1 /*
2 * Intel(R) Processor Trace PMU driver for perf
3 * Copyright (c) 2013-2014, Intel Corporation.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 *
14 * Intel PT is specified in the Intel Architecture Instruction Set Extensions
15 * Programming Reference:
16 * http://software.intel.com/en-us/intel-isa-extensions
17 */
18
19 #undef DEBUG
20
21 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
22
23 #include <linux/types.h>
24 #include <linux/slab.h>
25 #include <linux/device.h>
26
27 #include <asm/perf_event.h>
28 #include <asm/insn.h>
29 #include <asm/io.h>
30
31 #include "perf_event.h"
32 #include "intel_pt.h"
33
34 static DEFINE_PER_CPU(struct pt, pt_ctx);
35
36 static struct pt_pmu pt_pmu;
37
38 enum cpuid_regs {
39 CR_EAX = 0,
40 CR_ECX,
41 CR_EDX,
42 CR_EBX
43 };
44
45 /*
46 * Capabilities of Intel PT hardware, such as number of address bits or
47 * supported output schemes, are cached and exported to userspace as "caps"
48 * attribute group of pt pmu device
49 * (/sys/bus/event_source/devices/intel_pt/caps/) so that userspace can store
50 * relevant bits together with intel_pt traces.
51 *
52 * These are necessary for both trace decoding (payloads_lip, contains address
53 * width encoded in IP-related packets), and event configuration (bitmasks with
54 * permitted values for certain bit fields).
55 */
56 #define PT_CAP(_n, _l, _r, _m) \
57 [PT_CAP_ ## _n] = { .name = __stringify(_n), .leaf = _l, \
58 .reg = _r, .mask = _m }
59
60 static struct pt_cap_desc {
61 const char *name;
62 u32 leaf;
63 u8 reg;
64 u32 mask;
65 } pt_caps[] = {
66 PT_CAP(max_subleaf, 0, CR_EAX, 0xffffffff),
67 PT_CAP(cr3_filtering, 0, CR_EBX, BIT(0)),
68 PT_CAP(psb_cyc, 0, CR_EBX, BIT(1)),
69 PT_CAP(mtc, 0, CR_EBX, BIT(3)),
70 PT_CAP(topa_output, 0, CR_ECX, BIT(0)),
71 PT_CAP(topa_multiple_entries, 0, CR_ECX, BIT(1)),
72 PT_CAP(single_range_output, 0, CR_ECX, BIT(2)),
73 PT_CAP(payloads_lip, 0, CR_ECX, BIT(31)),
74 PT_CAP(mtc_periods, 1, CR_EAX, 0xffff0000),
75 PT_CAP(cycle_thresholds, 1, CR_EBX, 0xffff),
76 PT_CAP(psb_periods, 1, CR_EBX, 0xffff0000),
77 };
78
pt_cap_get(enum pt_capabilities cap)79 static u32 pt_cap_get(enum pt_capabilities cap)
80 {
81 struct pt_cap_desc *cd = &pt_caps[cap];
82 u32 c = pt_pmu.caps[cd->leaf * PT_CPUID_REGS_NUM + cd->reg];
83 unsigned int shift = __ffs(cd->mask);
84
85 return (c & cd->mask) >> shift;
86 }
87
pt_cap_show(struct device * cdev,struct device_attribute * attr,char * buf)88 static ssize_t pt_cap_show(struct device *cdev,
89 struct device_attribute *attr,
90 char *buf)
91 {
92 struct dev_ext_attribute *ea =
93 container_of(attr, struct dev_ext_attribute, attr);
94 enum pt_capabilities cap = (long)ea->var;
95
96 return snprintf(buf, PAGE_SIZE, "%x\n", pt_cap_get(cap));
97 }
98
99 static struct attribute_group pt_cap_group = {
100 .name = "caps",
101 };
102
103 PMU_FORMAT_ATTR(cyc, "config:1" );
104 PMU_FORMAT_ATTR(mtc, "config:9" );
105 PMU_FORMAT_ATTR(tsc, "config:10" );
106 PMU_FORMAT_ATTR(noretcomp, "config:11" );
107 PMU_FORMAT_ATTR(mtc_period, "config:14-17" );
108 PMU_FORMAT_ATTR(cyc_thresh, "config:19-22" );
109 PMU_FORMAT_ATTR(psb_period, "config:24-27" );
110
111 static struct attribute *pt_formats_attr[] = {
112 &format_attr_cyc.attr,
113 &format_attr_mtc.attr,
114 &format_attr_tsc.attr,
115 &format_attr_noretcomp.attr,
116 &format_attr_mtc_period.attr,
117 &format_attr_cyc_thresh.attr,
118 &format_attr_psb_period.attr,
119 NULL,
120 };
121
122 static struct attribute_group pt_format_group = {
123 .name = "format",
124 .attrs = pt_formats_attr,
125 };
126
127 static const struct attribute_group *pt_attr_groups[] = {
128 &pt_cap_group,
129 &pt_format_group,
130 NULL,
131 };
132
pt_pmu_hw_init(void)133 static int __init pt_pmu_hw_init(void)
134 {
135 struct dev_ext_attribute *de_attrs;
136 struct attribute **attrs;
137 size_t size;
138 int ret;
139 long i;
140
141 attrs = NULL;
142
