1 #include <linux/bitops.h>
2 #include <linux/types.h>
3 #include <linux/slab.h>
4 
5 #include <asm/perf_event.h>
6 #include <asm/insn.h>
7 
8 #include "perf_event.h"
9 
10 /* The size of a BTS record in bytes: */
11 #define BTS_RECORD_SIZE		24
12 
13 #define BTS_BUFFER_SIZE		(PAGE_SIZE << 4)
14 #define PEBS_BUFFER_SIZE	(PAGE_SIZE << 4)
15 #define PEBS_FIXUP_SIZE		PAGE_SIZE
16 
17 /*
18  * pebs_record_32 for p4 and core not supported
19 
20 struct pebs_record_32 {
21 	u32 flags, ip;
22 	u32 ax, bc, cx, dx;
23 	u32 si, di, bp, sp;
24 };
25 
26  */
27 
28 union intel_x86_pebs_dse {
29 	u64 val;
30 	struct {
31 		unsigned int ld_dse:4;
32 		unsigned int ld_stlb_miss:1;
33 		unsigned int ld_locked:1;
34 		unsigned int ld_reserved:26;
35 	};
36 	struct {
37 		unsigned int st_l1d_hit:1;
38 		unsigned int st_reserved1:3;
39 		unsigned int st_stlb_miss:1;
40 		unsigned int st_locked:1;
41 		unsigned int st_reserved2:26;
42 	};
43 };
44 
45 
46 /*
47  * Map PEBS Load Latency Data Source encodings to generic
48  * memory data source information
49  */
50 #define P(a, b) PERF_MEM_S(a, b)
51 #define OP_LH (P(OP, LOAD) | P(LVL, HIT))
52 #define SNOOP_NONE_MISS (P(SNOOP, NONE) | P(SNOOP, MISS))
53 
54 /* Version for Sandy Bridge and later */
55 static u64 pebs_data_source[] = {
56 	P(OP, LOAD) | P(LVL, MISS) | P(LVL, L3) | P(SNOOP, NA),/* 0x00:ukn L3 */
57 	OP_LH | P(LVL, L1)  | P(SNOOP, NONE),	/* 0x01: L1 local */
58 	OP_LH | P(LVL, LFB) | P(SNOOP, NONE),	/* 0x02: LFB hit */
59 	OP_LH | P(LVL, L2)  | P(SNOOP, NONE),	/* 0x03: L2 hit */
60 	OP_LH | P(LVL, L3)  | P(SNOOP, NONE),	/* 0x04: L3 hit */
61 	OP_LH | P(LVL, L3)  | P(SNOOP, MISS),	/* 0x05: L3 hit, snoop miss */
62 	OP_LH | P(LVL, L3)  | P(SNOOP, HIT),	/* 0x06: L3 hit, snoop hit */
63 	OP_LH | P(LVL, L3)  | P(SNOOP, HITM),	/* 0x07: L3 hit, snoop hitm */
64 	OP_LH | P(LVL, REM_CCE1) | P(SNOOP, HIT),  /* 0x08: L3 miss snoop hit */
65 	OP_LH | P(LVL, REM_CCE1) | P(SNOOP, HITM), /* 0x09: L3 miss snoop hitm*/
66 	OP_LH | P(LVL, LOC_RAM)  | P(SNOOP, HIT),  /* 0x0a: L3 miss, shared */
67 	OP_LH | P(LVL, REM_RAM1) | P(SNOOP, HIT),  /* 0x0b: L3 miss, shared */
68 	OP_LH | P(LVL, LOC_RAM)  | SNOOP_NONE_MISS,/* 0x0c: L3 miss, excl */
69 	OP_LH | P(LVL, REM_RAM1) | SNOOP_NONE_MISS,/* 0x0d: L3 miss, excl */
70 	OP_LH | P(LVL, IO)  | P(SNOOP, NONE), /* 0x0e: I/O */
71 	OP_LH | P(LVL, UNC) | P(SNOOP, NONE), /* 0x0f: uncached */
72 };
73 
74 /* Patch up minor differences in the bits */
intel_pmu_pebs_data_source_nhm(void)75 void __init intel_pmu_pebs_data_source_nhm(void)
76 {
77 	pebs_data_source[0x05] = OP_LH | P(LVL, L3)  | P(SNOOP, HIT);
78 	pebs_data_source[0x06] = OP_LH | P(LVL, L3)  | P(SNOOP, HITM);
79 	pebs_data_source[0x07] = OP_LH | P(LVL, L3)  | P(SNOOP, HITM);
80 }
81 
precise_store_data(u64 status)82 static u64 precise_store_data(u64 status)
83 {
84 	union intel_x86_pebs_dse dse;
85 	u64 val = P(OP, STORE) | P(SNOOP, NA) | P(LVL, L1) | P(TLB, L2);
86 
87 	dse.val = status;
88 
89 	/*
90 	 * bit 4: TLB access
91 	 * 1 = stored missed 2nd level TLB
92 	 *
93 	 * so it either hit the walker or the OS
94 	 * otherwise hit 2nd level TLB
95 	 */
96 	if (dse.st_stlb_miss)
97 		val |= P(TLB, MISS);
98 	else
99 		val |= P(TLB, HIT);
100 
101 	/*
102 	 * bit 0: hit L1 data cache
103 	 * if not set, then all we know is that
104 	 * it missed L1D
105 	 */
106 	if (dse.st_l1d_hit)
107 		val |= P(LVL, HIT);
108 	else
109 		val |= P(LVL, MISS);
110 
111 	/*
112 	 * bit 5: Locked prefix
113 	 */
114 	if (dse.st_locked)
115 		val |= P(LOCK, LOCKED);
116 
117 	return val;
118 }
119 
precise_datala_hsw(struct perf_event * event,u64 status)120 static u64 precise_datala_hsw(struct perf_event *event, u64 status)
121 {
122 	union perf_mem_data_src dse;
123 
124 	dse.val = PERF_MEM_NA;
125 
126 	if (event->hw.flags & PERF_X86_EVENT_PEBS_ST_HSW)
127 		dse.mem_op = PERF_MEM_OP_STORE;
128 	else if (event->hw.flags & PERF_X86_EVENT_PEBS_LD_HSW)
129 		dse.mem_op = PERF_MEM_OP_LOAD;
130 
131 	/*
132 	 * L1 info only valid for following events:
133 	 *
134 	 * MEM_UOPS_RETIRED.STLB_MISS_STORES
135 	 * MEM_UOPS_RETIRED.LOCK_STORES
136 	 * MEM_UOPS_RETIRED.SPLIT_STORES
137 	 * MEM_UOPS_RETIRED.ALL_STORES
138 	 */
139 	if (event->hw.flags & PERF_X86_EVENT_PEBS_ST_HSW) {
140 		if (status & 1)
141 			dse.mem_lvl = PERF_MEM_LVL_L1 | PERF_MEM_LVL_HIT;
142 		else
143 			dse.mem_lvl = PERF_MEM_LVL_L1 | PERF_MEM_LVL_MISS;
144 	}
145 	return dse.val;
146 }
147 
load_latency_data(u64 status)148 static u64 load_latency_data(u64 status)
149 {
150 	union intel_x86_pebs_dse dse;
151 	u64 val;
152 	int model = boot_cpu_data.x86_model;
153 	int fam = boot_cpu_data.x86;
154 
155 	dse.val = status;
156 
157 	/*
158 	 * use the mapping table for bit 0-3
159 	 */
160 	val = pebs_data_source[dse.ld_dse];
161 
162 	/*
163 	 * Nehalem models do not support TLB, Lock infos
164 	 */
165 	if (fam == 0x6 && (model == 26 || model == 30
166 	    || model == 31 || model == 46)) {
167 		val |= P(TLB, NA) | P(LOCK, NA);
168 		return val;
169 	}
170 	/*
171 	 * bit 4: TLB access
172 	 * 0 = did not miss 2nd level TLB
173 	 * 1 = missed 2nd level TLB
174 	 */
175 	if (dse.ld_stlb_miss)
176 		val |= P(TLB, MISS) | P(TLB, L2);
177 	else
178 		val |= P(TLB, HIT) | P(TLB, L1) | P(TLB, L2);
179 
180 	/*
181 	 * bit 5: locked prefix
182 	 */
183 	if (dse.ld_locked)
184 		val |= P(LOCK, LOCKED);
185 
186 	return val;
187 }
188 
189 struct pebs_record_core {
190 	u64 flags, ip;
191 	u64 ax, bx, cx, dx;
192 	u64 si, di, bp, sp;
193 	u64 r8,  r9,  r10, r11;
194 	u64 r12, r13, r14, r15;
195 };
196 
197 struct pebs_record_nhm {
198 	u64 flags, ip;
199 	u64 ax, bx, cx, dx;
200 	u64 si, di, bp, sp;
201 	u64 r8,  r9,  r10, r11;
202 	u64 r12, r13, r14, r15;
203 	u64 status, dla, dse, lat;
204 };
205 
206 /*
207  * Same as pebs_record_nhm, with two additional fields.
