1 /*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_atomic.h>
41 #include <drm/drm_atomic_helper.h>
42 #include <drm/drm_dp_helper.h>
43 #include <drm/drm_crtc_helper.h>
44 #include <drm/drm_plane_helper.h>
45 #include <drm/drm_rect.h>
46 #include <linux/dma_remapping.h>
47
48 /* Primary plane formats for gen <= 3 */
49 static const uint32_t i8xx_primary_formats[] = {
50 DRM_FORMAT_C8,
51 DRM_FORMAT_RGB565,
52 DRM_FORMAT_XRGB1555,
53 DRM_FORMAT_XRGB8888,
54 };
55
56 /* Primary plane formats for gen >= 4 */
57 static const uint32_t i965_primary_formats[] = {
58 DRM_FORMAT_C8,
59 DRM_FORMAT_RGB565,
60 DRM_FORMAT_XRGB8888,
61 DRM_FORMAT_XBGR8888,
62 DRM_FORMAT_XRGB2101010,
63 DRM_FORMAT_XBGR2101010,
64 };
65
66 static const uint32_t skl_primary_formats[] = {
67 DRM_FORMAT_C8,
68 DRM_FORMAT_RGB565,
69 DRM_FORMAT_XRGB8888,
70 DRM_FORMAT_XBGR8888,
71 DRM_FORMAT_ARGB8888,
72 DRM_FORMAT_ABGR8888,
73 DRM_FORMAT_XRGB2101010,
74 DRM_FORMAT_XBGR2101010,
75 DRM_FORMAT_YUYV,
76 DRM_FORMAT_YVYU,
77 DRM_FORMAT_UYVY,
78 DRM_FORMAT_VYUY,
79 };
80
81 /* Cursor formats */
82 static const uint32_t intel_cursor_formats[] = {
83 DRM_FORMAT_ARGB8888,
84 };
85
86 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
87
88 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
89 struct intel_crtc_state *pipe_config);
90 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
91 struct intel_crtc_state *pipe_config);
92
93 static int intel_framebuffer_init(struct drm_device *dev,
94 struct intel_framebuffer *ifb,
95 struct drm_mode_fb_cmd2 *mode_cmd,
96 struct drm_i915_gem_object *obj);
97 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
98 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
99 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
100 struct intel_link_m_n *m_n,
101 struct intel_link_m_n *m2_n2);
102 static void ironlake_set_pipeconf(struct drm_crtc *crtc);
103 static void haswell_set_pipeconf(struct drm_crtc *crtc);
104 static void intel_set_pipe_csc(struct drm_crtc *crtc);
105 static void vlv_prepare_pll(struct intel_crtc *crtc,
106 const struct intel_crtc_state *pipe_config);
107 static void chv_prepare_pll(struct intel_crtc *crtc,
108 const struct intel_crtc_state *pipe_config);
109 static void intel_begin_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
110 static void intel_finish_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
111 static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
112 struct intel_crtc_state *crtc_state);
113 static int i9xx_get_refclk(const struct intel_crtc_state *crtc_state,
114 int num_connectors);
115 static void skylake_pfit_enable(struct intel_crtc *crtc);
116 static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force);
117 static void ironlake_pfit_enable(struct intel_crtc *crtc);
118 static void intel_modeset_setup_hw_state(struct drm_device *dev);
119 static void intel_pre_disable_primary(struct drm_crtc *crtc);
120
121 typedef struct {
122 int min, max;
123 } intel_range_t;
124
125 typedef struct {
126 int dot_limit;
127 int p2_slow, p2_fast;
128 } intel_p2_t;
129
130 typedef struct intel_limit intel_limit_t;
131 struct intel_limit {
132 intel_range_t dot, vco, n, m, m1, m2, p, p1;
133 intel_p2_t p2;
134 };
135
136 /* returns HPLL frequency in kHz */
valleyview_get_vco(struct drm_i915_private * dev_priv)137 static int valleyview_get_vco(struct drm_i915_private *dev_priv)
138 {
139 int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
140
141 /* Obtain SKU information */
142 mutex_lock(&dev_priv->sb_lock);
143 hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
144 CCK_FUSE_HPLL_FREQ_MASK;
145 mutex_unlock(&dev_priv->sb_lock);
146
147 return vco_freq[hpll_freq] * 1000;
148 }
149
vlv_get_cck_clock_hpll(struct drm_i915_private * dev_priv,const char * name,u32 reg)150 static int vlv_get_cck_clock_hpll(struct drm_i915_private *dev_priv,
151 const char *name, u32 reg)
152 {
153 u32 val;
154 int divider;
155
156 if (dev_priv->hpll_freq == 0)
157 dev_priv->hpll_freq = valleyview_get_vco(dev_priv);
158
159 mutex_lock(&dev_priv->sb_lock);
160 val = vlv_cck_read(dev_priv, reg);
161 mutex_unlock(&dev_priv->sb_lock);
162
163 divider = val & CCK_FREQUENCY_VALUES;
164
165 WARN((val & CCK_FREQUENCY_STATUS) !=
166 (divider << CCK_FREQUENCY_STATUS_SHIFT),
167 "%s change in progress\n", name);
168
169 return DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, divider + 1);
170 }
171
172 int
intel_pch_rawclk(struct drm_device * dev)173 intel_pch_rawclk(struct drm_device *dev)
174 {
175 struct drm_i915_private *dev_priv = dev->dev_private;
176
177 WARN_ON(!HAS_PCH_SPLIT(dev));
178
179 return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
180 }
181
182 /* hrawclock is 1/4 the FSB frequency */
intel_hrawclk(struct drm_device * dev)183 int intel_hrawclk(struct drm_device *dev)
184 {
185 struct drm_i915_private *dev_priv = dev->dev_private;
186 uint32_t clkcfg;
187
188 /* There is no CLKCFG reg in Valleyview. VLV hrawclk is 200 MHz */
189 if (IS_VALLEYVIEW(dev))
190 return 200;
191
192 clkcfg = I915_READ(CLKCFG);
193 switch (clkcfg & CLKCFG_FSB_MASK) {
194 case CLKCFG_FSB_400:
195 return 100;
196 case CLKCFG_FSB_533:
197 return 133;
198 case CLKCFG_FSB_667:
199 return 166;
200 case CLKCFG_FSB_800:
201 return 200;
202 case CLKCFG_FSB_1067:
203 return 266;
204 case CLKCFG_FSB_1333:
205 return 333;
206 /* these two are just a guess; one of them might be right */
207 case CLKCFG_FSB_1600:
208 case CLKCFG_FSB_1600_ALT:
209 return 400;
210 default:
211 return 133;
212 }
213 }
214
intel_update_czclk(struct drm_i915_private * dev_priv)215 static void intel_update_czclk(struct drm_i915_private *dev_priv)
216 {
217 if (!IS_VALLEYVIEW(dev_priv))
218 return;
219
220 dev_priv->czclk_freq = vlv_get_cck_clock_hpll(dev_priv, "czclk",
221 CCK_CZ_CLOCK_CONTROL);
222
223 DRM_DEBUG_DRIVER("CZ clock rate: %d kHz\n", dev_priv->czclk_freq);
224 }
225
226 static inline u32 /* units of 100MHz */
intel_fdi_link_freq(struct drm_device * dev)227 intel_fdi_link_freq(struct drm_device *dev)
228 {
229 if (IS_GEN5(dev)) {
230 struct drm_i915_private *dev_priv = dev->dev_private;
231 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
232 } else
233 return 27;
234 }
235
236 static const intel_limit_t intel_limits_i8xx_dac = {
237 .dot = { .min = 25000, .max = 350000 },
238 .vco = { .min = 908000, .max = 1512000 },
239 .n = { .min = 2, .max = 16 },
240 .m = { .min = 96, .max = 140 },
241 .m1 = { .min = 18, .max = 26 },
242 .m2 = { .min = 6, .max = 16 },
243 .p = { .min = 4, .max = 128 },
244 .p1 = { .min = 2, .max = 33 },
245 .p2 = { .dot_limit = 165000,
246 .p2_slow = 4, .p2_fast = 2 },
247 };
248
249 static const intel_limit_t intel_limits_i8xx_dvo = {
250 .dot = { .min = 25000, .max = 350000 },
251 .vco = { .min = 908000, .max = 1512000 },
252 .n = { .min = 2, .max = 16 },
253 .m = { .min = 96, .max = 140 },
254 .m1 = { .min = 18, .max = 26 },
255 .m2 = { .min = 6, .max = 16 },
256 .p = { .min = 4, .max = 128 },
257 .p1 = { .min = 2, .max = 33 },
258 .p2 = { .dot_limit = 165000,
259 .p2_slow = 4, .p2_fast = 4 },
260 };
261
262 static const intel_limit_t intel_limits_i8xx_lvds = {
263 .dot = { .min = 25000, .max = 350000 },
264 .vco = { .min = 908000, .max = 1512000 },
265 .n = { .min = 2, .max = 16 },
266 .m = { .min = 96, .max = 140 },
267 .m1 = { .min = 18, .max = 26 },
268 .m2 = { .min = 6, .max = 16 },
269 .p = { .min = 4, .max = 128 },
270 .p1 = { .min = 1, .max = 6 },
271 .p2 = { .dot_limit = 165000,
272 .p2_slow = 14, .p2_fast = 7 },
273 };
274
275 static const intel_limit_t intel_limits_i9xx_sdvo = {
276 .dot = { .min = 20000, .max = 400000 },
277 .vco = { .min = 1400000, .max = 2800000 },
278 .n = { .min = 1, .max = 6 },
279 .m = { .min = 70, .max = 120 },
280 .m1 = { .min = 8, .max = 18 },
281 .m2 = { .min = 3, .max = 7 },
282 .p = { .min = 5, .max = 80 },
283 .p1 = { .min = 1, .max = 8 },
284 .p2 = { .dot_limit = 200000,
285 .p2_slow = 10, .p2_fast = 5 },
286 };
287
288 static const intel_limit_t intel_limits_i9xx_lvds = {
289 .dot = { .min = 20000, .max = 400000 },
290 .vco = { .min = 1400000, .max = 2800000 },
291 .n = { .min = 1, .max = 6 },
292 .m = { .min = 70, .max = 120 },
293 .m1 = { .min = 8, .max = 18 },
294 .m2 = { .min = 3, .max = 7 },
295 .p = { .min = 7, .max = 98 },
296 .p1 = { .min = 1, .max = 8 },
297 .p2 = { .dot_limit = 112000,
298 .p2_slow = 14, .p2_fast = 7 },
299 };
300
301
302 static const intel_limit_t intel_limits_g4x_sdvo = {
303 .dot = { .min = 25000, .max = 270000 },
304 .vco = { .min = 1750000, .max = 3500000},
305 .n = { .min = 1, .max = 4 },
306 .m = { .min = 104, .max = 138 },
307 .m1 = { .min = 17, .max = 23 },
308 .m2 = { .min = 5, .max = 11 },
309 .p = { .min = 10, .max = 30 },
310 .p1 = { .min = 1, .max = 3},
311 .p2 = { .dot_limit = 270000,
312 .p2_slow = 10,
313 .p2_fast = 10
314 },
315 };
316
317 static const intel_limit_t intel_limits_g4x_hdmi = {
318 .dot = { .min = 22000, .max = 400000 },
319 .vco = { .min = 1750000, .max = 3500000},
320 .n = { .min = 1, .max = 4 },
321 .m = { .min = 104, .max = 138 },
322 .m1 = { .min = 16, .max = 23 },
323 .m2 = { .min = 5, .max = 11 },
324 .p = { .min = 5, .max = 80 },
325 .p1 = { .min = 1, .max = 8},
326 .p2 = { .dot_limit = 165000,
327 .p2_slow = 10, .p2_fast = 5 },
328 };
329
330 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
331 .dot = { .min = 20000, .max = 115000 },
332 .vco = { .min = 1750000, .max = 3500000 },
333 .n = { .min = 1, .max = 3 },
334 .m = { .min = 104, .max = 138 },
335 .m1 = { .min = 17, .max = 23 },
336 .m2 = { .min = 5, .max = 11 },
337 .p = { .min = 28, .max = 112 },
338 .p1 = { .min = 2, .max = 8 },
339 .p2 = { .dot_limit = 0,
340 .p2_slow = 14, .p2_fast = 14
341 },
342 };
343
344 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
345 .dot = { .min = 80000, .max = 224000 },
346 .vco = { .min = 1750000, .max = 3500000 },
347 .n = { .min = 1, .max = 3 },
348 .m = { .min = 104, .max = 138 },
349 .m1 = { .min = 17, .max = 23 },
350 .m2 = { .min = 5, .max = 11 },
351 .p = { .min = 14, .max = 42 },
352 .p1 = { .min = 2, .max = 6 },
353 .p2 = { .dot_limit = 0,
354 .p2_slow = 7, .p2_fast = 7
355 },
356 };
357
358 static const intel_limit_t intel_limits_pineview_sdvo = {
359 .dot = { .min = 20000, .max = 400000},
360 .vco = { .min = 1700000, .max = 3500000 },
361 /* Pineview's Ncounter is a ring counter */
362 .n = { .min = 3, .max = 6 },
363 .m = { .min = 2, .max = 256 },
364 /* Pineview only has one combined m divider, which we treat as m2. */
365 .m1 = { .min = 0, .max = 0 },
366 .m2 = { .min = 0, .max = 254 },
367 .p = { .min = 5, .max = 80 },
368 .p1 = { .min = 1, .max = 8 },
369 .p2 = { .dot_limit = 200000,
370 .p2_slow = 10, .p2_fast = 5 },
371 };
372
373 static const intel_limit_t intel_limits_pineview_lvds = {
374 .dot = { .min = 20000, .max = 400000 },
375 .vco = { .min = 1700000, .max = 3500000 },
376 .n = { .min = 3, .max = 6 },
377 .m = { .min = 2, .max = 256 },
378 .m1 = { .min = 0, .max = 0 },
379 .m2 = { .min = 0, .max = 254 },
380 .p = { .min = 7, .max = 112 },
381 .p1 = { .min = 1, .max = 8 },
382 .p2 = { .dot_limit = 112000,
383 .p2_slow = 14, .p2_fast = 14 },
384 };
385
386 /* Ironlake / Sandybridge
387 *
388 * We calculate clock using (register_value + 2) for N/M1/M2, so here
389 * the range value for them is (actual_value - 2).
390 */
391 static const intel_limit_t intel_limits_ironlake_dac = {
392 .dot = { .min = 25000, .max = 350000 },
393 .vco = { .min = 1760000, .max = 3510000 },
394 .n = { .min = 1, .max = 5 },
395 .m = { .min = 79, .max = 127 },
396 .m1 = { .min = 12, .max = 22 },
397 .m2 = { .min = 5, .max = 9 },
398 .p = { .min = 5, .max = 80 },
399 .p1 = { .min = 1, .max = 8 },
400 .p2 = { .dot_limit = 225000,
401 .p2_slow = 10, .p2_fast = 5 },
402 };
403
404 static const intel_limit_t intel_limits_ironlake_single_lvds = {
405 .dot = { .min = 25000, .max = 350000 },
406 .vco = { .min = 1760000, .max = 3510000 },
407 .n = { .min = 1, .max = 3 },
408 .m = { .min = 79, .max = 118 },
409 .m1 = { .min = 12, .max = 22 },
410 .m2 = { .min = 5, .max = 9 },
411 .p = { .min = 28, .max = 112 },
412 .p1 = { .min = 2, .max = 8 },
413 .p2 = { .dot_limit = 225000,
414 .p2_slow = 14, .p2_fast = 14 },
415 };
416
417 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
418 .dot = { .min = 25000, .max = 350000 },
419 .vco = { .min = 1760000, .max = 3510000 },
420 .n = { .min = 1, .max = 3 },
421 .m = { .min = 79, .max = 127 },
422 .m1 = { .min = 12, .max = 22 },
423 .m2 = { .min = 5, .max = 9 },
424 .p = { .min = 14, .max = 56 },
425 .p1 = { .min = 2, .max = 8 },
426 .p2 = { .dot_limit = 225000,
427 .p2_slow = 7, .p2_fast = 7 },
428 };
429
430 /* LVDS 100mhz refclk limits. */
431 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
432 .dot = { .min = 25000, .max = 350000 },
433 .vco = { .min = 1760000, .max = 3510000 },
434 .n = { .min = 1, .max = 2 },
435 .m = { .min = 79, .max = 126 },
436 .m1 = { .min = 12, .max = 22 },
437 .m2 = { .min = 5, .max = 9 },
438 .p = { .min = 28, .max = 112 },
439 .p1 = { .min = 2, .max = 8 },
440 .p2 = { .dot_limit = 225000,
441 .p2_slow = 14, .p2_fast = 14 },
442 };
443
444 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
445 .dot = { .min = 25000, .max = 350000 },
446 .vco = { .min = 1760000, .max = 3510000 },
447 .n = { .min = 1, .max = 3 },
448 .m = { .min = 79, .max = 126 },
449 .m1 = { .min = 12, .max = 22 },
450 .m2 = { .min = 5, .max = 9 },
451 .p = { .min = 14, .max = 42 },
452 .p1 = { .min = 2, .max = 6 },
453 .p2 = { .dot_limit = 225000,
454 .p2_slow = 7, .p2_fast = 7 },
455 };
456
457 static const intel_limit_t intel_limits_vlv = {
458 /*
459 * These are the data rate limits (measured in fast clocks)
460 * since those are the strictest limits we have. The fast
461 * clock and actual rate limits are more relaxed, so checking
462 * them would make no difference.
463 */
464 .dot = { .min = 25000 * 5, .max = 270000 * 5 },
465 .vco = { .min = 4000000, .max = 6000000 },
466 .n = { .min = 1, .max = 7 },
467 .m1 = { .min = 2, .max = 3 },
468 .m2 = { .min = 11, .max = 156 },
469 .p1 = { .min = 2, .max = 3 },
470 .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
471 };
472
473 static const intel_limit_t intel_limits_chv = {
474 /*
475 * These are the data rate limits (measured in fast clocks)
476 * since those are the strictest limits we have. The fast
477 * clock and actual rate limits are more relaxed, so checking
478 * them would make no difference.
479 */
480 .dot = { .min = 25000 * 5, .max = 540000 * 5},
481 .vco = { .min = 4800000, .max = 6480000 },
482 .n = { .min = 1, .max = 1 },
483 .m1 = { .min = 2, .max = 2 },
484 .m2 = { .min = 24 << 22, .max = 175 << 22 },
485 .p1 = { .min = 2, .max = 4 },
486 .p2 = { .p2_slow = 1, .p2_fast = 14 },
487 };
488
489 static const intel_limit_t intel_limits_bxt = {
490 /* FIXME: find real dot limits */
491 .dot = { .min = 0, .max = INT_MAX },
492 .vco = { .min = 4800000, .max = 6700000 },
493 .n = { .min = 1, .max = 1 },
494 .m1 = { .min = 2, .max = 2 },
495 /* FIXME: find real m2 limits */
496 .m2 = { .min = 2 << 22, .max = 255 << 22 },
497 .p1 = { .min = 2, .max = 4 },
498 .p2 = { .p2_slow = 1, .p2_fast = 20 },
499 };
500
501 static bool
needs_modeset(struct drm_crtc_state * state)502 needs_modeset(struct drm_crtc_state *state)
503 {
504 return drm_atomic_crtc_needs_modeset(state);
505 }
506
507 /**
508 * Returns whether any output on the specified pipe is of the specified type
509 */
intel_pipe_has_type(struct intel_crtc * crtc,enum intel_output_type type)510 bool intel_pipe_has_type(struct intel_crtc *crtc, enum intel_output_type type)
511 {
512 struct drm_device *dev = crtc->base.dev;
513 struct intel_encoder *encoder;
514
515 for_each_encoder_on_crtc(dev, &crtc->base, encoder)
516 if (encoder->type == type)
517 return true;
518
519 return false;
520 }
521
522 /**
523 * Returns whether any output on the specified pipe will have the specified
524 * type after a staged modeset is complete, i.e., the same as
525 * intel_pipe_has_type() but looking at encoder->new_crtc instead of
526 * encoder->crtc.
527 */
intel_pipe_will_have_type(const struct intel_crtc_state * crtc_state,int type)528 static bool intel_pipe_will_have_type(const struct intel_crtc_state *crtc_state,
529 int type)
530 {
531 struct drm_atomic_state *state = crtc_state->base.state;
532 struct drm_connector *connector;
533 struct drm_connector_state *connector_state;
534 struct intel_encoder *encoder;
535 int i, num_connectors = 0;
536
537 for_each_connector_in_state(state, connector, connector_state, i) {
538 if (connector_state->crtc != crtc_state->base.crtc)
539 continue;
540
541 num_connectors++;
542
543 encoder = to_intel_encoder(connector_state->best_encoder);
544 if (encoder->type == type)
545 return true;
546 }
547
548 WARN_ON(num_connectors == 0);
549
550 return false;
551 }
552
553 static const intel_limit_t *
intel_ironlake_limit(struct intel_crtc_state * crtc_state,int refclk)554 intel_ironlake_limit(struct intel_crtc_state *crtc_state, int refclk)
555 {
556 struct drm_device *dev = crtc_state->base.crtc->dev;
557 const intel_limit_t *limit;
558
559 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
560 if (intel_is_dual_link_lvds(dev)) {
561 if (refclk == 100000)
562 limit = &intel_limits_ironlake_dual_lvds_100m;
563 else
564 limit = &intel_limits_ironlake_dual_lvds;
565 } else {
566 if (refclk == 100000)
567 limit = &intel_limits_ironlake_single_lvds_100m;
568 else
569 limit = &intel_limits_ironlake_single_lvds;
570 }
571 } else
572 limit = &intel_limits_ironlake_dac;
573
574 return limit;
575 }
576
577 static const intel_limit_t *
intel_g4x_limit(struct intel_crtc_state * crtc_state)578 intel_g4x_limit(struct intel_crtc_state *crtc_state)
579 {
580 struct drm_device *dev = crtc_state->base.crtc->dev;
581 const intel_limit_t *limit;
582
583 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
584 if (intel_is_dual_link_lvds(dev))
585 limit = &intel_limits_g4x_dual_channel_lvds;
586 else
587 limit = &intel_limits_g4x_single_channel_lvds;
588 } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI) ||
589 intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_ANALOG)) {
590 limit = &intel_limits_g4x_hdmi;
591 } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO)) {
592 limit = &intel_limits_g4x_sdvo;
593 } else /* The option is for other outputs */
594 limit = &intel_limits_i9xx_sdvo;
595
596 return limit;
597 }
598
599 static const intel_limit_t *
intel_limit(struct intel_crtc_state * crtc_state,int refclk)600 intel_limit(struct intel_crtc_state *crtc_state, int refclk)
601 {
602 struct drm_device *dev = crtc_state->base.crtc->dev;
603 const intel_limit_t *limit;
604
605 if (IS_BROXTON(dev))
606 limit = &intel_limits_bxt;
607 else if (HAS_PCH_SPLIT(dev))
608 limit = intel_ironlake_limit(crtc_state, refclk);
609 else if (IS_G4X(dev)) {
610 limit = intel_g4x_limit(crtc_state);
611 } else if (IS_PINEVIEW(dev)) {
612 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
613 limit = &intel_limits_pineview_lvds;
614 else
615 limit = &intel_limits_pineview_sdvo;
616 } else if (IS_CHERRYVIEW(dev)) {
617 limit = &intel_limits_chv;
618 } else if (IS_VALLEYVIEW(dev)) {
619 limit = &intel_limits_vlv;
620 } else if (!IS_GEN2(dev)) {
621 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
622 limit = &intel_limits_i9xx_lvds;
623 else
624 limit = &intel_limits_i9xx_sdvo;
625 } else {
626 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
627 limit = &intel_limits_i8xx_lvds;
628 else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO))
629 limit = &intel_limits_i8xx_dvo;
630 else
631 limit = &intel_limits_i8xx_dac;
632 }
633 return limit;
634 }
635
636 /*
637 * Platform specific helpers to calculate the port PLL loopback- (clock.m),
638 * and post-divider (clock.p) values, pre- (clock.vco) and post-divided fast
639 * (clock.dot) clock rates. This fast dot clock is fed to the port's IO logic.
640 * The helpers' return value is the rate of the clock that is fed to the
641 * display engine's pipe which can be the above fast dot clock rate or a
642 * divided-down version of it.
643 */
644 /* m1 is reserved as 0 in Pineview, n is a ring counter */
pnv_calc_dpll_params(int refclk,intel_clock_t * clock)645 static int pnv_calc_dpll_params(int refclk, intel_clock_t *clock)
646 {
647 clock->m = clock->m2 + 2;
648 clock->p = clock->p1 * clock->p2;
649 if (WARN_ON(clock->n == 0 || clock->p == 0))
650 return 0;
651 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
652 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
653
654 return clock->dot;
655 }
656
i9xx_dpll_compute_m(struct dpll * dpll)657 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
658 {
659 return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
660 }
661
i9xx_calc_dpll_params(int refclk,intel_clock_t * clock)662 static int i9xx_calc_dpll_params(int refclk, intel_clock_t *clock)
663 {
664 clock->m = i9xx_dpll_compute_m(clock);
665 clock->p = clock->p1 * clock->p2;
666 if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
667 return 0;
668 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
669 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
670
671 return clock->dot;
672 }
673
vlv_calc_dpll_params(int refclk,intel_clock_t * clock)674 static int vlv_calc_dpll_params(int refclk, intel_clock_t *clock)
675 {
676 clock->m = clock->m1 * clock->m2;
677 clock->p = clock->p1 * clock->p2;
678 if (WARN_ON(clock->n == 0 || clock->p == 0))
679 return 0;
680 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
681 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
682
683 return clock->dot / 5;
684 }
685
chv_calc_dpll_params(int refclk,intel_clock_t * clock)686 int chv_calc_dpll_params(int refclk, intel_clock_t *clock)
687 {
688 clock->m = clock->m1 * clock->m2;
689 clock->p = clock->p1 * clock->p2;
690 if (WARN_ON(clock->n == 0 || clock->p == 0))
691 return 0;
692 clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
693 clock->n << 22);
694 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
695
696 return clock->dot / 5;
697 }
698
699 #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
700 /**
701 * Returns whether the given set of divisors are valid for a given refclk with
702 * the given connectors.
703 */
704
intel_PLL_is_valid(struct drm_device * dev,const intel_limit_t * limit,const intel_clock_t * clock)705 static bool intel_PLL_is_valid(struct drm_device *dev,
706 const intel_limit_t *limit,
707 const intel_clock_t *clock)
708 {
709 if (clock->n < limit->n.min || limit->n.max < clock->n)
710 INTELPllInvalid("n out of range\n");
711 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
712 INTELPllInvalid("p1 out of range\n");
713 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
714 INTELPllInvalid("m2 out of range\n");
715 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
716 INTELPllInvalid("m1 out of range\n");
717
718 if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev) && !IS_BROXTON(dev))
719 if (clock->m1 <= clock->m2)
720 INTELPllInvalid("m1 <= m2\n");
721
722 if (!IS_VALLEYVIEW(dev) && !IS_BROXTON(dev)) {
723 if (clock->p < limit->p.min || limit->p.max < clock->p)
724 INTELPllInvalid("p out of range\n");
725 if (clock->m < limit->m.min || limit->m.max < clock->m)
726 INTELPllInvalid("m out of range\n");
727 }
728
729 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
730 INTELPllInvalid("vco out of range\n");
731 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
732 * connector, etc., rather than just a single range.
733 */
734 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
735 INTELPllInvalid("dot out of range\n");
736
737 return true;
738 }
739
740 static int
i9xx_select_p2_div(const intel_limit_t * limit,const struct intel_crtc_state * crtc_state,int target)741 i9xx_select_p2_div(const intel_limit_t *limit,
742 const struct intel_crtc_state *crtc_state,
743 int target)
744 {
745 struct drm_device *dev = crtc_state->base.crtc->dev;
746
747 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
748 /*
749 * For LVDS just rely on its current settings for dual-channel.
750 * We haven't figured out how to reliably set up different
751 * single/dual channel state, if we even can.
752 */
753 if (intel_is_dual_link_lvds(dev))
754 return limit->p2.p2_fast;
755 else
756 return limit->p2.p2_slow;
757 } else {
758 if (target < limit->p2.dot_limit)
759 return limit->p2.p2_slow;
760 else
761 return limit->p2.p2_fast;
762 }
763 }
764
765 static bool
i9xx_find_best_dpll(const intel_limit_t * limit,struct intel_crtc_state * crtc_state,int target,int refclk,intel_clock_t * match_clock,intel_clock_t * best_clock)766 i9xx_find_best_dpll(const intel_limit_t *limit,
767 struct intel_crtc_state *crtc_state,
768 int target, int refclk, intel_clock_t *match_clock,
769 intel_clock_t *best_clock)
770 {
771 struct drm_device *dev = crtc_state->base.crtc->dev;
772 intel_clock_t clock;
773 int err = target;
774
775 memset(best_clock, 0, sizeof(*best_clock));
776
777 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
778
779 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
780 clock.m1++) {
781 for (clock.m2 = limit->m2.min;
782 clock.m2 <= limit->m2.max; clock.m2++) {
783 if (clock.m2 >= clock.m1)
784 break;
785 for (clock.n = limit->n.min;
786 clock.n <= limit->n.max; clock.n++) {
787 for (clock.p1 = limit->p1.min;
788 clock.p1 <= limit->p1.max; clock.p1++) {
789 int this_err;
790
791 i9xx_calc_dpll_params(refclk, &clock);
792 if (!intel_PLL_is_valid(dev, limit,
793 &clock))
794 continue;
795 if (match_clock &&
796 clock.p != match_clock->p)
797 continue;
798
799 this_err = abs(clock.dot - target);
800 if (this_err < err) {
801 *best_clock = clock;
802 err = this_err;
803 }
804 }
805 }
806 }
807 }
808
809 return (err != target);
810 }
811
812 static bool
pnv_find_best_dpll(const intel_limit_t * limit,struct intel_crtc_state * crtc_state,int target,int refclk,intel_clock_t * match_clock,intel_clock_t * best_clock)813 pnv_find_best_dpll(const intel_limit_t *limit,
814 struct intel_crtc_state *crtc_state,
815 int target, int refclk, intel_clock_t *match_clock,
816 intel_clock_t *best_clock)
817 {
818 struct drm_device *dev = crtc_state->base.crtc->dev;
819 intel_clock_t clock;
820 int err = target;
821
822 memset(best_clock, 0, sizeof(*best_clock));
823
824 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
825
826 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
827 clock.m1++) {
828 for (clock.m2 = limit->m2.min;
829 clock.m2 <= limit->m2.max; clock.m2++) {
830 for (clock.n = limit->n.min;
831 clock.n <= limit->n.max; clock.n++) {
832 for (clock.p1 = limit->p1.min;
833 clock.p1 <= limit->p1.max; clock.p1++) {
834 int this_err;
835
836 pnv_calc_dpll_params(refclk, &clock);
837 if (!intel_PLL_is_valid(dev, limit,
838 &clock))
839 continue;
840 if (match_clock &&
841 clock.p != match_clock->p)
842 continue;
843
844 this_err = abs(clock.dot - target);
845 if (this_err < err) {
846 *best_clock = clock;
847 err = this_err;
848 }
849 }
850 }
851 }
852 }
853
854 return (err != target);
855 }
856
857 static bool
g4x_find_best_dpll(const intel_limit_t * limit,struct intel_crtc_state * crtc_state,int target,int refclk,intel_clock_t * match_clock,intel_clock_t * best_clock)858 g4x_find_best_dpll(const intel_limit_t *limit,
859 struct intel_crtc_state *crtc_state,
860 int target, int refclk, intel_clock_t *match_clock,
861 intel_clock_t *best_clock)
862 {
863 struct drm_device *dev = crtc_state->base.crtc->dev;
864 intel_clock_t clock;
865 int max_n;
866 bool found = false;
867 /* approximately equals target * 0.00585 */
868 int err_most = (target >> 8) + (target >> 9);
869
870 memset(best_clock, 0, sizeof(*best_clock));
871
872 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
873
874 max_n = limit->n.max;
875 /* based on hardware requirement, prefer smaller n to precision */
876 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
877 /* based on hardware requirement, prefere larger m1,m2 */
878 for (clock.m1 = limit->m1.max;
879 clock.m1 >= limit->m1.min; clock.m1--) {
880 for (clock.m2 = limit->m2.max;
881 clock.m2 >= limit->m2.min; clock.m2--) {
882 for (clock.p1 = limit->p1.max;
883 clock.p1 >= limit->p1.min; clock.p1--) {
884 int this_err;
885
886 i9xx_calc_dpll_params(refclk, &clock);
887 if (!intel_PLL_is_valid(dev, limit,
888 &clock))
889 continue;
890
891 this_err = abs(clock.dot - target);
892 if (this_err < err_most) {
893 *best_clock = clock;
894 err_most = this_err;
895 max_n = clock.n;
896 found = true;
897 }
898 }
899 }
900 }
901 }
902 return found;
903 }
904
905 /*
906 * Check if the calculated PLL configuration is more optimal compared to the
907 * best configuration and error found so far. Return the calculated error.
908 */
vlv_PLL_is_optimal(struct drm_device * dev,int target_freq,const intel_clock_t * calculated_clock,const intel_clock_t * best_clock,unsigned int best_error_ppm,unsigned int * error_ppm)909 static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq,
910 const intel_clock_t *calculated_clock,
911 const intel_clock_t *best_clock,
912 unsigned int best_error_ppm,
913 unsigned int *error_ppm)
914 {
915 /*
916 * For CHV ignore the error and consider only the P value.
917 * Prefer a bigger P value based on HW requirements.
918 */
919 if (IS_CHERRYVIEW(dev)) {
920 *error_ppm = 0;
921
922 return calculated_clock->p > best_clock->p;
923 }
924
925 if (WARN_ON_ONCE(!target_freq))
926 return false;
927
928 *error_ppm = div_u64(1000000ULL *
929 abs(target_freq - calculated_clock->dot),
930 target_freq);
931 /*
932 * Prefer a better P value over a better (smaller) error if the error
933 * is small. Ensure this preference for future configurations too by
934 * setting the error to 0.
935 */
936 if (*error_ppm < 100 && calculated_clock->p > best_clock->p) {
937 *error_ppm = 0;
938
939 return true;
940 }
941
942 return *error_ppm + 10 < best_error_ppm;
943 }
944
945 static bool
vlv_find_best_dpll(const intel_limit_t * limit,struct intel_crtc_state * crtc_state,int target,int refclk,intel_clock_t * match_clock,intel_clock_t * best_clock)946 vlv_find_best_dpll(const intel_limit_t *limit,
947 struct intel_crtc_state *crtc_state,
948 int target, int refclk, intel_clock_t *match_clock,
949 intel_clock_t *best_clock)
950 {
951 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
952 struct drm_device *dev = crtc->base.dev;
953 intel_clock_t clock;
954 unsigned int bestppm = 1000000;
955 /* min update 19.2 MHz */
956 int max_n = min(limit->n.max, refclk / 19200);
957 bool found = false;
958
959 target *= 5; /* fast clock */
960
961 memset(best_clock, 0, sizeof(*best_clock));
962
963 /* based on hardware requirement, prefer smaller n to precision */
964 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
965 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
966 for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
967 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
968 clock.p = clock.p1 * clock.p2;
969 /* based on hardware requirement, prefer bigger m1,m2 values */
970 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
971 unsigned int ppm;
972
973 clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
974 refclk * clock.m1);
975
976 vlv_calc_dpll_params(refclk, &clock);
977
978 if (!intel_PLL_is_valid(dev, limit,
979 &clock))
980 continue;
981
982 if (!vlv_PLL_is_optimal(dev, target,
983 &clock,
984 best_clock,
985 bestppm, &ppm))
986 continue;
987
988 *best_clock = clock;
989 bestppm = ppm;
990 found = true;
991 }
992 }
993 }
994 }
995
996 return found;
997 }
998
999 static bool
chv_find_best_dpll(const intel_limit_t * limit,struct intel_crtc_state * crtc_state,int target,int refclk,intel_clock_t * match_clock,intel_clock_t * best_clock)1000 chv_find_best_dpll(const intel_limit_t *limit,
1001 struct intel_crtc_state *crtc_state,
1002 int target, int refclk, intel_clock_t *match_clock,
1003 intel_clock_t *best_clock)
1004 {
1005 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1006 struct drm_device *dev = crtc->base.dev;
1007 unsigned int best_error_ppm;
1008 intel_clock_t clock;
1009 uint64_t m2;
1010 int found = false;
1011
1012 memset(best_clock, 0, sizeof(*best_clock));
1013 best_error_ppm = 1000000;
1014
1015 /*
1016 * Based on hardware doc, the n always set to 1, and m1 always
1017 * set to 2. If requires to support 200Mhz refclk, we need to
1018 * revisit this because n may not 1 anymore.
1019 */
1020 clock.n = 1, clock.m1 = 2;
1021 target *= 5; /* fast clock */
1022
1023 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
1024 for (clock.p2 = limit->p2.p2_fast;
1025 clock.p2 >= limit->p2.p2_slow;
1026 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
1027 unsigned int error_ppm;
1028
1029 clock.p = clock.p1 * clock.p2;
1030
1031 m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
1032 clock.n) << 22, refclk * clock.m1);
1033
1034 if (m2 > INT_MAX/clock.m1)
1035 continue;
1036
1037 clock.m2 = m2;
1038
1039 chv_calc_dpll_params(refclk, &clock);
1040
1041 if (!intel_PLL_is_valid(dev, limit, &clock))
1042 continue;
1043
1044 if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock,
1045 best_error_ppm, &error_ppm))
1046 continue;
1047
1048 *best_clock = clock;
1049 best_error_ppm = error_ppm;
1050 found = true;
1051 }
1052 }
1053
1054 return found;
1055 }
1056
bxt_find_best_dpll(struct intel_crtc_state * crtc_state,int target_clock,intel_clock_t * best_clock)1057 bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state, int target_clock,
1058 intel_clock_t *best_clock)
1059 {
1060 int refclk = i9xx_get_refclk(crtc_state, 0);
1061
1062 return chv_find_best_dpll(intel_limit(crtc_state, refclk), crtc_state,
1063 target_clock, refclk, NULL, best_clock);
1064 }
1065
intel_crtc_active(struct drm_crtc * crtc)1066 bool intel_crtc_active(struct drm_crtc *crtc)
1067 {
1068 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1069
1070 /* Be paranoid as we can arrive here with only partial
1071 * state retrieved from the hardware during setup.
1072 *
1073 * We can ditch the adjusted_mode.crtc_clock check as soon
1074 * as Haswell has gained clock readout/fastboot support.
1075 *
1076 * We can ditch the crtc->primary->fb check as soon as we can
1077 * properly reconstruct framebuffers.
1078 *
1079 * FIXME: The intel_crtc->active here should be switched to
1080 * crtc->state->active once we have proper CRTC states wired up
1081 * for atomic.
1082 */
1083 return intel_crtc->active && crtc->primary->state->fb &&
1084 intel_crtc->config->base.adjusted_mode.crtc_clock;
1085 }
1086
intel_pipe_to_cpu_transcoder(struct drm_i915_private * dev_priv,enum pipe pipe)1087 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
1088 enum pipe pipe)
1089 {
1090 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1091 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1092
1093 return intel_crtc->config->cpu_transcoder;
1094 }
1095
pipe_dsl_stopped(struct drm_device * dev,enum pipe pipe)1096 static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
1097 {
1098 struct drm_i915_private *dev_priv = dev->dev_private;
1099 u32 reg = PIPEDSL(pipe);
1100 u32 line1, line2;
1101 u32 line_mask;
1102
1103 if (IS_GEN2(dev))
1104 line_mask = DSL_LINEMASK_GEN2;
1105 else
1106 line_mask = DSL_LINEMASK_GEN3;
1107
1108 line1 = I915_READ(reg) & line_mask;
1109 msleep(5);
1110 line2 = I915_READ(reg) & line_mask;
1111
1112 return line1 == line2;
1113 }
1114
1115 /*
1116 * intel_wait_for_pipe_off - wait for pipe to turn off
1117 * @crtc: crtc whose pipe to wait for
1118 *
1119 * After disabling a pipe, we can't wait for vblank in the usual way,
1120 * spinning on the vblank interrupt status bit, since we won't actually
1121 * see an interrupt when the pipe is disabled.
1122 *
1123 * On Gen4 and above:
1124 * wait for the pipe register state bit to turn off
1125 *
1126 * Otherwise:
1127 * wait for the display line value to settle (it usually
1128 * ends up stopping at the start of the next frame).
1129 *
1130 */
intel_wait_for_pipe_off(struct intel_crtc * crtc)1131 static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
1132 {
1133 struct drm_device *dev = crtc->base.dev;
1134 struct drm_i915_private *dev_priv = dev->dev_private;
1135 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
1136 enum pipe pipe = crtc->pipe;
1137
1138 if (INTEL_INFO(dev)->gen >= 4) {
1139 int reg = PIPECONF(cpu_transcoder);
1140
1141 /* Wait for the Pipe State to go off */
1142 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
1143 100))
1144 WARN(1, "pipe_off wait timed out\n");
1145 } else {
1146 /* Wait for the display line to settle */
1147 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
1148 WARN(1, "pipe_off wait timed out\n");
1149 }
1150 }
1151
state_string(bool enabled)1152 static const char *state_string(bool enabled)
1153 {
1154 return enabled ? "on" : "off";
1155 }
1156
1157 /* Only for pre-ILK configs */
assert_pll(struct drm_i915_private * dev_priv,enum pipe pipe,bool state)1158 void assert_pll(struct drm_i915_private *dev_priv,
1159 enum pipe pipe, bool state)
1160 {
1161 u32 val;
1162 bool cur_state;
1163
1164 val = I915_READ(DPLL(pipe));
1165 cur_state = !!(val & DPLL_VCO_ENABLE);
1166 I915_STATE_WARN(cur_state != state,
1167 "PLL state assertion failure (expected %s, current %s)\n",
1168 state_string(state), state_string(cur_state));
1169 }
1170
1171 /* XXX: the dsi pll is shared between MIPI DSI ports */
assert_dsi_pll(struct drm_i915_private * dev_priv,bool state)1172 static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1173 {
1174 u32 val;
1175 bool cur_state;
1176
1177 mutex_lock(&dev_priv->sb_lock);
1178 val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1179 mutex_unlock(&dev_priv->sb_lock);
1180
1181 cur_state = val & DSI_PLL_VCO_EN;
1182 I915_STATE_WARN(cur_state != state,
1183 "DSI PLL state assertion failure (expected %s, current %s)\n",
1184 state_string(state), state_string(cur_state));
1185 }
1186 #define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
1187 #define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
1188
1189 struct intel_shared_dpll *
intel_crtc_to_shared_dpll(struct intel_crtc * crtc)1190 intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
1191 {
1192 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1193
1194 if (crtc->config->shared_dpll < 0)
1195 return NULL;
1196
1197 return &dev_priv->shared_dplls[crtc->config->shared_dpll];
1198 }
1199
1200 /* For ILK+ */
assert_shared_dpll(struct drm_i915_private * dev_priv,struct intel_shared_dpll * pll,bool state)1201 void assert_shared_dpll(struct drm_i915_private *dev_priv,
1202 struct intel_shared_dpll *pll,
1203 bool state)
1204 {
1205 bool cur_state;
1206 struct intel_dpll_hw_state hw_state;
1207
1208 if (WARN (!pll,
1209 "asserting DPLL %s with no DPLL\n", state_string(state)))
1210 return;
1211
1212 cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
1213 I915_STATE_WARN(cur_state != state,
1214 "%s assertion failure (expected %s, current %s)\n",
1215 pll->name, state_string(state), state_string(cur_state));
1216 }
1217
assert_fdi_tx(struct drm_i915_private * dev_priv,enum pipe pipe,bool state)1218 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1219 enum pipe pipe, bool state)
1220 {
1221 bool cur_state;
1222 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1223 pipe);
1224
1225 if (HAS_DDI(dev_priv->dev)) {
1226 /* DDI does not have a specific FDI_TX register */
1227 u32 val = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
1228 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1229 } else {
1230 u32 val = I915_READ(FDI_TX_CTL(pipe));
1231 cur_state = !!(val & FDI_TX_ENABLE);
1232 }
1233 I915_STATE_WARN(cur_state != state,
1234 "FDI TX state assertion failure (expected %s, current %s)\n",
1235 state_string(state), state_string(cur_state));
1236 }
1237 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1238 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1239
assert_fdi_rx(struct drm_i915_private * dev_priv,enum pipe pipe,bool state)1240 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1241 enum pipe pipe, bool state)
1242 {
1243 u32 val;
1244 bool cur_state;
1245
1246 val = I915_READ(FDI_RX_CTL(pipe));
1247 cur_state = !!(val & FDI_RX_ENABLE);
1248 I915_STATE_WARN(cur_state != state,
1249 "FDI RX state assertion failure (expected %s, current %s)\n",
1250 state_string(state), state_string(cur_state));
1251 }
1252 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1253 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1254
assert_fdi_tx_pll_enabled(struct drm_i915_private * dev_priv,enum pipe pipe)1255 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1256 enum pipe pipe)
1257 {
1258 u32 val;
1259
1260 /* ILK FDI PLL is always enabled */
1261 if (INTEL_INFO(dev_priv->dev)->gen == 5)
1262 return;
1263
1264 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1265 if (HAS_DDI(dev_priv->dev))
1266 return;
1267
1268 val = I915_READ(FDI_TX_CTL(pipe));
1269 I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1270 }
1271
assert_fdi_rx_pll(struct drm_i915_private * dev_priv,enum pipe pipe,bool state)1272 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1273 enum pipe pipe, bool state)
1274 {
1275 u32 val;
1276 bool cur_state;
1277
1278 val = I915_READ(FDI_RX_CTL(pipe));
1279 cur_state = !!(val & FDI_RX_PLL_ENABLE);
1280 I915_STATE_WARN(cur_state != state,
1281 "FDI RX PLL assertion failure (expected %s, current %s)\n",
1282 state_string(state), state_string(cur_state));
1283 }
1284
assert_panel_unlocked(struct drm_i915_private * dev_priv,enum pipe pipe)1285 void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1286 enum pipe pipe)
1287 {
1288 struct drm_device *dev = dev_priv->dev;
1289 int pp_reg;
1290 u32 val;
1291 enum pipe panel_pipe = PIPE_A;
1292 bool locked = true;
1293
1294 if (WARN_ON(HAS_DDI(dev)))
1295 return;
1296
1297 if (HAS_PCH_SPLIT(dev)) {
1298 u32 port_sel;
1299
1300 pp_reg = PCH_PP_CONTROL;
1301 port_sel = I915_READ(PCH_PP_ON_DELAYS) & PANEL_PORT_SELECT_MASK;
1302
1303 if (port_sel == PANEL_PORT_SELECT_LVDS &&
1304 I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
1305 panel_pipe = PIPE_B;
1306 /* XXX: else fix for eDP */
1307 } else if (IS_VALLEYVIEW(dev)) {
1308 /* presumably write lock depends on pipe, not port select */
1309 pp_reg = VLV_PIPE_PP_CONTROL(pipe);
1310 panel_pipe = pipe;
1311 } else {
1312 pp_reg = PP_CONTROL;
1313 if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
1314 panel_pipe = PIPE_B;
1315 }
1316
1317 val = I915_READ(pp_reg);
1318 if (!(val & PANEL_POWER_ON) ||
1319 ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
1320 locked = false;
1321
1322 I915_STATE_WARN(panel_pipe == pipe && locked,
1323 "panel assertion failure, pipe %c regs locked\n",
1324 pipe_name(pipe));
1325 }
1326
assert_cursor(struct drm_i915_private * dev_priv,enum pipe pipe,bool state)1327 static void assert_cursor(struct drm_i915_private *dev_priv,
1328 enum pipe pipe, bool state)
1329 {
1330 struct drm_device *dev = dev_priv->dev;
1331 bool cur_state;
1332
1333 if (IS_845G(dev) || IS_I865G(dev))
1334 cur_state = I915_READ(CURCNTR(PIPE_A)) & CURSOR_ENABLE;
1335 else
1336 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
1337
1338 I915_STATE_WARN(cur_state != state,
1339 "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1340 pipe_name(pipe), state_string(state), state_string(cur_state));
1341 }
1342 #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1343 #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1344
assert_pipe(struct drm_i915_private * dev_priv,enum pipe pipe,bool state)1345 void assert_pipe(struct drm_i915_private *dev_priv,
1346 enum pipe pipe, bool state)
1347 {
1348 bool cur_state;
1349 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1350 pipe);
1351
1352 /* if we need the pipe quirk it must be always on */
1353 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1354 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1355 state = true;
1356
1357 if (!intel_display_power_is_enabled(dev_priv,
1358 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
1359 cur_state = false;
1360 } else {
1361 u32 val = I915_READ(PIPECONF(cpu_transcoder));
1362 cur_state = !!(val & PIPECONF_ENABLE);
1363 }
1364
1365 I915_STATE_WARN(cur_state != state,
1366 "pipe %c assertion failure (expected %s, current %s)\n",
1367 pipe_name(pipe), state_string(state), state_string(cur_state));
1368 }
1369
assert_plane(struct drm_i915_private * dev_priv,enum plane plane,bool state)1370 static void assert_plane(struct drm_i915_private *dev_priv,
1371 enum plane plane, bool state)
1372 {
1373 u32 val;
1374 bool cur_state;
1375
1376 val = I915_READ(DSPCNTR(plane));
1377 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1378 I915_STATE_WARN(cur_state != state,
1379 "plane %c assertion failure (expected %s, current %s)\n",
1380 plane_name(plane), state_string(state), state_string(cur_state));
1381 }
1382
1383 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1384 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1385
assert_planes_disabled(struct drm_i915_private * dev_priv,enum pipe pipe)1386 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1387 enum pipe pipe)
1388 {
1389 struct drm_device *dev = dev_priv->dev;
1390 int i;
1391
1392 /* Primary planes are fixed to pipes on gen4+ */
1393 if (INTEL_INFO(dev)->gen >= 4) {
1394 u32 val = I915_READ(DSPCNTR(pipe));
1395 I915_STATE_WARN(val & DISPLAY_PLANE_ENABLE,
1396 "plane %c assertion failure, should be disabled but not\n",
1397 plane_name(pipe));
1398 return;
1399 }
1400
1401 /* Need to check both planes against the pipe */
1402 for_each_pipe(dev_priv, i) {
1403 u32 val = I915_READ(DSPCNTR(i));
1404 enum pipe cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1405 DISPPLANE_SEL_PIPE_SHIFT;
1406 I915_STATE_WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1407 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1408 plane_name(i), pipe_name(pipe));
1409 }
1410 }
1411
assert_sprites_disabled(struct drm_i915_private * dev_priv,enum pipe pipe)1412 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1413 enum pipe pipe)
1414 {
1415 struct drm_device *dev = dev_priv->dev;
1416 int sprite;
1417
1418 if (INTEL_INFO(dev)->gen >= 9) {
1419 for_each_sprite(dev_priv, pipe, sprite) {
1420 u32 val = I915_READ(PLANE_CTL(pipe, sprite));
1421 I915_STATE_WARN(val & PLANE_CTL_ENABLE,
1422 "plane %d assertion failure, should be off on pipe %c but is still active\n",
1423 sprite, pipe_name(pipe));
1424 }
1425 } else if (IS_VALLEYVIEW(dev)) {
1426 for_each_sprite(dev_priv, pipe, sprite) {
1427 u32 val = I915_READ(SPCNTR(pipe, sprite));
1428 I915_STATE_WARN(val & SP_ENABLE,
1429 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1430 sprite_name(pipe, sprite), pipe_name(pipe));
1431 }
1432 } else if (INTEL_INFO(dev)->gen >= 7) {
1433 u32 val = I915_READ(SPRCTL(pipe));
1434 I915_STATE_WARN(val & SPRITE_ENABLE,
1435 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1436 plane_name(pipe), pipe_name(pipe));
1437 } else if (INTEL_INFO(dev)->gen >= 5) {
1438 u32 val = I915_READ(DVSCNTR(pipe));
1439 I915_STATE_WARN(val & DVS_ENABLE,
1440 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1441 plane_name(pipe), pipe_name(pipe));
1442 }
1443 }
1444
assert_vblank_disabled(struct drm_crtc * crtc)1445 static void assert_vblank_disabled(struct drm_crtc *crtc)
1446 {
1447 if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0))
1448 drm_crtc_vblank_put(crtc);
1449 }
1450
ibx_assert_pch_refclk_enabled(struct drm_i915_private * dev_priv)1451 static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1452 {
1453 u32 val;
1454 bool enabled;
1455
1456 I915_STATE_WARN_ON(!(HAS_PCH_IBX(dev_priv->dev) || HAS_PCH_CPT(dev_priv->dev)));
1457
1458 val = I915_READ(PCH_DREF_CONTROL);
1459 enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1460 DREF_SUPERSPREAD_SOURCE_MASK));
1461 I915_STATE_WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1462 }
1463
assert_pch_transcoder_disabled(struct drm_i915_private * dev_priv,enum pipe pipe)1464 static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1465 enum pipe pipe)
1466 {
1467 u32 val;
1468 bool enabled;
1469
1470 val = I915_READ(PCH_TRANSCONF(pipe));
1471 enabled = !!(val & TRANS_ENABLE);
1472 I915_STATE_WARN(enabled,
1473 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1474 pipe_name(pipe));
1475 }
1476
dp_pipe_enabled(struct drm_i915_private * dev_priv,enum pipe pipe,u32 port_sel,u32 val)1477 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1478 enum pipe pipe, u32 port_sel, u32 val)
1479 {
1480 if ((val & DP_PORT_EN) == 0)
1481 return false;
1482
1483 if (HAS_PCH_CPT(dev_priv->dev)) {
1484 u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1485 u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1486 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1487 return false;
1488 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1489 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1490 return false;
1491 } else {
1492 if ((val & DP_PIPE_MASK) != (pipe << 30))
1493 return false;
1494 }
1495 return true;
1496 }
1497
hdmi_pipe_enabled(struct drm_i915_private * dev_priv,enum pipe pipe,u32 val)1498 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1499 enum pipe pipe, u32 val)
1500 {
1501 if ((val & SDVO_ENABLE) == 0)
1502 return false;
1503
1504 if (HAS_PCH_CPT(dev_priv->dev)) {
1505 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1506 return false;
1507 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1508 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1509 return false;
1510 } else {
1511 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1512 return false;
1513 }
1514 return true;
1515 }
1516
lvds_pipe_enabled(struct drm_i915_private * dev_priv,enum pipe pipe,u32 val)1517 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1518 enum pipe pipe, u32 val)
1519 {
1520 if ((val & LVDS_PORT_EN) == 0)
1521 return false;
1522
1523 if (HAS_PCH_CPT(dev_priv->dev)) {
1524 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1525 return false;
1526 } else {
1527 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1528 return false;
1529 }
1530 return true;
1531 }
1532
adpa_pipe_enabled(struct drm_i915_private * dev_priv,enum pipe pipe,u32 val)1533 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1534 enum pipe pipe, u32 val)
1535 {
1536 if ((val & ADPA_DAC_ENABLE) == 0)
1537 return false;
1538 if (HAS_PCH_CPT(dev_priv->dev)) {
1539 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1540 return false;
1541 } else {
1542 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1543 return false;
1544 }
1545 return true;
1546 }
1547
assert_pch_dp_disabled(struct drm_i915_private * dev_priv,enum pipe pipe,int reg,u32 port_sel)1548 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1549 enum pipe pipe, int reg, u32 port_sel)
1550 {
1551 u32 val = I915_READ(reg);
1552 I915_STATE_WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1553 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1554 reg, pipe_name(pipe));
1555
1556 I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1557 && (val & DP_PIPEB_SELECT),
1558 "IBX PCH dp port still using transcoder B\n");
1559 }
1560
assert_pch_hdmi_disabled(struct drm_i915_private * dev_priv,enum pipe pipe,int reg)1561 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1562 enum pipe pipe, int reg)
1563 {
1564 u32 val = I915_READ(reg);
1565 I915_STATE_WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1566 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1567 reg, pipe_name(pipe));
1568
1569 I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
1570 && (val & SDVO_PIPE_B_SELECT),
1571 "IBX PCH hdmi port still using transcoder B\n");
1572 }
1573
assert_pch_ports_disabled(struct drm_i915_private * dev_priv,enum pipe pipe)1574 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1575 enum pipe pipe)
1576 {
1577 u32 val;
1578
1579 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1580 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1581 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1582
1583 val = I915_READ(PCH_ADPA);
1584 I915_STATE_WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1585 "PCH VGA enabled on transcoder %c, should be disabled\n",
1586 pipe_name(pipe));
1587
1588 val = I915_READ(PCH_LVDS);
1589 I915_STATE_WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1590 "PCH LVDS enabled on transcoder %c, should be disabled\n",
1591 pipe_name(pipe));
1592
1593 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1594 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1595 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1596 }
1597
vlv_enable_pll(struct intel_crtc * crtc,const struct intel_crtc_state * pipe_config)1598 static void vlv_enable_pll(struct intel_crtc *crtc,
1599 const struct intel_crtc_state *pipe_config)
1600 {
1601 struct drm_device *dev = crtc->base.dev;
1602 struct drm_i915_private *dev_priv = dev->dev_private;
1603 int reg = DPLL(crtc->pipe);
1604 u32 dpll = pipe_config->dpll_hw_state.dpll;
1605
1606 assert_pipe_disabled(dev_priv, crtc->pipe);
1607
1608 /* No really, not for ILK+ */
1609 BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1610
1611 /* PLL is protected by panel, make sure we can write it */
1612 if (IS_MOBILE(dev_priv->dev))
1613 assert_panel_unlocked(dev_priv, crtc->pipe);
1614
1615 I915_WRITE(reg, dpll);
1616 POSTING_READ(reg);
1617 udelay(150);
1618
1619 if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1620 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1621
1622 I915_WRITE(DPLL_MD(crtc->pipe), pipe_config->dpll_hw_state.dpll_md);
1623 POSTING_READ(DPLL_MD(crtc->pipe));
1624
1625 /* We do this three times for luck */
1626 I915_WRITE(reg, dpll);
1627 POSTING_READ(reg);
1628 udelay(150); /* wait for warmup */
1629 I915_WRITE(reg, dpll);
1630 POSTING_READ(reg);
1631 udelay(150); /* wait for warmup */
1632 I915_WRITE(reg, dpll);
1633 POSTING_READ(reg);
1634 udelay(150); /* wait for warmup */
1635 }
1636
chv_enable_pll(struct intel_crtc * crtc,const struct intel_crtc_state * pipe_config)1637 static void chv_enable_pll(struct intel_crtc *crtc,
1638 const struct intel_crtc_state *pipe_config)
1639 {
1640 struct drm_device *dev = crtc->base.dev;
1641 struct drm_i915_private *dev_priv = dev->dev_private;
1642 int pipe = crtc->pipe;
1643 enum dpio_channel port = vlv_pipe_to_channel(pipe);
1644 u32 tmp;
1645
1646 assert_pipe_disabled(dev_priv, crtc->pipe);
1647
1648 BUG_ON(!IS_CHERRYVIEW(dev_priv->dev));
1649
1650 mutex_lock(&dev_priv->sb_lock);
1651
1652 /* Enable back the 10bit clock to display controller */
1653 tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1654 tmp |= DPIO_DCLKP_EN;
1655 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1656
1657 mutex_unlock(&dev_priv->sb_lock);
1658
1659 /*
1660 * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1661 */
1662 udelay(1);
1663
1664 /* Enable PLL */
1665 I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1666
1667 /* Check PLL is locked */
1668 if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1669 DRM_ERROR("PLL %d failed to lock\n", pipe);
1670
1671 /* not sure when this should be written */
1672 I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1673 POSTING_READ(DPLL_MD(pipe));
1674 }
1675
intel_num_dvo_pipes(struct drm_device * dev)1676 static int intel_num_dvo_pipes(struct drm_device *dev)
1677 {
1678 struct intel_crtc *crtc;
1679 int count = 0;
1680
1681 for_each_intel_crtc(dev, crtc)
1682 count += crtc->base.state->active &&
1683 intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO);
1684
1685 return count;
1686 }
1687
i9xx_enable_pll(struct intel_crtc * crtc)1688 static void i9xx_enable_pll(struct intel_crtc *crtc)
1689 {
1690 struct drm_device *dev = crtc->base.dev;
1691 struct drm_i915_private *dev_priv = dev->dev_private;
1692 int reg = DPLL(crtc->pipe);
1693 u32 dpll = crtc->config->dpll_hw_state.dpll;
1694
1695 assert_pipe_disabled(dev_priv, crtc->pipe);
1696
1697 /* No really, not for ILK+ */
1698 BUG_ON(INTEL_INFO(dev)->gen >= 5);
1699
1700 /* PLL is protected by panel, make sure we can write it */
1701 if (IS_MOBILE(dev) && !IS_I830(dev))
1702 assert_panel_unlocked(dev_priv, crtc->pipe);
1703
1704 /* Enable DVO 2x clock on both PLLs if necessary */
1705 if (IS_I830(dev) && intel_num_dvo_pipes(dev) > 0) {
1706 /*
1707 * It appears to be important that we don't enable this
1708 * for the current pipe before otherwise configuring the
1709 * PLL. No idea how this should be handled if multiple
1710 * DVO outputs are enabled simultaneosly.
1711 */
1712 dpll |= DPLL_DVO_2X_MODE;
1713 I915_WRITE(DPLL(!crtc->pipe),
1714 I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
1715 }
1716
1717 /*
1718 * Apparently we need to have VGA mode enabled prior to changing
1719 * the P1/P2 dividers. Otherwise the DPLL will keep using the old
1720 * dividers, even though the register value does change.
1721 */
1722 I915_WRITE(reg, 0);
1723
1724 I915_WRITE(reg, dpll);
1725
1726 /* Wait for the clocks to stabilize. */
1727 POSTING_READ(reg);
1728 udelay(150);
1729
1730 if (INTEL_INFO(dev)->gen >= 4) {
1731 I915_WRITE(DPLL_MD(crtc->pipe),
1732 crtc->config->dpll_hw_state.dpll_md);
1733 } else {
1734 /* The pixel multiplier can only be updated once the
1735 * DPLL is enabled and the clocks are stable.
1736 *
1737 * So write it again.
1738 */
1739 I915_WRITE(reg, dpll);
1740 }
1741
1742 /* We do this three times for luck */
1743 I915_WRITE(reg, dpll);
1744 POSTING_READ(reg);
1745 udelay(150); /* wait for warmup */
1746 I915_WRITE(reg, dpll);
1747 POSTING_READ(reg);
1748 udelay(150); /* wait for warmup */
1749 I915_WRITE(reg, dpll);
1750 POSTING_READ(reg);
1751 udelay(150); /* wait for warmup */
1752 }
1753
1754 /**
1755 * i9xx_disable_pll - disable a PLL
1756 * @dev_priv: i915 private structure
1757 * @pipe: pipe PLL to disable
1758 *
1759 * Disable the PLL for @pipe, making sure the pipe is off first.
1760 *
1761 * Note! This is for pre-ILK only.
1762 */
i9xx_disable_pll(struct intel_crtc * crtc)1763 static void i9xx_disable_pll(struct intel_crtc *crtc)
1764 {
1765 struct drm_device *dev = crtc->base.dev;
1766 struct drm_i915_private *dev_priv = dev->dev_private;
1767 enum pipe pipe = crtc->pipe;
1768
1769 /* Disable DVO 2x clock on both PLLs if necessary */
1770 if (IS_I830(dev) &&
1771 intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO) &&
1772 !intel_num_dvo_pipes(dev)) {
1773 I915_WRITE(DPLL(PIPE_B),
1774 I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
1775 I915_WRITE(DPLL(PIPE_A),
1776 I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
1777 }
1778
1779 /* Don't disable pipe or pipe PLLs if needed */
1780 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1781 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1782 return;
1783
1784 /* Make sure the pipe isn't still relying on us */
1785 assert_pipe_disabled(dev_priv, pipe);
1786
1787 I915_WRITE(DPLL(pipe), DPLL_VGA_MODE_DIS);
1788 POSTING_READ(DPLL(pipe));
1789 }
1790
vlv_disable_pll(struct drm_i915_private * dev_priv,enum pipe pipe)1791 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1792 {
1793 u32 val;
1794
1795 /* Make sure the pipe isn't still relying on us */
1796 assert_pipe_disabled(dev_priv, pipe);
1797
1798 /*
1799 * Leave integrated clock source and reference clock enabled for pipe B.
1800 * The latter is needed for VGA hotplug / manual detection.
1801 */
1802 val = DPLL_VGA_MODE_DIS;
1803 if (pipe == PIPE_B)
1804 val = DPLL_INTEGRATED_CRI_CLK_VLV | DPLL_REF_CLK_ENABLE_VLV;
1805 I915_WRITE(DPLL(pipe), val);
1806 POSTING_READ(DPLL(pipe));
1807
1808 }
1809
chv_disable_pll(struct drm_i915_private * dev_priv,enum pipe pipe)1810 static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1811 {
1812 enum dpio_channel port = vlv_pipe_to_channel(pipe);
1813 u32 val;
1814
1815 /* Make sure the pipe isn't still relying on us */
1816 assert_pipe_disabled(dev_priv, pipe);
1817
1818 /* Set PLL en = 0 */
1819 val = DPLL_SSC_REF_CLK_CHV |
1820 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1821 if (pipe != PIPE_A)
1822 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1823 I915_WRITE(DPLL(pipe), val);
1824 POSTING_READ(DPLL(pipe));
1825
1826 mutex_lock(&dev_priv->sb_lock);
1827
1828 /* Disable 10bit clock to display controller */
1829 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1830 val &= ~DPIO_DCLKP_EN;
1831 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1832
1833 mutex_unlock(&dev_priv->sb_lock);
1834 }
1835
vlv_wait_port_ready(struct drm_i915_private * dev_priv,struct intel_digital_port * dport,unsigned int expected_mask)1836 void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1837 struct intel_digital_port *dport,
1838 unsigned int expected_mask)
1839 {
1840 u32 port_mask;
1841 int dpll_reg;
1842
1843 switch (dport->port) {
1844 case PORT_B:
1845 port_mask = DPLL_PORTB_READY_MASK;
1846 dpll_reg = DPLL(0);
1847 break;
1848 case PORT_C:
1849 port_mask = DPLL_PORTC_READY_MASK;
1850 dpll_reg = DPLL(0);
1851 expected_mask <<= 4;
1852 break;
1853 case PORT_D:
1854 port_mask = DPLL_PORTD_READY_MASK;
1855 dpll_reg = DPIO_PHY_STATUS;
1856 break;
1857 default:
1858 BUG();
1859 }
1860
1861 if (wait_for((I915_READ(dpll_reg) & port_mask) == expected_mask, 1000))
1862 WARN(1, "timed out waiting for port %c ready: got 0x%x, expected 0x%x\n",
1863 port_name(dport->port), I915_READ(dpll_reg) & port_mask, expected_mask);
1864 }
1865
intel_prepare_shared_dpll(struct intel_crtc * crtc)1866 static void intel_prepare_shared_dpll(struct intel_crtc *crtc)
1867 {
1868 struct drm_device *dev = crtc->base.dev;
1869 struct drm_i915_private *dev_priv = dev->dev_private;
1870 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1871
1872 if (WARN_ON(pll == NULL))
1873 return;
1874
1875 WARN_ON(!pll->config.crtc_mask);
1876 if (pll->active == 0) {
1877 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
1878 WARN_ON(pll->on);
1879 assert_shared_dpll_disabled(dev_priv, pll);
1880
1881 pll->mode_set(dev_priv, pll);
1882 }
1883 }
1884
1885 /**
1886 * intel_enable_shared_dpll - enable PCH PLL
1887 * @dev_priv: i915 private structure
1888 * @pipe: pipe PLL to enable
1889 *
1890 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1891 * drives the transcoder clock.
1892 */
intel_enable_shared_dpll(struct intel_crtc * crtc)1893 static void intel_enable_shared_dpll(struct intel_crtc *crtc)
1894 {
1895 struct drm_device *dev = crtc->base.dev;
1896 struct drm_i915_private *dev_priv = dev->dev_private;
1897 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1898
1899 if (WARN_ON(pll == NULL))
1900 return;
1901
1902 if (WARN_ON(pll->config.crtc_mask == 0))
1903 return;
1904
1905 DRM_DEBUG_KMS("enable %s (active %d, on? %d) for crtc %d\n",
1906 pll->name, pll->active, pll->on,
1907 crtc->base.base.id);
1908
1909 if (pll->active++) {
1910 WARN_ON(!pll->on);
1911 assert_shared_dpll_enabled(dev_priv, pll);
1912 return;
1913 }
1914 WARN_ON(pll->on);
1915
1916 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
1917
1918 DRM_DEBUG_KMS("enabling %s\n", pll->name);
1919 pll->enable(dev_priv, pll);
1920 pll->on = true;
1921 }
1922
intel_disable_shared_dpll(struct intel_crtc * crtc)1923 static void intel_disable_shared_dpll(struct intel_crtc *crtc)
1924 {
1925 struct drm_device *dev = crtc->base.dev;
1926 struct drm_i915_private *dev_priv = dev->dev_private;
1927 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1928
1929 /* PCH only available on ILK+ */
1930 if (INTEL_INFO(dev)->gen < 5)
1931 return;
1932
1933 if (pll == NULL)
1934 return;
1935
1936 if (WARN_ON(!(pll->config.crtc_mask & (1 << drm_crtc_index(&crtc->base)))))
1937 return;
1938
1939 DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1940 pll->name, pll->active, pll->on,
1941 crtc->base.base.id);
1942
1943 if (WARN_ON(pll->active == 0)) {
1944 assert_shared_dpll_disabled(dev_priv, pll);
1945 return;
1946 }
1947
1948 assert_shared_dpll_enabled(dev_priv, pll);
1949 WARN_ON(!pll->on);
1950 if (--pll->active)
1951 return;
1952
1953 DRM_DEBUG_KMS("disabling %s\n", pll->name);
1954 pll->disable(dev_priv, pll);
1955 pll->on = false;
1956
1957 intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
1958 }
1959
ironlake_enable_pch_transcoder(struct drm_i915_private * dev_priv,enum pipe pipe)1960 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1961 enum pipe pipe)
1962 {
1963 struct drm_device *dev = dev_priv->dev;
1964 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1965 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1966 uint32_t reg, val, pipeconf_val;
1967
1968 /* PCH only available on ILK+ */
1969 BUG_ON(!HAS_PCH_SPLIT(dev));
1970
1971 /* Make sure PCH DPLL is enabled */
1972 assert_shared_dpll_enabled(dev_priv,
1973 intel_crtc_to_shared_dpll(intel_crtc));
1974
1975 /* FDI must be feeding us bits for PCH ports */
1976 assert_fdi_tx_enabled(dev_priv, pipe);
1977 assert_fdi_rx_enabled(dev_priv, pipe);
1978
1979 if (HAS_PCH_CPT(dev)) {
1980 /* Workaround: Set the timing override bit before enabling the
1981 * pch transcoder. */
1982 reg = TRANS_CHICKEN2(pipe);
1983 val = I915_READ(reg);
1984 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1985 I915_WRITE(reg, val);
1986 }
1987
1988 reg = PCH_TRANSCONF(pipe);
1989 val = I915_READ(reg);
1990 pipeconf_val = I915_READ(PIPECONF(pipe));
1991
1992 if (HAS_PCH_IBX(dev_priv->dev)) {
1993 /*
1994 * Make the BPC in transcoder be consistent with
1995 * that in pipeconf reg. For HDMI we must use 8bpc
1996 * here for both 8bpc and 12bpc.
