1 /*
2  * Copyright © 2014 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Ben Widawsky <ben@bwidawsk.net>
25  *    Michel Thierry <michel.thierry@intel.com>
26  *    Thomas Daniel <thomas.daniel@intel.com>
27  *    Oscar Mateo <oscar.mateo@intel.com>
28  *
29  */
30 
31 /**
32  * DOC: Logical Rings, Logical Ring Contexts and Execlists
33  *
34  * Motivation:
35  * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36  * These expanded contexts enable a number of new abilities, especially
37  * "Execlists" (also implemented in this file).
38  *
39  * One of the main differences with the legacy HW contexts is that logical
40  * ring contexts incorporate many more things to the context's state, like
41  * PDPs or ringbuffer control registers:
42  *
43  * The reason why PDPs are included in the context is straightforward: as
44  * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45  * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46  * instead, the GPU will do it for you on the context switch.
47  *
48  * But, what about the ringbuffer control registers (head, tail, etc..)?
49  * shouldn't we just need a set of those per engine command streamer? This is
50  * where the name "Logical Rings" starts to make sense: by virtualizing the
51  * rings, the engine cs shifts to a new "ring buffer" with every context
52  * switch. When you want to submit a workload to the GPU you: A) choose your
53  * context, B) find its appropriate virtualized ring, C) write commands to it
54  * and then, finally, D) tell the GPU to switch to that context.
55  *
56  * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57  * to a contexts is via a context execution list, ergo "Execlists".
58  *
59  * LRC implementation:
60  * Regarding the creation of contexts, we have:
61  *
62  * - One global default context.
63  * - One local default context for each opened fd.
64  * - One local extra context for each context create ioctl call.
65  *
66  * Now that ringbuffers belong per-context (and not per-engine, like before)
67  * and that contexts are uniquely tied to a given engine (and not reusable,
68  * like before) we need:
69  *
70  * - One ringbuffer per-engine inside each context.
71  * - One backing object per-engine inside each context.
72  *
73  * The global default context starts its life with these new objects fully
74  * allocated and populated. The local default context for each opened fd is
75  * more complex, because we don't know at creation time which engine is going
76  * to use them. To handle this, we have implemented a deferred creation of LR
77  * contexts:
78  *
79  * The local context starts its life as a hollow or blank holder, that only
80  * gets populated for a given engine once we receive an execbuffer. If later
81  * on we receive another execbuffer ioctl for the same context but a different
82  * engine, we allocate/populate a new ringbuffer and context backing object and
83  * so on.
84  *
85  * Finally, regarding local contexts created using the ioctl call: as they are
86  * only allowed with the render ring, we can allocate & populate them right
87  * away (no need to defer anything, at least for now).
88  *
89  * Execlists implementation:
90  * Execlists are the new method by which, on gen8+ hardware, workloads are
91  * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92  * This method works as follows:
93  *
94  * When a request is committed, its commands (the BB start and any leading or
95  * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96  * for the appropriate context. The tail pointer in the hardware context is not
97  * updated at this time, but instead, kept by the driver in the ringbuffer
98  * structure. A structure representing this request is added to a request queue
99  * for the appropriate engine: this structure contains a copy of the context's
100  * tail after the request was written to the ring buffer and a pointer to the
101  * context itself.
102  *
103  * If the engine's request queue was empty before the request was added, the
104  * queue is processed immediately. Otherwise the queue will be processed during
105  * a context switch interrupt. In any case, elements on the queue will get sent
106  * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107  * globally unique 20-bits submission ID.
108  *
109  * When execution of a request completes, the GPU updates the context status
110  * buffer with a context complete event and generates a context switch interrupt.
111  * During the interrupt handling, the driver examines the events in the buffer:
112  * for each context complete event, if the announced ID matches that on the head
113  * of the request queue, then that request is retired and removed from the queue.
114  *
115  * After processing, if any requests were retired and the queue is not empty
116  * then a new execution list can be submitted. The two requests at the front of
117  * the queue are next to be submitted but since a context may not occur twice in
118  * an execution list, if subsequent requests have the same ID as the first then
119  * the two requests must be combined. This is done simply by discarding requests
120  * at the head of the queue until either only one requests is left (in which case
121  * we use a NULL second context) or the first two requests have unique IDs.
122  *
123  * By always executing the first two requests in the queue the driver ensures
124  * that the GPU is kept as busy as possible. In the case where a single context
125  * completes but a second context is still executing, the request for this second
126  * context will be at the head of the queue when we remove the first one. This
127  * request will then be resubmitted along with a new request for a different context,
128  * which will cause the hardware to continue executing the second request and queue
129  * the new request (the GPU detects the condition of a context getting preempted
130  * with the same context and optimizes the context switch flow by not doing
131  * preemption, but just sampling the new tail pointer).
132  *
133  */
134 
135 #include <drm/drmP.h>
136 #include <drm/i915_drm.h>
137 #include "i915_drv.h"
138 #include "intel_mocs.h"
139 
140 #define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
141 #define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
142 #define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
143 
144 #define RING_EXECLIST_QFULL		(1 << 0x2)
145 #define RING_EXECLIST1_VALID		(1 << 0x3)
146 #define RING_EXECLIST0_VALID		(1 << 0x4)
147 #define RING_EXECLIST_ACTIVE_STATUS	(3 << 0xE)
148 #define RING_EXECLIST1_ACTIVE		(1 << 0x11)
149 #define RING_EXECLIST0_ACTIVE		(1 << 0x12)
150 
151 #define GEN8_CTX_STATUS_IDLE_ACTIVE	(1 << 0)
152 #define GEN8_CTX_STATUS_PREEMPTED	(1 << 1)
153 #define GEN8_CTX_STATUS_ELEMENT_SWITCH	(1 << 2)
154 #define GEN8_CTX_STATUS_ACTIVE_IDLE	(1 << 3)
155 #define GEN8_CTX_STATUS_COMPLETE	(1 << 4)
156 #define GEN8_CTX_STATUS_LITE_RESTORE	(1 << 15)
157 
158 #define CTX_LRI_HEADER_0		0x01
159 #define CTX_CONTEXT_CONTROL		0x02
160 #define CTX_RING_HEAD			0x04
161 #define CTX_RING_TAIL			0x06
162 #define CTX_RING_BUFFER_START		0x08
163 #define CTX_RING_BUFFER_CONTROL		0x0a
164 #define CTX_BB_HEAD_U			0x0c
165 #define CTX_BB_HEAD_L			0x0e
166 #define CTX_BB_STATE			0x10
167 #define CTX_SECOND_BB_HEAD_U		0x12
168 #define CTX_SECOND_BB_HEAD_L		0x14
169 #define CTX_SECOND_BB_STATE		0x16
170 #define CTX_BB_PER_CTX_PTR		0x18
171 #define CTX_RCS_INDIRECT_CTX		0x1a
172 #define CTX_RCS_INDIRECT_CTX_OFFSET	0x1c
173 #define CTX_LRI_HEADER_1		0x21
174 #define CTX_CTX_TIMESTAMP		0x22
175 #define CTX_PDP3_UDW			0x24
176 #define CTX_PDP3_LDW			0x26
177 #define CTX_PDP2_UDW			0x28
178 #define CTX_PDP2_LDW			0x2a
179 #define CTX_PDP1_UDW			0x2c
180 #define CTX_PDP1_LDW			0x2e
181 #define CTX_PDP0_UDW			0x30
182 #define CTX_PDP0_LDW			0x32
183 #define CTX_LRI_HEADER_2		0x41
184 #define CTX_R_PWR_CLK_STATE		0x42
185 #define CTX_GPGPU_CSR_BASE_ADDRESS	0x44
186 
187 #define GEN8_CTX_VALID (1<<0)
188 #define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
189 #define GEN8_CTX_FORCE_RESTORE (1<<2)
190 #define GEN8_CTX_L3LLC_COHERENT (1<<5)
191 #define GEN8_CTX_PRIVILEGE (1<<8)
192 
193 #define ASSIGN_CTX_PDP(ppgtt, reg_state, n) { \
194 	const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n));	\
195 	reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
196 	reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
197 }
198 
199 #define ASSIGN_CTX_PML4(ppgtt, reg_state) { \
200 	reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
201 	reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
202 }
203 
204 enum {
205 	ADVANCED_CONTEXT = 0,
206 	LEGACY_32B_CONTEXT,
207 	ADVANCED_AD_CONTEXT,
208 	LEGACY_64B_CONTEXT
209 };
210 #define GEN8_CTX_ADDRESSING_MODE_SHIFT 3
211 #define GEN8_CTX_ADDRESSING_MODE(dev)  (USES_FULL_48BIT_PPGTT(dev) ?\
212 		LEGACY_64B_CONTEXT :\
213 		LEGACY_32B_CONTEXT)
214 enum {
215 	FAULT_AND_HANG = 0,
216 	FAULT_AND_HALT, /* Debug only */
217 	FAULT_AND_STREAM,
218 	FAULT_AND_CONTINUE /* Unsupported */
219 };
220 #define GEN8_CTX_ID_SHIFT 32
221 #define CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT  0x17
222 
223 static int intel_lr_context_pin(struct drm_i915_gem_request *rq);
224 static void lrc_setup_hardware_status_page(struct intel_engine_cs *ring,
225 		struct drm_i915_gem_object *default_ctx_obj);
226 
227 
228 /**
229  * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
230  * @dev: DRM device.
231  * @enable_execlists: value of i915.enable_execlists module parameter.
232  *
233  * Only certain platforms support Execlists (the prerequisites being
234  * support for Logical Ring Contexts and Aliasing PPGTT or better).
235  *
236  * Return: 1 if Execlists is supported and has to be enabled.
237  */
intel_sanitize_enable_execlists(struct drm_device * dev,int enable_execlists)238 int intel_sanitize_enable_execlists(struct drm_device *dev, int enable_execlists)
239 {
240 	WARN_ON(i915.enable_ppgtt == -1);
241 
242 	/* On platforms with execlist available, vGPU will only
243 	 * support execlist mode, no ring buffer mode.
244 	 */
245 	if (HAS_LOGICAL_RING_CONTEXTS(dev) && intel_vgpu_active(dev))
246 		return 1;
247 
248 	if (INTEL_INFO(dev)->gen >= 9)
249 		return 1;
250 
251 	if (enable_execlists == 0)
252 		return 0;
253 
254 	if (HAS_LOGICAL_RING_CONTEXTS(dev) && USES_PPGTT(dev) &&
255 	    i915.use_mmio_flip >= 0)
256 		return 1;
257 
258 	return 0;
259 }
260 
261 /**
262  * intel_execlists_ctx_id() - get the Execlists Context ID
263  * @ctx_obj: Logical Ring Context backing object.
264  *
265  * Do not confuse with ctx->id! Unfortunately we have a name overload
266  * here: the old context ID we pass to userspace as a handler so that
267  * they can refer to a context, and the new context ID we pass to the
268  * ELSP so that the GPU can inform us of the context status via
269  * interrupts.
270  *
271  * Return: 20-bits globally unique context ID.
