1 /*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_atomic.h>
41 #include <drm/drm_atomic_helper.h>
42 #include <drm/drm_dp_helper.h>
43 #include <drm/drm_crtc_helper.h>
44 #include <drm/drm_plane_helper.h>
45 #include <drm/drm_rect.h>
46 #include <linux/dma_remapping.h>
47
48 /* Primary plane formats supported by all gen */
49 #define COMMON_PRIMARY_FORMATS \
50 DRM_FORMAT_C8, \
51 DRM_FORMAT_RGB565, \
52 DRM_FORMAT_XRGB8888, \
53 DRM_FORMAT_ARGB8888
54
55 /* Primary plane formats for gen <= 3 */
56 static const uint32_t intel_primary_formats_gen2[] = {
57 COMMON_PRIMARY_FORMATS,
58 DRM_FORMAT_XRGB1555,
59 DRM_FORMAT_ARGB1555,
60 };
61
62 /* Primary plane formats for gen >= 4 */
63 static const uint32_t intel_primary_formats_gen4[] = {
64 COMMON_PRIMARY_FORMATS, \
65 DRM_FORMAT_XBGR8888,
66 DRM_FORMAT_ABGR8888,
67 DRM_FORMAT_XRGB2101010,
68 DRM_FORMAT_ARGB2101010,
69 DRM_FORMAT_XBGR2101010,
70 DRM_FORMAT_ABGR2101010,
71 };
72
73 /* Cursor formats */
74 static const uint32_t intel_cursor_formats[] = {
75 DRM_FORMAT_ARGB8888,
76 };
77
78 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
79
80 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
81 struct intel_crtc_state *pipe_config);
82 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
83 struct intel_crtc_state *pipe_config);
84
85 static int intel_set_mode(struct drm_crtc *crtc, struct drm_display_mode *mode,
86 int x, int y, struct drm_framebuffer *old_fb,
87 struct drm_atomic_state *state);
88 static int intel_framebuffer_init(struct drm_device *dev,
89 struct intel_framebuffer *ifb,
90 struct drm_mode_fb_cmd2 *mode_cmd,
91 struct drm_i915_gem_object *obj);
92 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
93 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
94 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
95 struct intel_link_m_n *m_n,
96 struct intel_link_m_n *m2_n2);
97 static void ironlake_set_pipeconf(struct drm_crtc *crtc);
98 static void haswell_set_pipeconf(struct drm_crtc *crtc);
99 static void intel_set_pipe_csc(struct drm_crtc *crtc);
100 static void vlv_prepare_pll(struct intel_crtc *crtc,
101 const struct intel_crtc_state *pipe_config);
102 static void chv_prepare_pll(struct intel_crtc *crtc,
103 const struct intel_crtc_state *pipe_config);
104 static void intel_begin_crtc_commit(struct drm_crtc *crtc);
105 static void intel_finish_crtc_commit(struct drm_crtc *crtc);
106
intel_find_encoder(struct intel_connector * connector,int pipe)107 static struct intel_encoder *intel_find_encoder(struct intel_connector *connector, int pipe)
108 {
109 if (!connector->mst_port)
110 return connector->encoder;
111 else
112 return &connector->mst_port->mst_encoders[pipe]->base;
113 }
114
115 typedef struct {
116 int min, max;
117 } intel_range_t;
118
119 typedef struct {
120 int dot_limit;
121 int p2_slow, p2_fast;
122 } intel_p2_t;
123
124 typedef struct intel_limit intel_limit_t;
125 struct intel_limit {
126 intel_range_t dot, vco, n, m, m1, m2, p, p1;
127 intel_p2_t p2;
128 };
129
130 int
intel_pch_rawclk(struct drm_device * dev)131 intel_pch_rawclk(struct drm_device *dev)
132 {
133 struct drm_i915_private *dev_priv = dev->dev_private;
134
135 WARN_ON(!HAS_PCH_SPLIT(dev));
136
137 return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
138 }
139
140 static inline u32 /* units of 100MHz */
intel_fdi_link_freq(struct drm_device * dev)141 intel_fdi_link_freq(struct drm_device *dev)
142 {
143 if (IS_GEN5(dev)) {
144 struct drm_i915_private *dev_priv = dev->dev_private;
145 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
146 } else
147 return 27;
148 }
149
150 static const intel_limit_t intel_limits_i8xx_dac = {
151 .dot = { .min = 25000, .max = 350000 },
152 .vco = { .min = 908000, .max = 1512000 },
153 .n = { .min = 2, .max = 16 },
154 .m = { .min = 96, .max = 140 },
155 .m1 = { .min = 18, .max = 26 },
156 .m2 = { .min = 6, .max = 16 },
157 .p = { .min = 4, .max = 128 },
158 .p1 = { .min = 2, .max = 33 },
159 .p2 = { .dot_limit = 165000,
160 .p2_slow = 4, .p2_fast = 2 },
161 };
162
163 static const intel_limit_t intel_limits_i8xx_dvo = {
164 .dot = { .min = 25000, .max = 350000 },
165 .vco = { .min = 908000, .max = 1512000 },
166 .n = { .min = 2, .max = 16 },
167 .m = { .min = 96, .max = 140 },
168 .m1 = { .min = 18, .max = 26 },
169 .m2 = { .min = 6, .max = 16 },