1997 */
1998 val &= ~PIPECONF_BPC_MASK;
1999 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_HDMI))
2000 val |= PIPECONF_8BPC;
2001 else
2002 val |= pipeconf_val & PIPECONF_BPC_MASK;
2003 }
2004
2005 val &= ~TRANS_INTERLACE_MASK;
2006 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
2007 if (HAS_PCH_IBX(dev_priv->dev) &&
2008 intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
2009 val |= TRANS_LEGACY_INTERLACED_ILK;
2010 else
2011 val |= TRANS_INTERLACED;
2012 else
2013 val |= TRANS_PROGRESSIVE;
2014
2015 I915_WRITE(reg, val | TRANS_ENABLE);
2016 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
2017 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
2018 }
2019
lpt_enable_pch_transcoder(struct drm_i915_private * dev_priv,enum transcoder cpu_transcoder)2020 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
2021 enum transcoder cpu_transcoder)
2022 {
2023 u32 val, pipeconf_val;
2024
2025 /* PCH only available on ILK+ */
2026 BUG_ON(!HAS_PCH_SPLIT(dev_priv->dev));
2027
2028 /* FDI must be feeding us bits for PCH ports */
2029 assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
2030 assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
2031
2032 /* Workaround: set timing override bit. */
2033 val = I915_READ(TRANS_CHICKEN2(PIPE_A));
2034 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
2035 I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
2036
2037 val = TRANS_ENABLE;
2038 pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
2039
2040 if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
2041 PIPECONF_INTERLACED_ILK)
2042 val |= TRANS_INTERLACED;
2043 else
2044 val |= TRANS_PROGRESSIVE;
2045
2046 I915_WRITE(LPT_TRANSCONF, val);
2047 if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
2048 DRM_ERROR("Failed to enable PCH transcoder\n");
2049 }
2050
ironlake_disable_pch_transcoder(struct drm_i915_private * dev_priv,enum pipe pipe)2051 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
2052 enum pipe pipe)
2053 {
2054 struct drm_device *dev = dev_priv->dev;
2055 uint32_t reg, val;
2056
2057 /* FDI relies on the transcoder */
2058 assert_fdi_tx_disabled(dev_priv, pipe);
2059 assert_fdi_rx_disabled(dev_priv, pipe);
2060
2061 /* Ports must be off as well */
2062 assert_pch_ports_disabled(dev_priv, pipe);
2063
2064 reg = PCH_TRANSCONF(pipe);
2065 val = I915_READ(reg);
2066 val &= ~TRANS_ENABLE;
2067 I915_WRITE(reg, val);
2068 /* wait for PCH transcoder off, transcoder state */
2069 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
2070 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
2071
2072 if (!HAS_PCH_IBX(dev)) {
2073 /* Workaround: Clear the timing override chicken bit again. */
2074 reg = TRANS_CHICKEN2(pipe);
2075 val = I915_READ(reg);
2076 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
2077 I915_WRITE(reg, val);
2078 }
2079 }
2080
lpt_disable_pch_transcoder(struct drm_i915_private * dev_priv)2081 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
2082 {
2083 u32 val;
2084
2085 val = I915_READ(LPT_TRANSCONF);
2086 val &= ~TRANS_ENABLE;
2087 I915_WRITE(LPT_TRANSCONF, val);
2088 /* wait for PCH transcoder off, transcoder state */
2089 if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
2090 DRM_ERROR("Failed to disable PCH transcoder\n");
2091
2092 /* Workaround: clear timing override bit. */
2093 val = I915_READ(TRANS_CHICKEN2(PIPE_A));
2094 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
2095 I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
2096 }
2097
2098 /**
2099 * intel_enable_pipe - enable a pipe, asserting requirements
2100 * @crtc: crtc responsible for the pipe
2101 *
2102 * Enable @crtc's pipe, making sure that various hardware specific requirements
2103 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
2104 */
intel_enable_pipe(struct intel_crtc * crtc)2105 static void intel_enable_pipe(struct intel_crtc *crtc)
2106 {
2107 struct drm_device *dev = crtc->base.dev;
2108 struct drm_i915_private *dev_priv = dev->dev_private;
2109 enum pipe pipe = crtc->pipe;
2110 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
2111 pipe);
2112 enum pipe pch_transcoder;
2113 int reg;
2114 u32 val;
2115
2116 DRM_DEBUG_KMS("enabling pipe %c\n", pipe_name(pipe));
2117
2118 assert_planes_disabled(dev_priv, pipe);
2119 assert_cursor_disabled(dev_priv, pipe);
2120 assert_sprites_disabled(dev_priv, pipe);
2121
2122 if (HAS_PCH_LPT(dev_priv->dev))
2123 pch_transcoder = TRANSCODER_A;
2124 else
2125 pch_transcoder = pipe;
2126
2127 /*
2128 * A pipe without a PLL won't actually be able to drive bits from
2129 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
2130 * need the check.
2131 */
2132 if (HAS_GMCH_DISPLAY(dev_priv->dev))
2133 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
2134 assert_dsi_pll_enabled(dev_priv);
2135 else
2136 assert_pll_enabled(dev_priv, pipe);
2137 else {
2138 if (crtc->config->has_pch_encoder) {
2139 /* if driving the PCH, we need FDI enabled */
2140 assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
2141 assert_fdi_tx_pll_enabled(dev_priv,
2142 (enum pipe) cpu_transcoder);
2143 }
2144 /* FIXME: assert CPU port conditions for SNB+ */
2145 }
2146
2147 reg = PIPECONF(cpu_transcoder);
2148 val = I915_READ(reg);
2149 if (val & PIPECONF_ENABLE) {
2150 WARN_ON(!((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
2151 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)));
2152 return;
2153 }
2154
2155 I915_WRITE(reg, val | PIPECONF_ENABLE);
2156 POSTING_READ(reg);
2157 }
2158
2159 /**
2160 * intel_disable_pipe - disable a pipe, asserting requirements
2161 * @crtc: crtc whose pipes is to be disabled
2162 *
2163 * Disable the pipe of @crtc, making sure that various hardware
2164 * specific requirements are met, if applicable, e.g. plane
2165 * disabled, panel fitter off, etc.
2166 *
2167 * Will wait until the pipe has shut down before returning.
2168 */
intel_disable_pipe(struct intel_crtc * crtc)2169 static void intel_disable_pipe(struct intel_crtc *crtc)
2170 {
2171 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
2172 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
2173 enum pipe pipe = crtc->pipe;
2174 int reg;
2175 u32 val;
2176
2177 DRM_DEBUG_KMS("disabling pipe %c\n", pipe_name(pipe));
2178
2179 /*
2180 * Make sure planes won't keep trying to pump pixels to us,
2181 * or we might hang the display.
2182 */
2183 assert_planes_disabled(dev_priv, pipe);
2184 assert_cursor_disabled(dev_priv, pipe);
2185 assert_sprites_disabled(dev_priv, pipe);
2186
2187 reg = PIPECONF(cpu_transcoder);
2188 val = I915_READ(reg);
2189 if ((val & PIPECONF_ENABLE) == 0)
2190 return;
2191
2192 /*
2193 * Double wide has implications for planes
2194 * so best keep it disabled when not needed.
2195 */
2196 if (crtc->config->double_wide)
2197 val &= ~PIPECONF_DOUBLE_WIDE;
2198
2199 /* Don't disable pipe or pipe PLLs if needed */
2200 if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) &&
2201 !(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
2202 val &= ~PIPECONF_ENABLE;
2203
2204 I915_WRITE(reg, val);
2205 if ((val & PIPECONF_ENABLE) == 0)
2206 intel_wait_for_pipe_off(crtc);
2207 }
2208
need_vtd_wa(struct drm_device * dev)2209 static bool need_vtd_wa(struct drm_device *dev)
2210 {
2211 #ifdef CONFIG_INTEL_IOMMU
2212 if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
2213 return true;
2214 #endif
2215 return false;
2216 }
2217
2218 unsigned int
intel_tile_height(struct drm_device * dev,uint32_t pixel_format,uint64_t fb_format_modifier,unsigned int plane)2219 intel_tile_height(struct drm_device *dev, uint32_t pixel_format,
2220 uint64_t fb_format_modifier, unsigned int plane)
2221 {
2222 unsigned int tile_height;
2223 uint32_t pixel_bytes;
2224
2225 switch (fb_format_modifier) {
2226 case DRM_FORMAT_MOD_NONE:
2227 tile_height = 1;
2228 break;
2229 case I915_FORMAT_MOD_X_TILED:
2230 tile_height = IS_GEN2(dev) ? 16 : 8;
2231 break;
2232 case I915_FORMAT_MOD_Y_TILED:
2233 tile_height = 32;
2234 break;
2235 case I915_FORMAT_MOD_Yf_TILED:
2236 pixel_bytes = drm_format_plane_cpp(pixel_format, plane);
2237 switch (pixel_bytes) {
2238 default:
2239 case 1:
2240 tile_height = 64;
2241 break;
2242 case 2:
2243 case 4:
2244 tile_height = 32;
2245 break;
2246 case 8:
2247 tile_height = 16;
2248 break;
2249 case 16:
2250 WARN_ONCE(1,
2251 "128-bit pixels are not supported for display!");
2252 tile_height = 16;
2253 break;
2254 }
2255 break;
2256 default:
2257 MISSING_CASE(fb_format_modifier);
2258 tile_height = 1;
2259 break;
2260 }
2261
2262 return tile_height;
2263 }
2264
2265 unsigned int
intel_fb_align_height(struct drm_device * dev,unsigned int height,uint32_t pixel_format,uint64_t fb_format_modifier)2266 intel_fb_align_height(struct drm_device *dev, unsigned int height,
2267 uint32_t pixel_format, uint64_t fb_format_modifier)
2268 {
2269 return ALIGN(height, intel_tile_height(dev, pixel_format,
2270 fb_format_modifier, 0));
2271 }
2272
2273 static int
intel_fill_fb_ggtt_view(struct i915_ggtt_view * view,struct drm_framebuffer * fb,const struct drm_plane_state * plane_state)2274 intel_fill_fb_ggtt_view(struct i915_ggtt_view *view, struct drm_framebuffer *fb,
2275 const struct drm_plane_state *plane_state)
2276 {
2277 struct intel_rotation_info *info = &view->rotation_info;
2278 unsigned int tile_height, tile_pitch;
2279
2280 *view = i915_ggtt_view_normal;
2281
2282 if (!plane_state)
2283 return 0;
2284
2285 if (!intel_rotation_90_or_270(plane_state->rotation))
2286 return 0;
2287
2288 *view = i915_ggtt_view_rotated;
2289
2290 info->height = fb->height;
2291 info->pixel_format = fb->pixel_format;
2292 info->pitch = fb->pitches[0];
2293 info->uv_offset = fb->offsets[1];
2294 info->fb_modifier = fb->modifier[0];
2295
2296 tile_height = intel_tile_height(fb->dev, fb->pixel_format,
2297 fb->modifier[0], 0);
2298 tile_pitch = PAGE_SIZE / tile_height;
2299 info->width_pages = DIV_ROUND_UP(fb->pitches[0], tile_pitch);
2300 info->height_pages = DIV_ROUND_UP(fb->height, tile_height);
2301 info->size = info->width_pages * info->height_pages * PAGE_SIZE;
2302
2303 if (info->pixel_format == DRM_FORMAT_NV12) {
2304 tile_height = intel_tile_height(fb->dev, fb->pixel_format,
2305 fb->modifier[0], 1);
2306 tile_pitch = PAGE_SIZE / tile_height;
2307 info->width_pages_uv = DIV_ROUND_UP(fb->pitches[0], tile_pitch);
2308 info->height_pages_uv = DIV_ROUND_UP(fb->height / 2,
2309 tile_height);
2310 info->size_uv = info->width_pages_uv * info->height_pages_uv *
2311 PAGE_SIZE;
2312 }
2313
2314 return 0;
2315 }
2316
intel_linear_alignment(struct drm_i915_private * dev_priv)2317 static unsigned int intel_linear_alignment(struct drm_i915_private *dev_priv)
2318 {
2319 if (INTEL_INFO(dev_priv)->gen >= 9)
2320 return 256 * 1024;
2321 else if (IS_BROADWATER(dev_priv) || IS_CRESTLINE(dev_priv) ||
2322 IS_VALLEYVIEW(dev_priv))
2323 return 128 * 1024;
2324 else if (INTEL_INFO(dev_priv)->gen >= 4)
2325 return 4 * 1024;
2326 else
2327 return 0;
2328 }
2329
2330 int
intel_pin_and_fence_fb_obj(struct drm_plane * plane,struct drm_framebuffer * fb,const struct drm_plane_state * plane_state,struct intel_engine_cs * pipelined,struct drm_i915_gem_request ** pipelined_request)2331 intel_pin_and_fence_fb_obj(struct drm_plane *plane,
2332 struct drm_framebuffer *fb,
2333 const struct drm_plane_state *plane_state,
2334 struct intel_engine_cs *pipelined,
2335 struct drm_i915_gem_request **pipelined_request)
2336 {
2337 struct drm_device *dev = fb->dev;
2338 struct drm_i915_private *dev_priv = dev->dev_private;
2339 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2340 struct i915_ggtt_view view;
2341 u32 alignment;
2342 int ret;
2343
2344 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2345
2346 switch (fb->modifier[0]) {
2347 case DRM_FORMAT_MOD_NONE:
2348 alignment = intel_linear_alignment(dev_priv);
2349 break;
2350 case I915_FORMAT_MOD_X_TILED:
2351 if (INTEL_INFO(dev)->gen >= 9)
2352 alignment = 256 * 1024;
2353 else {
2354 /* pin() will align the object as required by fence */
2355 alignment = 0;
2356 }
2357 break;
2358 case I915_FORMAT_MOD_Y_TILED:
2359 case I915_FORMAT_MOD_Yf_TILED:
2360 if (WARN_ONCE(INTEL_INFO(dev)->gen < 9,
2361 "Y tiling bo slipped through, driver bug!\n"))
2362 return -EINVAL;
2363 alignment = 1 * 1024 * 1024;
2364 break;
2365 default:
2366 MISSING_CASE(fb->modifier[0]);
2367 return -EINVAL;
2368 }
2369
2370 ret = intel_fill_fb_ggtt_view(&view, fb, plane_state);
2371 if (ret)
2372 return ret;
2373
2374 /* Note that the w/a also requires 64 PTE of padding following the
2375 * bo. We currently fill all unused PTE with the shadow page and so
2376 * we should always have valid PTE following the scanout preventing
2377 * the VT-d warning.
2378 */
2379 if (need_vtd_wa(dev) && alignment < 256 * 1024)
2380 alignment = 256 * 1024;
2381
2382 /*
2383 * Global gtt pte registers are special registers which actually forward
2384 * writes to a chunk of system memory. Which means that there is no risk
2385 * that the register values disappear as soon as we call
2386 * intel_runtime_pm_put(), so it is correct to wrap only the
2387 * pin/unpin/fence and not more.
2388 */
2389 intel_runtime_pm_get(dev_priv);
2390
2391 dev_priv->mm.interruptible = false;
2392 ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined,
2393 pipelined_request, &view);
2394 if (ret)
2395 goto err_interruptible;
2396
2397 /* Install a fence for tiled scan-out. Pre-i965 always needs a
2398 * fence, whereas 965+ only requires a fence if using
2399 * framebuffer compression. For simplicity, we always install
2400 * a fence as the cost is not that onerous.
2401 */
2402 if (view.type == I915_GGTT_VIEW_NORMAL) {
2403 ret = i915_gem_object_get_fence(obj);
2404 if (ret == -EDEADLK) {
2405 /*
2406 * -EDEADLK means there are no free fences
2407 * no pending flips.
2408 *
2409 * This is propagated to atomic, but it uses
2410 * -EDEADLK to force a locking recovery, so
2411 * change the returned error to -EBUSY.
2412 */
2413 ret = -EBUSY;
2414 goto err_unpin;
2415 } else if (ret)
2416 goto err_unpin;
2417
2418 i915_gem_object_pin_fence(obj);
2419 }
2420
2421 dev_priv->mm.interruptible = true;
2422 intel_runtime_pm_put(dev_priv);
2423 return 0;
2424
2425 err_unpin:
2426 i915_gem_object_unpin_from_display_plane(obj, &view);
2427 err_interruptible:
2428 dev_priv->mm.interruptible = true;
2429 intel_runtime_pm_put(dev_priv);
2430 return ret;
2431 }
2432
intel_unpin_fb_obj(struct drm_framebuffer * fb,const struct drm_plane_state * plane_state)2433 static void intel_unpin_fb_obj(struct drm_framebuffer *fb,
2434 const struct drm_plane_state *plane_state)
2435 {
2436 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2437 struct i915_ggtt_view view;
2438 int ret;
2439
2440 WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
2441
2442 ret = intel_fill_fb_ggtt_view(&view, fb, plane_state);
2443 WARN_ONCE(ret, "Couldn't get view from plane state!");
2444
2445 if (view.type == I915_GGTT_VIEW_NORMAL)
2446 i915_gem_object_unpin_fence(obj);
2447
2448 i915_gem_object_unpin_from_display_plane(obj, &view);
2449 }
2450
2451 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2452 * is assumed to be a power-of-two. */
intel_gen4_compute_page_offset(struct drm_i915_private * dev_priv,int * x,int * y,unsigned int tiling_mode,unsigned int cpp,unsigned int pitch)2453 unsigned long intel_gen4_compute_page_offset(struct drm_i915_private *dev_priv,
2454 int *x, int *y,
2455 unsigned int tiling_mode,
2456 unsigned int cpp,
2457 unsigned int pitch)
2458 {
2459 if (tiling_mode != I915_TILING_NONE) {
2460 unsigned int tile_rows, tiles;
2461
2462 tile_rows = *y / 8;
2463 *y %= 8;
2464
2465 tiles = *x / (512/cpp);
2466 *x %= 512/cpp;
2467
2468 return tile_rows * pitch * 8 + tiles * 4096;
2469 } else {
2470 unsigned int alignment = intel_linear_alignment(dev_priv) - 1;
2471 unsigned int offset;
2472
2473 offset = *y * pitch + *x * cpp;
2474 *y = (offset & alignment) / pitch;
2475 *x = ((offset & alignment) - *y * pitch) / cpp;
2476 return offset & ~alignment;
2477 }
2478 }
2479
i9xx_format_to_fourcc(int format)2480 static int i9xx_format_to_fourcc(int format)
2481 {
2482 switch (format) {
2483 case DISPPLANE_8BPP:
2484 return DRM_FORMAT_C8;
2485 case DISPPLANE_BGRX555:
2486 return DRM_FORMAT_XRGB1555;
2487 case DISPPLANE_BGRX565:
2488 return DRM_FORMAT_RGB565;
2489 default:
2490 case DISPPLANE_BGRX888:
2491 return DRM_FORMAT_XRGB8888;
2492 case DISPPLANE_RGBX888:
2493 return DRM_FORMAT_XBGR8888;
2494 case DISPPLANE_BGRX101010:
2495 return DRM_FORMAT_XRGB2101010;
2496 case DISPPLANE_RGBX101010:
2497 return DRM_FORMAT_XBGR2101010;
2498 }
2499 }
2500
skl_format_to_fourcc(int format,bool rgb_order,bool alpha)2501 static int skl_format_to_fourcc(int format, bool rgb_order, bool alpha)
2502 {
2503 switch (format) {
2504 case PLANE_CTL_FORMAT_RGB_565:
2505 return DRM_FORMAT_RGB565;
2506 default:
2507 case PLANE_CTL_FORMAT_XRGB_8888:
2508 if (rgb_order) {
2509 if (alpha)
2510 return DRM_FORMAT_ABGR8888;
2511 else
2512 return DRM_FORMAT_XBGR8888;
2513 } else {
2514 if (alpha)
2515 return DRM_FORMAT_ARGB8888;
2516 else
2517 return DRM_FORMAT_XRGB8888;
2518 }
2519 case PLANE_CTL_FORMAT_XRGB_2101010:
2520 if (rgb_order)
2521 return DRM_FORMAT_XBGR2101010;
2522 else
2523 return DRM_FORMAT_XRGB2101010;
2524 }
2525 }
2526
2527 static bool
intel_alloc_initial_plane_obj(struct intel_crtc * crtc,struct intel_initial_plane_config * plane_config)2528 intel_alloc_initial_plane_obj(struct intel_crtc *crtc,
2529 struct intel_initial_plane_config *plane_config)
2530 {
2531 struct drm_device *dev = crtc->base.dev;
2532 struct drm_i915_private *dev_priv = to_i915(dev);
2533 struct drm_i915_gem_object *obj = NULL;
2534 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2535 struct drm_framebuffer *fb = &plane_config->fb->base;
2536 u32 base_aligned = round_down(plane_config->base, PAGE_SIZE);
2537 u32 size_aligned = round_up(plane_config->base + plane_config->size,
2538 PAGE_SIZE);
2539
2540 size_aligned -= base_aligned;
2541
2542 if (plane_config->size == 0)
2543 return false;
2544
2545 /* If the FB is too big, just don't use it since fbdev is not very
2546 * important and we should probably use that space with FBC or other
2547 * features. */
2548 if (size_aligned * 2 > dev_priv->gtt.stolen_usable_size)
2549 return false;
2550
2551 obj = i915_gem_object_create_stolen_for_preallocated(dev,
2552 base_aligned,
2553 base_aligned,
2554 size_aligned);
2555 if (!obj)
2556 return false;
2557
2558 obj->tiling_mode = plane_config->tiling;
2559 if (obj->tiling_mode == I915_TILING_X)
2560 obj->stride = fb->pitches[0];
2561
2562 mode_cmd.pixel_format = fb->pixel_format;
2563 mode_cmd.width = fb->width;
2564 mode_cmd.height = fb->height;
2565 mode_cmd.pitches[0] = fb->pitches[0];
2566 mode_cmd.modifier[0] = fb->modifier[0];
2567 mode_cmd.flags = DRM_MODE_FB_MODIFIERS;
2568
2569 mutex_lock(&dev->struct_mutex);
2570 if (intel_framebuffer_init(dev, to_intel_framebuffer(fb),
2571 &mode_cmd, obj)) {
2572 DRM_DEBUG_KMS("intel fb init failed\n");
2573 goto out_unref_obj;
2574 }
2575 mutex_unlock(&dev->struct_mutex);
2576
2577 DRM_DEBUG_KMS("initial plane fb obj %p\n", obj);
2578 return true;
2579
2580 out_unref_obj:
2581 drm_gem_object_unreference(&obj->base);
2582 mutex_unlock(&dev->struct_mutex);
2583 return false;
2584 }
2585
2586 /* Update plane->state->fb to match plane->fb after driver-internal updates */
2587 static void
update_state_fb(struct drm_plane * plane)2588 update_state_fb(struct drm_plane *plane)
2589 {
2590 if (plane->fb == plane->state->fb)
2591 return;
2592
2593 if (plane->state->fb)
2594 drm_framebuffer_unreference(plane->state->fb);
2595 plane->state->fb = plane->fb;
2596 if (plane->state->fb)
2597 drm_framebuffer_reference(plane->state->fb);
2598 }
2599
2600 static void
intel_find_initial_plane_obj(struct intel_crtc * intel_crtc,struct intel_initial_plane_config * plane_config)2601 intel_find_initial_plane_obj(struct intel_crtc *intel_crtc,
2602 struct intel_initial_plane_config *plane_config)
2603 {
2604 struct drm_device *dev = intel_crtc->base.dev;
2605 struct drm_i915_private *dev_priv = dev->dev_private;
2606 struct drm_crtc *c;
2607 struct intel_crtc *i;
2608 struct drm_i915_gem_object *obj;
2609 struct drm_plane *primary = intel_crtc->base.primary;
2610 struct drm_plane_state *plane_state = primary->state;
2611 struct drm_crtc_state *crtc_state = intel_crtc->base.state;
2612 struct intel_plane *intel_plane = to_intel_plane(primary);
2613 struct drm_framebuffer *fb;
2614
2615 if (!plane_config->fb)
2616 return;
2617
2618 if (intel_alloc_initial_plane_obj(intel_crtc, plane_config)) {
2619 fb = &plane_config->fb->base;
2620 goto valid_fb;
2621 }
2622
2623 kfree(plane_config->fb);
2624
2625 /*
2626 * Failed to alloc the obj, check to see if we should share
2627 * an fb with another CRTC instead
2628 */
2629 for_each_crtc(dev, c) {
2630 i = to_intel_crtc(c);
2631
2632 if (c == &intel_crtc->base)
2633 continue;
2634
2635 if (!i->active)
2636 continue;
2637
2638 fb = c->primary->fb;
2639 if (!fb)
2640 continue;
2641
2642 obj = intel_fb_obj(fb);
2643 if (i915_gem_obj_ggtt_offset(obj) == plane_config->base) {
2644 drm_framebuffer_reference(fb);
2645 goto valid_fb;
2646 }
2647 }
2648
2649 /*
2650 * We've failed to reconstruct the BIOS FB. Current display state
2651 * indicates that the primary plane is visible, but has a NULL FB,
2652 * which will lead to problems later if we don't fix it up. The
2653 * simplest solution is to just disable the primary plane now and
2654 * pretend the BIOS never had it enabled.
2655 */
2656 to_intel_plane_state(plane_state)->visible = false;
2657 crtc_state->plane_mask &= ~(1 << drm_plane_index(primary));
2658 intel_pre_disable_primary(&intel_crtc->base);
2659 intel_plane->disable_plane(primary, &intel_crtc->base);
2660
2661 return;
2662
2663 valid_fb:
2664 plane_state->src_x = 0;
2665 plane_state->src_y = 0;
2666 plane_state->src_w = fb->width << 16;
2667 plane_state->src_h = fb->height << 16;
2668
2669 plane_state->crtc_x = 0;
2670 plane_state->crtc_y = 0;
2671 plane_state->crtc_w = fb->width;
2672 plane_state->crtc_h = fb->height;
2673
2674 obj = intel_fb_obj(fb);
2675 if (obj->tiling_mode != I915_TILING_NONE)
2676 dev_priv->preserve_bios_swizzle = true;
2677
2678 drm_framebuffer_reference(fb);
2679 primary->fb = primary->state->fb = fb;
2680 primary->crtc = primary->state->crtc = &intel_crtc->base;
2681 intel_crtc->base.state->plane_mask |= (1 << drm_plane_index(primary));
2682 obj->frontbuffer_bits |= to_intel_plane(primary)->frontbuffer_bit;
2683 }
2684
i9xx_update_primary_plane(struct drm_crtc * crtc,struct drm_framebuffer * fb,int x,int y)2685 static void i9xx_update_primary_plane(struct drm_crtc *crtc,
2686 struct drm_framebuffer *fb,
2687 int x, int y)
2688 {
2689 struct drm_device *dev = crtc->dev;
2690 struct drm_i915_private *dev_priv = dev->dev_private;
2691 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2692 struct drm_plane *primary = crtc->primary;
2693 bool visible = to_intel_plane_state(primary->state)->visible;
2694 struct drm_i915_gem_object *obj;
2695 int plane = intel_crtc->plane;
2696 unsigned long linear_offset;
2697 u32 dspcntr;
2698 u32 reg = DSPCNTR(plane);
2699 int pixel_size;
2700
2701 if (!visible || !fb) {
2702 I915_WRITE(reg, 0);
2703 if (INTEL_INFO(dev)->gen >= 4)
2704 I915_WRITE(DSPSURF(plane), 0);
2705 else
2706 I915_WRITE(DSPADDR(plane), 0);
2707 POSTING_READ(reg);
2708 return;
2709 }
2710
2711 obj = intel_fb_obj(fb);
2712 if (WARN_ON(obj == NULL))
2713 return;
2714
2715 pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2716
2717 dspcntr = DISPPLANE_GAMMA_ENABLE;
2718
2719 dspcntr |= DISPLAY_PLANE_ENABLE;
2720
2721 if (INTEL_INFO(dev)->gen < 4) {
2722 if (intel_crtc->pipe == PIPE_B)
2723 dspcntr |= DISPPLANE_SEL_PIPE_B;
2724
2725 /* pipesrc and dspsize control the size that is scaled from,
2726 * which should always be the user's requested size.
2727 */
2728 I915_WRITE(DSPSIZE(plane),
2729 ((intel_crtc->config->pipe_src_h - 1) << 16) |
2730 (intel_crtc->config->pipe_src_w - 1));
2731 I915_WRITE(DSPPOS(plane), 0);
2732 } else if (IS_CHERRYVIEW(dev) && plane == PLANE_B) {
2733 I915_WRITE(PRIMSIZE(plane),
2734 ((intel_crtc->config->pipe_src_h - 1) << 16) |
2735 (intel_crtc->config->pipe_src_w - 1));
2736 I915_WRITE(PRIMPOS(plane), 0);
2737 I915_WRITE(PRIMCNSTALPHA(plane), 0);
2738 }
2739
2740 switch (fb->pixel_format) {
2741 case DRM_FORMAT_C8:
2742 dspcntr |= DISPPLANE_8BPP;
2743 break;
2744 case DRM_FORMAT_XRGB1555:
2745 dspcntr |= DISPPLANE_BGRX555;
2746 break;
2747 case DRM_FORMAT_RGB565:
2748 dspcntr |= DISPPLANE_BGRX565;
2749 break;
2750 case DRM_FORMAT_XRGB8888:
2751 dspcntr |= DISPPLANE_BGRX888;
2752 break;
2753 case DRM_FORMAT_XBGR8888:
2754 dspcntr |= DISPPLANE_RGBX888;
2755 break;
2756 case DRM_FORMAT_XRGB2101010:
2757 dspcntr |= DISPPLANE_BGRX101010;
2758 break;
2759 case DRM_FORMAT_XBGR2101010:
2760 dspcntr |= DISPPLANE_RGBX101010;
2761 break;
2762 default:
2763 BUG();
2764 }
2765
2766 if (INTEL_INFO(dev)->gen >= 4 &&
2767 obj->tiling_mode != I915_TILING_NONE)
2768 dspcntr |= DISPPLANE_TILED;
2769
2770 if (IS_G4X(dev))
2771 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2772
2773 linear_offset = y * fb->pitches[0] + x * pixel_size;
2774
2775 if (INTEL_INFO(dev)->gen >= 4) {
2776 intel_crtc->dspaddr_offset =
2777 intel_gen4_compute_page_offset(dev_priv,
2778 &x, &y, obj->tiling_mode,
2779 pixel_size,
2780 fb->pitches[0]);
2781 linear_offset -= intel_crtc->dspaddr_offset;
2782 } else {
2783 intel_crtc->dspaddr_offset = linear_offset;
2784 }
2785
2786 if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180)) {
2787 dspcntr |= DISPPLANE_ROTATE_180;
2788
2789 x += (intel_crtc->config->pipe_src_w - 1);
2790 y += (intel_crtc->config->pipe_src_h - 1);
2791
2792 /* Finding the last pixel of the last line of the display
2793 data and adding to linear_offset*/
2794 linear_offset +=
2795 (intel_crtc->config->pipe_src_h - 1) * fb->pitches[0] +
2796 (intel_crtc->config->pipe_src_w - 1) * pixel_size;
2797 }
2798
2799 intel_crtc->adjusted_x = x;
2800 intel_crtc->adjusted_y = y;
2801
2802 I915_WRITE(reg, dspcntr);
2803
2804 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2805 if (INTEL_INFO(dev)->gen >= 4) {
2806 I915_WRITE(DSPSURF(plane),
2807 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2808 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2809 I915_WRITE(DSPLINOFF(plane), linear_offset);
2810 } else
2811 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
2812 POSTING_READ(reg);
2813 }
2814
ironlake_update_primary_plane(struct drm_crtc * crtc,struct drm_framebuffer * fb,int x,int y)2815 static void ironlake_update_primary_plane(struct drm_crtc *crtc,
2816 struct drm_framebuffer *fb,
2817 int x, int y)
2818 {
2819 struct drm_device *dev = crtc->dev;
2820 struct drm_i915_private *dev_priv = dev->dev_private;
2821 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2822 struct drm_plane *primary = crtc->primary;
2823 bool visible = to_intel_plane_state(primary->state)->visible;
2824 struct drm_i915_gem_object *obj;
2825 int plane = intel_crtc->plane;
2826 unsigned long linear_offset;
2827 u32 dspcntr;
2828 u32 reg = DSPCNTR(plane);
2829 int pixel_size;
2830
2831 if (!visible || !fb) {
2832 I915_WRITE(reg, 0);
2833 I915_WRITE(DSPSURF(plane), 0);
2834 POSTING_READ(reg);
2835 return;
2836 }
2837
2838 obj = intel_fb_obj(fb);
2839 if (WARN_ON(obj == NULL))
2840 return;
2841
2842 pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2843
2844 dspcntr = DISPPLANE_GAMMA_ENABLE;
2845
2846 dspcntr |= DISPLAY_PLANE_ENABLE;
2847
2848 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2849 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
2850
2851 switch (fb->pixel_format) {
2852 case DRM_FORMAT_C8:
2853 dspcntr |= DISPPLANE_8BPP;
2854 break;
2855 case DRM_FORMAT_RGB565:
2856 dspcntr |= DISPPLANE_BGRX565;
2857 break;
2858 case DRM_FORMAT_XRGB8888:
2859 dspcntr |= DISPPLANE_BGRX888;
2860 break;
2861 case DRM_FORMAT_XBGR8888:
2862 dspcntr |= DISPPLANE_RGBX888;
2863 break;
2864 case DRM_FORMAT_XRGB2101010:
2865 dspcntr |= DISPPLANE_BGRX101010;
2866 break;
2867 case DRM_FORMAT_XBGR2101010:
2868 dspcntr |= DISPPLANE_RGBX101010;
2869 break;
2870 default:
2871 BUG();
2872 }
2873
2874 if (obj->tiling_mode != I915_TILING_NONE)
2875 dspcntr |= DISPPLANE_TILED;
2876
2877 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
2878 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2879
2880 linear_offset = y * fb->pitches[0] + x * pixel_size;
2881 intel_crtc->dspaddr_offset =
2882 intel_gen4_compute_page_offset(dev_priv,
2883 &x, &y, obj->tiling_mode,
2884 pixel_size,
2885 fb->pitches[0]);
2886 linear_offset -= intel_crtc->dspaddr_offset;
2887 if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180)) {
2888 dspcntr |= DISPPLANE_ROTATE_180;
2889
2890 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
2891 x += (intel_crtc->config->pipe_src_w - 1);
2892 y += (intel_crtc->config->pipe_src_h - 1);
2893
2894 /* Finding the last pixel of the last line of the display
2895 data and adding to linear_offset*/
2896 linear_offset +=
2897 (intel_crtc->config->pipe_src_h - 1) * fb->pitches[0] +
2898 (intel_crtc->config->pipe_src_w - 1) * pixel_size;
2899 }
2900 }
2901
2902 intel_crtc->adjusted_x = x;
2903 intel_crtc->adjusted_y = y;
2904
2905 I915_WRITE(reg, dspcntr);
2906
2907 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2908 I915_WRITE(DSPSURF(plane),
2909 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2910 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2911 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2912 } else {
2913 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2914 I915_WRITE(DSPLINOFF(plane), linear_offset);
2915 }
2916 POSTING_READ(reg);
2917 }
2918
intel_fb_stride_alignment(struct drm_device * dev,uint64_t fb_modifier,uint32_t pixel_format)2919 u32 intel_fb_stride_alignment(struct drm_device *dev, uint64_t fb_modifier,
2920 uint32_t pixel_format)
2921 {
2922 u32 bits_per_pixel = drm_format_plane_cpp(pixel_format, 0) * 8;
2923
2924 /*
2925 * The stride is either expressed as a multiple of 64 bytes
2926 * chunks for linear buffers or in number of tiles for tiled
2927 * buffers.
2928 */
2929 switch (fb_modifier) {
2930 case DRM_FORMAT_MOD_NONE:
2931 return 64;
2932 case I915_FORMAT_MOD_X_TILED:
2933 if (INTEL_INFO(dev)->gen == 2)
2934 return 128;
2935 return 512;
2936 case I915_FORMAT_MOD_Y_TILED:
2937 /* No need to check for old gens and Y tiling since this is
2938 * about the display engine and those will be blocked before
2939 * we get here.
2940 */
2941 return 128;
2942 case I915_FORMAT_MOD_Yf_TILED:
2943 if (bits_per_pixel == 8)
2944 return 64;
2945 else
2946 return 128;
2947 default:
2948 MISSING_CASE(fb_modifier);
2949 return 64;
2950 }
2951 }
2952
intel_plane_obj_offset(struct intel_plane * intel_plane,struct drm_i915_gem_object * obj,unsigned int plane)2953 unsigned long intel_plane_obj_offset(struct intel_plane *intel_plane,
2954 struct drm_i915_gem_object *obj,
2955 unsigned int plane)
2956 {
2957 const struct i915_ggtt_view *view = &i915_ggtt_view_normal;
2958 struct i915_vma *vma;
2959 unsigned char *offset;
2960
2961 if (intel_rotation_90_or_270(intel_plane->base.state->rotation))
2962 view = &i915_ggtt_view_rotated;
2963
2964 vma = i915_gem_obj_to_ggtt_view(obj, view);
2965 if (WARN(!vma, "ggtt vma for display object not found! (view=%u)\n",
2966 view->type))
2967 return -1;
2968
2969 offset = (unsigned char *)vma->node.start;
2970
2971 if (plane == 1) {
2972 offset += vma->ggtt_view.rotation_info.uv_start_page *
2973 PAGE_SIZE;
2974 }
2975
2976 return (unsigned long)offset;
2977 }
2978
skl_detach_scaler(struct intel_crtc * intel_crtc,int id)2979 static void skl_detach_scaler(struct intel_crtc *intel_crtc, int id)
2980 {
2981 struct drm_device *dev = intel_crtc->base.dev;
2982 struct drm_i915_private *dev_priv = dev->dev_private;
2983
2984 I915_WRITE(SKL_PS_CTRL(intel_crtc->pipe, id), 0);
2985 I915_WRITE(SKL_PS_WIN_POS(intel_crtc->pipe, id), 0);
2986 I915_WRITE(SKL_PS_WIN_SZ(intel_crtc->pipe, id), 0);
2987 }
2988
2989 /*
2990 * This function detaches (aka. unbinds) unused scalers in hardware
2991 */
skl_detach_scalers(struct intel_crtc * intel_crtc)2992 static void skl_detach_scalers(struct intel_crtc *intel_crtc)
2993 {
2994 struct intel_crtc_scaler_state *scaler_state;
2995 int i;
2996
2997 scaler_state = &intel_crtc->config->scaler_state;
2998
2999 /* loop through and disable scalers that aren't in use */
3000 for (i = 0; i < intel_crtc->num_scalers; i++) {
3001 if (!scaler_state->scalers[i].in_use)
3002 skl_detach_scaler(intel_crtc, i);
3003 }
3004 }
3005
skl_plane_ctl_format(uint32_t pixel_format)3006 u32 skl_plane_ctl_format(uint32_t pixel_format)
3007 {
3008 switch (pixel_format) {
3009 case DRM_FORMAT_C8:
3010 return PLANE_CTL_FORMAT_INDEXED;
3011 case DRM_FORMAT_RGB565:
3012 return PLANE_CTL_FORMAT_RGB_565;
3013 case DRM_FORMAT_XBGR8888:
3014 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX;
3015 case DRM_FORMAT_XRGB8888:
3016 return PLANE_CTL_FORMAT_XRGB_8888;
3017 /*
3018 * XXX: For ARBG/ABGR formats we default to expecting scanout buffers
3019 * to be already pre-multiplied. We need to add a knob (or a different
3020 * DRM_FORMAT) for user-space to configure that.
3021 */
3022 case DRM_FORMAT_ABGR8888:
3023 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX |
3024 PLANE_CTL_ALPHA_SW_PREMULTIPLY;
3025 case DRM_FORMAT_ARGB8888:
3026 return PLANE_CTL_FORMAT_XRGB_8888 |
3027 PLANE_CTL_ALPHA_SW_PREMULTIPLY;
3028 case DRM_FORMAT_XRGB2101010:
3029 return PLANE_CTL_FORMAT_XRGB_2101010;
3030 case DRM_FORMAT_XBGR2101010:
3031 return PLANE_CTL_ORDER_RGBX | PLANE_CTL_FORMAT_XRGB_2101010;
3032 case DRM_FORMAT_YUYV:
3033 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YUYV;
3034 case DRM_FORMAT_YVYU:
3035 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YVYU;
3036 case DRM_FORMAT_UYVY:
3037 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_UYVY;
3038 case DRM_FORMAT_VYUY:
3039 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_VYUY;
3040 default:
3041 MISSING_CASE(pixel_format);
3042 }
3043
3044 return 0;
3045 }
3046
skl_plane_ctl_tiling(uint64_t fb_modifier)3047 u32 skl_plane_ctl_tiling(uint64_t fb_modifier)
3048 {
3049 switch (fb_modifier) {
3050 case DRM_FORMAT_MOD_NONE:
3051 break;
3052 case I915_FORMAT_MOD_X_TILED:
3053 return PLANE_CTL_TILED_X;
3054 case I915_FORMAT_MOD_Y_TILED:
3055 return PLANE_CTL_TILED_Y;
3056 case I915_FORMAT_MOD_Yf_TILED:
3057 return PLANE_CTL_TILED_YF;
3058 default:
3059 MISSING_CASE(fb_modifier);
3060 }
3061
3062 return 0;
3063 }
3064
skl_plane_ctl_rotation(unsigned int rotation)3065 u32 skl_plane_ctl_rotation(unsigned int rotation)
3066 {
3067 switch (rotation) {
3068 case BIT(DRM_ROTATE_0):
3069 break;
3070 /*
3071 * DRM_ROTATE_ is counter clockwise to stay compatible with Xrandr
3072 * while i915 HW rotation is clockwise, thats why this swapping.
3073 */
3074 case BIT(DRM_ROTATE_90):
3075 return PLANE_CTL_ROTATE_270;
3076 case BIT(DRM_ROTATE_180):
3077 return PLANE_CTL_ROTATE_180;
3078 case BIT(DRM_ROTATE_270):
3079 return PLANE_CTL_ROTATE_90;
3080 default:
3081 MISSING_CASE(rotation);
3082 }
3083
3084 return 0;
3085 }
3086
skylake_update_primary_plane(struct drm_crtc * crtc,struct drm_framebuffer * fb,int x,int y)3087 static void skylake_update_primary_plane(struct drm_crtc *crtc,
3088 struct drm_framebuffer *fb,
3089 int x, int y)
3090 {
3091 struct drm_device *dev = crtc->dev;
3092 struct drm_i915_private *dev_priv = dev->dev_private;
3093 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3094 struct drm_plane *plane = crtc->primary;
3095 bool visible = to_intel_plane_state(plane->state)->visible;
3096 struct drm_i915_gem_object *obj;
3097 int pipe = intel_crtc->pipe;
3098 u32 plane_ctl, stride_div, stride;
3099 u32 tile_height, plane_offset, plane_size;
3100 unsigned int rotation;
3101 int x_offset, y_offset;
3102 unsigned long surf_addr;
3103 struct intel_crtc_state *crtc_state = intel_crtc->config;
3104 struct intel_plane_state *plane_state;
3105 int src_x = 0, src_y = 0, src_w = 0, src_h = 0;
3106 int dst_x = 0, dst_y = 0, dst_w = 0, dst_h = 0;
3107 int scaler_id = -1;
3108
3109 plane_state = to_intel_plane_state(plane->state);
3110
3111 if (!visible || !fb) {
3112 I915_WRITE(PLANE_CTL(pipe, 0), 0);
3113 I915_WRITE(PLANE_SURF(pipe, 0), 0);
3114 POSTING_READ(PLANE_CTL(pipe, 0));
3115 return;
3116 }
3117
3118 plane_ctl = PLANE_CTL_ENABLE |
3119 PLANE_CTL_PIPE_GAMMA_ENABLE |
3120 PLANE_CTL_PIPE_CSC_ENABLE;
3121
3122 plane_ctl |= skl_plane_ctl_format(fb->pixel_format);
3123 plane_ctl |= skl_plane_ctl_tiling(fb->modifier[0]);
3124 plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE;
3125
3126 rotation = plane->state->rotation;
3127 plane_ctl |= skl_plane_ctl_rotation(rotation);
3128
3129 obj = intel_fb_obj(fb);
3130 stride_div = intel_fb_stride_alignment(dev, fb->modifier[0],
3131 fb->pixel_format);
3132 surf_addr = intel_plane_obj_offset(to_intel_plane(plane), obj, 0);
3133
3134 WARN_ON(drm_rect_width(&plane_state->src) == 0);
3135
3136 scaler_id = plane_state->scaler_id;
3137 src_x = plane_state->src.x1 >> 16;
3138 src_y = plane_state->src.y1 >> 16;
3139 src_w = drm_rect_width(&plane_state->src) >> 16;
3140 src_h = drm_rect_height(&plane_state->src) >> 16;
3141 dst_x = plane_state->dst.x1;
3142 dst_y = plane_state->dst.y1;
3143 dst_w = drm_rect_width(&plane_state->dst);
3144 dst_h = drm_rect_height(&plane_state->dst);
3145
3146 WARN_ON(x != src_x || y != src_y);
3147
3148 if (intel_rotation_90_or_270(rotation)) {
3149 /* stride = Surface height in tiles */
3150 tile_height = intel_tile_height(dev, fb->pixel_format,
3151 fb->modifier[0], 0);
3152 stride = DIV_ROUND_UP(fb->height, tile_height);
3153 x_offset = stride * tile_height - y - src_h;
3154 y_offset = x;
3155 plane_size = (src_w - 1) << 16 | (src_h - 1);
3156 } else {
3157 stride = fb->pitches[0] / stride_div;
3158 x_offset = x;
3159 y_offset = y;
3160 plane_size = (src_h - 1) << 16 | (src_w - 1);
3161 }
3162 plane_offset = y_offset << 16 | x_offset;
3163
3164 intel_crtc->adjusted_x = x_offset;
3165 intel_crtc->adjusted_y = y_offset;
3166
3167 I915_WRITE(PLANE_CTL(pipe, 0), plane_ctl);
3168 I915_WRITE(PLANE_OFFSET(pipe, 0), plane_offset);
3169 I915_WRITE(PLANE_SIZE(pipe, 0), plane_size);
3170 I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
3171
3172 if (scaler_id >= 0) {
3173 uint32_t ps_ctrl = 0;
3174
3175 WARN_ON(!dst_w || !dst_h);
3176 ps_ctrl = PS_SCALER_EN | PS_PLANE_SEL(0) |
3177 crtc_state->scaler_state.scalers[scaler_id].mode;
3178 I915_WRITE(SKL_PS_CTRL(pipe, scaler_id), ps_ctrl);
3179 I915_WRITE(SKL_PS_PWR_GATE(pipe, scaler_id), 0);
3180 I915_WRITE(SKL_PS_WIN_POS(pipe, scaler_id), (dst_x << 16) | dst_y);
3181 I915_WRITE(SKL_PS_WIN_SZ(pipe, scaler_id), (dst_w << 16) | dst_h);
3182 I915_WRITE(PLANE_POS(pipe, 0), 0);
3183 } else {
3184 I915_WRITE(PLANE_POS(pipe, 0), (dst_y << 16) | dst_x);
3185 }
3186
3187 I915_WRITE(PLANE_SURF(pipe, 0), surf_addr);
3188
3189 POSTING_READ(PLANE_SURF(pipe, 0));
3190 }
3191
3192 /* Assume fb object is pinned & idle & fenced and just update base pointers */
3193 static int
intel_pipe_set_base_atomic(struct drm_crtc * crtc,struct drm_framebuffer * fb,int x,int y,enum mode_set_atomic state)3194 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
3195 int x, int y, enum mode_set_atomic state)
3196 {
3197 struct drm_device *dev = crtc->dev;
3198 struct drm_i915_private *dev_priv = dev->dev_private;
3199
3200 if (dev_priv->fbc.disable_fbc)
3201 dev_priv->fbc.disable_fbc(dev_priv);
3202
3203 dev_priv->display.update_primary_plane(crtc, fb, x, y);
3204
3205 return 0;
3206 }
3207
intel_complete_page_flips(struct drm_device * dev)3208 static void intel_complete_page_flips(struct drm_device *dev)
3209 {
3210 struct drm_crtc *crtc;
3211
3212 for_each_crtc(dev, crtc) {
3213 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3214 enum plane plane = intel_crtc->plane;
3215
3216 intel_prepare_page_flip(dev, plane);
3217 intel_finish_page_flip_plane(dev, plane);
3218 }
3219 }
3220
intel_update_primary_planes(struct drm_device * dev)3221 static void intel_update_primary_planes(struct drm_device *dev)
3222 {
3223 struct drm_crtc *crtc;
3224
3225 for_each_crtc(dev, crtc) {
3226 struct intel_plane *plane = to_intel_plane(crtc->primary);
3227 struct intel_plane_state *plane_state;
3228
3229 drm_modeset_lock_crtc(crtc, &plane->base);
3230
3231 plane_state = to_intel_plane_state(plane->base.state);
3232
3233 if (plane_state->base.fb)
3234 plane->commit_plane(&plane->base, plane_state);
3235
3236 drm_modeset_unlock_crtc(crtc);
3237 }
3238 }
3239
intel_prepare_reset(struct drm_device * dev)3240 void intel_prepare_reset(struct drm_device *dev)
3241 {
3242 /* no reset support for gen2 */
3243 if (IS_GEN2(dev))
3244 return;
3245
3246 /* reset doesn't touch the display */
3247 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
3248 return;
3249
3250 drm_modeset_lock_all(dev);
3251 /*
3252 * Disabling the crtcs gracefully seems nicer. Also the
3253 * g33 docs say we should at least disable all the planes.
3254 */
3255 intel_display_suspend(dev);
3256 }
3257
intel_finish_reset(struct drm_device * dev)3258 void intel_finish_reset(struct drm_device *dev)
3259 {
3260 struct drm_i915_private *dev_priv = to_i915(dev);
3261
3262 /*
3263 * Flips in the rings will be nuked by the reset,
3264 * so complete all pending flips so that user space
3265 * will get its events and not get stuck.
3266 */
3267 intel_complete_page_flips(dev);
3268
3269 /* no reset support for gen2 */
3270 if (IS_GEN2(dev))
3271 return;
3272
3273 /* reset doesn't touch the display */
3274 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev)) {
3275 /*
3276 * Flips in the rings have been nuked by the reset,
3277 * so update the base address of all primary
3278 * planes to the the last fb to make sure we're
3279 * showing the correct fb after a reset.
3280 *
3281 * FIXME: Atomic will make this obsolete since we won't schedule
3282 * CS-based flips (which might get lost in gpu resets) any more.
3283 */
3284 intel_update_primary_planes(dev);
3285 return;
3286 }
3287
3288 /*
3289 * The display has been reset as well,
3290 * so need a full re-initialization.
3291 */
3292 intel_runtime_pm_disable_interrupts(dev_priv);
3293 intel_runtime_pm_enable_interrupts(dev_priv);
3294
3295 intel_modeset_init_hw(dev);
3296
3297 spin_lock_irq(&dev_priv->irq_lock);
3298 if (dev_priv->display.hpd_irq_setup)
3299 dev_priv->display.hpd_irq_setup(dev);
3300 spin_unlock_irq(&dev_priv->irq_lock);
3301
3302 intel_display_resume(dev);
3303
3304 intel_hpd_init(dev_priv);
3305
3306 drm_modeset_unlock_all(dev);
3307 }
3308
3309 static void
intel_finish_fb(struct drm_framebuffer * old_fb)3310 intel_finish_fb(struct drm_framebuffer *old_fb)
3311 {
3312 struct drm_i915_gem_object *obj = intel_fb_obj(old_fb);
3313 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3314 bool was_interruptible = dev_priv->mm.interruptible;
3315 int ret;
3316
3317 /* Big Hammer, we also need to ensure that any pending
3318 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
3319 * current scanout is retired before unpinning the old
3320 * framebuffer. Note that we rely on userspace rendering
3321 * into the buffer attached to the pipe they are waiting
3322 * on. If not, userspace generates a GPU hang with IPEHR
3323 * point to the MI_WAIT_FOR_EVENT.
3324 *
3325 * This should only fail upon a hung GPU, in which case we
3326 * can safely continue.
3327 */
3328 dev_priv->mm.interruptible = false;
3329 ret = i915_gem_object_wait_rendering(obj, true);
3330 dev_priv->mm.interruptible = was_interruptible;
3331
3332 WARN_ON(ret);
3333 }
3334
intel_crtc_has_pending_flip(struct drm_crtc * crtc)3335 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
3336 {
3337 struct drm_device *dev = crtc->dev;
3338 struct drm_i915_private *dev_priv = dev->dev_private;
3339 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3340 bool pending;
3341
3342 if (i915_reset_in_progress(&dev_priv->gpu_error) ||
3343 intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
3344 return false;
3345
3346 spin_lock_irq(&dev->event_lock);
3347 pending = to_intel_crtc(crtc)->unpin_work != NULL;
3348 spin_unlock_irq(&dev->event_lock);
3349
3350 return pending;
3351 }
3352
intel_update_pipe_config(struct intel_crtc * crtc,struct intel_crtc_state * old_crtc_state)3353 static void intel_update_pipe_config(struct intel_crtc *crtc,
3354 struct intel_crtc_state *old_crtc_state)
3355 {
3356 struct drm_device *dev = crtc->base.dev;
3357 struct drm_i915_private *dev_priv = dev->dev_private;
3358 struct intel_crtc_state *pipe_config =
3359 to_intel_crtc_state(crtc->base.state);
3360
3361 /* drm_atomic_helper_update_legacy_modeset_state might not be called. */
3362 crtc->base.mode = crtc->base.state->mode;
3363
3364 DRM_DEBUG_KMS("Updating pipe size %ix%i -> %ix%i\n",
3365 old_crtc_state->pipe_src_w, old_crtc_state->pipe_src_h,
3366 pipe_config->pipe_src_w, pipe_config->pipe_src_h);
3367
3368 if (HAS_DDI(dev))
3369 intel_set_pipe_csc(&crtc->base);
3370
3371 /*
3372 * Update pipe size and adjust fitter if needed: the reason for this is
3373 * that in compute_mode_changes we check the native mode (not the pfit
3374 * mode) to see if we can flip rather than do a full mode set. In the
3375 * fastboot case, we'll flip, but if we don't update the pipesrc and
3376 * pfit state, we'll end up with a big fb scanned out into the wrong
3377 * sized surface.
3378 */
3379
3380 I915_WRITE(PIPESRC(crtc->pipe),
3381 ((pipe_config->pipe_src_w - 1) << 16) |
3382 (pipe_config->pipe_src_h - 1));
3383
3384 /* on skylake this is done by detaching scalers */
3385 if (INTEL_INFO(dev)->gen >= 9) {
3386 skl_detach_scalers(crtc);
3387
3388 if (pipe_config->pch_pfit.enabled)
3389 skylake_pfit_enable(crtc);
3390 } else if (HAS_PCH_SPLIT(dev)) {
3391 if (pipe_config->pch_pfit.enabled)
3392 ironlake_pfit_enable(crtc);
3393 else if (old_crtc_state->pch_pfit.enabled)
3394 ironlake_pfit_disable(crtc, true);
3395 }
3396 }
3397
intel_fdi_normal_train(struct drm_crtc * crtc)3398 static void intel_fdi_normal_train(struct drm_crtc *crtc)
3399 {
3400 struct drm_device *dev = crtc->dev;
3401 struct drm_i915_private *dev_priv = dev->dev_private;
3402 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3403 int pipe = intel_crtc->pipe;
3404 u32 reg, temp;
3405
3406 /* enable normal train */
3407 reg = FDI_TX_CTL(pipe);
3408 temp = I915_READ(reg);
3409 if (IS_IVYBRIDGE(dev)) {
3410 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3411 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
3412 } else {
3413 temp &= ~FDI_LINK_TRAIN_NONE;
3414 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
3415 }
3416 I915_WRITE(reg, temp);
3417
3418 reg = FDI_RX_CTL(pipe);
3419 temp = I915_READ(reg);
3420 if (HAS_PCH_CPT(dev)) {
3421 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3422 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
3423 } else {
3424 temp &= ~FDI_LINK_TRAIN_NONE;
3425 temp |= FDI_LINK_TRAIN_NONE;
3426 }
3427 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
3428
3429 /* wait one idle pattern time */
3430 POSTING_READ(reg);
3431 udelay(1000);
3432
3433 /* IVB wants error correction enabled */
3434 if (IS_IVYBRIDGE(dev))
3435 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
3436 FDI_FE_ERRC_ENABLE);
3437 }
3438
3439 /* The FDI link training functions for ILK/Ibexpeak. */
ironlake_fdi_link_train(struct drm_crtc * crtc)3440 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
3441 {
3442 struct drm_device *dev = crtc->dev;
3443 struct drm_i915_private *dev_priv = dev->dev_private;
3444 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3445 int pipe = intel_crtc->pipe;
3446 u32 reg, temp, tries;
3447
3448 /* FDI needs bits from pipe first */
3449 assert_pipe_enabled(dev_priv, pipe);
3450
3451 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3452 for train result */
3453 reg = FDI_RX_IMR(pipe);
3454 temp = I915_READ(reg);
3455 temp &= ~FDI_RX_SYMBOL_LOCK;
3456 temp &= ~FDI_RX_BIT_LOCK;
3457 I915_WRITE(reg, temp);
3458 I915_READ(reg);
3459 udelay(150);
3460
3461 /* enable CPU FDI TX and PCH FDI RX */
3462 reg = FDI_TX_CTL(pipe);
3463 temp = I915_READ(reg);
3464 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3465 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3466 temp &= ~FDI_LINK_TRAIN_NONE;
3467 temp |= FDI_LINK_TRAIN_PATTERN_1;
3468 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3469
3470 reg = FDI_RX_CTL(pipe);
3471 temp = I915_READ(reg);
3472 temp &= ~FDI_LINK_TRAIN_NONE;
3473 temp |= FDI_LINK_TRAIN_PATTERN_1;
3474 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3475
3476 POSTING_READ(reg);
3477 udelay(150);
3478
3479 /* Ironlake workaround, enable clock pointer after FDI enable*/
3480 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3481 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
3482 FDI_RX_PHASE_SYNC_POINTER_EN);
3483
3484 reg = FDI_RX_IIR(pipe);
3485 for (tries = 0; tries < 5; tries++) {
3486 temp = I915_READ(reg);
3487 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3488
3489 if ((temp & FDI_RX_BIT_LOCK)) {
3490 DRM_DEBUG_KMS("FDI train 1 done.\n");
3491 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3492 break;
3493 }
3494 }
3495 if (tries == 5)
3496 DRM_ERROR("FDI train 1 fail!\n");
3497
3498 /* Train 2 */
3499 reg = FDI_TX_CTL(pipe);
3500 temp = I915_READ(reg);
3501 temp &= ~FDI_LINK_TRAIN_NONE;
3502 temp |= FDI_LINK_TRAIN_PATTERN_2;
3503 I915_WRITE(reg, temp);
3504
3505 reg = FDI_RX_CTL(pipe);
3506 temp = I915_READ(reg);
3507 temp &= ~FDI_LINK_TRAIN_NONE;
3508 temp |= FDI_LINK_TRAIN_PATTERN_2;
3509 I915_WRITE(reg, temp);
3510
3511 POSTING_READ(reg);
3512 udelay(150);
3513
3514 reg = FDI_RX_IIR(pipe);
3515 for (tries = 0; tries < 5; tries++) {
3516 temp = I915_READ(reg);
3517 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3518
3519 if (temp & FDI_RX_SYMBOL_LOCK) {
3520 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3521 DRM_DEBUG_KMS("FDI train 2 done.\n");
3522 break;
3523 }
3524 }
3525 if (tries == 5)
3526 DRM_ERROR("FDI train 2 fail!\n");
3527
3528 DRM_DEBUG_KMS("FDI train done\n");
3529
3530 }
3531
3532 static const int snb_b_fdi_train_param[] = {
3533 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
3534 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
3535 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
3536 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
3537 };
3538
3539 /* The FDI link training functions for SNB/Cougarpoint. */
gen6_fdi_link_train(struct drm_crtc * crtc)3540 static void gen6_fdi_link_train(struct drm_crtc *crtc)
3541 {
3542 struct drm_device *dev = crtc->dev;
3543 struct drm_i915_private *dev_priv = dev->dev_private;
3544 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3545 int pipe = intel_crtc->pipe;
3546 u32 reg, temp, i, retry;
3547
3548 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3549 for train result */
3550 reg = FDI_RX_IMR(pipe);
3551 temp = I915_READ(reg);
3552 temp &= ~FDI_RX_SYMBOL_LOCK;
3553 temp &= ~FDI_RX_BIT_LOCK;
3554 I915_WRITE(reg, temp);
3555
3556 POSTING_READ(reg);
3557 udelay(150);
3558
3559 /* enable CPU FDI TX and PCH FDI RX */
3560 reg = FDI_TX_CTL(pipe);
3561 temp = I915_READ(reg);
3562 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3563 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3564 temp &= ~FDI_LINK_TRAIN_NONE;
3565 temp |= FDI_LINK_TRAIN_PATTERN_1;
3566 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3567 /* SNB-B */
3568 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3569 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3570
3571 I915_WRITE(FDI_RX_MISC(pipe),
3572 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3573
3574 reg = FDI_RX_CTL(pipe);
3575 temp = I915_READ(reg);
3576 if (HAS_PCH_CPT(dev)) {
3577 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3578 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3579 } else {
3580 temp &= ~FDI_LINK_TRAIN_NONE;
3581 temp |= FDI_LINK_TRAIN_PATTERN_1;
3582 }
3583 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3584
3585 POSTING_READ(reg);
3586 udelay(150);
3587
3588 for (i = 0; i < 4; i++) {
3589 reg = FDI_TX_CTL(pipe);
3590 temp = I915_READ(reg);
3591 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3592 temp |= snb_b_fdi_train_param[i];
3593 I915_WRITE(reg, temp);
3594
3595 POSTING_READ(reg);
3596 udelay(500);
3597
3598 for (retry = 0; retry < 5; retry++) {
3599 reg = FDI_RX_IIR(pipe);
3600 temp = I915_READ(reg);
3601 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3602 if (temp & FDI_RX_BIT_LOCK) {
3603 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3604 DRM_DEBUG_KMS("FDI train 1 done.\n");
3605 break;
3606 }
3607 udelay(50);
3608 }
3609 if (retry < 5)
3610 break;
3611 }
3612 if (i == 4)
3613 DRM_ERROR("FDI train 1 fail!\n");
3614
3615 /* Train 2 */
3616 reg = FDI_TX_CTL(pipe);
3617 temp = I915_READ(reg);
3618 temp &= ~FDI_LINK_TRAIN_NONE;
3619 temp |= FDI_LINK_TRAIN_PATTERN_2;
3620 if (IS_GEN6(dev)) {
3621 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3622 /* SNB-B */
3623 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3624 }
3625 I915_WRITE(reg, temp);
3626
3627 reg = FDI_RX_CTL(pipe);
3628 temp = I915_READ(reg);
3629 if (HAS_PCH_CPT(dev)) {
3630 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3631 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3632 } else {
3633 temp &= ~FDI_LINK_TRAIN_NONE;
3634 temp |= FDI_LINK_TRAIN_PATTERN_2;
3635 }
3636 I915_WRITE(reg, temp);
3637
3638 POSTING_READ(reg);
3639 udelay(150);
3640
3641 for (i = 0; i < 4; i++) {
3642 reg = FDI_TX_CTL(pipe);
3643 temp = I915_READ(reg);
3644 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3645 temp |= snb_b_fdi_train_param[i];
3646 I915_WRITE(reg, temp);
3647
3648 POSTING_READ(reg);
3649 udelay(500);
3650
3651 for (retry = 0; retry < 5; retry++) {
3652 reg = FDI_RX_IIR(pipe);
3653 temp = I915_READ(reg);
3654 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3655 if (temp & FDI_RX_SYMBOL_LOCK) {
3656 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3657 DRM_DEBUG_KMS("FDI train 2 done.\n");
3658 break;
3659 }
3660 udelay(50);
3661 }
3662 if (retry < 5)
3663 break;
3664 }
3665 if (i == 4)
3666 DRM_ERROR("FDI train 2 fail!\n");
3667
3668 DRM_DEBUG_KMS("FDI train done.\n");
3669 }
3670
3671 /* Manual link training for Ivy Bridge A0 parts */
ivb_manual_fdi_link_train(struct drm_crtc * crtc)3672 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3673 {
3674 struct drm_device *dev = crtc->dev;
3675 struct drm_i915_private *dev_priv = dev->dev_private;
3676 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3677 int pipe = intel_crtc->pipe;
3678 u32 reg, temp, i, j;
3679
3680 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3681 for train result */
3682 reg = FDI_RX_IMR(pipe);
3683 temp = I915_READ(reg);
3684 temp &= ~FDI_RX_SYMBOL_LOCK;
3685 temp &= ~FDI_RX_BIT_LOCK;
3686 I915_WRITE(reg, temp);
3687
3688 POSTING_READ(reg);
3689 udelay(150);
3690
3691 DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3692 I915_READ(FDI_RX_IIR(pipe)));
3693
3694 /* Try each vswing and preemphasis setting twice before moving on */
3695 for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3696 /* disable first in case we need to retry */
3697 reg = FDI_TX_CTL(pipe);
3698 temp = I915_READ(reg);
3699 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3700 temp &= ~FDI_TX_ENABLE;
3701 I915_WRITE(reg, temp);
3702
3703 reg = FDI_RX_CTL(pipe);
3704 temp = I915_READ(reg);
3705 temp &= ~FDI_LINK_TRAIN_AUTO;
3706 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3707 temp &= ~FDI_RX_ENABLE;
3708 I915_WRITE(reg, temp);
3709
3710 /* enable CPU FDI TX and PCH FDI RX */
3711 reg = FDI_TX_CTL(pipe);
3712 temp = I915_READ(reg);
3713 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3714 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3715 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
3716 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3717 temp |= snb_b_fdi_train_param[j/2];
3718 temp |= FDI_COMPOSITE_SYNC;
3719 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3720
3721 I915_WRITE(FDI_RX_MISC(pipe),
3722 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3723
3724 reg = FDI_RX_CTL(pipe);
3725 temp = I915_READ(reg);
3726 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3727 temp |= FDI_COMPOSITE_SYNC;
3728 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3729
3730 POSTING_READ(reg);
3731 udelay(1); /* should be 0.5us */
3732
3733 for (i = 0; i < 4; i++) {
3734 reg = FDI_RX_IIR(pipe);
3735 temp = I915_READ(reg);
3736 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3737
3738 if (temp & FDI_RX_BIT_LOCK ||
3739 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
3740 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3741 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
3742 i);
3743 break;
3744 }
3745 udelay(1); /* should be 0.5us */
3746 }
3747 if (i == 4) {
3748 DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
3749 continue;
3750 }
3751
3752 /* Train 2 */
3753 reg = FDI_TX_CTL(pipe);
3754 temp = I915_READ(reg);
3755 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3756 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
3757 I915_WRITE(reg, temp);
3758
3759 reg = FDI_RX_CTL(pipe);
3760 temp = I915_READ(reg);
3761 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3762 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3763 I915_WRITE(reg, temp);
3764
3765 POSTING_READ(reg);
3766 udelay(2); /* should be 1.5us */
3767
3768 for (i = 0; i < 4; i++) {
3769 reg = FDI_RX_IIR(pipe);
3770 temp = I915_READ(reg);
3771 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3772
3773 if (temp & FDI_RX_SYMBOL_LOCK ||
3774 (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
3775 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3776 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
3777 i);
3778 goto train_done;
3779 }
3780 udelay(2); /* should be 1.5us */
3781 }
3782 if (i == 4)
3783 DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
3784 }
3785
3786 train_done:
3787 DRM_DEBUG_KMS("FDI train done.\n");
3788 }
3789
ironlake_fdi_pll_enable(struct intel_crtc * intel_crtc)3790 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
3791 {
3792 struct drm_device *dev = intel_crtc->base.dev;
3793 struct drm_i915_private *dev_priv = dev->dev_private;
3794 int pipe = intel_crtc->pipe;
3795 u32 reg, temp;
3796
3797
3798 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
3799 reg = FDI_RX_CTL(pipe);
3800 temp = I915_READ(reg);
3801 temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
3802 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3803 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3804 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
3805
3806 POSTING_READ(reg);
3807 udelay(200);
3808
3809 /* Switch from Rawclk to PCDclk */
3810 temp = I915_READ(reg);
3811 I915_WRITE(reg, temp | FDI_PCDCLK);
3812
3813 POSTING_READ(reg);
3814 udelay(200);
3815
3816 /* Enable CPU FDI TX PLL, always on for Ironlake */
3817 reg = FDI_TX_CTL(pipe);
3818 temp = I915_READ(reg);
3819 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3820 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
3821
3822 POSTING_READ(reg);
3823 udelay(100);
3824 }
3825 }
3826
ironlake_fdi_pll_disable(struct intel_crtc * intel_crtc)3827 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3828 {
3829 struct drm_device *dev = intel_crtc->base.dev;
3830 struct drm_i915_private *dev_priv = dev->dev_private;
3831 int pipe = intel_crtc->pipe;
3832 u32 reg, temp;
3833
3834 /* Switch from PCDclk to Rawclk */
3835 reg = FDI_RX_CTL(pipe);
3836 temp = I915_READ(reg);
3837 I915_WRITE(reg, temp & ~FDI_PCDCLK);
3838
3839 /* Disable CPU FDI TX PLL */
3840 reg = FDI_TX_CTL(pipe);
3841 temp = I915_READ(reg);
3842 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3843
3844 POSTING_READ(reg);
3845 udelay(100);
3846
3847 reg = FDI_RX_CTL(pipe);
3848 temp = I915_READ(reg);
3849 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3850
3851 /* Wait for the clocks to turn off. */
3852 POSTING_READ(reg);
3853 udelay(100);
3854 }
3855
ironlake_fdi_disable(struct drm_crtc * crtc)3856 static void ironlake_fdi_disable(struct drm_crtc *crtc)
3857 {
3858 struct drm_device *dev = crtc->dev;
3859 struct drm_i915_private *dev_priv = dev->dev_private;
3860 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3861 int pipe = intel_crtc->pipe;
3862 u32 reg, temp;
3863
3864 /* disable CPU FDI tx and PCH FDI rx */
3865 reg = FDI_TX_CTL(pipe);
3866 temp = I915_READ(reg);
3867 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3868 POSTING_READ(reg);
3869
3870 reg = FDI_RX_CTL(pipe);
3871 temp = I915_READ(reg);
3872 temp &= ~(0x7 << 16);
3873 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3874 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3875
3876 POSTING_READ(reg);
3877 udelay(100);
3878
3879 /* Ironlake workaround, disable clock pointer after downing FDI */
3880 if (HAS_PCH_IBX(dev))
3881 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3882
3883 /* still set train pattern 1 */
3884 reg = FDI_TX_CTL(pipe);
3885 temp = I915_READ(reg);
3886 temp &= ~FDI_LINK_TRAIN_NONE;
3887 temp |= FDI_LINK_TRAIN_PATTERN_1;
3888 I915_WRITE(reg, temp);
3889
3890 reg = FDI_RX_CTL(pipe);
3891 temp = I915_READ(reg);
3892 if (HAS_PCH_CPT(dev)) {
3893 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3894 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3895 } else {
3896 temp &= ~FDI_LINK_TRAIN_NONE;
3897 temp |= FDI_LINK_TRAIN_PATTERN_1;
3898 }
3899 /* BPC in FDI rx is consistent with that in PIPECONF */
3900 temp &= ~(0x07 << 16);
3901 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3902 I915_WRITE(reg, temp);
3903
3904 POSTING_READ(reg);
3905 udelay(100);
3906 }
3907
intel_has_pending_fb_unpin(struct drm_device * dev)3908 bool intel_has_pending_fb_unpin(struct drm_device *dev)
3909 {
3910 struct intel_crtc *crtc;
3911
3912 /* Note that we don't need to be called with mode_config.lock here
3913 * as our list of CRTC objects is static for the lifetime of the
3914 * device and so cannot disappear as we iterate. Similarly, we can
3915 * happily treat the predicates as racy, atomic checks as userspace
3916 * cannot claim and pin a new fb without at least acquring the
3917 * struct_mutex and so serialising with us.
3918 */
3919 for_each_intel_crtc(dev, crtc) {
3920 if (atomic_read(&crtc->unpin_work_count) == 0)
3921 continue;
3922
3923 if (crtc->unpin_work)
3924 intel_wait_for_vblank(dev, crtc->pipe);
3925
3926 return true;
3927 }
3928
3929 return false;
3930 }
3931
page_flip_completed(struct intel_crtc * intel_crtc)3932 static void page_flip_completed(struct intel_crtc *intel_crtc)
3933 {
3934 struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3935 struct intel_unpin_work *work = intel_crtc->unpin_work;
3936
3937 /* ensure that the unpin work is consistent wrt ->pending. */
3938 smp_rmb();
3939 intel_crtc->unpin_work = NULL;
3940
3941 if (work->event)
3942 drm_send_vblank_event(intel_crtc->base.dev,
3943 intel_crtc->pipe,
3944 work->event);
3945
3946 drm_crtc_vblank_put(&intel_crtc->base);
3947
3948 wake_up_all(&dev_priv->pending_flip_queue);
3949 queue_work(dev_priv->wq, &work->work);
3950
3951 trace_i915_flip_complete(intel_crtc->plane,
3952 work->pending_flip_obj);
3953 }
3954
intel_crtc_wait_for_pending_flips(struct drm_crtc * crtc)3955 void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
3956 {
3957 struct drm_device *dev = crtc->dev;
3958 struct drm_i915_private *dev_priv = dev->dev_private;
3959
3960 WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
3961 if (WARN_ON(wait_event_timeout(dev_priv->pending_flip_queue,
3962 !intel_crtc_has_pending_flip(crtc),
3963 60*HZ) == 0)) {
3964 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3965
3966 spin_lock_irq(&dev->event_lock);
3967 if (intel_crtc->unpin_work) {
3968 WARN_ONCE(1, "Removing stuck page flip\n");
3969 page_flip_completed(intel_crtc);
3970 }
3971 spin_unlock_irq(&dev->event_lock);
3972 }
3973
3974 if (crtc->primary->fb) {
3975 mutex_lock(&dev->struct_mutex);
3976 intel_finish_fb(crtc->primary->fb);
3977 mutex_unlock(&dev->struct_mutex);
3978 }
3979 }
3980
3981 /* Program iCLKIP clock to the desired frequency */
lpt_program_iclkip(struct drm_crtc * crtc)3982 static void lpt_program_iclkip(struct drm_crtc *crtc)
3983 {
3984 struct drm_device *dev = crtc->dev;
3985 struct drm_i915_private *dev_priv = dev->dev_private;
3986 int clock = to_intel_crtc(crtc)->config->base.adjusted_mode.crtc_clock;
3987 u32 divsel, phaseinc, auxdiv, phasedir = 0;
3988 u32 temp;
3989
3990 mutex_lock(&dev_priv->sb_lock);
3991
3992 /* It is necessary to ungate the pixclk gate prior to programming
3993 * the divisors, and gate it back when it is done.