143 for (i = 0; i < PT_CPUID_LEAVES; i++) {
144 cpuid_count(20, i,
145 &pt_pmu.caps[CR_EAX + i*PT_CPUID_REGS_NUM],
146 &pt_pmu.caps[CR_EBX + i*PT_CPUID_REGS_NUM],
147 &pt_pmu.caps[CR_ECX + i*PT_CPUID_REGS_NUM],
148 &pt_pmu.caps[CR_EDX + i*PT_CPUID_REGS_NUM]);
149 }
150
151 ret = -ENOMEM;
152 size = sizeof(struct attribute *) * (ARRAY_SIZE(pt_caps)+1);
153 attrs = kzalloc(size, GFP_KERNEL);
154 if (!attrs)
155 goto fail;
156
157 size = sizeof(struct dev_ext_attribute) * (ARRAY_SIZE(pt_caps)+1);
158 de_attrs = kzalloc(size, GFP_KERNEL);
159 if (!de_attrs)
160 goto fail;
161
162 for (i = 0; i < ARRAY_SIZE(pt_caps); i++) {
163 struct dev_ext_attribute *de_attr = de_attrs + i;
164
165 de_attr->attr.attr.name = pt_caps[i].name;
166
167 sysfs_attr_init(&de_attr->attr.attr);
168
169 de_attr->attr.attr.mode = S_IRUGO;
170 de_attr->attr.show = pt_cap_show;
171 de_attr->var = (void *)i;
172
173 attrs[i] = &de_attr->attr.attr;
174 }
175
176 pt_cap_group.attrs = attrs;
177
178 return 0;
179
180 fail:
181 kfree(attrs);
182
183 return ret;
184 }
185
186 #define RTIT_CTL_CYC_PSB (RTIT_CTL_CYCLEACC | \
187 RTIT_CTL_CYC_THRESH | \
188 RTIT_CTL_PSB_FREQ)
189
190 #define RTIT_CTL_MTC (RTIT_CTL_MTC_EN | \
191 RTIT_CTL_MTC_RANGE)
192
193 #define PT_CONFIG_MASK (RTIT_CTL_TSC_EN | \
194 RTIT_CTL_DISRETC | \
195 RTIT_CTL_CYC_PSB | \
196 RTIT_CTL_MTC)
197
pt_event_valid(struct perf_event * event)198 static bool pt_event_valid(struct perf_event *event)
199 {
200 u64 config = event->attr.config;
201 u64 allowed, requested;
202
203 if ((config & PT_CONFIG_MASK) != config)
204 return false;
205
206 if (config & RTIT_CTL_CYC_PSB) {
207 if (!pt_cap_get(PT_CAP_psb_cyc))
208 return false;
209
210 allowed = pt_cap_get(PT_CAP_psb_periods);
211 requested = (config & RTIT_CTL_PSB_FREQ) >>
212 RTIT_CTL_PSB_FREQ_OFFSET;
213 if (requested && (!(allowed & BIT(requested))))
214 return false;
215
216 allowed = pt_cap_get(PT_CAP_cycle_thresholds);
217 requested = (config & RTIT_CTL_CYC_THRESH) >>
218 RTIT_CTL_CYC_THRESH_OFFSET;
219 if (requested && (!(allowed & BIT(requested))))
220 return false;
221 }
222
223 if (config & RTIT_CTL_MTC) {
224 /*
225 * In the unlikely case that CPUID lists valid mtc periods,
226 * but not the mtc capability, drop out here.
227 *
228 * Spec says that setting mtc period bits while mtc bit in
229 * CPUID is 0 will #GP, so better safe than sorry.
230 */
231 if (!pt_cap_get(PT_CAP_mtc))
232 return false;
233
234 allowed = pt_cap_get(PT_CAP_mtc_periods);
235 if (!allowed)
236 return false;
237
238 requested = (config & RTIT_CTL_MTC_RANGE) >>
239 RTIT_CTL_MTC_RANGE_OFFSET;
240
241 if (!(allowed & BIT(requested)))
242 return false;
243 }
244
245 return true;
246 }
247
248 /*
249 * PT configuration helpers
250 * These all are cpu affine and operate on a local PT
251 */
252
pt_config(struct perf_event * event)253 static void pt_config(struct perf_event *event)
254 {
255 u64 reg;
256
257 if (!event->hw.itrace_started) {
258 event->hw.itrace_started = 1;
259 wrmsrl(MSR_IA32_RTIT_STATUS, 0);
260 }
261
262 reg = RTIT_CTL_TOPA | RTIT_CTL_BRANCH_EN | RTIT_CTL_TRACEEN;
263
264 if (!event->attr.exclude_kernel)
265 reg |= RTIT_CTL_OS;
266 if (!event->attr.exclude_user)
267 reg |= RTIT_CTL_USR;
268
269 reg |= (event->attr.config & PT_CONFIG_MASK);
270
271 wrmsrl(MSR_IA32_RTIT_CTL, reg);
272 }
273
pt_config_start(bool start)274 static void pt_config_start(bool start)
275 {
276 u64 ctl;
277
278 rdmsrl(MSR_IA32_RTIT_CTL, ctl);
279 if (start)
280 ctl |= RTIT_CTL_TRACEEN;
281 else
282 ctl &= ~RTIT_CTL_TRACEEN;
283 wrmsrl(MSR_IA32_RTIT_CTL, ctl);
284
285 /*
286 * A wrmsr that disables trace generation serializes other PT
287 * registers and causes all data packets to be written to memory,
288 * but a fence is required for the data to become globally visible.
289 *
290 * The below WMB, separating data store and aux_head store matches
291 * the consumer's RMB that separates aux_head load and data load.
