 
806 	if (count > pool->npages_free) {
807 		struct list_head d_pages;
808 
809 		INIT_LIST_HEAD(&d_pages);
810 
811 		spin_unlock_irqrestore(&pool->lock, *irq_flags);
812 
813 		/* Returns how many more are neccessary to fulfill the
814 		 * request. */
815 		r = ttm_dma_pool_alloc_new_pages(pool, &d_pages, count);
816 
817 		spin_lock_irqsave(&pool->lock, *irq_flags);
818 		if (!r) {
819 			/* Add the fresh to the end.. */
820 			list_splice(&d_pages, &pool->free_list);
821 			++pool->nrefills;
822 			pool->npages_free += count;
823 			r = count;
824 		} else {
825 			struct dma_page *d_page;
826 			unsigned cpages = 0;
827 
828 			pr_err("%s: Failed to fill %s pool (r:%d)!\n",
829 			       pool->dev_name, pool->name, r);
830 
831 			list_for_each_entry(d_page, &d_pages, page_list) {
832 				cpages++;
833 			}
834 			list_splice_tail(&d_pages, &pool->free_list);
835 			pool->npages_free += cpages;
836 			r = cpages;
837 		}
838 	}
839 	return r;
840 }
841 
842 /*
843  * @return count of pages still required to fulfill the request.
844  * The populate list is actually a stack (not that is matters as TTM
845  * allocates one page at a time.
846  */
ttm_dma_pool_get_pages(struct dma_pool * pool,struct ttm_dma_tt * ttm_dma,unsigned index)847 static int ttm_dma_pool_get_pages(struct dma_pool *pool,
848 				  struct ttm_dma_tt *ttm_dma,
849 				  unsigned index)
850 {
851 	struct dma_page *d_page;
852 	struct ttm_tt *ttm = &ttm_dma->ttm;
853 	unsigned long irq_flags;
854 	int count, r = -ENOMEM;
855 
856 	spin_lock_irqsave(&pool->lock, irq_flags);
857 	count = ttm_dma_page_pool_fill_locked(pool, &irq_flags);
858 	if (count) {
859 		d_page = list_first_entry(&pool->free_list, struct dma_page, page_list);
860 		ttm->pages[index] = d_page->p;
861 		ttm_dma->cpu_address[index] = d_page->vaddr;
862 		ttm_dma->dma_address[index] = d_page->dma;
863 		list_move_tail(&d_page->page_list, &ttm_dma->pages_list);
864 		r = 0;
865 		pool->npages_in_use += 1;
866 		pool->npages_free -= 1;
867 	}
868 	spin_unlock_irqrestore(&pool->lock, irq_flags);
869 	return r;
870 }
871 
872 /*
873  * On success pages list will hold count number of correctly
874  * cached pages. On failure will hold the negative return value (-ENOMEM, etc).