272  */
intel_execlists_ctx_id(struct drm_i915_gem_object * ctx_obj)273 u32 intel_execlists_ctx_id(struct drm_i915_gem_object *ctx_obj)
274 {
275 	u32 lrca = i915_gem_obj_ggtt_offset(ctx_obj) +
276 			LRC_PPHWSP_PN * PAGE_SIZE;
277 
278 	/* LRCA is required to be 4K aligned so the more significant 20 bits
279 	 * are globally unique */
280 	return lrca >> 12;
281 }
282 
disable_lite_restore_wa(struct intel_engine_cs * ring)283 static bool disable_lite_restore_wa(struct intel_engine_cs *ring)
284 {
285 	struct drm_device *dev = ring->dev;
286 
287 	return ((IS_SKYLAKE(dev) && INTEL_REVID(dev) <= SKL_REVID_B0) ||
288 		(IS_BROXTON(dev) && INTEL_REVID(dev) == BXT_REVID_A0)) &&
289 	       (ring->id == VCS || ring->id == VCS2);
290 }
291 
intel_lr_context_descriptor(struct intel_context * ctx,struct intel_engine_cs * ring)292 uint64_t intel_lr_context_descriptor(struct intel_context *ctx,
293 				     struct intel_engine_cs *ring)
294 {
295 	struct drm_i915_gem_object *ctx_obj = ctx->engine[ring->id].state;
296 	uint64_t desc;
297 	uint64_t lrca = i915_gem_obj_ggtt_offset(ctx_obj) +
298 			LRC_PPHWSP_PN * PAGE_SIZE;
299 
300 	WARN_ON(lrca & 0xFFFFFFFF00000FFFULL);
301 
302 	desc = GEN8_CTX_VALID;
303 	desc |= GEN8_CTX_ADDRESSING_MODE(dev) << GEN8_CTX_ADDRESSING_MODE_SHIFT;
304 	if (IS_GEN8(ctx_obj->base.dev))
305 		desc |= GEN8_CTX_L3LLC_COHERENT;
306 	desc |= GEN8_CTX_PRIVILEGE;
307 	desc |= lrca;
308 	desc |= (u64)intel_execlists_ctx_id(ctx_obj) << GEN8_CTX_ID_SHIFT;
309 
310 	/* TODO: WaDisableLiteRestore when we start using semaphore
311 	 * signalling between Command Streamers */
312 	/* desc |= GEN8_CTX_FORCE_RESTORE; */
313 
314 	/* WaEnableForceRestoreInCtxtDescForVCS:skl */
315 	/* WaEnableForceRestoreInCtxtDescForVCS:bxt */
316 	if (disable_lite_restore_wa(ring))
317 		desc |= GEN8_CTX_FORCE_RESTORE;
318 
319 	return desc;
320 }
321 
execlists_elsp_write(struct drm_i915_gem_request * rq0,struct drm_i915_gem_request * rq1)322 static void execlists_elsp_write(struct drm_i915_gem_request *rq0,
323 				 struct drm_i915_gem_request *rq1)
324 {
325 
326 	struct intel_engine_cs *ring = rq0->ring;
327 	struct drm_device *dev = ring->dev;
328 	struct drm_i915_private *dev_priv = dev->dev_private;
329 	uint64_t desc[2];
330 
331 	if (rq1) {
332 		desc[1] = intel_lr_context_descriptor(rq1->ctx, rq1->ring);
333 		rq1->elsp_submitted++;
334 	} else {
335 		desc[1] = 0;
336 	}
337 
338 	desc[0] = intel_lr_context_descriptor(rq0->ctx, rq0->ring);
339 	rq0->elsp_submitted++;
340 
341 	/* You must always write both descriptors in the order below. */
342 	spin_lock(&dev_priv->uncore.lock);
343 	intel_uncore_forcewake_get__locked(dev_priv, FORCEWAKE_ALL);
344 	I915_WRITE_FW(RING_ELSP(ring), upper_32_bits(desc[1]));
345 	I915_WRITE_FW(RING_ELSP(ring), lower_32_bits(desc[1]));
346 
347 	I915_WRITE_FW(RING_ELSP(ring), upper_32_bits(desc[0]));
348 	/* The context is automatically loaded after the following */
349 	I915_WRITE_FW(RING_ELSP(ring), lower_32_bits(desc[0]));
350 
351 	/* ELSP is a wo register, use another nearby reg for posting */
352 	POSTING_READ_FW(RING_EXECLIST_STATUS_LO(ring));
353 	intel_uncore_forcewake_put__locked(dev_priv, FORCEWAKE_ALL);
354 	spin_unlock(&dev_priv->uncore.lock);
355 }
356 
execlists_update_context(struct drm_i915_gem_request * rq)357 static int execlists_update_context(struct drm_i915_gem_request *rq)
358 {
359 	struct intel_engine_cs *ring = rq->ring;
360 	struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
361 	struct drm_i915_gem_object *ctx_obj = rq->ctx->engine[ring->id].state;
362 	struct drm_i915_gem_object *rb_obj = rq->ringbuf->obj;
363 	struct page *page;
364 	uint32_t *reg_state;
365 
366 	BUG_ON(!ctx_obj);
367 	WARN_ON(!i915_gem_obj_is_pinned(ctx_obj));
368 	WARN_ON(!i915_gem_obj_is_pinned(rb_obj));
369 
370 	page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
371 	reg_state = kmap_atomic(page);
372 
373 	reg_state[CTX_RING_TAIL+1] = rq->tail;
374 	reg_state[CTX_RING_BUFFER_START+1] = i915_gem_obj_ggtt_offset(rb_obj);
375 
376 	if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
377 		/* True 32b PPGTT with dynamic page allocation: update PDP
378 		 * registers and point the unallocated PDPs to scratch page.
379 		 * PML4 is allocated during ppgtt init, so this is not needed
380 		 * in 48-bit mode.
381 		 */
382 		ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
383 		ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
384 		ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
385 		ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
386 	}
387 
388 	kunmap_atomic(reg_state);
389 
390 	return 0;
391 }
392 
execlists_submit_requests(struct drm_i915_gem_request * rq0,struct drm_i915_gem_request * rq1)393 static void execlists_submit_requests(struct drm_i915_gem_request *rq0,
394 				      struct drm_i915_gem_request *rq1)
395 {
396 	execlists_update_context(rq0);
397 
398 	if (rq1)
399 		execlists_update_context(rq1);
400 
401 	execlists_elsp_write(rq0, rq1);
402 }
403 
execlists_context_unqueue(struct intel_engine_cs * ring)404 static void execlists_context_unqueue(struct intel_engine_cs *ring)
405 {
406 	struct drm_i915_gem_request *req0 = NULL, *req1 = NULL;
407 	struct drm_i915_gem_request *cursor = NULL, *tmp = NULL;
408 
409 	assert_spin_locked(&ring->execlist_lock);
410 
411 	/*
412 	 * If irqs are not active generate a warning as batches that finish
413 	 * without the irqs may get lost and a GPU Hang may occur.
414 	 */
415 	WARN_ON(!intel_irqs_enabled(ring->dev->dev_private));
416 
417 	if (list_empty(&ring->execlist_queue))
418 		return;
419 
420 	/* Try to read in pairs */
421 	list_for_each_entry_safe(cursor, tmp, &ring->execlist_queue,
422 				 execlist_link) {
423 		if (!req0) {
424 			req0 = cursor;
425 		} else if (req0->ctx == cursor->ctx) {
426 			/* Same ctx: ignore first request, as second request
427 			 * will update tail past first request's workload */
428 			cursor->elsp_submitted = req0->elsp_submitted;
429 			list_del(&req0->execlist_link);
430 			list_add_tail(&req0->execlist_link,
431 				&ring->execlist_retired_req_list);
432 			req0 = cursor;
433 		} else {
434 			req1 = cursor;
435 			break;
436 		}
437 	}
438 
439 	if (IS_GEN8(ring->dev) || IS_GEN9(ring->dev)) {
440 		/*
441 		 * WaIdleLiteRestore: make sure we never cause a lite
442 		 * restore with HEAD==TAIL
443 		 */
444 		if (req0->elsp_submitted) {
445 			/*
446 			 * Apply the wa NOOPS to prevent ring:HEAD == req:TAIL
447 			 * as we resubmit the request. See gen8_emit_request()
448 			 * for where we prepare the padding after the end of the
449 			 * request.
450 			 */
451 			struct intel_ringbuffer *ringbuf;
452 
453 			ringbuf = req0->ctx->engine[ring->id].ringbuf;
454 			req0->tail += 8;
455 			req0->tail &= ringbuf->size - 1;
456 		}
457 	}
458 
459 	WARN_ON(req1 && req1->elsp_submitted);
460 
461 	execlists_submit_requests(req0, req1);
462 }
463 
execlists_check_remove_request(struct intel_engine_cs * ring,u32 request_id)464 static bool execlists_check_remove_request(struct intel_engine_cs *ring,
465 					   u32 request_id)
466 {
467 	struct drm_i915_gem_request *head_req;
468 
469 	assert_spin_locked(&ring->execlist_lock);
470 
471 	head_req = list_first_entry_or_null(&ring->execlist_queue,
472 					    struct drm_i915_gem_request,
473 					    execlist_link);
474 
475 	if (head_req != NULL) {
476 		struct drm_i915_gem_object *ctx_obj =
477 				head_req->ctx->engine[ring->id].state;
478 		if (intel_execlists_ctx_id(ctx_obj) == request_id) {
479 			WARN(head_req->elsp_submitted == 0,
480 			     "Never submitted head request\n");
481 
482 			if (--head_req->elsp_submitted <= 0) {
483 				list_del(&head_req->execlist_link);
484 				list_add_tail(&head_req->execlist_link,
485 					&ring->execlist_retired_req_list);
486 				return true;
487 			}
488 		}
489 	}
490 
491 	return false;
492 }
493 
494 /**
495  * intel_lrc_irq_handler() - handle Context Switch interrupts
496  * @ring: Engine Command Streamer to handle.
497  *
498  * Check the unread Context Status Buffers and manage the submission of new
499  * contexts to the ELSP accordingly.
500  */
intel_lrc_irq_handler(struct intel_engine_cs * ring)501 void intel_lrc_irq_handler(struct intel_engine_cs *ring)
502 {
503 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
504 	u32 status_pointer;
505 	u8 read_pointer;
506 	u8 write_pointer;
507 	u32 status = 0;
508 	u32 status_id;
509 	u32 submit_contexts = 0;
510 
511 	status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(ring));
512 
513 	read_pointer = ring->next_context_status_buffer;
514 	write_pointer = status_pointer & GEN8_CSB_PTR_MASK;
515 	if (read_pointer > write_pointer)
516 		write_pointer += GEN8_CSB_ENTRIES;
517 
518 	spin_lock(&ring->execlist_lock);
519 
520 	while (read_pointer < write_pointer) {
521 		read_pointer++;
522 		status = I915_READ(RING_CONTEXT_STATUS_BUF_LO(ring, read_pointer % GEN8_CSB_ENTRIES));
523 		status_id = I915_READ(RING_CONTEXT_STATUS_BUF_HI(ring, read_pointer % GEN8_CSB_ENTRIES));
524 
525 		if (status & GEN8_CTX_STATUS_IDLE_ACTIVE)
526 			continue;
527 
528 		if (status & GEN8_CTX_STATUS_PREEMPTED) {
529 			if (status & GEN8_CTX_STATUS_LITE_RESTORE) {
530 				if (execlists_check_remove_request(ring, status_id))
531 					WARN(1, "Lite Restored request removed from queue\n");
532 			} else
533 				WARN(1, "Preemption without Lite Restore\n");
534 		}
535 
536 		 if ((status & GEN8_CTX_STATUS_ACTIVE_IDLE) ||
537 		     (status & GEN8_CTX_STATUS_ELEMENT_SWITCH)) {
538 			if (execlists_check_remove_request(ring, status_id))
539 				submit_contexts++;
540 		}
541 	}
542 
543 	if (disable_lite_restore_wa(ring)) {
544 		/* Prevent a ctx to preempt itself */
545 		if ((status & GEN8_CTX_STATUS_ACTIVE_IDLE) &&
546 		    (submit_contexts != 0))
547 			execlists_context_unqueue(ring);
548 	} else if (submit_contexts != 0) {
549 		execlists_context_unqueue(ring);
550 	}
551 
552 	spin_unlock(&ring->execlist_lock);
553 
554 	WARN(submit_contexts > 2, "More than two context complete events?\n");
555 	ring->next_context_status_buffer = write_pointer % GEN8_CSB_ENTRIES;
556 
557 	I915_WRITE(RING_CONTEXT_STATUS_PTR(ring),
558 		   _MASKED_FIELD(GEN8_CSB_PTR_MASK << 8,
559 				 ((u32)ring->next_context_status_buffer &
560 				  GEN8_CSB_PTR_MASK) << 8));
561 }
562 
execlists_context_queue(struct drm_i915_gem_request * request)563 static int execlists_context_queue(struct drm_i915_gem_request *request)
564 {
565 	struct intel_engine_cs *ring = request->ring;
566 	struct drm_i915_gem_request *cursor;
567 	int num_elements = 0;
568 
569 	if (request->ctx != ring->default_context)
570 		intel_lr_context_pin(request);
571 
572 	i915_gem_request_reference(request);
573 
574 	spin_lock_irq(&ring->execlist_lock);
575 
576 	list_for_each_entry(cursor, &ring->execlist_queue, execlist_link)
577 		if (++num_elements > 2)
578 			break;
579 
580 	if (num_elements > 2) {
581 		struct drm_i915_gem_request *tail_req;
582 
583 		tail_req = list_last_entry(&ring->execlist_queue,
584 					   struct drm_i915_gem_request,
585 					   execlist_link);
586 
587 		if (request->ctx == tail_req->ctx) {
588 			WARN(tail_req->elsp_submitted != 0,
589 				"More than 2 already-submitted reqs queued\n");
590 			list_del(&tail_req->execlist_link);
591 			list_add_tail(&tail_req->execlist_link,
592 				&ring->execlist_retired_req_list);
593 		}
594 	}
595 
596 	list_add_tail(&request->execlist_link, &ring->execlist_queue);
597 	if (num_elements == 0)
598 		execlists_context_unqueue(ring);
599 
600 	spin_unlock_irq(&ring->execlist_lock);
601 
602 	return 0;
603 }
604 
logical_ring_invalidate_all_caches(struct drm_i915_gem_request * req)605 static int logical_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
606 {
607 	struct intel_engine_cs *ring = req->ring;
608 	uint32_t flush_domains;
609 	int ret;
610 
611 	flush_domains = 0;
612 	if (ring->gpu_caches_dirty)
613 		flush_domains = I915_GEM_GPU_DOMAINS;
614 
615 	ret = ring->emit_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
616 	if (ret)
617 		return ret;
618 
619 	ring->gpu_caches_dirty = false;
620 	return 0;
621 }
622 
execlists_move_to_gpu(struct drm_i915_gem_request * req,struct list_head * vmas)623 static int execlists_move_to_gpu(struct drm_i915_gem_request *req,
624 				 struct list_head *vmas)
625 {
626 	const unsigned other_rings = ~intel_ring_flag(req->ring);
627 	struct i915_vma *vma;
628 	uint32_t flush_domains = 0;
629 	bool flush_chipset = false;
630 	int ret;
631 
632 	list_for_each_entry(vma, vmas, exec_list) {
633 		struct drm_i915_gem_object *obj = vma->obj;
634 
635 		if (obj->active & other_rings) {
636 			ret = i915_gem_object_sync(obj, req->ring, &req);
637 			if (ret)
638 				return ret;
639 		}
640 
641 		if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
642 			flush_chipset |= i915_gem_clflush_object(obj, false);
643 
644 		flush_domains |= obj->base.write_domain;
645 	}
646 
647 	if (flush_domains & I915_GEM_DOMAIN_GTT)
648 		wmb();
649 
650 	/* Unconditionally invalidate gpu caches and ensure that we do flush
651 	 * any residual writes from the previous batch.