292 */
293 if (!start)
294 wmb();
295 }
296
pt_config_buffer(void * buf,unsigned int topa_idx,unsigned int output_off)297 static void pt_config_buffer(void *buf, unsigned int topa_idx,
298 unsigned int output_off)
299 {
300 u64 reg;
301
302 wrmsrl(MSR_IA32_RTIT_OUTPUT_BASE, virt_to_phys(buf));
303
304 reg = 0x7f | ((u64)topa_idx << 7) | ((u64)output_off << 32);
305
306 wrmsrl(MSR_IA32_RTIT_OUTPUT_MASK, reg);
307 }
308
309 /*
310 * Keep ToPA table-related metadata on the same page as the actual table,
311 * taking up a few words from the top
312 */
313
314 #define TENTS_PER_PAGE (((PAGE_SIZE - 40) / sizeof(struct topa_entry)) - 1)
315
316 /**
317 * struct topa - page-sized ToPA table with metadata at the top
318 * @table: actual ToPA table entries, as understood by PT hardware
319 * @list: linkage to struct pt_buffer's list of tables
320 * @phys: physical address of this page
321 * @offset: offset of the first entry in this table in the buffer
322 * @size: total size of all entries in this table
323 * @last: index of the last initialized entry in this table
324 */
325 struct topa {
326 struct topa_entry table[TENTS_PER_PAGE];
327 struct list_head list;
328 u64 phys;
329 u64 offset;
330 size_t size;
331 int last;
332 };
333
334 /* make -1 stand for the last table entry */
335 #define TOPA_ENTRY(t, i) ((i) == -1 ? &(t)->table[(t)->last] : &(t)->table[(i)])
336
337 /**
338 * topa_alloc() - allocate page-sized ToPA table
339 * @cpu: CPU on which to allocate.
340 * @gfp: Allocation flags.
341 *
342 * Return: On success, return the pointer to ToPA table page.
343 */
topa_alloc(int cpu,gfp_t gfp)344 static struct topa *topa_alloc(int cpu, gfp_t gfp)
345 {
346 int node = cpu_to_node(cpu);
347 struct topa *topa;
348 struct page *p;
349
350 p = alloc_pages_node(node, gfp | __GFP_ZERO, 0);
351 if (!p)
352 return NULL;
353
354 topa = page_address(p);
355 topa->last = 0;
356 topa->phys = page_to_phys(p);
357
358 /*
359 * In case of singe-entry ToPA, always put the self-referencing END
360 * link as the 2nd entry in the table
361 */
362 if (!pt_cap_get(PT_CAP_topa_multiple_entries)) {
363 TOPA_ENTRY(topa, 1)->base = topa->phys >> TOPA_SHIFT;
364 TOPA_ENTRY(topa, 1)->end = 1;
365 }
366
367 return topa;
368 }
369
370 /**
371 * topa_free() - free a page-sized ToPA table
372 * @topa: Table to deallocate.
373 */
topa_free(struct topa * topa)374 static void topa_free(struct topa *topa)
375 {
376 free_page((unsigned long)topa);
377 }
378
379 /**
380 * topa_insert_table() - insert a ToPA table into a buffer
381 * @buf: PT buffer that's being extended.
382 * @topa: New topa table to be inserted.
383 *
384 * If it's the first table in this buffer, set up buffer's pointers
385 * accordingly; otherwise, add a END=1 link entry to @topa to the current
386 * "last" table and adjust the last table pointer to @topa.
387 */
topa_insert_table(struct pt_buffer * buf,struct topa * topa)388 static void topa_insert_table(struct pt_buffer *buf, struct topa *topa)
389 {
390 struct topa *last = buf->last;
391
392 list_add_tail(&topa->list, &buf->tables);
393
394 if (!buf->first) {
395 buf->first = buf->last = buf->cur = topa;
396 return;
397 }
398
399 topa->offset = last->offset + last->size;
400 buf->last = topa;
401
402 if (!pt_cap_get(PT_CAP_topa_multiple_entries))
403 return;
404
405 BUG_ON(last->last != TENTS_PER_PAGE - 1);
406
407 TOPA_ENTRY(last, -1)->base = topa->phys >> TOPA_SHIFT;
408 TOPA_ENTRY(last, -1)->end = 1;
409 }
410
411 /**
412 * topa_table_full() - check if a ToPA table is filled up
413 * @topa: ToPA table.
414 */
topa_table_full(struct topa * topa)415 static bool topa_table_full(struct topa *topa)
416 {
417 /* single-entry ToPA is a special case */
418 if (!pt_cap_get(PT_CAP_topa_multiple_entries))
419 return !!topa->last;
420
421 return topa->last == TENTS_PER_PAGE - 1;
422 }
423
424 /**
425 * topa_insert_pages() - create a list of ToPA tables
426 * @buf: PT buffer being initialized.
427 * @gfp: Allocation flags.
428 *
429 * This initializes a list of ToPA tables with entries from
430 * the data_pages provided by rb_alloc_aux().
431 *
432 * Return: 0 on success or error code.