875  */
ttm_dma_populate(struct ttm_dma_tt * ttm_dma,struct device * dev)876 int ttm_dma_populate(struct ttm_dma_tt *ttm_dma, struct device *dev)
877 {
878 	struct ttm_tt *ttm = &ttm_dma->ttm;
879 	struct ttm_mem_global *mem_glob = ttm->glob->mem_glob;
880 	struct dma_pool *pool;
881 	enum pool_type type;
882 	unsigned i;
883 	gfp_t gfp_flags;
884 	int ret;
885 
886 	if (ttm->state != tt_unpopulated)
887 		return 0;
888 
889 	type = ttm_to_type(ttm->page_flags, ttm->caching_state);
890 	if (ttm->page_flags & TTM_PAGE_FLAG_DMA32)
891 		gfp_flags = GFP_USER | GFP_DMA32;
892 	else
893 		gfp_flags = GFP_HIGHUSER;
894 	if (ttm->page_flags & TTM_PAGE_FLAG_ZERO_ALLOC)
895 		gfp_flags |= __GFP_ZERO;
896 
897 	pool = ttm_dma_find_pool(dev, type);
898 	if (!pool) {
899 		pool = ttm_dma_pool_init(dev, gfp_flags, type);
900 		if (IS_ERR_OR_NULL(pool)) {
901 			return -ENOMEM;
902 		}
903 	}
904 
905 	INIT_LIST_HEAD(&ttm_dma->pages_list);
906 	for (i = 0; i < ttm->num_pages; ++i) {
907 		ret = ttm_dma_pool_get_pages(pool, ttm_dma, i);
908 		if (ret != 0) {
909 			ttm_dma_unpopulate(ttm_dma, dev);
910 			return -ENOMEM;
911 		}
912 
913 		ret = ttm_mem_global_alloc_page(mem_glob, ttm->pages[i],
914 						false, false);
915 		if (unlikely(ret != 0)) {
916 			ttm_dma_unpopulate(ttm_dma, dev);
917 			return -ENOMEM;
918 		}
919 	}
920 
921 	if (unlikely(ttm->page_flags & TTM_PAGE_FLAG_SWAPPED)) {
922 		ret = ttm_tt_swapin(ttm);
923 		if (unlikely(ret != 0)) {
924 			ttm_dma_unpopulate(ttm_dma, dev);
925 			return ret;
926 		}
927 	}
928 
929 	ttm->state = tt_unbound;
930 	return 0;
931 }
932 EXPORT_SYMBOL_GPL(ttm_dma_populate);
933 
934 /* Put all pages in pages list to correct pool to wait for reuse */
ttm_dma_unpopulate(struct ttm_dma_tt * ttm_dma,struct device * dev)935 void ttm_dma_unpopulate(struct ttm_dma_tt *ttm_dma, struct device *dev)
936 {
937 	struct ttm_tt *ttm = &ttm_dma->ttm;
938 	struct dma_pool *pool;
939 	struct dma_page *d_page, *next;
940 	enum pool_type type;
941 	bool is_cached = false;
942 	unsigned count = 0, i, npages = 0;
943 	unsigned long irq_flags;
944 
945 	type = ttm_to_type(ttm->page_flags, ttm->caching_state);
946 	pool = ttm_dma_find_pool(dev, type);
947 	if (!pool)
948 		return;
949 
950 	is_cached = (ttm_dma_find_pool(pool->dev,
951 		     ttm_to_type(ttm->page_flags, tt_cached)) == pool);
952 
953 	/* make sure pages array match list and count number of pages */
954 	list_for_each_entry(d_page, &ttm_dma->pages_list, page_list) {
955 		ttm->pages[count] = d_page->p;
956 		count++;
957 	}
958 
959 	spin_lock_irqsave(&pool->lock, irq_flags);
960 	pool->npages_in_use -= count;
961 	if (is_cached) {
962 		pool->nfrees += count;
963 	} else {
964 		pool->npages_free += count;
965 		list_splice(&ttm_dma->pages_list, &pool->free_list);
966 		/*
967 		 * Wait to have at at least NUM_PAGES_TO_ALLOC number of pages
968 		 * to free in order to minimize calls to set_memory_wb().