208  */
209 struct pebs_record_hsw {
210 	u64 flags, ip;
211 	u64 ax, bx, cx, dx;
212 	u64 si, di, bp, sp;
213 	u64 r8,  r9,  r10, r11;
214 	u64 r12, r13, r14, r15;
215 	u64 status, dla, dse, lat;
216 	u64 real_ip, tsx_tuning;
217 };
218 
219 union hsw_tsx_tuning {
220 	struct {
221 		u32 cycles_last_block     : 32,
222 		    hle_abort		  : 1,
223 		    rtm_abort		  : 1,
224 		    instruction_abort     : 1,
225 		    non_instruction_abort : 1,
226 		    retry		  : 1,
227 		    data_conflict	  : 1,
228 		    capacity_writes	  : 1,
229 		    capacity_reads	  : 1;
230 	};
231 	u64	    value;
232 };
233 
234 #define PEBS_HSW_TSX_FLAGS	0xff00000000ULL
235 
236 /* Same as HSW, plus TSC */
237 
238 struct pebs_record_skl {
239 	u64 flags, ip;
240 	u64 ax, bx, cx, dx;
241 	u64 si, di, bp, sp;
242 	u64 r8,  r9,  r10, r11;
243 	u64 r12, r13, r14, r15;
244 	u64 status, dla, dse, lat;
245 	u64 real_ip, tsx_tuning;
246 	u64 tsc;
247 };
248 
init_debug_store_on_cpu(int cpu)249 void init_debug_store_on_cpu(int cpu)
250 {
251 	struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
252 
253 	if (!ds)
254 		return;
255 
256 	wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA,
257 		     (u32)((u64)(unsigned long)ds),
258 		     (u32)((u64)(unsigned long)ds >> 32));
259 }
260 
fini_debug_store_on_cpu(int cpu)261 void fini_debug_store_on_cpu(int cpu)
262 {
263 	if (!per_cpu(cpu_hw_events, cpu).ds)
264 		return;
265 
266 	wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA, 0, 0);
267 }
268 
269 static DEFINE_PER_CPU(void *, insn_buffer);
270 
alloc_pebs_buffer(int cpu)271 static int alloc_pebs_buffer(int cpu)
272 {
273 	struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
274 	int node = cpu_to_node(cpu);
275 	int max;
276 	void *buffer, *ibuffer;
277 
278 	if (!x86_pmu.pebs)
279 		return 0;
280 
281 	buffer = kzalloc_node(x86_pmu.pebs_buffer_size, GFP_KERNEL, node);
282 	if (unlikely(!buffer))
283 		return -ENOMEM;
284 
285 	/*
286 	 * HSW+ already provides us the eventing ip; no need to allocate this
287 	 * buffer then.
288 	 */
289 	if (x86_pmu.intel_cap.pebs_format < 2) {
290 		ibuffer = kzalloc_node(PEBS_FIXUP_SIZE, GFP_KERNEL, node);
291 		if (!ibuffer) {
292 			kfree(buffer);
293 			return -ENOMEM;
294 		}
295 		per_cpu(insn_buffer, cpu) = ibuffer;
296 	}
297 
298 	max = x86_pmu.pebs_buffer_size / x86_pmu.pebs_record_size;
299 
300 	ds->pebs_buffer_base = (u64)(unsigned long)buffer;
301 	ds->pebs_index = ds->pebs_buffer_base;
302 	ds->pebs_absolute_maximum = ds->pebs_buffer_base +
303 		max * x86_pmu.pebs_record_size;
304 
305 	return 0;
306 }
307 
release_pebs_buffer(int cpu)308 static void release_pebs_buffer(int cpu)
309 {
310 	struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
311 
312 	if (!ds || !x86_pmu.pebs)
313 		return;
314 
315 	kfree(per_cpu(insn_buffer, cpu));
316 	per_cpu(insn_buffer, cpu) = NULL;
317 
318 	kfree((void *)(unsigned long)ds->pebs_buffer_base);
319 	ds->pebs_buffer_base = 0;
320 }
321 
alloc_bts_buffer(int cpu)322 static int alloc_bts_buffer(int cpu)
323 {
324 	struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
325 	int node = cpu_to_node(cpu);
326 	int max, thresh;
327 	void *buffer;
328 
329 	if (!x86_pmu.bts)
330 		return 0;
331 
332 	buffer = kzalloc_node(BTS_BUFFER_SIZE, GFP_KERNEL | __GFP_NOWARN, node);
333 	if (unlikely(!buffer)) {
334 		WARN_ONCE(1, "%s: BTS buffer allocation failure\n", __func__);
335 		return -ENOMEM;
336 	}
337 
338 	max = BTS_BUFFER_SIZE / BTS_RECORD_SIZE;
339 	thresh = max / 16;
340 
341 	ds->bts_buffer_base = (u64)(unsigned long)buffer;
342 	ds->bts_index = ds->bts_buffer_base;
343 	ds->bts_absolute_maximum = ds->bts_buffer_base +
344 		max * BTS_RECORD_SIZE;
345 	ds->bts_interrupt_threshold = ds->bts_absolute_maximum -
346 		thresh * BTS_RECORD_SIZE;
347 
348 	return 0;
349 }
350 
release_bts_buffer(int cpu)351 static void release_bts_buffer(int cpu)
352 {
353 	struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
354 
355 	if (!ds || !x86_pmu.bts)
356 		return;
357 
358 	kfree((void *)(unsigned long)ds->bts_buffer_base);
359 	ds->bts_buffer_base = 0;
360 }
361 
alloc_ds_buffer(int cpu)362 static int alloc_ds_buffer(int cpu)
363 {
364 	int node = cpu_to_node(cpu);
365 	struct debug_store *ds;
366 
367 	ds = kzalloc_node(sizeof(*ds), GFP_KERNEL, node);
368 	if (unlikely(!ds))
369 		return -ENOMEM;
370 
371 	per_cpu(cpu_hw_events, cpu).ds = ds;
372 
373 	return 0;
374 }
375 
release_ds_buffer(int cpu)376 static void release_ds_buffer(int cpu)
377 {
378 	struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
379 
380 	if (!ds)
381 		return;
382 