433 */
topa_insert_pages(struct pt_buffer * buf,gfp_t gfp)434 static int topa_insert_pages(struct pt_buffer *buf, gfp_t gfp)
435 {
436 struct topa *topa = buf->last;
437 int order = 0;
438 struct page *p;
439
440 p = virt_to_page(buf->data_pages[buf->nr_pages]);
441 if (PagePrivate(p))
442 order = page_private(p);
443
444 if (topa_table_full(topa)) {
445 topa = topa_alloc(buf->cpu, gfp);
446 if (!topa)
447 return -ENOMEM;
448
449 topa_insert_table(buf, topa);
450 }
451
452 TOPA_ENTRY(topa, -1)->base = page_to_phys(p) >> TOPA_SHIFT;
453 TOPA_ENTRY(topa, -1)->size = order;
454 if (!buf->snapshot && !pt_cap_get(PT_CAP_topa_multiple_entries)) {
455 TOPA_ENTRY(topa, -1)->intr = 1;
456 TOPA_ENTRY(topa, -1)->stop = 1;
457 }
458
459 topa->last++;
460 topa->size += sizes(order);
461
462 buf->nr_pages += 1ul << order;
463
464 return 0;
465 }
466
467 /**
468 * pt_topa_dump() - print ToPA tables and their entries
469 * @buf: PT buffer.
470 */
pt_topa_dump(struct pt_buffer * buf)471 static void pt_topa_dump(struct pt_buffer *buf)
472 {
473 struct topa *topa;
474
475 list_for_each_entry(topa, &buf->tables, list) {
476 int i;
477
478 pr_debug("# table @%p (%016Lx), off %llx size %zx\n", topa->table,
479 topa->phys, topa->offset, topa->size);
480 for (i = 0; i < TENTS_PER_PAGE; i++) {
481 pr_debug("# entry @%p (%lx sz %u %c%c%c) raw=%16llx\n",
482 &topa->table[i],
483 (unsigned long)topa->table[i].base << TOPA_SHIFT,
484 sizes(topa->table[i].size),
485 topa->table[i].end ? 'E' : ' ',
486 topa->table[i].intr ? 'I' : ' ',
487 topa->table[i].stop ? 'S' : ' ',
488 *(u64 *)&topa->table[i]);
489 if ((pt_cap_get(PT_CAP_topa_multiple_entries) &&
490 topa->table[i].stop) ||
491 topa->table[i].end)
492 break;
493 }
494 }
495 }
496
497 /**
498 * pt_buffer_advance() - advance to the next output region
499 * @buf: PT buffer.
500 *
501 * Advance the current pointers in the buffer to the next ToPA entry.
502 */
pt_buffer_advance(struct pt_buffer * buf)503 static void pt_buffer_advance(struct pt_buffer *buf)
504 {
505 buf->output_off = 0;
506 buf->cur_idx++;
507
508 if (buf->cur_idx == buf->cur->last) {
509 if (buf->cur == buf->last)
510 buf->cur = buf->first;
511 else
512 buf->cur = list_entry(buf->cur->list.next, struct topa,
513 list);
514 buf->cur_idx = 0;
515 }
516 }
517
518 /**
519 * pt_update_head() - calculate current offsets and sizes
520 * @pt: Per-cpu pt context.
521 *
522 * Update buffer's current write pointer position and data size.
523 */
pt_update_head(struct pt * pt)524 static void pt_update_head(struct pt *pt)
525 {
526 struct pt_buffer *buf = perf_get_aux(&pt->handle);
527 u64 topa_idx, base, old;
528
529 /* offset of the first region in this table from the beginning of buf */
530 base = buf->cur->offset + buf->output_off;
531
532 /* offset of the current output region within this table */
533 for (topa_idx = 0; topa_idx < buf->cur_idx; topa_idx++)
534 base += sizes(buf->cur->table[topa_idx].size);
535
536 if (buf->snapshot) {
537 local_set(&buf->data_size, base);
538 } else {
539 old = (local64_xchg(&buf->head, base) &
540 ((buf->nr_pages << PAGE_SHIFT) - 1));
541 if (base < old)
542 base += buf->nr_pages << PAGE_SHIFT;
543
544 local_add(base - old, &buf->data_size);
545 }
546 }
547
548 /**
549 * pt_buffer_region() - obtain current output region's address
550 * @buf: PT buffer.
551 */
pt_buffer_region(struct pt_buffer * buf)552 static void *pt_buffer_region(struct pt_buffer *buf)
553 {
554 return phys_to_virt(buf->cur->table[buf->cur_idx].base << TOPA_SHIFT);
555 }
556
557 /**
558 * pt_buffer_region_size() - obtain current output region's size
559 * @buf: PT buffer.
560 */
pt_buffer_region_size(struct pt_buffer * buf)561 static size_t pt_buffer_region_size(struct pt_buffer *buf)
562 {
563 return sizes(buf->cur->table[buf->cur_idx].size);
564 }
565
566 /**
567 * pt_handle_status() - take care of possible status conditions
568 * @pt: Per-cpu pt context.
569 */
pt_handle_status(struct pt * pt)570 static void pt_handle_status(struct pt *pt)
571 {
572 struct pt_buffer *buf = perf_get_aux(&pt->handle);
573 int advance = 0;
574 u64 status;
575
576 rdmsrl(MSR_IA32_RTIT_STATUS, status);
577
578 if (status & RTIT_STATUS_ERROR) {
579 pr_err_ratelimited("ToPA ERROR encountered, trying to recover\n");
580 pt_topa_dump(buf);
581 status &= ~RTIT_STATUS_ERROR;
582 }
583
584 if (status & RTIT_STATUS_STOPPED) {
585 status &= ~RTIT_STATUS_STOPPED;
586
587 /*
588 * On systems that only do single-entry ToPA, hitting STOP
589 * means we are already losing data; need to let the decoder
590 * know.