170 .p = { .min = 4, .max = 128 },
171 .p1 = { .min = 2, .max = 33 },
172 .p2 = { .dot_limit = 165000,
173 .p2_slow = 4, .p2_fast = 4 },
174 };
175
176 static const intel_limit_t intel_limits_i8xx_lvds = {
177 .dot = { .min = 25000, .max = 350000 },
178 .vco = { .min = 908000, .max = 1512000 },
179 .n = { .min = 2, .max = 16 },
180 .m = { .min = 96, .max = 140 },
181 .m1 = { .min = 18, .max = 26 },
182 .m2 = { .min = 6, .max = 16 },
183 .p = { .min = 4, .max = 128 },
184 .p1 = { .min = 1, .max = 6 },
185 .p2 = { .dot_limit = 165000,
186 .p2_slow = 14, .p2_fast = 7 },
187 };
188
189 static const intel_limit_t intel_limits_i9xx_sdvo = {
190 .dot = { .min = 20000, .max = 400000 },
191 .vco = { .min = 1400000, .max = 2800000 },
192 .n = { .min = 1, .max = 6 },
193 .m = { .min = 70, .max = 120 },
194 .m1 = { .min = 8, .max = 18 },
195 .m2 = { .min = 3, .max = 7 },
196 .p = { .min = 5, .max = 80 },
197 .p1 = { .min = 1, .max = 8 },
198 .p2 = { .dot_limit = 200000,
199 .p2_slow = 10, .p2_fast = 5 },
200 };
201
202 static const intel_limit_t intel_limits_i9xx_lvds = {
203 .dot = { .min = 20000, .max = 400000 },
204 .vco = { .min = 1400000, .max = 2800000 },
205 .n = { .min = 1, .max = 6 },
206 .m = { .min = 70, .max = 120 },
207 .m1 = { .min = 8, .max = 18 },
208 .m2 = { .min = 3, .max = 7 },
209 .p = { .min = 7, .max = 98 },
210 .p1 = { .min = 1, .max = 8 },
211 .p2 = { .dot_limit = 112000,
212 .p2_slow = 14, .p2_fast = 7 },
213 };
214
215
216 static const intel_limit_t intel_limits_g4x_sdvo = {
217 .dot = { .min = 25000, .max = 270000 },
218 .vco = { .min = 1750000, .max = 3500000},
219 .n = { .min = 1, .max = 4 },
220 .m = { .min = 104, .max = 138 },
221 .m1 = { .min = 17, .max = 23 },
222 .m2 = { .min = 5, .max = 11 },
223 .p = { .min = 10, .max = 30 },
224 .p1 = { .min = 1, .max = 3},
225 .p2 = { .dot_limit = 270000,
226 .p2_slow = 10,
227 .p2_fast = 10
228 },
229 };
230
231 static const intel_limit_t intel_limits_g4x_hdmi = {
232 .dot = { .min = 22000, .max = 400000 },
233 .vco = { .min = 1750000, .max = 3500000},
234 .n = { .min = 1, .max = 4 },
235 .m = { .min = 104, .max = 138 },
236 .m1 = { .min = 16, .max = 23 },
237 .m2 = { .min = 5, .max = 11 },
238 .p = { .min = 5, .max = 80 },
239 .p1 = { .min = 1, .max = 8},
240 .p2 = { .dot_limit = 165000,
241 .p2_slow = 10, .p2_fast = 5 },
242 };
243
244 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
245 .dot = { .min = 20000, .max = 115000 },
246 .vco = { .min = 1750000, .max = 3500000 },
247 .n = { .min = 1, .max = 3 },
248 .m = { .min = 104, .max = 138 },
249 .m1 = { .min = 17, .max = 23 },
250 .m2 = { .min = 5, .max = 11 },
251 .p = { .min = 28, .max = 112 },
252 .p1 = { .min = 2, .max = 8 },
253 .p2 = { .dot_limit = 0,
254 .p2_slow = 14, .p2_fast = 14
255 },
256 };
257
258 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
259 .dot = { .min = 80000, .max = 224000 },
260 .vco = { .min = 1750000, .max = 3500000 },
261 .n = { .min = 1, .max = 3 },
262 .m = { .min = 104, .max = 138 },
263 .m1 = { .min = 17, .max = 23 },
264 .m2 = { .min = 5, .max = 11 },
265 .p = { .min = 14, .max = 42 },
266 .p1 = { .min = 2, .max = 6 },
267 .p2 = { .dot_limit = 0,
268 .p2_slow = 7, .p2_fast = 7
269 },
270 };
271
272 static const intel_limit_t intel_limits_pineview_sdvo = {
273 .dot = { .min = 20000, .max = 400000},
274 .vco = { .min = 1700000, .max = 3500000 },
275 /* Pineview's Ncounter is a ring counter */
276 .n = { .min = 3, .max = 6 },
277 .m = { .min = 2, .max = 256 },
278 /* Pineview only has one combined m divider, which we treat as m2. */
279 .m1 = { .min = 0, .max = 0 },
280 .m2 = { .min = 0, .max = 254 },
281 .p = { .min = 5, .max = 80 },
282 .p1 = { .min = 1, .max = 8 },
283 .p2 = { .dot_limit = 200000,
284 .p2_slow = 10, .p2_fast = 5 },
285 };
286
287 static const intel_limit_t intel_limits_pineview_lvds = {
288 .dot = { .min = 20000, .max = 400000 },
289 .vco = { .min = 1700000, .max = 3500000 },
290 .n = { .min = 3, .max = 6 },
291 .m = { .min = 2, .max = 256 },
292 .m1 = { .min = 0, .max = 0 },
293 .m2 = { .min = 0, .max = 254 },
294 .p = { .min = 7, .max = 112 },
295 .p1 = { .min = 1, .max = 8 },
296 .p2 = { .dot_limit = 112000,
297 .p2_slow = 14, .p2_fast = 14 },
298 };
299
300 /* Ironlake / Sandybridge
301 *
302 * We calculate clock using (register_value + 2) for N/M1/M2, so here
303 * the range value for them is (actual_value - 2).