652 	 */
653 	return logical_ring_invalidate_all_caches(req);
654 }
655 
intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request * request)656 int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
657 {
658 	int ret;
659 
660 	request->ringbuf = request->ctx->engine[request->ring->id].ringbuf;
661 
662 	if (request->ctx != request->ring->default_context) {
663 		ret = intel_lr_context_pin(request);
664 		if (ret)
665 			return ret;
666 	}
667 
668 	return 0;
669 }
670 
logical_ring_wait_for_space(struct drm_i915_gem_request * req,int bytes)671 static int logical_ring_wait_for_space(struct drm_i915_gem_request *req,
672 				       int bytes)
673 {
674 	struct intel_ringbuffer *ringbuf = req->ringbuf;
675 	struct intel_engine_cs *ring = req->ring;
676 	struct drm_i915_gem_request *target;
677 	unsigned space;
678 	int ret;
679 
680 	if (intel_ring_space(ringbuf) >= bytes)
681 		return 0;
682 
683 	/* The whole point of reserving space is to not wait! */
684 	WARN_ON(ringbuf->reserved_in_use);
685 
686 	list_for_each_entry(target, &ring->request_list, list) {
687 		/*
688 		 * The request queue is per-engine, so can contain requests
689 		 * from multiple ringbuffers. Here, we must ignore any that
690 		 * aren't from the ringbuffer we're considering.
691 		 */
692 		if (target->ringbuf != ringbuf)
693 			continue;
694 
695 		/* Would completion of this request free enough space? */
696 		space = __intel_ring_space(target->postfix, ringbuf->tail,
697 					   ringbuf->size);
698 		if (space >= bytes)
699 			break;
700 	}
701 
702 	if (WARN_ON(&target->list == &ring->request_list))
703 		return -ENOSPC;
704 
705 	ret = i915_wait_request(target);
706 	if (ret)
707 		return ret;
708 
709 	ringbuf->space = space;
710 	return 0;
711 }
712 
713 /*
714  * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
715  * @request: Request to advance the logical ringbuffer of.
716  *
717  * The tail is updated in our logical ringbuffer struct, not in the actual context. What
718  * really happens during submission is that the context and current tail will be placed
719  * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
720  * point, the tail *inside* the context is updated and the ELSP written to.
721  */
722 static void
intel_logical_ring_advance_and_submit(struct drm_i915_gem_request * request)723 intel_logical_ring_advance_and_submit(struct drm_i915_gem_request *request)
724 {
725 	struct intel_engine_cs *ring = request->ring;
726 	struct drm_i915_private *dev_priv = request->i915;
727 
728 	intel_logical_ring_advance(request->ringbuf);
729 
730 	request->tail = request->ringbuf->tail;
731 
732 	if (intel_ring_stopped(ring))
733 		return;
734 
735 	if (dev_priv->guc.execbuf_client)
736 		i915_guc_submit(dev_priv->guc.execbuf_client, request);
737 	else
738 		execlists_context_queue(request);
739 }
740 
__wrap_ring_buffer(struct intel_ringbuffer * ringbuf)741 static void __wrap_ring_buffer(struct intel_ringbuffer *ringbuf)
742 {
743 	uint32_t __iomem *virt;
744 	int rem = ringbuf->size - ringbuf->tail;
745 
746 	virt = ringbuf->virtual_start + ringbuf->tail;
747 	rem /= 4;
748 	while (rem--)
749 		iowrite32(MI_NOOP, virt++);
750 
751 	ringbuf->tail = 0;
752 	intel_ring_update_space(ringbuf);
753 }
754 
logical_ring_prepare(struct drm_i915_gem_request * req,int bytes)755 static int logical_ring_prepare(struct drm_i915_gem_request *req, int bytes)
756 {
757 	struct intel_ringbuffer *ringbuf = req->ringbuf;
758 	int remain_usable = ringbuf->effective_size - ringbuf->tail;
759 	int remain_actual = ringbuf->size - ringbuf->tail;
760 	int ret, total_bytes, wait_bytes = 0;
761 	bool need_wrap = false;
762 
763 	if (ringbuf->reserved_in_use)
764 		total_bytes = bytes;
765 	else
766 		total_bytes = bytes + ringbuf->reserved_size;
767 
768 	if (unlikely(bytes > remain_usable)) {
769 		/*
770 		 * Not enough space for the basic request. So need to flush
771 		 * out the remainder and then wait for base + reserved.
772 		 */
773 		wait_bytes = remain_actual + total_bytes;
774 		need_wrap = true;
775 	} else {
776 		if (unlikely(total_bytes > remain_usable)) {
777 			/*
778 			 * The base request will fit but the reserved space
779 			 * falls off the end. So don't need an immediate wrap
780 			 * and only need to effectively wait for the reserved
781 			 * size space from the start of ringbuffer.
782 			 */
783 			wait_bytes = remain_actual + ringbuf->reserved_size;
784 		} else if (total_bytes > ringbuf->space) {
785 			/* No wrapping required, just waiting. */
786 			wait_bytes = total_bytes;
787 		}
788 	}
789 
790 	if (wait_bytes) {
791 		ret = logical_ring_wait_for_space(req, wait_bytes);
792 		if (unlikely(ret))
793 			return ret;
794 
795 		if (need_wrap)
796 			__wrap_ring_buffer(ringbuf);
797 	}
798 
799 	return 0;
800 }
801 
802 /**
803  * intel_logical_ring_begin() - prepare the logical ringbuffer to accept some commands
804  *
805  * @req: The request to start some new work for
806  * @num_dwords: number of DWORDs that we plan to write to the ringbuffer.
807  *
808  * The ringbuffer might not be ready to accept the commands right away (maybe it needs to
809  * be wrapped, or wait a bit for the tail to be updated). This function takes care of that
810  * and also preallocates a request (every workload submission is still mediated through
811  * requests, same as it did with legacy ringbuffer submission).
812  *
813  * Return: non-zero if the ringbuffer is not ready to be written to.
814  */
intel_logical_ring_begin(struct drm_i915_gem_request * req,int num_dwords)815 int intel_logical_ring_begin(struct drm_i915_gem_request *req, int num_dwords)
816 {
817 	struct drm_i915_private *dev_priv;
818 	int ret;
819 
820 	WARN_ON(req == NULL);
821 	dev_priv = req->ring->dev->dev_private;
822 
823 	ret = i915_gem_check_wedge(&dev_priv->gpu_error,
824 				   dev_priv->mm.interruptible);
825 	if (ret)
826 		return ret;
827 
828 	ret = logical_ring_prepare(req, num_dwords * sizeof(uint32_t));
829 	if (ret)
830 		return ret;
831 
832 	req->ringbuf->space -= num_dwords * sizeof(uint32_t);
833 	return 0;
834 }
835 
intel_logical_ring_reserve_space(struct drm_i915_gem_request * request)836 int intel_logical_ring_reserve_space(struct drm_i915_gem_request *request)
837 {
838 	/*
839 	 * The first call merely notes the reserve request and is common for
840 	 * all back ends. The subsequent localised _begin() call actually
841 	 * ensures that the reservation is available. Without the begin, if
842 	 * the request creator immediately submitted the request without
843 	 * adding any commands to it then there might not actually be
844 	 * sufficient room for the submission commands.
845 	 */
846 	intel_ring_reserved_space_reserve(request->ringbuf, MIN_SPACE_FOR_ADD_REQUEST);
847 
848 	return intel_logical_ring_begin(request, 0);
849 }
850 
851 /**
852  * execlists_submission() - submit a batchbuffer for execution, Execlists style
853  * @dev: DRM device.
854  * @file: DRM file.
855  * @ring: Engine Command Streamer to submit to.
856  * @ctx: Context to employ for this submission.
857  * @args: execbuffer call arguments.
858  * @vmas: list of vmas.
859  * @batch_obj: the batchbuffer to submit.
860  * @exec_start: batchbuffer start virtual address pointer.
861  * @dispatch_flags: translated execbuffer call flags.
862  *
863  * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
864  * away the submission details of the execbuffer ioctl call.
865  *
866  * Return: non-zero if the submission fails.
867  */
intel_execlists_submission(struct i915_execbuffer_params * params,struct drm_i915_gem_execbuffer2 * args,struct list_head * vmas)868 int intel_execlists_submission(struct i915_execbuffer_params *params,
869 			       struct drm_i915_gem_execbuffer2 *args,
870 			       struct list_head *vmas)
871 {
872 	struct drm_device       *dev = params->dev;
873 	struct intel_engine_cs  *ring = params->ring;
874 	struct drm_i915_private *dev_priv = dev->dev_private;
875 	struct intel_ringbuffer *ringbuf = params->ctx->engine[ring->id].ringbuf;
876 	u64 exec_start;
877 	int instp_mode;
878 	u32 instp_mask;
879 	int ret;
880 
881 	instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
882 	instp_mask = I915_EXEC_CONSTANTS_MASK;
883 	switch (instp_mode) {
884 	case I915_EXEC_CONSTANTS_REL_GENERAL:
885 	case I915_EXEC_CONSTANTS_ABSOLUTE:
886 	case I915_EXEC_CONSTANTS_REL_SURFACE:
887 		if (instp_mode != 0 && ring != &dev_priv->ring[RCS]) {
888 			DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
889 			return -EINVAL;
890 		}
891 
892 		if (instp_mode != dev_priv->relative_constants_mode) {
893 			if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
894 				DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
895 				return -EINVAL;
896 			}
897 
898 			/* The HW changed the meaning on this bit on gen6 */
899 			instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
900 		}
901 		break;
902 	default:
903 		DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
904 		return -EINVAL;
905 	}
906 
907 	if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
908 		DRM_DEBUG("sol reset is gen7 only\n");
909 		return -EINVAL;
910 	}
911 
912 	ret = execlists_move_to_gpu(params->request, vmas);
913 	if (ret)
914 		return ret;
915 
916 	if (ring == &dev_priv->ring[RCS] &&
917 	    instp_mode != dev_priv->relative_constants_mode) {
918 		ret = intel_logical_ring_begin(params->request, 4);
919 		if (ret)
920 			return ret;
921 
922 		intel_logical_ring_emit(ringbuf, MI_NOOP);
923 		intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
924 		intel_logical_ring_emit(ringbuf, INSTPM);
925 		intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
926 		intel_logical_ring_advance(ringbuf);
927 
928 		dev_priv->relative_constants_mode = instp_mode;
929 	}
930 
931 	exec_start = params->batch_obj_vm_offset +
932 		     args->batch_start_offset;
933 
934 	ret = ring->emit_bb_start(params->request, exec_start, params->dispatch_flags);
935 	if (ret)
936 		return ret;
937 
938 	trace_i915_gem_ring_dispatch(params->request, params->dispatch_flags);
939 
940 	i915_gem_execbuffer_move_to_active(vmas, params->request);
941 	i915_gem_execbuffer_retire_commands(params);
942 
943 	return 0;
944 }
945 
intel_execlists_retire_requests(struct intel_engine_cs * ring)946 void intel_execlists_retire_requests(struct intel_engine_cs *ring)
947 {
948 	struct drm_i915_gem_request *req, *tmp;
949 	struct list_head retired_list;
950 
951 	WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
952 	if (list_empty(&ring->execlist_retired_req_list))
953 		return;
954 
955 	INIT_LIST_HEAD(&retired_list);
956 	spin_lock_irq(&ring->execlist_lock);
957 	list_replace_init(&ring->execlist_retired_req_list, &retired_list);
958 	spin_unlock_irq(&ring->execlist_lock);
959 
960 	list_for_each_entry_safe(req, tmp, &retired_list, execlist_link) {
961 		struct intel_context *ctx = req->ctx;
962 		struct drm_i915_gem_object *ctx_obj =
963 				ctx->engine[ring->id].state;
964 
965 		if (ctx_obj && (ctx != ring->default_context))
966 			intel_lr_context_unpin(req);
967 		list_del(&req->execlist_link);
968 		i915_gem_request_unreference(req);
969 	}
970 }
971 
intel_logical_ring_stop(struct intel_engine_cs * ring)972 void intel_logical_ring_stop(struct intel_engine_cs *ring)
973 {
974 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
975 	int ret;
976 
977 	if (!intel_ring_initialized(ring))
978 		return;
979 
980 	ret = intel_ring_idle(ring);
981 	if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
982 		DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
983 			  ring->name, ret);
984 
985 	/* TODO: Is this correct with Execlists enabled? */
986 	I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