969 		 */
970 		if (pool->npages_free >= (_manager->options.max_size +
971 					  NUM_PAGES_TO_ALLOC))
972 			npages = pool->npages_free - _manager->options.max_size;
973 	}
974 	spin_unlock_irqrestore(&pool->lock, irq_flags);
975 
976 	if (is_cached) {
977 		list_for_each_entry_safe(d_page, next, &ttm_dma->pages_list, page_list) {
978 			ttm_mem_global_free_page(ttm->glob->mem_glob,
979 						 d_page->p);
980 			ttm_dma_page_put(pool, d_page);
981 		}
982 	} else {
983 		for (i = 0; i < count; i++) {
984 			ttm_mem_global_free_page(ttm->glob->mem_glob,
985 						 ttm->pages[i]);
986 		}
987 	}
988 
989 	INIT_LIST_HEAD(&ttm_dma->pages_list);
990 	for (i = 0; i < ttm->num_pages; i++) {
991 		ttm->pages[i] = NULL;
992 		ttm_dma->cpu_address[i] = 0;
993 		ttm_dma->dma_address[i] = 0;
994 	}
995 
996 	/* shrink pool if necessary (only on !is_cached pools)*/
997 	if (npages)
998 		ttm_dma_page_pool_free(pool, npages, false);
999 	ttm->state = tt_unpopulated;
1000 }
1001 EXPORT_SYMBOL_GPL(ttm_dma_unpopulate);
1002 
1003 /**
1004  * Callback for mm to request pool to reduce number of page held.
1005  *
1006  * XXX: (dchinner) Deadlock warning!
1007  *
1008  * I'm getting sadder as I hear more pathetical whimpers about needing per-pool
1009  * shrinkers
1010  */
1011 static unsigned long
ttm_dma_pool_shrink_scan(struct shrinker * shrink,struct shrink_control * sc)1012 ttm_dma_pool_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
1013 {
1014 	static unsigned start_pool;
1015 	unsigned idx = 0;
1016 	unsigned pool_offset;
1017 	unsigned shrink_pages = sc->nr_to_scan;
1018 	struct device_pools *p;
1019 	unsigned long freed = 0;
1020 
1021 	if (list_empty(&_manager->pools))
1022 		return SHRINK_STOP;
1023 
1024 	if (!mutex_trylock(&_manager->lock))
1025 		return SHRINK_STOP;
1026 	if (!_manager->npools)
1027 		goto out;
1028 	pool_offset = ++start_pool % _manager->npools;
1029 	list_for_each_entry(p, &_manager->pools, pools) {
1030 		unsigned nr_free;
1031 
1032 		if (!p->dev)
1033 			continue;
1034 		if (shrink_pages == 0)
1035 			break;
1036 		/* Do it in round-robin fashion. */
1037 		if (++idx < pool_offset)
1038 			continue;
1039 		nr_free = shrink_pages;
1040 		/* OK to use static buffer since global mutex is held. */
1041 		shrink_pages = ttm_dma_page_pool_free(p->pool, nr_free, true);
1042 		freed += nr_free - shrink_pages;
1043 
1044 		pr_debug("%s: (%s:%d) Asked to shrink %d, have %d more to go\n",
1045 			 p->pool->dev_name, p->pool->name, current->pid,
1046 			 nr_free, shrink_pages);
1047 	}
1048 out:
1049 	mutex_unlock(&_manager->lock);
1050 	return freed;
1051 }
1052 
1053 static unsigned long
ttm_dma_pool_shrink_count(struct shrinker * shrink,struct shrink_control * sc)1054 ttm_dma_pool_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
1055 {
1056 	struct device_pools *p;
1057 	unsigned long count = 0;
1058 
1059 	if (!mutex_trylock(&_manager->lock))
1060 		return 0;
1061 	list_for_each_entry(p, &_manager->pools, pools)
1062 		count += p->pool->npages_free;
1063 	mutex_unlock(&_manager->lock);
1064 	return count;
1065 }
1066 