304 */
305 static const intel_limit_t intel_limits_ironlake_dac = {
306 .dot = { .min = 25000, .max = 350000 },
307 .vco = { .min = 1760000, .max = 3510000 },
308 .n = { .min = 1, .max = 5 },
309 .m = { .min = 79, .max = 127 },
310 .m1 = { .min = 12, .max = 22 },
311 .m2 = { .min = 5, .max = 9 },
312 .p = { .min = 5, .max = 80 },
313 .p1 = { .min = 1, .max = 8 },
314 .p2 = { .dot_limit = 225000,
315 .p2_slow = 10, .p2_fast = 5 },
316 };
317
318 static const intel_limit_t intel_limits_ironlake_single_lvds = {
319 .dot = { .min = 25000, .max = 350000 },
320 .vco = { .min = 1760000, .max = 3510000 },
321 .n = { .min = 1, .max = 3 },
322 .m = { .min = 79, .max = 118 },
323 .m1 = { .min = 12, .max = 22 },
324 .m2 = { .min = 5, .max = 9 },
325 .p = { .min = 28, .max = 112 },
326 .p1 = { .min = 2, .max = 8 },
327 .p2 = { .dot_limit = 225000,
328 .p2_slow = 14, .p2_fast = 14 },
329 };
330
331 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
332 .dot = { .min = 25000, .max = 350000 },
333 .vco = { .min = 1760000, .max = 3510000 },
334 .n = { .min = 1, .max = 3 },
335 .m = { .min = 79, .max = 127 },
336 .m1 = { .min = 12, .max = 22 },
337 .m2 = { .min = 5, .max = 9 },
338 .p = { .min = 14, .max = 56 },
339 .p1 = { .min = 2, .max = 8 },
340 .p2 = { .dot_limit = 225000,
341 .p2_slow = 7, .p2_fast = 7 },
342 };
343
344 /* LVDS 100mhz refclk limits. */
345 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
346 .dot = { .min = 25000, .max = 350000 },
347 .vco = { .min = 1760000, .max = 3510000 },
348 .n = { .min = 1, .max = 2 },
349 .m = { .min = 79, .max = 126 },
350 .m1 = { .min = 12, .max = 22 },
351 .m2 = { .min = 5, .max = 9 },
352 .p = { .min = 28, .max = 112 },
353 .p1 = { .min = 2, .max = 8 },
354 .p2 = { .dot_limit = 225000,
355 .p2_slow = 14, .p2_fast = 14 },
356 };
357
358 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
359 .dot = { .min = 25000, .max = 350000 },
360 .vco = { .min = 1760000, .max = 3510000 },
361 .n = { .min = 1, .max = 3 },
362 .m = { .min = 79, .max = 126 },
363 .m1 = { .min = 12, .max = 22 },
364 .m2 = { .min = 5, .max = 9 },
365 .p = { .min = 14, .max = 42 },
366 .p1 = { .min = 2, .max = 6 },
367 .p2 = { .dot_limit = 225000,
368 .p2_slow = 7, .p2_fast = 7 },
369 };
370
371 static const intel_limit_t intel_limits_vlv = {
372 /*
373 * These are the data rate limits (measured in fast clocks)
374 * since those are the strictest limits we have. The fast
375 * clock and actual rate limits are more relaxed, so checking
376 * them would make no difference.
377 */
378 .dot = { .min = 25000 * 5, .max = 270000 * 5 },
379 .vco = { .min = 4000000, .max = 6000000 },
380 .n = { .min = 1, .max = 7 },
381 .m1 = { .min = 2, .max = 3 },
382 .m2 = { .min = 11, .max = 156 },
383 .p1 = { .min = 2, .max = 3 },
384 .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
385 };
386
387 static const intel_limit_t intel_limits_chv = {
388 /*
389 * These are the data rate limits (measured in fast clocks)
390 * since those are the strictest limits we have. The fast
391 * clock and actual rate limits are more relaxed, so checking
392 * them would make no difference.
393 */
394 .dot = { .min = 25000 * 5, .max = 540000 * 5},
395 .vco = { .min = 4800000, .max = 6480000 },
396 .n = { .min = 1, .max = 1 },
397 .m1 = { .min = 2, .max = 2 },
398 .m2 = { .min = 24 << 22, .max = 175 << 22 },
399 .p1 = { .min = 2, .max = 4 },
400 .p2 = { .p2_slow = 1, .p2_fast = 14 },
401 };
402
vlv_clock(int refclk,intel_clock_t * clock)403 static void vlv_clock(int refclk, intel_clock_t *clock)
404 {
405 clock->m = clock->m1 * clock->m2;
406 clock->p = clock->p1 * clock->p2;
407 if (WARN_ON(clock->n == 0 || clock->p == 0))
408 return;
409 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
410 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
411 }
412
413 /**
414 * Returns whether any output on the specified pipe is of the specified type
415 */
intel_pipe_has_type(struct intel_crtc * crtc,enum intel_output_type type)416 bool intel_pipe_has_type(struct intel_crtc *crtc, enum intel_output_type type)
417 {
418 struct drm_device *dev = crtc->base.dev;
419 struct intel_encoder *encoder;
420
421 for_each_encoder_on_crtc(dev, &crtc->base, encoder)
422 if (encoder->type == type)
423 return true;
424
425 return false;
426 }
427
428 /**
429 * Returns whether any output on the specified pipe will have the specified
430 * type after a staged modeset is complete, i.e., the same as
431 * intel_pipe_has_type() but looking at encoder->new_crtc instead of
432 * encoder->crtc.