987 	if (wait_for_atomic((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
988 		DRM_ERROR("%s :timed out trying to stop ring\n", ring->name);
989 		return;
990 	}
991 	I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
992 }
993 
logical_ring_flush_all_caches(struct drm_i915_gem_request * req)994 int logical_ring_flush_all_caches(struct drm_i915_gem_request *req)
995 {
996 	struct intel_engine_cs *ring = req->ring;
997 	int ret;
998 
999 	if (!ring->gpu_caches_dirty)
1000 		return 0;
1001 
1002 	ret = ring->emit_flush(req, 0, I915_GEM_GPU_DOMAINS);
1003 	if (ret)
1004 		return ret;
1005 
1006 	ring->gpu_caches_dirty = false;
1007 	return 0;
1008 }
1009 
intel_lr_context_do_pin(struct intel_engine_cs * ring,struct drm_i915_gem_object * ctx_obj,struct intel_ringbuffer * ringbuf)1010 static int intel_lr_context_do_pin(struct intel_engine_cs *ring,
1011 		struct drm_i915_gem_object *ctx_obj,
1012 		struct intel_ringbuffer *ringbuf)
1013 {
1014 	struct drm_device *dev = ring->dev;
1015 	struct drm_i915_private *dev_priv = dev->dev_private;
1016 	int ret = 0;
1017 
1018 	WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1019 	ret = i915_gem_obj_ggtt_pin(ctx_obj, GEN8_LR_CONTEXT_ALIGN,
1020 			PIN_OFFSET_BIAS | GUC_WOPCM_TOP);
1021 	if (ret)
1022 		return ret;
1023 
1024 	ret = intel_pin_and_map_ringbuffer_obj(ring->dev, ringbuf);
1025 	if (ret)
1026 		goto unpin_ctx_obj;
1027 
1028 	ctx_obj->dirty = true;
1029 
1030 	/* Invalidate GuC TLB. */
1031 	if (i915.enable_guc_submission)
1032 		I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
1033 
1034 	return ret;
1035 
1036 unpin_ctx_obj:
1037 	i915_gem_object_ggtt_unpin(ctx_obj);
1038 
1039 	return ret;
1040 }
1041 
intel_lr_context_pin(struct drm_i915_gem_request * rq)1042 static int intel_lr_context_pin(struct drm_i915_gem_request *rq)
1043 {
1044 	int ret = 0;
1045 	struct intel_engine_cs *ring = rq->ring;
1046 	struct drm_i915_gem_object *ctx_obj = rq->ctx->engine[ring->id].state;
1047 	struct intel_ringbuffer *ringbuf = rq->ringbuf;
1048 
1049 	if (rq->ctx->engine[ring->id].pin_count++ == 0) {
1050 		ret = intel_lr_context_do_pin(ring, ctx_obj, ringbuf);
1051 		if (ret)
1052 			goto reset_pin_count;
1053 	}
1054 	return ret;
1055 
1056 reset_pin_count:
1057 	rq->ctx->engine[ring->id].pin_count = 0;
1058 	return ret;
1059 }
1060 
intel_lr_context_unpin(struct drm_i915_gem_request * rq)1061 void intel_lr_context_unpin(struct drm_i915_gem_request *rq)
1062 {
1063 	struct intel_engine_cs *ring = rq->ring;
1064 	struct drm_i915_gem_object *ctx_obj = rq->ctx->engine[ring->id].state;
1065 	struct intel_ringbuffer *ringbuf = rq->ringbuf;
1066 
1067 	if (ctx_obj) {
1068 		WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1069 		if (--rq->ctx->engine[ring->id].pin_count == 0) {
1070 			intel_unpin_ringbuffer_obj(ringbuf);
1071 			i915_gem_object_ggtt_unpin(ctx_obj);
1072 		}
1073 	}
1074 }
1075 
intel_logical_ring_workarounds_emit(struct drm_i915_gem_request * req)1076 static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
1077 {
1078 	int ret, i;
1079 	struct intel_engine_cs *ring = req->ring;
1080 	struct intel_ringbuffer *ringbuf = req->ringbuf;
1081 	struct drm_device *dev = ring->dev;
1082 	struct drm_i915_private *dev_priv = dev->dev_private;
1083 	struct i915_workarounds *w = &dev_priv->workarounds;
1084 
1085 	if (WARN_ON_ONCE(w->count == 0))
1086 		return 0;
1087 
1088 	ring->gpu_caches_dirty = true;
1089 	ret = logical_ring_flush_all_caches(req);
1090 	if (ret)
1091 		return ret;
1092 
1093 	ret = intel_logical_ring_begin(req, w->count * 2 + 2);
1094 	if (ret)
1095 		return ret;
1096 
1097 	intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
1098 	for (i = 0; i < w->count; i++) {
1099 		intel_logical_ring_emit(ringbuf, w->reg[i].addr);
1100 		intel_logical_ring_emit(ringbuf, w->reg[i].value);
1101 	}
1102 	intel_logical_ring_emit(ringbuf, MI_NOOP);
1103 
1104 	intel_logical_ring_advance(ringbuf);
1105 
1106 	ring->gpu_caches_dirty = true;
1107 	ret = logical_ring_flush_all_caches(req);
1108 	if (ret)
1109 		return ret;
1110 
1111 	return 0;
1112 }
1113 
1114 #define wa_ctx_emit(batch, index, cmd)					\
1115 	do {								\
1116 		int __index = (index)++;				\
1117 		if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
1118 			return -ENOSPC;					\
1119 		}							\
1120 		batch[__index] = (cmd);					\
1121 	} while (0)
1122 
1123 
1124 /*
1125  * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
1126  * PIPE_CONTROL instruction. This is required for the flush to happen correctly
1127  * but there is a slight complication as this is applied in WA batch where the
1128  * values are only initialized once so we cannot take register value at the
1129  * beginning and reuse it further; hence we save its value to memory, upload a
1130  * constant value with bit21 set and then we restore it back with the saved value.
1131  * To simplify the WA, a constant value is formed by using the default value
1132  * of this register. This shouldn't be a problem because we are only modifying
1133  * it for a short period and this batch in non-premptible. We can ofcourse
1134  * use additional instructions that read the actual value of the register
1135  * at that time and set our bit of interest but it makes the WA complicated.
1136  *
1137  * This WA is also required for Gen9 so extracting as a function avoids
1138  * code duplication.
1139  */
gen8_emit_flush_coherentl3_wa(struct intel_engine_cs * ring,uint32_t * const batch,uint32_t index)1140 static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *ring,
1141 						uint32_t *const batch,
1142 						uint32_t index)
1143 {
1144 	uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);
1145 
1146 	/*
1147 	 * WaDisableLSQCROPERFforOCL:skl
1148 	 * This WA is implemented in skl_init_clock_gating() but since
1149 	 * this batch updates GEN8_L3SQCREG4 with default value we need to
1150 	 * set this bit here to retain the WA during flush.
1151 	 */
1152 	if (IS_SKYLAKE(ring->dev) && INTEL_REVID(ring->dev) <= SKL_REVID_E0)
1153 		l3sqc4_flush |= GEN8_LQSC_RO_PERF_DIS;
1154 
1155 	wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8 |
1156 				   MI_SRM_LRM_GLOBAL_GTT));
1157 	wa_ctx_emit(batch, index, GEN8_L3SQCREG4);
1158 	wa_ctx_emit(batch, index, ring->scratch.gtt_offset + 256);
1159 	wa_ctx_emit(batch, index, 0);
1160 
1161 	wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1162 	wa_ctx_emit(batch, index, GEN8_L3SQCREG4);
1163 	wa_ctx_emit(batch, index, l3sqc4_flush);
1164 
1165 	wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1166 	wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
1167 				   PIPE_CONTROL_DC_FLUSH_ENABLE));
1168 	wa_ctx_emit(batch, index, 0);
1169 	wa_ctx_emit(batch, index, 0);
1170 	wa_ctx_emit(batch, index, 0);
1171 	wa_ctx_emit(batch, index, 0);
1172 
1173 	wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8 |
1174 				   MI_SRM_LRM_GLOBAL_GTT));
1175 	wa_ctx_emit(batch, index, GEN8_L3SQCREG4);
1176 	wa_ctx_emit(batch, index, ring->scratch.gtt_offset + 256);
1177 	wa_ctx_emit(batch, index, 0);
1178 
1179 	return index;
1180 }
1181 
wa_ctx_start(struct i915_wa_ctx_bb * wa_ctx,uint32_t offset,uint32_t start_alignment)1182 static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
1183 				    uint32_t offset,
1184 				    uint32_t start_alignment)
1185 {
1186 	return wa_ctx->offset = ALIGN(offset, start_alignment);
1187 }
1188 
wa_ctx_end(struct i915_wa_ctx_bb * wa_ctx,uint32_t offset,uint32_t size_alignment)1189 static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
1190 			     uint32_t offset,
1191 			     uint32_t size_alignment)
1192 {
1193 	wa_ctx->size = offset - wa_ctx->offset;
1194 
1195 	WARN(wa_ctx->size % size_alignment,
1196 	     "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
1197 	     wa_ctx->size, size_alignment);
1198 	return 0;
1199 }
1200 
1201 /**
1202  * gen8_init_indirectctx_bb() - initialize indirect ctx batch with WA
1203  *
1204  * @ring: only applicable for RCS
1205  * @wa_ctx: structure representing wa_ctx
1206  *  offset: specifies start of the batch, should be cache-aligned. This is updated
1207  *    with the offset value received as input.
1208  *  size: size of the batch in DWORDS but HW expects in terms of cachelines
1209  * @batch: page in which WA are loaded
1210  * @offset: This field specifies the start of the batch, it should be
1211  *  cache-aligned otherwise it is adjusted accordingly.
1212  *  Typically we only have one indirect_ctx and per_ctx batch buffer which are
1213  *  initialized at the beginning and shared across all contexts but this field
1214  *  helps us to have multiple batches at different offsets and select them based
1215  *  on a criteria. At the moment this batch always start at the beginning of the page
1216  *  and at this point we don't have multiple wa_ctx batch buffers.
1217  *
1218  *  The number of WA applied are not known at the beginning; we use this field
1219  *  to return the no of DWORDS written.
1220  *
1221  *  It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
1222  *  so it adds NOOPs as padding to make it cacheline aligned.
1223  *  MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
1224  *  makes a complete batch buffer.
1225  *
1226  * Return: non-zero if we exceed the PAGE_SIZE limit.
1227  */
1228 
gen8_init_indirectctx_bb(struct intel_engine_cs * ring,struct i915_wa_ctx_bb * wa_ctx,uint32_t * const batch,uint32_t * offset)1229 static int gen8_init_indirectctx_bb(struct intel_engine_cs *ring,
1230 				    struct i915_wa_ctx_bb *wa_ctx,
1231 				    uint32_t *const batch,
1232 				    uint32_t *offset)
1233 {
1234 	uint32_t scratch_addr;
1235 	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1236 
1237 	/* WaDisableCtxRestoreArbitration:bdw,chv */
1238 	wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1239 
1240 	/* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1241 	if (IS_BROADWELL(ring->dev)) {
1242 		int rc = gen8_emit_flush_coherentl3_wa(ring, batch, index);
1243 		if (rc < 0)
1244 			return rc;
1245 		index = rc;
1246 	}
1247 
1248 	/* WaClearSlmSpaceAtContextSwitch:bdw,chv */
1249 	/* Actual scratch location is at 128 bytes offset */
1250 	scratch_addr = ring->scratch.gtt_offset + 2*CACHELINE_BYTES;
1251 
1252 	wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1253 	wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
1254 				   PIPE_CONTROL_GLOBAL_GTT_IVB |
1255 				   PIPE_CONTROL_CS_STALL |
1256 				   PIPE_CONTROL_QW_WRITE));
1257 	wa_ctx_emit(batch, index, scratch_addr);
1258 	wa_ctx_emit(batch, index, 0);
1259 	wa_ctx_emit(batch, index, 0);
1260 	wa_ctx_emit(batch, index, 0);
1261 
1262 	/* Pad to end of cacheline */
1263 	while (index % CACHELINE_DWORDS)
1264 		wa_ctx_emit(batch, index, MI_NOOP);
1265 
1266 	/*
1267 	 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1268 	 * execution depends on the length specified in terms of cache lines
1269 	 * in the register CTX_RCS_INDIRECT_CTX
1270 	 */
1271 
1272 	return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1273 }
1274 
1275 /**
1276  * gen8_init_perctx_bb() - initialize per ctx batch with WA
1277  *
1278  * @ring: only applicable for RCS
1279  * @wa_ctx: structure representing wa_ctx
1280  *  offset: specifies start of the batch, should be cache-aligned.
1281  *  size: size of the batch in DWORDS but HW expects in terms of cachelines
1282  * @batch: page in which WA are loaded
1283  * @offset: This field specifies the start of this batch.
1284  *   This batch is started immediately after indirect_ctx batch. Since we ensure
1285  *   that indirect_ctx ends on a cacheline this batch is aligned automatically.
1286  *
1287  *   The number of DWORDS written are returned using this field.