591 */
592 if (!pt_cap_get(PT_CAP_topa_multiple_entries) ||
593 buf->output_off == sizes(TOPA_ENTRY(buf->cur, buf->cur_idx)->size)) {
594 local_inc(&buf->lost);
595 advance++;
596 }
597 }
598
599 /*
600 * Also on single-entry ToPA implementations, interrupt will come
601 * before the output reaches its output region's boundary.
602 */
603 if (!pt_cap_get(PT_CAP_topa_multiple_entries) && !buf->snapshot &&
604 pt_buffer_region_size(buf) - buf->output_off <= TOPA_PMI_MARGIN) {
605 void *head = pt_buffer_region(buf);
606
607 /* everything within this margin needs to be zeroed out */
608 memset(head + buf->output_off, 0,
609 pt_buffer_region_size(buf) -
610 buf->output_off);
611 advance++;
612 }
613
614 if (advance)
615 pt_buffer_advance(buf);
616
617 wrmsrl(MSR_IA32_RTIT_STATUS, status);
618 }
619
620 /**
621 * pt_read_offset() - translate registers into buffer pointers
622 * @buf: PT buffer.
623 *
624 * Set buffer's output pointers from MSR values.
625 */
pt_read_offset(struct pt_buffer * buf)626 static void pt_read_offset(struct pt_buffer *buf)
627 {
628 u64 offset, base_topa;
629
630 rdmsrl(MSR_IA32_RTIT_OUTPUT_BASE, base_topa);
631 buf->cur = phys_to_virt(base_topa);
632
633 rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK, offset);
634 /* offset within current output region */
635 buf->output_off = offset >> 32;
636 /* index of current output region within this table */
637 buf->cur_idx = (offset & 0xffffff80) >> 7;
638 }
639
640 /**
641 * pt_topa_next_entry() - obtain index of the first page in the next ToPA entry
642 * @buf: PT buffer.
643 * @pg: Page offset in the buffer.
644 *
645 * When advancing to the next output region (ToPA entry), given a page offset
646 * into the buffer, we need to find the offset of the first page in the next
647 * region.
648 */
pt_topa_next_entry(struct pt_buffer * buf,unsigned int pg)649 static unsigned int pt_topa_next_entry(struct pt_buffer *buf, unsigned int pg)
650 {
651 struct topa_entry *te = buf->topa_index[pg];
652
653 /* one region */
654 if (buf->first == buf->last && buf->first->last == 1)
655 return pg;
656
657 do {
658 pg++;
659 pg &= buf->nr_pages - 1;
660 } while (buf->topa_index[pg] == te);
661
662 return pg;
663 }
664
665 /**
666 * pt_buffer_reset_markers() - place interrupt and stop bits in the buffer
667 * @buf: PT buffer.
668 * @handle: Current output handle.
669 *
670 * Place INT and STOP marks to prevent overwriting old data that the consumer
671 * hasn't yet collected and waking up the consumer after a certain fraction of
672 * the buffer has filled up. Only needed and sensible for non-snapshot counters.
673 *
674 * This obviously relies on buf::head to figure out buffer markers, so it has
675 * to be called after pt_buffer_reset_offsets() and before the hardware tracing
676 * is enabled.
677 */
pt_buffer_reset_markers(struct pt_buffer * buf,struct perf_output_handle * handle)678 static int pt_buffer_reset_markers(struct pt_buffer *buf,
679 struct perf_output_handle *handle)
680
681 {
682 unsigned long head = local64_read(&buf->head);
683 unsigned long idx, npages, wakeup;
684
685 /* can't stop in the middle of an output region */
686 if (buf->output_off + handle->size + 1 <
687 sizes(TOPA_ENTRY(buf->cur, buf->cur_idx)->size))
688 return -EINVAL;
689
690
691 /* single entry ToPA is handled by marking all regions STOP=1 INT=1 */
692 if (!pt_cap_get(PT_CAP_topa_multiple_entries))
693 return 0;
694
695 /* clear STOP and INT from current entry */
696 buf->topa_index[buf->stop_pos]->stop = 0;
697 buf->topa_index[buf->stop_pos]->intr = 0;
698 buf->topa_index[buf->intr_pos]->intr = 0;
699
700 /* how many pages till the STOP marker */
701 npages = handle->size >> PAGE_SHIFT;
702
703 /* if it's on a page boundary, fill up one more page */
704 if (!offset_in_page(head + handle->size + 1))
705 npages++;
706
707 idx = (head >> PAGE_SHIFT) + npages;
708 idx &= buf->nr_pages - 1;
709 buf->stop_pos = idx;
710
711 wakeup = handle->wakeup >> PAGE_SHIFT;
712
713 /* in the worst case, wake up the consumer one page before hard stop */
714 idx = (head >> PAGE_SHIFT) + npages - 1;
715 if (idx > wakeup)
716 idx = wakeup;
717
718 idx &= buf->nr_pages - 1;
719 buf->intr_pos = idx;
720
721 buf->topa_index[buf->stop_pos]->stop = 1;
722 buf->topa_index[buf->stop_pos]->intr = 1;
723 buf->topa_index[buf->intr_pos]->intr = 1;
724
725 return 0;
726 }
727
728 /**
729 * pt_buffer_setup_topa_index() - build topa_index[] table of regions
730 * @buf: PT buffer.
731 *
732 * topa_index[] references output regions indexed by offset into the
733 * buffer for purposes of quick reverse lookup.