433 */
intel_pipe_will_have_type(const struct intel_crtc_state * crtc_state,int type)434 static bool intel_pipe_will_have_type(const struct intel_crtc_state *crtc_state,
435 int type)
436 {
437 struct drm_atomic_state *state = crtc_state->base.state;
438 struct drm_connector_state *connector_state;
439 struct intel_encoder *encoder;
440 int i, num_connectors = 0;
441
442 for (i = 0; i < state->num_connector; i++) {
443 if (!state->connectors[i])
444 continue;
445
446 connector_state = state->connector_states[i];
447 if (connector_state->crtc != crtc_state->base.crtc)
448 continue;
449
450 num_connectors++;
451
452 encoder = to_intel_encoder(connector_state->best_encoder);
453 if (encoder->type == type)
454 return true;
455 }
456
457 WARN_ON(num_connectors == 0);
458
459 return false;
460 }
461
462 static const intel_limit_t *
intel_ironlake_limit(struct intel_crtc_state * crtc_state,int refclk)463 intel_ironlake_limit(struct intel_crtc_state *crtc_state, int refclk)
464 {
465 struct drm_device *dev = crtc_state->base.crtc->dev;
466 const intel_limit_t *limit;
467
468 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
469 if (intel_is_dual_link_lvds(dev)) {
470 if (refclk == 100000)
471 limit = &intel_limits_ironlake_dual_lvds_100m;
472 else
473 limit = &intel_limits_ironlake_dual_lvds;
474 } else {
475 if (refclk == 100000)
476 limit = &intel_limits_ironlake_single_lvds_100m;
477 else
478 limit = &intel_limits_ironlake_single_lvds;
479 }
480 } else
481 limit = &intel_limits_ironlake_dac;
482
483 return limit;
484 }
485
486 static const intel_limit_t *
intel_g4x_limit(struct intel_crtc_state * crtc_state)487 intel_g4x_limit(struct intel_crtc_state *crtc_state)
488 {
489 struct drm_device *dev = crtc_state->base.crtc->dev;
490 const intel_limit_t *limit;
491
492 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
493 if (intel_is_dual_link_lvds(dev))
494 limit = &intel_limits_g4x_dual_channel_lvds;
495 else
496 limit = &intel_limits_g4x_single_channel_lvds;
497 } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI) ||
498 intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_ANALOG)) {
499 limit = &intel_limits_g4x_hdmi;
500 } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO)) {
501 limit = &intel_limits_g4x_sdvo;
502 } else /* The option is for other outputs */
503 limit = &intel_limits_i9xx_sdvo;
504
505 return limit;
506 }
507
508 static const intel_limit_t *
intel_limit(struct intel_crtc_state * crtc_state,int refclk)509 intel_limit(struct intel_crtc_state *crtc_state, int refclk)
510 {
511 struct drm_device *dev = crtc_state->base.crtc->dev;
512 const intel_limit_t *limit;
513
514 if (HAS_PCH_SPLIT(dev))
515 limit = intel_ironlake_limit(crtc_state, refclk);
516 else if (IS_G4X(dev)) {
517 limit = intel_g4x_limit(crtc_state);
518 } else if (IS_PINEVIEW(dev)) {
519 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
520 limit = &intel_limits_pineview_lvds;
521 else
522 limit = &intel_limits_pineview_sdvo;
523 } else if (IS_CHERRYVIEW(dev)) {
524 limit = &intel_limits_chv;
525 } else if (IS_VALLEYVIEW(dev)) {
526 limit = &intel_limits_vlv;
527 } else if (!IS_GEN2(dev)) {
528 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
529 limit = &intel_limits_i9xx_lvds;
530 else
531 limit = &intel_limits_i9xx_sdvo;
532 } else {
533 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
534 limit = &intel_limits_i8xx_lvds;
535 else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO))
536 limit = &intel_limits_i8xx_dvo;
537 else
538 limit = &intel_limits_i8xx_dac;
539 }
540 return limit;
541 }
542
543 /* m1 is reserved as 0 in Pineview, n is a ring counter */
pineview_clock(int refclk,intel_clock_t * clock)544 static void pineview_clock(int refclk, intel_clock_t *clock)
545 {
546 clock->m = clock->m2 + 2;
547 clock->p = clock->p1 * clock->p2;
548 if (WARN_ON(clock->n == 0 || clock->p == 0))
549 return;
550 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
551 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
552 }
553
i9xx_dpll_compute_m(struct dpll * dpll)554 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
555 {
556 return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
557 }
558
i9xx_clock(int refclk,intel_clock_t * clock)559 static void i9xx_clock(int refclk, intel_clock_t *clock)
560 {
561 clock->m = i9xx_dpll_compute_m(clock);
562 clock->p = clock->p1 * clock->p2;
563 if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
564 return;
565 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
566 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
567 }
568
chv_clock(int refclk,intel_clock_t * clock)569 static void chv_clock(int refclk, intel_clock_t *clock)
570 {
571 clock->m = clock->m1 * clock->m2;
572 clock->p = clock->p1 * clock->p2;
573 if (WARN_ON(clock->n == 0 || clock->p == 0))
574 return;
575 clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
576 clock->n << 22);
577 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
578 }
579
580 #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
581 /**
582 * Returns whether the given set of divisors are valid for a given refclk with
583 * the given connectors.