3994 */
3995 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3996
3997 /* Disable SSCCTL */
3998 intel_sbi_write(dev_priv, SBI_SSCCTL6,
3999 intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
4000 SBI_SSCCTL_DISABLE,
4001 SBI_ICLK);
4002
4003 /* 20MHz is a corner case which is out of range for the 7-bit divisor */
4004 if (clock == 20000) {
4005 auxdiv = 1;
4006 divsel = 0x41;
4007 phaseinc = 0x20;
4008 } else {
4009 /* The iCLK virtual clock root frequency is in MHz,
4010 * but the adjusted_mode->crtc_clock in in KHz. To get the
4011 * divisors, it is necessary to divide one by another, so we
4012 * convert the virtual clock precision to KHz here for higher
4013 * precision.
4014 */
4015 u32 iclk_virtual_root_freq = 172800 * 1000;
4016 u32 iclk_pi_range = 64;
4017 u32 desired_divisor, msb_divisor_value, pi_value;
4018
4019 desired_divisor = (iclk_virtual_root_freq / clock);
4020 msb_divisor_value = desired_divisor / iclk_pi_range;
4021 pi_value = desired_divisor % iclk_pi_range;
4022
4023 auxdiv = 0;
4024 divsel = msb_divisor_value - 2;
4025 phaseinc = pi_value;
4026 }
4027
4028 /* This should not happen with any sane values */
4029 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
4030 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
4031 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
4032 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
4033
4034 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
4035 clock,
4036 auxdiv,
4037 divsel,
4038 phasedir,
4039 phaseinc);
4040
4041 /* Program SSCDIVINTPHASE6 */
4042 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
4043 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
4044 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
4045 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
4046 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
4047 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
4048 temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
4049 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
4050
4051 /* Program SSCAUXDIV */
4052 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
4053 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
4054 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
4055 intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
4056
4057 /* Enable modulator and associated divider */
4058 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
4059 temp &= ~SBI_SSCCTL_DISABLE;
4060 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
4061
4062 /* Wait for initialization time */
4063 udelay(24);
4064
4065 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
4066
4067 mutex_unlock(&dev_priv->sb_lock);
4068 }
4069
ironlake_pch_transcoder_set_timings(struct intel_crtc * crtc,enum pipe pch_transcoder)4070 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
4071 enum pipe pch_transcoder)
4072 {
4073 struct drm_device *dev = crtc->base.dev;
4074 struct drm_i915_private *dev_priv = dev->dev_private;
4075 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
4076
4077 I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
4078 I915_READ(HTOTAL(cpu_transcoder)));
4079 I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
4080 I915_READ(HBLANK(cpu_transcoder)));
4081 I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
4082 I915_READ(HSYNC(cpu_transcoder)));
4083
4084 I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
4085 I915_READ(VTOTAL(cpu_transcoder)));
4086 I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
4087 I915_READ(VBLANK(cpu_transcoder)));
4088 I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
4089 I915_READ(VSYNC(cpu_transcoder)));
4090 I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
4091 I915_READ(VSYNCSHIFT(cpu_transcoder)));
4092 }
4093
cpt_set_fdi_bc_bifurcation(struct drm_device * dev,bool enable)4094 static void cpt_set_fdi_bc_bifurcation(struct drm_device *dev, bool enable)
4095 {
4096 struct drm_i915_private *dev_priv = dev->dev_private;
4097 uint32_t temp;
4098
4099 temp = I915_READ(SOUTH_CHICKEN1);
4100 if (!!(temp & FDI_BC_BIFURCATION_SELECT) == enable)
4101 return;
4102
4103 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
4104 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
4105
4106 temp &= ~FDI_BC_BIFURCATION_SELECT;
4107 if (enable)
4108 temp |= FDI_BC_BIFURCATION_SELECT;
4109
4110 DRM_DEBUG_KMS("%sabling fdi C rx\n", enable ? "en" : "dis");
4111 I915_WRITE(SOUTH_CHICKEN1, temp);
4112 POSTING_READ(SOUTH_CHICKEN1);
4113 }
4114
ivybridge_update_fdi_bc_bifurcation(struct intel_crtc * intel_crtc)4115 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
4116 {
4117 struct drm_device *dev = intel_crtc->base.dev;
4118
4119 switch (intel_crtc->pipe) {
4120 case PIPE_A:
4121 break;
4122 case PIPE_B:
4123 if (intel_crtc->config->fdi_lanes > 2)
4124 cpt_set_fdi_bc_bifurcation(dev, false);
4125 else
4126 cpt_set_fdi_bc_bifurcation(dev, true);
4127
4128 break;
4129 case PIPE_C:
4130 cpt_set_fdi_bc_bifurcation(dev, true);
4131
4132 break;
4133 default:
4134 BUG();
4135 }
4136 }
4137
4138 /*
4139 * Enable PCH resources required for PCH ports:
4140 * - PCH PLLs
4141 * - FDI training & RX/TX
4142 * - update transcoder timings
4143 * - DP transcoding bits
4144 * - transcoder
4145 */
ironlake_pch_enable(struct drm_crtc * crtc)4146 static void ironlake_pch_enable(struct drm_crtc *crtc)
4147 {
4148 struct drm_device *dev = crtc->dev;
4149 struct drm_i915_private *dev_priv = dev->dev_private;
4150 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4151 int pipe = intel_crtc->pipe;
4152 u32 reg, temp;
4153
4154 assert_pch_transcoder_disabled(dev_priv, pipe);
4155
4156 if (IS_IVYBRIDGE(dev))
4157 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
4158
4159 /* Write the TU size bits before fdi link training, so that error
4160 * detection works. */
4161 I915_WRITE(FDI_RX_TUSIZE1(pipe),
4162 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
4163
4164 /* For PCH output, training FDI link */
4165 dev_priv->display.fdi_link_train(crtc);
4166
4167 /* We need to program the right clock selection before writing the pixel
4168 * mutliplier into the DPLL. */
4169 if (HAS_PCH_CPT(dev)) {
4170 u32 sel;
4171
4172 temp = I915_READ(PCH_DPLL_SEL);
4173 temp |= TRANS_DPLL_ENABLE(pipe);
4174 sel = TRANS_DPLLB_SEL(pipe);
4175 if (intel_crtc->config->shared_dpll == DPLL_ID_PCH_PLL_B)
4176 temp |= sel;
4177 else
4178 temp &= ~sel;
4179 I915_WRITE(PCH_DPLL_SEL, temp);
4180 }
4181
4182 /* XXX: pch pll's can be enabled any time before we enable the PCH
4183 * transcoder, and we actually should do this to not upset any PCH
4184 * transcoder that already use the clock when we share it.
4185 *
4186 * Note that enable_shared_dpll tries to do the right thing, but
4187 * get_shared_dpll unconditionally resets the pll - we need that to have
4188 * the right LVDS enable sequence. */
4189 intel_enable_shared_dpll(intel_crtc);
4190
4191 /* set transcoder timing, panel must allow it */
4192 assert_panel_unlocked(dev_priv, pipe);
4193 ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
4194
4195 intel_fdi_normal_train(crtc);
4196
4197 /* For PCH DP, enable TRANS_DP_CTL */
4198 if (HAS_PCH_CPT(dev) && intel_crtc->config->has_dp_encoder) {
4199 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
4200 reg = TRANS_DP_CTL(pipe);
4201 temp = I915_READ(reg);
4202 temp &= ~(TRANS_DP_PORT_SEL_MASK |
4203 TRANS_DP_SYNC_MASK |
4204 TRANS_DP_BPC_MASK);
4205 temp |= TRANS_DP_OUTPUT_ENABLE;
4206 temp |= bpc << 9; /* same format but at 11:9 */
4207
4208 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
4209 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
4210 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
4211 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
4212
4213 switch (intel_trans_dp_port_sel(crtc)) {
4214 case PCH_DP_B:
4215 temp |= TRANS_DP_PORT_SEL_B;
4216 break;
4217 case PCH_DP_C:
4218 temp |= TRANS_DP_PORT_SEL_C;
4219 break;
4220 case PCH_DP_D:
4221 temp |= TRANS_DP_PORT_SEL_D;
4222 break;
4223 default:
4224 BUG();
4225 }
4226
4227 I915_WRITE(reg, temp);
4228 }
4229
4230 ironlake_enable_pch_transcoder(dev_priv, pipe);
4231 }
4232
lpt_pch_enable(struct drm_crtc * crtc)4233 static void lpt_pch_enable(struct drm_crtc *crtc)
4234 {
4235 struct drm_device *dev = crtc->dev;
4236 struct drm_i915_private *dev_priv = dev->dev_private;
4237 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4238 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
4239
4240 assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
4241
4242 lpt_program_iclkip(crtc);
4243
4244 /* Set transcoder timing. */
4245 ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
4246
4247 lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
4248 }
4249
intel_get_shared_dpll(struct intel_crtc * crtc,struct intel_crtc_state * crtc_state)4250 struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc,
4251 struct intel_crtc_state *crtc_state)
4252 {
4253 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
4254 struct intel_shared_dpll *pll;
4255 struct intel_shared_dpll_config *shared_dpll;
4256 enum intel_dpll_id i;
4257 int max = dev_priv->num_shared_dpll;
4258
4259 shared_dpll = intel_atomic_get_shared_dpll_state(crtc_state->base.state);
4260
4261 if (HAS_PCH_IBX(dev_priv->dev)) {
4262 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
4263 i = (enum intel_dpll_id) crtc->pipe;
4264 pll = &dev_priv->shared_dplls[i];
4265
4266 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
4267 crtc->base.base.id, pll->name);
4268
4269 WARN_ON(shared_dpll[i].crtc_mask);
4270
4271 goto found;
4272 }
4273
4274 if (IS_BROXTON(dev_priv->dev)) {
4275 /* PLL is attached to port in bxt */
4276 struct intel_encoder *encoder;
4277 struct intel_digital_port *intel_dig_port;
4278
4279 encoder = intel_ddi_get_crtc_new_encoder(crtc_state);
4280 if (WARN_ON(!encoder))
4281 return NULL;
4282
4283 intel_dig_port = enc_to_dig_port(&encoder->base);
4284 /* 1:1 mapping between ports and PLLs */
4285 i = (enum intel_dpll_id)intel_dig_port->port;
4286 pll = &dev_priv->shared_dplls[i];
4287 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
4288 crtc->base.base.id, pll->name);
4289 WARN_ON(shared_dpll[i].crtc_mask);
4290
4291 goto found;
4292 } else if (INTEL_INFO(dev_priv)->gen < 9 && HAS_DDI(dev_priv))
4293 /* Do not consider SPLL */
4294 max = 2;
4295
4296 for (i = 0; i < max; i++) {
4297 pll = &dev_priv->shared_dplls[i];
4298
4299 /* Only want to check enabled timings first */
4300 if (shared_dpll[i].crtc_mask == 0)
4301 continue;
4302
4303 if (memcmp(&crtc_state->dpll_hw_state,
4304 &shared_dpll[i].hw_state,
4305 sizeof(crtc_state->dpll_hw_state)) == 0) {
4306 DRM_DEBUG_KMS("CRTC:%d sharing existing %s (crtc mask 0x%08x, ative %d)\n",
4307 crtc->base.base.id, pll->name,
4308 shared_dpll[i].crtc_mask,
4309 pll->active);
4310 goto found;
4311 }
4312 }
4313
4314 /* Ok no matching timings, maybe there's a free one? */
4315 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4316 pll = &dev_priv->shared_dplls[i];
4317 if (shared_dpll[i].crtc_mask == 0) {
4318 DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
4319 crtc->base.base.id, pll->name);
4320 goto found;
4321 }
4322 }
4323
4324 return NULL;
4325
4326 found:
4327 if (shared_dpll[i].crtc_mask == 0)
4328 shared_dpll[i].hw_state =
4329 crtc_state->dpll_hw_state;
4330
4331 crtc_state->shared_dpll = i;
4332 DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
4333 pipe_name(crtc->pipe));
4334
4335 shared_dpll[i].crtc_mask |= 1 << crtc->pipe;
4336
4337 return pll;
4338 }
4339
intel_shared_dpll_commit(struct drm_atomic_state * state)4340 static void intel_shared_dpll_commit(struct drm_atomic_state *state)
4341 {
4342 struct drm_i915_private *dev_priv = to_i915(state->dev);
4343 struct intel_shared_dpll_config *shared_dpll;
4344 struct intel_shared_dpll *pll;
4345 enum intel_dpll_id i;
4346
4347 if (!to_intel_atomic_state(state)->dpll_set)
4348 return;
4349
4350 shared_dpll = to_intel_atomic_state(state)->shared_dpll;
4351 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4352 pll = &dev_priv->shared_dplls[i];
4353 pll->config = shared_dpll[i];
4354 }
4355 }
4356
cpt_verify_modeset(struct drm_device * dev,int pipe)4357 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
4358 {
4359 struct drm_i915_private *dev_priv = dev->dev_private;
4360 int dslreg = PIPEDSL(pipe);
4361 u32 temp;
4362
4363 temp = I915_READ(dslreg);
4364 udelay(500);
4365 if (wait_for(I915_READ(dslreg) != temp, 5)) {
4366 if (wait_for(I915_READ(dslreg) != temp, 5))
4367 DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
4368 }
4369 }
4370
4371 static int
skl_update_scaler(struct intel_crtc_state * crtc_state,bool force_detach,unsigned scaler_user,int * scaler_id,unsigned int rotation,int src_w,int src_h,int dst_w,int dst_h)4372 skl_update_scaler(struct intel_crtc_state *crtc_state, bool force_detach,
4373 unsigned scaler_user, int *scaler_id, unsigned int rotation,
4374 int src_w, int src_h, int dst_w, int dst_h)
4375 {
4376 struct intel_crtc_scaler_state *scaler_state =
4377 &crtc_state->scaler_state;
4378 struct intel_crtc *intel_crtc =
4379 to_intel_crtc(crtc_state->base.crtc);
4380 int need_scaling;
4381
4382 need_scaling = intel_rotation_90_or_270(rotation) ?
4383 (src_h != dst_w || src_w != dst_h):
4384 (src_w != dst_w || src_h != dst_h);
4385
4386 /*
4387 * if plane is being disabled or scaler is no more required or force detach
4388 * - free scaler binded to this plane/crtc
4389 * - in order to do this, update crtc->scaler_usage
4390 *
4391 * Here scaler state in crtc_state is set free so that
4392 * scaler can be assigned to other user. Actual register
4393 * update to free the scaler is done in plane/panel-fit programming.
4394 * For this purpose crtc/plane_state->scaler_id isn't reset here.
4395 */
4396 if (force_detach || !need_scaling) {
4397 if (*scaler_id >= 0) {
4398 scaler_state->scaler_users &= ~(1 << scaler_user);
4399 scaler_state->scalers[*scaler_id].in_use = 0;
4400
4401 DRM_DEBUG_KMS("scaler_user index %u.%u: "
4402 "Staged freeing scaler id %d scaler_users = 0x%x\n",
4403 intel_crtc->pipe, scaler_user, *scaler_id,
4404 scaler_state->scaler_users);
4405 *scaler_id = -1;
4406 }
4407 return 0;
4408 }
4409
4410 /* range checks */
4411 if (src_w < SKL_MIN_SRC_W || src_h < SKL_MIN_SRC_H ||
4412 dst_w < SKL_MIN_DST_W || dst_h < SKL_MIN_DST_H ||
4413
4414 src_w > SKL_MAX_SRC_W || src_h > SKL_MAX_SRC_H ||
4415 dst_w > SKL_MAX_DST_W || dst_h > SKL_MAX_DST_H) {
4416 DRM_DEBUG_KMS("scaler_user index %u.%u: src %ux%u dst %ux%u "
4417 "size is out of scaler range\n",
4418 intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h);
4419 return -EINVAL;
4420 }
4421
4422 /* mark this plane as a scaler user in crtc_state */
4423 scaler_state->scaler_users |= (1 << scaler_user);
4424 DRM_DEBUG_KMS("scaler_user index %u.%u: "
4425 "staged scaling request for %ux%u->%ux%u scaler_users = 0x%x\n",
4426 intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h,
4427 scaler_state->scaler_users);
4428
4429 return 0;
4430 }
4431
4432 /**
4433 * skl_update_scaler_crtc - Stages update to scaler state for a given crtc.
4434 *
4435 * @state: crtc's scaler state
4436 *
4437 * Return
4438 * 0 - scaler_usage updated successfully
4439 * error - requested scaling cannot be supported or other error condition
4440 */
skl_update_scaler_crtc(struct intel_crtc_state * state)4441 int skl_update_scaler_crtc(struct intel_crtc_state *state)
4442 {
4443 struct intel_crtc *intel_crtc = to_intel_crtc(state->base.crtc);
4444 const struct drm_display_mode *adjusted_mode = &state->base.adjusted_mode;
4445
4446 DRM_DEBUG_KMS("Updating scaler for [CRTC:%i] scaler_user index %u.%u\n",
4447 intel_crtc->base.base.id, intel_crtc->pipe, SKL_CRTC_INDEX);
4448
4449 return skl_update_scaler(state, !state->base.active, SKL_CRTC_INDEX,
4450 &state->scaler_state.scaler_id, BIT(DRM_ROTATE_0),
4451 state->pipe_src_w, state->pipe_src_h,
4452 adjusted_mode->crtc_hdisplay, adjusted_mode->crtc_vdisplay);
4453 }
4454
4455 /**
4456 * skl_update_scaler_plane - Stages update to scaler state for a given plane.
4457 *
4458 * @state: crtc's scaler state
4459 * @plane_state: atomic plane state to update
4460 *
4461 * Return
4462 * 0 - scaler_usage updated successfully
4463 * error - requested scaling cannot be supported or other error condition
4464 */
skl_update_scaler_plane(struct intel_crtc_state * crtc_state,struct intel_plane_state * plane_state)4465 static int skl_update_scaler_plane(struct intel_crtc_state *crtc_state,
4466 struct intel_plane_state *plane_state)
4467 {
4468
4469 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
4470 struct intel_plane *intel_plane =
4471 to_intel_plane(plane_state->base.plane);
4472 struct drm_framebuffer *fb = plane_state->base.fb;
4473 int ret;
4474
4475 bool force_detach = !fb || !plane_state->visible;
4476
4477 DRM_DEBUG_KMS("Updating scaler for [PLANE:%d] scaler_user index %u.%u\n",
4478 intel_plane->base.base.id, intel_crtc->pipe,
4479 drm_plane_index(&intel_plane->base));
4480
4481 ret = skl_update_scaler(crtc_state, force_detach,
4482 drm_plane_index(&intel_plane->base),
4483 &plane_state->scaler_id,
4484 plane_state->base.rotation,
4485 drm_rect_width(&plane_state->src) >> 16,
4486 drm_rect_height(&plane_state->src) >> 16,
4487 drm_rect_width(&plane_state->dst),
4488 drm_rect_height(&plane_state->dst));
4489
4490 if (ret || plane_state->scaler_id < 0)
4491 return ret;
4492
4493 /* check colorkey */
4494 if (plane_state->ckey.flags != I915_SET_COLORKEY_NONE) {
4495 DRM_DEBUG_KMS("[PLANE:%d] scaling with color key not allowed",
4496 intel_plane->base.base.id);
4497 return -EINVAL;
4498 }
4499
4500 /* Check src format */
4501 switch (fb->pixel_format) {
4502 case DRM_FORMAT_RGB565:
4503 case DRM_FORMAT_XBGR8888:
4504 case DRM_FORMAT_XRGB8888:
4505 case DRM_FORMAT_ABGR8888:
4506 case DRM_FORMAT_ARGB8888:
4507 case DRM_FORMAT_XRGB2101010:
4508 case DRM_FORMAT_XBGR2101010:
4509 case DRM_FORMAT_YUYV:
4510 case DRM_FORMAT_YVYU:
4511 case DRM_FORMAT_UYVY:
4512 case DRM_FORMAT_VYUY:
4513 break;
4514 default:
4515 DRM_DEBUG_KMS("[PLANE:%d] FB:%d unsupported scaling format 0x%x\n",
4516 intel_plane->base.base.id, fb->base.id, fb->pixel_format);
4517 return -EINVAL;
4518 }
4519
4520 return 0;
4521 }
4522
skylake_scaler_disable(struct intel_crtc * crtc)4523 static void skylake_scaler_disable(struct intel_crtc *crtc)
4524 {
4525 int i;
4526
4527 for (i = 0; i < crtc->num_scalers; i++)
4528 skl_detach_scaler(crtc, i);
4529 }
4530
skylake_pfit_enable(struct intel_crtc * crtc)4531 static void skylake_pfit_enable(struct intel_crtc *crtc)
4532 {
4533 struct drm_device *dev = crtc->base.dev;
4534 struct drm_i915_private *dev_priv = dev->dev_private;
4535 int pipe = crtc->pipe;
4536 struct intel_crtc_scaler_state *scaler_state =
4537 &crtc->config->scaler_state;
4538
4539 DRM_DEBUG_KMS("for crtc_state = %p\n", crtc->config);
4540
4541 if (crtc->config->pch_pfit.enabled) {
4542 int id;
4543
4544 if (WARN_ON(crtc->config->scaler_state.scaler_id < 0)) {
4545 DRM_ERROR("Requesting pfit without getting a scaler first\n");
4546 return;
4547 }
4548
4549 id = scaler_state->scaler_id;
4550 I915_WRITE(SKL_PS_CTRL(pipe, id), PS_SCALER_EN |
4551 PS_FILTER_MEDIUM | scaler_state->scalers[id].mode);
4552 I915_WRITE(SKL_PS_WIN_POS(pipe, id), crtc->config->pch_pfit.pos);
4553 I915_WRITE(SKL_PS_WIN_SZ(pipe, id), crtc->config->pch_pfit.size);
4554
4555 DRM_DEBUG_KMS("for crtc_state = %p scaler_id = %d\n", crtc->config, id);
4556 }
4557 }
4558
ironlake_pfit_enable(struct intel_crtc * crtc)4559 static void ironlake_pfit_enable(struct intel_crtc *crtc)
4560 {
4561 struct drm_device *dev = crtc->base.dev;
4562 struct drm_i915_private *dev_priv = dev->dev_private;
4563 int pipe = crtc->pipe;
4564
4565 if (crtc->config->pch_pfit.enabled) {
4566 /* Force use of hard-coded filter coefficients
4567 * as some pre-programmed values are broken,
4568 * e.g. x201.
4569 */
4570 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
4571 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
4572 PF_PIPE_SEL_IVB(pipe));
4573 else
4574 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
4575 I915_WRITE(PF_WIN_POS(pipe), crtc->config->pch_pfit.pos);
4576 I915_WRITE(PF_WIN_SZ(pipe), crtc->config->pch_pfit.size);
4577 }
4578 }
4579
hsw_enable_ips(struct intel_crtc * crtc)4580 void hsw_enable_ips(struct intel_crtc *crtc)
4581 {
4582 struct drm_device *dev = crtc->base.dev;
4583 struct drm_i915_private *dev_priv = dev->dev_private;
4584
4585 if (!crtc->config->ips_enabled)
4586 return;
4587
4588 /* We can only enable IPS after we enable a plane and wait for a vblank */
4589 intel_wait_for_vblank(dev, crtc->pipe);
4590
4591 assert_plane_enabled(dev_priv, crtc->plane);
4592 if (IS_BROADWELL(dev)) {
4593 mutex_lock(&dev_priv->rps.hw_lock);
4594 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
4595 mutex_unlock(&dev_priv->rps.hw_lock);
4596 /* Quoting Art Runyan: "its not safe to expect any particular
4597 * value in IPS_CTL bit 31 after enabling IPS through the
4598 * mailbox." Moreover, the mailbox may return a bogus state,
4599 * so we need to just enable it and continue on.
4600 */
4601 } else {
4602 I915_WRITE(IPS_CTL, IPS_ENABLE);
4603 /* The bit only becomes 1 in the next vblank, so this wait here
4604 * is essentially intel_wait_for_vblank. If we don't have this
4605 * and don't wait for vblanks until the end of crtc_enable, then
4606 * the HW state readout code will complain that the expected
4607 * IPS_CTL value is not the one we read. */
4608 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
4609 DRM_ERROR("Timed out waiting for IPS enable\n");
4610 }
4611 }
4612
hsw_disable_ips(struct intel_crtc * crtc)4613 void hsw_disable_ips(struct intel_crtc *crtc)
4614 {
4615 struct drm_device *dev = crtc->base.dev;
4616 struct drm_i915_private *dev_priv = dev->dev_private;
4617
4618 if (!crtc->config->ips_enabled)
4619 return;
4620
4621 assert_plane_enabled(dev_priv, crtc->plane);
4622 if (IS_BROADWELL(dev)) {
4623 mutex_lock(&dev_priv->rps.hw_lock);
4624 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
4625 mutex_unlock(&dev_priv->rps.hw_lock);
4626 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
4627 if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42))
4628 DRM_ERROR("Timed out waiting for IPS disable\n");
4629 } else {
4630 I915_WRITE(IPS_CTL, 0);
4631 POSTING_READ(IPS_CTL);
4632 }
4633
4634 /* We need to wait for a vblank before we can disable the plane. */
4635 intel_wait_for_vblank(dev, crtc->pipe);
4636 }
4637
4638 /** Loads the palette/gamma unit for the CRTC with the prepared values */
intel_crtc_load_lut(struct drm_crtc * crtc)4639 static void intel_crtc_load_lut(struct drm_crtc *crtc)
4640 {
4641 struct drm_device *dev = crtc->dev;
4642 struct drm_i915_private *dev_priv = dev->dev_private;
4643 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4644 enum pipe pipe = intel_crtc->pipe;
4645 int i;
4646 bool reenable_ips = false;
4647
4648 /* The clocks have to be on to load the palette. */
4649 if (!crtc->state->active)
4650 return;
4651
4652 if (HAS_GMCH_DISPLAY(dev_priv->dev)) {
4653 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI))
4654 assert_dsi_pll_enabled(dev_priv);
4655 else
4656 assert_pll_enabled(dev_priv, pipe);
4657 }
4658
4659 /* Workaround : Do not read or write the pipe palette/gamma data while
4660 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
4661 */
4662 if (IS_HASWELL(dev) && intel_crtc->config->ips_enabled &&
4663 ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
4664 GAMMA_MODE_MODE_SPLIT)) {
4665 hsw_disable_ips(intel_crtc);
4666 reenable_ips = true;
4667 }
4668
4669 for (i = 0; i < 256; i++) {
4670 u32 palreg;
4671
4672 if (HAS_GMCH_DISPLAY(dev))
4673 palreg = PALETTE(pipe, i);
4674 else
4675 palreg = LGC_PALETTE(pipe, i);
4676
4677 I915_WRITE(palreg,
4678 (intel_crtc->lut_r[i] << 16) |
4679 (intel_crtc->lut_g[i] << 8) |
4680 intel_crtc->lut_b[i]);
4681 }
4682
4683 if (reenable_ips)
4684 hsw_enable_ips(intel_crtc);
4685 }
4686
intel_crtc_dpms_overlay_disable(struct intel_crtc * intel_crtc)4687 static void intel_crtc_dpms_overlay_disable(struct intel_crtc *intel_crtc)
4688 {
4689 if (intel_crtc->overlay) {
4690 struct drm_device *dev = intel_crtc->base.dev;
4691 struct drm_i915_private *dev_priv = dev->dev_private;
4692
4693 mutex_lock(&dev->struct_mutex);
4694 dev_priv->mm.interruptible = false;
4695 (void) intel_overlay_switch_off(intel_crtc->overlay);
4696 dev_priv->mm.interruptible = true;
4697 mutex_unlock(&dev->struct_mutex);
4698 }
4699
4700 /* Let userspace switch the overlay on again. In most cases userspace
4701 * has to recompute where to put it anyway.
4702 */
4703 }
4704
4705 /**
4706 * intel_post_enable_primary - Perform operations after enabling primary plane
4707 * @crtc: the CRTC whose primary plane was just enabled
4708 *
4709 * Performs potentially sleeping operations that must be done after the primary
4710 * plane is enabled, such as updating FBC and IPS. Note that this may be
4711 * called due to an explicit primary plane update, or due to an implicit
4712 * re-enable that is caused when a sprite plane is updated to no longer
4713 * completely hide the primary plane.
4714 */
4715 static void
intel_post_enable_primary(struct drm_crtc * crtc)4716 intel_post_enable_primary(struct drm_crtc *crtc)
4717 {
4718 struct drm_device *dev = crtc->dev;
4719 struct drm_i915_private *dev_priv = dev->dev_private;
4720 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4721 int pipe = intel_crtc->pipe;
4722
4723 /*
4724 * BDW signals flip done immediately if the plane
4725 * is disabled, even if the plane enable is already
4726 * armed to occur at the next vblank :(
4727 */
4728 if (IS_BROADWELL(dev))
4729 intel_wait_for_vblank(dev, pipe);
4730
4731 /*
4732 * FIXME IPS should be fine as long as one plane is
4733 * enabled, but in practice it seems to have problems
4734 * when going from primary only to sprite only and vice
4735 * versa.
4736 */
4737 hsw_enable_ips(intel_crtc);
4738
4739 /*
4740 * Gen2 reports pipe underruns whenever all planes are disabled.
4741 * So don't enable underrun reporting before at least some planes
4742 * are enabled.
4743 * FIXME: Need to fix the logic to work when we turn off all planes
4744 * but leave the pipe running.
4745 */
4746 if (IS_GEN2(dev))
4747 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4748
4749 /* Underruns don't raise interrupts, so check manually. */
4750 if (HAS_GMCH_DISPLAY(dev))
4751 i9xx_check_fifo_underruns(dev_priv);
4752 }
4753
4754 /**
4755 * intel_pre_disable_primary - Perform operations before disabling primary plane
4756 * @crtc: the CRTC whose primary plane is to be disabled
4757 *
4758 * Performs potentially sleeping operations that must be done before the
4759 * primary plane is disabled, such as updating FBC and IPS. Note that this may
4760 * be called due to an explicit primary plane update, or due to an implicit
4761 * disable that is caused when a sprite plane completely hides the primary
4762 * plane.
4763 */
4764 static void
intel_pre_disable_primary(struct drm_crtc * crtc)4765 intel_pre_disable_primary(struct drm_crtc *crtc)
4766 {
4767 struct drm_device *dev = crtc->dev;
4768 struct drm_i915_private *dev_priv = dev->dev_private;
4769 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4770 int pipe = intel_crtc->pipe;
4771
4772 /*
4773 * Gen2 reports pipe underruns whenever all planes are disabled.
4774 * So diasble underrun reporting before all the planes get disabled.
4775 * FIXME: Need to fix the logic to work when we turn off all planes
4776 * but leave the pipe running.
4777 */
4778 if (IS_GEN2(dev))
4779 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4780
4781 /*
4782 * Vblank time updates from the shadow to live plane control register
4783 * are blocked if the memory self-refresh mode is active at that
4784 * moment. So to make sure the plane gets truly disabled, disable
4785 * first the self-refresh mode. The self-refresh enable bit in turn
4786 * will be checked/applied by the HW only at the next frame start
4787 * event which is after the vblank start event, so we need to have a
4788 * wait-for-vblank between disabling the plane and the pipe.
4789 */
4790 if (HAS_GMCH_DISPLAY(dev)) {
4791 intel_set_memory_cxsr(dev_priv, false);
4792 dev_priv->wm.vlv.cxsr = false;
4793 intel_wait_for_vblank(dev, pipe);
4794 }
4795
4796 /*
4797 * FIXME IPS should be fine as long as one plane is
4798 * enabled, but in practice it seems to have problems
4799 * when going from primary only to sprite only and vice
4800 * versa.
4801 */
4802 hsw_disable_ips(intel_crtc);
4803 }
4804
intel_post_plane_update(struct intel_crtc * crtc)4805 static void intel_post_plane_update(struct intel_crtc *crtc)
4806 {
4807 struct intel_crtc_atomic_commit *atomic = &crtc->atomic;
4808 struct drm_device *dev = crtc->base.dev;
4809 struct drm_i915_private *dev_priv = dev->dev_private;
4810 struct drm_plane *plane;
4811
4812 if (atomic->wait_vblank)
4813 intel_wait_for_vblank(dev, crtc->pipe);
4814
4815 intel_frontbuffer_flip(dev, atomic->fb_bits);
4816
4817 if (atomic->disable_cxsr)
4818 crtc->wm.cxsr_allowed = true;
4819
4820 if (crtc->atomic.update_wm_post)
4821 intel_update_watermarks(&crtc->base);
4822
4823 if (atomic->update_fbc)
4824 intel_fbc_update(dev_priv);
4825
4826 if (atomic->post_enable_primary)
4827 intel_post_enable_primary(&crtc->base);
4828
4829 drm_for_each_plane_mask(plane, dev, atomic->update_sprite_watermarks)
4830 intel_update_sprite_watermarks(plane, &crtc->base,
4831 0, 0, 0, false, false);
4832
4833 memset(atomic, 0, sizeof(*atomic));
4834 }
4835
intel_pre_plane_update(struct intel_crtc * crtc)4836 static void intel_pre_plane_update(struct intel_crtc *crtc)
4837 {
4838 struct drm_device *dev = crtc->base.dev;
4839 struct drm_i915_private *dev_priv = dev->dev_private;
4840 struct intel_crtc_atomic_commit *atomic = &crtc->atomic;
4841 struct drm_plane *p;
4842
4843 /* Track fb's for any planes being disabled */
4844 drm_for_each_plane_mask(p, dev, atomic->disabled_planes) {
4845 struct intel_plane *plane = to_intel_plane(p);
4846
4847 mutex_lock(&dev->struct_mutex);
4848 i915_gem_track_fb(intel_fb_obj(plane->base.fb), NULL,
4849 plane->frontbuffer_bit);
4850 mutex_unlock(&dev->struct_mutex);
4851 }
4852
4853 if (atomic->wait_for_flips)
4854 intel_crtc_wait_for_pending_flips(&crtc->base);
4855
4856 if (atomic->disable_fbc)
4857 intel_fbc_disable_crtc(crtc);
4858
4859 if (crtc->atomic.disable_ips)
4860 hsw_disable_ips(crtc);
4861
4862 if (atomic->pre_disable_primary)
4863 intel_pre_disable_primary(&crtc->base);
4864
4865 if (atomic->disable_cxsr) {
4866 crtc->wm.cxsr_allowed = false;
4867 intel_set_memory_cxsr(dev_priv, false);
4868 }
4869 }
4870
intel_crtc_disable_planes(struct drm_crtc * crtc,unsigned plane_mask)4871 static void intel_crtc_disable_planes(struct drm_crtc *crtc, unsigned plane_mask)
4872 {
4873 struct drm_device *dev = crtc->dev;
4874 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4875 struct drm_plane *p;
4876 int pipe = intel_crtc->pipe;
4877
4878 intel_crtc_dpms_overlay_disable(intel_crtc);
4879
4880 drm_for_each_plane_mask(p, dev, plane_mask)
4881 to_intel_plane(p)->disable_plane(p, crtc);
4882
4883 /*
4884 * FIXME: Once we grow proper nuclear flip support out of this we need
4885 * to compute the mask of flip planes precisely. For the time being
4886 * consider this a flip to a NULL plane.
4887 */
4888 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
4889 }
4890
ironlake_crtc_enable(struct drm_crtc * crtc)4891 static void ironlake_crtc_enable(struct drm_crtc *crtc)
4892 {
4893 struct drm_device *dev = crtc->dev;
4894 struct drm_i915_private *dev_priv = dev->dev_private;
4895 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4896 struct intel_encoder *encoder;
4897 int pipe = intel_crtc->pipe;
4898
4899 if (WARN_ON(intel_crtc->active))
4900 return;
4901
4902 if (intel_crtc->config->has_pch_encoder)
4903 intel_prepare_shared_dpll(intel_crtc);
4904
4905 if (intel_crtc->config->has_dp_encoder)
4906 intel_dp_set_m_n(intel_crtc, M1_N1);
4907
4908 intel_set_pipe_timings(intel_crtc);
4909
4910 if (intel_crtc->config->has_pch_encoder) {
4911 intel_cpu_transcoder_set_m_n(intel_crtc,
4912 &intel_crtc->config->fdi_m_n, NULL);
4913 }
4914
4915 ironlake_set_pipeconf(crtc);
4916
4917 intel_crtc->active = true;
4918
4919 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4920 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
4921
4922 for_each_encoder_on_crtc(dev, crtc, encoder)
4923 if (encoder->pre_enable)
4924 encoder->pre_enable(encoder);
4925
4926 if (intel_crtc->config->has_pch_encoder) {
4927 /* Note: FDI PLL enabling _must_ be done before we enable the
4928 * cpu pipes, hence this is separate from all the other fdi/pch
4929 * enabling. */
4930 ironlake_fdi_pll_enable(intel_crtc);
4931 } else {
4932 assert_fdi_tx_disabled(dev_priv, pipe);
4933 assert_fdi_rx_disabled(dev_priv, pipe);
4934 }
4935
4936 ironlake_pfit_enable(intel_crtc);
4937
4938 /*
4939 * On ILK+ LUT must be loaded before the pipe is running but with
4940 * clocks enabled
4941 */
4942 intel_crtc_load_lut(crtc);
4943
4944 intel_update_watermarks(crtc);
4945 intel_enable_pipe(intel_crtc);
4946
4947 if (intel_crtc->config->has_pch_encoder)
4948 ironlake_pch_enable(crtc);
4949
4950 assert_vblank_disabled(crtc);
4951 drm_crtc_vblank_on(crtc);
4952
4953 for_each_encoder_on_crtc(dev, crtc, encoder)
4954 encoder->enable(encoder);
4955
4956 if (HAS_PCH_CPT(dev))
4957 cpt_verify_modeset(dev, intel_crtc->pipe);
4958 }
4959
4960 /* IPS only exists on ULT machines and is tied to pipe A. */
hsw_crtc_supports_ips(struct intel_crtc * crtc)4961 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
4962 {
4963 return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
4964 }
4965
haswell_crtc_enable(struct drm_crtc * crtc)4966 static void haswell_crtc_enable(struct drm_crtc *crtc)
4967 {
4968 struct drm_device *dev = crtc->dev;
4969 struct drm_i915_private *dev_priv = dev->dev_private;
4970 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4971 struct intel_encoder *encoder;
4972 int pipe = intel_crtc->pipe, hsw_workaround_pipe;
4973 struct intel_crtc_state *pipe_config =
4974 to_intel_crtc_state(crtc->state);
4975 bool is_dsi = intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI);
4976
4977 if (WARN_ON(intel_crtc->active))
4978 return;
4979
4980 if (intel_crtc_to_shared_dpll(intel_crtc))
4981 intel_enable_shared_dpll(intel_crtc);
4982
4983 if (intel_crtc->config->has_dp_encoder)
4984 intel_dp_set_m_n(intel_crtc, M1_N1);
4985
4986 intel_set_pipe_timings(intel_crtc);
4987
4988 if (intel_crtc->config->cpu_transcoder != TRANSCODER_EDP) {
4989 I915_WRITE(PIPE_MULT(intel_crtc->config->cpu_transcoder),
4990 intel_crtc->config->pixel_multiplier - 1);
4991 }
4992
4993 if (intel_crtc->config->has_pch_encoder) {
4994 intel_cpu_transcoder_set_m_n(intel_crtc,
4995 &intel_crtc->config->fdi_m_n, NULL);
4996 }
4997
4998 haswell_set_pipeconf(crtc);
4999
5000 intel_set_pipe_csc(crtc);
5001
5002 intel_crtc->active = true;
5003
5004 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5005 for_each_encoder_on_crtc(dev, crtc, encoder) {
5006 if (encoder->pre_pll_enable)
5007 encoder->pre_pll_enable(encoder);
5008 if (encoder->pre_enable)
5009 encoder->pre_enable(encoder);
5010 }
5011
5012 if (intel_crtc->config->has_pch_encoder) {
5013 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5014 true);
5015 dev_priv->display.fdi_link_train(crtc);
5016 }
5017
5018 if (!is_dsi)
5019 intel_ddi_enable_pipe_clock(intel_crtc);
5020
5021 if (INTEL_INFO(dev)->gen >= 9)
5022 skylake_pfit_enable(intel_crtc);
5023 else
5024 ironlake_pfit_enable(intel_crtc);
5025
5026 /*
5027 * On ILK+ LUT must be loaded before the pipe is running but with
5028 * clocks enabled
5029 */
5030 intel_crtc_load_lut(crtc);
5031
5032 intel_ddi_set_pipe_settings(crtc);
5033 if (!is_dsi)
5034 intel_ddi_enable_transcoder_func(crtc);
5035
5036 intel_update_watermarks(crtc);
5037 intel_enable_pipe(intel_crtc);
5038
5039 if (intel_crtc->config->has_pch_encoder)
5040 lpt_pch_enable(crtc);
5041
5042 if (intel_crtc->config->dp_encoder_is_mst && !is_dsi)
5043 intel_ddi_set_vc_payload_alloc(crtc, true);
5044
5045 assert_vblank_disabled(crtc);
5046 drm_crtc_vblank_on(crtc);
5047
5048 for_each_encoder_on_crtc(dev, crtc, encoder) {
5049 encoder->enable(encoder);
5050 intel_opregion_notify_encoder(encoder, true);
5051 }
5052
5053 /* If we change the relative order between pipe/planes enabling, we need
5054 * to change the workaround. */
5055 hsw_workaround_pipe = pipe_config->hsw_workaround_pipe;
5056 if (IS_HASWELL(dev) && hsw_workaround_pipe != INVALID_PIPE) {
5057 intel_wait_for_vblank(dev, hsw_workaround_pipe);
5058 intel_wait_for_vblank(dev, hsw_workaround_pipe);
5059 }
5060 }
5061
ironlake_pfit_disable(struct intel_crtc * crtc,bool force)5062 static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force)
5063 {
5064 struct drm_device *dev = crtc->base.dev;
5065 struct drm_i915_private *dev_priv = dev->dev_private;
5066 int pipe = crtc->pipe;
5067
5068 /* To avoid upsetting the power well on haswell only disable the pfit if
5069 * it's in use. The hw state code will make sure we get this right. */
5070 if (force || crtc->config->pch_pfit.enabled) {
5071 I915_WRITE(PF_CTL(pipe), 0);
5072 I915_WRITE(PF_WIN_POS(pipe), 0);
5073 I915_WRITE(PF_WIN_SZ(pipe), 0);
5074 }
5075 }
5076
ironlake_crtc_disable(struct drm_crtc * crtc)5077 static void ironlake_crtc_disable(struct drm_crtc *crtc)
5078 {
5079 struct drm_device *dev = crtc->dev;
5080 struct drm_i915_private *dev_priv = dev->dev_private;
5081 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5082 struct intel_encoder *encoder;
5083 int pipe = intel_crtc->pipe;
5084 u32 reg, temp;
5085
5086 for_each_encoder_on_crtc(dev, crtc, encoder)
5087 encoder->disable(encoder);
5088
5089 drm_crtc_vblank_off(crtc);
5090 assert_vblank_disabled(crtc);
5091
5092 if (intel_crtc->config->has_pch_encoder)
5093 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
5094
5095 intel_disable_pipe(intel_crtc);
5096
5097 ironlake_pfit_disable(intel_crtc, false);
5098
5099 if (intel_crtc->config->has_pch_encoder)
5100 ironlake_fdi_disable(crtc);
5101
5102 for_each_encoder_on_crtc(dev, crtc, encoder)
5103 if (encoder->post_disable)
5104 encoder->post_disable(encoder);
5105
5106 if (intel_crtc->config->has_pch_encoder) {
5107 ironlake_disable_pch_transcoder(dev_priv, pipe);
5108
5109 if (HAS_PCH_CPT(dev)) {
5110 /* disable TRANS_DP_CTL */
5111 reg = TRANS_DP_CTL(pipe);
5112 temp = I915_READ(reg);
5113 temp &= ~(TRANS_DP_OUTPUT_ENABLE |
5114 TRANS_DP_PORT_SEL_MASK);
5115 temp |= TRANS_DP_PORT_SEL_NONE;
5116 I915_WRITE(reg, temp);
5117
5118 /* disable DPLL_SEL */
5119 temp = I915_READ(PCH_DPLL_SEL);
5120 temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
5121 I915_WRITE(PCH_DPLL_SEL, temp);
5122 }
5123
5124 ironlake_fdi_pll_disable(intel_crtc);
5125 }
5126 }
5127
haswell_crtc_disable(struct drm_crtc * crtc)5128 static void haswell_crtc_disable(struct drm_crtc *crtc)
5129 {
5130 struct drm_device *dev = crtc->dev;
5131 struct drm_i915_private *dev_priv = dev->dev_private;
5132 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5133 struct intel_encoder *encoder;
5134 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
5135 bool is_dsi = intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI);
5136
5137 for_each_encoder_on_crtc(dev, crtc, encoder) {
5138 intel_opregion_notify_encoder(encoder, false);
5139 encoder->disable(encoder);
5140 }
5141
5142 drm_crtc_vblank_off(crtc);
5143 assert_vblank_disabled(crtc);
5144
5145 if (intel_crtc->config->has_pch_encoder)
5146 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5147 false);
5148 intel_disable_pipe(intel_crtc);
5149
5150 if (intel_crtc->config->dp_encoder_is_mst)
5151 intel_ddi_set_vc_payload_alloc(crtc, false);
5152
5153 if (!is_dsi)
5154 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
5155
5156 if (INTEL_INFO(dev)->gen >= 9)
5157 skylake_scaler_disable(intel_crtc);
5158 else
5159 ironlake_pfit_disable(intel_crtc, false);
5160
5161 if (!is_dsi)
5162 intel_ddi_disable_pipe_clock(intel_crtc);
5163
5164 if (intel_crtc->config->has_pch_encoder) {
5165 lpt_disable_pch_transcoder(dev_priv);
5166 intel_ddi_fdi_disable(crtc);
5167 }
5168
5169 for_each_encoder_on_crtc(dev, crtc, encoder)
5170 if (encoder->post_disable)
5171 encoder->post_disable(encoder);
5172 }
5173
i9xx_pfit_enable(struct intel_crtc * crtc)5174 static void i9xx_pfit_enable(struct intel_crtc *crtc)
5175 {
5176 struct drm_device *dev = crtc->base.dev;
5177 struct drm_i915_private *dev_priv = dev->dev_private;
5178 struct intel_crtc_state *pipe_config = crtc->config;
5179
5180 if (!pipe_config->gmch_pfit.control)
5181 return;
5182
5183 /*
5184 * The panel fitter should only be adjusted whilst the pipe is disabled,
5185 * according to register description and PRM.
5186 */
5187 WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
5188 assert_pipe_disabled(dev_priv, crtc->pipe);
5189
5190 I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
5191 I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
5192
5193 /* Border color in case we don't scale up to the full screen. Black by
5194 * default, change to something else for debugging. */
5195 I915_WRITE(BCLRPAT(crtc->pipe), 0);
5196 }
5197
port_to_power_domain(enum port port)5198 static enum intel_display_power_domain port_to_power_domain(enum port port)
5199 {
5200 switch (port) {
5201 case PORT_A:
5202 return POWER_DOMAIN_PORT_DDI_A_4_LANES;
5203 case PORT_B:
5204 return POWER_DOMAIN_PORT_DDI_B_4_LANES;
5205 case PORT_C:
5206 return POWER_DOMAIN_PORT_DDI_C_4_LANES;
5207 case PORT_D:
5208 return POWER_DOMAIN_PORT_DDI_D_4_LANES;
5209 case PORT_E:
5210 return POWER_DOMAIN_PORT_DDI_E_2_LANES;
5211 default:
5212 MISSING_CASE(port);
5213 return POWER_DOMAIN_PORT_OTHER;
5214 }
5215 }
5216
port_to_aux_power_domain(enum port port)5217 static enum intel_display_power_domain port_to_aux_power_domain(enum port port)
5218 {
5219 switch (port) {
5220 case PORT_A:
5221 return POWER_DOMAIN_AUX_A;
5222 case PORT_B:
5223 return POWER_DOMAIN_AUX_B;
5224 case PORT_C:
5225 return POWER_DOMAIN_AUX_C;
5226 case PORT_D:
5227 return POWER_DOMAIN_AUX_D;
5228 case PORT_E:
5229 /* FIXME: Check VBT for actual wiring of PORT E */
5230 return POWER_DOMAIN_AUX_D;
5231 default:
5232 MISSING_CASE(port);
5233 return POWER_DOMAIN_AUX_A;
5234 }
5235 }
5236
5237 #define for_each_power_domain(domain, mask) \
5238 for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++) \
5239 if ((1 << (domain)) & (mask))
5240
5241 enum intel_display_power_domain
intel_display_port_power_domain(struct intel_encoder * intel_encoder)5242 intel_display_port_power_domain(struct intel_encoder *intel_encoder)
5243 {
5244 struct drm_device *dev = intel_encoder->base.dev;
5245 struct intel_digital_port *intel_dig_port;
5246
5247 switch (intel_encoder->type) {
5248 case INTEL_OUTPUT_UNKNOWN:
5249 /* Only DDI platforms should ever use this output type */
5250 WARN_ON_ONCE(!HAS_DDI(dev));
5251 case INTEL_OUTPUT_DISPLAYPORT:
5252 case INTEL_OUTPUT_HDMI:
5253 case INTEL_OUTPUT_EDP:
5254 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
5255 return port_to_power_domain(intel_dig_port->port);
5256 case INTEL_OUTPUT_DP_MST:
5257 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
5258 return port_to_power_domain(intel_dig_port->port);
5259 case INTEL_OUTPUT_ANALOG:
5260 return POWER_DOMAIN_PORT_CRT;
5261 case INTEL_OUTPUT_DSI:
5262 return POWER_DOMAIN_PORT_DSI;
5263 default:
5264 return POWER_DOMAIN_PORT_OTHER;
5265 }
5266 }
5267
5268 enum intel_display_power_domain
intel_display_port_aux_power_domain(struct intel_encoder * intel_encoder)5269 intel_display_port_aux_power_domain(struct intel_encoder *intel_encoder)
5270 {
5271 struct drm_device *dev = intel_encoder->base.dev;
5272 struct intel_digital_port *intel_dig_port;
5273
5274 switch (intel_encoder->type) {
5275 case INTEL_OUTPUT_UNKNOWN:
5276 case INTEL_OUTPUT_HDMI:
5277 /*
5278 * Only DDI platforms should ever use these output types.
5279 * We can get here after the HDMI detect code has already set
5280 * the type of the shared encoder. Since we can't be sure
5281 * what's the status of the given connectors, play safe and
5282 * run the DP detection too.
5283 */
5284 WARN_ON_ONCE(!HAS_DDI(dev));
5285 case INTEL_OUTPUT_DISPLAYPORT:
5286 case INTEL_OUTPUT_EDP:
5287 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
5288 return port_to_aux_power_domain(intel_dig_port->port);
5289 case INTEL_OUTPUT_DP_MST:
5290 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
5291 return port_to_aux_power_domain(intel_dig_port->port);
5292 default:
5293 MISSING_CASE(intel_encoder->type);
5294 return POWER_DOMAIN_AUX_A;
5295 }
5296 }
5297
get_crtc_power_domains(struct drm_crtc * crtc)5298 static unsigned long get_crtc_power_domains(struct drm_crtc *crtc)
5299 {
5300 struct drm_device *dev = crtc->dev;
5301 struct intel_encoder *intel_encoder;
5302 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5303 enum pipe pipe = intel_crtc->pipe;
5304 unsigned long mask;
5305 enum transcoder transcoder;
5306
5307 if (!crtc->state->active)
5308 return 0;
5309
5310 transcoder = intel_pipe_to_cpu_transcoder(dev->dev_private, pipe);
5311
5312 mask = BIT(POWER_DOMAIN_PIPE(pipe));
5313 mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
5314 if (intel_crtc->config->pch_pfit.enabled ||
5315 intel_crtc->config->pch_pfit.force_thru)
5316 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
5317
5318 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
5319 mask |= BIT(intel_display_port_power_domain(intel_encoder));
5320
5321 return mask;
5322 }
5323
modeset_get_crtc_power_domains(struct drm_crtc * crtc)5324 static unsigned long modeset_get_crtc_power_domains(struct drm_crtc *crtc)
5325 {
5326 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5327 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5328 enum intel_display_power_domain domain;
5329 unsigned long domains, new_domains, old_domains;
5330
5331 old_domains = intel_crtc->enabled_power_domains;
5332 intel_crtc->enabled_power_domains = new_domains = get_crtc_power_domains(crtc);
5333
5334 domains = new_domains & ~old_domains;
5335
5336 for_each_power_domain(domain, domains)
5337 intel_display_power_get(dev_priv, domain);
5338
5339 return old_domains & ~new_domains;
5340 }
5341
modeset_put_power_domains(struct drm_i915_private * dev_priv,unsigned long domains)5342 static void modeset_put_power_domains(struct drm_i915_private *dev_priv,
5343 unsigned long domains)
5344 {
5345 enum intel_display_power_domain domain;
5346
5347 for_each_power_domain(domain, domains)
5348 intel_display_power_put(dev_priv, domain);
5349 }
5350
modeset_update_crtc_power_domains(struct drm_atomic_state * state)5351 static void modeset_update_crtc_power_domains(struct drm_atomic_state *state)
5352 {
5353 struct drm_device *dev = state->dev;
5354 struct drm_i915_private *dev_priv = dev->dev_private;
5355 unsigned long put_domains[I915_MAX_PIPES] = {};
5356 struct drm_crtc_state *crtc_state;
5357 struct drm_crtc *crtc;
5358 int i;
5359
5360 for_each_crtc_in_state(state, crtc, crtc_state, i) {
5361 if (needs_modeset(crtc->state))
5362 put_domains[to_intel_crtc(crtc)->pipe] =
5363 modeset_get_crtc_power_domains(crtc);
5364 }
5365
5366 if (dev_priv->display.modeset_commit_cdclk) {
5367 unsigned int cdclk = to_intel_atomic_state(state)->cdclk;
5368
5369 if (cdclk != dev_priv->cdclk_freq &&
5370 !WARN_ON(!state->allow_modeset))
5371 dev_priv->display.modeset_commit_cdclk(state);
5372 }
5373
5374 for (i = 0; i < I915_MAX_PIPES; i++)
5375 if (put_domains[i])
5376 modeset_put_power_domains(dev_priv, put_domains[i]);
5377 }
5378
intel_compute_max_dotclk(struct drm_i915_private * dev_priv)5379 static int intel_compute_max_dotclk(struct drm_i915_private *dev_priv)
5380 {
5381 int max_cdclk_freq = dev_priv->max_cdclk_freq;
5382
5383 if (INTEL_INFO(dev_priv)->gen >= 9 ||
5384 IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
5385 return max_cdclk_freq;
5386 else if (IS_CHERRYVIEW(dev_priv))
5387 return max_cdclk_freq*95/100;
5388 else if (INTEL_INFO(dev_priv)->gen < 4)
5389 return 2*max_cdclk_freq*90/100;
5390 else
5391 return max_cdclk_freq*90/100;
5392 }
5393
intel_update_max_cdclk(struct drm_device * dev)5394 static void intel_update_max_cdclk(struct drm_device *dev)
5395 {
5396 struct drm_i915_private *dev_priv = dev->dev_private;
5397
5398 if (IS_SKYLAKE(dev)) {
5399 u32 limit = I915_READ(SKL_DFSM) & SKL_DFSM_CDCLK_LIMIT_MASK;
5400
5401 if (limit == SKL_DFSM_CDCLK_LIMIT_675)
5402 dev_priv->max_cdclk_freq = 675000;
5403 else if (limit == SKL_DFSM_CDCLK_LIMIT_540)
5404 dev_priv->max_cdclk_freq = 540000;
5405 else if (limit == SKL_DFSM_CDCLK_LIMIT_450)
5406 dev_priv->max_cdclk_freq = 450000;
5407 else
5408 dev_priv->max_cdclk_freq = 337500;
5409 } else if (IS_BROADWELL(dev)) {
5410 /*
5411 * FIXME with extra cooling we can allow
5412 * 540 MHz for ULX and 675 Mhz for ULT.
5413 * How can we know if extra cooling is
5414 * available? PCI ID, VTB, something else?
5415 */
5416 if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
5417 dev_priv->max_cdclk_freq = 450000;
5418 else if (IS_BDW_ULX(dev))
5419 dev_priv->max_cdclk_freq = 450000;
5420 else if (IS_BDW_ULT(dev))
5421 dev_priv->max_cdclk_freq = 540000;
5422 else
5423 dev_priv->max_cdclk_freq = 675000;
5424 } else if (IS_CHERRYVIEW(dev)) {
5425 dev_priv->max_cdclk_freq = 320000;
5426 } else if (IS_VALLEYVIEW(dev)) {
5427 dev_priv->max_cdclk_freq = 400000;
5428 } else {
5429 /* otherwise assume cdclk is fixed */
5430 dev_priv->max_cdclk_freq = dev_priv->cdclk_freq;
5431 }
5432
5433 dev_priv->max_dotclk_freq = intel_compute_max_dotclk(dev_priv);
5434
5435 DRM_DEBUG_DRIVER("Max CD clock rate: %d kHz\n",
5436 dev_priv->max_cdclk_freq);
5437
5438 DRM_DEBUG_DRIVER("Max dotclock rate: %d kHz\n",
5439 dev_priv->max_dotclk_freq);
5440 }
5441
intel_update_cdclk(struct drm_device * dev)5442 static void intel_update_cdclk(struct drm_device *dev)
5443 {
5444 struct drm_i915_private *dev_priv = dev->dev_private;
5445
5446 dev_priv->cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
5447 DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz\n",
5448 dev_priv->cdclk_freq);
5449
5450 /*
5451 * Program the gmbus_freq based on the cdclk frequency.
5452 * BSpec erroneously claims we should aim for 4MHz, but
5453 * in fact 1MHz is the correct frequency.
5454 */
5455 if (IS_VALLEYVIEW(dev)) {
5456 /*
5457 * Program the gmbus_freq based on the cdclk frequency.
5458 * BSpec erroneously claims we should aim for 4MHz, but
5459 * in fact 1MHz is the correct frequency.
5460 */
5461 I915_WRITE(GMBUSFREQ_VLV, DIV_ROUND_UP(dev_priv->cdclk_freq, 1000));
5462 }
5463
5464 if (dev_priv->max_cdclk_freq == 0)
5465 intel_update_max_cdclk(dev);
5466 }
5467
broxton_set_cdclk(struct drm_device * dev,int frequency)5468 static void broxton_set_cdclk(struct drm_device *dev, int frequency)
5469 {
5470 struct drm_i915_private *dev_priv = dev->dev_private;
5471 uint32_t divider;
5472 uint32_t ratio;
5473 uint32_t current_freq;
5474 int ret;
5475
5476 /* frequency = 19.2MHz * ratio / 2 / div{1,1.5,2,4} */
5477 switch (frequency) {
5478 case 144000:
5479 divider = BXT_CDCLK_CD2X_DIV_SEL_4;
5480 ratio = BXT_DE_PLL_RATIO(60);
5481 break;
5482 case 288000:
5483 divider = BXT_CDCLK_CD2X_DIV_SEL_2;
5484 ratio = BXT_DE_PLL_RATIO(60);
5485 break;
5486 case 384000:
5487 divider = BXT_CDCLK_CD2X_DIV_SEL_1_5;
5488 ratio = BXT_DE_PLL_RATIO(60);
5489 break;
5490 case 576000:
5491 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5492 ratio = BXT_DE_PLL_RATIO(60);
5493 break;
5494 case 624000:
5495 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5496 ratio = BXT_DE_PLL_RATIO(65);
5497 break;
5498 case 19200:
5499 /*
5500 * Bypass frequency with DE PLL disabled. Init ratio, divider
5501 * to suppress GCC warning.
5502 */
5503 ratio = 0;
5504 divider = 0;
5505 break;
5506 default:
5507 DRM_ERROR("unsupported CDCLK freq %d", frequency);
5508
5509 return;
5510 }
5511
5512 mutex_lock(&dev_priv->rps.hw_lock);
5513 /* Inform power controller of upcoming frequency change */
5514 ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
5515 0x80000000);
5516 mutex_unlock(&dev_priv->rps.hw_lock);
5517
5518 if (ret) {
5519 DRM_ERROR("PCode CDCLK freq change notify failed (err %d, freq %d)\n",
5520 ret, frequency);
5521 return;
5522 }
5523
5524 current_freq = I915_READ(CDCLK_CTL) & CDCLK_FREQ_DECIMAL_MASK;
5525 /* convert from .1 fixpoint MHz with -1MHz offset to kHz */
5526 current_freq = current_freq * 500 + 1000;
5527
5528 /*
5529 * DE PLL has to be disabled when
5530 * - setting to 19.2MHz (bypass, PLL isn't used)
5531 * - before setting to 624MHz (PLL needs toggling)
5532 * - before setting to any frequency from 624MHz (PLL needs toggling)
5533 */
5534 if (frequency == 19200 || frequency == 624000 ||
5535 current_freq == 624000) {
5536 I915_WRITE(BXT_DE_PLL_ENABLE, ~BXT_DE_PLL_PLL_ENABLE);
5537 /* Timeout 200us */
5538 if (wait_for(!(I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_LOCK),
5539 1))
5540 DRM_ERROR("timout waiting for DE PLL unlock\n");
5541 }
5542
5543 if (frequency != 19200) {
5544 uint32_t val;
5545
5546 val = I915_READ(BXT_DE_PLL_CTL);
5547 val &= ~BXT_DE_PLL_RATIO_MASK;
5548 val |= ratio;
5549 I915_WRITE(BXT_DE_PLL_CTL, val);
5550
5551 I915_WRITE(BXT_DE_PLL_ENABLE, BXT_DE_PLL_PLL_ENABLE);
5552 /* Timeout 200us */
5553 if (wait_for(I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_LOCK, 1))
5554 DRM_ERROR("timeout waiting for DE PLL lock\n");
5555
5556 val = I915_READ(CDCLK_CTL);
5557 val &= ~BXT_CDCLK_CD2X_DIV_SEL_MASK;
5558 val |= divider;
5559 /*
5560 * Disable SSA Precharge when CD clock frequency < 500 MHz,
5561 * enable otherwise.
5562 */
5563 val &= ~BXT_CDCLK_SSA_PRECHARGE_ENABLE;
5564 if (frequency >= 500000)
5565 val |= BXT_CDCLK_SSA_PRECHARGE_ENABLE;
5566
5567 val &= ~CDCLK_FREQ_DECIMAL_MASK;
5568 /* convert from kHz to .1 fixpoint MHz with -1MHz offset */
5569 val |= (frequency - 1000) / 500;
5570 I915_WRITE(CDCLK_CTL, val);
5571 }
5572
5573 mutex_lock(&dev_priv->rps.hw_lock);
5574 ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
5575 DIV_ROUND_UP(frequency, 25000));
5576 mutex_unlock(&dev_priv->rps.hw_lock);
5577
5578 if (ret) {
5579 DRM_ERROR("PCode CDCLK freq set failed, (err %d, freq %d)\n",
5580 ret, frequency);
5581 return;
5582 }
5583
5584 intel_update_cdclk(dev);
5585 }
5586
broxton_init_cdclk(struct drm_device * dev)5587 void broxton_init_cdclk(struct drm_device *dev)
5588 {
5589 struct drm_i915_private *dev_priv = dev->dev_private;
5590 uint32_t val;
5591
5592 /*
5593 * NDE_RSTWRN_OPT RST PCH Handshake En must always be 0b on BXT
5594 * or else the reset will hang because there is no PCH to respond.
5595 * Move the handshake programming to initialization sequence.
5596 * Previously was left up to BIOS.
5597 */
5598 val = I915_READ(HSW_NDE_RSTWRN_OPT);
5599 val &= ~RESET_PCH_HANDSHAKE_ENABLE;
5600 I915_WRITE(HSW_NDE_RSTWRN_OPT, val);
5601
5602 /* Enable PG1 for cdclk */
5603 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
5604
5605 /* check if cd clock is enabled */
5606 if (I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_PLL_ENABLE) {
5607 DRM_DEBUG_KMS("Display already initialized\n");
5608 return;
5609 }
5610
5611 /*
5612 * FIXME:
5613 * - The initial CDCLK needs to be read from VBT.
5614 * Need to make this change after VBT has changes for BXT.
5615 * - check if setting the max (or any) cdclk freq is really necessary
5616 * here, it belongs to modeset time
5617 */
5618 broxton_set_cdclk(dev, 624000);
5619
5620 I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) | DBUF_POWER_REQUEST);
5621 POSTING_READ(DBUF_CTL);
5622
5623 udelay(10);
5624
5625 if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE))
5626 DRM_ERROR("DBuf power enable timeout!\n");
5627 }
5628
broxton_uninit_cdclk(struct drm_device * dev)5629 void broxton_uninit_cdclk(struct drm_device *dev)
5630 {
5631 struct drm_i915_private *dev_priv = dev->dev_private;
5632
5633 I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) & ~DBUF_POWER_REQUEST);
5634 POSTING_READ(DBUF_CTL);
5635
5636 udelay(10);
5637
5638 if (I915_READ(DBUF_CTL) & DBUF_POWER_STATE)
5639 DRM_ERROR("DBuf power disable timeout!\n");
5640
5641 /* Set minimum (bypass) frequency, in effect turning off the DE PLL */
5642 broxton_set_cdclk(dev, 19200);
5643
5644 intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
5645 }
5646
5647 static const struct skl_cdclk_entry {
5648 unsigned int freq;
5649 unsigned int vco;
5650 } skl_cdclk_frequencies[] = {
5651 { .freq = 308570, .vco = 8640 },
5652 { .freq = 337500, .vco = 8100 },
5653 { .freq = 432000, .vco = 8640 },
5654 { .freq = 450000, .vco = 8100 },
5655 { .freq = 540000, .vco = 8100 },
5656 { .freq = 617140, .vco = 8640 },
5657 { .freq = 675000, .vco = 8100 },
5658 };
5659
skl_cdclk_decimal(unsigned int freq)5660 static unsigned int skl_cdclk_decimal(unsigned int freq)
5661 {
5662 return (freq - 1000) / 500;
5663 }
5664
skl_cdclk_get_vco(unsigned int freq)5665 static unsigned int skl_cdclk_get_vco(unsigned int freq)
5666 {
5667 unsigned int i;
5668
5669 for (i = 0; i < ARRAY_SIZE(skl_cdclk_frequencies); i++) {
5670 const struct skl_cdclk_entry *e = &skl_cdclk_frequencies[i];
5671
5672 if (e->freq == freq)
5673 return e->vco;
5674 }
5675
5676 return 8100;
5677 }
5678
5679 static void
skl_dpll0_enable(struct drm_i915_private * dev_priv,unsigned int required_vco)5680 skl_dpll0_enable(struct drm_i915_private *dev_priv, unsigned int required_vco)
5681 {
5682 unsigned int min_freq;
5683 u32 val;
5684
5685 /* select the minimum CDCLK before enabling DPLL 0 */
5686 val = I915_READ(CDCLK_CTL);
5687 val &= ~CDCLK_FREQ_SEL_MASK | ~CDCLK_FREQ_DECIMAL_MASK;
5688 val |= CDCLK_FREQ_337_308;
5689
5690 if (required_vco == 8640)
5691 min_freq = 308570;
5692 else
5693 min_freq = 337500;
5694
5695 val = CDCLK_FREQ_337_308 | skl_cdclk_decimal(min_freq);
5696
5697 I915_WRITE(CDCLK_CTL, val);
5698 POSTING_READ(CDCLK_CTL);
5699
5700 /*
5701 * We always enable DPLL0 with the lowest link rate possible, but still
5702 * taking into account the VCO required to operate the eDP panel at the
5703 * desired frequency. The usual DP link rates operate with a VCO of
5704 * 8100 while the eDP 1.4 alternate link rates need a VCO of 8640.
5705 * The modeset code is responsible for the selection of the exact link
5706 * rate later on, with the constraint of choosing a frequency that
5707 * works with required_vco.
5708 */
5709 val = I915_READ(DPLL_CTRL1);
5710
5711 val &= ~(DPLL_CTRL1_HDMI_MODE(SKL_DPLL0) | DPLL_CTRL1_SSC(SKL_DPLL0) |
5712 DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0));
5713 val |= DPLL_CTRL1_OVERRIDE(SKL_DPLL0);
5714 if (required_vco == 8640)
5715 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080,
5716 SKL_DPLL0);
5717 else
5718 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810,
5719 SKL_DPLL0);
5720
5721 I915_WRITE(DPLL_CTRL1, val);
5722 POSTING_READ(DPLL_CTRL1);
5723
5724 I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) | LCPLL_PLL_ENABLE);
5725
5726 if (wait_for(I915_READ(LCPLL1_CTL) & LCPLL_PLL_LOCK, 5))
5727 DRM_ERROR("DPLL0 not locked\n");
5728 }
5729
skl_cdclk_pcu_ready(struct drm_i915_private * dev_priv)5730 static bool skl_cdclk_pcu_ready(struct drm_i915_private *dev_priv)
5731 {
5732 int ret;
5733 u32 val;
5734
5735 /* inform PCU we want to change CDCLK */
5736 val = SKL_CDCLK_PREPARE_FOR_CHANGE;
5737 mutex_lock(&dev_priv->rps.hw_lock);
5738 ret = sandybridge_pcode_read(dev_priv, SKL_PCODE_CDCLK_CONTROL, &val);
5739 mutex_unlock(&dev_priv->rps.hw_lock);
5740
5741 return ret == 0 && (val & SKL_CDCLK_READY_FOR_CHANGE);
5742 }
5743
skl_cdclk_wait_for_pcu_ready(struct drm_i915_private * dev_priv)5744 static bool skl_cdclk_wait_for_pcu_ready(struct drm_i915_private *dev_priv)
5745 {
5746 unsigned int i;
5747
5748 for (i = 0; i < 15; i++) {
5749 if (skl_cdclk_pcu_ready(dev_priv))
5750 return true;
5751 udelay(10);
5752 }
5753
5754 return false;
5755 }
5756
skl_set_cdclk(struct drm_i915_private * dev_priv,unsigned int freq)5757 static void skl_set_cdclk(struct drm_i915_private *dev_priv, unsigned int freq)
5758 {
5759 struct drm_device *dev = dev_priv->dev;
5760 u32 freq_select, pcu_ack;
5761
5762 DRM_DEBUG_DRIVER("Changing CDCLK to %dKHz\n", freq);
5763
5764 if (!skl_cdclk_wait_for_pcu_ready(dev_priv)) {
5765 DRM_ERROR("failed to inform PCU about cdclk change\n");
5766 return;
5767 }
5768
5769 /* set CDCLK_CTL */
5770 switch(freq) {
5771 case 450000:
5772 case 432000:
5773 freq_select = CDCLK_FREQ_450_432;
5774 pcu_ack = 1;
5775 break;
5776 case 540000:
5777 freq_select = CDCLK_FREQ_540;
5778 pcu_ack = 2;
5779 break;
5780 case 308570:
5781 case 337500:
5782 default:
5783 freq_select = CDCLK_FREQ_337_308;
5784 pcu_ack = 0;
5785 break;
5786 case 617140:
5787 case 675000:
5788 freq_select = CDCLK_FREQ_675_617;
5789 pcu_ack = 3;
5790 break;
5791 }
5792
5793 I915_WRITE(CDCLK_CTL, freq_select | skl_cdclk_decimal(freq));
5794 POSTING_READ(CDCLK_CTL);
5795
5796 /* inform PCU of the change */
5797 mutex_lock(&dev_priv->rps.hw_lock);
5798 sandybridge_pcode_write(dev_priv, SKL_PCODE_CDCLK_CONTROL, pcu_ack);
5799 mutex_unlock(&dev_priv->rps.hw_lock);
5800
5801 intel_update_cdclk(dev);
5802 }
5803
skl_uninit_cdclk(struct drm_i915_private * dev_priv)5804 void skl_uninit_cdclk(struct drm_i915_private *dev_priv)
5805 {
5806 /* disable DBUF power */
5807 I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) & ~DBUF_POWER_REQUEST);
5808 POSTING_READ(DBUF_CTL);
5809
5810 udelay(10);
5811
5812 if (I915_READ(DBUF_CTL) & DBUF_POWER_STATE)
5813 DRM_ERROR("DBuf power disable timeout\n");
5814
5815 /*
5816 * DMC assumes ownership of LCPLL and will get confused if we touch it.