383 	per_cpu(cpu_hw_events, cpu).ds = NULL;
384 	kfree(ds);
385 }
386 
release_ds_buffers(void)387 void release_ds_buffers(void)
388 {
389 	int cpu;
390 
391 	if (!x86_pmu.bts && !x86_pmu.pebs)
392 		return;
393 
394 	get_online_cpus();
395 	for_each_online_cpu(cpu)
396 		fini_debug_store_on_cpu(cpu);
397 
398 	for_each_possible_cpu(cpu) {
399 		release_pebs_buffer(cpu);
400 		release_bts_buffer(cpu);
401 		release_ds_buffer(cpu);
402 	}
403 	put_online_cpus();
404 }
405 
reserve_ds_buffers(void)406 void reserve_ds_buffers(void)
407 {
408 	int bts_err = 0, pebs_err = 0;
409 	int cpu;
410 
411 	x86_pmu.bts_active = 0;
412 	x86_pmu.pebs_active = 0;
413 
414 	if (!x86_pmu.bts && !x86_pmu.pebs)
415 		return;
416 
417 	if (!x86_pmu.bts)
418 		bts_err = 1;
419 
420 	if (!x86_pmu.pebs)
421 		pebs_err = 1;
422 
423 	get_online_cpus();
424 
425 	for_each_possible_cpu(cpu) {
426 		if (alloc_ds_buffer(cpu)) {
427 			bts_err = 1;
428 			pebs_err = 1;
429 		}
430 
431 		if (!bts_err && alloc_bts_buffer(cpu))
432 			bts_err = 1;
433 
434 		if (!pebs_err && alloc_pebs_buffer(cpu))
435 			pebs_err = 1;
436 
437 		if (bts_err && pebs_err)
438 			break;
439 	}
440 
441 	if (bts_err) {
442 		for_each_possible_cpu(cpu)
443 			release_bts_buffer(cpu);
444 	}
445 
446 	if (pebs_err) {
447 		for_each_possible_cpu(cpu)
448 			release_pebs_buffer(cpu);
449 	}
450 
451 	if (bts_err && pebs_err) {
452 		for_each_possible_cpu(cpu)
453 			release_ds_buffer(cpu);
454 	} else {
455 		if (x86_pmu.bts && !bts_err)
456 			x86_pmu.bts_active = 1;
457 
458 		if (x86_pmu.pebs && !pebs_err)
459 			x86_pmu.pebs_active = 1;
460 
461 		for_each_online_cpu(cpu)
462 			init_debug_store_on_cpu(cpu);
463 	}
464 
465 	put_online_cpus();
466 }
467 
468 /*
469  * BTS
470  */
471 
472 struct event_constraint bts_constraint =
473 	EVENT_CONSTRAINT(0, 1ULL << INTEL_PMC_IDX_FIXED_BTS, 0);
474 
intel_pmu_enable_bts(u64 config)475 void intel_pmu_enable_bts(u64 config)
476 {
477 	unsigned long debugctlmsr;
478 
479 	debugctlmsr = get_debugctlmsr();
480 
481 	debugctlmsr |= DEBUGCTLMSR_TR;
482 	debugctlmsr |= DEBUGCTLMSR_BTS;
483 	if (config & ARCH_PERFMON_EVENTSEL_INT)
484 		debugctlmsr |= DEBUGCTLMSR_BTINT;
485 
486 	if (!(config & ARCH_PERFMON_EVENTSEL_OS))
487 		debugctlmsr |= DEBUGCTLMSR_BTS_OFF_OS;
488 
489 	if (!(config & ARCH_PERFMON_EVENTSEL_USR))
490 		debugctlmsr |= DEBUGCTLMSR_BTS_OFF_USR;
491 
492 	update_debugctlmsr(debugctlmsr);
493 }
494 
intel_pmu_disable_bts(void)495 void intel_pmu_disable_bts(void)
496 {
497 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
498 	unsigned long debugctlmsr;
499 
500 	if (!cpuc->ds)
501 		return;
502 
503 	debugctlmsr = get_debugctlmsr();
504 
505 	debugctlmsr &=
506 		~(DEBUGCTLMSR_TR | DEBUGCTLMSR_BTS | DEBUGCTLMSR_BTINT |
507 		  DEBUGCTLMSR_BTS_OFF_OS | DEBUGCTLMSR_BTS_OFF_USR);
508 
509 	update_debugctlmsr(debugctlmsr);
510 }
511 
intel_pmu_drain_bts_buffer(void)512 int intel_pmu_drain_bts_buffer(void)
513 {
514 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
515 	struct debug_store *ds = cpuc->ds;
516 	struct bts_record {
517 		u64	from;
518 		u64	to;
519 		u64	flags;
520 	};
521 	struct perf_event *event = cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
522 	struct bts_record *at, *base, *top;
523 	struct perf_output_handle handle;
524 	struct perf_event_header header;
525 	struct perf_sample_data data;
526 	unsigned long skip = 0;
527 	struct pt_regs regs;
528 
529 	if (!event)
530 		return 0;
531 
532 	if (!x86_pmu.bts_active)
533 		return 0;
534 
535 	base = (struct bts_record *)(unsigned long)ds->bts_buffer_base;
536 	top  = (struct bts_record *)(unsigned long)ds->bts_index;
537 
538 	if (top <= base)
539 		return 0;
540 
541 	memset(&regs, 0, sizeof(regs));
542 
543 	ds->bts_index = ds->bts_buffer_base;
544 
545 	perf_sample_data_init(&data, 0, event->hw.last_period);
546 
547 	/*
548 	 * BTS leaks kernel addresses in branches across the cpl boundary,
549 	 * such as traps or system calls, so unless the user is asking for
550 	 * kernel tracing (and right now it's not possible), we'd need to
551 	 * filter them out. But first we need to count how many of those we
552 	 * have in the current batch. This is an extra O(n) pass, however,
553 	 * it's much faster than the other one especially considering that
554 	 * n <= 2560 (BTS_BUFFER_SIZE / BTS_RECORD_SIZE * 15/16; see the
555 	 * alloc_bts_buffer()).
556 	 */
557 	for (at = base; at < top; at++) {
558 		/*
559 		 * Note that right now *this* BTS code only works if
560 		 * attr::exclude_kernel is set, but let's keep this extra
561 		 * check here in case that changes.