584 */
585
intel_PLL_is_valid(struct drm_device * dev,const intel_limit_t * limit,const intel_clock_t * clock)586 static bool intel_PLL_is_valid(struct drm_device *dev,
587 const intel_limit_t *limit,
588 const intel_clock_t *clock)
589 {
590 if (clock->n < limit->n.min || limit->n.max < clock->n)
591 INTELPllInvalid("n out of range\n");
592 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
593 INTELPllInvalid("p1 out of range\n");
594 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
595 INTELPllInvalid("m2 out of range\n");
596 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
597 INTELPllInvalid("m1 out of range\n");
598
599 if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev))
600 if (clock->m1 <= clock->m2)
601 INTELPllInvalid("m1 <= m2\n");
602
603 if (!IS_VALLEYVIEW(dev)) {
604 if (clock->p < limit->p.min || limit->p.max < clock->p)
605 INTELPllInvalid("p out of range\n");
606 if (clock->m < limit->m.min || limit->m.max < clock->m)
607 INTELPllInvalid("m out of range\n");
608 }
609
610 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
611 INTELPllInvalid("vco out of range\n");
612 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
613 * connector, etc., rather than just a single range.
614 */
615 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
616 INTELPllInvalid("dot out of range\n");
617
618 return true;
619 }
620
621 static bool
i9xx_find_best_dpll(const intel_limit_t * limit,struct intel_crtc_state * crtc_state,int target,int refclk,intel_clock_t * match_clock,intel_clock_t * best_clock)622 i9xx_find_best_dpll(const intel_limit_t *limit,
623 struct intel_crtc_state *crtc_state,
624 int target, int refclk, intel_clock_t *match_clock,
625 intel_clock_t *best_clock)
626 {
627 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
628 struct drm_device *dev = crtc->base.dev;
629 intel_clock_t clock;
630 int err = target;
631
632 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
633 /*
634 * For LVDS just rely on its current settings for dual-channel.
635 * We haven't figured out how to reliably set up different
636 * single/dual channel state, if we even can.
637 */
638 if (intel_is_dual_link_lvds(dev))
639 clock.p2 = limit->p2.p2_fast;
640 else
641 clock.p2 = limit->p2.p2_slow;
642 } else {
643 if (target < limit->p2.dot_limit)
644 clock.p2 = limit->p2.p2_slow;
645 else
646 clock.p2 = limit->p2.p2_fast;
647 }
648
649 memset(best_clock, 0, sizeof(*best_clock));
650
651 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
652 clock.m1++) {
653 for (clock.m2 = limit->m2.min;
654 clock.m2 <= limit->m2.max; clock.m2++) {
655 if (clock.m2 >= clock.m1)
656 break;
657 for (clock.n = limit->n.min;
658 clock.n <= limit->n.max; clock.n++) {
659 for (clock.p1 = limit->p1.min;
660 clock.p1 <= limit->p1.max; clock.p1++) {
661 int this_err;
662
663 i9xx_clock(refclk, &clock);
664 if (!intel_PLL_is_valid(dev, limit,
665 &clock))
666 continue;
667 if (match_clock &&
668 clock.p != match_clock->p)
669 continue;
670
671 this_err = abs(clock.dot - target);
672 if (this_err < err) {
673 *best_clock = clock;
674 err = this_err;
675 }
676 }
677 }
678 }
679 }
680
681 return (err != target);
682 }
683
684 static bool
pnv_find_best_dpll(const intel_limit_t * limit,struct intel_crtc_state * crtc_state,int target,int refclk,intel_clock_t * match_clock,intel_clock_t * best_clock)685 pnv_find_best_dpll(const intel_limit_t *limit,
686 struct intel_crtc_state *crtc_state,
687 int target, int refclk, intel_clock_t *match_clock,
688 intel_clock_t *best_clock)
689 {
690 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
691 struct drm_device *dev = crtc->base.dev;
692 intel_clock_t clock;
693 int err = target;
694
695 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
696 /*
697 * For LVDS just rely on its current settings for dual-channel.
698 * We haven't figured out how to reliably set up different
699 * single/dual channel state, if we even can.
700 */
701 if (intel_is_dual_link_lvds(dev))
702 clock.p2 = limit->p2.p2_fast;
703 else
704 clock.p2 = limit->p2.p2_slow;
705 } else {
706 if (target < limit->p2.dot_limit)
707 clock.p2 = limit->p2.p2_slow;
708 else
709 clock.p2 = limit->p2.p2_fast;
710 }
711
712 memset(best_clock, 0, sizeof(*best_clock));
713
714 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
715 clock.m1++) {
716 for (clock.m2 = limit->m2.min;
717 clock.m2 <= limit->m2.max; clock.m2++) {
718 for (clock.n = limit->n.min;
719 clock.n <= limit->n.max; clock.n++) {
720 for (clock.p1 = limit->p1.min;
721 clock.p1 <= limit->p1.max; clock.p1++) {
722 int this_err;
723
724 pineview_clock(refclk, &clock);
725 if (!intel_PLL_is_valid(dev, limit,
726 &clock))
727 continue;
728 if (match_clock &&
729 clock.p != match_clock->p)
730 continue;
731
732 this_err = abs(clock.dot - target);
733 if (this_err < err) {
734 *best_clock = clock;
735 err = this_err;
736 }
737 }
738 }
739 }
740 }
741
742 return (err != target);
743 }
744
745 static bool
g4x_find_best_dpll(const intel_limit_t * limit,struct intel_crtc_state * crtc_state,int target,int refclk,intel_clock_t * match_clock,intel_clock_t * best_clock)746 g4x_find_best_dpll(const intel_limit_t *limit,
747 struct intel_crtc_state *crtc_state,
748 int target, int refclk, intel_clock_t *match_clock,
749 intel_clock_t *best_clock)
750 {
751 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
752 struct drm_device *dev = crtc->base.dev;
753 intel_clock_t clock;
754 int max_n;
755 bool found;
756 /* approximately equals target * 0.00585 */
757 int err_most = (target >> 8) + (target >> 9);
758 found = false;
759
760 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
761 if (intel_is_dual_link_lvds(dev))
762 clock.p2 = limit->p2.p2_fast;
763 else
764 clock.p2 = limit->p2.p2_slow;
765 } else {
766 if (target < limit->p2.dot_limit)
767 clock.p2 = limit->p2.p2_slow;
768 else
769 clock.p2 = limit->p2.p2_fast;
770 }
771
772 memset(best_clock, 0, sizeof(*best_clock));
773 max_n = limit->n.max;
774 /* based on hardware requirement, prefer smaller n to precision */
775 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
776 /* based on hardware requirement, prefere larger m1,m2 */
777 for (clock.m1 = limit->m1.max;
778 clock.m1 >= limit->m1.min; clock.m1--) {
779 for (clock.m2 = limit->m2.max;
780 clock.m2 >= limit->m2.min; clock.m2--) {
781 for (clock.p1 = limit->p1.max;
782 clock.p1 >= limit->p1.min; clock.p1--) {
783 int this_err;
784
785 i9xx_clock(refclk, &clock);
786 if (!intel_PLL_is_valid(dev, limit,
787 &clock))
788 continue;
789
790 this_err = abs(clock.dot - target);
791 if (this_err < err_most) {
792 *best_clock = clock;
793 err_most = this_err;
794 max_n = clock.n;
795 found = true;
796 }
797 }
798 }
799 }
800 }
801 return found;
802 }
803
804 /*
805 * Check if the calculated PLL configuration is more optimal compared to the
806 * best configuration and error found so far. Return the calculated error.