5817 */
5818 if (dev_priv->csr.dmc_payload) {
5819 /* disable DPLL0 */
5820 I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) &
5821 ~LCPLL_PLL_ENABLE);
5822 if (wait_for(!(I915_READ(LCPLL1_CTL) & LCPLL_PLL_LOCK), 1))
5823 DRM_ERROR("Couldn't disable DPLL0\n");
5824 }
5825
5826 intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
5827 }
5828
skl_init_cdclk(struct drm_i915_private * dev_priv)5829 void skl_init_cdclk(struct drm_i915_private *dev_priv)
5830 {
5831 u32 val;
5832 unsigned int required_vco;
5833
5834 /* enable PCH reset handshake */
5835 val = I915_READ(HSW_NDE_RSTWRN_OPT);
5836 I915_WRITE(HSW_NDE_RSTWRN_OPT, val | RESET_PCH_HANDSHAKE_ENABLE);
5837
5838 /* enable PG1 and Misc I/O */
5839 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
5840
5841 /* DPLL0 not enabled (happens on early BIOS versions) */
5842 if (!(I915_READ(LCPLL1_CTL) & LCPLL_PLL_ENABLE)) {
5843 /* enable DPLL0 */
5844 required_vco = skl_cdclk_get_vco(dev_priv->skl_boot_cdclk);
5845 skl_dpll0_enable(dev_priv, required_vco);
5846 }
5847
5848 /* set CDCLK to the frequency the BIOS chose */
5849 skl_set_cdclk(dev_priv, dev_priv->skl_boot_cdclk);
5850
5851 /* enable DBUF power */
5852 I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) | DBUF_POWER_REQUEST);
5853 POSTING_READ(DBUF_CTL);
5854
5855 udelay(10);
5856
5857 if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE))
5858 DRM_ERROR("DBuf power enable timeout\n");
5859 }
5860
5861 /* Adjust CDclk dividers to allow high res or save power if possible */
valleyview_set_cdclk(struct drm_device * dev,int cdclk)5862 static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
5863 {
5864 struct drm_i915_private *dev_priv = dev->dev_private;
5865 u32 val, cmd;
5866
5867 WARN_ON(dev_priv->display.get_display_clock_speed(dev)
5868 != dev_priv->cdclk_freq);
5869
5870 if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
5871 cmd = 2;
5872 else if (cdclk == 266667)
5873 cmd = 1;
5874 else
5875 cmd = 0;
5876
5877 mutex_lock(&dev_priv->rps.hw_lock);
5878 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5879 val &= ~DSPFREQGUAR_MASK;
5880 val |= (cmd << DSPFREQGUAR_SHIFT);
5881 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5882 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5883 DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
5884 50)) {
5885 DRM_ERROR("timed out waiting for CDclk change\n");
5886 }
5887 mutex_unlock(&dev_priv->rps.hw_lock);
5888
5889 mutex_lock(&dev_priv->sb_lock);
5890
5891 if (cdclk == 400000) {
5892 u32 divider;
5893
5894 divider = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
5895
5896 /* adjust cdclk divider */
5897 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
5898 val &= ~CCK_FREQUENCY_VALUES;
5899 val |= divider;
5900 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
5901
5902 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
5903 CCK_FREQUENCY_STATUS) == (divider << CCK_FREQUENCY_STATUS_SHIFT),
5904 50))
5905 DRM_ERROR("timed out waiting for CDclk change\n");
5906 }
5907
5908 /* adjust self-refresh exit latency value */
5909 val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
5910 val &= ~0x7f;
5911
5912 /*
5913 * For high bandwidth configs, we set a higher latency in the bunit
5914 * so that the core display fetch happens in time to avoid underruns.
5915 */
5916 if (cdclk == 400000)
5917 val |= 4500 / 250; /* 4.5 usec */
5918 else
5919 val |= 3000 / 250; /* 3.0 usec */
5920 vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
5921
5922 mutex_unlock(&dev_priv->sb_lock);
5923
5924 intel_update_cdclk(dev);
5925 }
5926
cherryview_set_cdclk(struct drm_device * dev,int cdclk)5927 static void cherryview_set_cdclk(struct drm_device *dev, int cdclk)
5928 {
5929 struct drm_i915_private *dev_priv = dev->dev_private;
5930 u32 val, cmd;
5931
5932 WARN_ON(dev_priv->display.get_display_clock_speed(dev)
5933 != dev_priv->cdclk_freq);
5934
5935 switch (cdclk) {
5936 case 333333:
5937 case 320000:
5938 case 266667:
5939 case 200000:
5940 break;
5941 default:
5942 MISSING_CASE(cdclk);
5943 return;
5944 }
5945
5946 /*
5947 * Specs are full of misinformation, but testing on actual
5948 * hardware has shown that we just need to write the desired
5949 * CCK divider into the Punit register.
5950 */
5951 cmd = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
5952
5953 mutex_lock(&dev_priv->rps.hw_lock);
5954 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5955 val &= ~DSPFREQGUAR_MASK_CHV;
5956 val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
5957 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5958 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5959 DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
5960 50)) {
5961 DRM_ERROR("timed out waiting for CDclk change\n");
5962 }
5963 mutex_unlock(&dev_priv->rps.hw_lock);
5964
5965 intel_update_cdclk(dev);
5966 }
5967
valleyview_calc_cdclk(struct drm_i915_private * dev_priv,int max_pixclk)5968 static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
5969 int max_pixclk)
5970 {
5971 int freq_320 = (dev_priv->hpll_freq << 1) % 320000 != 0 ? 333333 : 320000;
5972 int limit = IS_CHERRYVIEW(dev_priv) ? 95 : 90;
5973
5974 /*
5975 * Really only a few cases to deal with, as only 4 CDclks are supported:
5976 * 200MHz
5977 * 267MHz
5978 * 320/333MHz (depends on HPLL freq)
5979 * 400MHz (VLV only)
5980 * So we check to see whether we're above 90% (VLV) or 95% (CHV)
5981 * of the lower bin and adjust if needed.
5982 *
5983 * We seem to get an unstable or solid color picture at 200MHz.
5984 * Not sure what's wrong. For now use 200MHz only when all pipes
5985 * are off.
5986 */
5987 if (!IS_CHERRYVIEW(dev_priv) &&
5988 max_pixclk > freq_320*limit/100)
5989 return 400000;
5990 else if (max_pixclk > 266667*limit/100)
5991 return freq_320;
5992 else if (max_pixclk > 0)
5993 return 266667;
5994 else
5995 return 200000;
5996 }
5997
broxton_calc_cdclk(struct drm_i915_private * dev_priv,int max_pixclk)5998 static int broxton_calc_cdclk(struct drm_i915_private *dev_priv,
5999 int max_pixclk)
6000 {
6001 /*
6002 * FIXME:
6003 * - remove the guardband, it's not needed on BXT
6004 * - set 19.2MHz bypass frequency if there are no active pipes
6005 */
6006 if (max_pixclk > 576000*9/10)
6007 return 624000;
6008 else if (max_pixclk > 384000*9/10)
6009 return 576000;
6010 else if (max_pixclk > 288000*9/10)
6011 return 384000;
6012 else if (max_pixclk > 144000*9/10)
6013 return 288000;
6014 else
6015 return 144000;
6016 }
6017
6018 /* Compute the max pixel clock for new configuration. Uses atomic state if
6019 * that's non-NULL, look at current state otherwise. */
intel_mode_max_pixclk(struct drm_device * dev,struct drm_atomic_state * state)6020 static int intel_mode_max_pixclk(struct drm_device *dev,
6021 struct drm_atomic_state *state)
6022 {
6023 struct intel_crtc *intel_crtc;
6024 struct intel_crtc_state *crtc_state;
6025 int max_pixclk = 0;
6026
6027 for_each_intel_crtc(dev, intel_crtc) {
6028 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
6029 if (IS_ERR(crtc_state))
6030 return PTR_ERR(crtc_state);
6031
6032 if (!crtc_state->base.enable)
6033 continue;
6034
6035 max_pixclk = max(max_pixclk,
6036 crtc_state->base.adjusted_mode.crtc_clock);
6037 }
6038
6039 return max_pixclk;
6040 }
6041
valleyview_modeset_calc_cdclk(struct drm_atomic_state * state)6042 static int valleyview_modeset_calc_cdclk(struct drm_atomic_state *state)
6043 {
6044 struct drm_device *dev = state->dev;
6045 struct drm_i915_private *dev_priv = dev->dev_private;
6046 int max_pixclk = intel_mode_max_pixclk(dev, state);
6047
6048 if (max_pixclk < 0)
6049 return max_pixclk;
6050
6051 to_intel_atomic_state(state)->cdclk =
6052 valleyview_calc_cdclk(dev_priv, max_pixclk);
6053
6054 return 0;
6055 }
6056
broxton_modeset_calc_cdclk(struct drm_atomic_state * state)6057 static int broxton_modeset_calc_cdclk(struct drm_atomic_state *state)
6058 {
6059 struct drm_device *dev = state->dev;
6060 struct drm_i915_private *dev_priv = dev->dev_private;
6061 int max_pixclk = intel_mode_max_pixclk(dev, state);
6062
6063 if (max_pixclk < 0)
6064 return max_pixclk;
6065
6066 to_intel_atomic_state(state)->cdclk =
6067 broxton_calc_cdclk(dev_priv, max_pixclk);
6068
6069 return 0;
6070 }
6071
vlv_program_pfi_credits(struct drm_i915_private * dev_priv)6072 static void vlv_program_pfi_credits(struct drm_i915_private *dev_priv)
6073 {
6074 unsigned int credits, default_credits;
6075
6076 if (IS_CHERRYVIEW(dev_priv))
6077 default_credits = PFI_CREDIT(12);
6078 else
6079 default_credits = PFI_CREDIT(8);
6080
6081 if (dev_priv->cdclk_freq >= dev_priv->czclk_freq) {
6082 /* CHV suggested value is 31 or 63 */
6083 if (IS_CHERRYVIEW(dev_priv))
6084 credits = PFI_CREDIT_63;
6085 else
6086 credits = PFI_CREDIT(15);
6087 } else {
6088 credits = default_credits;
6089 }
6090
6091 /*
6092 * WA - write default credits before re-programming
6093 * FIXME: should we also set the resend bit here?
6094 */
6095 I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
6096 default_credits);
6097
6098 I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
6099 credits | PFI_CREDIT_RESEND);
6100
6101 /*
6102 * FIXME is this guaranteed to clear
6103 * immediately or should we poll for it?
6104 */
6105 WARN_ON(I915_READ(GCI_CONTROL) & PFI_CREDIT_RESEND);
6106 }
6107
valleyview_modeset_commit_cdclk(struct drm_atomic_state * old_state)6108 static void valleyview_modeset_commit_cdclk(struct drm_atomic_state *old_state)
6109 {
6110 struct drm_device *dev = old_state->dev;
6111 unsigned int req_cdclk = to_intel_atomic_state(old_state)->cdclk;
6112 struct drm_i915_private *dev_priv = dev->dev_private;
6113
6114 /*
6115 * FIXME: We can end up here with all power domains off, yet
6116 * with a CDCLK frequency other than the minimum. To account
6117 * for this take the PIPE-A power domain, which covers the HW
6118 * blocks needed for the following programming. This can be
6119 * removed once it's guaranteed that we get here either with
6120 * the minimum CDCLK set, or the required power domains
6121 * enabled.
6122 */
6123 intel_display_power_get(dev_priv, POWER_DOMAIN_PIPE_A);
6124
6125 if (IS_CHERRYVIEW(dev))
6126 cherryview_set_cdclk(dev, req_cdclk);
6127 else
6128 valleyview_set_cdclk(dev, req_cdclk);
6129
6130 vlv_program_pfi_credits(dev_priv);
6131
6132 intel_display_power_put(dev_priv, POWER_DOMAIN_PIPE_A);
6133 }
6134
valleyview_crtc_enable(struct drm_crtc * crtc)6135 static void valleyview_crtc_enable(struct drm_crtc *crtc)
6136 {
6137 struct drm_device *dev = crtc->dev;
6138 struct drm_i915_private *dev_priv = to_i915(dev);
6139 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6140 struct intel_encoder *encoder;
6141 int pipe = intel_crtc->pipe;
6142 bool is_dsi;
6143
6144 if (WARN_ON(intel_crtc->active))
6145 return;
6146
6147 is_dsi = intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI);
6148
6149 if (intel_crtc->config->has_dp_encoder)
6150 intel_dp_set_m_n(intel_crtc, M1_N1);
6151
6152 intel_set_pipe_timings(intel_crtc);
6153
6154 if (IS_CHERRYVIEW(dev) && pipe == PIPE_B) {
6155 struct drm_i915_private *dev_priv = dev->dev_private;
6156
6157 I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY);
6158 I915_WRITE(CHV_CANVAS(pipe), 0);
6159 }
6160
6161 i9xx_set_pipeconf(intel_crtc);
6162
6163 intel_crtc->active = true;
6164
6165 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
6166
6167 for_each_encoder_on_crtc(dev, crtc, encoder)
6168 if (encoder->pre_pll_enable)
6169 encoder->pre_pll_enable(encoder);
6170
6171 if (!is_dsi) {
6172 if (IS_CHERRYVIEW(dev)) {
6173 chv_prepare_pll(intel_crtc, intel_crtc->config);
6174 chv_enable_pll(intel_crtc, intel_crtc->config);
6175 } else {
6176 vlv_prepare_pll(intel_crtc, intel_crtc->config);
6177 vlv_enable_pll(intel_crtc, intel_crtc->config);
6178 }
6179 }
6180
6181 for_each_encoder_on_crtc(dev, crtc, encoder)
6182 if (encoder->pre_enable)
6183 encoder->pre_enable(encoder);
6184
6185 i9xx_pfit_enable(intel_crtc);
6186
6187 intel_crtc_load_lut(crtc);
6188
6189 intel_enable_pipe(intel_crtc);
6190
6191 assert_vblank_disabled(crtc);
6192 drm_crtc_vblank_on(crtc);
6193
6194 for_each_encoder_on_crtc(dev, crtc, encoder)
6195 encoder->enable(encoder);
6196 }
6197
i9xx_set_pll_dividers(struct intel_crtc * crtc)6198 static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
6199 {
6200 struct drm_device *dev = crtc->base.dev;
6201 struct drm_i915_private *dev_priv = dev->dev_private;
6202
6203 I915_WRITE(FP0(crtc->pipe), crtc->config->dpll_hw_state.fp0);
6204 I915_WRITE(FP1(crtc->pipe), crtc->config->dpll_hw_state.fp1);
6205 }
6206
i9xx_crtc_enable(struct drm_crtc * crtc)6207 static void i9xx_crtc_enable(struct drm_crtc *crtc)
6208 {
6209 struct drm_device *dev = crtc->dev;
6210 struct drm_i915_private *dev_priv = to_i915(dev);
6211 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6212 struct intel_encoder *encoder;
6213 int pipe = intel_crtc->pipe;
6214
6215 if (WARN_ON(intel_crtc->active))
6216 return;
6217
6218 i9xx_set_pll_dividers(intel_crtc);
6219
6220 if (intel_crtc->config->has_dp_encoder)
6221 intel_dp_set_m_n(intel_crtc, M1_N1);
6222
6223 intel_set_pipe_timings(intel_crtc);
6224
6225 i9xx_set_pipeconf(intel_crtc);
6226
6227 intel_crtc->active = true;
6228
6229 if (!IS_GEN2(dev))
6230 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
6231
6232 for_each_encoder_on_crtc(dev, crtc, encoder)
6233 if (encoder->pre_enable)
6234 encoder->pre_enable(encoder);
6235
6236 i9xx_enable_pll(intel_crtc);
6237
6238 i9xx_pfit_enable(intel_crtc);
6239
6240 intel_crtc_load_lut(crtc);
6241
6242 intel_update_watermarks(crtc);
6243 intel_enable_pipe(intel_crtc);
6244
6245 assert_vblank_disabled(crtc);
6246 drm_crtc_vblank_on(crtc);
6247
6248 for_each_encoder_on_crtc(dev, crtc, encoder)
6249 encoder->enable(encoder);
6250 }
6251
i9xx_pfit_disable(struct intel_crtc * crtc)6252 static void i9xx_pfit_disable(struct intel_crtc *crtc)
6253 {
6254 struct drm_device *dev = crtc->base.dev;
6255 struct drm_i915_private *dev_priv = dev->dev_private;
6256
6257 if (!crtc->config->gmch_pfit.control)
6258 return;
6259
6260 assert_pipe_disabled(dev_priv, crtc->pipe);
6261
6262 DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
6263 I915_READ(PFIT_CONTROL));
6264 I915_WRITE(PFIT_CONTROL, 0);
6265 }
6266
i9xx_crtc_disable(struct drm_crtc * crtc)6267 static void i9xx_crtc_disable(struct drm_crtc *crtc)
6268 {
6269 struct drm_device *dev = crtc->dev;
6270 struct drm_i915_private *dev_priv = dev->dev_private;
6271 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6272 struct intel_encoder *encoder;
6273 int pipe = intel_crtc->pipe;
6274
6275 /*
6276 * On gen2 planes are double buffered but the pipe isn't, so we must
6277 * wait for planes to fully turn off before disabling the pipe.
6278 * We also need to wait on all gmch platforms because of the
6279 * self-refresh mode constraint explained above.
6280 */
6281 intel_wait_for_vblank(dev, pipe);
6282
6283 for_each_encoder_on_crtc(dev, crtc, encoder)
6284 encoder->disable(encoder);
6285
6286 drm_crtc_vblank_off(crtc);
6287 assert_vblank_disabled(crtc);
6288
6289 intel_disable_pipe(intel_crtc);
6290
6291 i9xx_pfit_disable(intel_crtc);
6292
6293 for_each_encoder_on_crtc(dev, crtc, encoder)
6294 if (encoder->post_disable)
6295 encoder->post_disable(encoder);
6296
6297 if (!intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI)) {
6298 if (IS_CHERRYVIEW(dev))
6299 chv_disable_pll(dev_priv, pipe);
6300 else if (IS_VALLEYVIEW(dev))
6301 vlv_disable_pll(dev_priv, pipe);
6302 else
6303 i9xx_disable_pll(intel_crtc);
6304 }
6305
6306 for_each_encoder_on_crtc(dev, crtc, encoder)
6307 if (encoder->post_pll_disable)
6308 encoder->post_pll_disable(encoder);
6309
6310 if (!IS_GEN2(dev))
6311 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
6312 }
6313
intel_crtc_disable_noatomic(struct drm_crtc * crtc)6314 static void intel_crtc_disable_noatomic(struct drm_crtc *crtc)
6315 {
6316 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6317 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
6318 enum intel_display_power_domain domain;
6319 unsigned long domains;
6320
6321 if (!intel_crtc->active)
6322 return;
6323
6324 if (to_intel_plane_state(crtc->primary->state)->visible) {
6325 intel_crtc_wait_for_pending_flips(crtc);
6326 intel_pre_disable_primary(crtc);
6327
6328 intel_crtc_disable_planes(crtc, 1 << drm_plane_index(crtc->primary));
6329 to_intel_plane_state(crtc->primary->state)->visible = false;
6330 }
6331
6332 dev_priv->display.crtc_disable(crtc);
6333 intel_crtc->active = false;
6334 intel_update_watermarks(crtc);
6335 intel_disable_shared_dpll(intel_crtc);
6336
6337 domains = intel_crtc->enabled_power_domains;
6338 for_each_power_domain(domain, domains)
6339 intel_display_power_put(dev_priv, domain);
6340 intel_crtc->enabled_power_domains = 0;
6341 }
6342
6343 /*
6344 * turn all crtc's off, but do not adjust state
6345 * This has to be paired with a call to intel_modeset_setup_hw_state.
6346 */
intel_display_suspend(struct drm_device * dev)6347 int intel_display_suspend(struct drm_device *dev)
6348 {
6349 struct drm_mode_config *config = &dev->mode_config;
6350 struct drm_modeset_acquire_ctx *ctx = config->acquire_ctx;
6351 struct drm_atomic_state *state;
6352 struct drm_crtc *crtc;
6353 unsigned crtc_mask = 0;
6354 int ret = 0;
6355
6356 if (WARN_ON(!ctx))
6357 return 0;
6358
6359 lockdep_assert_held(&ctx->ww_ctx);
6360 state = drm_atomic_state_alloc(dev);
6361 if (WARN_ON(!state))
6362 return -ENOMEM;
6363
6364 state->acquire_ctx = ctx;
6365 state->allow_modeset = true;
6366
6367 for_each_crtc(dev, crtc) {
6368 struct drm_crtc_state *crtc_state =
6369 drm_atomic_get_crtc_state(state, crtc);
6370
6371 ret = PTR_ERR_OR_ZERO(crtc_state);
6372 if (ret)
6373 goto free;
6374
6375 if (!crtc_state->active)
6376 continue;
6377
6378 crtc_state->active = false;
6379 crtc_mask |= 1 << drm_crtc_index(crtc);
6380 }
6381
6382 if (crtc_mask) {
6383 ret = drm_atomic_commit(state);
6384
6385 if (!ret) {
6386 for_each_crtc(dev, crtc)
6387 if (crtc_mask & (1 << drm_crtc_index(crtc)))
6388 crtc->state->active = true;
6389
6390 return ret;
6391 }
6392 }
6393
6394 free:
6395 if (ret)
6396 DRM_ERROR("Suspending crtc's failed with %i\n", ret);
6397 drm_atomic_state_free(state);
6398 return ret;
6399 }
6400
intel_encoder_destroy(struct drm_encoder * encoder)6401 void intel_encoder_destroy(struct drm_encoder *encoder)
6402 {
6403 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
6404
6405 drm_encoder_cleanup(encoder);
6406 kfree(intel_encoder);
6407 }
6408
6409 /* Cross check the actual hw state with our own modeset state tracking (and it's
6410 * internal consistency). */
intel_connector_check_state(struct intel_connector * connector)6411 static void intel_connector_check_state(struct intel_connector *connector)
6412 {
6413 struct drm_crtc *crtc = connector->base.state->crtc;
6414
6415 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
6416 connector->base.base.id,
6417 connector->base.name);
6418
6419 if (connector->get_hw_state(connector)) {
6420 struct intel_encoder *encoder = connector->encoder;
6421 struct drm_connector_state *conn_state = connector->base.state;
6422
6423 I915_STATE_WARN(!crtc,
6424 "connector enabled without attached crtc\n");
6425
6426 if (!crtc)
6427 return;
6428
6429 I915_STATE_WARN(!crtc->state->active,
6430 "connector is active, but attached crtc isn't\n");
6431
6432 if (!encoder || encoder->type == INTEL_OUTPUT_DP_MST)
6433 return;
6434
6435 I915_STATE_WARN(conn_state->best_encoder != &encoder->base,
6436 "atomic encoder doesn't match attached encoder\n");
6437
6438 I915_STATE_WARN(conn_state->crtc != encoder->base.crtc,
6439 "attached encoder crtc differs from connector crtc\n");
6440 } else {
6441 I915_STATE_WARN(crtc && crtc->state->active,
6442 "attached crtc is active, but connector isn't\n");
6443 I915_STATE_WARN(!crtc && connector->base.state->best_encoder,
6444 "best encoder set without crtc!\n");
6445 }
6446 }
6447
intel_connector_init(struct intel_connector * connector)6448 int intel_connector_init(struct intel_connector *connector)
6449 {
6450 struct drm_connector_state *connector_state;
6451
6452 connector_state = kzalloc(sizeof *connector_state, GFP_KERNEL);
6453 if (!connector_state)
6454 return -ENOMEM;
6455
6456 connector->base.state = connector_state;
6457 return 0;
6458 }
6459
intel_connector_alloc(void)6460 struct intel_connector *intel_connector_alloc(void)
6461 {
6462 struct intel_connector *connector;
6463
6464 connector = kzalloc(sizeof *connector, GFP_KERNEL);
6465 if (!connector)
6466 return NULL;
6467
6468 if (intel_connector_init(connector) < 0) {
6469 kfree(connector);
6470 return NULL;
6471 }
6472
6473 return connector;
6474 }
6475
6476 /* Simple connector->get_hw_state implementation for encoders that support only
6477 * one connector and no cloning and hence the encoder state determines the state
6478 * of the connector. */
intel_connector_get_hw_state(struct intel_connector * connector)6479 bool intel_connector_get_hw_state(struct intel_connector *connector)
6480 {
6481 enum pipe pipe = 0;
6482 struct intel_encoder *encoder = connector->encoder;
6483
6484 return encoder->get_hw_state(encoder, &pipe);
6485 }
6486
pipe_required_fdi_lanes(struct intel_crtc_state * crtc_state)6487 static int pipe_required_fdi_lanes(struct intel_crtc_state *crtc_state)
6488 {
6489 if (crtc_state->base.enable && crtc_state->has_pch_encoder)
6490 return crtc_state->fdi_lanes;
6491
6492 return 0;
6493 }
6494
ironlake_check_fdi_lanes(struct drm_device * dev,enum pipe pipe,struct intel_crtc_state * pipe_config)6495 static int ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
6496 struct intel_crtc_state *pipe_config)
6497 {
6498 struct drm_atomic_state *state = pipe_config->base.state;
6499 struct intel_crtc *other_crtc;
6500 struct intel_crtc_state *other_crtc_state;
6501
6502 DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
6503 pipe_name(pipe), pipe_config->fdi_lanes);
6504 if (pipe_config->fdi_lanes > 4) {
6505 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
6506 pipe_name(pipe), pipe_config->fdi_lanes);
6507 return -EINVAL;
6508 }
6509
6510 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
6511 if (pipe_config->fdi_lanes > 2) {
6512 DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
6513 pipe_config->fdi_lanes);
6514 return -EINVAL;
6515 } else {
6516 return 0;
6517 }
6518 }
6519
6520 if (INTEL_INFO(dev)->num_pipes == 2)
6521 return 0;
6522
6523 /* Ivybridge 3 pipe is really complicated */
6524 switch (pipe) {
6525 case PIPE_A:
6526 return 0;
6527 case PIPE_B:
6528 if (pipe_config->fdi_lanes <= 2)
6529 return 0;
6530
6531 other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_C));
6532 other_crtc_state =
6533 intel_atomic_get_crtc_state(state, other_crtc);
6534 if (IS_ERR(other_crtc_state))
6535 return PTR_ERR(other_crtc_state);
6536
6537 if (pipe_required_fdi_lanes(other_crtc_state) > 0) {
6538 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
6539 pipe_name(pipe), pipe_config->fdi_lanes);
6540 return -EINVAL;
6541 }
6542 return 0;
6543 case PIPE_C:
6544 if (pipe_config->fdi_lanes > 2) {
6545 DRM_DEBUG_KMS("only 2 lanes on pipe %c: required %i lanes\n",
6546 pipe_name(pipe), pipe_config->fdi_lanes);
6547 return -EINVAL;
6548 }
6549
6550 other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_B));
6551 other_crtc_state =
6552 intel_atomic_get_crtc_state(state, other_crtc);
6553 if (IS_ERR(other_crtc_state))
6554 return PTR_ERR(other_crtc_state);
6555
6556 if (pipe_required_fdi_lanes(other_crtc_state) > 2) {
6557 DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
6558 return -EINVAL;
6559 }
6560 return 0;
6561 default:
6562 BUG();
6563 }
6564 }
6565
6566 #define RETRY 1
ironlake_fdi_compute_config(struct intel_crtc * intel_crtc,struct intel_crtc_state * pipe_config)6567 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
6568 struct intel_crtc_state *pipe_config)
6569 {
6570 struct drm_device *dev = intel_crtc->base.dev;
6571 const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6572 int lane, link_bw, fdi_dotclock, ret;
6573 bool needs_recompute = false;
6574
6575 retry:
6576 /* FDI is a binary signal running at ~2.7GHz, encoding
6577 * each output octet as 10 bits. The actual frequency
6578 * is stored as a divider into a 100MHz clock, and the
6579 * mode pixel clock is stored in units of 1KHz.
6580 * Hence the bw of each lane in terms of the mode signal
6581 * is:
6582 */
6583 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
6584
6585 fdi_dotclock = adjusted_mode->crtc_clock;
6586
6587 lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
6588 pipe_config->pipe_bpp);
6589
6590 pipe_config->fdi_lanes = lane;
6591
6592 intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
6593 link_bw, &pipe_config->fdi_m_n);
6594
6595 ret = ironlake_check_fdi_lanes(intel_crtc->base.dev,
6596 intel_crtc->pipe, pipe_config);
6597 if (ret == -EINVAL && pipe_config->pipe_bpp > 6*3) {
6598 pipe_config->pipe_bpp -= 2*3;
6599 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
6600 pipe_config->pipe_bpp);
6601 needs_recompute = true;
6602 pipe_config->bw_constrained = true;
6603
6604 goto retry;
6605 }
6606
6607 if (needs_recompute)
6608 return RETRY;
6609
6610 return ret;
6611 }
6612
pipe_config_supports_ips(struct drm_i915_private * dev_priv,struct intel_crtc_state * pipe_config)6613 static bool pipe_config_supports_ips(struct drm_i915_private *dev_priv,
6614 struct intel_crtc_state *pipe_config)
6615 {
6616 if (pipe_config->pipe_bpp > 24)
6617 return false;
6618
6619 /* HSW can handle pixel rate up to cdclk? */
6620 if (IS_HASWELL(dev_priv->dev))
6621 return true;
6622
6623 /*
6624 * We compare against max which means we must take
6625 * the increased cdclk requirement into account when
6626 * calculating the new cdclk.
6627 *
6628 * Should measure whether using a lower cdclk w/o IPS
6629 */
6630 return ilk_pipe_pixel_rate(pipe_config) <=
6631 dev_priv->max_cdclk_freq * 95 / 100;
6632 }
6633
hsw_compute_ips_config(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)6634 static void hsw_compute_ips_config(struct intel_crtc *crtc,
6635 struct intel_crtc_state *pipe_config)
6636 {
6637 struct drm_device *dev = crtc->base.dev;
6638 struct drm_i915_private *dev_priv = dev->dev_private;
6639
6640 pipe_config->ips_enabled = i915.enable_ips &&
6641 hsw_crtc_supports_ips(crtc) &&
6642 pipe_config_supports_ips(dev_priv, pipe_config);
6643 }
6644
intel_crtc_compute_config(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)6645 static int intel_crtc_compute_config(struct intel_crtc *crtc,
6646 struct intel_crtc_state *pipe_config)
6647 {
6648 struct drm_device *dev = crtc->base.dev;
6649 struct drm_i915_private *dev_priv = dev->dev_private;
6650 const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6651
6652 /* FIXME should check pixel clock limits on all platforms */
6653 if (INTEL_INFO(dev)->gen < 4) {
6654 int clock_limit = dev_priv->max_cdclk_freq;
6655
6656 /*
6657 * Enable pixel doubling when the dot clock
6658 * is > 90% of the (display) core speed.
6659 *
6660 * GDG double wide on either pipe,
6661 * otherwise pipe A only.
6662 */
6663 if ((crtc->pipe == PIPE_A || IS_I915G(dev)) &&
6664 adjusted_mode->crtc_clock > clock_limit * 9 / 10) {
6665 clock_limit *= 2;
6666 pipe_config->double_wide = true;
6667 }
6668
6669 if (adjusted_mode->crtc_clock > clock_limit * 9 / 10)
6670 return -EINVAL;
6671 }
6672
6673 /*
6674 * Pipe horizontal size must be even in:
6675 * - DVO ganged mode
6676 * - LVDS dual channel mode
6677 * - Double wide pipe
6678 */
6679 if ((intel_pipe_will_have_type(pipe_config, INTEL_OUTPUT_LVDS) &&
6680 intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
6681 pipe_config->pipe_src_w &= ~1;
6682
6683 /* Cantiga+ cannot handle modes with a hsync front porch of 0.
6684 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
6685 */
6686 if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
6687 adjusted_mode->crtc_hsync_start == adjusted_mode->crtc_hdisplay)
6688 return -EINVAL;
6689
6690 if (HAS_IPS(dev))
6691 hsw_compute_ips_config(crtc, pipe_config);
6692
6693 if (pipe_config->has_pch_encoder)
6694 return ironlake_fdi_compute_config(crtc, pipe_config);
6695
6696 return 0;
6697 }
6698
skylake_get_display_clock_speed(struct drm_device * dev)6699 static int skylake_get_display_clock_speed(struct drm_device *dev)
6700 {
6701 struct drm_i915_private *dev_priv = to_i915(dev);
6702 uint32_t lcpll1 = I915_READ(LCPLL1_CTL);
6703 uint32_t cdctl = I915_READ(CDCLK_CTL);
6704 uint32_t linkrate;
6705
6706 if (!(lcpll1 & LCPLL_PLL_ENABLE))
6707 return 24000; /* 24MHz is the cd freq with NSSC ref */
6708
6709 if ((cdctl & CDCLK_FREQ_SEL_MASK) == CDCLK_FREQ_540)
6710 return 540000;
6711
6712 linkrate = (I915_READ(DPLL_CTRL1) &
6713 DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0)) >> 1;
6714
6715 if (linkrate == DPLL_CTRL1_LINK_RATE_2160 ||
6716 linkrate == DPLL_CTRL1_LINK_RATE_1080) {
6717 /* vco 8640 */
6718 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
6719 case CDCLK_FREQ_450_432:
6720 return 432000;
6721 case CDCLK_FREQ_337_308:
6722 return 308570;
6723 case CDCLK_FREQ_675_617:
6724 return 617140;
6725 default:
6726 WARN(1, "Unknown cd freq selection\n");
6727 }
6728 } else {
6729 /* vco 8100 */
6730 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
6731 case CDCLK_FREQ_450_432:
6732 return 450000;
6733 case CDCLK_FREQ_337_308:
6734 return 337500;
6735 case CDCLK_FREQ_675_617:
6736 return 675000;
6737 default:
6738 WARN(1, "Unknown cd freq selection\n");
6739 }
6740 }
6741
6742 /* error case, do as if DPLL0 isn't enabled */
6743 return 24000;
6744 }
6745
broxton_get_display_clock_speed(struct drm_device * dev)6746 static int broxton_get_display_clock_speed(struct drm_device *dev)
6747 {
6748 struct drm_i915_private *dev_priv = to_i915(dev);
6749 uint32_t cdctl = I915_READ(CDCLK_CTL);
6750 uint32_t pll_ratio = I915_READ(BXT_DE_PLL_CTL) & BXT_DE_PLL_RATIO_MASK;
6751 uint32_t pll_enab = I915_READ(BXT_DE_PLL_ENABLE);
6752 int cdclk;
6753
6754 if (!(pll_enab & BXT_DE_PLL_PLL_ENABLE))
6755 return 19200;
6756
6757 cdclk = 19200 * pll_ratio / 2;
6758
6759 switch (cdctl & BXT_CDCLK_CD2X_DIV_SEL_MASK) {
6760 case BXT_CDCLK_CD2X_DIV_SEL_1:
6761 return cdclk; /* 576MHz or 624MHz */
6762 case BXT_CDCLK_CD2X_DIV_SEL_1_5:
6763 return cdclk * 2 / 3; /* 384MHz */
6764 case BXT_CDCLK_CD2X_DIV_SEL_2:
6765 return cdclk / 2; /* 288MHz */
6766 case BXT_CDCLK_CD2X_DIV_SEL_4:
6767 return cdclk / 4; /* 144MHz */
6768 }
6769
6770 /* error case, do as if DE PLL isn't enabled */
6771 return 19200;
6772 }
6773
broadwell_get_display_clock_speed(struct drm_device * dev)6774 static int broadwell_get_display_clock_speed(struct drm_device *dev)
6775 {
6776 struct drm_i915_private *dev_priv = dev->dev_private;
6777 uint32_t lcpll = I915_READ(LCPLL_CTL);
6778 uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
6779
6780 if (lcpll & LCPLL_CD_SOURCE_FCLK)
6781 return 800000;
6782 else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
6783 return 450000;
6784 else if (freq == LCPLL_CLK_FREQ_450)
6785 return 450000;
6786 else if (freq == LCPLL_CLK_FREQ_54O_BDW)
6787 return 540000;
6788 else if (freq == LCPLL_CLK_FREQ_337_5_BDW)
6789 return 337500;
6790 else
6791 return 675000;
6792 }
6793
haswell_get_display_clock_speed(struct drm_device * dev)6794 static int haswell_get_display_clock_speed(struct drm_device *dev)
6795 {
6796 struct drm_i915_private *dev_priv = dev->dev_private;
6797 uint32_t lcpll = I915_READ(LCPLL_CTL);
6798 uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
6799
6800 if (lcpll & LCPLL_CD_SOURCE_FCLK)
6801 return 800000;
6802 else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
6803 return 450000;
6804 else if (freq == LCPLL_CLK_FREQ_450)
6805 return 450000;
6806 else if (IS_HSW_ULT(dev))
6807 return 337500;
6808 else
6809 return 540000;
6810 }
6811
valleyview_get_display_clock_speed(struct drm_device * dev)6812 static int valleyview_get_display_clock_speed(struct drm_device *dev)
6813 {
6814 return vlv_get_cck_clock_hpll(to_i915(dev), "cdclk",
6815 CCK_DISPLAY_CLOCK_CONTROL);
6816 }
6817
ilk_get_display_clock_speed(struct drm_device * dev)6818 static int ilk_get_display_clock_speed(struct drm_device *dev)
6819 {
6820 return 450000;
6821 }
6822
i945_get_display_clock_speed(struct drm_device * dev)6823 static int i945_get_display_clock_speed(struct drm_device *dev)
6824 {
6825 return 400000;
6826 }
6827
i915_get_display_clock_speed(struct drm_device * dev)6828 static int i915_get_display_clock_speed(struct drm_device *dev)
6829 {
6830 return 333333;
6831 }
6832
i9xx_misc_get_display_clock_speed(struct drm_device * dev)6833 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
6834 {
6835 return 200000;
6836 }
6837
pnv_get_display_clock_speed(struct drm_device * dev)6838 static int pnv_get_display_clock_speed(struct drm_device *dev)
6839 {
6840 u16 gcfgc = 0;
6841
6842 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
6843
6844 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
6845 case GC_DISPLAY_CLOCK_267_MHZ_PNV:
6846 return 266667;
6847 case GC_DISPLAY_CLOCK_333_MHZ_PNV:
6848 return 333333;
6849 case GC_DISPLAY_CLOCK_444_MHZ_PNV:
6850 return 444444;
6851 case GC_DISPLAY_CLOCK_200_MHZ_PNV:
6852 return 200000;
6853 default:
6854 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
6855 case GC_DISPLAY_CLOCK_133_MHZ_PNV:
6856 return 133333;
6857 case GC_DISPLAY_CLOCK_167_MHZ_PNV:
6858 return 166667;
6859 }
6860 }
6861
i915gm_get_display_clock_speed(struct drm_device * dev)6862 static int i915gm_get_display_clock_speed(struct drm_device *dev)
6863 {
6864 u16 gcfgc = 0;
6865
6866 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
6867
6868 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
6869 return 133333;
6870 else {
6871 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
6872 case GC_DISPLAY_CLOCK_333_MHZ:
6873 return 333333;
6874 default:
6875 case GC_DISPLAY_CLOCK_190_200_MHZ:
6876 return 190000;
6877 }
6878 }
6879 }
6880
i865_get_display_clock_speed(struct drm_device * dev)6881 static int i865_get_display_clock_speed(struct drm_device *dev)
6882 {
6883 return 266667;
6884 }
6885
i85x_get_display_clock_speed(struct drm_device * dev)6886 static int i85x_get_display_clock_speed(struct drm_device *dev)
6887 {
6888 u16 hpllcc = 0;
6889
6890 /*
6891 * 852GM/852GMV only supports 133 MHz and the HPLLCC
6892 * encoding is different :(
6893 * FIXME is this the right way to detect 852GM/852GMV?
6894 */
6895 if (dev->pdev->revision == 0x1)
6896 return 133333;
6897
6898 pci_bus_read_config_word(dev->pdev->bus,
6899 PCI_DEVFN(0, 3), HPLLCC, &hpllcc);
6900
6901 /* Assume that the hardware is in the high speed state. This
6902 * should be the default.
6903 */
6904 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
6905 case GC_CLOCK_133_200:
6906 case GC_CLOCK_133_200_2:
6907 case GC_CLOCK_100_200:
6908 return 200000;
6909 case GC_CLOCK_166_250:
6910 return 250000;
6911 case GC_CLOCK_100_133:
6912 return 133333;
6913 case GC_CLOCK_133_266:
6914 case GC_CLOCK_133_266_2:
6915 case GC_CLOCK_166_266:
6916 return 266667;
6917 }
6918
6919 /* Shouldn't happen */
6920 return 0;
6921 }
6922
i830_get_display_clock_speed(struct drm_device * dev)6923 static int i830_get_display_clock_speed(struct drm_device *dev)
6924 {
6925 return 133333;
6926 }
6927
intel_hpll_vco(struct drm_device * dev)6928 static unsigned int intel_hpll_vco(struct drm_device *dev)
6929 {
6930 struct drm_i915_private *dev_priv = dev->dev_private;
6931 static const unsigned int blb_vco[8] = {
6932 [0] = 3200000,
6933 [1] = 4000000,
6934 [2] = 5333333,
6935 [3] = 4800000,
6936 [4] = 6400000,
6937 };
6938 static const unsigned int pnv_vco[8] = {
6939 [0] = 3200000,
6940 [1] = 4000000,
6941 [2] = 5333333,
6942 [3] = 4800000,
6943 [4] = 2666667,
6944 };
6945 static const unsigned int cl_vco[8] = {
6946 [0] = 3200000,
6947 [1] = 4000000,
6948 [2] = 5333333,
6949 [3] = 6400000,
6950 [4] = 3333333,
6951 [5] = 3566667,
6952 [6] = 4266667,
6953 };
6954 static const unsigned int elk_vco[8] = {
6955 [0] = 3200000,
6956 [1] = 4000000,
6957 [2] = 5333333,
6958 [3] = 4800000,
6959 };
6960 static const unsigned int ctg_vco[8] = {
6961 [0] = 3200000,
6962 [1] = 4000000,
6963 [2] = 5333333,
6964 [3] = 6400000,
6965 [4] = 2666667,
6966 [5] = 4266667,
6967 };
6968 const unsigned int *vco_table;
6969 unsigned int vco;
6970 uint8_t tmp = 0;
6971
6972 /* FIXME other chipsets? */
6973 if (IS_GM45(dev))
6974 vco_table = ctg_vco;
6975 else if (IS_G4X(dev))
6976 vco_table = elk_vco;
6977 else if (IS_CRESTLINE(dev))
6978 vco_table = cl_vco;
6979 else if (IS_PINEVIEW(dev))
6980 vco_table = pnv_vco;
6981 else if (IS_G33(dev))
6982 vco_table = blb_vco;
6983 else
6984 return 0;
6985
6986 tmp = I915_READ(IS_MOBILE(dev) ? HPLLVCO_MOBILE : HPLLVCO);
6987
6988 vco = vco_table[tmp & 0x7];
6989 if (vco == 0)
6990 DRM_ERROR("Bad HPLL VCO (HPLLVCO=0x%02x)\n", tmp);
6991 else
6992 DRM_DEBUG_KMS("HPLL VCO %u kHz\n", vco);
6993
6994 return vco;
6995 }
6996
gm45_get_display_clock_speed(struct drm_device * dev)6997 static int gm45_get_display_clock_speed(struct drm_device *dev)
6998 {
6999 unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
7000 uint16_t tmp = 0;
7001
7002 pci_read_config_word(dev->pdev, GCFGC, &tmp);
7003
7004 cdclk_sel = (tmp >> 12) & 0x1;
7005
7006 switch (vco) {
7007 case 2666667:
7008 case 4000000:
7009 case 5333333:
7010 return cdclk_sel ? 333333 : 222222;
7011 case 3200000:
7012 return cdclk_sel ? 320000 : 228571;
7013 default:
7014 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u, CFGC=0x%04x\n", vco, tmp);
7015 return 222222;
7016 }
7017 }
7018
i965gm_get_display_clock_speed(struct drm_device * dev)7019 static int i965gm_get_display_clock_speed(struct drm_device *dev)
7020 {
7021 static const uint8_t div_3200[] = { 16, 10, 8 };
7022 static const uint8_t div_4000[] = { 20, 12, 10 };
7023 static const uint8_t div_5333[] = { 24, 16, 14 };
7024 const uint8_t *div_table;
7025 unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
7026 uint16_t tmp = 0;
7027
7028 pci_read_config_word(dev->pdev, GCFGC, &tmp);
7029
7030 cdclk_sel = ((tmp >> 8) & 0x1f) - 1;
7031
7032 if (cdclk_sel >= ARRAY_SIZE(div_3200))
7033 goto fail;
7034
7035 switch (vco) {
7036 case 3200000:
7037 div_table = div_3200;
7038 break;
7039 case 4000000:
7040 div_table = div_4000;
7041 break;
7042 case 5333333:
7043 div_table = div_5333;
7044 break;
7045 default:
7046 goto fail;
7047 }
7048
7049 return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
7050
7051 fail:
7052 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%04x\n", vco, tmp);
7053 return 200000;
7054 }
7055
g33_get_display_clock_speed(struct drm_device * dev)7056 static int g33_get_display_clock_speed(struct drm_device *dev)
7057 {
7058 static const uint8_t div_3200[] = { 12, 10, 8, 7, 5, 16 };
7059 static const uint8_t div_4000[] = { 14, 12, 10, 8, 6, 20 };
7060 static const uint8_t div_4800[] = { 20, 14, 12, 10, 8, 24 };
7061 static const uint8_t div_5333[] = { 20, 16, 12, 12, 8, 28 };
7062 const uint8_t *div_table;
7063 unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
7064 uint16_t tmp = 0;
7065
7066 pci_read_config_word(dev->pdev, GCFGC, &tmp);
7067
7068 cdclk_sel = (tmp >> 4) & 0x7;
7069
7070 if (cdclk_sel >= ARRAY_SIZE(div_3200))
7071 goto fail;
7072
7073 switch (vco) {
7074 case 3200000:
7075 div_table = div_3200;
7076 break;
7077 case 4000000:
7078 div_table = div_4000;
7079 break;
7080 case 4800000:
7081 div_table = div_4800;
7082 break;
7083 case 5333333:
7084 div_table = div_5333;
7085 break;
7086 default:
7087 goto fail;
7088 }
7089
7090 return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
7091
7092 fail:
7093 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%08x\n", vco, tmp);
7094 return 190476;
7095 }
7096
7097 static void
intel_reduce_m_n_ratio(uint32_t * num,uint32_t * den)7098 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
7099 {
7100 while (*num > DATA_LINK_M_N_MASK ||
7101 *den > DATA_LINK_M_N_MASK) {
7102 *num >>= 1;
7103 *den >>= 1;
7104 }
7105 }
7106
compute_m_n(unsigned int m,unsigned int n,uint32_t * ret_m,uint32_t * ret_n)7107 static void compute_m_n(unsigned int m, unsigned int n,
7108 uint32_t *ret_m, uint32_t *ret_n)
7109 {
7110 *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
7111 *ret_m = div_u64((uint64_t) m * *ret_n, n);
7112 intel_reduce_m_n_ratio(ret_m, ret_n);
7113 }
7114
7115 void
intel_link_compute_m_n(int bits_per_pixel,int nlanes,int pixel_clock,int link_clock,struct intel_link_m_n * m_n)7116 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
7117 int pixel_clock, int link_clock,
7118 struct intel_link_m_n *m_n)
7119 {
7120 m_n->tu = 64;
7121
7122 compute_m_n(bits_per_pixel * pixel_clock,
7123 link_clock * nlanes * 8,
7124 &m_n->gmch_m, &m_n->gmch_n);
7125
7126 compute_m_n(pixel_clock, link_clock,
7127 &m_n->link_m, &m_n->link_n);
7128 }
7129
intel_panel_use_ssc(struct drm_i915_private * dev_priv)7130 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
7131 {
7132 if (i915.panel_use_ssc >= 0)
7133 return i915.panel_use_ssc != 0;
7134 return dev_priv->vbt.lvds_use_ssc
7135 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
7136 }
7137
i9xx_get_refclk(const struct intel_crtc_state * crtc_state,int num_connectors)7138 static int i9xx_get_refclk(const struct intel_crtc_state *crtc_state,
7139 int num_connectors)
7140 {
7141 struct drm_device *dev = crtc_state->base.crtc->dev;
7142 struct drm_i915_private *dev_priv = dev->dev_private;
7143 int refclk;
7144
7145 WARN_ON(!crtc_state->base.state);
7146
7147 if (IS_VALLEYVIEW(dev) || IS_BROXTON(dev)) {
7148 refclk = 100000;
7149 } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7150 intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
7151 refclk = dev_priv->vbt.lvds_ssc_freq;
7152 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
7153 } else if (!IS_GEN2(dev)) {
7154 refclk = 96000;
7155 } else {
7156 refclk = 48000;
7157 }
7158
7159 return refclk;
7160 }
7161
pnv_dpll_compute_fp(struct dpll * dpll)7162 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
7163 {
7164 return (1 << dpll->n) << 16 | dpll->m2;
7165 }
7166
i9xx_dpll_compute_fp(struct dpll * dpll)7167 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
7168 {
7169 return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
7170 }
7171
i9xx_update_pll_dividers(struct intel_crtc * crtc,struct intel_crtc_state * crtc_state,intel_clock_t * reduced_clock)7172 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
7173 struct intel_crtc_state *crtc_state,
7174 intel_clock_t *reduced_clock)
7175 {
7176 struct drm_device *dev = crtc->base.dev;
7177 u32 fp, fp2 = 0;
7178
7179 if (IS_PINEVIEW(dev)) {
7180 fp = pnv_dpll_compute_fp(&crtc_state->dpll);
7181 if (reduced_clock)
7182 fp2 = pnv_dpll_compute_fp(reduced_clock);
7183 } else {
7184 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
7185 if (reduced_clock)
7186 fp2 = i9xx_dpll_compute_fp(reduced_clock);
7187 }
7188
7189 crtc_state->dpll_hw_state.fp0 = fp;
7190
7191 crtc->lowfreq_avail = false;
7192 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7193 reduced_clock) {
7194 crtc_state->dpll_hw_state.fp1 = fp2;
7195 crtc->lowfreq_avail = true;
7196 } else {
7197 crtc_state->dpll_hw_state.fp1 = fp;
7198 }
7199 }
7200
vlv_pllb_recal_opamp(struct drm_i915_private * dev_priv,enum pipe pipe)7201 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
7202 pipe)
7203 {
7204 u32 reg_val;
7205
7206 /*
7207 * PLLB opamp always calibrates to max value of 0x3f, force enable it
7208 * and set it to a reasonable value instead.
7209 */
7210 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
7211 reg_val &= 0xffffff00;
7212 reg_val |= 0x00000030;
7213 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
7214
7215 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
7216 reg_val &= 0x8cffffff;
7217 reg_val = 0x8c000000;
7218 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
7219
7220 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
7221 reg_val &= 0xffffff00;
7222 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
7223
7224 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
7225 reg_val &= 0x00ffffff;
7226 reg_val |= 0xb0000000;
7227 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
7228 }
7229
intel_pch_transcoder_set_m_n(struct intel_crtc * crtc,struct intel_link_m_n * m_n)7230 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
7231 struct intel_link_m_n *m_n)
7232 {
7233 struct drm_device *dev = crtc->base.dev;
7234 struct drm_i915_private *dev_priv = dev->dev_private;
7235 int pipe = crtc->pipe;
7236
7237 I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7238 I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
7239 I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
7240 I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
7241 }
7242
intel_cpu_transcoder_set_m_n(struct intel_crtc * crtc,struct intel_link_m_n * m_n,struct intel_link_m_n * m2_n2)7243 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
7244 struct intel_link_m_n *m_n,
7245 struct intel_link_m_n *m2_n2)
7246 {
7247 struct drm_device *dev = crtc->base.dev;
7248 struct drm_i915_private *dev_priv = dev->dev_private;
7249 int pipe = crtc->pipe;
7250 enum transcoder transcoder = crtc->config->cpu_transcoder;
7251
7252 if (INTEL_INFO(dev)->gen >= 5) {
7253 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
7254 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
7255 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
7256 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
7257 /* M2_N2 registers to be set only for gen < 8 (M2_N2 available
7258 * for gen < 8) and if DRRS is supported (to make sure the
7259 * registers are not unnecessarily accessed).
7260 */
7261 if (m2_n2 && (IS_CHERRYVIEW(dev) || INTEL_INFO(dev)->gen < 8) &&
7262 crtc->config->has_drrs) {
7263 I915_WRITE(PIPE_DATA_M2(transcoder),
7264 TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
7265 I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
7266 I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
7267 I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
7268 }
7269 } else {
7270 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7271 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
7272 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
7273 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
7274 }
7275 }
7276
intel_dp_set_m_n(struct intel_crtc * crtc,enum link_m_n_set m_n)7277 void intel_dp_set_m_n(struct intel_crtc *crtc, enum link_m_n_set m_n)
7278 {
7279 struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL;
7280
7281 if (m_n == M1_N1) {
7282 dp_m_n = &crtc->config->dp_m_n;
7283 dp_m2_n2 = &crtc->config->dp_m2_n2;
7284 } else if (m_n == M2_N2) {
7285
7286 /*
7287 * M2_N2 registers are not supported. Hence m2_n2 divider value
7288 * needs to be programmed into M1_N1.
7289 */
7290 dp_m_n = &crtc->config->dp_m2_n2;
7291 } else {
7292 DRM_ERROR("Unsupported divider value\n");
7293 return;
7294 }
7295
7296 if (crtc->config->has_pch_encoder)
7297 intel_pch_transcoder_set_m_n(crtc, &crtc->config->dp_m_n);
7298 else
7299 intel_cpu_transcoder_set_m_n(crtc, dp_m_n, dp_m2_n2);
7300 }
7301
vlv_compute_dpll(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)7302 static void vlv_compute_dpll(struct intel_crtc *crtc,
7303 struct intel_crtc_state *pipe_config)
7304 {
7305 u32 dpll, dpll_md;
7306
7307 /*
7308 * Enable DPIO clock input. We should never disable the reference
7309 * clock for pipe B, since VGA hotplug / manual detection depends
7310 * on it.
7311 */
7312 dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REF_CLK_ENABLE_VLV |
7313 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_REF_CLK_VLV;
7314 /* We should never disable this, set it here for state tracking */
7315 if (crtc->pipe == PIPE_B)
7316 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7317 dpll |= DPLL_VCO_ENABLE;
7318 pipe_config->dpll_hw_state.dpll = dpll;
7319
7320 dpll_md = (pipe_config->pixel_multiplier - 1)
7321 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7322 pipe_config->dpll_hw_state.dpll_md = dpll_md;
7323 }
7324
vlv_prepare_pll(struct intel_crtc * crtc,const struct intel_crtc_state * pipe_config)7325 static void vlv_prepare_pll(struct intel_crtc *crtc,
7326 const struct intel_crtc_state *pipe_config)
7327 {
7328 struct drm_device *dev = crtc->base.dev;
7329 struct drm_i915_private *dev_priv = dev->dev_private;
7330 int pipe = crtc->pipe;
7331 u32 mdiv;
7332 u32 bestn, bestm1, bestm2, bestp1, bestp2;
7333 u32 coreclk, reg_val;
7334
7335 mutex_lock(&dev_priv->sb_lock);
7336
7337 bestn = pipe_config->dpll.n;
7338 bestm1 = pipe_config->dpll.m1;
7339 bestm2 = pipe_config->dpll.m2;
7340 bestp1 = pipe_config->dpll.p1;
7341 bestp2 = pipe_config->dpll.p2;
7342
7343 /* See eDP HDMI DPIO driver vbios notes doc */
7344
7345 /* PLL B needs special handling */
7346 if (pipe == PIPE_B)
7347 vlv_pllb_recal_opamp(dev_priv, pipe);
7348
7349 /* Set up Tx target for periodic Rcomp update */
7350 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
7351
7352 /* Disable target IRef on PLL */
7353 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
7354 reg_val &= 0x00ffffff;
7355 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
7356
7357 /* Disable fast lock */
7358 vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
7359
7360 /* Set idtafcrecal before PLL is enabled */
7361 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
7362 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
7363 mdiv |= ((bestn << DPIO_N_SHIFT));
7364 mdiv |= (1 << DPIO_K_SHIFT);
7365
7366 /*
7367 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
7368 * but we don't support that).
7369 * Note: don't use the DAC post divider as it seems unstable.
7370 */
7371 mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
7372 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
7373
7374 mdiv |= DPIO_ENABLE_CALIBRATION;
7375 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
7376
7377 /* Set HBR and RBR LPF coefficients */
7378 if (pipe_config->port_clock == 162000 ||
7379 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG) ||
7380 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
7381 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
7382 0x009f0003);
7383 else
7384 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
7385 0x00d0000f);
7386
7387 if (pipe_config->has_dp_encoder) {
7388 /* Use SSC source */
7389 if (pipe == PIPE_A)
7390 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7391 0x0df40000);
7392 else
7393 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7394 0x0df70000);
7395 } else { /* HDMI or VGA */
7396 /* Use bend source */
7397 if (pipe == PIPE_A)
7398 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7399 0x0df70000);
7400 else
7401 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7402 0x0df40000);
7403 }
7404
7405 coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
7406 coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
7407 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
7408 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
7409 coreclk |= 0x01000000;
7410 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
7411
7412 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
7413 mutex_unlock(&dev_priv->sb_lock);
7414 }
7415
chv_compute_dpll(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)7416 static void chv_compute_dpll(struct intel_crtc *crtc,
7417 struct intel_crtc_state *pipe_config)
7418 {
7419 pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLK_CHV |
7420 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS |
7421 DPLL_VCO_ENABLE;
7422 if (crtc->pipe != PIPE_A)
7423 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7424
7425 pipe_config->dpll_hw_state.dpll_md =
7426 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7427 }
7428
chv_prepare_pll(struct intel_crtc * crtc,const struct intel_crtc_state * pipe_config)7429 static void chv_prepare_pll(struct intel_crtc *crtc,
7430 const struct intel_crtc_state *pipe_config)
7431 {
7432 struct drm_device *dev = crtc->base.dev;
7433 struct drm_i915_private *dev_priv = dev->dev_private;
7434 int pipe = crtc->pipe;
7435 int dpll_reg = DPLL(crtc->pipe);
7436 enum dpio_channel port = vlv_pipe_to_channel(pipe);
7437 u32 loopfilter, tribuf_calcntr;
7438 u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
7439 u32 dpio_val;
7440 int vco;
7441
7442 bestn = pipe_config->dpll.n;
7443 bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
7444 bestm1 = pipe_config->dpll.m1;
7445 bestm2 = pipe_config->dpll.m2 >> 22;
7446 bestp1 = pipe_config->dpll.p1;
7447 bestp2 = pipe_config->dpll.p2;
7448 vco = pipe_config->dpll.vco;
7449 dpio_val = 0;
7450 loopfilter = 0;
7451
7452 /*
7453 * Enable Refclk and SSC
7454 */
7455 I915_WRITE(dpll_reg,
7456 pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
7457
7458 mutex_lock(&dev_priv->sb_lock);
7459
7460 /* p1 and p2 divider */
7461 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
7462 5 << DPIO_CHV_S1_DIV_SHIFT |
7463 bestp1 << DPIO_CHV_P1_DIV_SHIFT |
7464 bestp2 << DPIO_CHV_P2_DIV_SHIFT |
7465 1 << DPIO_CHV_K_DIV_SHIFT);
7466
7467 /* Feedback post-divider - m2 */
7468 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
7469
7470 /* Feedback refclk divider - n and m1 */
7471 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
7472 DPIO_CHV_M1_DIV_BY_2 |
7473 1 << DPIO_CHV_N_DIV_SHIFT);
7474
7475 /* M2 fraction division */
7476 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
7477
7478 /* M2 fraction division enable */
7479 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
7480 dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN);
7481 dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT);
7482 if (bestm2_frac)
7483 dpio_val |= DPIO_CHV_FRAC_DIV_EN;
7484 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), dpio_val);
7485
7486 /* Program digital lock detect threshold */
7487 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW9(port));
7488 dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK |
7489 DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE);
7490 dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT);
7491 if (!bestm2_frac)
7492 dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE;
7493 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW9(port), dpio_val);
7494
7495 /* Loop filter */
7496 if (vco == 5400000) {
7497 loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT);
7498 loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT);
7499 loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT);
7500 tribuf_calcntr = 0x9;
7501 } else if (vco <= 6200000) {
7502 loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT);
7503 loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT);
7504 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7505 tribuf_calcntr = 0x9;
7506 } else if (vco <= 6480000) {
7507 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
7508 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
7509 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7510 tribuf_calcntr = 0x8;
7511 } else {
7512 /* Not supported. Apply the same limits as in the max case */
7513 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
7514 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
7515 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7516 tribuf_calcntr = 0;
7517 }
7518 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
7519
7520 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW8(port));
7521 dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK;
7522 dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT);
7523 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW8(port), dpio_val);
7524
7525 /* AFC Recal */
7526 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
7527 vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
7528 DPIO_AFC_RECAL);
7529
7530 mutex_unlock(&dev_priv->sb_lock);
7531 }
7532
7533 /**
7534 * vlv_force_pll_on - forcibly enable just the PLL
7535 * @dev_priv: i915 private structure
7536 * @pipe: pipe PLL to enable
7537 * @dpll: PLL configuration
7538 *
7539 * Enable the PLL for @pipe using the supplied @dpll config. To be used
7540 * in cases where we need the PLL enabled even when @pipe is not going to
7541 * be enabled.
7542 */
vlv_force_pll_on(struct drm_device * dev,enum pipe pipe,const struct dpll * dpll)7543 void vlv_force_pll_on(struct drm_device *dev, enum pipe pipe,
7544 const struct dpll *dpll)
7545 {
7546 struct intel_crtc *crtc =
7547 to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe));
7548 struct intel_crtc_state pipe_config = {
7549 .base.crtc = &crtc->base,
7550 .pixel_multiplier = 1,
7551 .dpll = *dpll,
7552 };
7553
7554 if (IS_CHERRYVIEW(dev)) {
7555 chv_compute_dpll(crtc, &pipe_config);
7556 chv_prepare_pll(crtc, &pipe_config);
7557 chv_enable_pll(crtc, &pipe_config);
7558 } else {
7559 vlv_compute_dpll(crtc, &pipe_config);
7560 vlv_prepare_pll(crtc, &pipe_config);
7561 vlv_enable_pll(crtc, &pipe_config);
7562 }
7563 }
7564
7565 /**
7566 * vlv_force_pll_off - forcibly disable just the PLL
7567 * @dev_priv: i915 private structure
7568 * @pipe: pipe PLL to disable
7569 *
7570 * Disable the PLL for @pipe. To be used in cases where we need
7571 * the PLL enabled even when @pipe is not going to be enabled.
7572 */
vlv_force_pll_off(struct drm_device * dev,enum pipe pipe)7573 void vlv_force_pll_off(struct drm_device *dev, enum pipe pipe)
7574 {
7575 if (IS_CHERRYVIEW(dev))
7576 chv_disable_pll(to_i915(dev), pipe);
7577 else
7578 vlv_disable_pll(to_i915(dev), pipe);
7579 }
7580
i9xx_compute_dpll(struct intel_crtc * crtc,struct intel_crtc_state * crtc_state,intel_clock_t * reduced_clock,int num_connectors)7581 static void i9xx_compute_dpll(struct intel_crtc *crtc,
7582 struct intel_crtc_state *crtc_state,
7583 intel_clock_t *reduced_clock,
7584 int num_connectors)
7585 {
7586 struct drm_device *dev = crtc->base.dev;
7587 struct drm_i915_private *dev_priv = dev->dev_private;
7588 u32 dpll;
7589 bool is_sdvo;
7590 struct dpll *clock = &crtc_state->dpll;
7591
7592 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
7593
7594 is_sdvo = intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO) ||
7595 intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI);
7596
7597 dpll = DPLL_VGA_MODE_DIS;
7598
7599 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
7600 dpll |= DPLLB_MODE_LVDS;
7601 else
7602 dpll |= DPLLB_MODE_DAC_SERIAL;
7603
7604 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
7605 dpll |= (crtc_state->pixel_multiplier - 1)
7606 << SDVO_MULTIPLIER_SHIFT_HIRES;
7607 }
7608
7609 if (is_sdvo)
7610 dpll |= DPLL_SDVO_HIGH_SPEED;
7611
7612 if (crtc_state->has_dp_encoder)
7613 dpll |= DPLL_SDVO_HIGH_SPEED;
7614
7615 /* compute bitmask from p1 value */
7616 if (IS_PINEVIEW(dev))
7617 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
7618 else {
7619 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7620 if (IS_G4X(dev) && reduced_clock)
7621 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
7622 }
7623 switch (clock->p2) {
7624 case 5:
7625 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
7626 break;
7627 case 7:
7628 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
7629 break;
7630 case 10:
7631 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
7632 break;
7633 case 14:
7634 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
7635 break;
7636 }
7637 if (INTEL_INFO(dev)->gen >= 4)
7638 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
7639
7640 if (crtc_state->sdvo_tv_clock)
7641 dpll |= PLL_REF_INPUT_TVCLKINBC;
7642 else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7643 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
7644 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7645 else
7646 dpll |= PLL_REF_INPUT_DREFCLK;
7647
7648 dpll |= DPLL_VCO_ENABLE;
7649 crtc_state->dpll_hw_state.dpll = dpll;
7650
7651 if (INTEL_INFO(dev)->gen >= 4) {
7652 u32 dpll_md = (crtc_state->pixel_multiplier - 1)
7653 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7654 crtc_state->dpll_hw_state.dpll_md = dpll_md;
7655 }
7656 }
7657
i8xx_compute_dpll(struct intel_crtc * crtc,struct intel_crtc_state * crtc_state,intel_clock_t * reduced_clock,int num_connectors)7658 static void i8xx_compute_dpll(struct intel_crtc *crtc,
7659 struct intel_crtc_state *crtc_state,
7660 intel_clock_t *reduced_clock,
7661 int num_connectors)
7662 {
7663 struct drm_device *dev = crtc->base.dev;
7664 struct drm_i915_private *dev_priv = dev->dev_private;
7665 u32 dpll;
7666 struct dpll *clock = &crtc_state->dpll;
7667
7668 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
7669
7670 dpll = DPLL_VGA_MODE_DIS;
7671
7672 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7673 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7674 } else {
7675 if (clock->p1 == 2)
7676 dpll |= PLL_P1_DIVIDE_BY_TWO;
7677 else
7678 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7679 if (clock->p2 == 4)
7680 dpll |= PLL_P2_DIVIDE_BY_4;
7681 }
7682
7683 if (!IS_I830(dev) && intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO))
7684 dpll |= DPLL_DVO_2X_MODE;
7685
7686 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7687 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
7688 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7689 else
7690 dpll |= PLL_REF_INPUT_DREFCLK;
7691
7692 dpll |= DPLL_VCO_ENABLE;
7693 crtc_state->dpll_hw_state.dpll = dpll;
7694 }
7695
intel_set_pipe_timings(struct intel_crtc * intel_crtc)7696 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
7697 {
7698 struct drm_device *dev = intel_crtc->base.dev;
7699 struct drm_i915_private *dev_priv = dev->dev_private;
7700 enum pipe pipe = intel_crtc->pipe;
7701 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
7702 const struct drm_display_mode *adjusted_mode = &intel_crtc->config->base.adjusted_mode;
7703 uint32_t crtc_vtotal, crtc_vblank_end;
7704 int vsyncshift = 0;
7705
7706 /* We need to be careful not to changed the adjusted mode, for otherwise
7707 * the hw state checker will get angry at the mismatch. */
7708 crtc_vtotal = adjusted_mode->crtc_vtotal;
7709 crtc_vblank_end = adjusted_mode->crtc_vblank_end;
7710
7711 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
7712 /* the chip adds 2 halflines automatically */
7713 crtc_vtotal -= 1;
7714 crtc_vblank_end -= 1;
7715
7716 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
7717 vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
7718 else
7719 vsyncshift = adjusted_mode->crtc_hsync_start -
7720 adjusted_mode->crtc_htotal / 2;
7721 if (vsyncshift < 0)
7722 vsyncshift += adjusted_mode->crtc_htotal;
7723 }
7724
7725 if (INTEL_INFO(dev)->gen > 3)
7726 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
7727
7728 I915_WRITE(HTOTAL(cpu_transcoder),
7729 (adjusted_mode->crtc_hdisplay - 1) |
7730 ((adjusted_mode->crtc_htotal - 1) << 16));
7731 I915_WRITE(HBLANK(cpu_transcoder),
7732 (adjusted_mode->crtc_hblank_start - 1) |
7733 ((adjusted_mode->crtc_hblank_end - 1) << 16));
7734 I915_WRITE(HSYNC(cpu_transcoder),
7735 (adjusted_mode->crtc_hsync_start - 1) |
7736 ((adjusted_mode->crtc_hsync_end - 1) << 16));
7737
7738 I915_WRITE(VTOTAL(cpu_transcoder),
7739 (adjusted_mode->crtc_vdisplay - 1) |
7740 ((crtc_vtotal - 1) << 16));
7741 I915_WRITE(VBLANK(cpu_transcoder),
7742 (adjusted_mode->crtc_vblank_start - 1) |
7743 ((crtc_vblank_end - 1) << 16));
7744 I915_WRITE(VSYNC(cpu_transcoder),
7745 (adjusted_mode->crtc_vsync_start - 1) |
7746 ((adjusted_mode->crtc_vsync_end - 1) << 16));
7747
7748 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
7749 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
7750 * documented on the DDI_FUNC_CTL register description, EDP Input Select
7751 * bits. */
7752 if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
7753 (pipe == PIPE_B || pipe == PIPE_C))
7754 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
7755
7756 /* pipesrc controls the size that is scaled from, which should
7757 * always be the user's requested size.
7758 */
7759 I915_WRITE(PIPESRC(pipe),
7760 ((intel_crtc->config->pipe_src_w - 1) << 16) |
7761 (intel_crtc->config->pipe_src_h - 1));
7762 }
7763
intel_get_pipe_timings(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)7764 static void intel_get_pipe_timings(struct intel_crtc *crtc,
7765 struct intel_crtc_state *pipe_config)
7766 {
7767 struct drm_device *dev = crtc->base.dev;
7768 struct drm_i915_private *dev_priv = dev->dev_private;
7769 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
7770 uint32_t tmp;
7771
7772 tmp = I915_READ(HTOTAL(cpu_transcoder));
7773 pipe_config->base.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
7774 pipe_config->base.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
7775 tmp = I915_READ(HBLANK(cpu_transcoder));
7776 pipe_config->base.adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
7777 pipe_config->base.adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
7778 tmp = I915_READ(HSYNC(cpu_transcoder));
7779 pipe_config->base.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
7780 pipe_config->base.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
7781
7782 tmp = I915_READ(VTOTAL(cpu_transcoder));
7783 pipe_config->base.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
7784 pipe_config->base.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
7785 tmp = I915_READ(VBLANK(cpu_transcoder));
7786 pipe_config->base.adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
7787 pipe_config->base.adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
7788 tmp = I915_READ(VSYNC(cpu_transcoder));
7789 pipe_config->base.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
7790 pipe_config->base.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
7791
7792 if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
7793 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
7794 pipe_config->base.adjusted_mode.crtc_vtotal += 1;
7795 pipe_config->base.adjusted_mode.crtc_vblank_end += 1;
7796 }
7797
7798 tmp = I915_READ(PIPESRC(crtc->pipe));
7799 pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
7800 pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
7801
7802 pipe_config->base.mode.vdisplay = pipe_config->pipe_src_h;
7803 pipe_config->base.mode.hdisplay = pipe_config->pipe_src_w;
7804 }
7805
intel_mode_from_pipe_config(struct drm_display_mode * mode,struct intel_crtc_state * pipe_config)7806 void intel_mode_from_pipe_config(struct drm_display_mode *mode,
7807 struct intel_crtc_state *pipe_config)
7808 {
7809 mode->hdisplay = pipe_config->base.adjusted_mode.crtc_hdisplay;
7810 mode->htotal = pipe_config->base.adjusted_mode.crtc_htotal;
7811 mode->hsync_start = pipe_config->base.adjusted_mode.crtc_hsync_start;
7812 mode->hsync_end = pipe_config->base.adjusted_mode.crtc_hsync_end;
7813
7814 mode->vdisplay = pipe_config->base.adjusted_mode.crtc_vdisplay;
7815 mode->vtotal = pipe_config->base.adjusted_mode.crtc_vtotal;
7816 mode->vsync_start = pipe_config->base.adjusted_mode.crtc_vsync_start;
7817 mode->vsync_end = pipe_config->base.adjusted_mode.crtc_vsync_end;
7818
7819 mode->flags = pipe_config->base.adjusted_mode.flags;
7820 mode->type = DRM_MODE_TYPE_DRIVER;
7821
7822 mode->clock = pipe_config->base.adjusted_mode.crtc_clock;
7823 mode->flags |= pipe_config->base.adjusted_mode.flags;
7824
7825 mode->hsync = drm_mode_hsync(mode);
7826 mode->vrefresh = drm_mode_vrefresh(mode);
7827 drm_mode_set_name(mode);
7828 }
7829
i9xx_set_pipeconf(struct intel_crtc * intel_crtc)7830 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
7831 {
7832 struct drm_device *dev = intel_crtc->base.dev;
7833 struct drm_i915_private *dev_priv = dev->dev_private;
7834 uint32_t pipeconf;
7835
7836 pipeconf = 0;
7837
7838 if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
7839 (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
7840 pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
7841
7842 if (intel_crtc->config->double_wide)
7843 pipeconf |= PIPECONF_DOUBLE_WIDE;
7844
7845 /* only g4x and later have fancy bpc/dither controls */
7846 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
7847 /* Bspec claims that we can't use dithering for 30bpp pipes. */
7848 if (intel_crtc->config->dither && intel_crtc->config->pipe_bpp != 30)
7849 pipeconf |= PIPECONF_DITHER_EN |
7850 PIPECONF_DITHER_TYPE_SP;
7851
7852 switch (intel_crtc->config->pipe_bpp) {
7853 case 18:
7854 pipeconf |= PIPECONF_6BPC;
7855 break;
7856 case 24:
7857 pipeconf |= PIPECONF_8BPC;
7858 break;
7859 case 30:
7860 pipeconf |= PIPECONF_10BPC;
7861 break;
7862 default:
7863 /* Case prevented by intel_choose_pipe_bpp_dither. */
7864 BUG();
7865 }
7866 }
7867
7868 if (HAS_PIPE_CXSR(dev)) {
7869 if (intel_crtc->lowfreq_avail) {
7870 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
7871 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
7872 } else {
7873 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
7874 }
7875 }
7876
7877 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
7878 if (INTEL_INFO(dev)->gen < 4 ||
7879 intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
7880 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
7881 else
7882 pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
7883 } else
7884 pipeconf |= PIPECONF_PROGRESSIVE;
7885
7886 if (IS_VALLEYVIEW(dev) && intel_crtc->config->limited_color_range)
7887 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
7888
7889 I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
7890 POSTING_READ(PIPECONF(intel_crtc->pipe));
7891 }
7892
i9xx_crtc_compute_clock(struct intel_crtc * crtc,struct intel_crtc_state * crtc_state)7893 static int i9xx_crtc_compute_clock(struct intel_crtc *crtc,
7894 struct intel_crtc_state *crtc_state)
7895 {
7896 struct drm_device *dev = crtc->base.dev;
7897 struct drm_i915_private *dev_priv = dev->dev_private;
7898 int refclk, num_connectors = 0;
7899 intel_clock_t clock;
7900 bool ok;
7901 bool is_dsi = false;
7902 struct intel_encoder *encoder;
7903 const intel_limit_t *limit;
7904 struct drm_atomic_state *state = crtc_state->base.state;
7905 struct drm_connector *connector;
7906 struct drm_connector_state *connector_state;
7907 int i;
7908
7909 memset(&crtc_state->dpll_hw_state, 0,
7910 sizeof(crtc_state->dpll_hw_state));
7911
7912 for_each_connector_in_state(state, connector, connector_state, i) {
7913 if (connector_state->crtc != &crtc->base)
7914 continue;
7915
7916 encoder = to_intel_encoder(connector_state->best_encoder);
7917
7918 switch (encoder->type) {
7919 case INTEL_OUTPUT_DSI:
7920 is_dsi = true;
7921 break;
7922 default:
7923 break;
7924 }
7925
7926 num_connectors++;
7927 }
7928
7929 if (is_dsi)
7930 return 0;
7931
7932 if (!crtc_state->clock_set) {
7933 refclk = i9xx_get_refclk(crtc_state, num_connectors);
7934
7935 /*
7936 * Returns a set of divisors for the desired target clock with
7937 * the given refclk, or FALSE. The returned values represent
7938 * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
7939 * 2) / p1 / p2.