1288  *
1289  *  This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
1290  *  to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
1291  */
gen8_init_perctx_bb(struct intel_engine_cs * ring,struct i915_wa_ctx_bb * wa_ctx,uint32_t * const batch,uint32_t * offset)1292 static int gen8_init_perctx_bb(struct intel_engine_cs *ring,
1293 			       struct i915_wa_ctx_bb *wa_ctx,
1294 			       uint32_t *const batch,
1295 			       uint32_t *offset)
1296 {
1297 	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1298 
1299 	/* WaDisableCtxRestoreArbitration:bdw,chv */
1300 	wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1301 
1302 	wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1303 
1304 	return wa_ctx_end(wa_ctx, *offset = index, 1);
1305 }
1306 
gen9_init_indirectctx_bb(struct intel_engine_cs * ring,struct i915_wa_ctx_bb * wa_ctx,uint32_t * const batch,uint32_t * offset)1307 static int gen9_init_indirectctx_bb(struct intel_engine_cs *ring,
1308 				    struct i915_wa_ctx_bb *wa_ctx,
1309 				    uint32_t *const batch,
1310 				    uint32_t *offset)
1311 {
1312 	int ret;
1313 	struct drm_device *dev = ring->dev;
1314 	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1315 
1316 	/* WaDisableCtxRestoreArbitration:skl,bxt */
1317 	if ((IS_SKYLAKE(dev) && (INTEL_REVID(dev) <= SKL_REVID_D0)) ||
1318 	    (IS_BROXTON(dev) && (INTEL_REVID(dev) == BXT_REVID_A0)))
1319 		wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1320 
1321 	/* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
1322 	ret = gen8_emit_flush_coherentl3_wa(ring, batch, index);
1323 	if (ret < 0)
1324 		return ret;
1325 	index = ret;
1326 
1327 	/* Pad to end of cacheline */
1328 	while (index % CACHELINE_DWORDS)
1329 		wa_ctx_emit(batch, index, MI_NOOP);
1330 
1331 	return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1332 }
1333 
gen9_init_perctx_bb(struct intel_engine_cs * ring,struct i915_wa_ctx_bb * wa_ctx,uint32_t * const batch,uint32_t * offset)1334 static int gen9_init_perctx_bb(struct intel_engine_cs *ring,
1335 			       struct i915_wa_ctx_bb *wa_ctx,
1336 			       uint32_t *const batch,
1337 			       uint32_t *offset)
1338 {
1339 	struct drm_device *dev = ring->dev;
1340 	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1341 
1342 	/* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
1343 	if ((IS_SKYLAKE(dev) && (INTEL_REVID(dev) <= SKL_REVID_B0)) ||
1344 	    (IS_BROXTON(dev) && (INTEL_REVID(dev) == BXT_REVID_A0))) {
1345 		wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1346 		wa_ctx_emit(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0);
1347 		wa_ctx_emit(batch, index,
1348 			    _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING));
1349 		wa_ctx_emit(batch, index, MI_NOOP);
1350 	}
1351 
1352 	/* WaDisableCtxRestoreArbitration:skl,bxt */
1353 	if ((IS_SKYLAKE(dev) && (INTEL_REVID(dev) <= SKL_REVID_D0)) ||
1354 	    (IS_BROXTON(dev) && (INTEL_REVID(dev) == BXT_REVID_A0)))
1355 		wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1356 
1357 	wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1358 
1359 	return wa_ctx_end(wa_ctx, *offset = index, 1);
1360 }
1361 
lrc_setup_wa_ctx_obj(struct intel_engine_cs * ring,u32 size)1362 static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *ring, u32 size)
1363 {
1364 	int ret;
1365 
1366 	ring->wa_ctx.obj = i915_gem_alloc_object(ring->dev, PAGE_ALIGN(size));
1367 	if (!ring->wa_ctx.obj) {
1368 		DRM_DEBUG_DRIVER("alloc LRC WA ctx backing obj failed.\n");
1369 		return -ENOMEM;
1370 	}
1371 
1372 	ret = i915_gem_obj_ggtt_pin(ring->wa_ctx.obj, PAGE_SIZE, 0);
1373 	if (ret) {
1374 		DRM_DEBUG_DRIVER("pin LRC WA ctx backing obj failed: %d\n",
1375 				 ret);
1376 		drm_gem_object_unreference(&ring->wa_ctx.obj->base);
1377 		return ret;
1378 	}
1379 
1380 	return 0;
1381 }
1382 
lrc_destroy_wa_ctx_obj(struct intel_engine_cs * ring)1383 static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *ring)
1384 {
1385 	if (ring->wa_ctx.obj) {
1386 		i915_gem_object_ggtt_unpin(ring->wa_ctx.obj);
1387 		drm_gem_object_unreference(&ring->wa_ctx.obj->base);
1388 		ring->wa_ctx.obj = NULL;
1389 	}
1390 }
1391 
intel_init_workaround_bb(struct intel_engine_cs * ring)1392 static int intel_init_workaround_bb(struct intel_engine_cs *ring)
1393 {
1394 	int ret;
1395 	uint32_t *batch;
1396 	uint32_t offset;
1397 	struct page *page;
1398 	struct i915_ctx_workarounds *wa_ctx = &ring->wa_ctx;
1399 
1400 	WARN_ON(ring->id != RCS);
1401 
1402 	/* update this when WA for higher Gen are added */
1403 	if (INTEL_INFO(ring->dev)->gen > 9) {
1404 		DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
1405 			  INTEL_INFO(ring->dev)->gen);
1406 		return 0;
1407 	}
1408 
1409 	/* some WA perform writes to scratch page, ensure it is valid */
1410 	if (ring->scratch.obj == NULL) {
1411 		DRM_ERROR("scratch page not allocated for %s\n", ring->name);
1412 		return -EINVAL;
1413 	}
1414 
1415 	ret = lrc_setup_wa_ctx_obj(ring, PAGE_SIZE);
1416 	if (ret) {
1417 		DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1418 		return ret;
1419 	}
1420 
1421 	page = i915_gem_object_get_page(wa_ctx->obj, 0);
1422 	batch = kmap_atomic(page);
1423 	offset = 0;
1424 
1425 	if (INTEL_INFO(ring->dev)->gen == 8) {
1426 		ret = gen8_init_indirectctx_bb(ring,
1427 					       &wa_ctx->indirect_ctx,
1428 					       batch,
1429 					       &offset);
1430 		if (ret)
1431 			goto out;
1432 
1433 		ret = gen8_init_perctx_bb(ring,
1434 					  &wa_ctx->per_ctx,
1435 					  batch,
1436 					  &offset);
1437 		if (ret)
1438 			goto out;
1439 	} else if (INTEL_INFO(ring->dev)->gen == 9) {
1440 		ret = gen9_init_indirectctx_bb(ring,
1441 					       &wa_ctx->indirect_ctx,
1442 					       batch,
1443 					       &offset);
1444 		if (ret)
1445 			goto out;
1446 
1447 		ret = gen9_init_perctx_bb(ring,
1448 					  &wa_ctx->per_ctx,
1449 					  batch,
1450 					  &offset);
1451 		if (ret)
1452 			goto out;
1453 	}
1454 
1455 out:
1456 	kunmap_atomic(batch);
1457 	if (ret)
1458 		lrc_destroy_wa_ctx_obj(ring);
1459 
1460 	return ret;
1461 }
1462 
gen8_init_common_ring(struct intel_engine_cs * ring)1463 static int gen8_init_common_ring(struct intel_engine_cs *ring)
1464 {
1465 	struct drm_device *dev = ring->dev;
1466 	struct drm_i915_private *dev_priv = dev->dev_private;
1467 	u8 next_context_status_buffer_hw;
1468 
1469 	lrc_setup_hardware_status_page(ring,
1470 				ring->default_context->engine[ring->id].state);
1471 
1472 	I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1473 	I915_WRITE(RING_HWSTAM(ring->mmio_base), 0xffffffff);
1474 
1475 	if (ring->status_page.obj) {
1476 		I915_WRITE(RING_HWS_PGA(ring->mmio_base),
1477 			   (u32)ring->status_page.gfx_addr);
1478 		POSTING_READ(RING_HWS_PGA(ring->mmio_base));
1479 	}
1480 
1481 	I915_WRITE(RING_MODE_GEN7(ring),
1482 		   _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
1483 		   _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1484 	POSTING_READ(RING_MODE_GEN7(ring));
1485 
1486 	/*
1487 	 * Instead of resetting the Context Status Buffer (CSB) read pointer to
1488 	 * zero, we need to read the write pointer from hardware and use its
1489 	 * value because "this register is power context save restored".
1490 	 * Effectively, these states have been observed:
1491 	 *
1492 	 *      | Suspend-to-idle (freeze) | Suspend-to-RAM (mem) |
1493 	 * BDW  | CSB regs not reset       | CSB regs reset       |
1494 	 * CHT  | CSB regs not reset       | CSB regs not reset   |
1495 	 */
1496 	next_context_status_buffer_hw = (I915_READ(RING_CONTEXT_STATUS_PTR(ring))
1497 						   & GEN8_CSB_PTR_MASK);
1498 
1499 	/*
1500 	 * When the CSB registers are reset (also after power-up / gpu reset),
1501 	 * CSB write pointer is set to all 1's, which is not valid, use '5' in
1502 	 * this special case, so the first element read is CSB[0].
1503 	 */
1504 	if (next_context_status_buffer_hw == GEN8_CSB_PTR_MASK)
1505 		next_context_status_buffer_hw = (GEN8_CSB_ENTRIES - 1);
1506 
1507 	ring->next_context_status_buffer = next_context_status_buffer_hw;
1508 	DRM_DEBUG_DRIVER("Execlists enabled for %s\n", ring->name);
1509 
1510 	memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
1511 
1512 	return 0;
1513 }
1514 
gen8_init_render_ring(struct intel_engine_cs * ring)1515 static int gen8_init_render_ring(struct intel_engine_cs *ring)
1516 {
1517 	struct drm_device *dev = ring->dev;
1518 	struct drm_i915_private *dev_priv = dev->dev_private;
1519 	int ret;
1520 
1521 	ret = gen8_init_common_ring(ring);
1522 	if (ret)
1523 		return ret;
1524 
1525 	/* We need to disable the AsyncFlip performance optimisations in order
1526 	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1527 	 * programmed to '1' on all products.
1528 	 *
1529 	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1530 	 */
1531 	I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1532 
1533 	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1534 
1535 	return init_workarounds_ring(ring);
1536 }
1537 
gen9_init_render_ring(struct intel_engine_cs * ring)1538 static int gen9_init_render_ring(struct intel_engine_cs *ring)
1539 {
1540 	int ret;
1541 
1542 	ret = gen8_init_common_ring(ring);
1543 	if (ret)
1544 		return ret;
1545 
1546 	return init_workarounds_ring(ring);
1547 }
1548 
intel_logical_ring_emit_pdps(struct drm_i915_gem_request * req)1549 static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
1550 {
1551 	struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1552 	struct intel_engine_cs *ring = req->ring;
1553 	struct intel_ringbuffer *ringbuf = req->ringbuf;
1554 	const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
1555 	int i, ret;
1556 
1557 	ret = intel_logical_ring_begin(req, num_lri_cmds * 2 + 2);
1558 	if (ret)
1559 		return ret;
1560 
1561 	intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(num_lri_cmds));
1562 	for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
1563 		const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1564 
1565 		intel_logical_ring_emit(ringbuf, GEN8_RING_PDP_UDW(ring, i));
1566 		intel_logical_ring_emit(ringbuf, upper_32_bits(pd_daddr));
1567 		intel_logical_ring_emit(ringbuf, GEN8_RING_PDP_LDW(ring, i));
1568 		intel_logical_ring_emit(ringbuf, lower_32_bits(pd_daddr));
1569 	}
1570 
1571 	intel_logical_ring_emit(ringbuf, MI_NOOP);
1572 	intel_logical_ring_advance(ringbuf);
1573 
1574 	return 0;
1575 }
1576 
gen8_emit_bb_start(struct drm_i915_gem_request * req,u64 offset,unsigned dispatch_flags)1577 static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1578 			      u64 offset, unsigned dispatch_flags)
1579 {
1580 	struct intel_ringbuffer *ringbuf = req->ringbuf;
1581 	bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
1582 	int ret;
1583 
1584 	/* Don't rely in hw updating PDPs, specially in lite-restore.
1585 	 * Ideally, we should set Force PD Restore in ctx descriptor,
1586 	 * but we can't. Force Restore would be a second option, but
1587 	 * it is unsafe in case of lite-restore (because the ctx is
1588 	 * not idle). PML4 is allocated during ppgtt init so this is
1589 	 * not needed in 48-bit.*/
1590 	if (req->ctx->ppgtt &&
1591 	    (intel_ring_flag(req->ring) & req->ctx->ppgtt->pd_dirty_rings)) {
1592 		if (!USES_FULL_48BIT_PPGTT(req->i915) &&
1593 		    !intel_vgpu_active(req->i915->dev)) {
1594 			ret = intel_logical_ring_emit_pdps(req);
1595 			if (ret)
1596 				return ret;
1597 		}
1598 
1599 		req->ctx->ppgtt->pd_dirty_rings &= ~intel_ring_flag(req->ring);
1600 	}
1601 
1602 	ret = intel_logical_ring_begin(req, 4);
1603 	if (ret)
1604 		return ret;
1605 
1606 	/* FIXME(BDW): Address space and security selectors. */
1607 	intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 |
1608 				(ppgtt<<8) |
1609 				(dispatch_flags & I915_DISPATCH_RS ?