807 */
vlv_PLL_is_optimal(struct drm_device * dev,int target_freq,const intel_clock_t * calculated_clock,const intel_clock_t * best_clock,unsigned int best_error_ppm,unsigned int * error_ppm)808 static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq,
809 const intel_clock_t *calculated_clock,
810 const intel_clock_t *best_clock,
811 unsigned int best_error_ppm,
812 unsigned int *error_ppm)
813 {
814 /*
815 * For CHV ignore the error and consider only the P value.
816 * Prefer a bigger P value based on HW requirements.
817 */
818 if (IS_CHERRYVIEW(dev)) {
819 *error_ppm = 0;
820
821 return calculated_clock->p > best_clock->p;
822 }
823
824 if (WARN_ON_ONCE(!target_freq))
825 return false;
826
827 *error_ppm = div_u64(1000000ULL *
828 abs(target_freq - calculated_clock->dot),
829 target_freq);
830 /*
831 * Prefer a better P value over a better (smaller) error if the error
832 * is small. Ensure this preference for future configurations too by
833 * setting the error to 0.
834 */
835 if (*error_ppm < 100 && calculated_clock->p > best_clock->p) {
836 *error_ppm = 0;
837
838 return true;
839 }
840
841 return *error_ppm + 10 < best_error_ppm;
842 }
843
844 static bool
vlv_find_best_dpll(const intel_limit_t * limit,struct intel_crtc_state * crtc_state,int target,int refclk,intel_clock_t * match_clock,intel_clock_t * best_clock)845 vlv_find_best_dpll(const intel_limit_t *limit,
846 struct intel_crtc_state *crtc_state,
847 int target, int refclk, intel_clock_t *match_clock,
848 intel_clock_t *best_clock)
849 {
850 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
851 struct drm_device *dev = crtc->base.dev;
852 intel_clock_t clock;
853 unsigned int bestppm = 1000000;
854 /* min update 19.2 MHz */
855 int max_n = min(limit->n.max, refclk / 19200);
856 bool found = false;
857
858 target *= 5; /* fast clock */
859
860 memset(best_clock, 0, sizeof(*best_clock));
861
862 /* based on hardware requirement, prefer smaller n to precision */
863 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
864 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
865 for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
866 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
867 clock.p = clock.p1 * clock.p2;
868 /* based on hardware requirement, prefer bigger m1,m2 values */
869 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
870 unsigned int ppm;
871
872 clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
873 refclk * clock.m1);
874
875 vlv_clock(refclk, &clock);
876
877 if (!intel_PLL_is_valid(dev, limit,
878 &clock))
879 continue;
880
881 if (!vlv_PLL_is_optimal(dev, target,
882 &clock,
883 best_clock,
884 bestppm, &ppm))
885 continue;
886
887 *best_clock = clock;
888 bestppm = ppm;
889 found = true;
890 }
891 }
892 }
893 }
894
895 return found;
896 }
897
898 static bool
chv_find_best_dpll(const intel_limit_t * limit,struct intel_crtc_state * crtc_state,int target,int refclk,intel_clock_t * match_clock,intel_clock_t * best_clock)899 chv_find_best_dpll(const intel_limit_t *limit,
900 struct intel_crtc_state *crtc_state,
901 int target, int refclk, intel_clock_t *match_clock,
902 intel_clock_t *best_clock)
903 {
904 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
905 struct drm_device *dev = crtc->base.dev;
906 unsigned int best_error_ppm;
907 intel_clock_t clock;
908 uint64_t m2;
909 int found = false;
910
911 memset(best_clock, 0, sizeof(*best_clock));
912 best_error_ppm = 1000000;
913
914 /*
915 * Based on hardware doc, the n always set to 1, and m1 always
916 * set to 2. If requires to support 200Mhz refclk, we need to
917 * revisit this because n may not 1 anymore.