7940 */
7941 limit = intel_limit(crtc_state, refclk);
7942 ok = dev_priv->display.find_dpll(limit, crtc_state,
7943 crtc_state->port_clock,
7944 refclk, NULL, &clock);
7945 if (!ok) {
7946 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7947 return -EINVAL;
7948 }
7949
7950 /* Compat-code for transition, will disappear. */
7951 crtc_state->dpll.n = clock.n;
7952 crtc_state->dpll.m1 = clock.m1;
7953 crtc_state->dpll.m2 = clock.m2;
7954 crtc_state->dpll.p1 = clock.p1;
7955 crtc_state->dpll.p2 = clock.p2;
7956 }
7957
7958 if (IS_GEN2(dev)) {
7959 i8xx_compute_dpll(crtc, crtc_state, NULL,
7960 num_connectors);
7961 } else if (IS_CHERRYVIEW(dev)) {
7962 chv_compute_dpll(crtc, crtc_state);
7963 } else if (IS_VALLEYVIEW(dev)) {
7964 vlv_compute_dpll(crtc, crtc_state);
7965 } else {
7966 i9xx_compute_dpll(crtc, crtc_state, NULL,
7967 num_connectors);
7968 }
7969
7970 return 0;
7971 }
7972
i9xx_get_pfit_config(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)7973 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
7974 struct intel_crtc_state *pipe_config)
7975 {
7976 struct drm_device *dev = crtc->base.dev;
7977 struct drm_i915_private *dev_priv = dev->dev_private;
7978 uint32_t tmp;
7979
7980 if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
7981 return;
7982
7983 tmp = I915_READ(PFIT_CONTROL);
7984 if (!(tmp & PFIT_ENABLE))
7985 return;
7986
7987 /* Check whether the pfit is attached to our pipe. */
7988 if (INTEL_INFO(dev)->gen < 4) {
7989 if (crtc->pipe != PIPE_B)
7990 return;
7991 } else {
7992 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
7993 return;
7994 }
7995
7996 pipe_config->gmch_pfit.control = tmp;
7997 pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
7998 if (INTEL_INFO(dev)->gen < 5)
7999 pipe_config->gmch_pfit.lvds_border_bits =
8000 I915_READ(LVDS) & LVDS_BORDER_ENABLE;
8001 }
8002
vlv_crtc_clock_get(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)8003 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
8004 struct intel_crtc_state *pipe_config)
8005 {
8006 struct drm_device *dev = crtc->base.dev;
8007 struct drm_i915_private *dev_priv = dev->dev_private;
8008 int pipe = pipe_config->cpu_transcoder;
8009 intel_clock_t clock;
8010 u32 mdiv;
8011 int refclk = 100000;
8012
8013 /* In case of MIPI DPLL will not even be used */
8014 if (!(pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE))
8015 return;
8016
8017 mutex_lock(&dev_priv->sb_lock);
8018 mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
8019 mutex_unlock(&dev_priv->sb_lock);
8020
8021 clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
8022 clock.m2 = mdiv & DPIO_M2DIV_MASK;
8023 clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
8024 clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
8025 clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
8026
8027 pipe_config->port_clock = vlv_calc_dpll_params(refclk, &clock);
8028 }
8029
8030 static void
i9xx_get_initial_plane_config(struct intel_crtc * crtc,struct intel_initial_plane_config * plane_config)8031 i9xx_get_initial_plane_config(struct intel_crtc *crtc,
8032 struct intel_initial_plane_config *plane_config)
8033 {
8034 struct drm_device *dev = crtc->base.dev;
8035 struct drm_i915_private *dev_priv = dev->dev_private;
8036 u32 val, base, offset;
8037 int pipe = crtc->pipe, plane = crtc->plane;
8038 int fourcc, pixel_format;
8039 unsigned int aligned_height;
8040 struct drm_framebuffer *fb;
8041 struct intel_framebuffer *intel_fb;
8042
8043 val = I915_READ(DSPCNTR(plane));
8044 if (!(val & DISPLAY_PLANE_ENABLE))
8045 return;
8046
8047 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8048 if (!intel_fb) {
8049 DRM_DEBUG_KMS("failed to alloc fb\n");
8050 return;
8051 }
8052
8053 fb = &intel_fb->base;
8054
8055 if (INTEL_INFO(dev)->gen >= 4) {
8056 if (val & DISPPLANE_TILED) {
8057 plane_config->tiling = I915_TILING_X;
8058 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
8059 }
8060 }
8061
8062 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
8063 fourcc = i9xx_format_to_fourcc(pixel_format);
8064 fb->pixel_format = fourcc;
8065 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
8066
8067 if (INTEL_INFO(dev)->gen >= 4) {
8068 if (plane_config->tiling)
8069 offset = I915_READ(DSPTILEOFF(plane));
8070 else
8071 offset = I915_READ(DSPLINOFF(plane));
8072 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
8073 } else {
8074 base = I915_READ(DSPADDR(plane));
8075 }
8076 plane_config->base = base;
8077
8078 val = I915_READ(PIPESRC(pipe));
8079 fb->width = ((val >> 16) & 0xfff) + 1;
8080 fb->height = ((val >> 0) & 0xfff) + 1;
8081
8082 val = I915_READ(DSPSTRIDE(pipe));
8083 fb->pitches[0] = val & 0xffffffc0;
8084
8085 aligned_height = intel_fb_align_height(dev, fb->height,
8086 fb->pixel_format,
8087 fb->modifier[0]);
8088
8089 plane_config->size = fb->pitches[0] * aligned_height;
8090
8091 DRM_DEBUG_KMS("pipe/plane %c/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
8092 pipe_name(pipe), plane, fb->width, fb->height,
8093 fb->bits_per_pixel, base, fb->pitches[0],
8094 plane_config->size);
8095
8096 plane_config->fb = intel_fb;
8097 }
8098
chv_crtc_clock_get(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)8099 static void chv_crtc_clock_get(struct intel_crtc *crtc,
8100 struct intel_crtc_state *pipe_config)
8101 {
8102 struct drm_device *dev = crtc->base.dev;
8103 struct drm_i915_private *dev_priv = dev->dev_private;
8104 int pipe = pipe_config->cpu_transcoder;
8105 enum dpio_channel port = vlv_pipe_to_channel(pipe);
8106 intel_clock_t clock;
8107 u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2, pll_dw3;
8108 int refclk = 100000;
8109
8110 mutex_lock(&dev_priv->sb_lock);
8111 cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
8112 pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
8113 pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
8114 pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
8115 pll_dw3 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
8116 mutex_unlock(&dev_priv->sb_lock);
8117
8118 clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
8119 clock.m2 = (pll_dw0 & 0xff) << 22;
8120 if (pll_dw3 & DPIO_CHV_FRAC_DIV_EN)
8121 clock.m2 |= pll_dw2 & 0x3fffff;
8122 clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
8123 clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
8124 clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
8125
8126 pipe_config->port_clock = chv_calc_dpll_params(refclk, &clock);
8127 }
8128
i9xx_get_pipe_config(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)8129 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
8130 struct intel_crtc_state *pipe_config)
8131 {
8132 struct drm_device *dev = crtc->base.dev;
8133 struct drm_i915_private *dev_priv = dev->dev_private;
8134 uint32_t tmp;
8135
8136 if (!intel_display_power_is_enabled(dev_priv,
8137 POWER_DOMAIN_PIPE(crtc->pipe)))
8138 return false;
8139
8140 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
8141 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
8142
8143 tmp = I915_READ(PIPECONF(crtc->pipe));
8144 if (!(tmp & PIPECONF_ENABLE))
8145 return false;
8146
8147 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
8148 switch (tmp & PIPECONF_BPC_MASK) {
8149 case PIPECONF_6BPC:
8150 pipe_config->pipe_bpp = 18;
8151 break;
8152 case PIPECONF_8BPC:
8153 pipe_config->pipe_bpp = 24;
8154 break;
8155 case PIPECONF_10BPC:
8156 pipe_config->pipe_bpp = 30;
8157 break;
8158 default:
8159 break;
8160 }
8161 }
8162
8163 if (IS_VALLEYVIEW(dev) && (tmp & PIPECONF_COLOR_RANGE_SELECT))
8164 pipe_config->limited_color_range = true;
8165
8166 if (INTEL_INFO(dev)->gen < 4)
8167 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
8168
8169 intel_get_pipe_timings(crtc, pipe_config);
8170
8171 i9xx_get_pfit_config(crtc, pipe_config);
8172
8173 if (INTEL_INFO(dev)->gen >= 4) {
8174 tmp = I915_READ(DPLL_MD(crtc->pipe));
8175 pipe_config->pixel_multiplier =
8176 ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
8177 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
8178 pipe_config->dpll_hw_state.dpll_md = tmp;
8179 } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
8180 tmp = I915_READ(DPLL(crtc->pipe));
8181 pipe_config->pixel_multiplier =
8182 ((tmp & SDVO_MULTIPLIER_MASK)
8183 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
8184 } else {
8185 /* Note that on i915G/GM the pixel multiplier is in the sdvo
8186 * port and will be fixed up in the encoder->get_config
8187 * function. */
8188 pipe_config->pixel_multiplier = 1;
8189 }
8190 pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
8191 if (!IS_VALLEYVIEW(dev)) {
8192 /*
8193 * DPLL_DVO_2X_MODE must be enabled for both DPLLs
8194 * on 830. Filter it out here so that we don't
8195 * report errors due to that.
8196 */
8197 if (IS_I830(dev))
8198 pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
8199
8200 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
8201 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
8202 } else {
8203 /* Mask out read-only status bits. */
8204 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
8205 DPLL_PORTC_READY_MASK |
8206 DPLL_PORTB_READY_MASK);
8207 }
8208
8209 if (IS_CHERRYVIEW(dev))
8210 chv_crtc_clock_get(crtc, pipe_config);
8211 else if (IS_VALLEYVIEW(dev))
8212 vlv_crtc_clock_get(crtc, pipe_config);
8213 else
8214 i9xx_crtc_clock_get(crtc, pipe_config);
8215
8216 /*
8217 * Normally the dotclock is filled in by the encoder .get_config()
8218 * but in case the pipe is enabled w/o any ports we need a sane
8219 * default.
8220 */
8221 pipe_config->base.adjusted_mode.crtc_clock =
8222 pipe_config->port_clock / pipe_config->pixel_multiplier;
8223
8224 return true;
8225 }
8226
ironlake_init_pch_refclk(struct drm_device * dev)8227 static void ironlake_init_pch_refclk(struct drm_device *dev)
8228 {
8229 struct drm_i915_private *dev_priv = dev->dev_private;
8230 struct intel_encoder *encoder;
8231 u32 val, final;
8232 bool has_lvds = false;
8233 bool has_cpu_edp = false;
8234 bool has_panel = false;
8235 bool has_ck505 = false;
8236 bool can_ssc = false;
8237
8238 /* We need to take the global config into account */
8239 for_each_intel_encoder(dev, encoder) {
8240 switch (encoder->type) {
8241 case INTEL_OUTPUT_LVDS:
8242 has_panel = true;
8243 has_lvds = true;
8244 break;
8245 case INTEL_OUTPUT_EDP:
8246 has_panel = true;
8247 if (enc_to_dig_port(&encoder->base)->port == PORT_A)
8248 has_cpu_edp = true;
8249 break;
8250 default:
8251 break;
8252 }
8253 }
8254
8255 if (HAS_PCH_IBX(dev)) {
8256 has_ck505 = dev_priv->vbt.display_clock_mode;
8257 can_ssc = has_ck505;
8258 } else {
8259 has_ck505 = false;
8260 can_ssc = true;
8261 }
8262
8263 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
8264 has_panel, has_lvds, has_ck505);
8265
8266 /* Ironlake: try to setup display ref clock before DPLL
8267 * enabling. This is only under driver's control after
8268 * PCH B stepping, previous chipset stepping should be
8269 * ignoring this setting.
8270 */
8271 val = I915_READ(PCH_DREF_CONTROL);
8272
8273 /* As we must carefully and slowly disable/enable each source in turn,
8274 * compute the final state we want first and check if we need to
8275 * make any changes at all.
8276 */
8277 final = val;
8278 final &= ~DREF_NONSPREAD_SOURCE_MASK;
8279 if (has_ck505)
8280 final |= DREF_NONSPREAD_CK505_ENABLE;
8281 else
8282 final |= DREF_NONSPREAD_SOURCE_ENABLE;
8283
8284 final &= ~DREF_SSC_SOURCE_MASK;
8285 final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8286 final &= ~DREF_SSC1_ENABLE;
8287
8288 if (has_panel) {
8289 final |= DREF_SSC_SOURCE_ENABLE;
8290
8291 if (intel_panel_use_ssc(dev_priv) && can_ssc)
8292 final |= DREF_SSC1_ENABLE;
8293
8294 if (has_cpu_edp) {
8295 if (intel_panel_use_ssc(dev_priv) && can_ssc)
8296 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
8297 else
8298 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
8299 } else
8300 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8301 } else {
8302 final |= DREF_SSC_SOURCE_DISABLE;
8303 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8304 }
8305
8306 if (final == val)
8307 return;
8308
8309 /* Always enable nonspread source */
8310 val &= ~DREF_NONSPREAD_SOURCE_MASK;
8311
8312 if (has_ck505)
8313 val |= DREF_NONSPREAD_CK505_ENABLE;
8314 else
8315 val |= DREF_NONSPREAD_SOURCE_ENABLE;
8316
8317 if (has_panel) {
8318 val &= ~DREF_SSC_SOURCE_MASK;
8319 val |= DREF_SSC_SOURCE_ENABLE;
8320
8321 /* SSC must be turned on before enabling the CPU output */
8322 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
8323 DRM_DEBUG_KMS("Using SSC on panel\n");
8324 val |= DREF_SSC1_ENABLE;
8325 } else
8326 val &= ~DREF_SSC1_ENABLE;
8327
8328 /* Get SSC going before enabling the outputs */
8329 I915_WRITE(PCH_DREF_CONTROL, val);
8330 POSTING_READ(PCH_DREF_CONTROL);
8331 udelay(200);
8332
8333 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8334
8335 /* Enable CPU source on CPU attached eDP */
8336 if (has_cpu_edp) {
8337 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
8338 DRM_DEBUG_KMS("Using SSC on eDP\n");
8339 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
8340 } else
8341 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
8342 } else
8343 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8344
8345 I915_WRITE(PCH_DREF_CONTROL, val);
8346 POSTING_READ(PCH_DREF_CONTROL);
8347 udelay(200);
8348 } else {
8349 DRM_DEBUG_KMS("Disabling SSC entirely\n");
8350
8351 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8352
8353 /* Turn off CPU output */
8354 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8355
8356 I915_WRITE(PCH_DREF_CONTROL, val);
8357 POSTING_READ(PCH_DREF_CONTROL);
8358 udelay(200);
8359
8360 /* Turn off the SSC source */
8361 val &= ~DREF_SSC_SOURCE_MASK;
8362 val |= DREF_SSC_SOURCE_DISABLE;
8363
8364 /* Turn off SSC1 */
8365 val &= ~DREF_SSC1_ENABLE;
8366
8367 I915_WRITE(PCH_DREF_CONTROL, val);
8368 POSTING_READ(PCH_DREF_CONTROL);
8369 udelay(200);
8370 }
8371
8372 BUG_ON(val != final);
8373 }
8374
lpt_reset_fdi_mphy(struct drm_i915_private * dev_priv)8375 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
8376 {
8377 uint32_t tmp;
8378
8379 tmp = I915_READ(SOUTH_CHICKEN2);
8380 tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
8381 I915_WRITE(SOUTH_CHICKEN2, tmp);
8382
8383 if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
8384 FDI_MPHY_IOSFSB_RESET_STATUS, 100))
8385 DRM_ERROR("FDI mPHY reset assert timeout\n");
8386
8387 tmp = I915_READ(SOUTH_CHICKEN2);
8388 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
8389 I915_WRITE(SOUTH_CHICKEN2, tmp);
8390
8391 if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
8392 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
8393 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
8394 }
8395
8396 /* WaMPhyProgramming:hsw */
lpt_program_fdi_mphy(struct drm_i915_private * dev_priv)8397 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
8398 {
8399 uint32_t tmp;
8400
8401 tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
8402 tmp &= ~(0xFF << 24);
8403 tmp |= (0x12 << 24);
8404 intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
8405
8406 tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
8407 tmp |= (1 << 11);
8408 intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
8409
8410 tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
8411 tmp |= (1 << 11);
8412 intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
8413
8414 tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
8415 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
8416 intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
8417
8418 tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
8419 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
8420 intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
8421
8422 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
8423 tmp &= ~(7 << 13);
8424 tmp |= (5 << 13);
8425 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
8426
8427 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
8428 tmp &= ~(7 << 13);
8429 tmp |= (5 << 13);
8430 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
8431
8432 tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
8433 tmp &= ~0xFF;
8434 tmp |= 0x1C;
8435 intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
8436
8437 tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
8438 tmp &= ~0xFF;
8439 tmp |= 0x1C;
8440 intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
8441
8442 tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
8443 tmp &= ~(0xFF << 16);
8444 tmp |= (0x1C << 16);
8445 intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
8446
8447 tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
8448 tmp &= ~(0xFF << 16);
8449 tmp |= (0x1C << 16);
8450 intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
8451
8452 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
8453 tmp |= (1 << 27);
8454 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
8455
8456 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
8457 tmp |= (1 << 27);
8458 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
8459
8460 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
8461 tmp &= ~(0xF << 28);
8462 tmp |= (4 << 28);
8463 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
8464
8465 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
8466 tmp &= ~(0xF << 28);
8467 tmp |= (4 << 28);
8468 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
8469 }
8470
8471 /* Implements 3 different sequences from BSpec chapter "Display iCLK
8472 * Programming" based on the parameters passed:
8473 * - Sequence to enable CLKOUT_DP
8474 * - Sequence to enable CLKOUT_DP without spread
8475 * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
8476 */
lpt_enable_clkout_dp(struct drm_device * dev,bool with_spread,bool with_fdi)8477 static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
8478 bool with_fdi)
8479 {
8480 struct drm_i915_private *dev_priv = dev->dev_private;
8481 uint32_t reg, tmp;
8482
8483 if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
8484 with_spread = true;
8485 if (WARN(HAS_PCH_LPT_LP(dev) && with_fdi, "LP PCH doesn't have FDI\n"))
8486 with_fdi = false;
8487
8488 mutex_lock(&dev_priv->sb_lock);
8489
8490 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8491 tmp &= ~SBI_SSCCTL_DISABLE;
8492 tmp |= SBI_SSCCTL_PATHALT;
8493 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8494
8495 udelay(24);
8496
8497 if (with_spread) {
8498 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8499 tmp &= ~SBI_SSCCTL_PATHALT;
8500 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8501
8502 if (with_fdi) {
8503 lpt_reset_fdi_mphy(dev_priv);
8504 lpt_program_fdi_mphy(dev_priv);
8505 }
8506 }
8507
8508 reg = HAS_PCH_LPT_LP(dev) ? SBI_GEN0 : SBI_DBUFF0;
8509 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
8510 tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
8511 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
8512
8513 mutex_unlock(&dev_priv->sb_lock);
8514 }
8515
8516 /* Sequence to disable CLKOUT_DP */
lpt_disable_clkout_dp(struct drm_device * dev)8517 static void lpt_disable_clkout_dp(struct drm_device *dev)
8518 {
8519 struct drm_i915_private *dev_priv = dev->dev_private;
8520 uint32_t reg, tmp;
8521
8522 mutex_lock(&dev_priv->sb_lock);
8523
8524 reg = HAS_PCH_LPT_LP(dev) ? SBI_GEN0 : SBI_DBUFF0;
8525 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
8526 tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
8527 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
8528
8529 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8530 if (!(tmp & SBI_SSCCTL_DISABLE)) {
8531 if (!(tmp & SBI_SSCCTL_PATHALT)) {
8532 tmp |= SBI_SSCCTL_PATHALT;
8533 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8534 udelay(32);
8535 }
8536 tmp |= SBI_SSCCTL_DISABLE;
8537 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8538 }
8539
8540 mutex_unlock(&dev_priv->sb_lock);
8541 }
8542
lpt_init_pch_refclk(struct drm_device * dev)8543 static void lpt_init_pch_refclk(struct drm_device *dev)
8544 {
8545 struct intel_encoder *encoder;
8546 bool has_vga = false;
8547
8548 for_each_intel_encoder(dev, encoder) {
8549 switch (encoder->type) {
8550 case INTEL_OUTPUT_ANALOG:
8551 has_vga = true;
8552 break;
8553 default:
8554 break;
8555 }
8556 }
8557
8558 if (has_vga)
8559 lpt_enable_clkout_dp(dev, true, true);
8560 else
8561 lpt_disable_clkout_dp(dev);
8562 }
8563
8564 /*
8565 * Initialize reference clocks when the driver loads
8566 */
intel_init_pch_refclk(struct drm_device * dev)8567 void intel_init_pch_refclk(struct drm_device *dev)
8568 {
8569 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
8570 ironlake_init_pch_refclk(dev);
8571 else if (HAS_PCH_LPT(dev))
8572 lpt_init_pch_refclk(dev);
8573 }
8574
ironlake_get_refclk(struct intel_crtc_state * crtc_state)8575 static int ironlake_get_refclk(struct intel_crtc_state *crtc_state)
8576 {
8577 struct drm_device *dev = crtc_state->base.crtc->dev;
8578 struct drm_i915_private *dev_priv = dev->dev_private;
8579 struct drm_atomic_state *state = crtc_state->base.state;
8580 struct drm_connector *connector;
8581 struct drm_connector_state *connector_state;
8582 struct intel_encoder *encoder;
8583 int num_connectors = 0, i;
8584 bool is_lvds = false;
8585
8586 for_each_connector_in_state(state, connector, connector_state, i) {
8587 if (connector_state->crtc != crtc_state->base.crtc)
8588 continue;
8589
8590 encoder = to_intel_encoder(connector_state->best_encoder);
8591
8592 switch (encoder->type) {
8593 case INTEL_OUTPUT_LVDS:
8594 is_lvds = true;
8595 break;
8596 default:
8597 break;
8598 }
8599 num_connectors++;
8600 }
8601
8602 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
8603 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
8604 dev_priv->vbt.lvds_ssc_freq);
8605 return dev_priv->vbt.lvds_ssc_freq;
8606 }
8607
8608 return 120000;
8609 }
8610
ironlake_set_pipeconf(struct drm_crtc * crtc)8611 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
8612 {
8613 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
8614 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8615 int pipe = intel_crtc->pipe;
8616 uint32_t val;
8617
8618 val = 0;
8619
8620 switch (intel_crtc->config->pipe_bpp) {
8621 case 18:
8622 val |= PIPECONF_6BPC;
8623 break;
8624 case 24:
8625 val |= PIPECONF_8BPC;
8626 break;
8627 case 30:
8628 val |= PIPECONF_10BPC;
8629 break;
8630 case 36:
8631 val |= PIPECONF_12BPC;
8632 break;
8633 default:
8634 /* Case prevented by intel_choose_pipe_bpp_dither. */
8635 BUG();
8636 }
8637
8638 if (intel_crtc->config->dither)
8639 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8640
8641 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
8642 val |= PIPECONF_INTERLACED_ILK;
8643 else
8644 val |= PIPECONF_PROGRESSIVE;
8645
8646 if (intel_crtc->config->limited_color_range)
8647 val |= PIPECONF_COLOR_RANGE_SELECT;
8648
8649 I915_WRITE(PIPECONF(pipe), val);
8650 POSTING_READ(PIPECONF(pipe));
8651 }
8652
8653 /*
8654 * Set up the pipe CSC unit.
8655 *
8656 * Currently only full range RGB to limited range RGB conversion
8657 * is supported, but eventually this should handle various
8658 * RGB<->YCbCr scenarios as well.
8659 */
intel_set_pipe_csc(struct drm_crtc * crtc)8660 static void intel_set_pipe_csc(struct drm_crtc *crtc)
8661 {
8662 struct drm_device *dev = crtc->dev;
8663 struct drm_i915_private *dev_priv = dev->dev_private;
8664 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8665 int pipe = intel_crtc->pipe;
8666 uint16_t coeff = 0x7800; /* 1.0 */
8667
8668 /*
8669 * TODO: Check what kind of values actually come out of the pipe
8670 * with these coeff/postoff values and adjust to get the best
8671 * accuracy. Perhaps we even need to take the bpc value into
8672 * consideration.
8673 */
8674
8675 if (intel_crtc->config->limited_color_range)
8676 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
8677
8678 /*
8679 * GY/GU and RY/RU should be the other way around according
8680 * to BSpec, but reality doesn't agree. Just set them up in
8681 * a way that results in the correct picture.
8682 */
8683 I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
8684 I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
8685
8686 I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
8687 I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
8688
8689 I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
8690 I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
8691
8692 I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
8693 I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
8694 I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
8695
8696 if (INTEL_INFO(dev)->gen > 6) {
8697 uint16_t postoff = 0;
8698
8699 if (intel_crtc->config->limited_color_range)
8700 postoff = (16 * (1 << 12) / 255) & 0x1fff;
8701
8702 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
8703 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
8704 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
8705
8706 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
8707 } else {
8708 uint32_t mode = CSC_MODE_YUV_TO_RGB;
8709
8710 if (intel_crtc->config->limited_color_range)
8711 mode |= CSC_BLACK_SCREEN_OFFSET;
8712
8713 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
8714 }
8715 }
8716
haswell_set_pipeconf(struct drm_crtc * crtc)8717 static void haswell_set_pipeconf(struct drm_crtc *crtc)
8718 {
8719 struct drm_device *dev = crtc->dev;
8720 struct drm_i915_private *dev_priv = dev->dev_private;
8721 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8722 enum pipe pipe = intel_crtc->pipe;
8723 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
8724 uint32_t val;
8725
8726 val = 0;
8727
8728 if (IS_HASWELL(dev) && intel_crtc->config->dither)
8729 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8730
8731 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
8732 val |= PIPECONF_INTERLACED_ILK;
8733 else
8734 val |= PIPECONF_PROGRESSIVE;
8735
8736 I915_WRITE(PIPECONF(cpu_transcoder), val);
8737 POSTING_READ(PIPECONF(cpu_transcoder));
8738
8739 I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
8740 POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
8741
8742 if (IS_BROADWELL(dev) || INTEL_INFO(dev)->gen >= 9) {
8743 val = 0;
8744
8745 switch (intel_crtc->config->pipe_bpp) {
8746 case 18:
8747 val |= PIPEMISC_DITHER_6_BPC;
8748 break;
8749 case 24:
8750 val |= PIPEMISC_DITHER_8_BPC;
8751 break;
8752 case 30:
8753 val |= PIPEMISC_DITHER_10_BPC;
8754 break;
8755 case 36:
8756 val |= PIPEMISC_DITHER_12_BPC;
8757 break;
8758 default:
8759 /* Case prevented by pipe_config_set_bpp. */
8760 BUG();
8761 }
8762
8763 if (intel_crtc->config->dither)
8764 val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
8765
8766 I915_WRITE(PIPEMISC(pipe), val);
8767 }
8768 }
8769
ironlake_compute_clocks(struct drm_crtc * crtc,struct intel_crtc_state * crtc_state,intel_clock_t * clock,bool * has_reduced_clock,intel_clock_t * reduced_clock)8770 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
8771 struct intel_crtc_state *crtc_state,
8772 intel_clock_t *clock,
8773 bool *has_reduced_clock,
8774 intel_clock_t *reduced_clock)
8775 {
8776 struct drm_device *dev = crtc->dev;
8777 struct drm_i915_private *dev_priv = dev->dev_private;
8778 int refclk;
8779 const intel_limit_t *limit;
8780 bool ret;
8781
8782 refclk = ironlake_get_refclk(crtc_state);
8783
8784 /*
8785 * Returns a set of divisors for the desired target clock with the given
8786 * refclk, or FALSE. The returned values represent the clock equation:
8787 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
8788 */
8789 limit = intel_limit(crtc_state, refclk);
8790 ret = dev_priv->display.find_dpll(limit, crtc_state,
8791 crtc_state->port_clock,
8792 refclk, NULL, clock);
8793 if (!ret)
8794 return false;
8795
8796 return true;
8797 }
8798
ironlake_get_lanes_required(int target_clock,int link_bw,int bpp)8799 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
8800 {
8801 /*
8802 * Account for spread spectrum to avoid
8803 * oversubscribing the link. Max center spread
8804 * is 2.5%; use 5% for safety's sake.
8805 */
8806 u32 bps = target_clock * bpp * 21 / 20;
8807 return DIV_ROUND_UP(bps, link_bw * 8);
8808 }
8809
ironlake_needs_fb_cb_tune(struct dpll * dpll,int factor)8810 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
8811 {
8812 return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
8813 }
8814
ironlake_compute_dpll(struct intel_crtc * intel_crtc,struct intel_crtc_state * crtc_state,u32 * fp,intel_clock_t * reduced_clock,u32 * fp2)8815 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
8816 struct intel_crtc_state *crtc_state,
8817 u32 *fp,
8818 intel_clock_t *reduced_clock, u32 *fp2)
8819 {
8820 struct drm_crtc *crtc = &intel_crtc->base;
8821 struct drm_device *dev = crtc->dev;
8822 struct drm_i915_private *dev_priv = dev->dev_private;
8823 struct drm_atomic_state *state = crtc_state->base.state;
8824 struct drm_connector *connector;
8825 struct drm_connector_state *connector_state;
8826 struct intel_encoder *encoder;
8827 uint32_t dpll;
8828 int factor, num_connectors = 0, i;
8829 bool is_lvds = false, is_sdvo = false;
8830
8831 for_each_connector_in_state(state, connector, connector_state, i) {
8832 if (connector_state->crtc != crtc_state->base.crtc)
8833 continue;
8834
8835 encoder = to_intel_encoder(connector_state->best_encoder);
8836
8837 switch (encoder->type) {
8838 case INTEL_OUTPUT_LVDS:
8839 is_lvds = true;
8840 break;
8841 case INTEL_OUTPUT_SDVO:
8842 case INTEL_OUTPUT_HDMI:
8843 is_sdvo = true;
8844 break;
8845 default:
8846 break;
8847 }
8848
8849 num_connectors++;
8850 }
8851
8852 /* Enable autotuning of the PLL clock (if permissible) */
8853 factor = 21;
8854 if (is_lvds) {
8855 if ((intel_panel_use_ssc(dev_priv) &&
8856 dev_priv->vbt.lvds_ssc_freq == 100000) ||
8857 (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
8858 factor = 25;
8859 } else if (crtc_state->sdvo_tv_clock)
8860 factor = 20;
8861
8862 if (ironlake_needs_fb_cb_tune(&crtc_state->dpll, factor))
8863 *fp |= FP_CB_TUNE;
8864
8865 if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
8866 *fp2 |= FP_CB_TUNE;
8867
8868 dpll = 0;
8869
8870 if (is_lvds)
8871 dpll |= DPLLB_MODE_LVDS;
8872 else
8873 dpll |= DPLLB_MODE_DAC_SERIAL;
8874
8875 dpll |= (crtc_state->pixel_multiplier - 1)
8876 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
8877
8878 if (is_sdvo)
8879 dpll |= DPLL_SDVO_HIGH_SPEED;
8880 if (crtc_state->has_dp_encoder)
8881 dpll |= DPLL_SDVO_HIGH_SPEED;
8882
8883 /* compute bitmask from p1 value */
8884 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
8885 /* also FPA1 */
8886 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
8887
8888 switch (crtc_state->dpll.p2) {
8889 case 5:
8890 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
8891 break;
8892 case 7:
8893 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
8894 break;
8895 case 10:
8896 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
8897 break;
8898 case 14:
8899 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
8900 break;
8901 }
8902
8903 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
8904 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
8905 else
8906 dpll |= PLL_REF_INPUT_DREFCLK;
8907
8908 return dpll | DPLL_VCO_ENABLE;
8909 }
8910
ironlake_crtc_compute_clock(struct intel_crtc * crtc,struct intel_crtc_state * crtc_state)8911 static int ironlake_crtc_compute_clock(struct intel_crtc *crtc,
8912 struct intel_crtc_state *crtc_state)
8913 {
8914 struct drm_device *dev = crtc->base.dev;
8915 intel_clock_t clock, reduced_clock;
8916 u32 dpll = 0, fp = 0, fp2 = 0;
8917 bool ok, has_reduced_clock = false;
8918 bool is_lvds = false;
8919 struct intel_shared_dpll *pll;
8920
8921 memset(&crtc_state->dpll_hw_state, 0,
8922 sizeof(crtc_state->dpll_hw_state));
8923
8924 is_lvds = intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS);
8925
8926 WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
8927 "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
8928
8929 ok = ironlake_compute_clocks(&crtc->base, crtc_state, &clock,
8930 &has_reduced_clock, &reduced_clock);
8931 if (!ok && !crtc_state->clock_set) {
8932 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8933 return -EINVAL;
8934 }
8935 /* Compat-code for transition, will disappear. */
8936 if (!crtc_state->clock_set) {
8937 crtc_state->dpll.n = clock.n;
8938 crtc_state->dpll.m1 = clock.m1;
8939 crtc_state->dpll.m2 = clock.m2;
8940 crtc_state->dpll.p1 = clock.p1;
8941 crtc_state->dpll.p2 = clock.p2;
8942 }
8943
8944 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
8945 if (crtc_state->has_pch_encoder) {
8946 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
8947 if (has_reduced_clock)
8948 fp2 = i9xx_dpll_compute_fp(&reduced_clock);
8949
8950 dpll = ironlake_compute_dpll(crtc, crtc_state,
8951 &fp, &reduced_clock,
8952 has_reduced_clock ? &fp2 : NULL);
8953
8954 crtc_state->dpll_hw_state.dpll = dpll;
8955 crtc_state->dpll_hw_state.fp0 = fp;
8956 if (has_reduced_clock)
8957 crtc_state->dpll_hw_state.fp1 = fp2;
8958 else
8959 crtc_state->dpll_hw_state.fp1 = fp;
8960
8961 pll = intel_get_shared_dpll(crtc, crtc_state);
8962 if (pll == NULL) {
8963 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
8964 pipe_name(crtc->pipe));
8965 return -EINVAL;
8966 }
8967 }
8968
8969 if (is_lvds && has_reduced_clock)
8970 crtc->lowfreq_avail = true;
8971 else
8972 crtc->lowfreq_avail = false;
8973
8974 return 0;
8975 }
8976
intel_pch_transcoder_get_m_n(struct intel_crtc * crtc,struct intel_link_m_n * m_n)8977 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
8978 struct intel_link_m_n *m_n)
8979 {
8980 struct drm_device *dev = crtc->base.dev;
8981 struct drm_i915_private *dev_priv = dev->dev_private;
8982 enum pipe pipe = crtc->pipe;
8983
8984 m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
8985 m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
8986 m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
8987 & ~TU_SIZE_MASK;
8988 m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
8989 m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
8990 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8991 }
8992
intel_cpu_transcoder_get_m_n(struct intel_crtc * crtc,enum transcoder transcoder,struct intel_link_m_n * m_n,struct intel_link_m_n * m2_n2)8993 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
8994 enum transcoder transcoder,
8995 struct intel_link_m_n *m_n,
8996 struct intel_link_m_n *m2_n2)
8997 {
8998 struct drm_device *dev = crtc->base.dev;
8999 struct drm_i915_private *dev_priv = dev->dev_private;
9000 enum pipe pipe = crtc->pipe;
9001
9002 if (INTEL_INFO(dev)->gen >= 5) {
9003 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
9004 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
9005 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
9006 & ~TU_SIZE_MASK;
9007 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
9008 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
9009 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9010 /* Read M2_N2 registers only for gen < 8 (M2_N2 available for
9011 * gen < 8) and if DRRS is supported (to make sure the
9012 * registers are not unnecessarily read).
9013 */
9014 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
9015 crtc->config->has_drrs) {
9016 m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
9017 m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
9018 m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
9019 & ~TU_SIZE_MASK;
9020 m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
9021 m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
9022 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9023 }
9024 } else {
9025 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
9026 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
9027 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
9028 & ~TU_SIZE_MASK;
9029 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
9030 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
9031 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9032 }
9033 }
9034
intel_dp_get_m_n(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)9035 void intel_dp_get_m_n(struct intel_crtc *crtc,
9036 struct intel_crtc_state *pipe_config)
9037 {
9038 if (pipe_config->has_pch_encoder)
9039 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
9040 else
9041 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
9042 &pipe_config->dp_m_n,
9043 &pipe_config->dp_m2_n2);
9044 }
9045
ironlake_get_fdi_m_n_config(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)9046 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
9047 struct intel_crtc_state *pipe_config)
9048 {
9049 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
9050 &pipe_config->fdi_m_n, NULL);
9051 }
9052
skylake_get_pfit_config(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)9053 static void skylake_get_pfit_config(struct intel_crtc *crtc,
9054 struct intel_crtc_state *pipe_config)
9055 {
9056 struct drm_device *dev = crtc->base.dev;
9057 struct drm_i915_private *dev_priv = dev->dev_private;
9058 struct intel_crtc_scaler_state *scaler_state = &pipe_config->scaler_state;
9059 uint32_t ps_ctrl = 0;
9060 int id = -1;
9061 int i;
9062
9063 /* find scaler attached to this pipe */
9064 for (i = 0; i < crtc->num_scalers; i++) {
9065 ps_ctrl = I915_READ(SKL_PS_CTRL(crtc->pipe, i));
9066 if (ps_ctrl & PS_SCALER_EN && !(ps_ctrl & PS_PLANE_SEL_MASK)) {
9067 id = i;
9068 pipe_config->pch_pfit.enabled = true;
9069 pipe_config->pch_pfit.pos = I915_READ(SKL_PS_WIN_POS(crtc->pipe, i));
9070 pipe_config->pch_pfit.size = I915_READ(SKL_PS_WIN_SZ(crtc->pipe, i));
9071 break;
9072 }
9073 }
9074
9075 scaler_state->scaler_id = id;
9076 if (id >= 0) {
9077 scaler_state->scaler_users |= (1 << SKL_CRTC_INDEX);
9078 } else {
9079 scaler_state->scaler_users &= ~(1 << SKL_CRTC_INDEX);
9080 }
9081 }
9082
9083 static void
skylake_get_initial_plane_config(struct intel_crtc * crtc,struct intel_initial_plane_config * plane_config)9084 skylake_get_initial_plane_config(struct intel_crtc *crtc,
9085 struct intel_initial_plane_config *plane_config)
9086 {
9087 struct drm_device *dev = crtc->base.dev;
9088 struct drm_i915_private *dev_priv = dev->dev_private;
9089 u32 val, base, offset, stride_mult, tiling;
9090 int pipe = crtc->pipe;
9091 int fourcc, pixel_format;
9092 unsigned int aligned_height;
9093 struct drm_framebuffer *fb;
9094 struct intel_framebuffer *intel_fb;
9095
9096 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9097 if (!intel_fb) {
9098 DRM_DEBUG_KMS("failed to alloc fb\n");
9099 return;
9100 }
9101
9102 fb = &intel_fb->base;
9103
9104 val = I915_READ(PLANE_CTL(pipe, 0));
9105 if (!(val & PLANE_CTL_ENABLE))
9106 goto error;
9107
9108 pixel_format = val & PLANE_CTL_FORMAT_MASK;
9109 fourcc = skl_format_to_fourcc(pixel_format,
9110 val & PLANE_CTL_ORDER_RGBX,
9111 val & PLANE_CTL_ALPHA_MASK);
9112 fb->pixel_format = fourcc;
9113 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
9114
9115 tiling = val & PLANE_CTL_TILED_MASK;
9116 switch (tiling) {
9117 case PLANE_CTL_TILED_LINEAR:
9118 fb->modifier[0] = DRM_FORMAT_MOD_NONE;
9119 break;
9120 case PLANE_CTL_TILED_X:
9121 plane_config->tiling = I915_TILING_X;
9122 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
9123 break;
9124 case PLANE_CTL_TILED_Y:
9125 fb->modifier[0] = I915_FORMAT_MOD_Y_TILED;
9126 break;
9127 case PLANE_CTL_TILED_YF:
9128 fb->modifier[0] = I915_FORMAT_MOD_Yf_TILED;
9129 break;
9130 default:
9131 MISSING_CASE(tiling);
9132 goto error;
9133 }
9134
9135 base = I915_READ(PLANE_SURF(pipe, 0)) & 0xfffff000;
9136 plane_config->base = base;
9137
9138 offset = I915_READ(PLANE_OFFSET(pipe, 0));
9139
9140 val = I915_READ(PLANE_SIZE(pipe, 0));
9141 fb->height = ((val >> 16) & 0xfff) + 1;
9142 fb->width = ((val >> 0) & 0x1fff) + 1;
9143
9144 val = I915_READ(PLANE_STRIDE(pipe, 0));
9145 stride_mult = intel_fb_stride_alignment(dev, fb->modifier[0],
9146 fb->pixel_format);
9147 fb->pitches[0] = (val & 0x3ff) * stride_mult;
9148
9149 aligned_height = intel_fb_align_height(dev, fb->height,
9150 fb->pixel_format,
9151 fb->modifier[0]);
9152
9153 plane_config->size = fb->pitches[0] * aligned_height;
9154
9155 DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9156 pipe_name(pipe), fb->width, fb->height,
9157 fb->bits_per_pixel, base, fb->pitches[0],
9158 plane_config->size);
9159
9160 plane_config->fb = intel_fb;
9161 return;
9162
9163 error:
9164 kfree(fb);
9165 }
9166
ironlake_get_pfit_config(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)9167 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
9168 struct intel_crtc_state *pipe_config)
9169 {
9170 struct drm_device *dev = crtc->base.dev;
9171 struct drm_i915_private *dev_priv = dev->dev_private;
9172 uint32_t tmp;
9173
9174 tmp = I915_READ(PF_CTL(crtc->pipe));
9175
9176 if (tmp & PF_ENABLE) {
9177 pipe_config->pch_pfit.enabled = true;
9178 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
9179 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
9180
9181 /* We currently do not free assignements of panel fitters on
9182 * ivb/hsw (since we don't use the higher upscaling modes which
9183 * differentiates them) so just WARN about this case for now. */
9184 if (IS_GEN7(dev)) {
9185 WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
9186 PF_PIPE_SEL_IVB(crtc->pipe));
9187 }
9188 }
9189 }
9190
9191 static void
ironlake_get_initial_plane_config(struct intel_crtc * crtc,struct intel_initial_plane_config * plane_config)9192 ironlake_get_initial_plane_config(struct intel_crtc *crtc,
9193 struct intel_initial_plane_config *plane_config)
9194 {
9195 struct drm_device *dev = crtc->base.dev;
9196 struct drm_i915_private *dev_priv = dev->dev_private;
9197 u32 val, base, offset;
9198 int pipe = crtc->pipe;
9199 int fourcc, pixel_format;
9200 unsigned int aligned_height;
9201 struct drm_framebuffer *fb;
9202 struct intel_framebuffer *intel_fb;
9203
9204 val = I915_READ(DSPCNTR(pipe));
9205 if (!(val & DISPLAY_PLANE_ENABLE))
9206 return;
9207
9208 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9209 if (!intel_fb) {
9210 DRM_DEBUG_KMS("failed to alloc fb\n");
9211 return;
9212 }
9213
9214 fb = &intel_fb->base;
9215
9216 if (INTEL_INFO(dev)->gen >= 4) {
9217 if (val & DISPPLANE_TILED) {
9218 plane_config->tiling = I915_TILING_X;
9219 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
9220 }
9221 }
9222
9223 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
9224 fourcc = i9xx_format_to_fourcc(pixel_format);
9225 fb->pixel_format = fourcc;
9226 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
9227
9228 base = I915_READ(DSPSURF(pipe)) & 0xfffff000;
9229 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
9230 offset = I915_READ(DSPOFFSET(pipe));
9231 } else {
9232 if (plane_config->tiling)
9233 offset = I915_READ(DSPTILEOFF(pipe));
9234 else
9235 offset = I915_READ(DSPLINOFF(pipe));
9236 }
9237 plane_config->base = base;
9238
9239 val = I915_READ(PIPESRC(pipe));
9240 fb->width = ((val >> 16) & 0xfff) + 1;
9241 fb->height = ((val >> 0) & 0xfff) + 1;
9242
9243 val = I915_READ(DSPSTRIDE(pipe));
9244 fb->pitches[0] = val & 0xffffffc0;
9245
9246 aligned_height = intel_fb_align_height(dev, fb->height,
9247 fb->pixel_format,
9248 fb->modifier[0]);
9249
9250 plane_config->size = fb->pitches[0] * aligned_height;
9251
9252 DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9253 pipe_name(pipe), fb->width, fb->height,
9254 fb->bits_per_pixel, base, fb->pitches[0],
9255 plane_config->size);
9256
9257 plane_config->fb = intel_fb;
9258 }
9259
ironlake_get_pipe_config(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)9260 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
9261 struct intel_crtc_state *pipe_config)
9262 {
9263 struct drm_device *dev = crtc->base.dev;
9264 struct drm_i915_private *dev_priv = dev->dev_private;
9265 uint32_t tmp;
9266
9267 if (!intel_display_power_is_enabled(dev_priv,
9268 POWER_DOMAIN_PIPE(crtc->pipe)))
9269 return false;
9270
9271 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
9272 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
9273
9274 tmp = I915_READ(PIPECONF(crtc->pipe));
9275 if (!(tmp & PIPECONF_ENABLE))
9276 return false;
9277
9278 switch (tmp & PIPECONF_BPC_MASK) {
9279 case PIPECONF_6BPC:
9280 pipe_config->pipe_bpp = 18;
9281 break;
9282 case PIPECONF_8BPC:
9283 pipe_config->pipe_bpp = 24;
9284 break;
9285 case PIPECONF_10BPC:
9286 pipe_config->pipe_bpp = 30;
9287 break;
9288 case PIPECONF_12BPC:
9289 pipe_config->pipe_bpp = 36;
9290 break;
9291 default:
9292 break;
9293 }
9294
9295 if (tmp & PIPECONF_COLOR_RANGE_SELECT)
9296 pipe_config->limited_color_range = true;
9297
9298 if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
9299 struct intel_shared_dpll *pll;
9300
9301 pipe_config->has_pch_encoder = true;
9302
9303 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
9304 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9305 FDI_DP_PORT_WIDTH_SHIFT) + 1;
9306
9307 ironlake_get_fdi_m_n_config(crtc, pipe_config);
9308
9309 if (HAS_PCH_IBX(dev_priv->dev)) {
9310 pipe_config->shared_dpll =
9311 (enum intel_dpll_id) crtc->pipe;
9312 } else {
9313 tmp = I915_READ(PCH_DPLL_SEL);
9314 if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
9315 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
9316 else
9317 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
9318 }
9319
9320 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
9321
9322 WARN_ON(!pll->get_hw_state(dev_priv, pll,
9323 &pipe_config->dpll_hw_state));
9324
9325 tmp = pipe_config->dpll_hw_state.dpll;
9326 pipe_config->pixel_multiplier =
9327 ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
9328 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
9329
9330 ironlake_pch_clock_get(crtc, pipe_config);
9331 } else {
9332 pipe_config->pixel_multiplier = 1;
9333 }
9334
9335 intel_get_pipe_timings(crtc, pipe_config);
9336
9337 ironlake_get_pfit_config(crtc, pipe_config);
9338
9339 return true;
9340 }
9341
assert_can_disable_lcpll(struct drm_i915_private * dev_priv)9342 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
9343 {
9344 struct drm_device *dev = dev_priv->dev;
9345 struct intel_crtc *crtc;
9346
9347 for_each_intel_crtc(dev, crtc)
9348 I915_STATE_WARN(crtc->active, "CRTC for pipe %c enabled\n",
9349 pipe_name(crtc->pipe));
9350
9351 I915_STATE_WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
9352 I915_STATE_WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
9353 I915_STATE_WARN(I915_READ(WRPLL_CTL1) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
9354 I915_STATE_WARN(I915_READ(WRPLL_CTL2) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
9355 I915_STATE_WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
9356 I915_STATE_WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
9357 "CPU PWM1 enabled\n");
9358 if (IS_HASWELL(dev))
9359 I915_STATE_WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
9360 "CPU PWM2 enabled\n");
9361 I915_STATE_WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
9362 "PCH PWM1 enabled\n");
9363 I915_STATE_WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
9364 "Utility pin enabled\n");
9365 I915_STATE_WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
9366
9367 /*
9368 * In theory we can still leave IRQs enabled, as long as only the HPD
9369 * interrupts remain enabled. We used to check for that, but since it's
9370 * gen-specific and since we only disable LCPLL after we fully disable
9371 * the interrupts, the check below should be enough.
9372 */
9373 I915_STATE_WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
9374 }
9375
hsw_read_dcomp(struct drm_i915_private * dev_priv)9376 static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
9377 {
9378 struct drm_device *dev = dev_priv->dev;
9379
9380 if (IS_HASWELL(dev))
9381 return I915_READ(D_COMP_HSW);
9382 else
9383 return I915_READ(D_COMP_BDW);
9384 }
9385
hsw_write_dcomp(struct drm_i915_private * dev_priv,uint32_t val)9386 static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
9387 {
9388 struct drm_device *dev = dev_priv->dev;
9389
9390 if (IS_HASWELL(dev)) {
9391 mutex_lock(&dev_priv->rps.hw_lock);
9392 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
9393 val))
9394 DRM_ERROR("Failed to write to D_COMP\n");
9395 mutex_unlock(&dev_priv->rps.hw_lock);
9396 } else {
9397 I915_WRITE(D_COMP_BDW, val);
9398 POSTING_READ(D_COMP_BDW);
9399 }
9400 }
9401
9402 /*
9403 * This function implements pieces of two sequences from BSpec:
9404 * - Sequence for display software to disable LCPLL
9405 * - Sequence for display software to allow package C8+
9406 * The steps implemented here are just the steps that actually touch the LCPLL
9407 * register. Callers should take care of disabling all the display engine
9408 * functions, doing the mode unset, fixing interrupts, etc.
9409 */
hsw_disable_lcpll(struct drm_i915_private * dev_priv,bool switch_to_fclk,bool allow_power_down)9410 static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
9411 bool switch_to_fclk, bool allow_power_down)
9412 {
9413 uint32_t val;
9414
9415 assert_can_disable_lcpll(dev_priv);
9416
9417 val = I915_READ(LCPLL_CTL);
9418
9419 if (switch_to_fclk) {
9420 val |= LCPLL_CD_SOURCE_FCLK;
9421 I915_WRITE(LCPLL_CTL, val);
9422
9423 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
9424 LCPLL_CD_SOURCE_FCLK_DONE, 1))
9425 DRM_ERROR("Switching to FCLK failed\n");
9426
9427 val = I915_READ(LCPLL_CTL);
9428 }
9429
9430 val |= LCPLL_PLL_DISABLE;
9431 I915_WRITE(LCPLL_CTL, val);
9432 POSTING_READ(LCPLL_CTL);
9433
9434 if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
9435 DRM_ERROR("LCPLL still locked\n");
9436
9437 val = hsw_read_dcomp(dev_priv);
9438 val |= D_COMP_COMP_DISABLE;
9439 hsw_write_dcomp(dev_priv, val);
9440 ndelay(100);
9441
9442 if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
9443 1))
9444 DRM_ERROR("D_COMP RCOMP still in progress\n");
9445
9446 if (allow_power_down) {
9447 val = I915_READ(LCPLL_CTL);
9448 val |= LCPLL_POWER_DOWN_ALLOW;
9449 I915_WRITE(LCPLL_CTL, val);
9450 POSTING_READ(LCPLL_CTL);
9451 }
9452 }
9453
9454 /*
9455 * Fully restores LCPLL, disallowing power down and switching back to LCPLL
9456 * source.
9457 */
hsw_restore_lcpll(struct drm_i915_private * dev_priv)9458 static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
9459 {
9460 uint32_t val;
9461
9462 val = I915_READ(LCPLL_CTL);
9463
9464 if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
9465 LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
9466 return;
9467
9468 /*
9469 * Make sure we're not on PC8 state before disabling PC8, otherwise
9470 * we'll hang the machine. To prevent PC8 state, just enable force_wake.
9471 */
9472 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
9473
9474 if (val & LCPLL_POWER_DOWN_ALLOW) {
9475 val &= ~LCPLL_POWER_DOWN_ALLOW;
9476 I915_WRITE(LCPLL_CTL, val);
9477 POSTING_READ(LCPLL_CTL);
9478 }
9479
9480 val = hsw_read_dcomp(dev_priv);
9481 val |= D_COMP_COMP_FORCE;
9482 val &= ~D_COMP_COMP_DISABLE;
9483 hsw_write_dcomp(dev_priv, val);
9484
9485 val = I915_READ(LCPLL_CTL);
9486 val &= ~LCPLL_PLL_DISABLE;
9487 I915_WRITE(LCPLL_CTL, val);
9488
9489 if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
9490 DRM_ERROR("LCPLL not locked yet\n");
9491
9492 if (val & LCPLL_CD_SOURCE_FCLK) {
9493 val = I915_READ(LCPLL_CTL);
9494 val &= ~LCPLL_CD_SOURCE_FCLK;
9495 I915_WRITE(LCPLL_CTL, val);
9496
9497 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
9498 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
9499 DRM_ERROR("Switching back to LCPLL failed\n");
9500 }
9501
9502 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
9503 intel_update_cdclk(dev_priv->dev);
9504 }
9505
9506 /*
9507 * Package states C8 and deeper are really deep PC states that can only be
9508 * reached when all the devices on the system allow it, so even if the graphics
9509 * device allows PC8+, it doesn't mean the system will actually get to these
9510 * states. Our driver only allows PC8+ when going into runtime PM.
9511 *
9512 * The requirements for PC8+ are that all the outputs are disabled, the power
9513 * well is disabled and most interrupts are disabled, and these are also
9514 * requirements for runtime PM. When these conditions are met, we manually do
9515 * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
9516 * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
9517 * hang the machine.
9518 *
9519 * When we really reach PC8 or deeper states (not just when we allow it) we lose
9520 * the state of some registers, so when we come back from PC8+ we need to
9521 * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
9522 * need to take care of the registers kept by RC6. Notice that this happens even
9523 * if we don't put the device in PCI D3 state (which is what currently happens
9524 * because of the runtime PM support).
9525 *
9526 * For more, read "Display Sequences for Package C8" on the hardware
9527 * documentation.
9528 */
hsw_enable_pc8(struct drm_i915_private * dev_priv)9529 void hsw_enable_pc8(struct drm_i915_private *dev_priv)
9530 {
9531 struct drm_device *dev = dev_priv->dev;
9532 uint32_t val;
9533
9534 DRM_DEBUG_KMS("Enabling package C8+\n");
9535
9536 if (HAS_PCH_LPT_LP(dev)) {
9537 val = I915_READ(SOUTH_DSPCLK_GATE_D);
9538 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
9539 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
9540 }
9541
9542 lpt_disable_clkout_dp(dev);
9543 hsw_disable_lcpll(dev_priv, true, true);
9544 }
9545
hsw_disable_pc8(struct drm_i915_private * dev_priv)9546 void hsw_disable_pc8(struct drm_i915_private *dev_priv)
9547 {
9548 struct drm_device *dev = dev_priv->dev;
9549 uint32_t val;
9550
9551 DRM_DEBUG_KMS("Disabling package C8+\n");
9552
9553 hsw_restore_lcpll(dev_priv);
9554 lpt_init_pch_refclk(dev);
9555
9556 if (HAS_PCH_LPT_LP(dev)) {
9557 val = I915_READ(SOUTH_DSPCLK_GATE_D);
9558 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
9559 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
9560 }
9561
9562 intel_prepare_ddi(dev);
9563 }
9564
broxton_modeset_commit_cdclk(struct drm_atomic_state * old_state)9565 static void broxton_modeset_commit_cdclk(struct drm_atomic_state *old_state)
9566 {
9567 struct drm_device *dev = old_state->dev;
9568 unsigned int req_cdclk = to_intel_atomic_state(old_state)->cdclk;
9569
9570 broxton_set_cdclk(dev, req_cdclk);
9571 }
9572
9573 /* compute the max rate for new configuration */
ilk_max_pixel_rate(struct drm_atomic_state * state)9574 static int ilk_max_pixel_rate(struct drm_atomic_state *state)
9575 {
9576 struct intel_crtc *intel_crtc;
9577 struct intel_crtc_state *crtc_state;
9578 int max_pixel_rate = 0;
9579
9580 for_each_intel_crtc(state->dev, intel_crtc) {
9581 int pixel_rate;
9582
9583 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
9584 if (IS_ERR(crtc_state))
9585 return PTR_ERR(crtc_state);
9586
9587 if (!crtc_state->base.enable)
9588 continue;
9589
9590 pixel_rate = ilk_pipe_pixel_rate(crtc_state);
9591
9592 /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
9593 if (IS_BROADWELL(state->dev) && crtc_state->ips_enabled)
9594 pixel_rate = DIV_ROUND_UP(pixel_rate * 100, 95);
9595
9596 max_pixel_rate = max(max_pixel_rate, pixel_rate);
9597 }
9598
9599 return max_pixel_rate;
9600 }
9601
broadwell_set_cdclk(struct drm_device * dev,int cdclk)9602 static void broadwell_set_cdclk(struct drm_device *dev, int cdclk)
9603 {
9604 struct drm_i915_private *dev_priv = dev->dev_private;
9605 uint32_t val, data;
9606 int ret;
9607
9608 if (WARN((I915_READ(LCPLL_CTL) &
9609 (LCPLL_PLL_DISABLE | LCPLL_PLL_LOCK |
9610 LCPLL_CD_CLOCK_DISABLE | LCPLL_ROOT_CD_CLOCK_DISABLE |
9611 LCPLL_CD2X_CLOCK_DISABLE | LCPLL_POWER_DOWN_ALLOW |
9612 LCPLL_CD_SOURCE_FCLK)) != LCPLL_PLL_LOCK,
9613 "trying to change cdclk frequency with cdclk not enabled\n"))
9614 return;
9615
9616 mutex_lock(&dev_priv->rps.hw_lock);
9617 ret = sandybridge_pcode_write(dev_priv,
9618 BDW_PCODE_DISPLAY_FREQ_CHANGE_REQ, 0x0);
9619 mutex_unlock(&dev_priv->rps.hw_lock);
9620 if (ret) {
9621 DRM_ERROR("failed to inform pcode about cdclk change\n");
9622 return;
9623 }
9624
9625 val = I915_READ(LCPLL_CTL);
9626 val |= LCPLL_CD_SOURCE_FCLK;
9627 I915_WRITE(LCPLL_CTL, val);
9628
9629 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
9630 LCPLL_CD_SOURCE_FCLK_DONE, 1))
9631 DRM_ERROR("Switching to FCLK failed\n");
9632
9633 val = I915_READ(LCPLL_CTL);
9634 val &= ~LCPLL_CLK_FREQ_MASK;
9635
9636 switch (cdclk) {
9637 case 450000:
9638 val |= LCPLL_CLK_FREQ_450;
9639 data = 0;
9640 break;
9641 case 540000:
9642 val |= LCPLL_CLK_FREQ_54O_BDW;
9643 data = 1;
9644 break;
9645 case 337500:
9646 val |= LCPLL_CLK_FREQ_337_5_BDW;
9647 data = 2;
9648 break;
9649 case 675000:
9650 val |= LCPLL_CLK_FREQ_675_BDW;
9651 data = 3;
9652 break;
9653 default:
9654 WARN(1, "invalid cdclk frequency\n");
9655 return;
9656 }
9657
9658 I915_WRITE(LCPLL_CTL, val);
9659
9660 val = I915_READ(LCPLL_CTL);
9661 val &= ~LCPLL_CD_SOURCE_FCLK;
9662 I915_WRITE(LCPLL_CTL, val);
9663
9664 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
9665 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
9666 DRM_ERROR("Switching back to LCPLL failed\n");
9667
9668 mutex_lock(&dev_priv->rps.hw_lock);
9669 sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ, data);
9670 mutex_unlock(&dev_priv->rps.hw_lock);
9671
9672 intel_update_cdclk(dev);
9673
9674 WARN(cdclk != dev_priv->cdclk_freq,
9675 "cdclk requested %d kHz but got %d kHz\n",
9676 cdclk, dev_priv->cdclk_freq);
9677 }
9678
broadwell_modeset_calc_cdclk(struct drm_atomic_state * state)9679 static int broadwell_modeset_calc_cdclk(struct drm_atomic_state *state)
9680 {
9681 struct drm_i915_private *dev_priv = to_i915(state->dev);
9682 int max_pixclk = ilk_max_pixel_rate(state);
9683 int cdclk;
9684
9685 /*
9686 * FIXME should also account for plane ratio
9687 * once 64bpp pixel formats are supported.
9688 */
9689 if (max_pixclk > 540000)
9690 cdclk = 675000;
9691 else if (max_pixclk > 450000)
9692 cdclk = 540000;
9693 else if (max_pixclk > 337500)
9694 cdclk = 450000;
9695 else
9696 cdclk = 337500;
9697
9698 /*
9699 * FIXME move the cdclk caclulation to
9700 * compute_config() so we can fail gracegully.
9701 */
9702 if (cdclk > dev_priv->max_cdclk_freq) {
9703 DRM_ERROR("requested cdclk (%d kHz) exceeds max (%d kHz)\n",
9704 cdclk, dev_priv->max_cdclk_freq);
9705 cdclk = dev_priv->max_cdclk_freq;
9706 }
9707
9708 to_intel_atomic_state(state)->cdclk = cdclk;
9709
9710 return 0;
9711 }
9712
broadwell_modeset_commit_cdclk(struct drm_atomic_state * old_state)9713 static void broadwell_modeset_commit_cdclk(struct drm_atomic_state *old_state)
9714 {
9715 struct drm_device *dev = old_state->dev;
9716 unsigned int req_cdclk = to_intel_atomic_state(old_state)->cdclk;
9717
9718 broadwell_set_cdclk(dev, req_cdclk);
9719 }
9720
haswell_crtc_compute_clock(struct intel_crtc * crtc,struct intel_crtc_state * crtc_state)9721 static int haswell_crtc_compute_clock(struct intel_crtc *crtc,
9722 struct intel_crtc_state *crtc_state)
9723 {
9724 if (!intel_ddi_pll_select(crtc, crtc_state))
9725 return -EINVAL;
9726
9727 crtc->lowfreq_avail = false;
9728
9729 return 0;
9730 }
9731
bxt_get_ddi_pll(struct drm_i915_private * dev_priv,enum port port,struct intel_crtc_state * pipe_config)9732 static void bxt_get_ddi_pll(struct drm_i915_private *dev_priv,
9733 enum port port,
9734 struct intel_crtc_state *pipe_config)
9735 {
9736 switch (port) {
9737 case PORT_A:
9738 pipe_config->ddi_pll_sel = SKL_DPLL0;
9739 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL1;
9740 break;
9741 case PORT_B:
9742 pipe_config->ddi_pll_sel = SKL_DPLL1;
9743 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL2;
9744 break;
9745 case PORT_C:
9746 pipe_config->ddi_pll_sel = SKL_DPLL2;
9747 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL3;
9748 break;
9749 default:
9750 DRM_ERROR("Incorrect port type\n");
9751 }
9752 }
9753
skylake_get_ddi_pll(struct drm_i915_private * dev_priv,enum port port,struct intel_crtc_state * pipe_config)9754 static void skylake_get_ddi_pll(struct drm_i915_private *dev_priv,
9755 enum port port,
9756 struct intel_crtc_state *pipe_config)
9757 {
9758 u32 temp, dpll_ctl1;
9759
9760 temp = I915_READ(DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
9761 pipe_config->ddi_pll_sel = temp >> (port * 3 + 1);
9762
9763 switch (pipe_config->ddi_pll_sel) {
9764 case SKL_DPLL0:
9765 /*
9766 * On SKL the eDP DPLL (DPLL0 as we don't use SSC) is not part
9767 * of the shared DPLL framework and thus needs to be read out
9768 * separately
9769 */
9770 dpll_ctl1 = I915_READ(DPLL_CTRL1);
9771 pipe_config->dpll_hw_state.ctrl1 = dpll_ctl1 & 0x3f;
9772 break;
9773 case SKL_DPLL1:
9774 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL1;
9775 break;
9776 case SKL_DPLL2:
9777 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL2;
9778 break;
9779 case SKL_DPLL3:
9780 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL3;
9781 break;
9782 }
9783 }
9784
haswell_get_ddi_pll(struct drm_i915_private * dev_priv,enum port port,struct intel_crtc_state * pipe_config)9785 static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
9786 enum port port,
9787 struct intel_crtc_state *pipe_config)
9788 {
9789 pipe_config->ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
9790
9791 switch (pipe_config->ddi_pll_sel) {
9792 case PORT_CLK_SEL_WRPLL1:
9793 pipe_config->shared_dpll = DPLL_ID_WRPLL1;
9794 break;
9795 case PORT_CLK_SEL_WRPLL2:
9796 pipe_config->shared_dpll = DPLL_ID_WRPLL2;
9797 break;
9798 case PORT_CLK_SEL_SPLL:
9799 pipe_config->shared_dpll = DPLL_ID_SPLL;
9800 }
9801 }
9802
haswell_get_ddi_port_state(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)9803 static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
9804 struct intel_crtc_state *pipe_config)
9805 {
9806 struct drm_device *dev = crtc->base.dev;
9807 struct drm_i915_private *dev_priv = dev->dev_private;
9808 struct intel_shared_dpll *pll;
9809 enum port port;
9810 uint32_t tmp;
9811
9812 tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
9813
9814 port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
9815
9816 if (IS_SKYLAKE(dev))
9817 skylake_get_ddi_pll(dev_priv, port, pipe_config);
9818 else if (IS_BROXTON(dev))
9819 bxt_get_ddi_pll(dev_priv, port, pipe_config);
9820 else
9821 haswell_get_ddi_pll(dev_priv, port, pipe_config);
9822
9823 if (pipe_config->shared_dpll >= 0) {
9824 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
9825
9826 WARN_ON(!pll->get_hw_state(dev_priv, pll,
9827 &pipe_config->dpll_hw_state));
9828 }
9829
9830 /*
9831 * Haswell has only FDI/PCH transcoder A. It is which is connected to
9832 * DDI E. So just check whether this pipe is wired to DDI E and whether
9833 * the PCH transcoder is on.
9834 */
9835 if (INTEL_INFO(dev)->gen < 9 &&
9836 (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
9837 pipe_config->has_pch_encoder = true;
9838
9839 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
9840 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9841 FDI_DP_PORT_WIDTH_SHIFT) + 1;
9842
9843 ironlake_get_fdi_m_n_config(crtc, pipe_config);
9844 }
9845 }
9846
haswell_get_pipe_config(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)9847 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
9848 struct intel_crtc_state *pipe_config)
9849 {
9850 struct drm_device *dev = crtc->base.dev;
9851 struct drm_i915_private *dev_priv = dev->dev_private;
9852 enum intel_display_power_domain pfit_domain;
9853 uint32_t tmp;
9854
9855 if (!intel_display_power_is_enabled(dev_priv,
9856 POWER_DOMAIN_PIPE(crtc->pipe)))
9857 return false;
9858
9859 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
9860 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
9861
9862 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
9863 if (tmp & TRANS_DDI_FUNC_ENABLE) {
9864 enum pipe trans_edp_pipe;
9865 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
9866 default:
9867 WARN(1, "unknown pipe linked to edp transcoder\n");
9868 case TRANS_DDI_EDP_INPUT_A_ONOFF:
9869 case TRANS_DDI_EDP_INPUT_A_ON:
9870 trans_edp_pipe = PIPE_A;
9871 break;
9872 case TRANS_DDI_EDP_INPUT_B_ONOFF:
9873 trans_edp_pipe = PIPE_B;
9874 break;
9875 case TRANS_DDI_EDP_INPUT_C_ONOFF:
9876 trans_edp_pipe = PIPE_C;
9877 break;
9878 }
9879
9880 if (trans_edp_pipe == crtc->pipe)
9881 pipe_config->cpu_transcoder = TRANSCODER_EDP;
9882 }
9883
9884 if (!intel_display_power_is_enabled(dev_priv,
9885 POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
9886 return false;
9887
9888 tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
9889 if (!(tmp & PIPECONF_ENABLE))
9890 return false;
9891
9892 haswell_get_ddi_port_state(crtc, pipe_config);
9893
9894 intel_get_pipe_timings(crtc, pipe_config);
9895
9896 if (INTEL_INFO(dev)->gen >= 9) {
9897 skl_init_scalers(dev, crtc, pipe_config);
9898 }
9899
9900 pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
9901
9902 if (INTEL_INFO(dev)->gen >= 9) {
9903 pipe_config->scaler_state.scaler_id = -1;
9904 pipe_config->scaler_state.scaler_users &= ~(1 << SKL_CRTC_INDEX);
9905 }
9906
9907 if (intel_display_power_is_enabled(dev_priv, pfit_domain)) {
9908 if (INTEL_INFO(dev)->gen >= 9)
9909 skylake_get_pfit_config(crtc, pipe_config);
9910 else
9911 ironlake_get_pfit_config(crtc, pipe_config);
9912 }
9913
9914 if (IS_HASWELL(dev))
9915 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
9916 (I915_READ(IPS_CTL) & IPS_ENABLE);
9917
9918 if (pipe_config->cpu_transcoder != TRANSCODER_EDP) {
9919 pipe_config->pixel_multiplier =
9920 I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
9921 } else {
9922 pipe_config->pixel_multiplier = 1;
9923 }
9924
9925 return true;
9926 }
9927
i845_update_cursor(struct drm_crtc * crtc,u32 base,bool on)9928 static void i845_update_cursor(struct drm_crtc *crtc, u32 base, bool on)
9929 {
9930 struct drm_device *dev = crtc->dev;
9931 struct drm_i915_private *dev_priv = dev->dev_private;
9932 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9933 uint32_t cntl = 0, size = 0;
9934
9935 if (on) {
9936 unsigned int width = intel_crtc->base.cursor->state->crtc_w;
9937 unsigned int height = intel_crtc->base.cursor->state->crtc_h;
9938 unsigned int stride = roundup_pow_of_two(width) * 4;
9939
9940 switch (stride) {
9941 default:
9942 WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
9943 width, stride);
9944 stride = 256;
9945 /* fallthrough */
9946 case 256:
9947 case 512:
9948 case 1024:
9949 case 2048:
9950 break;
9951 }
9952
9953 cntl |= CURSOR_ENABLE |
9954 CURSOR_GAMMA_ENABLE |
9955 CURSOR_FORMAT_ARGB |
9956 CURSOR_STRIDE(stride);
9957
9958 size = (height << 12) | width;
9959 }
9960
9961 if (intel_crtc->cursor_cntl != 0 &&
9962 (intel_crtc->cursor_base != base ||
9963 intel_crtc->cursor_size != size ||
9964 intel_crtc->cursor_cntl != cntl)) {
9965 /* On these chipsets we can only modify the base/size/stride
9966 * whilst the cursor is disabled.