562 		 */
563 		if (event->attr.exclude_kernel &&
564 		    (kernel_ip(at->from) || kernel_ip(at->to)))
565 			skip++;
566 	}
567 
568 	/*
569 	 * Prepare a generic sample, i.e. fill in the invariant fields.
570 	 * We will overwrite the from and to address before we output
571 	 * the sample.
572 	 */
573 	perf_prepare_sample(&header, &data, event, &regs);
574 
575 	if (perf_output_begin(&handle, event, header.size *
576 			      (top - base - skip)))
577 		return 1;
578 
579 	for (at = base; at < top; at++) {
580 		/* Filter out any records that contain kernel addresses. */
581 		if (event->attr.exclude_kernel &&
582 		    (kernel_ip(at->from) || kernel_ip(at->to)))
583 			continue;
584 
585 		data.ip		= at->from;
586 		data.addr	= at->to;
587 
588 		perf_output_sample(&handle, &header, &data, event);
589 	}
590 
591 	perf_output_end(&handle);
592 
593 	/* There's new data available. */
594 	event->hw.interrupts++;
595 	event->pending_kill = POLL_IN;
596 	return 1;
597 }
598 
intel_pmu_drain_pebs_buffer(void)599 static inline void intel_pmu_drain_pebs_buffer(void)
600 {
601 	struct pt_regs regs;
602 
603 	x86_pmu.drain_pebs(&regs);
604 }
605 
intel_pmu_pebs_sched_task(struct perf_event_context * ctx,bool sched_in)606 void intel_pmu_pebs_sched_task(struct perf_event_context *ctx, bool sched_in)
607 {
608 	if (!sched_in)
609 		intel_pmu_drain_pebs_buffer();
610 }
611 
612 /*
613  * PEBS
614  */
615 struct event_constraint intel_core2_pebs_event_constraints[] = {
616 	INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c0, 0x1), /* INST_RETIRED.ANY */
617 	INTEL_FLAGS_UEVENT_CONSTRAINT(0xfec1, 0x1), /* X87_OPS_RETIRED.ANY */
618 	INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c5, 0x1), /* BR_INST_RETIRED.MISPRED */
619 	INTEL_FLAGS_UEVENT_CONSTRAINT(0x1fc7, 0x1), /* SIMD_INST_RETURED.ANY */
620 	INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0x1),    /* MEM_LOAD_RETIRED.* */
621 	/* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
622 	INTEL_FLAGS_EVENT_CONSTRAINT(0x108000c0, 0x01),
623 	EVENT_CONSTRAINT_END
624 };
625 
626 struct event_constraint intel_atom_pebs_event_constraints[] = {
627 	INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c0, 0x1), /* INST_RETIRED.ANY */
628 	INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c5, 0x1), /* MISPREDICTED_BRANCH_RETIRED */
629 	INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0x1),    /* MEM_LOAD_RETIRED.* */
630 	/* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
631 	INTEL_FLAGS_EVENT_CONSTRAINT(0x108000c0, 0x01),
632 	EVENT_CONSTRAINT_END
633 };
634 
635 struct event_constraint intel_slm_pebs_event_constraints[] = {
636 	/* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
637 	INTEL_FLAGS_EVENT_CONSTRAINT(0x108000c0, 0x1),
638 	/* Allow all events as PEBS with no flags */
639 	INTEL_ALL_EVENT_CONSTRAINT(0, 0x1),
640 	EVENT_CONSTRAINT_END
641 };
642 
643 struct event_constraint intel_nehalem_pebs_event_constraints[] = {
644 	INTEL_PLD_CONSTRAINT(0x100b, 0xf),      /* MEM_INST_RETIRED.* */
645 	INTEL_FLAGS_EVENT_CONSTRAINT(0x0f, 0xf),    /* MEM_UNCORE_RETIRED.* */
646 	INTEL_FLAGS_UEVENT_CONSTRAINT(0x010c, 0xf), /* MEM_STORE_RETIRED.DTLB_MISS */
647 	INTEL_FLAGS_EVENT_CONSTRAINT(0xc0, 0xf),    /* INST_RETIRED.ANY */
648 	INTEL_EVENT_CONSTRAINT(0xc2, 0xf),    /* UOPS_RETIRED.* */
649 	INTEL_FLAGS_EVENT_CONSTRAINT(0xc4, 0xf),    /* BR_INST_RETIRED.* */
650 	INTEL_FLAGS_UEVENT_CONSTRAINT(0x02c5, 0xf), /* BR_MISP_RETIRED.NEAR_CALL */
651 	INTEL_FLAGS_EVENT_CONSTRAINT(0xc7, 0xf),    /* SSEX_UOPS_RETIRED.* */
652 	INTEL_FLAGS_UEVENT_CONSTRAINT(0x20c8, 0xf), /* ITLB_MISS_RETIRED */
653 	INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0xf),    /* MEM_LOAD_RETIRED.* */
654 	INTEL_FLAGS_EVENT_CONSTRAINT(0xf7, 0xf),    /* FP_ASSIST.* */
655 	/* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
656 	INTEL_FLAGS_EVENT_CONSTRAINT(0x108000c0, 0x0f),
657 	EVENT_CONSTRAINT_END
658 };
659 
660 struct event_constraint intel_westmere_pebs_event_constraints[] = {
661 	INTEL_PLD_CONSTRAINT(0x100b, 0xf),      /* MEM_INST_RETIRED.* */
662 	INTEL_FLAGS_EVENT_CONSTRAINT(0x0f, 0xf),    /* MEM_UNCORE_RETIRED.* */
663 	INTEL_FLAGS_UEVENT_CONSTRAINT(0x010c, 0xf), /* MEM_STORE_RETIRED.DTLB_MISS */
664 	INTEL_FLAGS_EVENT_CONSTRAINT(0xc0, 0xf),    /* INSTR_RETIRED.* */
665 	INTEL_EVENT_CONSTRAINT(0xc2, 0xf),    /* UOPS_RETIRED.* */
666 	INTEL_FLAGS_EVENT_CONSTRAINT(0xc4, 0xf),    /* BR_INST_RETIRED.* */
667 	INTEL_FLAGS_EVENT_CONSTRAINT(0xc5, 0xf),    /* BR_MISP_RETIRED.* */
668 	INTEL_FLAGS_EVENT_CONSTRAINT(0xc7, 0xf),    /* SSEX_UOPS_RETIRED.* */
669 	INTEL_FLAGS_UEVENT_CONSTRAINT(0x20c8, 0xf), /* ITLB_MISS_RETIRED */
670 	INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0xf),    /* MEM_LOAD_RETIRED.* */
671 	INTEL_FLAGS_EVENT_CONSTRAINT(0xf7, 0xf),    /* FP_ASSIST.* */
672 	/* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
673 	INTEL_FLAGS_EVENT_CONSTRAINT(0x108000c0, 0x0f),
674 	EVENT_CONSTRAINT_END
675 };
676 
677 struct event_constraint intel_snb_pebs_event_constraints[] = {
678 	INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
679 	INTEL_PLD_CONSTRAINT(0x01cd, 0x8),    /* MEM_TRANS_RETIRED.LAT_ABOVE_THR */
680 	INTEL_PST_CONSTRAINT(0x02cd, 0x8),    /* MEM_TRANS_RETIRED.PRECISE_STORES */
681 	/* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
682 	INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c2, 0xf),
683         INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf),    /* MEM_UOP_RETIRED.* */
684         INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf),    /* MEM_LOAD_UOPS_RETIRED.* */
685         INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf),    /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
686         INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf),    /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
687 	/* Allow all events as PEBS with no flags */