918 */
919 clock.n = 1, clock.m1 = 2;
920 target *= 5; /* fast clock */
921
922 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
923 for (clock.p2 = limit->p2.p2_fast;
924 clock.p2 >= limit->p2.p2_slow;
925 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
926 unsigned int error_ppm;
927
928 clock.p = clock.p1 * clock.p2;
929
930 m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
931 clock.n) << 22, refclk * clock.m1);
932
933 if (m2 > INT_MAX/clock.m1)
934 continue;
935
936 clock.m2 = m2;
937
938 chv_clock(refclk, &clock);
939
940 if (!intel_PLL_is_valid(dev, limit, &clock))
941 continue;
942
943 if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock,
944 best_error_ppm, &error_ppm))
945 continue;
946
947 *best_clock = clock;
948 best_error_ppm = error_ppm;
949 found = true;
950 }
951 }
952
953 return found;
954 }
955
intel_crtc_active(struct drm_crtc * crtc)956 bool intel_crtc_active(struct drm_crtc *crtc)
957 {
958 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
959
960 /* Be paranoid as we can arrive here with only partial
961 * state retrieved from the hardware during setup.
962 *
963 * We can ditch the adjusted_mode.crtc_clock check as soon
964 * as Haswell has gained clock readout/fastboot support.
965 *
966 * We can ditch the crtc->primary->fb check as soon as we can
967 * properly reconstruct framebuffers.
968 *
969 * FIXME: The intel_crtc->active here should be switched to
970 * crtc->state->active once we have proper CRTC states wired up
971 * for atomic.
972 */
973 return intel_crtc->active && crtc->primary->state->fb &&
974 intel_crtc->config->base.adjusted_mode.crtc_clock;
975 }
976
intel_pipe_to_cpu_transcoder(struct drm_i915_private * dev_priv,enum pipe pipe)977 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
978 enum pipe pipe)
979 {
980 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
981 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
982
983 return intel_crtc->config->cpu_transcoder;
984 }
985
pipe_dsl_stopped(struct drm_device * dev,enum pipe pipe)986 static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
987 {
988 struct drm_i915_private *dev_priv = dev->dev_private;
989 u32 reg = PIPEDSL(pipe);
990 u32 line1, line2;
991 u32 line_mask;
992
993 if (IS_GEN2(dev))
994 line_mask = DSL_LINEMASK_GEN2;
995 else
996 line_mask = DSL_LINEMASK_GEN3;
997
998 line1 = I915_READ(reg) & line_mask;
999 mdelay(5);
1000 line2 = I915_READ(reg) & line_mask;
1001
1002 return line1 == line2;
1003 }
1004
1005 /*
1006 * intel_wait_for_pipe_off - wait for pipe to turn off
1007 * @crtc: crtc whose pipe to wait for
1008 *
1009 * After disabling a pipe, we can't wait for vblank in the usual way,
1010 * spinning on the vblank interrupt status bit, since we won't actually
1011 * see an interrupt when the pipe is disabled.
1012 *
1013 * On Gen4 and above:
1014 * wait for the pipe register state bit to turn off
1015 *
1016 * Otherwise:
1017 * wait for the display line value to settle (it usually
1018 * ends up stopping at the start of the next frame).
1019 *
1020 */
intel_wait_for_pipe_off(struct intel_crtc * crtc)1021 static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
1022 {
1023 struct drm_device *dev = crtc->base.dev;
1024 struct drm_i915_private *dev_priv = dev->dev_private;
1025 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
1026 enum pipe pipe = crtc->pipe;
1027
1028 if (INTEL_INFO(dev)->gen >= 4) {
1029 int reg = PIPECONF(cpu_transcoder);
1030
1031 /* Wait for the Pipe State to go off */
1032 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
1033 100))
1034 WARN(1, "pipe_off wait timed out\n");
1035 } else {
1036 /* Wait for the display line to settle */
1037 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
1038 WARN(1, "pipe_off wait timed out\n");
1039 }
1040 }
1041
1042 /*
1043 * ibx_digital_port_connected - is the specified port connected?
1044 * @dev_priv: i915 private structure
1045 * @port: the port to test
1046 *
1047 * Returns true if @port is connected, false otherwise.
1048 */
ibx_digital_port_connected(struct drm_i915_private * dev_priv,struct intel_digital_port * port)1049 bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
1050 struct intel_digital_port *port)
1051 {
1052 u32 bit;
1053
1054 if (HAS_PCH_IBX(dev_priv->dev)) {
1055 switch (port->port) {
1056 case PORT_B:
1057 bit = SDE_PORTB_HOTPLUG;
1058 break;
1059 case PORT_C:
1060 bit = SDE_PORTC_HOTPLUG;
1061 break;
1062 case PORT_D:
1063 bit = SDE_PORTD_HOTPLUG;
1064 break;
1065 default:
1066 return true;
1067 }
1068 } else {
1069 switch (port->port) {
1070 case PORT_B:
1071 bit = SDE_PORTB_HOTPLUG_CPT;
1072 break;
1073 case PORT_C:
1074 bit = SDE_PORTC_HOTPLUG_CPT;
1075 break;
1076 case PORT_D:
1077 bit = SDE_PORTD_HOTPLUG_CPT;
1078 break;
1079 default:
1080 return true;
1081 }
1082 }
1083
1084 return I915_READ(SDEISR) & bit;
1085 }
1086
state_string(bool enabled)1087 static const char *state_string(bool enabled)
1088 {
1089 return enabled ? "on" : "off";
1090 }
1091
1092 /* Only for pre-ILK configs */
assert_pll(struct drm_i915_private * dev_priv,enum pipe pipe,bool state)1093 void assert_pll(struct drm_i915_private *dev_priv,
1094 enum pipe pipe, bool state)
1095 {
1096 int reg;
1097 u32 val;
1098 bool cur_state;
1099
1100 reg = DPLL(pipe);
1101 val = I915_READ(reg);
1102 cur_state = !!(val & DPLL_VCO_ENABLE);
1103 I915_STATE_WARN(cur_state != state,