ttm_dma_pool_mm_shrink_init(struct ttm_pool_manager * manager)1067 static void ttm_dma_pool_mm_shrink_init(struct ttm_pool_manager *manager)
1068 {
1069 	manager->mm_shrink.count_objects = ttm_dma_pool_shrink_count;
1070 	manager->mm_shrink.scan_objects = &ttm_dma_pool_shrink_scan;
1071 	manager->mm_shrink.seeks = 1;
1072 	register_shrinker(&manager->mm_shrink);
1073 }
1074 
ttm_dma_pool_mm_shrink_fini(struct ttm_pool_manager * manager)1075 static void ttm_dma_pool_mm_shrink_fini(struct ttm_pool_manager *manager)
1076 {
1077 	unregister_shrinker(&manager->mm_shrink);
1078 }
1079 
ttm_dma_page_alloc_init(struct ttm_mem_global * glob,unsigned max_pages)1080 int ttm_dma_page_alloc_init(struct ttm_mem_global *glob, unsigned max_pages)
1081 {
1082 	int ret = -ENOMEM;
1083 
1084 	WARN_ON(_manager);
1085 
1086 	pr_info("Initializing DMA pool allocator\n");
1087 
1088 	_manager = kzalloc(sizeof(*_manager), GFP_KERNEL);
1089 	if (!_manager)
1090 		goto err;
1091 
1092 	mutex_init(&_manager->lock);
1093 	INIT_LIST_HEAD(&_manager->pools);
1094 
1095 	_manager->options.max_size = max_pages;
1096 	_manager->options.small = SMALL_ALLOCATION;
1097 	_manager->options.alloc_size = NUM_PAGES_TO_ALLOC;
1098 
1099 	/* This takes care of auto-freeing the _manager */
1100 	ret = kobject_init_and_add(&_manager->kobj, &ttm_pool_kobj_type,
1101 				   &glob->kobj, "dma_pool");
1102 	if (unlikely(ret != 0)) {
1103 		kobject_put(&_manager->kobj);
1104 		goto err;
1105 	}
1106 	ttm_dma_pool_mm_shrink_init(_manager);
1107 	return 0;
1108 err:
1109 	return ret;
1110 }
1111 
ttm_dma_page_alloc_fini(void)1112 void ttm_dma_page_alloc_fini(void)
1113 {
1114 	struct device_pools *p, *t;
1115 
1116 	pr_info("Finalizing DMA pool allocator\n");
1117 	ttm_dma_pool_mm_shrink_fini(_manager);
1118 
1119 	list_for_each_entry_safe_reverse(p, t, &_manager->pools, pools) {
1120 		dev_dbg(p->dev, "(%s:%d) Freeing.\n", p->pool->name,
1121 			current->pid);
1122 		WARN_ON(devres_destroy(p->dev, ttm_dma_pool_release,
1123 			ttm_dma_pool_match, p->pool));
1124 		ttm_dma_free_pool(p->dev, p->pool->type);
1125 	}
1126 	kobject_put(&_manager->kobj);
1127 	_manager = NULL;
1128 }
1129 
ttm_dma_page_alloc_debugfs(struct seq_file * m,void * data)1130 int ttm_dma_page_alloc_debugfs(struct seq_file *m, void *data)
1131 {
1132 	struct device_pools *p;
1133 	struct dma_pool *pool = NULL;
1134 	char *h[] = {"pool", "refills", "pages freed", "inuse", "available",
1135 		     "name", "virt", "busaddr"};
1136 
1137 	if (!_manager) {
1138 		seq_printf(m, "No pool allocator running.\n");
1139 		return 0;
1140 	}
1141 	seq_printf(m, "%13s %12s %13s %8s %8s %8s\n",
1142 		   h[0], h[1], h[2], h[3], h[4], h[5]);
1143 	mutex_lock(&_manager->lock);
1144 	list_for_each_entry(p, &_manager->pools, pools) {
1145 		struct device *dev = p->dev;
1146 		if (!dev)
1147 			continue;
1148 		pool = p->pool;
1149 		seq_printf(m, "%13s %12ld %13ld %8d %8d %8s\n",
1150 				pool->name, pool->nrefills,
1151 				pool->nfrees, pool->npages_in_use,
1152 				pool->npages_free,
1153 				pool->dev_name);
1154 	}
1155 	mutex_unlock(&_manager->lock);
1156 	return 0;
1157 }
1158 EXPORT_SYMBOL_GPL(ttm_dma_page_alloc_debugfs);
1159 
1160 #endif
1161