1610 				 MI_BATCH_RESOURCE_STREAMER : 0));
1611 	intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
1612 	intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
1613 	intel_logical_ring_emit(ringbuf, MI_NOOP);
1614 	intel_logical_ring_advance(ringbuf);
1615 
1616 	return 0;
1617 }
1618 
gen8_logical_ring_get_irq(struct intel_engine_cs * ring)1619 static bool gen8_logical_ring_get_irq(struct intel_engine_cs *ring)
1620 {
1621 	struct drm_device *dev = ring->dev;
1622 	struct drm_i915_private *dev_priv = dev->dev_private;
1623 	unsigned long flags;
1624 
1625 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1626 		return false;
1627 
1628 	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1629 	if (ring->irq_refcount++ == 0) {
1630 		I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1631 		POSTING_READ(RING_IMR(ring->mmio_base));
1632 	}
1633 	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1634 
1635 	return true;
1636 }
1637 
gen8_logical_ring_put_irq(struct intel_engine_cs * ring)1638 static void gen8_logical_ring_put_irq(struct intel_engine_cs *ring)
1639 {
1640 	struct drm_device *dev = ring->dev;
1641 	struct drm_i915_private *dev_priv = dev->dev_private;
1642 	unsigned long flags;
1643 
1644 	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1645 	if (--ring->irq_refcount == 0) {
1646 		I915_WRITE_IMR(ring, ~ring->irq_keep_mask);
1647 		POSTING_READ(RING_IMR(ring->mmio_base));
1648 	}
1649 	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1650 }
1651 
gen8_emit_flush(struct drm_i915_gem_request * request,u32 invalidate_domains,u32 unused)1652 static int gen8_emit_flush(struct drm_i915_gem_request *request,
1653 			   u32 invalidate_domains,
1654 			   u32 unused)
1655 {
1656 	struct intel_ringbuffer *ringbuf = request->ringbuf;
1657 	struct intel_engine_cs *ring = ringbuf->ring;
1658 	struct drm_device *dev = ring->dev;
1659 	struct drm_i915_private *dev_priv = dev->dev_private;
1660 	uint32_t cmd;
1661 	int ret;
1662 
1663 	ret = intel_logical_ring_begin(request, 4);
1664 	if (ret)
1665 		return ret;
1666 
1667 	cmd = MI_FLUSH_DW + 1;
1668 
1669 	/* We always require a command barrier so that subsequent
1670 	 * commands, such as breadcrumb interrupts, are strictly ordered
1671 	 * wrt the contents of the write cache being flushed to memory
1672 	 * (and thus being coherent from the CPU).
1673 	 */
1674 	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1675 
1676 	if (invalidate_domains & I915_GEM_GPU_DOMAINS) {
1677 		cmd |= MI_INVALIDATE_TLB;
1678 		if (ring == &dev_priv->ring[VCS])
1679 			cmd |= MI_INVALIDATE_BSD;
1680 	}
1681 
1682 	intel_logical_ring_emit(ringbuf, cmd);
1683 	intel_logical_ring_emit(ringbuf,
1684 				I915_GEM_HWS_SCRATCH_ADDR |
1685 				MI_FLUSH_DW_USE_GTT);
1686 	intel_logical_ring_emit(ringbuf, 0); /* upper addr */
1687 	intel_logical_ring_emit(ringbuf, 0); /* value */
1688 	intel_logical_ring_advance(ringbuf);
1689 
1690 	return 0;
1691 }
1692 
gen8_emit_flush_render(struct drm_i915_gem_request * request,u32 invalidate_domains,u32 flush_domains)1693 static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1694 				  u32 invalidate_domains,
1695 				  u32 flush_domains)
1696 {
1697 	struct intel_ringbuffer *ringbuf = request->ringbuf;
1698 	struct intel_engine_cs *ring = ringbuf->ring;
1699 	u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1700 	bool vf_flush_wa;
1701 	u32 flags = 0;
1702 	int ret;
1703 
1704 	flags |= PIPE_CONTROL_CS_STALL;
1705 
1706 	if (flush_domains) {
1707 		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1708 		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1709 		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
1710 		flags |= PIPE_CONTROL_FLUSH_ENABLE;
1711 	}
1712 
1713 	if (invalidate_domains) {
1714 		flags |= PIPE_CONTROL_TLB_INVALIDATE;
1715 		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1716 		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1717 		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1718 		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1719 		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1720 		flags |= PIPE_CONTROL_QW_WRITE;
1721 		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
1722 	}
1723 
1724 	/*
1725 	 * On GEN9+ Before VF_CACHE_INVALIDATE we need to emit a NULL pipe
1726 	 * control.
1727 	 */
1728 	vf_flush_wa = INTEL_INFO(ring->dev)->gen >= 9 &&
1729 		      flags & PIPE_CONTROL_VF_CACHE_INVALIDATE;
1730 
1731 	ret = intel_logical_ring_begin(request, vf_flush_wa ? 12 : 6);
1732 	if (ret)
1733 		return ret;
1734 
1735 	if (vf_flush_wa) {
1736 		intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1737 		intel_logical_ring_emit(ringbuf, 0);
1738 		intel_logical_ring_emit(ringbuf, 0);
1739 		intel_logical_ring_emit(ringbuf, 0);
1740 		intel_logical_ring_emit(ringbuf, 0);
1741 		intel_logical_ring_emit(ringbuf, 0);
1742 	}
1743 
1744 	intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1745 	intel_logical_ring_emit(ringbuf, flags);
1746 	intel_logical_ring_emit(ringbuf, scratch_addr);
1747 	intel_logical_ring_emit(ringbuf, 0);
1748 	intel_logical_ring_emit(ringbuf, 0);
1749 	intel_logical_ring_emit(ringbuf, 0);
1750 	intel_logical_ring_advance(ringbuf);
1751 
1752 	return 0;
1753 }
1754 
gen8_get_seqno(struct intel_engine_cs * ring,bool lazy_coherency)1755 static u32 gen8_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1756 {
1757 	return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1758 }
1759 
gen8_set_seqno(struct intel_engine_cs * ring,u32 seqno)1760 static void gen8_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1761 {
1762 	intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1763 }
1764 
bxt_a_get_seqno(struct intel_engine_cs * ring,bool lazy_coherency)1765 static u32 bxt_a_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1766 {
1767 
1768 	/*
1769 	 * On BXT A steppings there is a HW coherency issue whereby the
1770 	 * MI_STORE_DATA_IMM storing the completed request's seqno
1771 	 * occasionally doesn't invalidate the CPU cache. Work around this by
1772 	 * clflushing the corresponding cacheline whenever the caller wants
1773 	 * the coherency to be guaranteed. Note that this cacheline is known
1774 	 * to be clean at this point, since we only write it in
1775 	 * bxt_a_set_seqno(), where we also do a clflush after the write. So
1776 	 * this clflush in practice becomes an invalidate operation.
1777 	 */
1778 
1779 	if (!lazy_coherency)
1780 		intel_flush_status_page(ring, I915_GEM_HWS_INDEX);
1781 
1782 	return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1783 }
1784 
bxt_a_set_seqno(struct intel_engine_cs * ring,u32 seqno)1785 static void bxt_a_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1786 {
1787 	intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1788 
1789 	/* See bxt_a_get_seqno() explaining the reason for the clflush. */
1790 	intel_flush_status_page(ring, I915_GEM_HWS_INDEX);
1791 }
1792 
gen8_emit_request(struct drm_i915_gem_request * request)1793 static int gen8_emit_request(struct drm_i915_gem_request *request)
1794 {
1795 	struct intel_ringbuffer *ringbuf = request->ringbuf;
1796 	struct intel_engine_cs *ring = ringbuf->ring;
1797 	u32 cmd;
1798 	int ret;
1799 
1800 	/*
1801 	 * Reserve space for 2 NOOPs at the end of each request to be
1802 	 * used as a workaround for not being allowed to do lite
1803 	 * restore with HEAD==TAIL (WaIdleLiteRestore).
1804 	 */
1805 	ret = intel_logical_ring_begin(request, 8);
1806 	if (ret)
1807 		return ret;
1808 
1809 	cmd = MI_STORE_DWORD_IMM_GEN4;
1810 	cmd |= MI_GLOBAL_GTT;
1811 
1812 	intel_logical_ring_emit(ringbuf, cmd);
1813 	intel_logical_ring_emit(ringbuf,
1814 				(ring->status_page.gfx_addr +
1815 				(I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT)));
1816 	intel_logical_ring_emit(ringbuf, 0);
1817 	intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
1818 	intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1819 	intel_logical_ring_emit(ringbuf, MI_NOOP);
1820 	intel_logical_ring_advance_and_submit(request);
1821 
1822 	/*
1823 	 * Here we add two extra NOOPs as padding to avoid
1824 	 * lite restore of a context with HEAD==TAIL.
1825 	 */
1826 	intel_logical_ring_emit(ringbuf, MI_NOOP);
1827 	intel_logical_ring_emit(ringbuf, MI_NOOP);
1828 	intel_logical_ring_advance(ringbuf);
1829 
1830 	return 0;
1831 }
1832 
intel_lr_context_render_state_init(struct drm_i915_gem_request * req)1833 static int intel_lr_context_render_state_init(struct drm_i915_gem_request *req)
1834 {
1835 	struct render_state so;
1836 	int ret;
1837 
1838 	ret = i915_gem_render_state_prepare(req->ring, &so);
1839 	if (ret)
1840 		return ret;
1841 
1842 	if (so.rodata == NULL)
1843 		return 0;
1844 
1845 	ret = req->ring->emit_bb_start(req, so.ggtt_offset,
1846 				       I915_DISPATCH_SECURE);
1847 	if (ret)
1848 		goto out;
1849 
1850 	ret = req->ring->emit_bb_start(req,
1851 				       (so.ggtt_offset + so.aux_batch_offset),
1852 				       I915_DISPATCH_SECURE);
1853 	if (ret)
1854 		goto out;
1855 
1856 	i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), req);
1857 
1858 out:
1859 	i915_gem_render_state_fini(&so);
1860 	return ret;
1861 }
1862 
gen8_init_rcs_context(struct drm_i915_gem_request * req)1863 static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1864 {
1865 	int ret;
1866 
1867 	ret = intel_logical_ring_workarounds_emit(req);
1868 	if (ret)
1869 		return ret;
1870 
1871 	ret = intel_rcs_context_init_mocs(req);
1872 	/*
1873 	 * Failing to program the MOCS is non-fatal.The system will not
1874 	 * run at peak performance. So generate an error and carry on.
1875 	 */
1876 	if (ret)
1877 		DRM_ERROR("MOCS failed to program: expect performance issues.\n");
1878 
1879 	return intel_lr_context_render_state_init(req);
1880 }
1881 
1882 /**
1883  * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1884  *
1885  * @ring: Engine Command Streamer.