9967 */
9968 I915_WRITE(CURCNTR(PIPE_A), 0);
9969 POSTING_READ(CURCNTR(PIPE_A));
9970 intel_crtc->cursor_cntl = 0;
9971 }
9972
9973 if (intel_crtc->cursor_base != base) {
9974 I915_WRITE(CURBASE(PIPE_A), base);
9975 intel_crtc->cursor_base = base;
9976 }
9977
9978 if (intel_crtc->cursor_size != size) {
9979 I915_WRITE(CURSIZE, size);
9980 intel_crtc->cursor_size = size;
9981 }
9982
9983 if (intel_crtc->cursor_cntl != cntl) {
9984 I915_WRITE(CURCNTR(PIPE_A), cntl);
9985 POSTING_READ(CURCNTR(PIPE_A));
9986 intel_crtc->cursor_cntl = cntl;
9987 }
9988 }
9989
i9xx_update_cursor(struct drm_crtc * crtc,u32 base,bool on)9990 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base, bool on)
9991 {
9992 struct drm_device *dev = crtc->dev;
9993 struct drm_i915_private *dev_priv = dev->dev_private;
9994 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9995 int pipe = intel_crtc->pipe;
9996 uint32_t cntl = 0;
9997
9998 if (on) {
9999 cntl = MCURSOR_GAMMA_ENABLE;
10000 switch (intel_crtc->base.cursor->state->crtc_w) {
10001 case 64:
10002 cntl |= CURSOR_MODE_64_ARGB_AX;
10003 break;
10004 case 128:
10005 cntl |= CURSOR_MODE_128_ARGB_AX;
10006 break;
10007 case 256:
10008 cntl |= CURSOR_MODE_256_ARGB_AX;
10009 break;
10010 default:
10011 MISSING_CASE(intel_crtc->base.cursor->state->crtc_w);
10012 return;
10013 }
10014 cntl |= pipe << 28; /* Connect to correct pipe */
10015
10016 if (HAS_DDI(dev))
10017 cntl |= CURSOR_PIPE_CSC_ENABLE;
10018 }
10019
10020 if (crtc->cursor->state->rotation == BIT(DRM_ROTATE_180))
10021 cntl |= CURSOR_ROTATE_180;
10022
10023 if (intel_crtc->cursor_cntl != cntl) {
10024 I915_WRITE(CURCNTR(pipe), cntl);
10025 POSTING_READ(CURCNTR(pipe));
10026 intel_crtc->cursor_cntl = cntl;
10027 }
10028
10029 /* and commit changes on next vblank */
10030 I915_WRITE(CURBASE(pipe), base);
10031 POSTING_READ(CURBASE(pipe));
10032
10033 intel_crtc->cursor_base = base;
10034 }
10035
10036 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
intel_crtc_update_cursor(struct drm_crtc * crtc,bool on)10037 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
10038 bool on)
10039 {
10040 struct drm_device *dev = crtc->dev;
10041 struct drm_i915_private *dev_priv = dev->dev_private;
10042 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10043 int pipe = intel_crtc->pipe;
10044 struct drm_plane_state *cursor_state = crtc->cursor->state;
10045 int x = cursor_state->crtc_x;
10046 int y = cursor_state->crtc_y;
10047 u32 base = 0, pos = 0;
10048
10049 base = intel_crtc->cursor_addr;
10050
10051 if (x >= intel_crtc->config->pipe_src_w)
10052 on = false;
10053
10054 if (y >= intel_crtc->config->pipe_src_h)
10055 on = false;
10056
10057 if (x < 0) {
10058 if (x + cursor_state->crtc_w <= 0)
10059 on = false;
10060
10061 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
10062 x = -x;
10063 }
10064 pos |= x << CURSOR_X_SHIFT;
10065
10066 if (y < 0) {
10067 if (y + cursor_state->crtc_h <= 0)
10068 on = false;
10069
10070 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
10071 y = -y;
10072 }
10073 pos |= y << CURSOR_Y_SHIFT;
10074
10075 I915_WRITE(CURPOS(pipe), pos);
10076
10077 /* ILK+ do this automagically */
10078 if (HAS_GMCH_DISPLAY(dev) &&
10079 crtc->cursor->state->rotation == BIT(DRM_ROTATE_180)) {
10080 base += (cursor_state->crtc_h *
10081 cursor_state->crtc_w - 1) * 4;
10082 }
10083
10084 if (IS_845G(dev) || IS_I865G(dev))
10085 i845_update_cursor(crtc, base, on);
10086 else
10087 i9xx_update_cursor(crtc, base, on);
10088 }
10089
cursor_size_ok(struct drm_device * dev,uint32_t width,uint32_t height)10090 static bool cursor_size_ok(struct drm_device *dev,
10091 uint32_t width, uint32_t height)
10092 {
10093 if (width == 0 || height == 0)
10094 return false;
10095
10096 /*
10097 * 845g/865g are special in that they are only limited by
10098 * the width of their cursors, the height is arbitrary up to
10099 * the precision of the register. Everything else requires
10100 * square cursors, limited to a few power-of-two sizes.
10101 */
10102 if (IS_845G(dev) || IS_I865G(dev)) {
10103 if ((width & 63) != 0)
10104 return false;
10105
10106 if (width > (IS_845G(dev) ? 64 : 512))
10107 return false;
10108
10109 if (height > 1023)
10110 return false;
10111 } else {
10112 switch (width | height) {
10113 case 256:
10114 case 128:
10115 if (IS_GEN2(dev))
10116 return false;
10117 case 64:
10118 break;
10119 default:
10120 return false;
10121 }
10122 }
10123
10124 return true;
10125 }
10126
intel_crtc_gamma_set(struct drm_crtc * crtc,u16 * red,u16 * green,u16 * blue,uint32_t start,uint32_t size)10127 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
10128 u16 *blue, uint32_t start, uint32_t size)
10129 {
10130 int end = (start + size > 256) ? 256 : start + size, i;
10131 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10132
10133 for (i = start; i < end; i++) {
10134 intel_crtc->lut_r[i] = red[i] >> 8;
10135 intel_crtc->lut_g[i] = green[i] >> 8;
10136 intel_crtc->lut_b[i] = blue[i] >> 8;
10137 }
10138
10139 intel_crtc_load_lut(crtc);
10140 }
10141
10142 /* VESA 640x480x72Hz mode to set on the pipe */
10143 static struct drm_display_mode load_detect_mode = {
10144 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
10145 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
10146 };
10147
10148 struct drm_framebuffer *
__intel_framebuffer_create(struct drm_device * dev,struct drm_mode_fb_cmd2 * mode_cmd,struct drm_i915_gem_object * obj)10149 __intel_framebuffer_create(struct drm_device *dev,
10150 struct drm_mode_fb_cmd2 *mode_cmd,
10151 struct drm_i915_gem_object *obj)
10152 {
10153 struct intel_framebuffer *intel_fb;
10154 int ret;
10155
10156 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
10157 if (!intel_fb) {
10158 drm_gem_object_unreference(&obj->base);
10159 return ERR_PTR(-ENOMEM);
10160 }
10161
10162 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
10163 if (ret)
10164 goto err;
10165
10166 return &intel_fb->base;
10167 err:
10168 drm_gem_object_unreference(&obj->base);
10169 kfree(intel_fb);
10170
10171 return ERR_PTR(ret);
10172 }
10173
10174 static struct drm_framebuffer *
intel_framebuffer_create(struct drm_device * dev,struct drm_mode_fb_cmd2 * mode_cmd,struct drm_i915_gem_object * obj)10175 intel_framebuffer_create(struct drm_device *dev,
10176 struct drm_mode_fb_cmd2 *mode_cmd,
10177 struct drm_i915_gem_object *obj)
10178 {
10179 struct drm_framebuffer *fb;
10180 int ret;
10181
10182 ret = i915_mutex_lock_interruptible(dev);
10183 if (ret)
10184 return ERR_PTR(ret);
10185 fb = __intel_framebuffer_create(dev, mode_cmd, obj);
10186 mutex_unlock(&dev->struct_mutex);
10187
10188 return fb;
10189 }
10190
10191 static u32
intel_framebuffer_pitch_for_width(int width,int bpp)10192 intel_framebuffer_pitch_for_width(int width, int bpp)
10193 {
10194 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
10195 return ALIGN(pitch, 64);
10196 }
10197
10198 static u32
intel_framebuffer_size_for_mode(struct drm_display_mode * mode,int bpp)10199 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
10200 {
10201 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
10202 return PAGE_ALIGN(pitch * mode->vdisplay);
10203 }
10204
10205 static struct drm_framebuffer *
intel_framebuffer_create_for_mode(struct drm_device * dev,struct drm_display_mode * mode,int depth,int bpp)10206 intel_framebuffer_create_for_mode(struct drm_device *dev,
10207 struct drm_display_mode *mode,
10208 int depth, int bpp)
10209 {
10210 struct drm_i915_gem_object *obj;
10211 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
10212
10213 obj = i915_gem_alloc_object(dev,
10214 intel_framebuffer_size_for_mode(mode, bpp));
10215 if (obj == NULL)
10216 return ERR_PTR(-ENOMEM);
10217
10218 mode_cmd.width = mode->hdisplay;
10219 mode_cmd.height = mode->vdisplay;
10220 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
10221 bpp);
10222 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
10223
10224 return intel_framebuffer_create(dev, &mode_cmd, obj);
10225 }
10226
10227 static struct drm_framebuffer *
mode_fits_in_fbdev(struct drm_device * dev,struct drm_display_mode * mode)10228 mode_fits_in_fbdev(struct drm_device *dev,
10229 struct drm_display_mode *mode)
10230 {
10231 #ifdef CONFIG_DRM_FBDEV_EMULATION
10232 struct drm_i915_private *dev_priv = dev->dev_private;
10233 struct drm_i915_gem_object *obj;
10234 struct drm_framebuffer *fb;
10235
10236 if (!dev_priv->fbdev)
10237 return NULL;
10238
10239 if (!dev_priv->fbdev->fb)
10240 return NULL;
10241
10242 obj = dev_priv->fbdev->fb->obj;
10243 BUG_ON(!obj);
10244
10245 fb = &dev_priv->fbdev->fb->base;
10246 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
10247 fb->bits_per_pixel))
10248 return NULL;
10249
10250 if (obj->base.size < mode->vdisplay * fb->pitches[0])
10251 return NULL;
10252
10253 return fb;
10254 #else
10255 return NULL;
10256 #endif
10257 }
10258
intel_modeset_setup_plane_state(struct drm_atomic_state * state,struct drm_crtc * crtc,struct drm_display_mode * mode,struct drm_framebuffer * fb,int x,int y)10259 static int intel_modeset_setup_plane_state(struct drm_atomic_state *state,
10260 struct drm_crtc *crtc,
10261 struct drm_display_mode *mode,
10262 struct drm_framebuffer *fb,
10263 int x, int y)
10264 {
10265 struct drm_plane_state *plane_state;
10266 int hdisplay, vdisplay;
10267 int ret;
10268
10269 plane_state = drm_atomic_get_plane_state(state, crtc->primary);
10270 if (IS_ERR(plane_state))
10271 return PTR_ERR(plane_state);
10272
10273 if (mode)
10274 drm_crtc_get_hv_timing(mode, &hdisplay, &vdisplay);
10275 else
10276 hdisplay = vdisplay = 0;
10277
10278 ret = drm_atomic_set_crtc_for_plane(plane_state, fb ? crtc : NULL);
10279 if (ret)
10280 return ret;
10281 drm_atomic_set_fb_for_plane(plane_state, fb);
10282 plane_state->crtc_x = 0;
10283 plane_state->crtc_y = 0;
10284 plane_state->crtc_w = hdisplay;
10285 plane_state->crtc_h = vdisplay;
10286 plane_state->src_x = x << 16;
10287 plane_state->src_y = y << 16;
10288 plane_state->src_w = hdisplay << 16;
10289 plane_state->src_h = vdisplay << 16;
10290
10291 return 0;
10292 }
10293
intel_get_load_detect_pipe(struct drm_connector * connector,struct drm_display_mode * mode,struct intel_load_detect_pipe * old,struct drm_modeset_acquire_ctx * ctx)10294 bool intel_get_load_detect_pipe(struct drm_connector *connector,
10295 struct drm_display_mode *mode,
10296 struct intel_load_detect_pipe *old,
10297 struct drm_modeset_acquire_ctx *ctx)
10298 {
10299 struct intel_crtc *intel_crtc;
10300 struct intel_encoder *intel_encoder =
10301 intel_attached_encoder(connector);
10302 struct drm_crtc *possible_crtc;
10303 struct drm_encoder *encoder = &intel_encoder->base;
10304 struct drm_crtc *crtc = NULL;
10305 struct drm_device *dev = encoder->dev;
10306 struct drm_framebuffer *fb;
10307 struct drm_mode_config *config = &dev->mode_config;
10308 struct drm_atomic_state *state = NULL;
10309 struct drm_connector_state *connector_state;
10310 struct intel_crtc_state *crtc_state;
10311 int ret, i = -1;
10312
10313 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
10314 connector->base.id, connector->name,
10315 encoder->base.id, encoder->name);
10316
10317 retry:
10318 ret = drm_modeset_lock(&config->connection_mutex, ctx);
10319 if (ret)
10320 goto fail;
10321
10322 /*
10323 * Algorithm gets a little messy:
10324 *
10325 * - if the connector already has an assigned crtc, use it (but make
10326 * sure it's on first)
10327 *
10328 * - try to find the first unused crtc that can drive this connector,
10329 * and use that if we find one
10330 */
10331
10332 /* See if we already have a CRTC for this connector */
10333 if (encoder->crtc) {
10334 crtc = encoder->crtc;
10335
10336 ret = drm_modeset_lock(&crtc->mutex, ctx);
10337 if (ret)
10338 goto fail;
10339 ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
10340 if (ret)
10341 goto fail;
10342
10343 old->dpms_mode = connector->dpms;
10344 old->load_detect_temp = false;
10345
10346 /* Make sure the crtc and connector are running */
10347 if (connector->dpms != DRM_MODE_DPMS_ON)
10348 connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
10349
10350 return true;
10351 }
10352
10353 /* Find an unused one (if possible) */
10354 for_each_crtc(dev, possible_crtc) {
10355 i++;
10356 if (!(encoder->possible_crtcs & (1 << i)))
10357 continue;
10358 if (possible_crtc->state->enable)
10359 continue;
10360
10361 crtc = possible_crtc;
10362 break;
10363 }
10364
10365 /*
10366 * If we didn't find an unused CRTC, don't use any.
10367 */
10368 if (!crtc) {
10369 DRM_DEBUG_KMS("no pipe available for load-detect\n");
10370 goto fail;
10371 }
10372
10373 ret = drm_modeset_lock(&crtc->mutex, ctx);
10374 if (ret)
10375 goto fail;
10376 ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
10377 if (ret)
10378 goto fail;
10379
10380 intel_crtc = to_intel_crtc(crtc);
10381 old->dpms_mode = connector->dpms;
10382 old->load_detect_temp = true;
10383 old->release_fb = NULL;
10384
10385 state = drm_atomic_state_alloc(dev);
10386 if (!state)
10387 return false;
10388
10389 state->acquire_ctx = ctx;
10390
10391 connector_state = drm_atomic_get_connector_state(state, connector);
10392 if (IS_ERR(connector_state)) {
10393 ret = PTR_ERR(connector_state);
10394 goto fail;
10395 }
10396
10397 connector_state->crtc = crtc;
10398 connector_state->best_encoder = &intel_encoder->base;
10399
10400 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
10401 if (IS_ERR(crtc_state)) {
10402 ret = PTR_ERR(crtc_state);
10403 goto fail;
10404 }
10405
10406 crtc_state->base.active = crtc_state->base.enable = true;
10407
10408 if (!mode)
10409 mode = &load_detect_mode;
10410
10411 /* We need a framebuffer large enough to accommodate all accesses
10412 * that the plane may generate whilst we perform load detection.
10413 * We can not rely on the fbcon either being present (we get called
10414 * during its initialisation to detect all boot displays, or it may
10415 * not even exist) or that it is large enough to satisfy the
10416 * requested mode.
10417 */
10418 fb = mode_fits_in_fbdev(dev, mode);
10419 if (fb == NULL) {
10420 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
10421 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
10422 old->release_fb = fb;
10423 } else
10424 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
10425 if (IS_ERR(fb)) {
10426 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
10427 goto fail;
10428 }
10429
10430 ret = intel_modeset_setup_plane_state(state, crtc, mode, fb, 0, 0);
10431 if (ret)
10432 goto fail;
10433
10434 drm_mode_copy(&crtc_state->base.mode, mode);
10435
10436 if (drm_atomic_commit(state)) {
10437 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
10438 if (old->release_fb)
10439 old->release_fb->funcs->destroy(old->release_fb);
10440 goto fail;
10441 }
10442 crtc->primary->crtc = crtc;
10443
10444 /* let the connector get through one full cycle before testing */
10445 intel_wait_for_vblank(dev, intel_crtc->pipe);
10446 return true;
10447
10448 fail:
10449 drm_atomic_state_free(state);
10450 state = NULL;
10451
10452 if (ret == -EDEADLK) {
10453 drm_modeset_backoff(ctx);
10454 goto retry;
10455 }
10456
10457 return false;
10458 }
10459
intel_release_load_detect_pipe(struct drm_connector * connector,struct intel_load_detect_pipe * old,struct drm_modeset_acquire_ctx * ctx)10460 void intel_release_load_detect_pipe(struct drm_connector *connector,
10461 struct intel_load_detect_pipe *old,
10462 struct drm_modeset_acquire_ctx *ctx)
10463 {
10464 struct drm_device *dev = connector->dev;
10465 struct intel_encoder *intel_encoder =
10466 intel_attached_encoder(connector);
10467 struct drm_encoder *encoder = &intel_encoder->base;
10468 struct drm_crtc *crtc = encoder->crtc;
10469 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10470 struct drm_atomic_state *state;
10471 struct drm_connector_state *connector_state;
10472 struct intel_crtc_state *crtc_state;
10473 int ret;
10474
10475 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
10476 connector->base.id, connector->name,
10477 encoder->base.id, encoder->name);
10478
10479 if (old->load_detect_temp) {
10480 state = drm_atomic_state_alloc(dev);
10481 if (!state)
10482 goto fail;
10483
10484 state->acquire_ctx = ctx;
10485
10486 connector_state = drm_atomic_get_connector_state(state, connector);
10487 if (IS_ERR(connector_state))
10488 goto fail;
10489
10490 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
10491 if (IS_ERR(crtc_state))
10492 goto fail;
10493
10494 connector_state->best_encoder = NULL;
10495 connector_state->crtc = NULL;
10496
10497 crtc_state->base.enable = crtc_state->base.active = false;
10498
10499 ret = intel_modeset_setup_plane_state(state, crtc, NULL, NULL,
10500 0, 0);
10501 if (ret)
10502 goto fail;
10503
10504 ret = drm_atomic_commit(state);
10505 if (ret)
10506 goto fail;
10507
10508 if (old->release_fb) {
10509 drm_framebuffer_unregister_private(old->release_fb);
10510 drm_framebuffer_unreference(old->release_fb);
10511 }
10512
10513 return;
10514 }
10515
10516 /* Switch crtc and encoder back off if necessary */
10517 if (old->dpms_mode != DRM_MODE_DPMS_ON)
10518 connector->funcs->dpms(connector, old->dpms_mode);
10519
10520 return;
10521 fail:
10522 DRM_DEBUG_KMS("Couldn't release load detect pipe.\n");
10523 drm_atomic_state_free(state);
10524 }
10525
i9xx_pll_refclk(struct drm_device * dev,const struct intel_crtc_state * pipe_config)10526 static int i9xx_pll_refclk(struct drm_device *dev,
10527 const struct intel_crtc_state *pipe_config)
10528 {
10529 struct drm_i915_private *dev_priv = dev->dev_private;
10530 u32 dpll = pipe_config->dpll_hw_state.dpll;
10531
10532 if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
10533 return dev_priv->vbt.lvds_ssc_freq;
10534 else if (HAS_PCH_SPLIT(dev))
10535 return 120000;
10536 else if (!IS_GEN2(dev))
10537 return 96000;
10538 else
10539 return 48000;
10540 }
10541
10542 /* Returns the clock of the currently programmed mode of the given pipe. */
i9xx_crtc_clock_get(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)10543 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
10544 struct intel_crtc_state *pipe_config)
10545 {
10546 struct drm_device *dev = crtc->base.dev;
10547 struct drm_i915_private *dev_priv = dev->dev_private;
10548 int pipe = pipe_config->cpu_transcoder;
10549 u32 dpll = pipe_config->dpll_hw_state.dpll;
10550 u32 fp;
10551 intel_clock_t clock;
10552 int port_clock;
10553 int refclk = i9xx_pll_refclk(dev, pipe_config);
10554
10555 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
10556 fp = pipe_config->dpll_hw_state.fp0;
10557 else
10558 fp = pipe_config->dpll_hw_state.fp1;
10559
10560 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
10561 if (IS_PINEVIEW(dev)) {
10562 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
10563 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
10564 } else {
10565 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
10566 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
10567 }
10568
10569 if (!IS_GEN2(dev)) {
10570 if (IS_PINEVIEW(dev))
10571 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
10572 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
10573 else
10574 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
10575 DPLL_FPA01_P1_POST_DIV_SHIFT);
10576
10577 switch (dpll & DPLL_MODE_MASK) {
10578 case DPLLB_MODE_DAC_SERIAL:
10579 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
10580 5 : 10;
10581 break;
10582 case DPLLB_MODE_LVDS:
10583 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
10584 7 : 14;
10585 break;
10586 default:
10587 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
10588 "mode\n", (int)(dpll & DPLL_MODE_MASK));
10589 return;
10590 }
10591
10592 if (IS_PINEVIEW(dev))
10593 port_clock = pnv_calc_dpll_params(refclk, &clock);
10594 else
10595 port_clock = i9xx_calc_dpll_params(refclk, &clock);
10596 } else {
10597 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
10598 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
10599
10600 if (is_lvds) {
10601 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
10602 DPLL_FPA01_P1_POST_DIV_SHIFT);
10603
10604 if (lvds & LVDS_CLKB_POWER_UP)
10605 clock.p2 = 7;
10606 else
10607 clock.p2 = 14;
10608 } else {
10609 if (dpll & PLL_P1_DIVIDE_BY_TWO)
10610 clock.p1 = 2;
10611 else {
10612 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
10613 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
10614 }
10615 if (dpll & PLL_P2_DIVIDE_BY_4)
10616 clock.p2 = 4;
10617 else
10618 clock.p2 = 2;
10619 }
10620
10621 port_clock = i9xx_calc_dpll_params(refclk, &clock);
10622 }
10623
10624 /*
10625 * This value includes pixel_multiplier. We will use
10626 * port_clock to compute adjusted_mode.crtc_clock in the
10627 * encoder's get_config() function.
10628 */
10629 pipe_config->port_clock = port_clock;
10630 }
10631
intel_dotclock_calculate(int link_freq,const struct intel_link_m_n * m_n)10632 int intel_dotclock_calculate(int link_freq,
10633 const struct intel_link_m_n *m_n)
10634 {
10635 /*
10636 * The calculation for the data clock is:
10637 * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
10638 * But we want to avoid losing precison if possible, so:
10639 * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
10640 *
10641 * and the link clock is simpler:
10642 * link_clock = (m * link_clock) / n
10643 */
10644
10645 if (!m_n->link_n)
10646 return 0;
10647
10648 return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
10649 }
10650
ironlake_pch_clock_get(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)10651 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
10652 struct intel_crtc_state *pipe_config)
10653 {
10654 struct drm_device *dev = crtc->base.dev;
10655
10656 /* read out port_clock from the DPLL */
10657 i9xx_crtc_clock_get(crtc, pipe_config);
10658
10659 /*
10660 * This value does not include pixel_multiplier.
10661 * We will check that port_clock and adjusted_mode.crtc_clock
10662 * agree once we know their relationship in the encoder's
10663 * get_config() function.
10664 */
10665 pipe_config->base.adjusted_mode.crtc_clock =
10666 intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
10667 &pipe_config->fdi_m_n);
10668 }
10669
10670 /** Returns the currently programmed mode of the given pipe. */
intel_crtc_mode_get(struct drm_device * dev,struct drm_crtc * crtc)10671 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
10672 struct drm_crtc *crtc)
10673 {
10674 struct drm_i915_private *dev_priv = dev->dev_private;
10675 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10676 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
10677 struct drm_display_mode *mode;
10678 struct intel_crtc_state pipe_config;
10679 int htot = I915_READ(HTOTAL(cpu_transcoder));
10680 int hsync = I915_READ(HSYNC(cpu_transcoder));
10681 int vtot = I915_READ(VTOTAL(cpu_transcoder));
10682 int vsync = I915_READ(VSYNC(cpu_transcoder));
10683 enum pipe pipe = intel_crtc->pipe;
10684
10685 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
10686 if (!mode)
10687 return NULL;
10688
10689 /*
10690 * Construct a pipe_config sufficient for getting the clock info
10691 * back out of crtc_clock_get.
10692 *
10693 * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
10694 * to use a real value here instead.
10695 */
10696 pipe_config.cpu_transcoder = (enum transcoder) pipe;
10697 pipe_config.pixel_multiplier = 1;
10698 pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
10699 pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
10700 pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
10701 i9xx_crtc_clock_get(intel_crtc, &pipe_config);
10702
10703 mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
10704 mode->hdisplay = (htot & 0xffff) + 1;
10705 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
10706 mode->hsync_start = (hsync & 0xffff) + 1;
10707 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
10708 mode->vdisplay = (vtot & 0xffff) + 1;
10709 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
10710 mode->vsync_start = (vsync & 0xffff) + 1;
10711 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
10712
10713 drm_mode_set_name(mode);
10714
10715 return mode;
10716 }
10717
intel_mark_busy(struct drm_device * dev)10718 void intel_mark_busy(struct drm_device *dev)
10719 {
10720 struct drm_i915_private *dev_priv = dev->dev_private;
10721
10722 if (dev_priv->mm.busy)
10723 return;
10724
10725 intel_runtime_pm_get(dev_priv);
10726 i915_update_gfx_val(dev_priv);
10727 if (INTEL_INFO(dev)->gen >= 6)
10728 gen6_rps_busy(dev_priv);
10729 dev_priv->mm.busy = true;
10730 }
10731
intel_mark_idle(struct drm_device * dev)10732 void intel_mark_idle(struct drm_device *dev)
10733 {
10734 struct drm_i915_private *dev_priv = dev->dev_private;
10735
10736 if (!dev_priv->mm.busy)
10737 return;
10738
10739 dev_priv->mm.busy = false;
10740
10741 if (INTEL_INFO(dev)->gen >= 6)
10742 gen6_rps_idle(dev->dev_private);
10743
10744 intel_runtime_pm_put(dev_priv);
10745 }
10746
intel_crtc_destroy(struct drm_crtc * crtc)10747 static void intel_crtc_destroy(struct drm_crtc *crtc)
10748 {
10749 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10750 struct drm_device *dev = crtc->dev;
10751 struct intel_unpin_work *work;
10752
10753 spin_lock_irq(&dev->event_lock);
10754 work = intel_crtc->unpin_work;
10755 intel_crtc->unpin_work = NULL;
10756 spin_unlock_irq(&dev->event_lock);
10757
10758 if (work) {
10759 cancel_work_sync(&work->work);
10760 kfree(work);
10761 }
10762
10763 drm_crtc_cleanup(crtc);
10764
10765 kfree(intel_crtc);
10766 }
10767
intel_unpin_work_fn(struct work_struct * __work)10768 static void intel_unpin_work_fn(struct work_struct *__work)
10769 {
10770 struct intel_unpin_work *work =
10771 container_of(__work, struct intel_unpin_work, work);
10772 struct intel_crtc *crtc = to_intel_crtc(work->crtc);
10773 struct drm_device *dev = crtc->base.dev;
10774 struct drm_plane *primary = crtc->base.primary;
10775
10776 mutex_lock(&dev->struct_mutex);
10777 intel_unpin_fb_obj(work->old_fb, primary->state);
10778 drm_gem_object_unreference(&work->pending_flip_obj->base);
10779
10780 if (work->flip_queued_req)
10781 i915_gem_request_assign(&work->flip_queued_req, NULL);
10782 mutex_unlock(&dev->struct_mutex);
10783
10784 intel_frontbuffer_flip_complete(dev, to_intel_plane(primary)->frontbuffer_bit);
10785 drm_framebuffer_unreference(work->old_fb);
10786
10787 BUG_ON(atomic_read(&crtc->unpin_work_count) == 0);
10788 atomic_dec(&crtc->unpin_work_count);
10789
10790 kfree(work);
10791 }
10792
do_intel_finish_page_flip(struct drm_device * dev,struct drm_crtc * crtc)10793 static void do_intel_finish_page_flip(struct drm_device *dev,
10794 struct drm_crtc *crtc)
10795 {
10796 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10797 struct intel_unpin_work *work;
10798 unsigned long flags;
10799
10800 /* Ignore early vblank irqs */
10801 if (intel_crtc == NULL)
10802 return;
10803
10804 /*
10805 * This is called both by irq handlers and the reset code (to complete
10806 * lost pageflips) so needs the full irqsave spinlocks.
10807 */
10808 spin_lock_irqsave(&dev->event_lock, flags);
10809 work = intel_crtc->unpin_work;
10810
10811 /* Ensure we don't miss a work->pending update ... */
10812 smp_rmb();
10813
10814 if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
10815 spin_unlock_irqrestore(&dev->event_lock, flags);
10816 return;
10817 }
10818
10819 page_flip_completed(intel_crtc);
10820
10821 spin_unlock_irqrestore(&dev->event_lock, flags);
10822 }
10823
intel_finish_page_flip(struct drm_device * dev,int pipe)10824 void intel_finish_page_flip(struct drm_device *dev, int pipe)
10825 {
10826 struct drm_i915_private *dev_priv = dev->dev_private;
10827 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
10828
10829 do_intel_finish_page_flip(dev, crtc);
10830 }
10831
intel_finish_page_flip_plane(struct drm_device * dev,int plane)10832 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
10833 {
10834 struct drm_i915_private *dev_priv = dev->dev_private;
10835 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
10836
10837 do_intel_finish_page_flip(dev, crtc);
10838 }
10839
10840 /* Is 'a' after or equal to 'b'? */
g4x_flip_count_after_eq(u32 a,u32 b)10841 static bool g4x_flip_count_after_eq(u32 a, u32 b)
10842 {
10843 return !((a - b) & 0x80000000);
10844 }
10845
page_flip_finished(struct intel_crtc * crtc)10846 static bool page_flip_finished(struct intel_crtc *crtc)
10847 {
10848 struct drm_device *dev = crtc->base.dev;
10849 struct drm_i915_private *dev_priv = dev->dev_private;
10850
10851 if (i915_reset_in_progress(&dev_priv->gpu_error) ||
10852 crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
10853 return true;
10854
10855 /*
10856 * The relevant registers doen't exist on pre-ctg.
10857 * As the flip done interrupt doesn't trigger for mmio
10858 * flips on gmch platforms, a flip count check isn't
10859 * really needed there. But since ctg has the registers,
10860 * include it in the check anyway.
10861 */
10862 if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
10863 return true;
10864
10865 /*
10866 * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
10867 * used the same base address. In that case the mmio flip might
10868 * have completed, but the CS hasn't even executed the flip yet.
10869 *
10870 * A flip count check isn't enough as the CS might have updated
10871 * the base address just after start of vblank, but before we
10872 * managed to process the interrupt. This means we'd complete the
10873 * CS flip too soon.
10874 *
10875 * Combining both checks should get us a good enough result. It may
10876 * still happen that the CS flip has been executed, but has not
10877 * yet actually completed. But in case the base address is the same
10878 * anyway, we don't really care.
10879 */
10880 return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
10881 crtc->unpin_work->gtt_offset &&
10882 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_G4X(crtc->pipe)),
10883 crtc->unpin_work->flip_count);
10884 }
10885
intel_prepare_page_flip(struct drm_device * dev,int plane)10886 void intel_prepare_page_flip(struct drm_device *dev, int plane)
10887 {
10888 struct drm_i915_private *dev_priv = dev->dev_private;
10889 struct intel_crtc *intel_crtc =
10890 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
10891 unsigned long flags;
10892
10893
10894 /*
10895 * This is called both by irq handlers and the reset code (to complete
10896 * lost pageflips) so needs the full irqsave spinlocks.
10897 *
10898 * NB: An MMIO update of the plane base pointer will also
10899 * generate a page-flip completion irq, i.e. every modeset
10900 * is also accompanied by a spurious intel_prepare_page_flip().
10901 */
10902 spin_lock_irqsave(&dev->event_lock, flags);
10903 if (intel_crtc->unpin_work && page_flip_finished(intel_crtc))
10904 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
10905 spin_unlock_irqrestore(&dev->event_lock, flags);
10906 }
10907
intel_mark_page_flip_active(struct intel_unpin_work * work)10908 static inline void intel_mark_page_flip_active(struct intel_unpin_work *work)
10909 {
10910 /* Ensure that the work item is consistent when activating it ... */
10911 smp_wmb();
10912 atomic_set(&work->pending, INTEL_FLIP_PENDING);
10913 /* and that it is marked active as soon as the irq could fire. */
10914 smp_wmb();
10915 }
10916
intel_gen2_queue_flip(struct drm_device * dev,struct drm_crtc * crtc,struct drm_framebuffer * fb,struct drm_i915_gem_object * obj,struct drm_i915_gem_request * req,uint32_t flags)10917 static int intel_gen2_queue_flip(struct drm_device *dev,
10918 struct drm_crtc *crtc,
10919 struct drm_framebuffer *fb,
10920 struct drm_i915_gem_object *obj,
10921 struct drm_i915_gem_request *req,
10922 uint32_t flags)
10923 {
10924 struct intel_engine_cs *ring = req->ring;
10925 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10926 u32 flip_mask;
10927 int ret;
10928
10929 ret = intel_ring_begin(req, 6);
10930 if (ret)
10931 return ret;
10932
10933 /* Can't queue multiple flips, so wait for the previous
10934 * one to finish before executing the next.
10935 */
10936 if (intel_crtc->plane)
10937 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
10938 else
10939 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
10940 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
10941 intel_ring_emit(ring, MI_NOOP);
10942 intel_ring_emit(ring, MI_DISPLAY_FLIP |
10943 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
10944 intel_ring_emit(ring, fb->pitches[0]);
10945 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
10946 intel_ring_emit(ring, 0); /* aux display base address, unused */
10947
10948 intel_mark_page_flip_active(intel_crtc->unpin_work);
10949 return 0;
10950 }
10951
intel_gen3_queue_flip(struct drm_device * dev,struct drm_crtc * crtc,struct drm_framebuffer * fb,struct drm_i915_gem_object * obj,struct drm_i915_gem_request * req,uint32_t flags)10952 static int intel_gen3_queue_flip(struct drm_device *dev,
10953 struct drm_crtc *crtc,
10954 struct drm_framebuffer *fb,
10955 struct drm_i915_gem_object *obj,
10956 struct drm_i915_gem_request *req,
10957 uint32_t flags)
10958 {
10959 struct intel_engine_cs *ring = req->ring;
10960 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10961 u32 flip_mask;
10962 int ret;
10963
10964 ret = intel_ring_begin(req, 6);
10965 if (ret)
10966 return ret;
10967
10968 if (intel_crtc->plane)
10969 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
10970 else
10971 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
10972 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
10973 intel_ring_emit(ring, MI_NOOP);
10974 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
10975 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
10976 intel_ring_emit(ring, fb->pitches[0]);
10977 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
10978 intel_ring_emit(ring, MI_NOOP);
10979
10980 intel_mark_page_flip_active(intel_crtc->unpin_work);
10981 return 0;
10982 }
10983
intel_gen4_queue_flip(struct drm_device * dev,struct drm_crtc * crtc,struct drm_framebuffer * fb,struct drm_i915_gem_object * obj,struct drm_i915_gem_request * req,uint32_t flags)10984 static int intel_gen4_queue_flip(struct drm_device *dev,
10985 struct drm_crtc *crtc,
10986 struct drm_framebuffer *fb,
10987 struct drm_i915_gem_object *obj,
10988 struct drm_i915_gem_request *req,
10989 uint32_t flags)
10990 {
10991 struct intel_engine_cs *ring = req->ring;
10992 struct drm_i915_private *dev_priv = dev->dev_private;
10993 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10994 uint32_t pf, pipesrc;
10995 int ret;
10996
10997 ret = intel_ring_begin(req, 4);
10998 if (ret)
10999 return ret;
11000
11001 /* i965+ uses the linear or tiled offsets from the
11002 * Display Registers (which do not change across a page-flip)
11003 * so we need only reprogram the base address.
11004 */
11005 intel_ring_emit(ring, MI_DISPLAY_FLIP |
11006 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11007 intel_ring_emit(ring, fb->pitches[0]);
11008 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset |
11009 obj->tiling_mode);
11010
11011 /* XXX Enabling the panel-fitter across page-flip is so far
11012 * untested on non-native modes, so ignore it for now.
11013 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
11014 */
11015 pf = 0;
11016 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
11017 intel_ring_emit(ring, pf | pipesrc);
11018
11019 intel_mark_page_flip_active(intel_crtc->unpin_work);
11020 return 0;
11021 }
11022
intel_gen6_queue_flip(struct drm_device * dev,struct drm_crtc * crtc,struct drm_framebuffer * fb,struct drm_i915_gem_object * obj,struct drm_i915_gem_request * req,uint32_t flags)11023 static int intel_gen6_queue_flip(struct drm_device *dev,
11024 struct drm_crtc *crtc,
11025 struct drm_framebuffer *fb,
11026 struct drm_i915_gem_object *obj,
11027 struct drm_i915_gem_request *req,
11028 uint32_t flags)
11029 {
11030 struct intel_engine_cs *ring = req->ring;
11031 struct drm_i915_private *dev_priv = dev->dev_private;
11032 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11033 uint32_t pf, pipesrc;
11034 int ret;
11035
11036 ret = intel_ring_begin(req, 4);
11037 if (ret)
11038 return ret;
11039
11040 intel_ring_emit(ring, MI_DISPLAY_FLIP |
11041 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11042 intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
11043 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
11044
11045 /* Contrary to the suggestions in the documentation,
11046 * "Enable Panel Fitter" does not seem to be required when page
11047 * flipping with a non-native mode, and worse causes a normal
11048 * modeset to fail.
11049 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
11050 */
11051 pf = 0;
11052 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
11053 intel_ring_emit(ring, pf | pipesrc);
11054
11055 intel_mark_page_flip_active(intel_crtc->unpin_work);
11056 return 0;
11057 }
11058
intel_gen7_queue_flip(struct drm_device * dev,struct drm_crtc * crtc,struct drm_framebuffer * fb,struct drm_i915_gem_object * obj,struct drm_i915_gem_request * req,uint32_t flags)11059 static int intel_gen7_queue_flip(struct drm_device *dev,
11060 struct drm_crtc *crtc,
11061 struct drm_framebuffer *fb,
11062 struct drm_i915_gem_object *obj,
11063 struct drm_i915_gem_request *req,
11064 uint32_t flags)
11065 {
11066 struct intel_engine_cs *ring = req->ring;
11067 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11068 uint32_t plane_bit = 0;
11069 int len, ret;
11070
11071 switch (intel_crtc->plane) {
11072 case PLANE_A:
11073 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
11074 break;
11075 case PLANE_B:
11076 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
11077 break;
11078 case PLANE_C:
11079 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
11080 break;
11081 default:
11082 WARN_ONCE(1, "unknown plane in flip command\n");
11083 return -ENODEV;
11084 }
11085
11086 len = 4;
11087 if (ring->id == RCS) {
11088 len += 6;
11089 /*
11090 * On Gen 8, SRM is now taking an extra dword to accommodate
11091 * 48bits addresses, and we need a NOOP for the batch size to
11092 * stay even.
11093 */
11094 if (IS_GEN8(dev))
11095 len += 2;
11096 }
11097
11098 /*
11099 * BSpec MI_DISPLAY_FLIP for IVB:
11100 * "The full packet must be contained within the same cache line."
11101 *
11102 * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
11103 * cacheline, if we ever start emitting more commands before
11104 * the MI_DISPLAY_FLIP we may need to first emit everything else,
11105 * then do the cacheline alignment, and finally emit the
11106 * MI_DISPLAY_FLIP.
11107 */
11108 ret = intel_ring_cacheline_align(req);
11109 if (ret)
11110 return ret;
11111
11112 ret = intel_ring_begin(req, len);
11113 if (ret)
11114 return ret;
11115
11116 /* Unmask the flip-done completion message. Note that the bspec says that
11117 * we should do this for both the BCS and RCS, and that we must not unmask
11118 * more than one flip event at any time (or ensure that one flip message
11119 * can be sent by waiting for flip-done prior to queueing new flips).
11120 * Experimentation says that BCS works despite DERRMR masking all
11121 * flip-done completion events and that unmasking all planes at once
11122 * for the RCS also doesn't appear to drop events. Setting the DERRMR
11123 * to zero does lead to lockups within MI_DISPLAY_FLIP.
11124 */
11125 if (ring->id == RCS) {
11126 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
11127 intel_ring_emit(ring, DERRMR);
11128 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
11129 DERRMR_PIPEB_PRI_FLIP_DONE |
11130 DERRMR_PIPEC_PRI_FLIP_DONE));
11131 if (IS_GEN8(dev))
11132 intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8 |
11133 MI_SRM_LRM_GLOBAL_GTT);
11134 else
11135 intel_ring_emit(ring, MI_STORE_REGISTER_MEM |
11136 MI_SRM_LRM_GLOBAL_GTT);
11137 intel_ring_emit(ring, DERRMR);
11138 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
11139 if (IS_GEN8(dev)) {
11140 intel_ring_emit(ring, 0);
11141 intel_ring_emit(ring, MI_NOOP);
11142 }
11143 }
11144
11145 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
11146 intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
11147 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
11148 intel_ring_emit(ring, (MI_NOOP));
11149
11150 intel_mark_page_flip_active(intel_crtc->unpin_work);
11151 return 0;
11152 }
11153
use_mmio_flip(struct intel_engine_cs * ring,struct drm_i915_gem_object * obj)11154 static bool use_mmio_flip(struct intel_engine_cs *ring,
11155 struct drm_i915_gem_object *obj)
11156 {
11157 /*
11158 * This is not being used for older platforms, because
11159 * non-availability of flip done interrupt forces us to use
11160 * CS flips. Older platforms derive flip done using some clever
11161 * tricks involving the flip_pending status bits and vblank irqs.
11162 * So using MMIO flips there would disrupt this mechanism.
11163 */
11164
11165 if (ring == NULL)
11166 return true;
11167
11168 if (INTEL_INFO(ring->dev)->gen < 5)
11169 return false;
11170
11171 if (i915.use_mmio_flip < 0)
11172 return false;
11173 else if (i915.use_mmio_flip > 0)
11174 return true;
11175 else if (i915.enable_execlists)
11176 return true;
11177 else
11178 return ring != i915_gem_request_get_ring(obj->last_write_req);
11179 }
11180
skl_do_mmio_flip(struct intel_crtc * intel_crtc,struct intel_unpin_work * work)11181 static void skl_do_mmio_flip(struct intel_crtc *intel_crtc,
11182 struct intel_unpin_work *work)
11183 {
11184 struct drm_device *dev = intel_crtc->base.dev;
11185 struct drm_i915_private *dev_priv = dev->dev_private;
11186 struct drm_framebuffer *fb = intel_crtc->base.primary->fb;
11187 const enum pipe pipe = intel_crtc->pipe;
11188 u32 ctl, stride;
11189
11190 ctl = I915_READ(PLANE_CTL(pipe, 0));
11191 ctl &= ~PLANE_CTL_TILED_MASK;
11192 switch (fb->modifier[0]) {
11193 case DRM_FORMAT_MOD_NONE:
11194 break;
11195 case I915_FORMAT_MOD_X_TILED:
11196 ctl |= PLANE_CTL_TILED_X;
11197 break;
11198 case I915_FORMAT_MOD_Y_TILED:
11199 ctl |= PLANE_CTL_TILED_Y;
11200 break;
11201 case I915_FORMAT_MOD_Yf_TILED:
11202 ctl |= PLANE_CTL_TILED_YF;
11203 break;
11204 default:
11205 MISSING_CASE(fb->modifier[0]);
11206 }
11207
11208 /*
11209 * The stride is either expressed as a multiple of 64 bytes chunks for
11210 * linear buffers or in number of tiles for tiled buffers.
11211 */
11212 stride = fb->pitches[0] /
11213 intel_fb_stride_alignment(dev, fb->modifier[0],
11214 fb->pixel_format);
11215
11216 /*
11217 * Both PLANE_CTL and PLANE_STRIDE are not updated on vblank but on
11218 * PLANE_SURF updates, the update is then guaranteed to be atomic.
11219 */
11220 I915_WRITE(PLANE_CTL(pipe, 0), ctl);
11221 I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
11222
11223 I915_WRITE(PLANE_SURF(pipe, 0), work->gtt_offset);
11224 POSTING_READ(PLANE_SURF(pipe, 0));
11225 }
11226
ilk_do_mmio_flip(struct intel_crtc * intel_crtc,struct intel_unpin_work * work)11227 static void ilk_do_mmio_flip(struct intel_crtc *intel_crtc,
11228 struct intel_unpin_work *work)
11229 {
11230 struct drm_device *dev = intel_crtc->base.dev;
11231 struct drm_i915_private *dev_priv = dev->dev_private;
11232 struct intel_framebuffer *intel_fb =
11233 to_intel_framebuffer(intel_crtc->base.primary->fb);
11234 struct drm_i915_gem_object *obj = intel_fb->obj;
11235 u32 dspcntr;
11236 u32 reg;
11237
11238 reg = DSPCNTR(intel_crtc->plane);
11239 dspcntr = I915_READ(reg);
11240
11241 if (obj->tiling_mode != I915_TILING_NONE)
11242 dspcntr |= DISPPLANE_TILED;
11243 else
11244 dspcntr &= ~DISPPLANE_TILED;
11245
11246 I915_WRITE(reg, dspcntr);
11247
11248 I915_WRITE(DSPSURF(intel_crtc->plane), work->gtt_offset);
11249 POSTING_READ(DSPSURF(intel_crtc->plane));
11250 }
11251
11252 /*
11253 * XXX: This is the temporary way to update the plane registers until we get
11254 * around to using the usual plane update functions for MMIO flips
11255 */
intel_do_mmio_flip(struct intel_mmio_flip * mmio_flip)11256 static void intel_do_mmio_flip(struct intel_mmio_flip *mmio_flip)
11257 {
11258 struct intel_crtc *crtc = mmio_flip->crtc;
11259 struct intel_unpin_work *work;
11260
11261 spin_lock_irq(&crtc->base.dev->event_lock);
11262 work = crtc->unpin_work;
11263 spin_unlock_irq(&crtc->base.dev->event_lock);
11264 if (work == NULL)
11265 return;
11266
11267 intel_mark_page_flip_active(work);
11268
11269 intel_pipe_update_start(crtc);
11270
11271 if (INTEL_INFO(mmio_flip->i915)->gen >= 9)
11272 skl_do_mmio_flip(crtc, work);
11273 else
11274 /* use_mmio_flip() retricts MMIO flips to ilk+ */
11275 ilk_do_mmio_flip(crtc, work);
11276
11277 intel_pipe_update_end(crtc);
11278 }
11279
intel_mmio_flip_work_func(struct work_struct * work)11280 static void intel_mmio_flip_work_func(struct work_struct *work)
11281 {
11282 struct intel_mmio_flip *mmio_flip =
11283 container_of(work, struct intel_mmio_flip, work);
11284
11285 if (mmio_flip->req) {
11286 WARN_ON(__i915_wait_request(mmio_flip->req,
11287 mmio_flip->crtc->reset_counter,
11288 false, NULL,
11289 &mmio_flip->i915->rps.mmioflips));
11290 i915_gem_request_unreference__unlocked(mmio_flip->req);
11291 }
11292
11293 intel_do_mmio_flip(mmio_flip);
11294 kfree(mmio_flip);
11295 }
11296
intel_queue_mmio_flip(struct drm_device * dev,struct drm_crtc * crtc,struct drm_framebuffer * fb,struct drm_i915_gem_object * obj,struct intel_engine_cs * ring,uint32_t flags)11297 static int intel_queue_mmio_flip(struct drm_device *dev,
11298 struct drm_crtc *crtc,
11299 struct drm_framebuffer *fb,
11300 struct drm_i915_gem_object *obj,
11301 struct intel_engine_cs *ring,
11302 uint32_t flags)
11303 {
11304 struct intel_mmio_flip *mmio_flip;
11305
11306 mmio_flip = kmalloc(sizeof(*mmio_flip), GFP_KERNEL);
11307 if (mmio_flip == NULL)
11308 return -ENOMEM;
11309
11310 mmio_flip->i915 = to_i915(dev);
11311 mmio_flip->req = i915_gem_request_reference(obj->last_write_req);
11312 mmio_flip->crtc = to_intel_crtc(crtc);
11313
11314 INIT_WORK(&mmio_flip->work, intel_mmio_flip_work_func);
11315 schedule_work(&mmio_flip->work);
11316
11317 return 0;
11318 }
11319
intel_default_queue_flip(struct drm_device * dev,struct drm_crtc * crtc,struct drm_framebuffer * fb,struct drm_i915_gem_object * obj,struct drm_i915_gem_request * req,uint32_t flags)11320 static int intel_default_queue_flip(struct drm_device *dev,
11321 struct drm_crtc *crtc,
11322 struct drm_framebuffer *fb,
11323 struct drm_i915_gem_object *obj,
11324 struct drm_i915_gem_request *req,
11325 uint32_t flags)
11326 {
11327 return -ENODEV;
11328 }
11329
__intel_pageflip_stall_check(struct drm_device * dev,struct drm_crtc * crtc)11330 static bool __intel_pageflip_stall_check(struct drm_device *dev,
11331 struct drm_crtc *crtc)
11332 {
11333 struct drm_i915_private *dev_priv = dev->dev_private;
11334 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11335 struct intel_unpin_work *work = intel_crtc->unpin_work;
11336 u32 addr;
11337
11338 if (atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE)
11339 return true;
11340
11341 if (atomic_read(&work->pending) < INTEL_FLIP_PENDING)
11342 return false;
11343
11344 if (!work->enable_stall_check)
11345 return false;
11346
11347 if (work->flip_ready_vblank == 0) {
11348 if (work->flip_queued_req &&
11349 !i915_gem_request_completed(work->flip_queued_req, true))
11350 return false;
11351
11352 work->flip_ready_vblank = drm_crtc_vblank_count(crtc);
11353 }
11354
11355 if (drm_crtc_vblank_count(crtc) - work->flip_ready_vblank < 3)
11356 return false;
11357
11358 /* Potential stall - if we see that the flip has happened,
11359 * assume a missed interrupt. */
11360 if (INTEL_INFO(dev)->gen >= 4)
11361 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane)));
11362 else
11363 addr = I915_READ(DSPADDR(intel_crtc->plane));
11364
11365 /* There is a potential issue here with a false positive after a flip
11366 * to the same address. We could address this by checking for a
11367 * non-incrementing frame counter.
11368 */
11369 return addr == work->gtt_offset;
11370 }
11371
intel_check_page_flip(struct drm_device * dev,int pipe)11372 void intel_check_page_flip(struct drm_device *dev, int pipe)
11373 {
11374 struct drm_i915_private *dev_priv = dev->dev_private;
11375 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
11376 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11377 struct intel_unpin_work *work;
11378
11379 WARN_ON(!in_interrupt());
11380
11381 if (crtc == NULL)
11382 return;
11383
11384 spin_lock(&dev->event_lock);
11385 work = intel_crtc->unpin_work;
11386 if (work != NULL && __intel_pageflip_stall_check(dev, crtc)) {
11387 WARN_ONCE(1, "Kicking stuck page flip: queued at %d, now %d\n",
11388 work->flip_queued_vblank, drm_vblank_count(dev, pipe));
11389 page_flip_completed(intel_crtc);
11390 work = NULL;
11391 }
11392 if (work != NULL &&
11393 drm_vblank_count(dev, pipe) - work->flip_queued_vblank > 1)
11394 intel_queue_rps_boost_for_request(dev, work->flip_queued_req);
11395 spin_unlock(&dev->event_lock);
11396 }
11397
intel_crtc_page_flip(struct drm_crtc * crtc,struct drm_framebuffer * fb,struct drm_pending_vblank_event * event,uint32_t page_flip_flags)11398 static int intel_crtc_page_flip(struct drm_crtc *crtc,
11399 struct drm_framebuffer *fb,
11400 struct drm_pending_vblank_event *event,
11401 uint32_t page_flip_flags)
11402 {
11403 struct drm_device *dev = crtc->dev;
11404 struct drm_i915_private *dev_priv = dev->dev_private;
11405 struct drm_framebuffer *old_fb = crtc->primary->fb;
11406 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11407 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11408 struct drm_plane *primary = crtc->primary;
11409 enum pipe pipe = intel_crtc->pipe;
11410 struct intel_unpin_work *work;
11411 struct intel_engine_cs *ring;
11412 bool mmio_flip;
11413 struct drm_i915_gem_request *request = NULL;
11414 int ret;
11415
11416 /*
11417 * drm_mode_page_flip_ioctl() should already catch this, but double
11418 * check to be safe. In the future we may enable pageflipping from
11419 * a disabled primary plane.
11420 */
11421 if (WARN_ON(intel_fb_obj(old_fb) == NULL))
11422 return -EBUSY;
11423
11424 /* Can't change pixel format via MI display flips. */
11425 if (fb->pixel_format != crtc->primary->fb->pixel_format)
11426 return -EINVAL;
11427
11428 /*
11429 * TILEOFF/LINOFF registers can't be changed via MI display flips.
11430 * Note that pitch changes could also affect these register.
11431 */
11432 if (INTEL_INFO(dev)->gen > 3 &&
11433 (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
11434 fb->pitches[0] != crtc->primary->fb->pitches[0]))
11435 return -EINVAL;
11436
11437 if (i915_terminally_wedged(&dev_priv->gpu_error))
11438 goto out_hang;
11439
11440 work = kzalloc(sizeof(*work), GFP_KERNEL);
11441 if (work == NULL)
11442 return -ENOMEM;
11443
11444 work->event = event;
11445 work->crtc = crtc;
11446 work->old_fb = old_fb;
11447 INIT_WORK(&work->work, intel_unpin_work_fn);
11448
11449 ret = drm_crtc_vblank_get(crtc);
11450 if (ret)
11451 goto free_work;
11452
11453 /* We borrow the event spin lock for protecting unpin_work */
11454 spin_lock_irq(&dev->event_lock);
11455 if (intel_crtc->unpin_work) {
11456 /* Before declaring the flip queue wedged, check if
11457 * the hardware completed the operation behind our backs.
11458 */
11459 if (__intel_pageflip_stall_check(dev, crtc)) {
11460 DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n");
11461 page_flip_completed(intel_crtc);
11462 } else {
11463 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
11464 spin_unlock_irq(&dev->event_lock);
11465
11466 drm_crtc_vblank_put(crtc);
11467 kfree(work);
11468 return -EBUSY;
11469 }
11470 }
11471 intel_crtc->unpin_work = work;
11472 spin_unlock_irq(&dev->event_lock);
11473
11474 if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
11475 flush_workqueue(dev_priv->wq);
11476
11477 /* Reference the objects for the scheduled work. */
11478 drm_framebuffer_reference(work->old_fb);
11479 drm_gem_object_reference(&obj->base);
11480
11481 crtc->primary->fb = fb;
11482 update_state_fb(crtc->primary);
11483
11484 work->pending_flip_obj = obj;
11485
11486 ret = i915_mutex_lock_interruptible(dev);
11487 if (ret)
11488 goto cleanup;
11489
11490 atomic_inc(&intel_crtc->unpin_work_count);
11491 intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
11492
11493 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
11494 work->flip_count = I915_READ(PIPE_FLIPCOUNT_G4X(pipe)) + 1;
11495
11496 if (IS_VALLEYVIEW(dev)) {
11497 ring = &dev_priv->ring[BCS];
11498 if (obj->tiling_mode != intel_fb_obj(work->old_fb)->tiling_mode)
11499 /* vlv: DISPLAY_FLIP fails to change tiling */
11500 ring = NULL;
11501 } else if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
11502 ring = &dev_priv->ring[BCS];
11503 } else if (INTEL_INFO(dev)->gen >= 7) {
11504 ring = i915_gem_request_get_ring(obj->last_write_req);
11505 if (ring == NULL || ring->id != RCS)
11506 ring = &dev_priv->ring[BCS];
11507 } else {
11508 ring = &dev_priv->ring[RCS];
11509 }
11510
11511 mmio_flip = use_mmio_flip(ring, obj);
11512
11513 /* When using CS flips, we want to emit semaphores between rings.
11514 * However, when using mmio flips we will create a task to do the
11515 * synchronisation, so all we want here is to pin the framebuffer
11516 * into the display plane and skip any waits.
11517 */
11518 ret = intel_pin_and_fence_fb_obj(crtc->primary, fb,
11519 crtc->primary->state,
11520 mmio_flip ? i915_gem_request_get_ring(obj->last_write_req) : ring, &request);
11521 if (ret)
11522 goto cleanup_pending;
11523
11524 work->gtt_offset = intel_plane_obj_offset(to_intel_plane(primary),
11525 obj, 0);
11526 work->gtt_offset += intel_crtc->dspaddr_offset;
11527
11528 if (mmio_flip) {
11529 ret = intel_queue_mmio_flip(dev, crtc, fb, obj, ring,
11530 page_flip_flags);
11531 if (ret)
11532 goto cleanup_unpin;
11533
11534 i915_gem_request_assign(&work->flip_queued_req,
11535 obj->last_write_req);
11536 } else {
11537 if (!request) {
11538 ret = i915_gem_request_alloc(ring, ring->default_context, &request);
11539 if (ret)
11540 goto cleanup_unpin;
11541 }
11542
11543 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, request,
11544 page_flip_flags);
11545 if (ret)
11546 goto cleanup_unpin;
11547
11548 i915_gem_request_assign(&work->flip_queued_req, request);
11549 }
11550
11551 if (request)
11552 i915_add_request_no_flush(request);
11553
11554 work->flip_queued_vblank = drm_crtc_vblank_count(crtc);
11555 work->enable_stall_check = true;
11556
11557 i915_gem_track_fb(intel_fb_obj(work->old_fb), obj,
11558 to_intel_plane(primary)->frontbuffer_bit);
11559 mutex_unlock(&dev->struct_mutex);
11560
11561 intel_fbc_disable_crtc(intel_crtc);
11562 intel_frontbuffer_flip_prepare(dev,
11563 to_intel_plane(primary)->frontbuffer_bit);
11564
11565 trace_i915_flip_request(intel_crtc->plane, obj);
11566
11567 return 0;
11568
11569 cleanup_unpin:
11570 intel_unpin_fb_obj(fb, crtc->primary->state);
11571 cleanup_pending:
11572 if (request)
11573 i915_gem_request_cancel(request);
11574 atomic_dec(&intel_crtc->unpin_work_count);
11575 mutex_unlock(&dev->struct_mutex);
11576 cleanup:
11577 crtc->primary->fb = old_fb;
11578 update_state_fb(crtc->primary);
11579
11580 drm_gem_object_unreference_unlocked(&obj->base);
11581 drm_framebuffer_unreference(work->old_fb);
11582
11583 spin_lock_irq(&dev->event_lock);
11584 intel_crtc->unpin_work = NULL;
11585 spin_unlock_irq(&dev->event_lock);
11586
11587 drm_crtc_vblank_put(crtc);
11588 free_work:
11589 kfree(work);
11590
11591 if (ret == -EIO) {
11592 struct drm_atomic_state *state;
11593 struct drm_plane_state *plane_state;
11594
11595 out_hang:
11596 state = drm_atomic_state_alloc(dev);
11597 if (!state)
11598 return -ENOMEM;
11599 state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
11600
11601 retry:
11602 plane_state = drm_atomic_get_plane_state(state, primary);
11603 ret = PTR_ERR_OR_ZERO(plane_state);
11604 if (!ret) {
11605 drm_atomic_set_fb_for_plane(plane_state, fb);
11606
11607 ret = drm_atomic_set_crtc_for_plane(plane_state, crtc);
11608 if (!ret)
11609 ret = drm_atomic_commit(state);
11610 }
11611
11612 if (ret == -EDEADLK) {
11613 drm_modeset_backoff(state->acquire_ctx);
11614 drm_atomic_state_clear(state);
11615 goto retry;
11616 }
11617
11618 if (ret)
11619 drm_atomic_state_free(state);
11620
11621 if (ret == 0 && event) {
11622 spin_lock_irq(&dev->event_lock);
11623 drm_send_vblank_event(dev, pipe, event);
11624 spin_unlock_irq(&dev->event_lock);
11625 }
11626 }
11627 return ret;
11628 }
11629
11630
11631 /**
11632 * intel_wm_need_update - Check whether watermarks need updating
11633 * @plane: drm plane
11634 * @state: new plane state
11635 *
11636 * Check current plane state versus the new one to determine whether
11637 * watermarks need to be recalculated.
11638 *
11639 * Returns true or false.
11640 */
intel_wm_need_update(struct drm_plane * plane,struct drm_plane_state * state)11641 static bool intel_wm_need_update(struct drm_plane *plane,
11642 struct drm_plane_state *state)
11643 {
11644 /* Update watermarks on tiling changes. */
11645 if (!plane->state->fb || !state->fb ||
11646 plane->state->fb->modifier[0] != state->fb->modifier[0] ||
11647 plane->state->rotation != state->rotation)
11648 return true;
11649
11650 if (plane->state->crtc_w != state->crtc_w)
11651 return true;
11652
11653 return false;
11654 }
11655
intel_plane_atomic_calc_changes(struct drm_crtc_state * crtc_state,struct drm_plane_state * plane_state)11656 int intel_plane_atomic_calc_changes(struct drm_crtc_state *crtc_state,
11657 struct drm_plane_state *plane_state)
11658 {
11659 struct drm_crtc *crtc = crtc_state->crtc;
11660 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11661 struct drm_plane *plane = plane_state->plane;
11662 struct drm_device *dev = crtc->dev;
11663 struct drm_i915_private *dev_priv = dev->dev_private;
11664 struct intel_plane_state *old_plane_state =
11665 to_intel_plane_state(plane->state);
11666 int idx = intel_crtc->base.base.id, ret;
11667 int i = drm_plane_index(plane);
11668 bool mode_changed = needs_modeset(crtc_state);
11669 bool was_crtc_enabled = crtc->state->active;
11670 bool is_crtc_enabled = crtc_state->active;
11671
11672 bool turn_off, turn_on, visible, was_visible;
11673 struct drm_framebuffer *fb = plane_state->fb;
11674
11675 if (crtc_state && INTEL_INFO(dev)->gen >= 9 &&
11676 plane->type != DRM_PLANE_TYPE_CURSOR) {
11677 ret = skl_update_scaler_plane(
11678 to_intel_crtc_state(crtc_state),
11679 to_intel_plane_state(plane_state));
11680 if (ret)
11681 return ret;
11682 }
11683
11684 /*
11685 * Disabling a plane is always okay; we just need to update
11686 * fb tracking in a special way since cleanup_fb() won't
11687 * get called by the plane helpers.
11688 */
11689 if (old_plane_state->base.fb && !fb)
11690 intel_crtc->atomic.disabled_planes |= 1 << i;
11691
11692 was_visible = old_plane_state->visible;
11693 visible = to_intel_plane_state(plane_state)->visible;
11694
11695 if (!was_crtc_enabled && WARN_ON(was_visible))
11696 was_visible = false;
11697
11698 if (!is_crtc_enabled && WARN_ON(visible))
11699 visible = false;
11700
11701 if (!was_visible && !visible)
11702 return 0;
11703
11704 turn_off = was_visible && (!visible || mode_changed);
11705 turn_on = visible && (!was_visible || mode_changed);
11706
11707 DRM_DEBUG_ATOMIC("[CRTC:%i] has [PLANE:%i] with fb %i\n", idx,
11708 plane->base.id, fb ? fb->base.id : -1);
11709
11710 DRM_DEBUG_ATOMIC("[PLANE:%i] visible %i -> %i, off %i, on %i, ms %i\n",
11711 plane->base.id, was_visible, visible,
11712 turn_off, turn_on, mode_changed);
11713
11714 if (turn_on) {
11715 intel_crtc->atomic.update_wm_pre = true;
11716 /* must disable cxsr around plane enable/disable */
11717 if (plane->type != DRM_PLANE_TYPE_CURSOR) {
11718 intel_crtc->atomic.disable_cxsr = true;
11719 /* to potentially re-enable cxsr */
11720 intel_crtc->atomic.wait_vblank = true;
11721 intel_crtc->atomic.update_wm_post = true;
11722 }
11723 } else if (turn_off) {
11724 intel_crtc->atomic.update_wm_post = true;
11725 /* must disable cxsr around plane enable/disable */
11726 if (plane->type != DRM_PLANE_TYPE_CURSOR) {
11727 if (is_crtc_enabled)
11728 intel_crtc->atomic.wait_vblank = true;
11729 intel_crtc->atomic.disable_cxsr = true;
11730 }
11731 } else if (intel_wm_need_update(plane, plane_state)) {
11732 intel_crtc->atomic.update_wm_pre = true;
11733 }
11734
11735 if (visible || was_visible)
11736 intel_crtc->atomic.fb_bits |=
11737 to_intel_plane(plane)->frontbuffer_bit;
11738
11739 switch (plane->type) {
11740 case DRM_PLANE_TYPE_PRIMARY:
11741 intel_crtc->atomic.wait_for_flips = true;
11742 intel_crtc->atomic.pre_disable_primary = turn_off;
11743 intel_crtc->atomic.post_enable_primary = turn_on;
11744
11745 if (turn_off) {
11746 /*
11747 * FIXME: Actually if we will still have any other
11748 * plane enabled on the pipe we could let IPS enabled
11749 * still, but for now lets consider that when we make
11750 * primary invisible by setting DSPCNTR to 0 on
11751 * update_primary_plane function IPS needs to be
11752 * disable.
11753 */
11754 intel_crtc->atomic.disable_ips = true;
11755
11756 intel_crtc->atomic.disable_fbc = true;
11757 }
11758
11759 /*
11760 * FBC does not work on some platforms for rotated
11761 * planes, so disable it when rotation is not 0 and
11762 * update it when rotation is set back to 0.
11763 *
11764 * FIXME: This is redundant with the fbc update done in
11765 * the primary plane enable function except that that
11766 * one is done too late. We eventually need to unify
11767 * this.