688 	INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
689 	EVENT_CONSTRAINT_END
690 };
691 
692 struct event_constraint intel_ivb_pebs_event_constraints[] = {
693         INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
694         INTEL_PLD_CONSTRAINT(0x01cd, 0x8),    /* MEM_TRANS_RETIRED.LAT_ABOVE_THR */
695 	INTEL_PST_CONSTRAINT(0x02cd, 0x8),    /* MEM_TRANS_RETIRED.PRECISE_STORES */
696 	/* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
697 	INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c2, 0xf),
698 	INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf),    /* MEM_UOP_RETIRED.* */
699 	INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf),    /* MEM_LOAD_UOPS_RETIRED.* */
700 	INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf),    /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
701 	INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf),    /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
702 	/* Allow all events as PEBS with no flags */
703 	INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
704         EVENT_CONSTRAINT_END
705 };
706 
707 struct event_constraint intel_hsw_pebs_event_constraints[] = {
708 	INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
709 	INTEL_PLD_CONSTRAINT(0x01cd, 0xf),    /* MEM_TRANS_RETIRED.* */
710 	/* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
711 	INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c2, 0xf),
712 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_NA(0x01c2, 0xf), /* UOPS_RETIRED.ALL */
713 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x11d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_LOADS */
714 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x21d0, 0xf), /* MEM_UOPS_RETIRED.LOCK_LOADS */
715 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x41d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_LOADS */
716 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x81d0, 0xf), /* MEM_UOPS_RETIRED.ALL_LOADS */
717 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x12d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_STORES */
718 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x42d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_STORES */
719 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x82d0, 0xf), /* MEM_UOPS_RETIRED.ALL_STORES */
720 	INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd1, 0xf),    /* MEM_LOAD_UOPS_RETIRED.* */
721 	INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd2, 0xf),    /* MEM_LOAD_UOPS_L3_HIT_RETIRED.* */
722 	INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd3, 0xf),    /* MEM_LOAD_UOPS_L3_MISS_RETIRED.* */
723 	/* Allow all events as PEBS with no flags */
724 	INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
725 	EVENT_CONSTRAINT_END
726 };
727 
728 struct event_constraint intel_skl_pebs_event_constraints[] = {
729 	INTEL_FLAGS_UEVENT_CONSTRAINT(0x1c0, 0x2),	/* INST_RETIRED.PREC_DIST */
730 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_NA(0x01c2, 0xf), /* UOPS_RETIRED.ALL */
731 	/* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
732 	INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c2, 0xf),
733 	INTEL_PLD_CONSTRAINT(0x1cd, 0xf),		      /* MEM_TRANS_RETIRED.* */
734 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_LOADS */
735 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_STORES */
736 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf), /* MEM_INST_RETIRED.LOCK_LOADS */
737 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x22d0, 0xf), /* MEM_INST_RETIRED.LOCK_STORES */
738 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf), /* MEM_INST_RETIRED.SPLIT_LOADS */
739 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf), /* MEM_INST_RETIRED.SPLIT_STORES */
740 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf), /* MEM_INST_RETIRED.ALL_LOADS */
741 	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf), /* MEM_INST_RETIRED.ALL_STORES */
742 	INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd1, 0xf),    /* MEM_LOAD_RETIRED.* */
743 	INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd2, 0xf),    /* MEM_LOAD_L3_HIT_RETIRED.* */
744 	INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd3, 0xf),    /* MEM_LOAD_L3_MISS_RETIRED.* */
745 	/* Allow all events as PEBS with no flags */
746 	INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
747 	EVENT_CONSTRAINT_END
748 };
749 
intel_pebs_constraints(struct perf_event * event)750 struct event_constraint *intel_pebs_constraints(struct perf_event *event)
751 {
752 	struct event_constraint *c;
753 
754 	if (!event->attr.precise_ip)
755 		return NULL;
756 
757 	if (x86_pmu.pebs_constraints) {
758 		for_each_event_constraint(c, x86_pmu.pebs_constraints) {
759 			if ((event->hw.config & c->cmask) == c->code) {
760 				event->hw.flags |= c->flags;
761 				return c;
762 			}
763 		}
764 	}
765 
766 	return &emptyconstraint;
767 }
768 
pebs_is_enabled(struct cpu_hw_events * cpuc)769 static inline bool pebs_is_enabled(struct cpu_hw_events *cpuc)
770 {
771 	return (cpuc->pebs_enabled & ((1ULL << MAX_PEBS_EVENTS) - 1));
772 }
773 
intel_pmu_pebs_enable(struct perf_event * event)774 void intel_pmu_pebs_enable(struct perf_event *event)
775 {
776 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
777 	struct hw_perf_event *hwc = &event->hw;
778 	struct debug_store *ds = cpuc->ds;
779 	bool first_pebs;
780 	u64 threshold;
781 
782 	hwc->config &= ~ARCH_PERFMON_EVENTSEL_INT;
783 
784 	first_pebs = !pebs_is_enabled(cpuc);
785 	cpuc->pebs_enabled |= 1ULL << hwc->idx;
786 
787 	if (event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT)
788 		cpuc->pebs_enabled |= 1ULL << (hwc->idx + 32);
789 	else if (event->hw.flags & PERF_X86_EVENT_PEBS_ST)
790 		cpuc->pebs_enabled |= 1ULL << 63;
791 
792 	/*
793 	 * When the event is constrained enough we can use a larger
794 	 * threshold and run the event with less frequent PMI.