734 */
pt_buffer_setup_topa_index(struct pt_buffer * buf)735 static void pt_buffer_setup_topa_index(struct pt_buffer *buf)
736 {
737 struct topa *cur = buf->first, *prev = buf->last;
738 struct topa_entry *te_cur = TOPA_ENTRY(cur, 0),
739 *te_prev = TOPA_ENTRY(prev, prev->last - 1);
740 int pg = 0, idx = 0;
741
742 while (pg < buf->nr_pages) {
743 int tidx;
744
745 /* pages within one topa entry */
746 for (tidx = 0; tidx < 1 << te_cur->size; tidx++, pg++)
747 buf->topa_index[pg] = te_prev;
748
749 te_prev = te_cur;
750
751 if (idx == cur->last - 1) {
752 /* advance to next topa table */
753 idx = 0;
754 cur = list_entry(cur->list.next, struct topa, list);
755 } else {
756 idx++;
757 }
758 te_cur = TOPA_ENTRY(cur, idx);
759 }
760
761 }
762
763 /**
764 * pt_buffer_reset_offsets() - adjust buffer's write pointers from aux_head
765 * @buf: PT buffer.
766 * @head: Write pointer (aux_head) from AUX buffer.
767 *
768 * Find the ToPA table and entry corresponding to given @head and set buffer's
769 * "current" pointers accordingly. This is done after we have obtained the
770 * current aux_head position from a successful call to perf_aux_output_begin()
771 * to make sure the hardware is writing to the right place.
772 *
773 * This function modifies buf::{cur,cur_idx,output_off} that will be programmed
774 * into PT msrs when the tracing is enabled and buf::head and buf::data_size,
775 * which are used to determine INT and STOP markers' locations by a subsequent
776 * call to pt_buffer_reset_markers().
777 */
pt_buffer_reset_offsets(struct pt_buffer * buf,unsigned long head)778 static void pt_buffer_reset_offsets(struct pt_buffer *buf, unsigned long head)
779 {
780 int pg;
781
782 if (buf->snapshot)
783 head &= (buf->nr_pages << PAGE_SHIFT) - 1;
784
785 pg = (head >> PAGE_SHIFT) & (buf->nr_pages - 1);
786 pg = pt_topa_next_entry(buf, pg);
787
788 buf->cur = (struct topa *)((unsigned long)buf->topa_index[pg] & PAGE_MASK);
789 buf->cur_idx = ((unsigned long)buf->topa_index[pg] -
790 (unsigned long)buf->cur) / sizeof(struct topa_entry);
791 buf->output_off = head & (sizes(buf->cur->table[buf->cur_idx].size) - 1);
792
793 local64_set(&buf->head, head);
794 local_set(&buf->data_size, 0);
795 }
796
797 /**
798 * pt_buffer_fini_topa() - deallocate ToPA structure of a buffer
799 * @buf: PT buffer.
800 */
pt_buffer_fini_topa(struct pt_buffer * buf)801 static void pt_buffer_fini_topa(struct pt_buffer *buf)
802 {
803 struct topa *topa, *iter;
804
805 list_for_each_entry_safe(topa, iter, &buf->tables, list) {
806 /*
807 * right now, this is in free_aux() path only, so
808 * no need to unlink this table from the list
809 */
810 topa_free(topa);
811 }
812 }
813
814 /**
815 * pt_buffer_init_topa() - initialize ToPA table for pt buffer
816 * @buf: PT buffer.
817 * @size: Total size of all regions within this ToPA.
818 * @gfp: Allocation flags.
819 */
pt_buffer_init_topa(struct pt_buffer * buf,unsigned long nr_pages,gfp_t gfp)820 static int pt_buffer_init_topa(struct pt_buffer *buf, unsigned long nr_pages,
821 gfp_t gfp)
822 {
823 struct topa *topa;
824 int err;
825
826 topa = topa_alloc(buf->cpu, gfp);
827 if (!topa)
828 return -ENOMEM;
829
830 topa_insert_table(buf, topa);
831
832 while (buf->nr_pages < nr_pages) {
833 err = topa_insert_pages(buf, gfp);
834 if (err) {
835 pt_buffer_fini_topa(buf);
836 return -ENOMEM;
837 }
838 }
839
840 pt_buffer_setup_topa_index(buf);
841
842 /* link last table to the first one, unless we're double buffering */
843 if (pt_cap_get(PT_CAP_topa_multiple_entries)) {
844 TOPA_ENTRY(buf->last, -1)->base = buf->first->phys >> TOPA_SHIFT;
845 TOPA_ENTRY(buf->last, -1)->end = 1;
846 }
847
848 pt_topa_dump(buf);
849 return 0;
850 }
851
852 /**
853 * pt_buffer_setup_aux() - set up topa tables for a PT buffer
854 * @cpu: Cpu on which to allocate, -1 means current.
855 * @pages: Array of pointers to buffer pages passed from perf core.
856 * @nr_pages: Number of pages in the buffer.
857 * @snapshot: If this is a snapshot/overwrite counter.
858 *
859 * This is a pmu::setup_aux callback that sets up ToPA tables and all the
860 * bookkeeping for an AUX buffer.
861 *
862 * Return: Our private PT buffer structure.