11768 */
11769
11770 if (visible &&
11771 INTEL_INFO(dev)->gen <= 4 && !IS_G4X(dev) &&
11772 dev_priv->fbc.crtc == intel_crtc &&
11773 plane_state->rotation != BIT(DRM_ROTATE_0))
11774 intel_crtc->atomic.disable_fbc = true;
11775
11776 /*
11777 * BDW signals flip done immediately if the plane
11778 * is disabled, even if the plane enable is already
11779 * armed to occur at the next vblank :(
11780 */
11781 if (turn_on && IS_BROADWELL(dev))
11782 intel_crtc->atomic.wait_vblank = true;
11783
11784 intel_crtc->atomic.update_fbc |= visible || mode_changed;
11785 break;
11786 case DRM_PLANE_TYPE_CURSOR:
11787 break;
11788 case DRM_PLANE_TYPE_OVERLAY:
11789 if (turn_off && !mode_changed) {
11790 intel_crtc->atomic.wait_vblank = true;
11791 intel_crtc->atomic.update_sprite_watermarks |=
11792 1 << i;
11793 }
11794 }
11795 return 0;
11796 }
11797
encoders_cloneable(const struct intel_encoder * a,const struct intel_encoder * b)11798 static bool encoders_cloneable(const struct intel_encoder *a,
11799 const struct intel_encoder *b)
11800 {
11801 /* masks could be asymmetric, so check both ways */
11802 return a == b || (a->cloneable & (1 << b->type) &&
11803 b->cloneable & (1 << a->type));
11804 }
11805
check_single_encoder_cloning(struct drm_atomic_state * state,struct intel_crtc * crtc,struct intel_encoder * encoder)11806 static bool check_single_encoder_cloning(struct drm_atomic_state *state,
11807 struct intel_crtc *crtc,
11808 struct intel_encoder *encoder)
11809 {
11810 struct intel_encoder *source_encoder;
11811 struct drm_connector *connector;
11812 struct drm_connector_state *connector_state;
11813 int i;
11814
11815 for_each_connector_in_state(state, connector, connector_state, i) {
11816 if (connector_state->crtc != &crtc->base)
11817 continue;
11818
11819 source_encoder =
11820 to_intel_encoder(connector_state->best_encoder);
11821 if (!encoders_cloneable(encoder, source_encoder))
11822 return false;
11823 }
11824
11825 return true;
11826 }
11827
check_encoder_cloning(struct drm_atomic_state * state,struct intel_crtc * crtc)11828 static bool check_encoder_cloning(struct drm_atomic_state *state,
11829 struct intel_crtc *crtc)
11830 {
11831 struct intel_encoder *encoder;
11832 struct drm_connector *connector;
11833 struct drm_connector_state *connector_state;
11834 int i;
11835
11836 for_each_connector_in_state(state, connector, connector_state, i) {
11837 if (connector_state->crtc != &crtc->base)
11838 continue;
11839
11840 encoder = to_intel_encoder(connector_state->best_encoder);
11841 if (!check_single_encoder_cloning(state, crtc, encoder))
11842 return false;
11843 }
11844
11845 return true;
11846 }
11847
intel_crtc_atomic_check(struct drm_crtc * crtc,struct drm_crtc_state * crtc_state)11848 static int intel_crtc_atomic_check(struct drm_crtc *crtc,
11849 struct drm_crtc_state *crtc_state)
11850 {
11851 struct drm_device *dev = crtc->dev;
11852 struct drm_i915_private *dev_priv = dev->dev_private;
11853 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11854 struct intel_crtc_state *pipe_config =
11855 to_intel_crtc_state(crtc_state);
11856 struct drm_atomic_state *state = crtc_state->state;
11857 int ret;
11858 bool mode_changed = needs_modeset(crtc_state);
11859
11860 if (mode_changed && !check_encoder_cloning(state, intel_crtc)) {
11861 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
11862 return -EINVAL;
11863 }
11864
11865 if (mode_changed && !crtc_state->active)
11866 intel_crtc->atomic.update_wm_post = true;
11867
11868 if (mode_changed && crtc_state->enable &&
11869 dev_priv->display.crtc_compute_clock &&
11870 !WARN_ON(pipe_config->shared_dpll != DPLL_ID_PRIVATE)) {
11871 ret = dev_priv->display.crtc_compute_clock(intel_crtc,
11872 pipe_config);
11873 if (ret)
11874 return ret;
11875 }
11876
11877 ret = 0;
11878 if (INTEL_INFO(dev)->gen >= 9) {
11879 if (mode_changed)
11880 ret = skl_update_scaler_crtc(pipe_config);
11881
11882 if (!ret)
11883 ret = intel_atomic_setup_scalers(dev, intel_crtc,
11884 pipe_config);
11885 }
11886
11887 return ret;
11888 }
11889
11890 static const struct drm_crtc_helper_funcs intel_helper_funcs = {
11891 .mode_set_base_atomic = intel_pipe_set_base_atomic,
11892 .load_lut = intel_crtc_load_lut,
11893 .atomic_begin = intel_begin_crtc_commit,
11894 .atomic_flush = intel_finish_crtc_commit,
11895 .atomic_check = intel_crtc_atomic_check,
11896 };
11897
intel_modeset_update_connector_atomic_state(struct drm_device * dev)11898 static void intel_modeset_update_connector_atomic_state(struct drm_device *dev)
11899 {
11900 struct intel_connector *connector;
11901
11902 for_each_intel_connector(dev, connector) {
11903 if (connector->base.encoder) {
11904 connector->base.state->best_encoder =
11905 connector->base.encoder;
11906 connector->base.state->crtc =
11907 connector->base.encoder->crtc;
11908 } else {
11909 connector->base.state->best_encoder = NULL;
11910 connector->base.state->crtc = NULL;
11911 }
11912 }
11913 }
11914
11915 static void
connected_sink_compute_bpp(struct intel_connector * connector,struct intel_crtc_state * pipe_config)11916 connected_sink_compute_bpp(struct intel_connector *connector,
11917 struct intel_crtc_state *pipe_config)
11918 {
11919 int bpp = pipe_config->pipe_bpp;
11920
11921 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
11922 connector->base.base.id,
11923 connector->base.name);
11924
11925 /* Don't use an invalid EDID bpc value */
11926 if (connector->base.display_info.bpc &&
11927 connector->base.display_info.bpc * 3 < bpp) {
11928 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
11929 bpp, connector->base.display_info.bpc*3);
11930 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
11931 }
11932
11933 /* Clamp bpp to default limit on screens without EDID 1.4 */
11934 if (connector->base.display_info.bpc == 0) {
11935 int type = connector->base.connector_type;
11936 int clamp_bpp = 24;
11937
11938 /* Fall back to 18 bpp when DP sink capability is unknown. */
11939 if (type == DRM_MODE_CONNECTOR_DisplayPort ||
11940 type == DRM_MODE_CONNECTOR_eDP)
11941 clamp_bpp = 18;
11942
11943 if (bpp > clamp_bpp) {
11944 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of %d\n",
11945 bpp, clamp_bpp);
11946 pipe_config->pipe_bpp = clamp_bpp;
11947 }
11948 }
11949 }
11950
11951 static int
compute_baseline_pipe_bpp(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)11952 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
11953 struct intel_crtc_state *pipe_config)
11954 {
11955 struct drm_device *dev = crtc->base.dev;
11956 struct drm_atomic_state *state;
11957 struct drm_connector *connector;
11958 struct drm_connector_state *connector_state;
11959 int bpp, i;
11960
11961 if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)))
11962 bpp = 10*3;
11963 else if (INTEL_INFO(dev)->gen >= 5)
11964 bpp = 12*3;
11965 else
11966 bpp = 8*3;
11967
11968
11969 pipe_config->pipe_bpp = bpp;
11970
11971 state = pipe_config->base.state;
11972
11973 /* Clamp display bpp to EDID value */
11974 for_each_connector_in_state(state, connector, connector_state, i) {
11975 if (connector_state->crtc != &crtc->base)
11976 continue;
11977
11978 connected_sink_compute_bpp(to_intel_connector(connector),
11979 pipe_config);
11980 }
11981
11982 return bpp;
11983 }
11984
intel_dump_crtc_timings(const struct drm_display_mode * mode)11985 static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
11986 {
11987 DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
11988 "type: 0x%x flags: 0x%x\n",
11989 mode->crtc_clock,
11990 mode->crtc_hdisplay, mode->crtc_hsync_start,
11991 mode->crtc_hsync_end, mode->crtc_htotal,
11992 mode->crtc_vdisplay, mode->crtc_vsync_start,
11993 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
11994 }
11995
intel_dump_pipe_config(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config,const char * context)11996 static void intel_dump_pipe_config(struct intel_crtc *crtc,
11997 struct intel_crtc_state *pipe_config,
11998 const char *context)
11999 {
12000 struct drm_device *dev = crtc->base.dev;
12001 struct drm_plane *plane;
12002 struct intel_plane *intel_plane;
12003 struct intel_plane_state *state;
12004 struct drm_framebuffer *fb;
12005
12006 DRM_DEBUG_KMS("[CRTC:%d]%s config %p for pipe %c\n", crtc->base.base.id,
12007 context, pipe_config, pipe_name(crtc->pipe));
12008
12009 DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
12010 DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
12011 pipe_config->pipe_bpp, pipe_config->dither);
12012 DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
12013 pipe_config->has_pch_encoder,
12014 pipe_config->fdi_lanes,
12015 pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
12016 pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
12017 pipe_config->fdi_m_n.tu);
12018 DRM_DEBUG_KMS("dp: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
12019 pipe_config->has_dp_encoder,
12020 pipe_config->lane_count,
12021 pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
12022 pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
12023 pipe_config->dp_m_n.tu);
12024
12025 DRM_DEBUG_KMS("dp: %i, lanes: %i, gmch_m2: %u, gmch_n2: %u, link_m2: %u, link_n2: %u, tu2: %u\n",
12026 pipe_config->has_dp_encoder,
12027 pipe_config->lane_count,
12028 pipe_config->dp_m2_n2.gmch_m,
12029 pipe_config->dp_m2_n2.gmch_n,
12030 pipe_config->dp_m2_n2.link_m,
12031 pipe_config->dp_m2_n2.link_n,
12032 pipe_config->dp_m2_n2.tu);
12033
12034 DRM_DEBUG_KMS("audio: %i, infoframes: %i\n",
12035 pipe_config->has_audio,
12036 pipe_config->has_infoframe);
12037
12038 DRM_DEBUG_KMS("requested mode:\n");
12039 drm_mode_debug_printmodeline(&pipe_config->base.mode);
12040 DRM_DEBUG_KMS("adjusted mode:\n");
12041 drm_mode_debug_printmodeline(&pipe_config->base.adjusted_mode);
12042 intel_dump_crtc_timings(&pipe_config->base.adjusted_mode);
12043 DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
12044 DRM_DEBUG_KMS("pipe src size: %dx%d\n",
12045 pipe_config->pipe_src_w, pipe_config->pipe_src_h);
12046 DRM_DEBUG_KMS("num_scalers: %d, scaler_users: 0x%x, scaler_id: %d\n",
12047 crtc->num_scalers,
12048 pipe_config->scaler_state.scaler_users,
12049 pipe_config->scaler_state.scaler_id);
12050 DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
12051 pipe_config->gmch_pfit.control,
12052 pipe_config->gmch_pfit.pgm_ratios,
12053 pipe_config->gmch_pfit.lvds_border_bits);
12054 DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
12055 pipe_config->pch_pfit.pos,
12056 pipe_config->pch_pfit.size,
12057 pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
12058 DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
12059 DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
12060
12061 if (IS_BROXTON(dev)) {
12062 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: ebb0: 0x%x, ebb4: 0x%x,"
12063 "pll0: 0x%x, pll1: 0x%x, pll2: 0x%x, pll3: 0x%x, "
12064 "pll6: 0x%x, pll8: 0x%x, pll9: 0x%x, pll10: 0x%x, pcsdw12: 0x%x\n",
12065 pipe_config->ddi_pll_sel,
12066 pipe_config->dpll_hw_state.ebb0,
12067 pipe_config->dpll_hw_state.ebb4,
12068 pipe_config->dpll_hw_state.pll0,
12069 pipe_config->dpll_hw_state.pll1,
12070 pipe_config->dpll_hw_state.pll2,
12071 pipe_config->dpll_hw_state.pll3,
12072 pipe_config->dpll_hw_state.pll6,
12073 pipe_config->dpll_hw_state.pll8,
12074 pipe_config->dpll_hw_state.pll9,
12075 pipe_config->dpll_hw_state.pll10,
12076 pipe_config->dpll_hw_state.pcsdw12);
12077 } else if (IS_SKYLAKE(dev)) {
12078 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: "
12079 "ctrl1: 0x%x, cfgcr1: 0x%x, cfgcr2: 0x%x\n",
12080 pipe_config->ddi_pll_sel,
12081 pipe_config->dpll_hw_state.ctrl1,
12082 pipe_config->dpll_hw_state.cfgcr1,
12083 pipe_config->dpll_hw_state.cfgcr2);
12084 } else if (HAS_DDI(dev)) {
12085 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: wrpll: 0x%x spll: 0x%x\n",
12086 pipe_config->ddi_pll_sel,
12087 pipe_config->dpll_hw_state.wrpll,
12088 pipe_config->dpll_hw_state.spll);
12089 } else {
12090 DRM_DEBUG_KMS("dpll_hw_state: dpll: 0x%x, dpll_md: 0x%x, "
12091 "fp0: 0x%x, fp1: 0x%x\n",
12092 pipe_config->dpll_hw_state.dpll,
12093 pipe_config->dpll_hw_state.dpll_md,
12094 pipe_config->dpll_hw_state.fp0,
12095 pipe_config->dpll_hw_state.fp1);
12096 }
12097
12098 DRM_DEBUG_KMS("planes on this crtc\n");
12099 list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
12100 intel_plane = to_intel_plane(plane);
12101 if (intel_plane->pipe != crtc->pipe)
12102 continue;
12103
12104 state = to_intel_plane_state(plane->state);
12105 fb = state->base.fb;
12106 if (!fb) {
12107 DRM_DEBUG_KMS("%s PLANE:%d plane: %u.%u idx: %d "
12108 "disabled, scaler_id = %d\n",
12109 plane->type == DRM_PLANE_TYPE_CURSOR ? "CURSOR" : "STANDARD",
12110 plane->base.id, intel_plane->pipe,
12111 (crtc->base.primary == plane) ? 0 : intel_plane->plane + 1,
12112 drm_plane_index(plane), state->scaler_id);
12113 continue;
12114 }
12115
12116 DRM_DEBUG_KMS("%s PLANE:%d plane: %u.%u idx: %d enabled",
12117 plane->type == DRM_PLANE_TYPE_CURSOR ? "CURSOR" : "STANDARD",
12118 plane->base.id, intel_plane->pipe,
12119 crtc->base.primary == plane ? 0 : intel_plane->plane + 1,
12120 drm_plane_index(plane));
12121 DRM_DEBUG_KMS("\tFB:%d, fb = %ux%u format = 0x%x",
12122 fb->base.id, fb->width, fb->height, fb->pixel_format);
12123 DRM_DEBUG_KMS("\tscaler:%d src (%u, %u) %ux%u dst (%u, %u) %ux%u\n",
12124 state->scaler_id,
12125 state->src.x1 >> 16, state->src.y1 >> 16,
12126 drm_rect_width(&state->src) >> 16,
12127 drm_rect_height(&state->src) >> 16,
12128 state->dst.x1, state->dst.y1,
12129 drm_rect_width(&state->dst), drm_rect_height(&state->dst));
12130 }
12131 }
12132
check_digital_port_conflicts(struct drm_atomic_state * state)12133 static bool check_digital_port_conflicts(struct drm_atomic_state *state)
12134 {
12135 struct drm_device *dev = state->dev;
12136 struct drm_connector *connector;
12137 unsigned int used_ports = 0;
12138
12139 /*
12140 * Walk the connector list instead of the encoder
12141 * list to detect the problem on ddi platforms
12142 * where there's just one encoder per digital port.
12143 */
12144 drm_for_each_connector(connector, dev) {
12145 struct drm_connector_state *connector_state;
12146 struct intel_encoder *encoder;
12147
12148 connector_state = drm_atomic_get_existing_connector_state(state, connector);
12149 if (!connector_state)
12150 connector_state = connector->state;
12151
12152 if (!connector_state->best_encoder)
12153 continue;
12154
12155 encoder = to_intel_encoder(connector_state->best_encoder);
12156
12157 WARN_ON(!connector_state->crtc);
12158
12159 switch (encoder->type) {
12160 unsigned int port_mask;
12161 case INTEL_OUTPUT_UNKNOWN:
12162 if (WARN_ON(!HAS_DDI(dev)))
12163 break;
12164 case INTEL_OUTPUT_DISPLAYPORT:
12165 case INTEL_OUTPUT_HDMI:
12166 case INTEL_OUTPUT_EDP:
12167 port_mask = 1 << enc_to_dig_port(&encoder->base)->port;
12168
12169 /* the same port mustn't appear more than once */
12170 if (used_ports & port_mask)
12171 return false;
12172
12173 used_ports |= port_mask;
12174 default:
12175 break;
12176 }
12177 }
12178
12179 return true;
12180 }
12181
12182 static void
clear_intel_crtc_state(struct intel_crtc_state * crtc_state)12183 clear_intel_crtc_state(struct intel_crtc_state *crtc_state)
12184 {
12185 struct drm_crtc_state tmp_state;
12186 struct intel_crtc_scaler_state scaler_state;
12187 struct intel_dpll_hw_state dpll_hw_state;
12188 enum intel_dpll_id shared_dpll;
12189 uint32_t ddi_pll_sel;
12190 bool force_thru;
12191
12192 /* FIXME: before the switch to atomic started, a new pipe_config was
12193 * kzalloc'd. Code that depends on any field being zero should be
12194 * fixed, so that the crtc_state can be safely duplicated. For now,
12195 * only fields that are know to not cause problems are preserved. */
12196
12197 tmp_state = crtc_state->base;
12198 scaler_state = crtc_state->scaler_state;
12199 shared_dpll = crtc_state->shared_dpll;
12200 dpll_hw_state = crtc_state->dpll_hw_state;
12201 ddi_pll_sel = crtc_state->ddi_pll_sel;
12202 force_thru = crtc_state->pch_pfit.force_thru;
12203
12204 memset(crtc_state, 0, sizeof *crtc_state);
12205
12206 crtc_state->base = tmp_state;
12207 crtc_state->scaler_state = scaler_state;
12208 crtc_state->shared_dpll = shared_dpll;
12209 crtc_state->dpll_hw_state = dpll_hw_state;
12210 crtc_state->ddi_pll_sel = ddi_pll_sel;
12211 crtc_state->pch_pfit.force_thru = force_thru;
12212 }
12213
12214 static int
intel_modeset_pipe_config(struct drm_crtc * crtc,struct intel_crtc_state * pipe_config)12215 intel_modeset_pipe_config(struct drm_crtc *crtc,
12216 struct intel_crtc_state *pipe_config)
12217 {
12218 struct drm_atomic_state *state = pipe_config->base.state;
12219 struct intel_encoder *encoder;
12220 struct drm_connector *connector;
12221 struct drm_connector_state *connector_state;
12222 int base_bpp, ret = -EINVAL;
12223 int i;
12224 bool retry = true;
12225
12226 clear_intel_crtc_state(pipe_config);
12227
12228 pipe_config->cpu_transcoder =
12229 (enum transcoder) to_intel_crtc(crtc)->pipe;
12230
12231 /*
12232 * Sanitize sync polarity flags based on requested ones. If neither
12233 * positive or negative polarity is requested, treat this as meaning
12234 * negative polarity.
12235 */
12236 if (!(pipe_config->base.adjusted_mode.flags &
12237 (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
12238 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
12239
12240 if (!(pipe_config->base.adjusted_mode.flags &
12241 (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
12242 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
12243
12244 base_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
12245 pipe_config);
12246 if (base_bpp < 0)
12247 goto fail;
12248
12249 /*
12250 * Determine the real pipe dimensions. Note that stereo modes can
12251 * increase the actual pipe size due to the frame doubling and
12252 * insertion of additional space for blanks between the frame. This
12253 * is stored in the crtc timings. We use the requested mode to do this
12254 * computation to clearly distinguish it from the adjusted mode, which
12255 * can be changed by the connectors in the below retry loop.
12256 */
12257 drm_crtc_get_hv_timing(&pipe_config->base.mode,
12258 &pipe_config->pipe_src_w,
12259 &pipe_config->pipe_src_h);
12260
12261 encoder_retry:
12262 /* Ensure the port clock defaults are reset when retrying. */
12263 pipe_config->port_clock = 0;
12264 pipe_config->pixel_multiplier = 1;
12265
12266 /* Fill in default crtc timings, allow encoders to overwrite them. */
12267 drm_mode_set_crtcinfo(&pipe_config->base.adjusted_mode,
12268 CRTC_STEREO_DOUBLE);
12269
12270 /* Pass our mode to the connectors and the CRTC to give them a chance to
12271 * adjust it according to limitations or connector properties, and also
12272 * a chance to reject the mode entirely.
12273 */
12274 for_each_connector_in_state(state, connector, connector_state, i) {
12275 if (connector_state->crtc != crtc)
12276 continue;
12277
12278 encoder = to_intel_encoder(connector_state->best_encoder);
12279
12280 if (!(encoder->compute_config(encoder, pipe_config))) {
12281 DRM_DEBUG_KMS("Encoder config failure\n");
12282 goto fail;
12283 }
12284 }
12285
12286 /* Set default port clock if not overwritten by the encoder. Needs to be
12287 * done afterwards in case the encoder adjusts the mode. */
12288 if (!pipe_config->port_clock)
12289 pipe_config->port_clock = pipe_config->base.adjusted_mode.crtc_clock
12290 * pipe_config->pixel_multiplier;
12291
12292 ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
12293 if (ret < 0) {
12294 DRM_DEBUG_KMS("CRTC fixup failed\n");
12295 goto fail;
12296 }
12297
12298 if (ret == RETRY) {
12299 if (WARN(!retry, "loop in pipe configuration computation\n")) {
12300 ret = -EINVAL;
12301 goto fail;
12302 }
12303
12304 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
12305 retry = false;
12306 goto encoder_retry;
12307 }
12308
12309 /* Dithering seems to not pass-through bits correctly when it should, so
12310 * only enable it on 6bpc panels. */
12311 pipe_config->dither = pipe_config->pipe_bpp == 6*3;
12312 DRM_DEBUG_KMS("hw max bpp: %i, pipe bpp: %i, dithering: %i\n",
12313 base_bpp, pipe_config->pipe_bpp, pipe_config->dither);
12314
12315 fail:
12316 return ret;
12317 }
12318
12319 static void
intel_modeset_update_crtc_state(struct drm_atomic_state * state)12320 intel_modeset_update_crtc_state(struct drm_atomic_state *state)
12321 {
12322 struct drm_crtc *crtc;
12323 struct drm_crtc_state *crtc_state;
12324 int i;
12325
12326 /* Double check state. */
12327 for_each_crtc_in_state(state, crtc, crtc_state, i) {
12328 to_intel_crtc(crtc)->config = to_intel_crtc_state(crtc->state);
12329
12330 /* Update hwmode for vblank functions */
12331 if (crtc->state->active)
12332 crtc->hwmode = crtc->state->adjusted_mode;
12333 else
12334 crtc->hwmode.crtc_clock = 0;
12335 }
12336 }
12337
intel_fuzzy_clock_check(int clock1,int clock2)12338 static bool intel_fuzzy_clock_check(int clock1, int clock2)
12339 {
12340 int diff;
12341
12342 if (clock1 == clock2)
12343 return true;
12344
12345 if (!clock1 || !clock2)
12346 return false;
12347
12348 diff = abs(clock1 - clock2);
12349
12350 if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
12351 return true;
12352
12353 return false;
12354 }
12355
12356 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
12357 list_for_each_entry((intel_crtc), \
12358 &(dev)->mode_config.crtc_list, \
12359 base.head) \
12360 if (mask & (1 <<(intel_crtc)->pipe))
12361
12362 static bool
intel_compare_m_n(unsigned int m,unsigned int n,unsigned int m2,unsigned int n2,bool exact)12363 intel_compare_m_n(unsigned int m, unsigned int n,
12364 unsigned int m2, unsigned int n2,
12365 bool exact)
12366 {
12367 if (m == m2 && n == n2)
12368 return true;
12369
12370 if (exact || !m || !n || !m2 || !n2)
12371 return false;
12372
12373 BUILD_BUG_ON(DATA_LINK_M_N_MASK > INT_MAX);
12374
12375 if (m > m2) {
12376 while (m > m2) {
12377 m2 <<= 1;
12378 n2 <<= 1;
12379 }
12380 } else if (m < m2) {
12381 while (m < m2) {
12382 m <<= 1;
12383 n <<= 1;
12384 }
12385 }
12386
12387 return m == m2 && n == n2;
12388 }
12389
12390 static bool
intel_compare_link_m_n(const struct intel_link_m_n * m_n,struct intel_link_m_n * m2_n2,bool adjust)12391 intel_compare_link_m_n(const struct intel_link_m_n *m_n,
12392 struct intel_link_m_n *m2_n2,
12393 bool adjust)
12394 {
12395 if (m_n->tu == m2_n2->tu &&
12396 intel_compare_m_n(m_n->gmch_m, m_n->gmch_n,
12397 m2_n2->gmch_m, m2_n2->gmch_n, !adjust) &&
12398 intel_compare_m_n(m_n->link_m, m_n->link_n,
12399 m2_n2->link_m, m2_n2->link_n, !adjust)) {
12400 if (adjust)
12401 *m2_n2 = *m_n;
12402
12403 return true;
12404 }
12405
12406 return false;
12407 }
12408
12409 static bool
intel_pipe_config_compare(struct drm_device * dev,struct intel_crtc_state * current_config,struct intel_crtc_state * pipe_config,bool adjust)12410 intel_pipe_config_compare(struct drm_device *dev,
12411 struct intel_crtc_state *current_config,
12412 struct intel_crtc_state *pipe_config,
12413 bool adjust)
12414 {
12415 bool ret = true;
12416
12417 #define INTEL_ERR_OR_DBG_KMS(fmt, ...) \
12418 do { \
12419 if (!adjust) \
12420 DRM_ERROR(fmt, ##__VA_ARGS__); \
12421 else \
12422 DRM_DEBUG_KMS(fmt, ##__VA_ARGS__); \
12423 } while (0)
12424
12425 #define PIPE_CONF_CHECK_X(name) \
12426 if (current_config->name != pipe_config->name) { \
12427 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12428 "(expected 0x%08x, found 0x%08x)\n", \
12429 current_config->name, \
12430 pipe_config->name); \
12431 ret = false; \
12432 }
12433
12434 #define PIPE_CONF_CHECK_I(name) \
12435 if (current_config->name != pipe_config->name) { \
12436 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12437 "(expected %i, found %i)\n", \
12438 current_config->name, \
12439 pipe_config->name); \
12440 ret = false; \
12441 }
12442
12443 #define PIPE_CONF_CHECK_M_N(name) \
12444 if (!intel_compare_link_m_n(¤t_config->name, \
12445 &pipe_config->name,\
12446 adjust)) { \
12447 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12448 "(expected tu %i gmch %i/%i link %i/%i, " \
12449 "found tu %i, gmch %i/%i link %i/%i)\n", \
12450 current_config->name.tu, \
12451 current_config->name.gmch_m, \
12452 current_config->name.gmch_n, \
12453 current_config->name.link_m, \
12454 current_config->name.link_n, \
12455 pipe_config->name.tu, \
12456 pipe_config->name.gmch_m, \
12457 pipe_config->name.gmch_n, \
12458 pipe_config->name.link_m, \
12459 pipe_config->name.link_n); \
12460 ret = false; \
12461 }
12462
12463 #define PIPE_CONF_CHECK_M_N_ALT(name, alt_name) \
12464 if (!intel_compare_link_m_n(¤t_config->name, \
12465 &pipe_config->name, adjust) && \
12466 !intel_compare_link_m_n(¤t_config->alt_name, \
12467 &pipe_config->name, adjust)) { \
12468 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12469 "(expected tu %i gmch %i/%i link %i/%i, " \
12470 "or tu %i gmch %i/%i link %i/%i, " \
12471 "found tu %i, gmch %i/%i link %i/%i)\n", \
12472 current_config->name.tu, \
12473 current_config->name.gmch_m, \
12474 current_config->name.gmch_n, \
12475 current_config->name.link_m, \
12476 current_config->name.link_n, \
12477 current_config->alt_name.tu, \
12478 current_config->alt_name.gmch_m, \
12479 current_config->alt_name.gmch_n, \
12480 current_config->alt_name.link_m, \
12481 current_config->alt_name.link_n, \
12482 pipe_config->name.tu, \
12483 pipe_config->name.gmch_m, \
12484 pipe_config->name.gmch_n, \
12485 pipe_config->name.link_m, \
12486 pipe_config->name.link_n); \
12487 ret = false; \
12488 }
12489
12490 /* This is required for BDW+ where there is only one set of registers for
12491 * switching between high and low RR.
12492 * This macro can be used whenever a comparison has to be made between one
12493 * hw state and multiple sw state variables.
12494 */
12495 #define PIPE_CONF_CHECK_I_ALT(name, alt_name) \
12496 if ((current_config->name != pipe_config->name) && \
12497 (current_config->alt_name != pipe_config->name)) { \
12498 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12499 "(expected %i or %i, found %i)\n", \
12500 current_config->name, \
12501 current_config->alt_name, \
12502 pipe_config->name); \
12503 ret = false; \
12504 }
12505
12506 #define PIPE_CONF_CHECK_FLAGS(name, mask) \
12507 if ((current_config->name ^ pipe_config->name) & (mask)) { \
12508 INTEL_ERR_OR_DBG_KMS("mismatch in " #name "(" #mask ") " \
12509 "(expected %i, found %i)\n", \
12510 current_config->name & (mask), \
12511 pipe_config->name & (mask)); \
12512 ret = false; \
12513 }
12514
12515 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
12516 if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
12517 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12518 "(expected %i, found %i)\n", \
12519 current_config->name, \
12520 pipe_config->name); \
12521 ret = false; \
12522 }
12523
12524 #define PIPE_CONF_QUIRK(quirk) \
12525 ((current_config->quirks | pipe_config->quirks) & (quirk))
12526
12527 PIPE_CONF_CHECK_I(cpu_transcoder);
12528
12529 PIPE_CONF_CHECK_I(has_pch_encoder);
12530 PIPE_CONF_CHECK_I(fdi_lanes);
12531 PIPE_CONF_CHECK_M_N(fdi_m_n);
12532
12533 PIPE_CONF_CHECK_I(has_dp_encoder);
12534 PIPE_CONF_CHECK_I(lane_count);
12535
12536 if (INTEL_INFO(dev)->gen < 8) {
12537 PIPE_CONF_CHECK_M_N(dp_m_n);
12538
12539 if (current_config->has_drrs)
12540 PIPE_CONF_CHECK_M_N(dp_m2_n2);
12541 } else
12542 PIPE_CONF_CHECK_M_N_ALT(dp_m_n, dp_m2_n2);
12543
12544 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hdisplay);
12545 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_htotal);
12546 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_start);
12547 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_end);
12548 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_start);
12549 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_end);
12550
12551 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vdisplay);
12552 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vtotal);
12553 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_start);
12554 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_end);
12555 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_start);
12556 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_end);
12557
12558 PIPE_CONF_CHECK_I(pixel_multiplier);
12559 PIPE_CONF_CHECK_I(has_hdmi_sink);
12560 if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
12561 IS_VALLEYVIEW(dev))
12562 PIPE_CONF_CHECK_I(limited_color_range);
12563 PIPE_CONF_CHECK_I(has_infoframe);
12564
12565 PIPE_CONF_CHECK_I(has_audio);
12566
12567 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12568 DRM_MODE_FLAG_INTERLACE);
12569
12570 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
12571 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12572 DRM_MODE_FLAG_PHSYNC);
12573 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12574 DRM_MODE_FLAG_NHSYNC);
12575 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12576 DRM_MODE_FLAG_PVSYNC);
12577 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12578 DRM_MODE_FLAG_NVSYNC);
12579 }
12580
12581 PIPE_CONF_CHECK_X(gmch_pfit.control);
12582 /* pfit ratios are autocomputed by the hw on gen4+ */
12583 if (INTEL_INFO(dev)->gen < 4)
12584 PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
12585 PIPE_CONF_CHECK_X(gmch_pfit.lvds_border_bits);
12586
12587 if (!adjust) {
12588 PIPE_CONF_CHECK_I(pipe_src_w);
12589 PIPE_CONF_CHECK_I(pipe_src_h);
12590
12591 PIPE_CONF_CHECK_I(pch_pfit.enabled);
12592 if (current_config->pch_pfit.enabled) {
12593 PIPE_CONF_CHECK_X(pch_pfit.pos);
12594 PIPE_CONF_CHECK_X(pch_pfit.size);
12595 }
12596
12597 PIPE_CONF_CHECK_I(scaler_state.scaler_id);
12598 }
12599
12600 /* BDW+ don't expose a synchronous way to read the state */
12601 if (IS_HASWELL(dev))
12602 PIPE_CONF_CHECK_I(ips_enabled);
12603
12604 PIPE_CONF_CHECK_I(double_wide);
12605
12606 PIPE_CONF_CHECK_X(ddi_pll_sel);
12607
12608 PIPE_CONF_CHECK_I(shared_dpll);
12609 PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
12610 PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
12611 PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
12612 PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
12613 PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
12614 PIPE_CONF_CHECK_X(dpll_hw_state.spll);
12615 PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
12616 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
12617 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
12618
12619 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
12620 PIPE_CONF_CHECK_I(pipe_bpp);
12621
12622 PIPE_CONF_CHECK_CLOCK_FUZZY(base.adjusted_mode.crtc_clock);
12623 PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
12624
12625 #undef PIPE_CONF_CHECK_X
12626 #undef PIPE_CONF_CHECK_I
12627 #undef PIPE_CONF_CHECK_I_ALT
12628 #undef PIPE_CONF_CHECK_FLAGS
12629 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
12630 #undef PIPE_CONF_QUIRK
12631 #undef INTEL_ERR_OR_DBG_KMS
12632
12633 return ret;
12634 }
12635
check_wm_state(struct drm_device * dev)12636 static void check_wm_state(struct drm_device *dev)
12637 {
12638 struct drm_i915_private *dev_priv = dev->dev_private;
12639 struct skl_ddb_allocation hw_ddb, *sw_ddb;
12640 struct intel_crtc *intel_crtc;
12641 int plane;
12642
12643 if (INTEL_INFO(dev)->gen < 9)
12644 return;
12645
12646 skl_ddb_get_hw_state(dev_priv, &hw_ddb);
12647 sw_ddb = &dev_priv->wm.skl_hw.ddb;
12648
12649 for_each_intel_crtc(dev, intel_crtc) {
12650 struct skl_ddb_entry *hw_entry, *sw_entry;
12651 const enum pipe pipe = intel_crtc->pipe;
12652
12653 if (!intel_crtc->active)
12654 continue;
12655
12656 /* planes */
12657 for_each_plane(dev_priv, pipe, plane) {
12658 hw_entry = &hw_ddb.plane[pipe][plane];
12659 sw_entry = &sw_ddb->plane[pipe][plane];
12660
12661 if (skl_ddb_entry_equal(hw_entry, sw_entry))
12662 continue;
12663
12664 DRM_ERROR("mismatch in DDB state pipe %c plane %d "
12665 "(expected (%u,%u), found (%u,%u))\n",
12666 pipe_name(pipe), plane + 1,
12667 sw_entry->start, sw_entry->end,
12668 hw_entry->start, hw_entry->end);
12669 }
12670
12671 /* cursor */
12672 hw_entry = &hw_ddb.plane[pipe][PLANE_CURSOR];
12673 sw_entry = &sw_ddb->plane[pipe][PLANE_CURSOR];
12674
12675 if (skl_ddb_entry_equal(hw_entry, sw_entry))
12676 continue;
12677
12678 DRM_ERROR("mismatch in DDB state pipe %c cursor "
12679 "(expected (%u,%u), found (%u,%u))\n",
12680 pipe_name(pipe),
12681 sw_entry->start, sw_entry->end,
12682 hw_entry->start, hw_entry->end);
12683 }
12684 }
12685
12686 static void
check_connector_state(struct drm_device * dev,struct drm_atomic_state * old_state)12687 check_connector_state(struct drm_device *dev,
12688 struct drm_atomic_state *old_state)
12689 {
12690 struct drm_connector_state *old_conn_state;
12691 struct drm_connector *connector;
12692 int i;
12693
12694 for_each_connector_in_state(old_state, connector, old_conn_state, i) {
12695 struct drm_encoder *encoder = connector->encoder;
12696 struct drm_connector_state *state = connector->state;
12697
12698 /* This also checks the encoder/connector hw state with the
12699 * ->get_hw_state callbacks. */
12700 intel_connector_check_state(to_intel_connector(connector));
12701
12702 I915_STATE_WARN(state->best_encoder != encoder,
12703 "connector's atomic encoder doesn't match legacy encoder\n");
12704 }
12705 }
12706
12707 static void
check_encoder_state(struct drm_device * dev)12708 check_encoder_state(struct drm_device *dev)
12709 {
12710 struct intel_encoder *encoder;
12711 struct intel_connector *connector;
12712
12713 for_each_intel_encoder(dev, encoder) {
12714 bool enabled = false;
12715 enum pipe pipe;
12716
12717 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
12718 encoder->base.base.id,
12719 encoder->base.name);
12720
12721 for_each_intel_connector(dev, connector) {
12722 if (connector->base.state->best_encoder != &encoder->base)
12723 continue;
12724 enabled = true;
12725
12726 I915_STATE_WARN(connector->base.state->crtc !=
12727 encoder->base.crtc,
12728 "connector's crtc doesn't match encoder crtc\n");
12729 }
12730
12731 I915_STATE_WARN(!!encoder->base.crtc != enabled,
12732 "encoder's enabled state mismatch "
12733 "(expected %i, found %i)\n",
12734 !!encoder->base.crtc, enabled);
12735
12736 if (!encoder->base.crtc) {
12737 bool active;
12738
12739 active = encoder->get_hw_state(encoder, &pipe);
12740 I915_STATE_WARN(active,
12741 "encoder detached but still enabled on pipe %c.\n",
12742 pipe_name(pipe));
12743 }
12744 }
12745 }
12746
12747 static void
check_crtc_state(struct drm_device * dev,struct drm_atomic_state * old_state)12748 check_crtc_state(struct drm_device *dev, struct drm_atomic_state *old_state)
12749 {
12750 struct drm_i915_private *dev_priv = dev->dev_private;
12751 struct intel_encoder *encoder;
12752 struct drm_crtc_state *old_crtc_state;
12753 struct drm_crtc *crtc;
12754 int i;
12755
12756 for_each_crtc_in_state(old_state, crtc, old_crtc_state, i) {
12757 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12758 struct intel_crtc_state *pipe_config, *sw_config;
12759 bool active;
12760
12761 if (!needs_modeset(crtc->state) &&
12762 !to_intel_crtc_state(crtc->state)->update_pipe)
12763 continue;
12764
12765 __drm_atomic_helper_crtc_destroy_state(crtc, old_crtc_state);
12766 pipe_config = to_intel_crtc_state(old_crtc_state);
12767 memset(pipe_config, 0, sizeof(*pipe_config));
12768 pipe_config->base.crtc = crtc;
12769 pipe_config->base.state = old_state;
12770
12771 DRM_DEBUG_KMS("[CRTC:%d]\n",
12772 crtc->base.id);
12773
12774 active = dev_priv->display.get_pipe_config(intel_crtc,
12775 pipe_config);
12776
12777 /* hw state is inconsistent with the pipe quirk */
12778 if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
12779 (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
12780 active = crtc->state->active;
12781
12782 I915_STATE_WARN(crtc->state->active != active,
12783 "crtc active state doesn't match with hw state "
12784 "(expected %i, found %i)\n", crtc->state->active, active);
12785
12786 I915_STATE_WARN(intel_crtc->active != crtc->state->active,
12787 "transitional active state does not match atomic hw state "
12788 "(expected %i, found %i)\n", crtc->state->active, intel_crtc->active);
12789
12790 for_each_encoder_on_crtc(dev, crtc, encoder) {
12791 enum pipe pipe;
12792
12793 active = encoder->get_hw_state(encoder, &pipe);
12794 I915_STATE_WARN(active != crtc->state->active,
12795 "[ENCODER:%i] active %i with crtc active %i\n",
12796 encoder->base.base.id, active, crtc->state->active);
12797
12798 I915_STATE_WARN(active && intel_crtc->pipe != pipe,
12799 "Encoder connected to wrong pipe %c\n",
12800 pipe_name(pipe));
12801
12802 if (active)
12803 encoder->get_config(encoder, pipe_config);
12804 }
12805
12806 if (!crtc->state->active)
12807 continue;
12808
12809 sw_config = to_intel_crtc_state(crtc->state);
12810 if (!intel_pipe_config_compare(dev, sw_config,
12811 pipe_config, false)) {
12812 I915_STATE_WARN(1, "pipe state doesn't match!\n");
12813 intel_dump_pipe_config(intel_crtc, pipe_config,
12814 "[hw state]");
12815 intel_dump_pipe_config(intel_crtc, sw_config,
12816 "[sw state]");
12817 }
12818 }
12819 }
12820
12821 static void
check_shared_dpll_state(struct drm_device * dev)12822 check_shared_dpll_state(struct drm_device *dev)
12823 {
12824 struct drm_i915_private *dev_priv = dev->dev_private;
12825 struct intel_crtc *crtc;
12826 struct intel_dpll_hw_state dpll_hw_state;
12827 int i;
12828
12829 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
12830 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
12831 int enabled_crtcs = 0, active_crtcs = 0;
12832 bool active;
12833
12834 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
12835
12836 DRM_DEBUG_KMS("%s\n", pll->name);
12837
12838 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
12839
12840 I915_STATE_WARN(pll->active > hweight32(pll->config.crtc_mask),
12841 "more active pll users than references: %i vs %i\n",
12842 pll->active, hweight32(pll->config.crtc_mask));
12843 I915_STATE_WARN(pll->active && !pll->on,
12844 "pll in active use but not on in sw tracking\n");
12845 I915_STATE_WARN(pll->on && !pll->active,
12846 "pll in on but not on in use in sw tracking\n");
12847 I915_STATE_WARN(pll->on != active,
12848 "pll on state mismatch (expected %i, found %i)\n",
12849 pll->on, active);
12850
12851 for_each_intel_crtc(dev, crtc) {
12852 if (crtc->base.state->enable && intel_crtc_to_shared_dpll(crtc) == pll)
12853 enabled_crtcs++;
12854 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
12855 active_crtcs++;
12856 }
12857 I915_STATE_WARN(pll->active != active_crtcs,
12858 "pll active crtcs mismatch (expected %i, found %i)\n",
12859 pll->active, active_crtcs);
12860 I915_STATE_WARN(hweight32(pll->config.crtc_mask) != enabled_crtcs,
12861 "pll enabled crtcs mismatch (expected %i, found %i)\n",
12862 hweight32(pll->config.crtc_mask), enabled_crtcs);
12863
12864 I915_STATE_WARN(pll->on && memcmp(&pll->config.hw_state, &dpll_hw_state,
12865 sizeof(dpll_hw_state)),
12866 "pll hw state mismatch\n");
12867 }
12868 }
12869
12870 static void
intel_modeset_check_state(struct drm_device * dev,struct drm_atomic_state * old_state)12871 intel_modeset_check_state(struct drm_device *dev,
12872 struct drm_atomic_state *old_state)
12873 {
12874 check_wm_state(dev);
12875 check_connector_state(dev, old_state);
12876 check_encoder_state(dev);
12877 check_crtc_state(dev, old_state);
12878 check_shared_dpll_state(dev);
12879 }
12880
ironlake_check_encoder_dotclock(const struct intel_crtc_state * pipe_config,int dotclock)12881 void ironlake_check_encoder_dotclock(const struct intel_crtc_state *pipe_config,
12882 int dotclock)
12883 {
12884 /*
12885 * FDI already provided one idea for the dotclock.
12886 * Yell if the encoder disagrees.
12887 */
12888 WARN(!intel_fuzzy_clock_check(pipe_config->base.adjusted_mode.crtc_clock, dotclock),
12889 "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
12890 pipe_config->base.adjusted_mode.crtc_clock, dotclock);
12891 }
12892
update_scanline_offset(struct intel_crtc * crtc)12893 static void update_scanline_offset(struct intel_crtc *crtc)
12894 {
12895 struct drm_device *dev = crtc->base.dev;
12896
12897 /*
12898 * The scanline counter increments at the leading edge of hsync.
12899 *
12900 * On most platforms it starts counting from vtotal-1 on the
12901 * first active line. That means the scanline counter value is
12902 * always one less than what we would expect. Ie. just after
12903 * start of vblank, which also occurs at start of hsync (on the
12904 * last active line), the scanline counter will read vblank_start-1.
12905 *
12906 * On gen2 the scanline counter starts counting from 1 instead
12907 * of vtotal-1, so we have to subtract one (or rather add vtotal-1
12908 * to keep the value positive), instead of adding one.
12909 *
12910 * On HSW+ the behaviour of the scanline counter depends on the output
12911 * type. For DP ports it behaves like most other platforms, but on HDMI
12912 * there's an extra 1 line difference. So we need to add two instead of
12913 * one to the value.
12914 */
12915 if (IS_GEN2(dev)) {
12916 const struct drm_display_mode *adjusted_mode = &crtc->config->base.adjusted_mode;
12917 int vtotal;
12918
12919 vtotal = adjusted_mode->crtc_vtotal;
12920 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
12921 vtotal /= 2;
12922
12923 crtc->scanline_offset = vtotal - 1;
12924 } else if (HAS_DDI(dev) &&
12925 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI)) {
12926 crtc->scanline_offset = 2;
12927 } else
12928 crtc->scanline_offset = 1;
12929 }
12930
intel_modeset_clear_plls(struct drm_atomic_state * state)12931 static void intel_modeset_clear_plls(struct drm_atomic_state *state)
12932 {
12933 struct drm_device *dev = state->dev;
12934 struct drm_i915_private *dev_priv = to_i915(dev);
12935 struct intel_shared_dpll_config *shared_dpll = NULL;
12936 struct intel_crtc *intel_crtc;
12937 struct intel_crtc_state *intel_crtc_state;
12938 struct drm_crtc *crtc;
12939 struct drm_crtc_state *crtc_state;
12940 int i;
12941
12942 if (!dev_priv->display.crtc_compute_clock)
12943 return;
12944
12945 for_each_crtc_in_state(state, crtc, crtc_state, i) {
12946 int dpll;
12947
12948 intel_crtc = to_intel_crtc(crtc);
12949 intel_crtc_state = to_intel_crtc_state(crtc_state);
12950 dpll = intel_crtc_state->shared_dpll;
12951
12952 if (!needs_modeset(crtc_state) || dpll == DPLL_ID_PRIVATE)
12953 continue;
12954
12955 intel_crtc_state->shared_dpll = DPLL_ID_PRIVATE;
12956
12957 if (!shared_dpll)
12958 shared_dpll = intel_atomic_get_shared_dpll_state(state);
12959
12960 shared_dpll[dpll].crtc_mask &= ~(1 << intel_crtc->pipe);
12961 }
12962 }
12963
12964 /*
12965 * This implements the workaround described in the "notes" section of the mode
12966 * set sequence documentation. When going from no pipes or single pipe to
12967 * multiple pipes, and planes are enabled after the pipe, we need to wait at
12968 * least 2 vblanks on the first pipe before enabling planes on the second pipe.
12969 */
haswell_mode_set_planes_workaround(struct drm_atomic_state * state)12970 static int haswell_mode_set_planes_workaround(struct drm_atomic_state *state)
12971 {
12972 struct drm_crtc_state *crtc_state;
12973 struct intel_crtc *intel_crtc;
12974 struct drm_crtc *crtc;
12975 struct intel_crtc_state *first_crtc_state = NULL;
12976 struct intel_crtc_state *other_crtc_state = NULL;
12977 enum pipe first_pipe = INVALID_PIPE, enabled_pipe = INVALID_PIPE;
12978 int i;
12979
12980 /* look at all crtc's that are going to be enabled in during modeset */
12981 for_each_crtc_in_state(state, crtc, crtc_state, i) {
12982 intel_crtc = to_intel_crtc(crtc);
12983
12984 if (!crtc_state->active || !needs_modeset(crtc_state))
12985 continue;
12986
12987 if (first_crtc_state) {
12988 other_crtc_state = to_intel_crtc_state(crtc_state);
12989 break;
12990 } else {
12991 first_crtc_state = to_intel_crtc_state(crtc_state);
12992 first_pipe = intel_crtc->pipe;
12993 }
12994 }
12995
12996 /* No workaround needed? */
12997 if (!first_crtc_state)
12998 return 0;
12999
13000 /* w/a possibly needed, check how many crtc's are already enabled. */
13001 for_each_intel_crtc(state->dev, intel_crtc) {
13002 struct intel_crtc_state *pipe_config;
13003
13004 pipe_config = intel_atomic_get_crtc_state(state, intel_crtc);
13005 if (IS_ERR(pipe_config))
13006 return PTR_ERR(pipe_config);
13007
13008 pipe_config->hsw_workaround_pipe = INVALID_PIPE;
13009
13010 if (!pipe_config->base.active ||
13011 needs_modeset(&pipe_config->base))
13012 continue;
13013
13014 /* 2 or more enabled crtcs means no need for w/a */
13015 if (enabled_pipe != INVALID_PIPE)
13016 return 0;
13017
13018 enabled_pipe = intel_crtc->pipe;
13019 }
13020
13021 if (enabled_pipe != INVALID_PIPE)
13022 first_crtc_state->hsw_workaround_pipe = enabled_pipe;
13023 else if (other_crtc_state)
13024 other_crtc_state->hsw_workaround_pipe = first_pipe;
13025
13026 return 0;
13027 }
13028
intel_modeset_all_pipes(struct drm_atomic_state * state)13029 static int intel_modeset_all_pipes(struct drm_atomic_state *state)
13030 {
13031 struct drm_crtc *crtc;
13032 struct drm_crtc_state *crtc_state;
13033 int ret = 0;
13034
13035 /* add all active pipes to the state */
13036 for_each_crtc(state->dev, crtc) {
13037 crtc_state = drm_atomic_get_crtc_state(state, crtc);
13038 if (IS_ERR(crtc_state))
13039 return PTR_ERR(crtc_state);
13040
13041 if (!crtc_state->active || needs_modeset(crtc_state))
13042 continue;
13043
13044 crtc_state->mode_changed = true;
13045
13046 ret = drm_atomic_add_affected_connectors(state, crtc);
13047 if (ret)
13048 break;
13049
13050 ret = drm_atomic_add_affected_planes(state, crtc);
13051 if (ret)
13052 break;
13053 }
13054
13055 return ret;
13056 }
13057
intel_modeset_checks(struct drm_atomic_state * state)13058 static int intel_modeset_checks(struct drm_atomic_state *state)
13059 {
13060 struct drm_device *dev = state->dev;
13061 struct drm_i915_private *dev_priv = dev->dev_private;
13062 int ret;
13063
13064 if (!check_digital_port_conflicts(state)) {
13065 DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n");
13066 return -EINVAL;
13067 }
13068
13069 /*
13070 * See if the config requires any additional preparation, e.g.
13071 * to adjust global state with pipes off. We need to do this
13072 * here so we can get the modeset_pipe updated config for the new
13073 * mode set on this crtc. For other crtcs we need to use the
13074 * adjusted_mode bits in the crtc directly.
13075 */
13076 if (dev_priv->display.modeset_calc_cdclk) {
13077 unsigned int cdclk;
13078
13079 ret = dev_priv->display.modeset_calc_cdclk(state);
13080
13081 cdclk = to_intel_atomic_state(state)->cdclk;
13082 if (!ret && cdclk != dev_priv->cdclk_freq)
13083 ret = intel_modeset_all_pipes(state);
13084
13085 if (ret < 0)
13086 return ret;
13087 } else
13088 to_intel_atomic_state(state)->cdclk = dev_priv->cdclk_freq;
13089
13090 intel_modeset_clear_plls(state);
13091
13092 if (IS_HASWELL(dev))
13093 return haswell_mode_set_planes_workaround(state);
13094
13095 return 0;
13096 }
13097
13098 /**
13099 * intel_atomic_check - validate state object
13100 * @dev: drm device
13101 * @state: state to validate
13102 */
intel_atomic_check(struct drm_device * dev,struct drm_atomic_state * state)13103 static int intel_atomic_check(struct drm_device *dev,
13104 struct drm_atomic_state *state)
13105 {
13106 struct drm_crtc *crtc;
13107 struct drm_crtc_state *crtc_state;
13108 int ret, i;
13109 bool any_ms = false;
13110
13111 ret = drm_atomic_helper_check_modeset(dev, state);
13112 if (ret)
13113 return ret;
13114
13115 for_each_crtc_in_state(state, crtc, crtc_state, i) {
13116 struct intel_crtc_state *pipe_config =
13117 to_intel_crtc_state(crtc_state);
13118
13119 memset(&to_intel_crtc(crtc)->atomic, 0,
13120 sizeof(struct intel_crtc_atomic_commit));
13121
13122 /* Catch I915_MODE_FLAG_INHERITED */
13123 if (crtc_state->mode.private_flags != crtc->state->mode.private_flags)
13124 crtc_state->mode_changed = true;
13125
13126 if (!crtc_state->enable) {
13127 if (needs_modeset(crtc_state))
13128 any_ms = true;
13129 continue;
13130 }
13131
13132 if (!needs_modeset(crtc_state))
13133 continue;
13134
13135 /* FIXME: For only active_changed we shouldn't need to do any
13136 * state recomputation at all. */
13137
13138 ret = drm_atomic_add_affected_connectors(state, crtc);
13139 if (ret)
13140 return ret;
13141
13142 ret = intel_modeset_pipe_config(crtc, pipe_config);
13143 if (ret)
13144 return ret;
13145
13146 if (i915.fastboot &&
13147 intel_pipe_config_compare(state->dev,
13148 to_intel_crtc_state(crtc->state),
13149 pipe_config, true)) {
13150 crtc_state->mode_changed = false;
13151 to_intel_crtc_state(crtc_state)->update_pipe = true;
13152 }
13153
13154 if (needs_modeset(crtc_state)) {
13155 any_ms = true;
13156
13157 ret = drm_atomic_add_affected_planes(state, crtc);
13158 if (ret)
13159 return ret;
13160 }
13161
13162 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
13163 needs_modeset(crtc_state) ?
13164 "[modeset]" : "[fastset]");
13165 }
13166
13167 if (any_ms) {
13168 ret = intel_modeset_checks(state);
13169
13170 if (ret)
13171 return ret;
13172 } else
13173 to_intel_atomic_state(state)->cdclk =
13174 to_i915(state->dev)->cdclk_freq;
13175
13176 return drm_atomic_helper_check_planes(state->dev, state);
13177 }
13178
13179 /**
13180 * intel_atomic_commit - commit validated state object
13181 * @dev: DRM device
13182 * @state: the top-level driver state object
13183 * @async: asynchronous commit
13184 *
13185 * This function commits a top-level state object that has been validated
13186 * with drm_atomic_helper_check().
13187 *
13188 * FIXME: Atomic modeset support for i915 is not yet complete. At the moment
13189 * we can only handle plane-related operations and do not yet support
13190 * asynchronous commit.
13191 *
13192 * RETURNS
13193 * Zero for success or -errno.
13194 */
intel_atomic_commit(struct drm_device * dev,struct drm_atomic_state * state,bool async)13195 static int intel_atomic_commit(struct drm_device *dev,
13196 struct drm_atomic_state *state,
13197 bool async)
13198 {
13199 struct drm_i915_private *dev_priv = dev->dev_private;
13200 struct drm_crtc *crtc;
13201 struct drm_crtc_state *crtc_state;
13202 int ret = 0;
13203 int i;
13204 bool any_ms = false;
13205
13206 if (async) {
13207 DRM_DEBUG_KMS("i915 does not yet support async commit\n");
13208 return -EINVAL;
13209 }
13210
13211 ret = drm_atomic_helper_prepare_planes(dev, state);
13212 if (ret)
13213 return ret;
13214
13215 drm_atomic_helper_swap_state(dev, state);
13216
13217 for_each_crtc_in_state(state, crtc, crtc_state, i) {
13218 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13219
13220 if (!needs_modeset(crtc->state))
13221 continue;
13222
13223 any_ms = true;
13224 intel_pre_plane_update(intel_crtc);
13225
13226 if (crtc_state->active) {
13227 intel_crtc_disable_planes(crtc, crtc_state->plane_mask);
13228 dev_priv->display.crtc_disable(crtc);
13229 intel_crtc->active = false;
13230 intel_disable_shared_dpll(intel_crtc);
13231 }
13232 }
13233
13234 /* Only after disabling all output pipelines that will be changed can we
13235 * update the the output configuration. */
13236 intel_modeset_update_crtc_state(state);
13237
13238 if (any_ms) {
13239 intel_shared_dpll_commit(state);
13240
13241 drm_atomic_helper_update_legacy_modeset_state(state->dev, state);
13242 modeset_update_crtc_power_domains(state);
13243 }
13244
13245 /* Now enable the clocks, plane, pipe, and connectors that we set up. */
13246 for_each_crtc_in_state(state, crtc, crtc_state, i) {
13247 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13248 bool modeset = needs_modeset(crtc->state);
13249 bool update_pipe = !modeset &&
13250 to_intel_crtc_state(crtc->state)->update_pipe;
13251 unsigned long put_domains = 0;
13252
13253 if (modeset && crtc->state->active) {
13254 update_scanline_offset(to_intel_crtc(crtc));
13255 dev_priv->display.crtc_enable(crtc);
13256 }
13257
13258 if (update_pipe) {
13259 put_domains = modeset_get_crtc_power_domains(crtc);
13260
13261 /* make sure intel_modeset_check_state runs */
13262 any_ms = true;
13263 }
13264
13265 if (!modeset)
13266 intel_pre_plane_update(intel_crtc);
13267
13268 drm_atomic_helper_commit_planes_on_crtc(crtc_state);
13269
13270 if (put_domains)
13271 modeset_put_power_domains(dev_priv, put_domains);
13272
13273 intel_post_plane_update(intel_crtc);
13274 }
13275
13276 /* FIXME: add subpixel order */
13277
13278 drm_atomic_helper_wait_for_vblanks(dev, state);
13279 drm_atomic_helper_cleanup_planes(dev, state);
13280
13281 if (any_ms)
13282 intel_modeset_check_state(dev, state);
13283
13284 drm_atomic_state_free(state);
13285
13286 return 0;
13287 }
13288
intel_crtc_restore_mode(struct drm_crtc * crtc)13289 void intel_crtc_restore_mode(struct drm_crtc *crtc)
13290 {
13291 struct drm_device *dev = crtc->dev;
13292 struct drm_atomic_state *state;
13293 struct drm_crtc_state *crtc_state;
13294 int ret;
13295
13296 state = drm_atomic_state_alloc(dev);
13297 if (!state) {
13298 DRM_DEBUG_KMS("[CRTC:%d] crtc restore failed, out of memory",
13299 crtc->base.id);
13300 return;
13301 }
13302
13303 state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
13304
13305 retry:
13306 crtc_state = drm_atomic_get_crtc_state(state, crtc);
13307 ret = PTR_ERR_OR_ZERO(crtc_state);
13308 if (!ret) {
13309 if (!crtc_state->active)
13310 goto out;
13311
13312 crtc_state->mode_changed = true;
13313 ret = drm_atomic_commit(state);
13314 }
13315
13316 if (ret == -EDEADLK) {
13317 drm_atomic_state_clear(state);
13318 drm_modeset_backoff(state->acquire_ctx);
13319 goto retry;
13320 }
13321
13322 if (ret)
13323 out:
13324 drm_atomic_state_free(state);
13325 }
13326
13327 #undef for_each_intel_crtc_masked
13328
13329 static const struct drm_crtc_funcs intel_crtc_funcs = {
13330 .gamma_set = intel_crtc_gamma_set,
13331 .set_config = drm_atomic_helper_set_config,
13332 .destroy = intel_crtc_destroy,
13333 .page_flip = intel_crtc_page_flip,
13334 .atomic_duplicate_state = intel_crtc_duplicate_state,
13335 .atomic_destroy_state = intel_crtc_destroy_state,
13336 };
13337
ibx_pch_dpll_get_hw_state(struct drm_i915_private * dev_priv,struct intel_shared_dpll * pll,struct intel_dpll_hw_state * hw_state)13338 static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
13339 struct intel_shared_dpll *pll,
13340 struct intel_dpll_hw_state *hw_state)
13341 {
13342 uint32_t val;
13343
13344 if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
13345 return false;
13346
13347 val = I915_READ(PCH_DPLL(pll->id));
13348 hw_state->dpll = val;
13349 hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
13350 hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
13351
13352 return val & DPLL_VCO_ENABLE;
13353 }
13354
ibx_pch_dpll_mode_set(struct drm_i915_private * dev_priv,struct intel_shared_dpll * pll)13355 static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
13356 struct intel_shared_dpll *pll)
13357 {
13358 I915_WRITE(PCH_FP0(pll->id), pll->config.hw_state.fp0);
13359 I915_WRITE(PCH_FP1(pll->id), pll->config.hw_state.fp1);
13360 }
13361
ibx_pch_dpll_enable(struct drm_i915_private * dev_priv,struct intel_shared_dpll * pll)13362 static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
13363 struct intel_shared_dpll *pll)
13364 {
13365 /* PCH refclock must be enabled first */
13366 ibx_assert_pch_refclk_enabled(dev_priv);
13367
13368 I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
13369
13370 /* Wait for the clocks to stabilize. */
13371 POSTING_READ(PCH_DPLL(pll->id));
13372 udelay(150);
13373
13374 /* The pixel multiplier can only be updated once the
13375 * DPLL is enabled and the clocks are stable.
13376 *
13377 * So write it again.
13378 */
13379 I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
13380 POSTING_READ(PCH_DPLL(pll->id));
13381 udelay(200);
13382 }
13383
ibx_pch_dpll_disable(struct drm_i915_private * dev_priv,struct intel_shared_dpll * pll)13384 static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
13385 struct intel_shared_dpll *pll)
13386 {
13387 struct drm_device *dev = dev_priv->dev;
13388 struct intel_crtc *crtc;
13389
13390 /* Make sure no transcoder isn't still depending on us. */
13391 for_each_intel_crtc(dev, crtc) {
13392 if (intel_crtc_to_shared_dpll(crtc) == pll)
13393 assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
13394 }
13395
13396 I915_WRITE(PCH_DPLL(pll->id), 0);
13397 POSTING_READ(PCH_DPLL(pll->id));
13398 udelay(200);
13399 }
13400
13401 static char *ibx_pch_dpll_names[] = {
13402 "PCH DPLL A",
13403 "PCH DPLL B",
13404 };
13405
ibx_pch_dpll_init(struct drm_device * dev)13406 static void ibx_pch_dpll_init(struct drm_device *dev)
13407 {
13408 struct drm_i915_private *dev_priv = dev->dev_private;
13409 int i;
13410
13411 dev_priv->num_shared_dpll = 2;
13412
13413 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
13414 dev_priv->shared_dplls[i].id = i;
13415 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
13416 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
13417 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
13418 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
13419 dev_priv->shared_dplls[i].get_hw_state =
13420 ibx_pch_dpll_get_hw_state;
13421 }
13422 }
13423
intel_shared_dpll_init(struct drm_device * dev)13424 static void intel_shared_dpll_init(struct drm_device *dev)
13425 {
13426 struct drm_i915_private *dev_priv = dev->dev_private;
13427
13428 if (HAS_DDI(dev))
13429 intel_ddi_pll_init(dev);
13430 else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
13431 ibx_pch_dpll_init(dev);
13432 else
13433 dev_priv->num_shared_dpll = 0;
13434
13435 BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
13436 }
13437
13438 /**
13439 * intel_prepare_plane_fb - Prepare fb for usage on plane
13440 * @plane: drm plane to prepare for
13441 * @fb: framebuffer to prepare for presentation
13442 *
13443 * Prepares a framebuffer for usage on a display plane. Generally this
13444 * involves pinning the underlying object and updating the frontbuffer tracking
13445 * bits. Some older platforms need special physical address handling for
13446 * cursor planes.
13447 *
13448 * Returns 0 on success, negative error code on failure.
13449 */
13450 int
intel_prepare_plane_fb(struct drm_plane * plane,const struct drm_plane_state * new_state)13451 intel_prepare_plane_fb(struct drm_plane *plane,
13452 const struct drm_plane_state *new_state)
13453 {
13454 struct drm_device *dev = plane->dev;
13455 struct drm_framebuffer *fb = new_state->fb;
13456 struct intel_plane *intel_plane = to_intel_plane(plane);
13457 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
13458 struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->fb);
13459 int ret = 0;
13460
13461 if (!obj)
13462 return 0;
13463
13464 mutex_lock(&dev->struct_mutex);
13465
13466 if (plane->type == DRM_PLANE_TYPE_CURSOR &&
13467 INTEL_INFO(dev)->cursor_needs_physical) {
13468 int align = IS_I830(dev) ? 16 * 1024 : 256;
13469 ret = i915_gem_object_attach_phys(obj, align);
13470 if (ret)
13471 DRM_DEBUG_KMS("failed to attach phys object\n");
13472 } else {
13473 ret = intel_pin_and_fence_fb_obj(plane, fb, new_state, NULL, NULL);
13474 }
13475
13476 if (ret == 0)
13477 i915_gem_track_fb(old_obj, obj, intel_plane->frontbuffer_bit);
13478
13479 mutex_unlock(&dev->struct_mutex);
13480
13481 return ret;
13482 }
13483
13484 /**
13485 * intel_cleanup_plane_fb - Cleans up an fb after plane use
13486 * @plane: drm plane to clean up for
13487 * @fb: old framebuffer that was on plane
13488 *
13489 * Cleans up a framebuffer that has just been removed from a plane.
13490 */
13491 void
intel_cleanup_plane_fb(struct drm_plane * plane,const struct drm_plane_state * old_state)13492 intel_cleanup_plane_fb(struct drm_plane *plane,
13493 const struct drm_plane_state *old_state)
13494 {
13495 struct drm_device *dev = plane->dev;
13496 struct drm_i915_gem_object *obj = intel_fb_obj(old_state->fb);
13497
13498 if (!obj)
13499 return;
13500
13501 if (plane->type != DRM_PLANE_TYPE_CURSOR ||
13502 !INTEL_INFO(dev)->cursor_needs_physical) {
13503 mutex_lock(&dev->struct_mutex);
13504 intel_unpin_fb_obj(old_state->fb, old_state);
13505 mutex_unlock(&dev->struct_mutex);
13506 }
13507 }
13508
13509 int
skl_max_scale(struct intel_crtc * intel_crtc,struct intel_crtc_state * crtc_state)13510 skl_max_scale(struct intel_crtc *intel_crtc, struct intel_crtc_state *crtc_state)
13511 {
13512 int max_scale;
13513 struct drm_device *dev;
13514 struct drm_i915_private *dev_priv;
13515 int crtc_clock, cdclk;
13516
13517 if (!intel_crtc || !crtc_state)
13518 return DRM_PLANE_HELPER_NO_SCALING;
13519
13520 dev = intel_crtc->base.dev;
13521 dev_priv = dev->dev_private;
13522 crtc_clock = crtc_state->base.adjusted_mode.crtc_clock;
13523 cdclk = to_intel_atomic_state(crtc_state->base.state)->cdclk;
13524
13525 if (!crtc_clock || !cdclk)
13526 return DRM_PLANE_HELPER_NO_SCALING;
13527
13528 /*
13529 * skl max scale is lower of:
13530 * close to 3 but not 3, -1 is for that purpose
13531 * or
13532 * cdclk/crtc_clock
13533 */
13534 max_scale = min((1 << 16) * 3 - 1, (1 << 8) * ((cdclk << 8) / crtc_clock));
13535
13536 return max_scale;
13537 }
13538
13539 static int
intel_check_primary_plane(struct drm_plane * plane,struct intel_crtc_state * crtc_state,struct intel_plane_state * state)13540 intel_check_primary_plane(struct drm_plane *plane,
13541 struct intel_crtc_state *crtc_state,
13542 struct intel_plane_state *state)
13543 {
13544 struct drm_crtc *crtc = state->base.crtc;
13545 struct drm_framebuffer *fb = state->base.fb;
13546 int min_scale = DRM_PLANE_HELPER_NO_SCALING;
13547 int max_scale = DRM_PLANE_HELPER_NO_SCALING;
13548 bool can_position = false;
13549
13550 if (INTEL_INFO(plane->dev)->gen >= 9) {
13551 /* use scaler when colorkey is not required */
13552 if (state->ckey.flags == I915_SET_COLORKEY_NONE) {
13553 min_scale = 1;
13554 max_scale = skl_max_scale(to_intel_crtc(crtc), crtc_state);
13555 }
13556 can_position = true;
13557 }
13558
13559 return drm_plane_helper_check_update(plane, crtc, fb, &state->src,
13560 &state->dst, &state->clip,
13561 min_scale, max_scale,
13562 can_position, true,
13563 &state->visible);
13564 }
13565
13566 static void
intel_commit_primary_plane(struct drm_plane * plane,struct intel_plane_state * state)13567 intel_commit_primary_plane(struct drm_plane *plane,
13568 struct intel_plane_state *state)
13569 {
13570 struct drm_crtc *crtc = state->base.crtc;
13571 struct drm_framebuffer *fb = state->base.fb;
13572 struct drm_device *dev = plane->dev;
13573 struct drm_i915_private *dev_priv = dev->dev_private;
13574 struct intel_crtc *intel_crtc;
13575 struct drm_rect *src = &state->src;
13576
13577 crtc = crtc ? crtc : plane->crtc;
13578 intel_crtc = to_intel_crtc(crtc);
13579
13580 plane->fb = fb;
13581 crtc->x = src->x1 >> 16;
13582 crtc->y = src->y1 >> 16;
13583
13584 if (!crtc->state->active)
13585 return;
13586
13587 dev_priv->display.update_primary_plane(crtc, fb,
13588 state->src.x1 >> 16,
13589 state->src.y1 >> 16);
13590 }
13591
13592 static void
intel_disable_primary_plane(struct drm_plane * plane,struct drm_crtc * crtc)13593 intel_disable_primary_plane(struct drm_plane *plane,
13594 struct drm_crtc *crtc)
13595 {
13596 struct drm_device *dev = plane->dev;
13597 struct drm_i915_private *dev_priv = dev->dev_private;
13598
13599 dev_priv->display.update_primary_plane(crtc, NULL, 0, 0);
13600 }
13601
intel_begin_crtc_commit(struct drm_crtc * crtc,struct drm_crtc_state * old_crtc_state)13602 static void intel_begin_crtc_commit(struct drm_crtc *crtc,
13603 struct drm_crtc_state *old_crtc_state)
13604 {
13605 struct drm_device *dev = crtc->dev;
13606 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13607 struct intel_crtc_state *old_intel_state =
13608 to_intel_crtc_state(old_crtc_state);
13609 bool modeset = needs_modeset(crtc->state);
13610
13611 if (intel_crtc->atomic.update_wm_pre)
13612 intel_update_watermarks(crtc);
13613
13614 /* Perform vblank evasion around commit operation */
13615 if (crtc->state->active)
13616 intel_pipe_update_start(intel_crtc);
13617
13618 if (modeset)
13619 return;
13620
13621 if (to_intel_crtc_state(crtc->state)->update_pipe)
13622 intel_update_pipe_config(intel_crtc, old_intel_state);
13623 else if (INTEL_INFO(dev)->gen >= 9)
13624 skl_detach_scalers(intel_crtc);
13625 }
13626
intel_finish_crtc_commit(struct drm_crtc * crtc,struct drm_crtc_state * old_crtc_state)13627 static void intel_finish_crtc_commit(struct drm_crtc *crtc,
13628 struct drm_crtc_state *old_crtc_state)
13629 {
13630 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13631
13632 if (crtc->state->active)
13633 intel_pipe_update_end(intel_crtc);
13634 }
13635
13636 /**
13637 * intel_plane_destroy - destroy a plane
13638 * @plane: plane to destroy
13639 *
13640 * Common destruction function for all types of planes (primary, cursor,
13641 * sprite).
13642 */
intel_plane_destroy(struct drm_plane * plane)13643 void intel_plane_destroy(struct drm_plane *plane)
13644 {
13645 struct intel_plane *intel_plane = to_intel_plane(plane);
13646 drm_plane_cleanup(plane);
13647 kfree(intel_plane);
13648 }
13649
13650 const struct drm_plane_funcs intel_plane_funcs = {
13651 .update_plane = drm_atomic_helper_update_plane,
13652 .disable_plane = drm_atomic_helper_disable_plane,
13653 .destroy = intel_plane_destroy,
13654 .set_property = drm_atomic_helper_plane_set_property,
13655 .atomic_get_property = intel_plane_atomic_get_property,
13656 .atomic_set_property = intel_plane_atomic_set_property,
13657 .atomic_duplicate_state = intel_plane_duplicate_state,
13658 .atomic_destroy_state = intel_plane_destroy_state,
13659
13660 };
13661
intel_primary_plane_create(struct drm_device * dev,int pipe)13662 static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
13663 int pipe)
13664 {
13665 struct intel_plane *primary;
13666 struct intel_plane_state *state;
13667 const uint32_t *intel_primary_formats;
13668 unsigned int num_formats;
13669
13670 primary = kzalloc(sizeof(*primary), GFP_KERNEL);
13671 if (primary == NULL)
13672 return NULL;
13673
13674 state = intel_create_plane_state(&primary->base);
13675 if (!state) {
13676 kfree(primary);
13677 return NULL;
13678 }
13679 primary->base.state = &state->base;
13680
13681 primary->can_scale = false;
13682 primary->max_downscale = 1;
13683 if (INTEL_INFO(dev)->gen >= 9) {
13684 primary->can_scale = true;
13685 state->scaler_id = -1;
13686 }
13687 primary->pipe = pipe;
13688 primary->plane = pipe;
13689 primary->frontbuffer_bit = INTEL_FRONTBUFFER_PRIMARY(pipe);
13690 primary->check_plane = intel_check_primary_plane;
13691 primary->commit_plane = intel_commit_primary_plane;
13692 primary->disable_plane = intel_disable_primary_plane;
13693 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
13694 primary->plane = !pipe;
13695
13696 if (INTEL_INFO(dev)->gen >= 9) {
13697 intel_primary_formats = skl_primary_formats;
13698 num_formats = ARRAY_SIZE(skl_primary_formats);
13699 } else if (INTEL_INFO(dev)->gen >= 4) {
13700 intel_primary_formats = i965_primary_formats;
13701 num_formats = ARRAY_SIZE(i965_primary_formats);
13702 } else {
13703 intel_primary_formats = i8xx_primary_formats;
13704 num_formats = ARRAY_SIZE(i8xx_primary_formats);
13705 }
13706
13707 drm_universal_plane_init(dev, &primary->base, 0,
13708 &intel_plane_funcs,
13709 intel_primary_formats, num_formats,
13710 DRM_PLANE_TYPE_PRIMARY);
13711
13712 if (INTEL_INFO(dev)->gen >= 4)
13713 intel_create_rotation_property(dev, primary);
13714
13715 drm_plane_helper_add(&primary->base, &intel_plane_helper_funcs);
13716
13717 return &primary->base;
13718 }
13719
intel_create_rotation_property(struct drm_device * dev,struct intel_plane * plane)13720 void intel_create_rotation_property(struct drm_device *dev, struct intel_plane *plane)
13721 {
13722 if (!dev->mode_config.rotation_property) {
13723 unsigned long flags = BIT(DRM_ROTATE_0) |
13724 BIT(DRM_ROTATE_180);
13725
13726 if (INTEL_INFO(dev)->gen >= 9)
13727 flags |= BIT(DRM_ROTATE_90) | BIT(DRM_ROTATE_270);
13728
13729 dev->mode_config.rotation_property =
13730 drm_mode_create_rotation_property(dev, flags);
13731 }
13732 if (dev->mode_config.rotation_property)
13733 drm_object_attach_property(&plane->base.base,
13734 dev->mode_config.rotation_property,
13735 plane->base.state->rotation);
13736 }
13737
13738 static int
intel_check_cursor_plane(struct drm_plane * plane,struct intel_crtc_state * crtc_state,struct intel_plane_state * state)13739 intel_check_cursor_plane(struct drm_plane *plane,
13740 struct intel_crtc_state *crtc_state,
13741 struct intel_plane_state *state)
13742 {
13743 struct drm_crtc *crtc = crtc_state->base.crtc;
13744 struct drm_framebuffer *fb = state->base.fb;
13745 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
13746 enum pipe pipe = to_intel_plane(plane)->pipe;
13747 unsigned stride;
13748 int ret;
13749
13750 ret = drm_plane_helper_check_update(plane, crtc, fb, &state->src,
13751 &state->dst, &state->clip,
13752 DRM_PLANE_HELPER_NO_SCALING,
13753 DRM_PLANE_HELPER_NO_SCALING,
13754 true, true, &state->visible);
13755 if (ret)
13756 return ret;
13757
13758 /* if we want to turn off the cursor ignore width and height */
13759 if (!obj)
13760 return 0;
13761
13762 /* Check for which cursor types we support */
13763 if (!cursor_size_ok(plane->dev, state->base.crtc_w, state->base.crtc_h)) {
13764 DRM_DEBUG("Cursor dimension %dx%d not supported\n",
13765 state->base.crtc_w, state->base.crtc_h);
13766 return -EINVAL;
13767 }
13768
13769 stride = roundup_pow_of_two(state->base.crtc_w) * 4;
13770 if (obj->base.size < stride * state->base.crtc_h) {
13771 DRM_DEBUG_KMS("buffer is too small\n");
13772 return -ENOMEM;
13773 }
13774
13775 if (fb->modifier[0] != DRM_FORMAT_MOD_NONE) {
13776 DRM_DEBUG_KMS("cursor cannot be tiled\n");
13777 return -EINVAL;
13778 }
13779
13780 /*
13781 * There's something wrong with the cursor on CHV pipe C.
13782 * If it straddles the left edge of the screen then
13783 * moving it away from the edge or disabling it often
13784 * results in a pipe underrun, and often that can lead to
13785 * dead pipe (constant underrun reported, and it scans
13786 * out just a solid color). To recover from that, the
13787 * display power well must be turned off and on again.
13788 * Refuse the put the cursor into that compromised position.