795 	 */
796 	if (hwc->flags & PERF_X86_EVENT_FREERUNNING) {
797 		threshold = ds->pebs_absolute_maximum -
798 			x86_pmu.max_pebs_events * x86_pmu.pebs_record_size;
799 
800 		if (first_pebs)
801 			perf_sched_cb_inc(event->ctx->pmu);
802 	} else {
803 		threshold = ds->pebs_buffer_base + x86_pmu.pebs_record_size;
804 
805 		/*
806 		 * If not all events can use larger buffer,
807 		 * roll back to threshold = 1
808 		 */
809 		if (!first_pebs &&
810 		    (ds->pebs_interrupt_threshold > threshold))
811 			perf_sched_cb_dec(event->ctx->pmu);
812 	}
813 
814 	/* Use auto-reload if possible to save a MSR write in the PMI */
815 	if (hwc->flags & PERF_X86_EVENT_AUTO_RELOAD) {
816 		ds->pebs_event_reset[hwc->idx] =
817 			(u64)(-hwc->sample_period) & x86_pmu.cntval_mask;
818 	}
819 
820 	if (first_pebs || ds->pebs_interrupt_threshold > threshold)
821 		ds->pebs_interrupt_threshold = threshold;
822 }
823 
intel_pmu_pebs_disable(struct perf_event * event)824 void intel_pmu_pebs_disable(struct perf_event *event)
825 {
826 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
827 	struct hw_perf_event *hwc = &event->hw;
828 	struct debug_store *ds = cpuc->ds;
829 	bool large_pebs = ds->pebs_interrupt_threshold >
830 		ds->pebs_buffer_base + x86_pmu.pebs_record_size;
831 
832 	if (large_pebs)
833 		intel_pmu_drain_pebs_buffer();
834 
835 	cpuc->pebs_enabled &= ~(1ULL << hwc->idx);
836 
837 	if (event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT)
838 		cpuc->pebs_enabled &= ~(1ULL << (hwc->idx + 32));
839 	else if (event->hw.flags & PERF_X86_EVENT_PEBS_ST)
840 		cpuc->pebs_enabled &= ~(1ULL << 63);
841 
842 	if (large_pebs && !pebs_is_enabled(cpuc))
843 		perf_sched_cb_dec(event->ctx->pmu);
844 
845 	if (cpuc->enabled)
846 		wrmsrl(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled);
847 
848 	hwc->config |= ARCH_PERFMON_EVENTSEL_INT;
849 }
850 
intel_pmu_pebs_enable_all(void)851 void intel_pmu_pebs_enable_all(void)
852 {
853 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
854 
855 	if (cpuc->pebs_enabled)
856 		wrmsrl(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled);
857 }
858 
intel_pmu_pebs_disable_all(void)859 void intel_pmu_pebs_disable_all(void)
860 {
861 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
862 
863 	if (cpuc->pebs_enabled)
864 		wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
865 }
866 
intel_pmu_pebs_fixup_ip(struct pt_regs * regs)867 static int intel_pmu_pebs_fixup_ip(struct pt_regs *regs)
868 {
869 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
870 	unsigned long from = cpuc->lbr_entries[0].from;
871 	unsigned long old_to, to = cpuc->lbr_entries[0].to;
872 	unsigned long ip = regs->ip;
873 	int is_64bit = 0;
874 	void *kaddr;
875 	int size;
876 
877 	/*
878 	 * We don't need to fixup if the PEBS assist is fault like
879 	 */
880 	if (!x86_pmu.intel_cap.pebs_trap)
881 		return 1;
882 
883 	/*
884 	 * No LBR entry, no basic block, no rewinding
885 	 */
886 	if (!cpuc->lbr_stack.nr || !from || !to)
887 		return 0;
888 
889 	/*
890 	 * Basic blocks should never cross user/kernel boundaries
891 	 */
892 	if (kernel_ip(ip) != kernel_ip(to))
893 		return 0;
894 
895 	/*
896 	 * unsigned math, either ip is before the start (impossible) or
897 	 * the basic block is larger than 1 page (sanity)
898 	 */
899 	if ((ip - to) > PEBS_FIXUP_SIZE)
900 		return 0;
901 
902 	/*
903 	 * We sampled a branch insn, rewind using the LBR stack
904 	 */
905 	if (ip == to) {
906 		set_linear_ip(regs, from);
907 		return 1;
908 	}
909 
910 	size = ip - to;
911 	if (!kernel_ip(ip)) {
912 		int bytes;
913 		u8 *buf = this_cpu_read(insn_buffer);
914 
915 		/* 'size' must fit our buffer, see above */
916 		bytes = copy_from_user_nmi(buf, (void __user *)to, size);
917 		if (bytes != 0)
918 			return 0;
919 
920 		kaddr = buf;
921 	} else {
922 		kaddr = (void *)to;
923 	}
924 
925 	do {
926 		struct insn insn;
927 
928 		old_to = to;
929 
930 #ifdef CONFIG_X86_64
931 		is_64bit = kernel_ip(to) || !test_thread_flag(TIF_IA32);
932 #endif
933 		insn_init(&insn, kaddr, size, is_64bit);
934 		insn_get_length(&insn);
935 		/*
936 		 * Make sure there was not a problem decoding the
937 		 * instruction and getting the length.  This is
938 		 * doubly important because we have an infinite
939 		 * loop if insn.length=0.
940 		 */
941 		if (!insn.length)
942 			break;
943 
944 		to += insn.length;
945 		kaddr += insn.length;
946 		size -= insn.length;
947 	} while (to < ip);
948 
949 	if (to == ip) {
950 		set_linear_ip(regs, old_to);
951 		return 1;
952 	}
953 
954 	/*
955 	 * Even though we decoded the basic block, the instruction stream
956 	 * never matched the given IP, either the TO or the IP got corrupted.
957 	 */
958 	return 0;
959 }
960 
intel_hsw_weight(struct pebs_record_skl * pebs)961 static inline u64 intel_hsw_weight(struct pebs_record_skl *pebs)
962 {
963 	if (pebs->tsx_tuning) {
964 		union hsw_tsx_tuning tsx = { .value = pebs->tsx_tuning };
965 		return tsx.cycles_last_block;
966 	}
967 	return 0;
968 }
969 
intel_hsw_transaction(struct pebs_record_skl * pebs)970 static inline u64 intel_hsw_transaction(struct pebs_record_skl *pebs)
971 {
972 	u64 txn = (pebs->tsx_tuning & PEBS_HSW_TSX_FLAGS) >> 32;
973 
974 	/* For RTM XABORTs also log the abort code from AX */
975 	if ((txn & PERF_TXN_TRANSACTION) && (pebs->ax & 1))
976 		txn |= ((pebs->ax >> 24) & 0xff) << PERF_TXN_ABORT_SHIFT;
977 	return txn;
978 }
979 
setup_pebs_sample_data(struct perf_event * event,struct pt_regs * iregs,void * __pebs,struct perf_sample_data * data,struct pt_regs * regs)980 static void setup_pebs_sample_data(struct perf_event *event,
981 				   struct pt_regs *iregs, void *__pebs,
982 				   struct perf_sample_data *data,
983 				   struct pt_regs *regs)
984 {
985 #define PERF_X86_EVENT_PEBS_HSW_PREC \
986 		(PERF_X86_EVENT_PEBS_ST_HSW | \
987 		 PERF_X86_EVENT_PEBS_LD_HSW | \
988 		 PERF_X86_EVENT_PEBS_NA_HSW)
989 	/*
990 	 * We cast to the biggest pebs_record but are careful not to
991 	 * unconditionally access the 'extra' entries.
992 	 */
993 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
994 	struct pebs_record_skl *pebs = __pebs;
995 	u64 sample_type;
996 	int fll, fst, dsrc;
997 	int fl = event->hw.flags;
998 
999 	if (pebs == NULL)
1000 		return;
1001 
1002 	sample_type = event->attr.sample_type;
1003 	dsrc = sample_type & PERF_SAMPLE_DATA_SRC;
1004 
1005 	fll = fl & PERF_X86_EVENT_PEBS_LDLAT;
1006 	fst = fl & (PERF_X86_EVENT_PEBS_ST | PERF_X86_EVENT_PEBS_HSW_PREC);
1007 
1008 	perf_sample_data_init(data, 0, event->hw.last_period);
1009 
1010 	data->period = event->hw.last_period;
1011 
1012 	/*
1013 	 * Use latency for weight (only avail with PEBS-LL)
1014 	 */
1015 	if (fll && (sample_type & PERF_SAMPLE_WEIGHT))
1016 		data->weight = pebs->lat;
1017 
1018 	/*
1019 	 * data.data_src encodes the data source
1020 	 */
1021 	if (dsrc) {
1022 		u64 val = PERF_MEM_NA;
1023 		if (fll)
1024 			val = load_latency_data(pebs->dse);
1025 		else if (fst && (fl & PERF_X86_EVENT_PEBS_HSW_PREC))
1026 			val = precise_datala_hsw(event, pebs->dse);
1027 		else if (fst)
1028 			val = precise_store_data(pebs->dse);
1029 		data->data_src.val = val;
1030 	}
1031 
1032 	/*
1033 	 * We use the interrupt regs as a base because the PEBS record
1034 	 * does not contain a full regs set, specifically it seems to
1035 	 * lack segment descriptors, which get used by things like
1036 	 * user_mode().