863 */
864 static void *
pt_buffer_setup_aux(int cpu,void ** pages,int nr_pages,bool snapshot)865 pt_buffer_setup_aux(int cpu, void **pages, int nr_pages, bool snapshot)
866 {
867 struct pt_buffer *buf;
868 int node, ret;
869
870 if (!nr_pages)
871 return NULL;
872
873 if (cpu == -1)
874 cpu = raw_smp_processor_id();
875 node = cpu_to_node(cpu);
876
877 buf = kzalloc_node(offsetof(struct pt_buffer, topa_index[nr_pages]),
878 GFP_KERNEL, node);
879 if (!buf)
880 return NULL;
881
882 buf->cpu = cpu;
883 buf->snapshot = snapshot;
884 buf->data_pages = pages;
885
886 INIT_LIST_HEAD(&buf->tables);
887
888 ret = pt_buffer_init_topa(buf, nr_pages, GFP_KERNEL);
889 if (ret) {
890 kfree(buf);
891 return NULL;
892 }
893
894 return buf;
895 }
896
897 /**
898 * pt_buffer_free_aux() - perf AUX deallocation path callback
899 * @data: PT buffer.
900 */
pt_buffer_free_aux(void * data)901 static void pt_buffer_free_aux(void *data)
902 {
903 struct pt_buffer *buf = data;
904
905 pt_buffer_fini_topa(buf);
906 kfree(buf);
907 }
908
909 /**
910 * pt_buffer_is_full() - check if the buffer is full
911 * @buf: PT buffer.
912 * @pt: Per-cpu pt handle.
913 *
914 * If the user hasn't read data from the output region that aux_head
915 * points to, the buffer is considered full: the user needs to read at
916 * least this region and update aux_tail to point past it.
917 */
pt_buffer_is_full(struct pt_buffer * buf,struct pt * pt)918 static bool pt_buffer_is_full(struct pt_buffer *buf, struct pt *pt)
919 {
920 if (buf->snapshot)
921 return false;
922
923 if (local_read(&buf->data_size) >= pt->handle.size)
924 return true;
925
926 return false;
927 }
928
929 /**
930 * intel_pt_interrupt() - PT PMI handler
931 */
intel_pt_interrupt(void)932 void intel_pt_interrupt(void)
933 {
934 struct pt *pt = this_cpu_ptr(&pt_ctx);
935 struct pt_buffer *buf;
936 struct perf_event *event = pt->handle.event;
937
938 /*
939 * There may be a dangling PT bit in the interrupt status register
940 * after PT has been disabled by pt_event_stop(). Make sure we don't
941 * do anything (particularly, re-enable) for this event here.
942 */
943 if (!ACCESS_ONCE(pt->handle_nmi))
944 return;
945
946 pt_config_start(false);
947
948 if (!event)
949 return;
950
951 buf = perf_get_aux(&pt->handle);
952 if (!buf)
953 return;
954
955 pt_read_offset(buf);
956
957 pt_handle_status(pt);
958
959 pt_update_head(pt);
960
961 perf_aux_output_end(&pt->handle, local_xchg(&buf->data_size, 0),
962 local_xchg(&buf->lost, 0));
963
964 if (!event->hw.state) {
965 int ret;
966
967 buf = perf_aux_output_begin(&pt->handle, event);
968 if (!buf) {
969 event->hw.state = PERF_HES_STOPPED;
970 return;
971 }
972
973 pt_buffer_reset_offsets(buf, pt->handle.head);
974 /* snapshot counters don't use PMI, so it's safe */
975 ret = pt_buffer_reset_markers(buf, &pt->handle);
976 if (ret) {
977 perf_aux_output_end(&pt->handle, 0, true);
978 return;
979 }
980
981 pt_config_buffer(buf->cur->table, buf->cur_idx,
982 buf->output_off);
983 pt_config(event);
984 }
985 }
986
987 /*
988 * PMU callbacks
989 */
990
pt_event_start(struct perf_event * event,int mode)991 static void pt_event_start(struct perf_event *event, int mode)
992 {
993 struct pt *pt = this_cpu_ptr(&pt_ctx);
994 struct pt_buffer *buf = perf_get_aux(&pt->handle);
995
996 if (!buf || pt_buffer_is_full(buf, pt)) {
997 event->hw.state = PERF_HES_STOPPED;
998 return;
999 }
1000
1001 ACCESS_ONCE(pt->handle_nmi) = 1;
1002 event->hw.state = 0;
1003
1004 pt_config_buffer(buf->cur->table, buf->cur_idx,
1005 buf->output_off);
1006 pt_config(event);
1007 }
1008
pt_event_stop(struct perf_event * event,int mode)1009 static void pt_event_stop(struct perf_event *event, int mode)
1010 {
1011 struct pt *pt = this_cpu_ptr(&pt_ctx);
1012
1013 /*
1014 * Protect against the PMI racing with disabling wrmsr,
1015 * see comment in intel_pt_interrupt().