1886  *
1887  */
intel_logical_ring_cleanup(struct intel_engine_cs * ring)1888 void intel_logical_ring_cleanup(struct intel_engine_cs *ring)
1889 {
1890 	struct drm_i915_private *dev_priv;
1891 
1892 	if (!intel_ring_initialized(ring))
1893 		return;
1894 
1895 	dev_priv = ring->dev->dev_private;
1896 
1897 	intel_logical_ring_stop(ring);
1898 	WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
1899 
1900 	if (ring->cleanup)
1901 		ring->cleanup(ring);
1902 
1903 	i915_cmd_parser_fini_ring(ring);
1904 	i915_gem_batch_pool_fini(&ring->batch_pool);
1905 
1906 	if (ring->status_page.obj) {
1907 		kunmap(sg_page(ring->status_page.obj->pages->sgl));
1908 		ring->status_page.obj = NULL;
1909 	}
1910 
1911 	lrc_destroy_wa_ctx_obj(ring);
1912 }
1913 
logical_ring_init(struct drm_device * dev,struct intel_engine_cs * ring)1914 static int logical_ring_init(struct drm_device *dev, struct intel_engine_cs *ring)
1915 {
1916 	int ret;
1917 
1918 	/* Intentionally left blank. */
1919 	ring->buffer = NULL;
1920 
1921 	ring->dev = dev;
1922 	INIT_LIST_HEAD(&ring->active_list);
1923 	INIT_LIST_HEAD(&ring->request_list);
1924 	i915_gem_batch_pool_init(dev, &ring->batch_pool);
1925 	init_waitqueue_head(&ring->irq_queue);
1926 
1927 	INIT_LIST_HEAD(&ring->execlist_queue);
1928 	INIT_LIST_HEAD(&ring->execlist_retired_req_list);
1929 	spin_lock_init(&ring->execlist_lock);
1930 
1931 	ret = i915_cmd_parser_init_ring(ring);
1932 	if (ret)
1933 		return ret;
1934 
1935 	ret = intel_lr_context_deferred_alloc(ring->default_context, ring);
1936 	if (ret)
1937 		return ret;
1938 
1939 	/* As this is the default context, always pin it */
1940 	ret = intel_lr_context_do_pin(
1941 			ring,
1942 			ring->default_context->engine[ring->id].state,
1943 			ring->default_context->engine[ring->id].ringbuf);
1944 	if (ret) {
1945 		DRM_ERROR(
1946 			"Failed to pin and map ringbuffer %s: %d\n",
1947 			ring->name, ret);
1948 		return ret;
1949 	}
1950 
1951 	return ret;
1952 }
1953 
logical_render_ring_init(struct drm_device * dev)1954 static int logical_render_ring_init(struct drm_device *dev)
1955 {
1956 	struct drm_i915_private *dev_priv = dev->dev_private;
1957 	struct intel_engine_cs *ring = &dev_priv->ring[RCS];
1958 	int ret;
1959 
1960 	ring->name = "render ring";
1961 	ring->id = RCS;
1962 	ring->mmio_base = RENDER_RING_BASE;
1963 	ring->irq_enable_mask =
1964 		GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
1965 	ring->irq_keep_mask =
1966 		GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
1967 	if (HAS_L3_DPF(dev))
1968 		ring->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
1969 
1970 	if (INTEL_INFO(dev)->gen >= 9)
1971 		ring->init_hw = gen9_init_render_ring;
1972 	else
1973 		ring->init_hw = gen8_init_render_ring;
1974 	ring->init_context = gen8_init_rcs_context;
1975 	ring->cleanup = intel_fini_pipe_control;
1976 	if (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0) {
1977 		ring->get_seqno = bxt_a_get_seqno;
1978 		ring->set_seqno = bxt_a_set_seqno;
1979 	} else {
1980 		ring->get_seqno = gen8_get_seqno;
1981 		ring->set_seqno = gen8_set_seqno;
1982 	}
1983 	ring->emit_request = gen8_emit_request;
1984 	ring->emit_flush = gen8_emit_flush_render;
1985 	ring->irq_get = gen8_logical_ring_get_irq;
1986 	ring->irq_put = gen8_logical_ring_put_irq;
1987 	ring->emit_bb_start = gen8_emit_bb_start;
1988 
1989 	ring->dev = dev;
1990 
1991 	ret = intel_init_pipe_control(ring);
1992 	if (ret)
1993 		return ret;
1994 
1995 	ret = intel_init_workaround_bb(ring);
1996 	if (ret) {
1997 		/*
1998 		 * We continue even if we fail to initialize WA batch
1999 		 * because we only expect rare glitches but nothing
2000 		 * critical to prevent us from using GPU
2001 		 */
2002 		DRM_ERROR("WA batch buffer initialization failed: %d\n",
2003 			  ret);
2004 	}
2005 
2006 	ret = logical_ring_init(dev, ring);
2007 	if (ret) {
2008 		lrc_destroy_wa_ctx_obj(ring);
2009 	}
2010 
2011 	return ret;
2012 }
2013 
logical_bsd_ring_init(struct drm_device * dev)2014 static int logical_bsd_ring_init(struct drm_device *dev)
2015 {
2016 	struct drm_i915_private *dev_priv = dev->dev_private;
2017 	struct intel_engine_cs *ring = &dev_priv->ring[VCS];
2018 
2019 	ring->name = "bsd ring";
2020 	ring->id = VCS;
2021 	ring->mmio_base = GEN6_BSD_RING_BASE;
2022 	ring->irq_enable_mask =
2023 		GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
2024 	ring->irq_keep_mask =
2025 		GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
2026 
2027 	ring->init_hw = gen8_init_common_ring;
2028 	if (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0) {
2029 		ring->get_seqno = bxt_a_get_seqno;
2030 		ring->set_seqno = bxt_a_set_seqno;
2031 	} else {
2032 		ring->get_seqno = gen8_get_seqno;
2033 		ring->set_seqno = gen8_set_seqno;
2034 	}
2035 	ring->emit_request = gen8_emit_request;
2036 	ring->emit_flush = gen8_emit_flush;
2037 	ring->irq_get = gen8_logical_ring_get_irq;
2038 	ring->irq_put = gen8_logical_ring_put_irq;
2039 	ring->emit_bb_start = gen8_emit_bb_start;
2040 
2041 	return logical_ring_init(dev, ring);
2042 }
2043 
logical_bsd2_ring_init(struct drm_device * dev)2044 static int logical_bsd2_ring_init(struct drm_device *dev)
2045 {
2046 	struct drm_i915_private *dev_priv = dev->dev_private;
2047 	struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
2048 
2049 	ring->name = "bds2 ring";
2050 	ring->id = VCS2;
2051 	ring->mmio_base = GEN8_BSD2_RING_BASE;
2052 	ring->irq_enable_mask =
2053 		GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
2054 	ring->irq_keep_mask =
2055 		GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
2056 
2057 	ring->init_hw = gen8_init_common_ring;
2058 	ring->get_seqno = gen8_get_seqno;
2059 	ring->set_seqno = gen8_set_seqno;
2060 	ring->emit_request = gen8_emit_request;
2061 	ring->emit_flush = gen8_emit_flush;
2062 	ring->irq_get = gen8_logical_ring_get_irq;
2063 	ring->irq_put = gen8_logical_ring_put_irq;
2064 	ring->emit_bb_start = gen8_emit_bb_start;
2065 
2066 	return logical_ring_init(dev, ring);
2067 }
2068 
logical_blt_ring_init(struct drm_device * dev)2069 static int logical_blt_ring_init(struct drm_device *dev)
2070 {
2071 	struct drm_i915_private *dev_priv = dev->dev_private;
2072 	struct intel_engine_cs *ring = &dev_priv->ring[BCS];
2073 
2074 	ring->name = "blitter ring";
2075 	ring->id = BCS;
2076 	ring->mmio_base = BLT_RING_BASE;
2077 	ring->irq_enable_mask =
2078 		GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
2079 	ring->irq_keep_mask =
2080 		GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
2081 
2082 	ring->init_hw = gen8_init_common_ring;
2083 	if (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0) {
2084 		ring->get_seqno = bxt_a_get_seqno;
2085 		ring->set_seqno = bxt_a_set_seqno;
2086 	} else {
2087 		ring->get_seqno = gen8_get_seqno;
2088 		ring->set_seqno = gen8_set_seqno;
2089 	}
2090 	ring->emit_request = gen8_emit_request;
2091 	ring->emit_flush = gen8_emit_flush;
2092 	ring->irq_get = gen8_logical_ring_get_irq;
2093 	ring->irq_put = gen8_logical_ring_put_irq;
2094 	ring->emit_bb_start = gen8_emit_bb_start;
2095 
2096 	return logical_ring_init(dev, ring);
2097 }
2098 
logical_vebox_ring_init(struct drm_device * dev)2099 static int logical_vebox_ring_init(struct drm_device *dev)
2100 {
2101 	struct drm_i915_private *dev_priv = dev->dev_private;
2102 	struct intel_engine_cs *ring = &dev_priv->ring[VECS];
2103 
2104 	ring->name = "video enhancement ring";
2105 	ring->id = VECS;
2106 	ring->mmio_base = VEBOX_RING_BASE;
2107 	ring->irq_enable_mask =
2108 		GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
2109 	ring->irq_keep_mask =
2110 		GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
2111 
2112 	ring->init_hw = gen8_init_common_ring;
2113 	if (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0) {
2114 		ring->get_seqno = bxt_a_get_seqno;
2115 		ring->set_seqno = bxt_a_set_seqno;
2116 	} else {
2117 		ring->get_seqno = gen8_get_seqno;
2118 		ring->set_seqno = gen8_set_seqno;
2119 	}
2120 	ring->emit_request = gen8_emit_request;
2121 	ring->emit_flush = gen8_emit_flush;
2122 	ring->irq_get = gen8_logical_ring_get_irq;
2123 	ring->irq_put = gen8_logical_ring_put_irq;
2124 	ring->emit_bb_start = gen8_emit_bb_start;
2125 
2126 	return logical_ring_init(dev, ring);
2127 }
2128 
2129 /**
2130  * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
2131  * @dev: DRM device.
2132  *
2133  * This function inits the engines for an Execlists submission style (the equivalent in the
2134  * legacy ringbuffer submission world would be i915_gem_init_rings). It does it only for
2135  * those engines that are present in the hardware.
2136  *
2137  * Return: non-zero if the initialization failed.
2138  */
intel_logical_rings_init(struct drm_device * dev)2139 int intel_logical_rings_init(struct drm_device *dev)
2140 {
2141 	struct drm_i915_private *dev_priv = dev->dev_private;
2142 	int ret;
2143 
2144 	ret = logical_render_ring_init(dev);
2145 	if (ret)
2146 		return ret;
2147 
2148 	if (HAS_BSD(dev)) {
2149 		ret = logical_bsd_ring_init(dev);
2150 		if (ret)
2151 			goto cleanup_render_ring;
2152 	}
2153 
2154 	if (HAS_BLT(dev)) {
2155 		ret = logical_blt_ring_init(dev);
2156 		if (ret)
2157 			goto cleanup_bsd_ring;
2158 	}
2159 
2160 	if (HAS_VEBOX(dev)) {
2161 		ret = logical_vebox_ring_init(dev);
2162 		if (ret)
2163 			goto cleanup_blt_ring;
2164 	}
2165 
2166 	if (HAS_BSD2(dev)) {
2167 		ret = logical_bsd2_ring_init(dev);
2168 		if (ret)
2169 			goto cleanup_vebox_ring;
2170 	}
2171 
2172 	return 0;
2173 
2174 cleanup_vebox_ring:
2175 	intel_logical_ring_cleanup(&dev_priv->ring[VECS]);
2176 cleanup_blt_ring:
2177 	intel_logical_ring_cleanup(&dev_priv->ring[BCS]);
2178 cleanup_bsd_ring:
2179 	intel_logical_ring_cleanup(&dev_priv->ring[VCS]);
2180 cleanup_render_ring:
2181 	intel_logical_ring_cleanup(&dev_priv->ring[RCS]);
2182 
2183 	return ret;
2184 }
2185 
2186 static u32
make_rpcs(struct drm_device * dev)2187 make_rpcs(struct drm_device *dev)
2188 {
2189 	u32 rpcs = 0;
2190 
2191 	/*
2192 	 * No explicit RPCS request is needed to ensure full
2193 	 * slice/subslice/EU enablement prior to Gen9.
2194 	*/
2195 	if (INTEL_INFO(dev)->gen < 9)
2196 		return 0;
2197 
2198 	/*
2199 	 * Starting in Gen9, render power gating can leave
2200 	 * slice/subslice/EU in a partially enabled state. We
2201 	 * must make an explicit request through RPCS for full
2202 	 * enablement.
2203 	*/
2204 	if (INTEL_INFO(dev)->has_slice_pg) {
2205 		rpcs |= GEN8_RPCS_S_CNT_ENABLE;
2206 		rpcs |= INTEL_INFO(dev)->slice_total <<
2207 			GEN8_RPCS_S_CNT_SHIFT;
2208 		rpcs |= GEN8_RPCS_ENABLE;
2209 	}
2210 
2211 	if (INTEL_INFO(dev)->has_subslice_pg) {
2212 		rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
2213 		rpcs |= INTEL_INFO(dev)->subslice_per_slice <<
2214 			GEN8_RPCS_SS_CNT_SHIFT;
2215 		rpcs |= GEN8_RPCS_ENABLE;
2216 	}
2217 
2218 	if (INTEL_INFO(dev)->has_eu_pg) {
2219 		rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
2220 			GEN8_RPCS_EU_MIN_SHIFT;
2221 		rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
2222 			GEN8_RPCS_EU_MAX_SHIFT;
2223 		rpcs |= GEN8_RPCS_ENABLE;
2224 	}
2225 
2226 	return rpcs;
2227 }
2228 
2229 static int
populate_lr_context(struct intel_context * ctx,struct drm_i915_gem_object * ctx_obj,struct intel_engine_cs * ring,struct intel_ringbuffer * ringbuf)2230 populate_lr_context(struct intel_context *ctx, struct drm_i915_gem_object *ctx_obj,
2231 		    struct intel_engine_cs *ring, struct intel_ringbuffer *ringbuf)
2232 {
2233 	struct drm_device *dev = ring->dev;
2234 	struct drm_i915_private *dev_priv = dev->dev_private;
2235 	struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
2236 	struct page *page;
2237 	uint32_t *reg_state;
2238 	int ret;
2239 
2240 	if (!ppgtt)
2241 		ppgtt = dev_priv->mm.aliasing_ppgtt;
2242 
2243 	ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
2244 	if (ret) {
2245 		DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
2246 		return ret;
2247 	}
2248 
2249 	ret = i915_gem_object_get_pages(ctx_obj);
2250 	if (ret) {
2251 		DRM_DEBUG_DRIVER("Could not get object pages\n");
2252 		return ret;
2253 	}
2254 
2255 	i915_gem_object_pin_pages(ctx_obj);
2256 
2257 	/* The second page of the context object contains some fields which must
2258 	 * be set up prior to the first execution. */
2259 	page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
2260 	reg_state = kmap_atomic(page);
2261 
2262 	/* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
2263 	 * commands followed by (reg, value) pairs. The values we are setting here are
2264 	 * only for the first context restore: on a subsequent save, the GPU will
2265 	 * recreate this batchbuffer with new values (including all the missing
2266 	 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
2267 	if (ring->id == RCS)
2268 		reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(14);
2269 	else
2270 		reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(11);
2271 	reg_state[CTX_LRI_HEADER_0] |= MI_LRI_FORCE_POSTED;
2272 	reg_state[CTX_CONTEXT_CONTROL] = RING_CONTEXT_CONTROL(ring);
2273 	reg_state[CTX_CONTEXT_CONTROL+1] =
2274 		_MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
2275 				   CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
2276 				   CTX_CTRL_RS_CTX_ENABLE);
2277 	reg_state[CTX_RING_HEAD] = RING_HEAD(ring->mmio_base);
2278 	reg_state[CTX_RING_HEAD+1] = 0;
2279 	reg_state[CTX_RING_TAIL] = RING_TAIL(ring->mmio_base);
2280 	reg_state[CTX_RING_TAIL+1] = 0;
2281 	reg_state[CTX_RING_BUFFER_START] = RING_START(ring->mmio_base);
2282 	/* Ring buffer start address is not known until the buffer is pinned.