1037 	 *
1038 	 * In the simple case fix up only the IP and BP,SP regs, for
1039 	 * PERF_SAMPLE_IP and PERF_SAMPLE_CALLCHAIN to function properly.
1040 	 * A possible PERF_SAMPLE_REGS will have to transfer all regs.
1041 	 */
1042 	*regs = *iregs;
1043 	regs->flags = pebs->flags;
1044 	set_linear_ip(regs, pebs->ip);
1045 	regs->bp = pebs->bp;
1046 	regs->sp = pebs->sp;
1047 
1048 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
1049 		regs->ax = pebs->ax;
1050 		regs->bx = pebs->bx;
1051 		regs->cx = pebs->cx;
1052 		regs->dx = pebs->dx;
1053 		regs->si = pebs->si;
1054 		regs->di = pebs->di;
1055 		regs->bp = pebs->bp;
1056 		regs->sp = pebs->sp;
1057 
1058 		regs->flags = pebs->flags;
1059 #ifndef CONFIG_X86_32
1060 		regs->r8 = pebs->r8;
1061 		regs->r9 = pebs->r9;
1062 		regs->r10 = pebs->r10;
1063 		regs->r11 = pebs->r11;
1064 		regs->r12 = pebs->r12;
1065 		regs->r13 = pebs->r13;
1066 		regs->r14 = pebs->r14;
1067 		regs->r15 = pebs->r15;
1068 #endif
1069 	}
1070 
1071 	if (event->attr.precise_ip > 1 && x86_pmu.intel_cap.pebs_format >= 2) {
1072 		regs->ip = pebs->real_ip;
1073 		regs->flags |= PERF_EFLAGS_EXACT;
1074 	} else if (event->attr.precise_ip > 1 && intel_pmu_pebs_fixup_ip(regs))
1075 		regs->flags |= PERF_EFLAGS_EXACT;
1076 	else
1077 		regs->flags &= ~PERF_EFLAGS_EXACT;
1078 
1079 	if ((sample_type & PERF_SAMPLE_ADDR) &&
1080 	    x86_pmu.intel_cap.pebs_format >= 1)
1081 		data->addr = pebs->dla;
1082 
1083 	if (x86_pmu.intel_cap.pebs_format >= 2) {
1084 		/* Only set the TSX weight when no memory weight. */
1085 		if ((sample_type & PERF_SAMPLE_WEIGHT) && !fll)
1086 			data->weight = intel_hsw_weight(pebs);
1087 
1088 		if (sample_type & PERF_SAMPLE_TRANSACTION)
1089 			data->txn = intel_hsw_transaction(pebs);
1090 	}
1091 
1092 	/*
1093 	 * v3 supplies an accurate time stamp, so we use that
1094 	 * for the time stamp.
1095 	 *
1096 	 * We can only do this for the default trace clock.
1097 	 */
1098 	if (x86_pmu.intel_cap.pebs_format >= 3 &&
1099 		event->attr.use_clockid == 0)
1100 		data->time = native_sched_clock_from_tsc(pebs->tsc);
1101 
1102 	if (has_branch_stack(event))
1103 		data->br_stack = &cpuc->lbr_stack;
1104 }
1105 
1106 static inline void *
get_next_pebs_record_by_bit(void * base,void * top,int bit)1107 get_next_pebs_record_by_bit(void *base, void *top, int bit)
1108 {
1109 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1110 	void *at;
1111 	u64 pebs_status;
1112 
1113 	if (base == NULL)
1114 		return NULL;
1115 
1116 	for (at = base; at < top; at += x86_pmu.pebs_record_size) {
1117 		struct pebs_record_nhm *p = at;
1118 
1119 		if (test_bit(bit, (unsigned long *)&p->status)) {
1120 			/* PEBS v3 has accurate status bits */
1121 			if (x86_pmu.intel_cap.pebs_format >= 3)
1122 				return at;
1123 
1124 			if (p->status == (1 << bit))
1125 				return at;
1126 
1127 			/* clear non-PEBS bit and re-check */
1128 			pebs_status = p->status & cpuc->pebs_enabled;
1129 			pebs_status &= (1ULL << MAX_PEBS_EVENTS) - 1;
1130 			if (pebs_status == (1 << bit))
1131 				return at;
1132 		}
1133 	}
1134 	return NULL;
1135 }
1136 
__intel_pmu_pebs_event(struct perf_event * event,struct pt_regs * iregs,void * base,void * top,int bit,int count)1137 static void __intel_pmu_pebs_event(struct perf_event *event,
1138 				   struct pt_regs *iregs,
1139 				   void *base, void *top,
1140 				   int bit, int count)
1141 {
1142 	struct perf_sample_data data;
1143 	struct pt_regs regs;
1144 	void *at = get_next_pebs_record_by_bit(base, top, bit);
1145 
1146 	if (!intel_pmu_save_and_restart(event) &&
1147 	    !(event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD))
1148 		return;
1149 
1150 	while (count > 1) {
1151 		setup_pebs_sample_data(event, iregs, at, &data, &regs);
1152 		perf_event_output(event, &data, &regs);
1153 		at += x86_pmu.pebs_record_size;
1154 		at = get_next_pebs_record_by_bit(at, top, bit);
1155 		count--;
1156 	}
1157 
1158 	setup_pebs_sample_data(event, iregs, at, &data, &regs);
1159 
1160 	/*
1161 	 * All but the last records are processed.
1162 	 * The last one is left to be able to call the overflow handler.