13789 */
13790 if (IS_CHERRYVIEW(plane->dev) && pipe == PIPE_C &&
13791 state->visible && state->base.crtc_x < 0) {
13792 DRM_DEBUG_KMS("CHV cursor C not allowed to straddle the left screen edge\n");
13793 return -EINVAL;
13794 }
13795
13796 return 0;
13797 }
13798
13799 static void
intel_disable_cursor_plane(struct drm_plane * plane,struct drm_crtc * crtc)13800 intel_disable_cursor_plane(struct drm_plane *plane,
13801 struct drm_crtc *crtc)
13802 {
13803 intel_crtc_update_cursor(crtc, false);
13804 }
13805
13806 static void
intel_commit_cursor_plane(struct drm_plane * plane,struct intel_plane_state * state)13807 intel_commit_cursor_plane(struct drm_plane *plane,
13808 struct intel_plane_state *state)
13809 {
13810 struct drm_crtc *crtc = state->base.crtc;
13811 struct drm_device *dev = plane->dev;
13812 struct intel_crtc *intel_crtc;
13813 struct drm_i915_gem_object *obj = intel_fb_obj(state->base.fb);
13814 uint32_t addr;
13815
13816 crtc = crtc ? crtc : plane->crtc;
13817 intel_crtc = to_intel_crtc(crtc);
13818
13819 if (!obj)
13820 addr = 0;
13821 else if (!INTEL_INFO(dev)->cursor_needs_physical)
13822 addr = i915_gem_obj_ggtt_offset(obj);
13823 else
13824 addr = obj->phys_handle->busaddr;
13825
13826 intel_crtc->cursor_addr = addr;
13827
13828 if (crtc->state->active)
13829 intel_crtc_update_cursor(crtc, state->visible);
13830 }
13831
intel_cursor_plane_create(struct drm_device * dev,int pipe)13832 static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
13833 int pipe)
13834 {
13835 struct intel_plane *cursor;
13836 struct intel_plane_state *state;
13837
13838 cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
13839 if (cursor == NULL)
13840 return NULL;
13841
13842 state = intel_create_plane_state(&cursor->base);
13843 if (!state) {
13844 kfree(cursor);
13845 return NULL;
13846 }
13847 cursor->base.state = &state->base;
13848
13849 cursor->can_scale = false;
13850 cursor->max_downscale = 1;
13851 cursor->pipe = pipe;
13852 cursor->plane = pipe;
13853 cursor->frontbuffer_bit = INTEL_FRONTBUFFER_CURSOR(pipe);
13854 cursor->check_plane = intel_check_cursor_plane;
13855 cursor->commit_plane = intel_commit_cursor_plane;
13856 cursor->disable_plane = intel_disable_cursor_plane;
13857
13858 drm_universal_plane_init(dev, &cursor->base, 0,
13859 &intel_plane_funcs,
13860 intel_cursor_formats,
13861 ARRAY_SIZE(intel_cursor_formats),
13862 DRM_PLANE_TYPE_CURSOR);
13863
13864 if (INTEL_INFO(dev)->gen >= 4) {
13865 if (!dev->mode_config.rotation_property)
13866 dev->mode_config.rotation_property =
13867 drm_mode_create_rotation_property(dev,
13868 BIT(DRM_ROTATE_0) |
13869 BIT(DRM_ROTATE_180));
13870 if (dev->mode_config.rotation_property)
13871 drm_object_attach_property(&cursor->base.base,
13872 dev->mode_config.rotation_property,
13873 state->base.rotation);
13874 }
13875
13876 if (INTEL_INFO(dev)->gen >=9)
13877 state->scaler_id = -1;
13878
13879 drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs);
13880
13881 return &cursor->base;
13882 }
13883
skl_init_scalers(struct drm_device * dev,struct intel_crtc * intel_crtc,struct intel_crtc_state * crtc_state)13884 static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
13885 struct intel_crtc_state *crtc_state)
13886 {
13887 int i;
13888 struct intel_scaler *intel_scaler;
13889 struct intel_crtc_scaler_state *scaler_state = &crtc_state->scaler_state;
13890
13891 for (i = 0; i < intel_crtc->num_scalers; i++) {
13892 intel_scaler = &scaler_state->scalers[i];
13893 intel_scaler->in_use = 0;
13894 intel_scaler->mode = PS_SCALER_MODE_DYN;
13895 }
13896
13897 scaler_state->scaler_id = -1;
13898 }
13899
intel_crtc_init(struct drm_device * dev,int pipe)13900 static void intel_crtc_init(struct drm_device *dev, int pipe)
13901 {
13902 struct drm_i915_private *dev_priv = dev->dev_private;
13903 struct intel_crtc *intel_crtc;
13904 struct intel_crtc_state *crtc_state = NULL;
13905 struct drm_plane *primary = NULL;
13906 struct drm_plane *cursor = NULL;
13907 int i, ret;
13908
13909 intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
13910 if (intel_crtc == NULL)
13911 return;
13912
13913 crtc_state = kzalloc(sizeof(*crtc_state), GFP_KERNEL);
13914 if (!crtc_state)
13915 goto fail;
13916 intel_crtc->config = crtc_state;
13917 intel_crtc->base.state = &crtc_state->base;
13918 crtc_state->base.crtc = &intel_crtc->base;
13919
13920 /* initialize shared scalers */
13921 if (INTEL_INFO(dev)->gen >= 9) {
13922 if (pipe == PIPE_C)
13923 intel_crtc->num_scalers = 1;
13924 else
13925 intel_crtc->num_scalers = SKL_NUM_SCALERS;
13926
13927 skl_init_scalers(dev, intel_crtc, crtc_state);
13928 }
13929
13930 primary = intel_primary_plane_create(dev, pipe);
13931 if (!primary)
13932 goto fail;
13933
13934 cursor = intel_cursor_plane_create(dev, pipe);
13935 if (!cursor)
13936 goto fail;
13937
13938 ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
13939 cursor, &intel_crtc_funcs);
13940 if (ret)
13941 goto fail;
13942
13943 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
13944 for (i = 0; i < 256; i++) {
13945 intel_crtc->lut_r[i] = i;
13946 intel_crtc->lut_g[i] = i;
13947 intel_crtc->lut_b[i] = i;
13948 }
13949
13950 /*
13951 * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
13952 * is hooked to pipe B. Hence we want plane A feeding pipe B.
13953 */
13954 intel_crtc->pipe = pipe;
13955 intel_crtc->plane = pipe;
13956 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
13957 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
13958 intel_crtc->plane = !pipe;
13959 }
13960
13961 intel_crtc->cursor_base = ~0;
13962 intel_crtc->cursor_cntl = ~0;
13963 intel_crtc->cursor_size = ~0;
13964
13965 intel_crtc->wm.cxsr_allowed = true;
13966
13967 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
13968 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
13969 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
13970 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
13971
13972 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
13973
13974 WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
13975 return;
13976
13977 fail:
13978 if (primary)
13979 drm_plane_cleanup(primary);
13980 if (cursor)
13981 drm_plane_cleanup(cursor);
13982 kfree(crtc_state);
13983 kfree(intel_crtc);
13984 }
13985
intel_get_pipe_from_connector(struct intel_connector * connector)13986 enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
13987 {
13988 struct drm_encoder *encoder = connector->base.encoder;
13989 struct drm_device *dev = connector->base.dev;
13990
13991 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
13992
13993 if (!encoder || WARN_ON(!encoder->crtc))
13994 return INVALID_PIPE;
13995
13996 return to_intel_crtc(encoder->crtc)->pipe;
13997 }
13998
intel_get_pipe_from_crtc_id(struct drm_device * dev,void * data,struct drm_file * file)13999 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
14000 struct drm_file *file)
14001 {
14002 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
14003 struct drm_crtc *drmmode_crtc;
14004 struct intel_crtc *crtc;
14005
14006 drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
14007
14008 if (!drmmode_crtc) {
14009 DRM_ERROR("no such CRTC id\n");
14010 return -ENOENT;
14011 }
14012
14013 crtc = to_intel_crtc(drmmode_crtc);
14014 pipe_from_crtc_id->pipe = crtc->pipe;
14015
14016 return 0;
14017 }
14018
intel_encoder_clones(struct intel_encoder * encoder)14019 static int intel_encoder_clones(struct intel_encoder *encoder)
14020 {
14021 struct drm_device *dev = encoder->base.dev;
14022 struct intel_encoder *source_encoder;
14023 int index_mask = 0;
14024 int entry = 0;
14025
14026 for_each_intel_encoder(dev, source_encoder) {
14027 if (encoders_cloneable(encoder, source_encoder))
14028 index_mask |= (1 << entry);
14029
14030 entry++;
14031 }
14032
14033 return index_mask;
14034 }
14035
has_edp_a(struct drm_device * dev)14036 static bool has_edp_a(struct drm_device *dev)
14037 {
14038 struct drm_i915_private *dev_priv = dev->dev_private;
14039
14040 if (!IS_MOBILE(dev))
14041 return false;
14042
14043 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
14044 return false;
14045
14046 if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
14047 return false;
14048
14049 return true;
14050 }
14051
intel_crt_present(struct drm_device * dev)14052 static bool intel_crt_present(struct drm_device *dev)
14053 {
14054 struct drm_i915_private *dev_priv = dev->dev_private;
14055
14056 if (INTEL_INFO(dev)->gen >= 9)
14057 return false;
14058
14059 if (IS_HSW_ULT(dev) || IS_BDW_ULT(dev))
14060 return false;
14061
14062 if (IS_CHERRYVIEW(dev))
14063 return false;
14064
14065 if (IS_VALLEYVIEW(dev) && !dev_priv->vbt.int_crt_support)
14066 return false;
14067
14068 return true;
14069 }
14070
intel_setup_outputs(struct drm_device * dev)14071 static void intel_setup_outputs(struct drm_device *dev)
14072 {
14073 struct drm_i915_private *dev_priv = dev->dev_private;
14074 struct intel_encoder *encoder;
14075 bool dpd_is_edp = false;
14076
14077 intel_lvds_init(dev);
14078
14079 if (intel_crt_present(dev))
14080 intel_crt_init(dev);
14081
14082 if (IS_BROXTON(dev)) {
14083 /*
14084 * FIXME: Broxton doesn't support port detection via the
14085 * DDI_BUF_CTL_A or SFUSE_STRAP registers, find another way to
14086 * detect the ports.
14087 */
14088 intel_ddi_init(dev, PORT_A);
14089 intel_ddi_init(dev, PORT_B);
14090 intel_ddi_init(dev, PORT_C);
14091 } else if (HAS_DDI(dev)) {
14092 int found;
14093
14094 /*
14095 * Haswell uses DDI functions to detect digital outputs.
14096 * On SKL pre-D0 the strap isn't connected, so we assume
14097 * it's there.
14098 */
14099 found = I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_INIT_DISPLAY_DETECTED;
14100 /* WaIgnoreDDIAStrap: skl */
14101 if (found || IS_SKYLAKE(dev))
14102 intel_ddi_init(dev, PORT_A);
14103
14104 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
14105 * register */
14106 found = I915_READ(SFUSE_STRAP);
14107
14108 if (found & SFUSE_STRAP_DDIB_DETECTED)
14109 intel_ddi_init(dev, PORT_B);
14110 if (found & SFUSE_STRAP_DDIC_DETECTED)
14111 intel_ddi_init(dev, PORT_C);
14112 if (found & SFUSE_STRAP_DDID_DETECTED)
14113 intel_ddi_init(dev, PORT_D);
14114 /*
14115 * On SKL we don't have a way to detect DDI-E so we rely on VBT.
14116 */
14117 if (IS_SKYLAKE(dev) &&
14118 (dev_priv->vbt.ddi_port_info[PORT_E].supports_dp ||
14119 dev_priv->vbt.ddi_port_info[PORT_E].supports_dvi ||
14120 dev_priv->vbt.ddi_port_info[PORT_E].supports_hdmi))
14121 intel_ddi_init(dev, PORT_E);
14122
14123 } else if (HAS_PCH_SPLIT(dev)) {
14124 int found;
14125 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
14126
14127 if (has_edp_a(dev))
14128 intel_dp_init(dev, DP_A, PORT_A);
14129
14130 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
14131 /* PCH SDVOB multiplex with HDMIB */
14132 found = intel_sdvo_init(dev, PCH_SDVOB, true);
14133 if (!found)
14134 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
14135 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
14136 intel_dp_init(dev, PCH_DP_B, PORT_B);
14137 }
14138
14139 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
14140 intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
14141
14142 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
14143 intel_hdmi_init(dev, PCH_HDMID, PORT_D);
14144
14145 if (I915_READ(PCH_DP_C) & DP_DETECTED)
14146 intel_dp_init(dev, PCH_DP_C, PORT_C);
14147
14148 if (I915_READ(PCH_DP_D) & DP_DETECTED)
14149 intel_dp_init(dev, PCH_DP_D, PORT_D);
14150 } else if (IS_VALLEYVIEW(dev)) {
14151 /*
14152 * The DP_DETECTED bit is the latched state of the DDC
14153 * SDA pin at boot. However since eDP doesn't require DDC
14154 * (no way to plug in a DP->HDMI dongle) the DDC pins for
14155 * eDP ports may have been muxed to an alternate function.
14156 * Thus we can't rely on the DP_DETECTED bit alone to detect
14157 * eDP ports. Consult the VBT as well as DP_DETECTED to
14158 * detect eDP ports.
14159 */
14160 if (I915_READ(VLV_HDMIB) & SDVO_DETECTED &&
14161 !intel_dp_is_edp(dev, PORT_B))
14162 intel_hdmi_init(dev, VLV_HDMIB, PORT_B);
14163 if (I915_READ(VLV_DP_B) & DP_DETECTED ||
14164 intel_dp_is_edp(dev, PORT_B))
14165 intel_dp_init(dev, VLV_DP_B, PORT_B);
14166
14167 if (I915_READ(VLV_HDMIC) & SDVO_DETECTED &&
14168 !intel_dp_is_edp(dev, PORT_C))
14169 intel_hdmi_init(dev, VLV_HDMIC, PORT_C);
14170 if (I915_READ(VLV_DP_C) & DP_DETECTED ||
14171 intel_dp_is_edp(dev, PORT_C))
14172 intel_dp_init(dev, VLV_DP_C, PORT_C);
14173
14174 if (IS_CHERRYVIEW(dev)) {
14175 /* eDP not supported on port D, so don't check VBT */
14176 if (I915_READ(CHV_HDMID) & SDVO_DETECTED)
14177 intel_hdmi_init(dev, CHV_HDMID, PORT_D);
14178 if (I915_READ(CHV_DP_D) & DP_DETECTED)
14179 intel_dp_init(dev, CHV_DP_D, PORT_D);
14180 }
14181
14182 intel_dsi_init(dev);
14183 } else if (!IS_GEN2(dev) && !IS_PINEVIEW(dev)) {
14184 bool found = false;
14185
14186 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
14187 DRM_DEBUG_KMS("probing SDVOB\n");
14188 found = intel_sdvo_init(dev, GEN3_SDVOB, true);
14189 if (!found && IS_G4X(dev)) {
14190 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
14191 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
14192 }
14193
14194 if (!found && IS_G4X(dev))
14195 intel_dp_init(dev, DP_B, PORT_B);
14196 }
14197
14198 /* Before G4X SDVOC doesn't have its own detect register */
14199
14200 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
14201 DRM_DEBUG_KMS("probing SDVOC\n");
14202 found = intel_sdvo_init(dev, GEN3_SDVOC, false);
14203 }
14204
14205 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
14206
14207 if (IS_G4X(dev)) {
14208 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
14209 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
14210 }
14211 if (IS_G4X(dev))
14212 intel_dp_init(dev, DP_C, PORT_C);
14213 }
14214
14215 if (IS_G4X(dev) &&
14216 (I915_READ(DP_D) & DP_DETECTED))
14217 intel_dp_init(dev, DP_D, PORT_D);
14218 } else if (IS_GEN2(dev))
14219 intel_dvo_init(dev);
14220
14221 if (SUPPORTS_TV(dev))
14222 intel_tv_init(dev);
14223
14224 intel_psr_init(dev);
14225
14226 for_each_intel_encoder(dev, encoder) {
14227 encoder->base.possible_crtcs = encoder->crtc_mask;
14228 encoder->base.possible_clones =
14229 intel_encoder_clones(encoder);
14230 }
14231
14232 intel_init_pch_refclk(dev);
14233
14234 drm_helper_move_panel_connectors_to_head(dev);
14235 }
14236
intel_user_framebuffer_destroy(struct drm_framebuffer * fb)14237 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
14238 {
14239 struct drm_device *dev = fb->dev;
14240 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14241
14242 drm_framebuffer_cleanup(fb);
14243 mutex_lock(&dev->struct_mutex);
14244 WARN_ON(!intel_fb->obj->framebuffer_references--);
14245 drm_gem_object_unreference(&intel_fb->obj->base);
14246 mutex_unlock(&dev->struct_mutex);
14247 kfree(intel_fb);
14248 }
14249
intel_user_framebuffer_create_handle(struct drm_framebuffer * fb,struct drm_file * file,unsigned int * handle)14250 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
14251 struct drm_file *file,
14252 unsigned int *handle)
14253 {
14254 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14255 struct drm_i915_gem_object *obj = intel_fb->obj;
14256
14257 if (obj->userptr.mm) {
14258 DRM_DEBUG("attempting to use a userptr for a framebuffer, denied\n");
14259 return -EINVAL;
14260 }
14261
14262 return drm_gem_handle_create(file, &obj->base, handle);
14263 }
14264
intel_user_framebuffer_dirty(struct drm_framebuffer * fb,struct drm_file * file,unsigned flags,unsigned color,struct drm_clip_rect * clips,unsigned num_clips)14265 static int intel_user_framebuffer_dirty(struct drm_framebuffer *fb,
14266 struct drm_file *file,
14267 unsigned flags, unsigned color,
14268 struct drm_clip_rect *clips,
14269 unsigned num_clips)
14270 {
14271 struct drm_device *dev = fb->dev;
14272 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14273 struct drm_i915_gem_object *obj = intel_fb->obj;
14274
14275 mutex_lock(&dev->struct_mutex);
14276 intel_fb_obj_flush(obj, false, ORIGIN_DIRTYFB);
14277 mutex_unlock(&dev->struct_mutex);
14278
14279 return 0;
14280 }
14281
14282 static const struct drm_framebuffer_funcs intel_fb_funcs = {
14283 .destroy = intel_user_framebuffer_destroy,
14284 .create_handle = intel_user_framebuffer_create_handle,
14285 .dirty = intel_user_framebuffer_dirty,
14286 };
14287
14288 static
intel_fb_pitch_limit(struct drm_device * dev,uint64_t fb_modifier,uint32_t pixel_format)14289 u32 intel_fb_pitch_limit(struct drm_device *dev, uint64_t fb_modifier,
14290 uint32_t pixel_format)
14291 {
14292 u32 gen = INTEL_INFO(dev)->gen;
14293
14294 if (gen >= 9) {
14295 /* "The stride in bytes must not exceed the of the size of 8K
14296 * pixels and 32K bytes."
14297 */
14298 return min(8192*drm_format_plane_cpp(pixel_format, 0), 32768);
14299 } else if (gen >= 5 && !IS_VALLEYVIEW(dev)) {
14300 return 32*1024;
14301 } else if (gen >= 4) {
14302 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
14303 return 16*1024;
14304 else
14305 return 32*1024;
14306 } else if (gen >= 3) {
14307 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
14308 return 8*1024;
14309 else
14310 return 16*1024;
14311 } else {
14312 /* XXX DSPC is limited to 4k tiled */
14313 return 8*1024;
14314 }
14315 }
14316
intel_framebuffer_init(struct drm_device * dev,struct intel_framebuffer * intel_fb,struct drm_mode_fb_cmd2 * mode_cmd,struct drm_i915_gem_object * obj)14317 static int intel_framebuffer_init(struct drm_device *dev,
14318 struct intel_framebuffer *intel_fb,
14319 struct drm_mode_fb_cmd2 *mode_cmd,
14320 struct drm_i915_gem_object *obj)
14321 {
14322 unsigned int aligned_height;
14323 int ret;
14324 u32 pitch_limit, stride_alignment;
14325
14326 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
14327
14328 if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) {
14329 /* Enforce that fb modifier and tiling mode match, but only for
14330 * X-tiled. This is needed for FBC. */
14331 if (!!(obj->tiling_mode == I915_TILING_X) !=
14332 !!(mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED)) {
14333 DRM_DEBUG("tiling_mode doesn't match fb modifier\n");
14334 return -EINVAL;
14335 }
14336 } else {
14337 if (obj->tiling_mode == I915_TILING_X)
14338 mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED;
14339 else if (obj->tiling_mode == I915_TILING_Y) {
14340 DRM_DEBUG("No Y tiling for legacy addfb\n");
14341 return -EINVAL;
14342 }
14343 }
14344
14345 /* Passed in modifier sanity checking. */
14346 switch (mode_cmd->modifier[0]) {
14347 case I915_FORMAT_MOD_Y_TILED:
14348 case I915_FORMAT_MOD_Yf_TILED:
14349 if (INTEL_INFO(dev)->gen < 9) {
14350 DRM_DEBUG("Unsupported tiling 0x%llx!\n",
14351 mode_cmd->modifier[0]);
14352 return -EINVAL;
14353 }
14354 case DRM_FORMAT_MOD_NONE:
14355 case I915_FORMAT_MOD_X_TILED:
14356 break;
14357 default:
14358 DRM_DEBUG("Unsupported fb modifier 0x%llx!\n",
14359 mode_cmd->modifier[0]);
14360 return -EINVAL;
14361 }
14362
14363 stride_alignment = intel_fb_stride_alignment(dev, mode_cmd->modifier[0],
14364 mode_cmd->pixel_format);
14365 if (mode_cmd->pitches[0] & (stride_alignment - 1)) {
14366 DRM_DEBUG("pitch (%d) must be at least %u byte aligned\n",
14367 mode_cmd->pitches[0], stride_alignment);
14368 return -EINVAL;
14369 }
14370
14371 pitch_limit = intel_fb_pitch_limit(dev, mode_cmd->modifier[0],
14372 mode_cmd->pixel_format);
14373 if (mode_cmd->pitches[0] > pitch_limit) {
14374 DRM_DEBUG("%s pitch (%u) must be at less than %d\n",
14375 mode_cmd->modifier[0] != DRM_FORMAT_MOD_NONE ?
14376 "tiled" : "linear",
14377 mode_cmd->pitches[0], pitch_limit);
14378 return -EINVAL;
14379 }
14380
14381 if (mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED &&
14382 mode_cmd->pitches[0] != obj->stride) {
14383 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
14384 mode_cmd->pitches[0], obj->stride);
14385 return -EINVAL;
14386 }
14387
14388 /* Reject formats not supported by any plane early. */
14389 switch (mode_cmd->pixel_format) {
14390 case DRM_FORMAT_C8:
14391 case DRM_FORMAT_RGB565:
14392 case DRM_FORMAT_XRGB8888:
14393 case DRM_FORMAT_ARGB8888:
14394 break;
14395 case DRM_FORMAT_XRGB1555:
14396 if (INTEL_INFO(dev)->gen > 3) {
14397 DRM_DEBUG("unsupported pixel format: %s\n",
14398 drm_get_format_name(mode_cmd->pixel_format));
14399 return -EINVAL;
14400 }
14401 break;
14402 case DRM_FORMAT_ABGR8888:
14403 if (!IS_VALLEYVIEW(dev) && INTEL_INFO(dev)->gen < 9) {
14404 DRM_DEBUG("unsupported pixel format: %s\n",
14405 drm_get_format_name(mode_cmd->pixel_format));
14406 return -EINVAL;
14407 }
14408 break;
14409 case DRM_FORMAT_XBGR8888:
14410 case DRM_FORMAT_XRGB2101010:
14411 case DRM_FORMAT_XBGR2101010:
14412 if (INTEL_INFO(dev)->gen < 4) {
14413 DRM_DEBUG("unsupported pixel format: %s\n",
14414 drm_get_format_name(mode_cmd->pixel_format));
14415 return -EINVAL;
14416 }
14417 break;
14418 case DRM_FORMAT_ABGR2101010:
14419 if (!IS_VALLEYVIEW(dev)) {
14420 DRM_DEBUG("unsupported pixel format: %s\n",
14421 drm_get_format_name(mode_cmd->pixel_format));
14422 return -EINVAL;
14423 }
14424 break;
14425 case DRM_FORMAT_YUYV:
14426 case DRM_FORMAT_UYVY:
14427 case DRM_FORMAT_YVYU:
14428 case DRM_FORMAT_VYUY:
14429 if (INTEL_INFO(dev)->gen < 5) {
14430 DRM_DEBUG("unsupported pixel format: %s\n",
14431 drm_get_format_name(mode_cmd->pixel_format));
14432 return -EINVAL;
14433 }
14434 break;
14435 default:
14436 DRM_DEBUG("unsupported pixel format: %s\n",
14437 drm_get_format_name(mode_cmd->pixel_format));
14438 return -EINVAL;
14439 }
14440
14441 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
14442 if (mode_cmd->offsets[0] != 0)
14443 return -EINVAL;
14444
14445 aligned_height = intel_fb_align_height(dev, mode_cmd->height,
14446 mode_cmd->pixel_format,
14447 mode_cmd->modifier[0]);
14448 /* FIXME drm helper for size checks (especially planar formats)? */
14449 if (obj->base.size < aligned_height * mode_cmd->pitches[0])
14450 return -EINVAL;
14451
14452 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
14453 intel_fb->obj = obj;
14454 intel_fb->obj->framebuffer_references++;
14455
14456 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
14457 if (ret) {
14458 DRM_ERROR("framebuffer init failed %d\n", ret);
14459 return ret;
14460 }
14461
14462 return 0;
14463 }
14464
14465 static struct drm_framebuffer *
intel_user_framebuffer_create(struct drm_device * dev,struct drm_file * filp,struct drm_mode_fb_cmd2 * user_mode_cmd)14466 intel_user_framebuffer_create(struct drm_device *dev,
14467 struct drm_file *filp,
14468 struct drm_mode_fb_cmd2 *user_mode_cmd)
14469 {
14470 struct drm_i915_gem_object *obj;
14471 struct drm_mode_fb_cmd2 mode_cmd = *user_mode_cmd;
14472
14473 obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
14474 mode_cmd.handles[0]));
14475 if (&obj->base == NULL)
14476 return ERR_PTR(-ENOENT);
14477
14478 return intel_framebuffer_create(dev, &mode_cmd, obj);
14479 }
14480
14481 #ifndef CONFIG_DRM_FBDEV_EMULATION
intel_fbdev_output_poll_changed(struct drm_device * dev)14482 static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
14483 {
14484 }
14485 #endif
14486
14487 static const struct drm_mode_config_funcs intel_mode_funcs = {
14488 .fb_create = intel_user_framebuffer_create,
14489 .output_poll_changed = intel_fbdev_output_poll_changed,
14490 .atomic_check = intel_atomic_check,
14491 .atomic_commit = intel_atomic_commit,
14492 .atomic_state_alloc = intel_atomic_state_alloc,
14493 .atomic_state_clear = intel_atomic_state_clear,
14494 };
14495
14496 /* Set up chip specific display functions */
intel_init_display(struct drm_device * dev)14497 static void intel_init_display(struct drm_device *dev)
14498 {
14499 struct drm_i915_private *dev_priv = dev->dev_private;
14500
14501 if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
14502 dev_priv->display.find_dpll = g4x_find_best_dpll;
14503 else if (IS_CHERRYVIEW(dev))
14504 dev_priv->display.find_dpll = chv_find_best_dpll;
14505 else if (IS_VALLEYVIEW(dev))
14506 dev_priv->display.find_dpll = vlv_find_best_dpll;
14507 else if (IS_PINEVIEW(dev))
14508 dev_priv->display.find_dpll = pnv_find_best_dpll;
14509 else
14510 dev_priv->display.find_dpll = i9xx_find_best_dpll;
14511
14512 if (INTEL_INFO(dev)->gen >= 9) {
14513 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
14514 dev_priv->display.get_initial_plane_config =
14515 skylake_get_initial_plane_config;
14516 dev_priv->display.crtc_compute_clock =
14517 haswell_crtc_compute_clock;
14518 dev_priv->display.crtc_enable = haswell_crtc_enable;
14519 dev_priv->display.crtc_disable = haswell_crtc_disable;
14520 dev_priv->display.update_primary_plane =
14521 skylake_update_primary_plane;
14522 } else if (HAS_DDI(dev)) {
14523 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
14524 dev_priv->display.get_initial_plane_config =
14525 ironlake_get_initial_plane_config;
14526 dev_priv->display.crtc_compute_clock =
14527 haswell_crtc_compute_clock;
14528 dev_priv->display.crtc_enable = haswell_crtc_enable;
14529 dev_priv->display.crtc_disable = haswell_crtc_disable;
14530 dev_priv->display.update_primary_plane =
14531 ironlake_update_primary_plane;
14532 } else if (HAS_PCH_SPLIT(dev)) {
14533 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
14534 dev_priv->display.get_initial_plane_config =
14535 ironlake_get_initial_plane_config;
14536 dev_priv->display.crtc_compute_clock =
14537 ironlake_crtc_compute_clock;
14538 dev_priv->display.crtc_enable = ironlake_crtc_enable;
14539 dev_priv->display.crtc_disable = ironlake_crtc_disable;
14540 dev_priv->display.update_primary_plane =
14541 ironlake_update_primary_plane;
14542 } else if (IS_VALLEYVIEW(dev)) {
14543 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14544 dev_priv->display.get_initial_plane_config =
14545 i9xx_get_initial_plane_config;
14546 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
14547 dev_priv->display.crtc_enable = valleyview_crtc_enable;
14548 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14549 dev_priv->display.update_primary_plane =
14550 i9xx_update_primary_plane;
14551 } else {
14552 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14553 dev_priv->display.get_initial_plane_config =
14554 i9xx_get_initial_plane_config;
14555 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
14556 dev_priv->display.crtc_enable = i9xx_crtc_enable;
14557 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14558 dev_priv->display.update_primary_plane =
14559 i9xx_update_primary_plane;
14560 }
14561
14562 /* Returns the core display clock speed */
14563 if (IS_SKYLAKE(dev))
14564 dev_priv->display.get_display_clock_speed =
14565 skylake_get_display_clock_speed;
14566 else if (IS_BROXTON(dev))
14567 dev_priv->display.get_display_clock_speed =
14568 broxton_get_display_clock_speed;
14569 else if (IS_BROADWELL(dev))
14570 dev_priv->display.get_display_clock_speed =
14571 broadwell_get_display_clock_speed;
14572 else if (IS_HASWELL(dev))
14573 dev_priv->display.get_display_clock_speed =
14574 haswell_get_display_clock_speed;
14575 else if (IS_VALLEYVIEW(dev))
14576 dev_priv->display.get_display_clock_speed =
14577 valleyview_get_display_clock_speed;
14578 else if (IS_GEN5(dev))
14579 dev_priv->display.get_display_clock_speed =
14580 ilk_get_display_clock_speed;
14581 else if (IS_I945G(dev) || IS_BROADWATER(dev) ||
14582 IS_GEN6(dev) || IS_IVYBRIDGE(dev))
14583 dev_priv->display.get_display_clock_speed =
14584 i945_get_display_clock_speed;
14585 else if (IS_GM45(dev))
14586 dev_priv->display.get_display_clock_speed =
14587 gm45_get_display_clock_speed;
14588 else if (IS_CRESTLINE(dev))
14589 dev_priv->display.get_display_clock_speed =
14590 i965gm_get_display_clock_speed;
14591 else if (IS_PINEVIEW(dev))
14592 dev_priv->display.get_display_clock_speed =
14593 pnv_get_display_clock_speed;
14594 else if (IS_G33(dev) || IS_G4X(dev))
14595 dev_priv->display.get_display_clock_speed =
14596 g33_get_display_clock_speed;
14597 else if (IS_I915G(dev))
14598 dev_priv->display.get_display_clock_speed =
14599 i915_get_display_clock_speed;
14600 else if (IS_I945GM(dev) || IS_845G(dev))
14601 dev_priv->display.get_display_clock_speed =
14602 i9xx_misc_get_display_clock_speed;
14603 else if (IS_PINEVIEW(dev))
14604 dev_priv->display.get_display_clock_speed =
14605 pnv_get_display_clock_speed;
14606 else if (IS_I915GM(dev))
14607 dev_priv->display.get_display_clock_speed =
14608 i915gm_get_display_clock_speed;
14609 else if (IS_I865G(dev))
14610 dev_priv->display.get_display_clock_speed =
14611 i865_get_display_clock_speed;
14612 else if (IS_I85X(dev))
14613 dev_priv->display.get_display_clock_speed =
14614 i85x_get_display_clock_speed;
14615 else { /* 830 */
14616 WARN(!IS_I830(dev), "Unknown platform. Assuming 133 MHz CDCLK\n");
14617 dev_priv->display.get_display_clock_speed =
14618 i830_get_display_clock_speed;
14619 }
14620
14621 if (IS_GEN5(dev)) {
14622 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
14623 } else if (IS_GEN6(dev)) {
14624 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
14625 } else if (IS_IVYBRIDGE(dev)) {
14626 /* FIXME: detect B0+ stepping and use auto training */
14627 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
14628 } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
14629 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
14630 if (IS_BROADWELL(dev)) {
14631 dev_priv->display.modeset_commit_cdclk =
14632 broadwell_modeset_commit_cdclk;
14633 dev_priv->display.modeset_calc_cdclk =
14634 broadwell_modeset_calc_cdclk;
14635 }
14636 } else if (IS_VALLEYVIEW(dev)) {
14637 dev_priv->display.modeset_commit_cdclk =
14638 valleyview_modeset_commit_cdclk;
14639 dev_priv->display.modeset_calc_cdclk =
14640 valleyview_modeset_calc_cdclk;
14641 } else if (IS_BROXTON(dev)) {
14642 dev_priv->display.modeset_commit_cdclk =
14643 broxton_modeset_commit_cdclk;
14644 dev_priv->display.modeset_calc_cdclk =
14645 broxton_modeset_calc_cdclk;
14646 }
14647
14648 switch (INTEL_INFO(dev)->gen) {
14649 case 2:
14650 dev_priv->display.queue_flip = intel_gen2_queue_flip;
14651 break;
14652
14653 case 3:
14654 dev_priv->display.queue_flip = intel_gen3_queue_flip;
14655 break;
14656
14657 case 4:
14658 case 5:
14659 dev_priv->display.queue_flip = intel_gen4_queue_flip;
14660 break;
14661
14662 case 6:
14663 dev_priv->display.queue_flip = intel_gen6_queue_flip;
14664 break;
14665 case 7:
14666 case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
14667 dev_priv->display.queue_flip = intel_gen7_queue_flip;
14668 break;
14669 case 9:
14670 /* Drop through - unsupported since execlist only. */
14671 default:
14672 /* Default just returns -ENODEV to indicate unsupported */
14673 dev_priv->display.queue_flip = intel_default_queue_flip;
14674 }
14675
14676 mutex_init(&dev_priv->pps_mutex);
14677 }
14678
14679 /*
14680 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
14681 * resume, or other times. This quirk makes sure that's the case for
14682 * affected systems.
14683 */
quirk_pipea_force(struct drm_device * dev)14684 static void quirk_pipea_force(struct drm_device *dev)
14685 {
14686 struct drm_i915_private *dev_priv = dev->dev_private;
14687
14688 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
14689 DRM_INFO("applying pipe a force quirk\n");
14690 }
14691
quirk_pipeb_force(struct drm_device * dev)14692 static void quirk_pipeb_force(struct drm_device *dev)
14693 {
14694 struct drm_i915_private *dev_priv = dev->dev_private;
14695
14696 dev_priv->quirks |= QUIRK_PIPEB_FORCE;
14697 DRM_INFO("applying pipe b force quirk\n");
14698 }
14699
14700 /*
14701 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
14702 */
quirk_ssc_force_disable(struct drm_device * dev)14703 static void quirk_ssc_force_disable(struct drm_device *dev)
14704 {
14705 struct drm_i915_private *dev_priv = dev->dev_private;
14706 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
14707 DRM_INFO("applying lvds SSC disable quirk\n");
14708 }
14709
14710 /*
14711 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
14712 * brightness value
14713 */
quirk_invert_brightness(struct drm_device * dev)14714 static void quirk_invert_brightness(struct drm_device *dev)
14715 {
14716 struct drm_i915_private *dev_priv = dev->dev_private;
14717 dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
14718 DRM_INFO("applying inverted panel brightness quirk\n");
14719 }
14720
14721 /* Some VBT's incorrectly indicate no backlight is present */
quirk_backlight_present(struct drm_device * dev)14722 static void quirk_backlight_present(struct drm_device *dev)
14723 {
14724 struct drm_i915_private *dev_priv = dev->dev_private;
14725 dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
14726 DRM_INFO("applying backlight present quirk\n");
14727 }
14728
14729 struct intel_quirk {
14730 int device;
14731 int subsystem_vendor;
14732 int subsystem_device;
14733 void (*hook)(struct drm_device *dev);
14734 };
14735
14736 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
14737 struct intel_dmi_quirk {
14738 void (*hook)(struct drm_device *dev);
14739 const struct dmi_system_id (*dmi_id_list)[];
14740 };
14741
intel_dmi_reverse_brightness(const struct dmi_system_id * id)14742 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
14743 {
14744 DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
14745 return 1;
14746 }
14747
14748 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
14749 {
14750 .dmi_id_list = &(const struct dmi_system_id[]) {
14751 {
14752 .callback = intel_dmi_reverse_brightness,
14753 .ident = "NCR Corporation",
14754 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
14755 DMI_MATCH(DMI_PRODUCT_NAME, ""),
14756 },
14757 },
14758 { } /* terminating entry */
14759 },
14760 .hook = quirk_invert_brightness,
14761 },
14762 };
14763
14764 static struct intel_quirk intel_quirks[] = {
14765 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
14766 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
14767
14768 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
14769 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
14770
14771 /* 830 needs to leave pipe A & dpll A up */
14772 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
14773
14774 /* 830 needs to leave pipe B & dpll B up */
14775 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipeb_force },
14776
14777 /* Lenovo U160 cannot use SSC on LVDS */
14778 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
14779
14780 /* Sony Vaio Y cannot use SSC on LVDS */
14781 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
14782
14783 /* Acer Aspire 5734Z must invert backlight brightness */
14784 { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
14785
14786 /* Acer/eMachines G725 */
14787 { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
14788
14789 /* Acer/eMachines e725 */
14790 { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
14791
14792 /* Acer/Packard Bell NCL20 */
14793 { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
14794
14795 /* Acer Aspire 4736Z */
14796 { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
14797
14798 /* Acer Aspire 5336 */
14799 { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
14800
14801 /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
14802 { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
14803
14804 /* Acer C720 Chromebook (Core i3 4005U) */
14805 { 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
14806
14807 /* Apple Macbook 2,1 (Core 2 T7400) */
14808 { 0x27a2, 0x8086, 0x7270, quirk_backlight_present },
14809
14810 /* Apple Macbook 4,1 */
14811 { 0x2a02, 0x106b, 0x00a1, quirk_backlight_present },
14812
14813 /* Toshiba CB35 Chromebook (Celeron 2955U) */
14814 { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
14815
14816 /* HP Chromebook 14 (Celeron 2955U) */
14817 { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
14818
14819 /* Dell Chromebook 11 */
14820 { 0x0a06, 0x1028, 0x0a35, quirk_backlight_present },
14821
14822 /* Dell Chromebook 11 (2015 version) */
14823 { 0x0a16, 0x1028, 0x0a35, quirk_backlight_present },
14824 };
14825
intel_init_quirks(struct drm_device * dev)14826 static void intel_init_quirks(struct drm_device *dev)
14827 {
14828 struct pci_dev *d = dev->pdev;
14829 int i;
14830
14831 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
14832 struct intel_quirk *q = &intel_quirks[i];
14833
14834 if (d->device == q->device &&
14835 (d->subsystem_vendor == q->subsystem_vendor ||
14836 q->subsystem_vendor == PCI_ANY_ID) &&
14837 (d->subsystem_device == q->subsystem_device ||
14838 q->subsystem_device == PCI_ANY_ID))
14839 q->hook(dev);
14840 }
14841 for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
14842 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
14843 intel_dmi_quirks[i].hook(dev);
14844 }
14845 }
14846
14847 /* Disable the VGA plane that we never use */
i915_disable_vga(struct drm_device * dev)14848 static void i915_disable_vga(struct drm_device *dev)
14849 {
14850 struct drm_i915_private *dev_priv = dev->dev_private;
14851 u8 sr1;
14852 u32 vga_reg = i915_vgacntrl_reg(dev);
14853
14854 /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
14855 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
14856 outb(SR01, VGA_SR_INDEX);
14857 sr1 = inb(VGA_SR_DATA);
14858 outb(sr1 | 1<<5, VGA_SR_DATA);
14859 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
14860 udelay(300);
14861
14862 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
14863 POSTING_READ(vga_reg);
14864 }
14865
intel_modeset_init_hw(struct drm_device * dev)14866 void intel_modeset_init_hw(struct drm_device *dev)
14867 {
14868 intel_update_cdclk(dev);
14869 intel_prepare_ddi(dev);
14870 intel_init_clock_gating(dev);
14871 intel_enable_gt_powersave(dev);
14872 }
14873
intel_modeset_init(struct drm_device * dev)14874 void intel_modeset_init(struct drm_device *dev)
14875 {
14876 struct drm_i915_private *dev_priv = dev->dev_private;
14877 int sprite, ret;
14878 enum pipe pipe;
14879 struct intel_crtc *crtc;
14880
14881 drm_mode_config_init(dev);
14882
14883 dev->mode_config.min_width = 0;
14884 dev->mode_config.min_height = 0;
14885
14886 dev->mode_config.preferred_depth = 24;
14887 dev->mode_config.prefer_shadow = 1;
14888
14889 dev->mode_config.allow_fb_modifiers = true;
14890
14891 dev->mode_config.funcs = &intel_mode_funcs;
14892
14893 intel_init_quirks(dev);
14894
14895 intel_init_pm(dev);
14896
14897 if (INTEL_INFO(dev)->num_pipes == 0)
14898 return;
14899
14900 /*
14901 * There may be no VBT; and if the BIOS enabled SSC we can
14902 * just keep using it to avoid unnecessary flicker. Whereas if the
14903 * BIOS isn't using it, don't assume it will work even if the VBT
14904 * indicates as much.
14905 */
14906 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
14907 bool bios_lvds_use_ssc = !!(I915_READ(PCH_DREF_CONTROL) &
14908 DREF_SSC1_ENABLE);
14909
14910 if (dev_priv->vbt.lvds_use_ssc != bios_lvds_use_ssc) {
14911 DRM_DEBUG_KMS("SSC %sabled by BIOS, overriding VBT which says %sabled\n",
14912 bios_lvds_use_ssc ? "en" : "dis",
14913 dev_priv->vbt.lvds_use_ssc ? "en" : "dis");
14914 dev_priv->vbt.lvds_use_ssc = bios_lvds_use_ssc;
14915 }
14916 }
14917
14918 intel_init_display(dev);
14919 intel_init_audio(dev);
14920
14921 if (IS_GEN2(dev)) {
14922 dev->mode_config.max_width = 2048;
14923 dev->mode_config.max_height = 2048;
14924 } else if (IS_GEN3(dev)) {
14925 dev->mode_config.max_width = 4096;
14926 dev->mode_config.max_height = 4096;
14927 } else {
14928 dev->mode_config.max_width = 8192;
14929 dev->mode_config.max_height = 8192;
14930 }
14931
14932 if (IS_845G(dev) || IS_I865G(dev)) {
14933 dev->mode_config.cursor_width = IS_845G(dev) ? 64 : 512;
14934 dev->mode_config.cursor_height = 1023;
14935 } else if (IS_GEN2(dev)) {
14936 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
14937 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
14938 } else {
14939 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
14940 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
14941 }
14942
14943 dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
14944
14945 DRM_DEBUG_KMS("%d display pipe%s available.\n",
14946 INTEL_INFO(dev)->num_pipes,
14947 INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
14948
14949 for_each_pipe(dev_priv, pipe) {
14950 intel_crtc_init(dev, pipe);
14951 for_each_sprite(dev_priv, pipe, sprite) {
14952 ret = intel_plane_init(dev, pipe, sprite);
14953 if (ret)
14954 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
14955 pipe_name(pipe), sprite_name(pipe, sprite), ret);
14956 }
14957 }
14958
14959 intel_update_czclk(dev_priv);
14960 intel_update_cdclk(dev);
14961
14962 intel_shared_dpll_init(dev);
14963
14964 /* Just disable it once at startup */
14965 i915_disable_vga(dev);
14966 intel_setup_outputs(dev);
14967
14968 /* Just in case the BIOS is doing something questionable. */
14969 intel_fbc_disable(dev_priv);
14970
14971 drm_modeset_lock_all(dev);
14972 intel_modeset_setup_hw_state(dev);
14973 drm_modeset_unlock_all(dev);
14974
14975 for_each_intel_crtc(dev, crtc) {
14976 struct intel_initial_plane_config plane_config = {};
14977
14978 if (!crtc->active)
14979 continue;
14980
14981 /*
14982 * Note that reserving the BIOS fb up front prevents us
14983 * from stuffing other stolen allocations like the ring
14984 * on top. This prevents some ugliness at boot time, and
14985 * can even allow for smooth boot transitions if the BIOS
14986 * fb is large enough for the active pipe configuration.
14987 */
14988 dev_priv->display.get_initial_plane_config(crtc,
14989 &plane_config);
14990
14991 /*
14992 * If the fb is shared between multiple heads, we'll
14993 * just get the first one.
14994 */
14995 intel_find_initial_plane_obj(crtc, &plane_config);
14996 }
14997 }
14998
intel_enable_pipe_a(struct drm_device * dev)14999 static void intel_enable_pipe_a(struct drm_device *dev)
15000 {
15001 struct intel_connector *connector;
15002 struct drm_connector *crt = NULL;
15003 struct intel_load_detect_pipe load_detect_temp;
15004 struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
15005
15006 /* We can't just switch on the pipe A, we need to set things up with a
15007 * proper mode and output configuration. As a gross hack, enable pipe A
15008 * by enabling the load detect pipe once. */
15009 for_each_intel_connector(dev, connector) {
15010 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
15011 crt = &connector->base;
15012 break;
15013 }
15014 }
15015
15016 if (!crt)
15017 return;
15018
15019 if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
15020 intel_release_load_detect_pipe(crt, &load_detect_temp, ctx);
15021 }
15022
15023 static bool
intel_check_plane_mapping(struct intel_crtc * crtc)15024 intel_check_plane_mapping(struct intel_crtc *crtc)
15025 {
15026 struct drm_device *dev = crtc->base.dev;
15027 struct drm_i915_private *dev_priv = dev->dev_private;
15028 u32 val;
15029
15030 if (INTEL_INFO(dev)->num_pipes == 1)
15031 return true;
15032
15033 val = I915_READ(DSPCNTR(!crtc->plane));
15034
15035 if ((val & DISPLAY_PLANE_ENABLE) &&
15036 (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
15037 return false;
15038
15039 return true;
15040 }
15041
intel_crtc_has_encoders(struct intel_crtc * crtc)15042 static bool intel_crtc_has_encoders(struct intel_crtc *crtc)
15043 {
15044 struct drm_device *dev = crtc->base.dev;
15045 struct intel_encoder *encoder;
15046
15047 for_each_encoder_on_crtc(dev, &crtc->base, encoder)
15048 return true;
15049
15050 return false;
15051 }
15052
intel_sanitize_crtc(struct intel_crtc * crtc)15053 static void intel_sanitize_crtc(struct intel_crtc *crtc)
15054 {
15055 struct drm_device *dev = crtc->base.dev;
15056 struct drm_i915_private *dev_priv = dev->dev_private;
15057 u32 reg;
15058
15059 /* Clear any frame start delays used for debugging left by the BIOS */
15060 reg = PIPECONF(crtc->config->cpu_transcoder);
15061 I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
15062
15063 /* restore vblank interrupts to correct state */
15064 drm_crtc_vblank_reset(&crtc->base);
15065 if (crtc->active) {
15066 struct intel_plane *plane;
15067
15068 drm_crtc_vblank_on(&crtc->base);
15069
15070 /* Disable everything but the primary plane */
15071 for_each_intel_plane_on_crtc(dev, crtc, plane) {
15072 if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
15073 continue;
15074
15075 plane->disable_plane(&plane->base, &crtc->base);
15076 }
15077 }
15078
15079 /* We need to sanitize the plane -> pipe mapping first because this will
15080 * disable the crtc (and hence change the state) if it is wrong. Note
15081 * that gen4+ has a fixed plane -> pipe mapping. */
15082 if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
15083 bool plane;
15084
15085 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
15086 crtc->base.base.id);
15087
15088 /* Pipe has the wrong plane attached and the plane is active.
15089 * Temporarily change the plane mapping and disable everything
15090 * ... */
15091 plane = crtc->plane;
15092 to_intel_plane_state(crtc->base.primary->state)->visible = true;
15093 crtc->plane = !plane;
15094 intel_crtc_disable_noatomic(&crtc->base);
15095 crtc->plane = plane;
15096 }
15097
15098 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
15099 crtc->pipe == PIPE_A && !crtc->active) {
15100 /* BIOS forgot to enable pipe A, this mostly happens after
15101 * resume. Force-enable the pipe to fix this, the update_dpms
15102 * call below we restore the pipe to the right state, but leave
15103 * the required bits on. */
15104 intel_enable_pipe_a(dev);
15105 }
15106
15107 /* Adjust the state of the output pipe according to whether we
15108 * have active connectors/encoders. */
15109 if (!intel_crtc_has_encoders(crtc))
15110 intel_crtc_disable_noatomic(&crtc->base);
15111
15112 if (crtc->active != crtc->base.state->active) {
15113 struct intel_encoder *encoder;
15114
15115 /* This can happen either due to bugs in the get_hw_state
15116 * functions or because of calls to intel_crtc_disable_noatomic,
15117 * or because the pipe is force-enabled due to the
15118 * pipe A quirk. */
15119 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
15120 crtc->base.base.id,
15121 crtc->base.state->enable ? "enabled" : "disabled",
15122 crtc->active ? "enabled" : "disabled");
15123
15124 WARN_ON(drm_atomic_set_mode_for_crtc(crtc->base.state, NULL) < 0);
15125 crtc->base.state->active = crtc->active;
15126 crtc->base.enabled = crtc->active;
15127
15128 /* Because we only establish the connector -> encoder ->
15129 * crtc links if something is active, this means the
15130 * crtc is now deactivated. Break the links. connector
15131 * -> encoder links are only establish when things are
15132 * actually up, hence no need to break them. */
15133 WARN_ON(crtc->active);
15134
15135 for_each_encoder_on_crtc(dev, &crtc->base, encoder)
15136 encoder->base.crtc = NULL;
15137 }
15138
15139 if (crtc->active || HAS_GMCH_DISPLAY(dev)) {
15140 /*
15141 * We start out with underrun reporting disabled to avoid races.
15142 * For correct bookkeeping mark this on active crtcs.
15143 *
15144 * Also on gmch platforms we dont have any hardware bits to
15145 * disable the underrun reporting. Which means we need to start
15146 * out with underrun reporting disabled also on inactive pipes,
15147 * since otherwise we'll complain about the garbage we read when
15148 * e.g. coming up after runtime pm.
15149 *
15150 * No protection against concurrent access is required - at
15151 * worst a fifo underrun happens which also sets this to false.
15152 */
15153 crtc->cpu_fifo_underrun_disabled = true;
15154 crtc->pch_fifo_underrun_disabled = true;
15155 }
15156 }
15157
intel_sanitize_encoder(struct intel_encoder * encoder)15158 static void intel_sanitize_encoder(struct intel_encoder *encoder)
15159 {
15160 struct intel_connector *connector;
15161 struct drm_device *dev = encoder->base.dev;
15162 bool active = false;
15163
15164 /* We need to check both for a crtc link (meaning that the
15165 * encoder is active and trying to read from a pipe) and the
15166 * pipe itself being active. */
15167 bool has_active_crtc = encoder->base.crtc &&
15168 to_intel_crtc(encoder->base.crtc)->active;
15169
15170 for_each_intel_connector(dev, connector) {
15171 if (connector->base.encoder != &encoder->base)
15172 continue;
15173
15174 active = true;
15175 break;
15176 }
15177
15178 if (active && !has_active_crtc) {
15179 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
15180 encoder->base.base.id,
15181 encoder->base.name);
15182
15183 /* Connector is active, but has no active pipe. This is
15184 * fallout from our resume register restoring. Disable
15185 * the encoder manually again. */
15186 if (encoder->base.crtc) {
15187 DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
15188 encoder->base.base.id,
15189 encoder->base.name);
15190 encoder->disable(encoder);
15191 if (encoder->post_disable)
15192 encoder->post_disable(encoder);
15193 }
15194 encoder->base.crtc = NULL;
15195
15196 /* Inconsistent output/port/pipe state happens presumably due to
15197 * a bug in one of the get_hw_state functions. Or someplace else
15198 * in our code, like the register restore mess on resume. Clamp
15199 * things to off as a safer default. */
15200 for_each_intel_connector(dev, connector) {
15201 if (connector->encoder != encoder)
15202 continue;
15203 connector->base.dpms = DRM_MODE_DPMS_OFF;
15204 connector->base.encoder = NULL;
15205 }
15206 }
15207 /* Enabled encoders without active connectors will be fixed in
15208 * the crtc fixup. */
15209 }
15210
i915_redisable_vga_power_on(struct drm_device * dev)15211 void i915_redisable_vga_power_on(struct drm_device *dev)
15212 {
15213 struct drm_i915_private *dev_priv = dev->dev_private;
15214 u32 vga_reg = i915_vgacntrl_reg(dev);
15215
15216 if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
15217 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
15218 i915_disable_vga(dev);
15219 }
15220 }
15221
i915_redisable_vga(struct drm_device * dev)15222 void i915_redisable_vga(struct drm_device *dev)
15223 {
15224 struct drm_i915_private *dev_priv = dev->dev_private;
15225
15226 /* This function can be called both from intel_modeset_setup_hw_state or
15227 * at a very early point in our resume sequence, where the power well
15228 * structures are not yet restored. Since this function is at a very
15229 * paranoid "someone might have enabled VGA while we were not looking"
15230 * level, just check if the power well is enabled instead of trying to
15231 * follow the "don't touch the power well if we don't need it" policy
15232 * the rest of the driver uses. */
15233 if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_VGA))
15234 return;
15235
15236 i915_redisable_vga_power_on(dev);
15237 }
15238
primary_get_hw_state(struct intel_plane * plane)15239 static bool primary_get_hw_state(struct intel_plane *plane)
15240 {
15241 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
15242
15243 return I915_READ(DSPCNTR(plane->plane)) & DISPLAY_PLANE_ENABLE;
15244 }
15245
15246 /* FIXME read out full plane state for all planes */
readout_plane_state(struct intel_crtc * crtc)15247 static void readout_plane_state(struct intel_crtc *crtc)
15248 {
15249 struct drm_plane *primary = crtc->base.primary;
15250 struct intel_plane_state *plane_state =
15251 to_intel_plane_state(primary->state);
15252
15253 plane_state->visible =
15254 primary_get_hw_state(to_intel_plane(primary));
15255
15256 if (plane_state->visible)
15257 crtc->base.state->plane_mask |= 1 << drm_plane_index(primary);
15258 }
15259
intel_modeset_readout_hw_state(struct drm_device * dev)15260 static void intel_modeset_readout_hw_state(struct drm_device *dev)
15261 {
15262 struct drm_i915_private *dev_priv = dev->dev_private;
15263 enum pipe pipe;
15264 struct intel_crtc *crtc;
15265 struct intel_encoder *encoder;
15266 struct intel_connector *connector;
15267 int i;
15268
15269 for_each_intel_crtc(dev, crtc) {
15270 __drm_atomic_helper_crtc_destroy_state(&crtc->base, crtc->base.state);
15271 memset(crtc->config, 0, sizeof(*crtc->config));
15272 crtc->config->base.crtc = &crtc->base;
15273
15274 crtc->active = dev_priv->display.get_pipe_config(crtc,
15275 crtc->config);
15276
15277 crtc->base.state->active = crtc->active;
15278 crtc->base.enabled = crtc->active;
15279
15280 readout_plane_state(crtc);
15281
15282 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
15283 crtc->base.base.id,
15284 crtc->active ? "enabled" : "disabled");
15285 }
15286
15287 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
15288 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
15289
15290 pll->on = pll->get_hw_state(dev_priv, pll,
15291 &pll->config.hw_state);
15292 pll->active = 0;
15293 pll->config.crtc_mask = 0;
15294 for_each_intel_crtc(dev, crtc) {
15295 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll) {
15296 pll->active++;
15297 pll->config.crtc_mask |= 1 << crtc->pipe;
15298 }
15299 }
15300
15301 DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n",
15302 pll->name, pll->config.crtc_mask, pll->on);
15303
15304 if (pll->config.crtc_mask)
15305 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
15306 }
15307
15308 for_each_intel_encoder(dev, encoder) {
15309 pipe = 0;
15310
15311 if (encoder->get_hw_state(encoder, &pipe)) {
15312 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
15313 encoder->base.crtc = &crtc->base;
15314 encoder->get_config(encoder, crtc->config);
15315 } else {
15316 encoder->base.crtc = NULL;
15317 }
15318
15319 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
15320 encoder->base.base.id,
15321 encoder->base.name,
15322 encoder->base.crtc ? "enabled" : "disabled",
15323 pipe_name(pipe));
15324 }
15325
15326 for_each_intel_connector(dev, connector) {
15327 if (connector->get_hw_state(connector)) {
15328 connector->base.dpms = DRM_MODE_DPMS_ON;
15329 connector->base.encoder = &connector->encoder->base;
15330 } else {
15331 connector->base.dpms = DRM_MODE_DPMS_OFF;
15332 connector->base.encoder = NULL;
15333 }
15334 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
15335 connector->base.base.id,
15336 connector->base.name,
15337 connector->base.encoder ? "enabled" : "disabled");
15338 }
15339
15340 for_each_intel_crtc(dev, crtc) {
15341 crtc->base.hwmode = crtc->config->base.adjusted_mode;
15342
15343 memset(&crtc->base.mode, 0, sizeof(crtc->base.mode));
15344 if (crtc->base.state->active) {
15345 intel_mode_from_pipe_config(&crtc->base.mode, crtc->config);
15346 intel_mode_from_pipe_config(&crtc->base.state->adjusted_mode, crtc->config);
15347 WARN_ON(drm_atomic_set_mode_for_crtc(crtc->base.state, &crtc->base.mode));
15348
15349 /*
15350 * The initial mode needs to be set in order to keep
15351 * the atomic core happy. It wants a valid mode if the
15352 * crtc's enabled, so we do the above call.
15353 *
15354 * At this point some state updated by the connectors
15355 * in their ->detect() callback has not run yet, so
15356 * no recalculation can be done yet.
15357 *
15358 * Even if we could do a recalculation and modeset
15359 * right now it would cause a double modeset if
15360 * fbdev or userspace chooses a different initial mode.
15361 *
15362 * If that happens, someone indicated they wanted a
15363 * mode change, which means it's safe to do a full
15364 * recalculation.
15365 */
15366 crtc->base.state->mode.private_flags = I915_MODE_FLAG_INHERITED;
15367
15368 drm_calc_timestamping_constants(&crtc->base, &crtc->base.hwmode);
15369 update_scanline_offset(crtc);
15370 }
15371 }
15372 }
15373
15374 /* Scan out the current hw modeset state,
15375 * and sanitizes it to the current state
15376 */
15377 static void
intel_modeset_setup_hw_state(struct drm_device * dev)15378 intel_modeset_setup_hw_state(struct drm_device *dev)
15379 {
15380 struct drm_i915_private *dev_priv = dev->dev_private;
15381 enum pipe pipe;
15382 struct intel_crtc *crtc;
15383 struct intel_encoder *encoder;
15384 int i;
15385
15386 intel_modeset_readout_hw_state(dev);
15387
15388 /* HW state is read out, now we need to sanitize this mess. */
15389 for_each_intel_encoder(dev, encoder) {
15390 intel_sanitize_encoder(encoder);
15391 }
15392
15393 for_each_pipe(dev_priv, pipe) {
15394 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
15395 intel_sanitize_crtc(crtc);
15396 intel_dump_pipe_config(crtc, crtc->config,
15397 "[setup_hw_state]");
15398 }
15399
15400 intel_modeset_update_connector_atomic_state(dev);
15401
15402 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
15403 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
15404
15405 if (!pll->on || pll->active)
15406 continue;
15407
15408 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
15409
15410 pll->disable(dev_priv, pll);
15411 pll->on = false;
15412 }
15413
15414 if (IS_VALLEYVIEW(dev))
15415 vlv_wm_get_hw_state(dev);
15416 else if (IS_GEN9(dev))
15417 skl_wm_get_hw_state(dev);
15418 else if (HAS_PCH_SPLIT(dev))
15419 ilk_wm_get_hw_state(dev);
15420
15421 for_each_intel_crtc(dev, crtc) {
15422 unsigned long put_domains;
15423
15424 put_domains = modeset_get_crtc_power_domains(&crtc->base);
15425 if (WARN_ON(put_domains))
15426 modeset_put_power_domains(dev_priv, put_domains);
15427 }
15428 intel_display_set_init_power(dev_priv, false);
15429 }
15430
intel_display_resume(struct drm_device * dev)15431 void intel_display_resume(struct drm_device *dev)
15432 {
15433 struct drm_atomic_state *state = drm_atomic_state_alloc(dev);
15434 struct intel_connector *conn;
15435 struct intel_plane *plane;
15436 struct drm_crtc *crtc;
15437 int ret;
15438
15439 if (!state)
15440 return;
15441
15442 state->acquire_ctx = dev->mode_config.acquire_ctx;
15443
15444 /* preserve complete old state, including dpll */
15445 intel_atomic_get_shared_dpll_state(state);
15446
15447 for_each_crtc(dev, crtc) {
15448 struct drm_crtc_state *crtc_state =
15449 drm_atomic_get_crtc_state(state, crtc);
15450
15451 ret = PTR_ERR_OR_ZERO(crtc_state);
15452 if (ret)
15453 goto err;
15454
15455 /* force a restore */
15456 crtc_state->mode_changed = true;
15457 }
15458
15459 for_each_intel_plane(dev, plane) {
15460 ret = PTR_ERR_OR_ZERO(drm_atomic_get_plane_state(state, &plane->base));
15461 if (ret)
15462 goto err;
15463 }
15464
15465 for_each_intel_connector(dev, conn) {
15466 ret = PTR_ERR_OR_ZERO(drm_atomic_get_connector_state(state, &conn->base));
15467 if (ret)
15468 goto err;
15469 }
15470
15471 intel_modeset_setup_hw_state(dev);
15472
15473 i915_redisable_vga(dev);
15474 ret = drm_atomic_commit(state);
15475 if (!ret)
15476 return;
15477
15478 err:
15479 DRM_ERROR("Restoring old state failed with %i\n", ret);
15480 drm_atomic_state_free(state);
15481 }
15482
intel_modeset_gem_init(struct drm_device * dev)15483 void intel_modeset_gem_init(struct drm_device *dev)
15484 {
15485 struct drm_crtc *c;
15486 struct drm_i915_gem_object *obj;
15487 int ret;
15488
15489 mutex_lock(&dev->struct_mutex);
15490 intel_init_gt_powersave(dev);
15491 mutex_unlock(&dev->struct_mutex);
15492
15493 intel_modeset_init_hw(dev);
15494
15495 intel_setup_overlay(dev);
15496
15497 /*
15498 * Make sure any fbs we allocated at startup are properly
15499 * pinned & fenced. When we do the allocation it's too early
15500 * for this.
15501 */
15502 for_each_crtc(dev, c) {
15503 obj = intel_fb_obj(c->primary->fb);
15504 if (obj == NULL)
15505 continue;
15506
15507 mutex_lock(&dev->struct_mutex);
15508 ret = intel_pin_and_fence_fb_obj(c->primary,
15509 c->primary->fb,
15510 c->primary->state,
15511 NULL, NULL);
15512 mutex_unlock(&dev->struct_mutex);
15513 if (ret) {
15514 DRM_ERROR("failed to pin boot fb on pipe %d\n",
15515 to_intel_crtc(c)->pipe);
15516 drm_framebuffer_unreference(c->primary->fb);
15517 c->primary->fb = NULL;
15518 c->primary->crtc = c->primary->state->crtc = NULL;
15519 update_state_fb(c->primary);
15520 c->state->plane_mask &= ~(1 << drm_plane_index(c->primary));
15521 }
15522 }
15523
15524 intel_backlight_register(dev);
15525 }
15526
intel_connector_unregister(struct intel_connector * intel_connector)15527 void intel_connector_unregister(struct intel_connector *intel_connector)
15528 {
15529 struct drm_connector *connector = &intel_connector->base;
15530
15531 intel_panel_destroy_backlight(connector);
15532 drm_connector_unregister(connector);
15533 }
15534
intel_modeset_cleanup(struct drm_device * dev)15535 void intel_modeset_cleanup(struct drm_device *dev)
15536 {
15537 struct drm_i915_private *dev_priv = dev->dev_private;
15538 struct drm_connector *connector;
15539
15540 intel_disable_gt_powersave(dev);
15541
15542 intel_backlight_unregister(dev);
15543
15544 /*
15545 * Interrupts and polling as the first thing to avoid creating havoc.
15546 * Too much stuff here (turning of connectors, ...) would
15547 * experience fancy races otherwise.
15548 */
15549 intel_irq_uninstall(dev_priv);
15550
15551 /*
15552 * Due to the hpd irq storm handling the hotplug work can re-arm the
15553 * poll handlers. Hence disable polling after hpd handling is shut down.
15554 */
15555 drm_kms_helper_poll_fini(dev);
15556
15557 intel_unregister_dsm_handler();
15558
15559 intel_fbc_disable(dev_priv);
15560
15561 /* flush any delayed tasks or pending work */
15562 flush_scheduled_work();
15563
15564 /* destroy the backlight and sysfs files before encoders/connectors */
15565 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
15566 struct intel_connector *intel_connector;
15567
15568 intel_connector = to_intel_connector(connector);
15569 intel_connector->unregister(intel_connector);
15570 }
15571
15572 drm_mode_config_cleanup(dev);
15573
15574 intel_cleanup_overlay(dev);
15575
15576 mutex_lock(&dev->struct_mutex);
15577 intel_cleanup_gt_powersave(dev);
15578 mutex_unlock(&dev->struct_mutex);
15579
15580 intel_teardown_gmbus(dev);
15581 }
15582
15583 /*
15584 * Return which encoder is currently attached for connector.
15585 */
intel_best_encoder(struct drm_connector * connector)15586 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
15587 {
15588 return &intel_attached_encoder(connector)->base;
15589 }
15590
intel_connector_attach_encoder(struct intel_connector * connector,struct intel_encoder * encoder)15591 void intel_connector_attach_encoder(struct intel_connector *connector,
15592 struct intel_encoder *encoder)
15593 {
15594 connector->encoder = encoder;
15595 drm_mode_connector_attach_encoder(&connector->base,
15596 &encoder->base);
15597 }
15598
15599 /*
15600 * set vga decode state - true == enable VGA decode
15601 */
intel_modeset_vga_set_state(struct drm_device * dev,bool state)15602 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
15603 {
15604 struct drm_i915_private *dev_priv = dev->dev_private;
15605 unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
15606 u16 gmch_ctrl;
15607
15608 if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
15609 DRM_ERROR("failed to read control word\n");
15610 return -EIO;
15611 }
15612
15613 if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
15614 return 0;
15615
15616 if (state)
15617 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
15618 else
15619 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
15620
15621 if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
15622 DRM_ERROR("failed to write control word\n");
15623 return -EIO;
15624 }
15625
15626 return 0;
15627 }
15628
15629 struct intel_display_error_state {
15630
15631 u32 power_well_driver;
15632
15633 int num_transcoders;
15634
15635 struct intel_cursor_error_state {
15636 u32 control;
15637 u32 position;
15638 u32 base;
15639 u32 size;
15640 } cursor[I915_MAX_PIPES];
15641
15642 struct intel_pipe_error_state {
15643 bool power_domain_on;
15644 u32 source;
15645 u32 stat;
15646 } pipe[I915_MAX_PIPES];
15647
15648 struct intel_plane_error_state {
15649 u32 control;
15650 u32 stride;
15651 u32 size;
15652 u32 pos;
15653 u32 addr;
15654 u32 surface;
15655 u32 tile_offset;
15656 } plane[I915_MAX_PIPES];
15657
15658 struct intel_transcoder_error_state {
15659 bool power_domain_on;
15660 enum transcoder cpu_transcoder;
15661
15662 u32 conf;
15663
15664 u32 htotal;
15665 u32 hblank;
15666 u32 hsync;
15667 u32 vtotal;
15668 u32 vblank;
15669 u32 vsync;
15670 } transcoder[4];
15671 };
15672
15673 struct intel_display_error_state *
intel_display_capture_error_state(struct drm_device * dev)15674 intel_display_capture_error_state(struct drm_device *dev)
15675 {
15676 struct drm_i915_private *dev_priv = dev->dev_private;
15677 struct intel_display_error_state *error;
15678 int transcoders[] = {
15679 TRANSCODER_A,
15680 TRANSCODER_B,
15681 TRANSCODER_C,
15682 TRANSCODER_EDP,
15683 };
15684 int i;
15685
15686 if (INTEL_INFO(dev)->num_pipes == 0)
15687 return NULL;
15688
15689 error = kzalloc(sizeof(*error), GFP_ATOMIC);
15690 if (error == NULL)
15691 return NULL;
15692
15693 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
15694 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
15695
15696 for_each_pipe(dev_priv, i) {
15697 error->pipe[i].power_domain_on =
15698 __intel_display_power_is_enabled(dev_priv,
15699 POWER_DOMAIN_PIPE(i));
15700 if (!error->pipe[i].power_domain_on)
15701 continue;
15702
15703 error->cursor[i].control = I915_READ(CURCNTR(i));
15704 error->cursor[i].position = I915_READ(CURPOS(i));
15705 error->cursor[i].base = I915_READ(CURBASE(i));
15706
15707 error->plane[i].control = I915_READ(DSPCNTR(i));
15708 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
15709 if (INTEL_INFO(dev)->gen <= 3) {
15710 error->plane[i].size = I915_READ(DSPSIZE(i));
15711 error->plane[i].pos = I915_READ(DSPPOS(i));
15712 }
15713 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
15714 error->plane[i].addr = I915_READ(DSPADDR(i));
15715 if (INTEL_INFO(dev)->gen >= 4) {
15716 error->plane[i].surface = I915_READ(DSPSURF(i));
15717 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
15718 }
15719
15720 error->pipe[i].source = I915_READ(PIPESRC(i));
15721
15722 if (HAS_GMCH_DISPLAY(dev))
15723 error->pipe[i].stat = I915_READ(PIPESTAT(i));
15724 }
15725
15726 error->num_transcoders = INTEL_INFO(dev)->num_pipes;
15727 if (HAS_DDI(dev_priv->dev))
15728 error->num_transcoders++; /* Account for eDP. */
15729
15730 for (i = 0; i < error->num_transcoders; i++) {
15731 enum transcoder cpu_transcoder = transcoders[i];
15732
15733 error->transcoder[i].power_domain_on =
15734 __intel_display_power_is_enabled(dev_priv,
15735 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
15736 if (!error->transcoder[i].power_domain_on)
15737 continue;
15738
15739 error->transcoder[i].cpu_transcoder = cpu_transcoder;
15740
15741 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
15742 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
15743 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
15744 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
15745 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
15746 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
15747 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
15748 }
15749
15750 return error;
15751 }
15752
15753 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
15754
15755 void
intel_display_print_error_state(struct drm_i915_error_state_buf * m,struct drm_device * dev,struct intel_display_error_state * error)15756 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
15757 struct drm_device *dev,
15758 struct intel_display_error_state *error)
15759 {
15760 struct drm_i915_private *dev_priv = dev->dev_private;
15761 int i;
15762
15763 if (!error)
15764 return;
15765
15766 err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
15767 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
15768 err_printf(m, "PWR_WELL_CTL2: %08x\n",
15769 error->power_well_driver);
15770 for_each_pipe(dev_priv, i) {
15771 err_printf(m, "Pipe [%d]:\n", i);
15772 err_printf(m, " Power: %s\n",
15773 error->pipe[i].power_domain_on ? "on" : "off");
15774 err_printf(m, " SRC: %08x\n", error->pipe[i].source);
15775 err_printf(m, " STAT: %08x\n", error->pipe[i].stat);
15776
15777 err_printf(m, "Plane [%d]:\n", i);
15778 err_printf(m, " CNTR: %08x\n", error->plane[i].control);
15779 err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
15780 if (INTEL_INFO(dev)->gen <= 3) {
15781 err_printf(m, " SIZE: %08x\n", error->plane[i].size);
15782 err_printf(m, " POS: %08x\n", error->plane[i].pos);
15783 }
15784 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
15785 err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
15786 if (INTEL_INFO(dev)->gen >= 4) {
15787 err_printf(m, " SURF: %08x\n", error->plane[i].surface);
15788 err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
15789 }
15790
15791 err_printf(m, "Cursor [%d]:\n", i);
15792 err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
15793 err_printf(m, " POS: %08x\n", error->cursor[i].position);
15794 err_printf(m, " BASE: %08x\n", error->cursor[i].base);
15795 }
15796
15797 for (i = 0; i < error->num_transcoders; i++) {
15798 err_printf(m, "CPU transcoder: %c\n",
15799 transcoder_name(error->transcoder[i].cpu_transcoder));
15800 err_printf(m, " Power: %s\n",
15801 error->transcoder[i].power_domain_on ? "on" : "off");
15802 err_printf(m, " CONF: %08x\n", error->transcoder[i].conf);
15803 err_printf(m, " HTOTAL: %08x\n", error->transcoder[i].htotal);
15804 err_printf(m, " HBLANK: %08x\n", error->transcoder[i].hblank);
15805 err_printf(m, " HSYNC: %08x\n", error->transcoder[i].hsync);
15806 err_printf(m, " VTOTAL: %08x\n", error->transcoder[i].vtotal);
15807 err_printf(m, " VBLANK: %08x\n", error->transcoder[i].vblank);
15808 err_printf(m, " VSYNC: %08x\n", error->transcoder[i].vsync);
15809 }
15810 }
15811
intel_modeset_preclose(struct drm_device * dev,struct drm_file * file)15812 void intel_modeset_preclose(struct drm_device *dev, struct drm_file *file)
15813 {
15814 struct intel_crtc *crtc;
15815
15816 for_each_intel_crtc(dev, crtc) {
15817 struct intel_unpin_work *work;
15818
15819 spin_lock_irq(&dev->event_lock);
15820
15821 work = crtc->unpin_work;
15822
15823 if (work && work->event &&
15824 work->event->base.file_priv == file) {
15825 kfree(work->event);
15826 work->event = NULL;
15827 }
15828
15829 spin_unlock_irq(&dev->event_lock);
15830 }
15831 }
15832