1016 */
1017 ACCESS_ONCE(pt->handle_nmi) = 0;
1018 pt_config_start(false);
1019
1020 if (event->hw.state == PERF_HES_STOPPED)
1021 return;
1022
1023 event->hw.state = PERF_HES_STOPPED;
1024
1025 if (mode & PERF_EF_UPDATE) {
1026 struct pt_buffer *buf = perf_get_aux(&pt->handle);
1027
1028 if (!buf)
1029 return;
1030
1031 if (WARN_ON_ONCE(pt->handle.event != event))
1032 return;
1033
1034 pt_read_offset(buf);
1035
1036 pt_handle_status(pt);
1037
1038 pt_update_head(pt);
1039 }
1040 }
1041
pt_event_del(struct perf_event * event,int mode)1042 static void pt_event_del(struct perf_event *event, int mode)
1043 {
1044 struct pt *pt = this_cpu_ptr(&pt_ctx);
1045 struct pt_buffer *buf;
1046
1047 pt_event_stop(event, PERF_EF_UPDATE);
1048
1049 buf = perf_get_aux(&pt->handle);
1050
1051 if (buf) {
1052 if (buf->snapshot)
1053 pt->handle.head =
1054 local_xchg(&buf->data_size,
1055 buf->nr_pages << PAGE_SHIFT);
1056 perf_aux_output_end(&pt->handle, local_xchg(&buf->data_size, 0),
1057 local_xchg(&buf->lost, 0));
1058 }
1059 }
1060
pt_event_add(struct perf_event * event,int mode)1061 static int pt_event_add(struct perf_event *event, int mode)
1062 {
1063 struct pt_buffer *buf;
1064 struct pt *pt = this_cpu_ptr(&pt_ctx);
1065 struct hw_perf_event *hwc = &event->hw;
1066 int ret = -EBUSY;
1067
1068 if (pt->handle.event)
1069 goto fail;
1070
1071 buf = perf_aux_output_begin(&pt->handle, event);
1072 ret = -EINVAL;
1073 if (!buf)
1074 goto fail_stop;
1075
1076 pt_buffer_reset_offsets(buf, pt->handle.head);
1077 if (!buf->snapshot) {
1078 ret = pt_buffer_reset_markers(buf, &pt->handle);
1079 if (ret)
1080 goto fail_end_stop;
1081 }
1082
1083 if (mode & PERF_EF_START) {
1084 pt_event_start(event, 0);
1085 ret = -EBUSY;
1086 if (hwc->state == PERF_HES_STOPPED)
1087 goto fail_end_stop;
1088 } else {
1089 hwc->state = PERF_HES_STOPPED;
1090 }
1091
1092 return 0;
1093
1094 fail_end_stop:
1095 perf_aux_output_end(&pt->handle, 0, true);
1096 fail_stop:
1097 hwc->state = PERF_HES_STOPPED;
1098 fail:
1099 return ret;
1100 }
1101
pt_event_read(struct perf_event * event)1102 static void pt_event_read(struct perf_event *event)
1103 {
1104 }
1105
pt_event_destroy(struct perf_event * event)1106 static void pt_event_destroy(struct perf_event *event)
1107 {
1108 x86_del_exclusive(x86_lbr_exclusive_pt);
1109 }
1110
pt_event_init(struct perf_event * event)1111 static int pt_event_init(struct perf_event *event)
1112 {
1113 if (event->attr.type != pt_pmu.pmu.type)
1114 return -ENOENT;
1115
1116 if (!pt_event_valid(event))
1117 return -EINVAL;
1118
1119 if (x86_add_exclusive(x86_lbr_exclusive_pt))
1120 return -EBUSY;
1121
1122 event->destroy = pt_event_destroy;
1123
1124 return 0;
1125 }
1126
pt_init(void)1127 static __init int pt_init(void)
1128 {
1129 int ret, cpu, prior_warn = 0;
1130
1131 BUILD_BUG_ON(sizeof(struct topa) > PAGE_SIZE);
1132
1133 if (!test_cpu_cap(&boot_cpu_data, X86_FEATURE_INTEL_PT))
1134 return -ENODEV;
1135
1136 get_online_cpus();
1137 for_each_online_cpu(cpu) {
1138 u64 ctl;
1139
1140 ret = rdmsrl_safe_on_cpu(cpu, MSR_IA32_RTIT_CTL, &ctl);
1141 if (!ret && (ctl & RTIT_CTL_TRACEEN))
1142 prior_warn++;
1143 }
1144 put_online_cpus();
1145
1146 if (prior_warn) {
1147 x86_add_exclusive(x86_lbr_exclusive_pt);
1148 pr_warn("PT is enabled at boot time, doing nothing\n");
1149
1150 return -EBUSY;
1151 }
1152
1153 ret = pt_pmu_hw_init();
1154 if (ret)
1155 return ret;
1156
1157 if (!pt_cap_get(PT_CAP_topa_output)) {
1158 pr_warn("ToPA output is not supported on this CPU\n");
1159 return -ENODEV;
1160 }
1161
1162 if (!pt_cap_get(PT_CAP_topa_multiple_entries))
1163 pt_pmu.pmu.capabilities =
1164 PERF_PMU_CAP_AUX_NO_SG | PERF_PMU_CAP_AUX_SW_DOUBLEBUF;
1165
1166 pt_pmu.pmu.capabilities |= PERF_PMU_CAP_EXCLUSIVE | PERF_PMU_CAP_ITRACE;
1167 pt_pmu.pmu.attr_groups = pt_attr_groups;
1168 pt_pmu.pmu.task_ctx_nr = perf_sw_context;
1169 pt_pmu.pmu.event_init = pt_event_init;
1170 pt_pmu.pmu.add = pt_event_add;
1171 pt_pmu.pmu.del = pt_event_del;
1172 pt_pmu.pmu.start = pt_event_start;
1173 pt_pmu.pmu.stop = pt_event_stop;
1174 pt_pmu.pmu.read = pt_event_read;
1175 pt_pmu.pmu.setup_aux = pt_buffer_setup_aux;
1176 pt_pmu.pmu.free_aux = pt_buffer_free_aux;
1177 ret = perf_pmu_register(&pt_pmu.pmu, "intel_pt", -1);
1178
1179 return ret;
1180 }
1181 arch_initcall(pt_init);
1182