1163 	 */
1164 	if (perf_event_overflow(event, &data, &regs)) {
1165 		x86_pmu_stop(event, 0);
1166 		return;
1167 	}
1168 
1169 }
1170 
intel_pmu_drain_pebs_core(struct pt_regs * iregs)1171 static void intel_pmu_drain_pebs_core(struct pt_regs *iregs)
1172 {
1173 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1174 	struct debug_store *ds = cpuc->ds;
1175 	struct perf_event *event = cpuc->events[0]; /* PMC0 only */
1176 	struct pebs_record_core *at, *top;
1177 	int n;
1178 
1179 	if (!x86_pmu.pebs_active)
1180 		return;
1181 
1182 	at  = (struct pebs_record_core *)(unsigned long)ds->pebs_buffer_base;
1183 	top = (struct pebs_record_core *)(unsigned long)ds->pebs_index;
1184 
1185 	/*
1186 	 * Whatever else happens, drain the thing
1187 	 */
1188 	ds->pebs_index = ds->pebs_buffer_base;
1189 
1190 	if (!test_bit(0, cpuc->active_mask))
1191 		return;
1192 
1193 	WARN_ON_ONCE(!event);
1194 
1195 	if (!event->attr.precise_ip)
1196 		return;
1197 
1198 	n = (top - at) / x86_pmu.pebs_record_size;
1199 	if (n <= 0)
1200 		return;
1201 
1202 	__intel_pmu_pebs_event(event, iregs, at, top, 0, n);
1203 }
1204 
intel_pmu_drain_pebs_nhm(struct pt_regs * iregs)1205 static void intel_pmu_drain_pebs_nhm(struct pt_regs *iregs)
1206 {
1207 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1208 	struct debug_store *ds = cpuc->ds;
1209 	struct perf_event *event;
1210 	void *base, *at, *top;
1211 	short counts[MAX_PEBS_EVENTS] = {};
1212 	short error[MAX_PEBS_EVENTS] = {};
1213 	int bit, i;
1214 
1215 	if (!x86_pmu.pebs_active)
1216 		return;
1217 
1218 	base = (struct pebs_record_nhm *)(unsigned long)ds->pebs_buffer_base;
1219 	top = (struct pebs_record_nhm *)(unsigned long)ds->pebs_index;
1220 
1221 	ds->pebs_index = ds->pebs_buffer_base;
1222 
1223 	if (unlikely(base >= top))
1224 		return;
1225 
1226 	for (at = base; at < top; at += x86_pmu.pebs_record_size) {
1227 		struct pebs_record_nhm *p = at;
1228 		u64 pebs_status;
1229 
1230 		/* PEBS v3 has accurate status bits */
1231 		if (x86_pmu.intel_cap.pebs_format >= 3) {
1232 			for_each_set_bit(bit, (unsigned long *)&p->status,
1233 					 MAX_PEBS_EVENTS)
1234 				counts[bit]++;
1235 
1236 			continue;
1237 		}
1238 
1239 		pebs_status = p->status & cpuc->pebs_enabled;
1240 		pebs_status &= (1ULL << x86_pmu.max_pebs_events) - 1;
1241 
1242 		bit = find_first_bit((unsigned long *)&pebs_status,
1243 					x86_pmu.max_pebs_events);
1244 		if (WARN(bit >= x86_pmu.max_pebs_events,
1245 			 "PEBS record without PEBS event! status=%Lx pebs_enabled=%Lx active_mask=%Lx",
1246 			 (unsigned long long)p->status, (unsigned long long)cpuc->pebs_enabled,
1247 			 *(unsigned long long *)cpuc->active_mask))
1248 			continue;
1249 
1250 		/*
1251 		 * The PEBS hardware does not deal well with the situation
1252 		 * when events happen near to each other and multiple bits
1253 		 * are set. But it should happen rarely.
1254 		 *
1255 		 * If these events include one PEBS and multiple non-PEBS
1256 		 * events, it doesn't impact PEBS record. The record will
1257 		 * be handled normally. (slow path)
1258 		 *
1259 		 * If these events include two or more PEBS events, the
1260 		 * records for the events can be collapsed into a single
1261 		 * one, and it's not possible to reconstruct all events
1262 		 * that caused the PEBS record. It's called collision.
1263 		 * If collision happened, the record will be dropped.
1264 		 */
1265 		if (p->status != (1ULL << bit)) {
1266 			for_each_set_bit(i, (unsigned long *)&pebs_status,
1267 					 x86_pmu.max_pebs_events)
1268 				error[i]++;
1269 			continue;
1270 		}
1271 
1272 		counts[bit]++;
1273 	}
1274 
1275 	for (bit = 0; bit < x86_pmu.max_pebs_events; bit++) {
1276 		if ((counts[bit] == 0) && (error[bit] == 0))
1277 			continue;
1278 
1279 		event = cpuc->events[bit];
1280 		WARN_ON_ONCE(!event);
1281 		WARN_ON_ONCE(!event->attr.precise_ip);
1282 
1283 		/* log dropped samples number */
1284 		if (error[bit])
1285 			perf_log_lost_samples(event, error[bit]);
1286 
1287 		if (counts[bit]) {
1288 			__intel_pmu_pebs_event(event, iregs, base,
1289 					       top, bit, counts[bit]);
1290 		}
1291 	}
1292 }
1293 
1294 /*
1295  * BTS, PEBS probe and setup
1296  */
1297 
intel_ds_init(void)1298 void __init intel_ds_init(void)
1299 {
1300 	/*
1301 	 * No support for 32bit formats
1302 	 */
1303 	if (!boot_cpu_has(X86_FEATURE_DTES64))
1304 		return;
1305 
1306 	x86_pmu.bts  = boot_cpu_has(X86_FEATURE_BTS);
1307 	x86_pmu.pebs = boot_cpu_has(X86_FEATURE_PEBS);
1308 	x86_pmu.pebs_buffer_size = PEBS_BUFFER_SIZE;
1309 	if (x86_pmu.pebs) {
1310 		char pebs_type = x86_pmu.intel_cap.pebs_trap ?  '+' : '-';
1311 		int format = x86_pmu.intel_cap.pebs_format;
1312 
1313 		switch (format) {
1314 		case 0:
1315 			printk(KERN_CONT "PEBS fmt0%c, ", pebs_type);
1316 			x86_pmu.pebs_record_size = sizeof(struct pebs_record_core);
1317 			/*
1318 			 * Using >PAGE_SIZE buffers makes the WRMSR to
1319 			 * PERF_GLOBAL_CTRL in intel_pmu_enable_all()
1320 			 * mysteriously hang on Core2.
1321 			 *
1322 			 * As a workaround, we don't do this.
1323 			 */
1324 			x86_pmu.pebs_buffer_size = PAGE_SIZE;
1325 			x86_pmu.drain_pebs = intel_pmu_drain_pebs_core;
1326 			break;
1327 
1328 		case 1:
1329 			printk(KERN_CONT "PEBS fmt1%c, ", pebs_type);
1330 			x86_pmu.pebs_record_size = sizeof(struct pebs_record_nhm);
1331 			x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm;
1332 			break;
1333 
1334 		case 2:
1335 			pr_cont("PEBS fmt2%c, ", pebs_type);
1336 			x86_pmu.pebs_record_size = sizeof(struct pebs_record_hsw);
1337 			x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm;
1338 			break;
1339 
1340 		case 3:
1341 			pr_cont("PEBS fmt3%c, ", pebs_type);
1342 			x86_pmu.pebs_record_size =
1343 						sizeof(struct pebs_record_skl);
1344 			x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm;
1345 			x86_pmu.free_running_flags |= PERF_SAMPLE_TIME;
1346 			break;
1347 
1348 		default:
1349 			printk(KERN_CONT "no PEBS fmt%d%c, ", format, pebs_type);
1350 			x86_pmu.pebs = 0;
1351 		}
1352 	}
1353 }
1354 
perf_restore_debug_store(void)1355 void perf_restore_debug_store(void)
1356 {
1357 	struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
1358 
1359 	if (!x86_pmu.bts && !x86_pmu.pebs)
1360 		return;
1361 
1362 	wrmsrl(MSR_IA32_DS_AREA, (unsigned long)ds);
1363 }
1364