2283 	 * It is written to the context image in execlists_update_context()
2284 	 */
2285 	reg_state[CTX_RING_BUFFER_CONTROL] = RING_CTL(ring->mmio_base);
2286 	reg_state[CTX_RING_BUFFER_CONTROL+1] =
2287 			((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID;
2288 	reg_state[CTX_BB_HEAD_U] = ring->mmio_base + 0x168;
2289 	reg_state[CTX_BB_HEAD_U+1] = 0;
2290 	reg_state[CTX_BB_HEAD_L] = ring->mmio_base + 0x140;
2291 	reg_state[CTX_BB_HEAD_L+1] = 0;
2292 	reg_state[CTX_BB_STATE] = ring->mmio_base + 0x110;
2293 	reg_state[CTX_BB_STATE+1] = (1<<5);
2294 	reg_state[CTX_SECOND_BB_HEAD_U] = ring->mmio_base + 0x11c;
2295 	reg_state[CTX_SECOND_BB_HEAD_U+1] = 0;
2296 	reg_state[CTX_SECOND_BB_HEAD_L] = ring->mmio_base + 0x114;
2297 	reg_state[CTX_SECOND_BB_HEAD_L+1] = 0;
2298 	reg_state[CTX_SECOND_BB_STATE] = ring->mmio_base + 0x118;
2299 	reg_state[CTX_SECOND_BB_STATE+1] = 0;
2300 	if (ring->id == RCS) {
2301 		reg_state[CTX_BB_PER_CTX_PTR] = ring->mmio_base + 0x1c0;
2302 		reg_state[CTX_BB_PER_CTX_PTR+1] = 0;
2303 		reg_state[CTX_RCS_INDIRECT_CTX] = ring->mmio_base + 0x1c4;
2304 		reg_state[CTX_RCS_INDIRECT_CTX+1] = 0;
2305 		reg_state[CTX_RCS_INDIRECT_CTX_OFFSET] = ring->mmio_base + 0x1c8;
2306 		reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] = 0;
2307 		if (ring->wa_ctx.obj) {
2308 			struct i915_ctx_workarounds *wa_ctx = &ring->wa_ctx;
2309 			uint32_t ggtt_offset = i915_gem_obj_ggtt_offset(wa_ctx->obj);
2310 
2311 			reg_state[CTX_RCS_INDIRECT_CTX+1] =
2312 				(ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
2313 				(wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);
2314 
2315 			reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
2316 				CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT << 6;
2317 
2318 			reg_state[CTX_BB_PER_CTX_PTR+1] =
2319 				(ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
2320 				0x01;
2321 		}
2322 	}
2323 	reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9);
2324 	reg_state[CTX_LRI_HEADER_1] |= MI_LRI_FORCE_POSTED;
2325 	reg_state[CTX_CTX_TIMESTAMP] = ring->mmio_base + 0x3a8;
2326 	reg_state[CTX_CTX_TIMESTAMP+1] = 0;
2327 	reg_state[CTX_PDP3_UDW] = GEN8_RING_PDP_UDW(ring, 3);
2328 	reg_state[CTX_PDP3_LDW] = GEN8_RING_PDP_LDW(ring, 3);
2329 	reg_state[CTX_PDP2_UDW] = GEN8_RING_PDP_UDW(ring, 2);
2330 	reg_state[CTX_PDP2_LDW] = GEN8_RING_PDP_LDW(ring, 2);
2331 	reg_state[CTX_PDP1_UDW] = GEN8_RING_PDP_UDW(ring, 1);
2332 	reg_state[CTX_PDP1_LDW] = GEN8_RING_PDP_LDW(ring, 1);
2333 	reg_state[CTX_PDP0_UDW] = GEN8_RING_PDP_UDW(ring, 0);
2334 	reg_state[CTX_PDP0_LDW] = GEN8_RING_PDP_LDW(ring, 0);
2335 
2336 	if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
2337 		/* 64b PPGTT (48bit canonical)
2338 		 * PDP0_DESCRIPTOR contains the base address to PML4 and
2339 		 * other PDP Descriptors are ignored.
2340 		 */
2341 		ASSIGN_CTX_PML4(ppgtt, reg_state);
2342 	} else {
2343 		/* 32b PPGTT
2344 		 * PDP*_DESCRIPTOR contains the base address of space supported.
2345 		 * With dynamic page allocation, PDPs may not be allocated at
2346 		 * this point. Point the unallocated PDPs to the scratch page
2347 		 */
2348 		ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
2349 		ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
2350 		ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
2351 		ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
2352 	}
2353 
2354 	if (ring->id == RCS) {
2355 		reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2356 		reg_state[CTX_R_PWR_CLK_STATE] = GEN8_R_PWR_CLK_STATE;
2357 		reg_state[CTX_R_PWR_CLK_STATE+1] = make_rpcs(dev);
2358 	}
2359 
2360 	kunmap_atomic(reg_state);
2361 
2362 	ctx_obj->dirty = 1;
2363 	set_page_dirty(page);
2364 	i915_gem_object_unpin_pages(ctx_obj);
2365 
2366 	return 0;
2367 }
2368 
2369 /**
2370  * intel_lr_context_free() - free the LRC specific bits of a context
2371  * @ctx: the LR context to free.
2372  *
2373  * The real context freeing is done in i915_gem_context_free: this only
2374  * takes care of the bits that are LRC related: the per-engine backing
2375  * objects and the logical ringbuffer.
2376  */
intel_lr_context_free(struct intel_context * ctx)2377 void intel_lr_context_free(struct intel_context *ctx)
2378 {
2379 	int i;
2380 
2381 	for (i = 0; i < I915_NUM_RINGS; i++) {
2382 		struct drm_i915_gem_object *ctx_obj = ctx->engine[i].state;
2383 
2384 		if (ctx_obj) {
2385 			struct intel_ringbuffer *ringbuf =
2386 					ctx->engine[i].ringbuf;
2387 			struct intel_engine_cs *ring = ringbuf->ring;
2388 
2389 			if (ctx == ring->default_context) {
2390 				intel_unpin_ringbuffer_obj(ringbuf);
2391 				i915_gem_object_ggtt_unpin(ctx_obj);
2392 			}
2393 			WARN_ON(ctx->engine[ring->id].pin_count);
2394 			intel_ringbuffer_free(ringbuf);
2395 			drm_gem_object_unreference(&ctx_obj->base);
2396 		}
2397 	}
2398 }
2399 
get_lr_context_size(struct intel_engine_cs * ring)2400 static uint32_t get_lr_context_size(struct intel_engine_cs *ring)
2401 {
2402 	int ret = 0;
2403 
2404 	WARN_ON(INTEL_INFO(ring->dev)->gen < 8);
2405 
2406 	switch (ring->id) {
2407 	case RCS:
2408 		if (INTEL_INFO(ring->dev)->gen >= 9)
2409 			ret = GEN9_LR_CONTEXT_RENDER_SIZE;
2410 		else
2411 			ret = GEN8_LR_CONTEXT_RENDER_SIZE;
2412 		break;
2413 	case VCS:
2414 	case BCS:
2415 	case VECS:
2416 	case VCS2:
2417 		ret = GEN8_LR_CONTEXT_OTHER_SIZE;
2418 		break;
2419 	}
2420 
2421 	return ret;
2422 }
2423 
lrc_setup_hardware_status_page(struct intel_engine_cs * ring,struct drm_i915_gem_object * default_ctx_obj)2424 static void lrc_setup_hardware_status_page(struct intel_engine_cs *ring,
2425 		struct drm_i915_gem_object *default_ctx_obj)
2426 {
2427 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
2428 	struct page *page;
2429 
2430 	/* The HWSP is part of the default context object in LRC mode. */
2431 	ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(default_ctx_obj)
2432 			+ LRC_PPHWSP_PN * PAGE_SIZE;
2433 	page = i915_gem_object_get_page(default_ctx_obj, LRC_PPHWSP_PN);
2434 	ring->status_page.page_addr = kmap(page);
2435 	ring->status_page.obj = default_ctx_obj;
2436 
2437 	I915_WRITE(RING_HWS_PGA(ring->mmio_base),
2438 			(u32)ring->status_page.gfx_addr);
2439 	POSTING_READ(RING_HWS_PGA(ring->mmio_base));
2440 }
2441 
2442 /**
2443  * intel_lr_context_deferred_alloc() - create the LRC specific bits of a context
2444  * @ctx: LR context to create.
2445  * @ring: engine to be used with the context.
2446  *
2447  * This function can be called more than once, with different engines, if we plan
2448  * to use the context with them. The context backing objects and the ringbuffers
2449  * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
2450  * the creation is a deferred call: it's better to make sure first that we need to use
2451  * a given ring with the context.
2452  *
2453  * Return: non-zero on error.
2454  */
2455 
intel_lr_context_deferred_alloc(struct intel_context * ctx,struct intel_engine_cs * ring)2456 int intel_lr_context_deferred_alloc(struct intel_context *ctx,
2457 				     struct intel_engine_cs *ring)
2458 {
2459 	struct drm_device *dev = ring->dev;
2460 	struct drm_i915_gem_object *ctx_obj;
2461 	uint32_t context_size;
2462 	struct intel_ringbuffer *ringbuf;
2463 	int ret;
2464 
2465 	WARN_ON(ctx->legacy_hw_ctx.rcs_state != NULL);
2466 	WARN_ON(ctx->engine[ring->id].state);
2467 
2468 	context_size = round_up(get_lr_context_size(ring), 4096);
2469 
2470 	/* One extra page as the sharing data between driver and GuC */
2471 	context_size += PAGE_SIZE * LRC_PPHWSP_PN;
2472 
2473 	ctx_obj = i915_gem_alloc_object(dev, context_size);
2474 	if (!ctx_obj) {
2475 		DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2476 		return -ENOMEM;
2477 	}
2478 
2479 	ringbuf = intel_engine_create_ringbuffer(ring, 4 * PAGE_SIZE);
2480 	if (IS_ERR(ringbuf)) {
2481 		ret = PTR_ERR(ringbuf);
2482 		goto error_deref_obj;
2483 	}
2484 
2485 	ret = populate_lr_context(ctx, ctx_obj, ring, ringbuf);
2486 	if (ret) {
2487 		DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2488 		goto error_ringbuf;
2489 	}
2490 
2491 	ctx->engine[ring->id].ringbuf = ringbuf;
2492 	ctx->engine[ring->id].state = ctx_obj;
2493 
2494 	if (ctx != ring->default_context && ring->init_context) {
2495 		struct drm_i915_gem_request *req;
2496 
2497 		ret = i915_gem_request_alloc(ring,
2498 			ctx, &req);
2499 		if (ret) {
2500 			DRM_ERROR("ring create req: %d\n",
2501 				ret);
2502 			goto error_ringbuf;
2503 		}
2504 
2505 		ret = ring->init_context(req);
2506 		if (ret) {
2507 			DRM_ERROR("ring init context: %d\n",
2508 				ret);
2509 			i915_gem_request_cancel(req);
2510 			goto error_ringbuf;
2511 		}
2512 		i915_add_request_no_flush(req);
2513 	}
2514 	return 0;
2515 
2516 error_ringbuf:
2517 	intel_ringbuffer_free(ringbuf);
2518 error_deref_obj:
2519 	drm_gem_object_unreference(&ctx_obj->base);
2520 	ctx->engine[ring->id].ringbuf = NULL;
2521 	ctx->engine[ring->id].state = NULL;
2522 	return ret;
2523 }
2524 
intel_lr_context_reset(struct drm_device * dev,struct intel_context * ctx)2525 void intel_lr_context_reset(struct drm_device *dev,
2526 			struct intel_context *ctx)
2527 {
2528 	struct drm_i915_private *dev_priv = dev->dev_private;
2529 	struct intel_engine_cs *ring;
2530 	int i;
2531 
2532 	for_each_ring(ring, dev_priv, i) {
2533 		struct drm_i915_gem_object *ctx_obj =
2534 				ctx->engine[ring->id].state;
2535 		struct intel_ringbuffer *ringbuf =
2536 				ctx->engine[ring->id].ringbuf;
2537 		uint32_t *reg_state;
2538 		struct page *page;
2539 
2540 		if (!ctx_obj)
2541 			continue;
2542 
2543 		if (i915_gem_object_get_pages(ctx_obj)) {
2544 			WARN(1, "Failed get_pages for context obj\n");
2545 			continue;
2546 		}
2547 		page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
2548 		reg_state = kmap_atomic(page);
2549 
2550 		reg_state[CTX_RING_HEAD+1] = 0;
2551 		reg_state[CTX_RING_TAIL+1] = 0;
2552 
2553 		kunmap_atomic(reg_state);
2554 
2555 		ringbuf->head = 0;
2556 		ringbuf->tail = 0;
2557 	}
2558 }
2559