1104 "PLL state assertion failure (expected %s, current %s)\n",
1105 state_string(state), state_string(cur_state));
1106 }
1107
1108 /* XXX: the dsi pll is shared between MIPI DSI ports */
assert_dsi_pll(struct drm_i915_private * dev_priv,bool state)1109 static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1110 {
1111 u32 val;
1112 bool cur_state;
1113
1114 mutex_lock(&dev_priv->dpio_lock);
1115 val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1116 mutex_unlock(&dev_priv->dpio_lock);
1117
1118 cur_state = val & DSI_PLL_VCO_EN;
1119 I915_STATE_WARN(cur_state != state,
1120 "DSI PLL state assertion failure (expected %s, current %s)\n",
1121 state_string(state), state_string(cur_state));
1122 }
1123 #define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
1124 #define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
1125
1126 struct intel_shared_dpll *
intel_crtc_to_shared_dpll(struct intel_crtc * crtc)1127 intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
1128 {
1129 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1130
1131 if (crtc->config->shared_dpll < 0)
1132 return NULL;
1133
1134 return &dev_priv->shared_dplls[crtc->config->shared_dpll];
1135 }
1136
1137 /* For ILK+ */
assert_shared_dpll(struct drm_i915_private * dev_priv,struct intel_shared_dpll * pll,bool state)1138 void assert_shared_dpll(struct drm_i915_private *dev_priv,
1139 struct intel_shared_dpll *pll,
1140 bool state)
1141 {
1142 bool cur_state;
1143 struct intel_dpll_hw_state hw_state;
1144
1145 if (WARN (!pll,
1146 "asserting DPLL %s with no DPLL\n", state_string(state)))
1147 return;
1148
1149 cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
1150 I915_STATE_WARN(cur_state != state,
1151 "%s assertion failure (expected %s, current %s)\n",
1152 pll->name, state_string(state), state_string(cur_state));
1153 }
1154
assert_fdi_tx(struct drm_i915_private * dev_priv,enum pipe pipe,bool state)1155 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1156 enum pipe pipe, bool state)
1157 {
1158 int reg;
1159 u32 val;
1160 bool cur_state;
1161 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1162 pipe);
1163
1164 if (HAS_DDI(dev_priv->dev)) {
1165 /* DDI does not have a specific FDI_TX register */
1166 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
1167 val = I915_READ(reg);
1168 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1169 } else {
1170 reg = FDI_TX_CTL(pipe);
1171 val = I915_READ(reg);
1172 cur_state = !!(val & FDI_TX_ENABLE);
1173 }
1174 I915_STATE_WARN(cur_state != state,
1175 "FDI TX state assertion failure (expected %s, current %s)\n",
1176 state_string(state), state_string(cur_state));
1177 }
1178 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1179 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1180
assert_fdi_rx(struct drm_i915_private * dev_priv,enum pipe pipe,bool state)1181 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1182 enum pipe pipe, bool state)
1183 {
1184 int reg;
1185 u32 val;
1186 bool cur_state;
1187
1188 reg = FDI_RX_CTL(pipe);
1189 val = I915_READ(reg);
1190 cur_state = !!(val & FDI_RX_ENABLE);
1191 I915_STATE_WARN(cur_state != state,
1192 "FDI RX state assertion failure (expected %s, current %s)\n",
1193 state_string(state), state_string(cur_state));
1194 }
1195 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1196 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1197
assert_fdi_tx_pll_enabled(struct drm_i915_private * dev_priv,enum pipe pipe)1198 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1199 enum pipe pipe)
1200 {
1201 int reg;
1202 u32 val;
1203
1204 /* ILK FDI PLL is always enabled */
1205 if (INTEL_INFO(dev_priv->dev)->gen == 5)
1206 return;
1207
1208 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1209 if (HAS_DDI(dev_priv->dev))
1210 return;
1211
1212 reg = FDI_TX_CTL(pipe);
1213 val = I915_READ(reg);
1214 I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1215 }
1216
assert_fdi_rx_pll(struct drm_i915_private * dev_priv,enum pipe pipe,bool state)1217 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1218 enum pipe pipe, bool state)
1219 {
1220 int reg;
1221 u32 val;
1222 bool cur_state;
1223
1224 reg = FDI_RX_CTL(pipe);
1225 val = I915_READ(reg);
1226 cur_state = !!(val & FDI_RX_PLL_ENABLE);
1227 I915_STATE_WARN(cur_state != state,
1228 "FDI RX PLL assertion failure (expected %s, current %s)\n",
1229 state_string(state), state_string(cur_state));
1230 }
1231
assert_panel_unlocked(struct drm_i915_private * dev_priv,enum pipe pipe)1232 void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1233 enum pipe pipe)
1234 {
1235 struct drm_device *dev = dev_priv->dev;
1236 int pp_reg;
1237 u32 val;
1238 enum pipe panel_pipe = PIPE_A;
1239 bool locked = true;
1240
1241 if (WARN_ON(HAS_DDI(dev)))
1242 return;
1243
1244 if (HAS_PCH_SPLIT(dev)) {
1245 u32 port_sel;
1246
1247 pp_reg = PCH_PP_CONTROL;
1248 port_sel = I915_READ(PCH_PP_ON_DELAYS) & PANEL_PORT_SELECT_MASK;
1249
1250 if (port_sel == PANEL_PORT_SELECT_LVDS &&
1251 I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
1252 panel_pipe = PIPE_B;
1253 /* XXX: else fix for eDP */
1254 } else if (IS_VALLEYVIEW(dev)) {
1255 /* presumably write lock depends on pipe, not port select */
1256 pp_reg = VLV_PIPE_PP_CONTROL(pipe);
1257 panel_pipe = pipe;
1258 } else {
1259 pp_reg = PP_CONTROL;
1260 if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
1261 panel_pipe = PIPE_B;
1262 }
1263
1264 val = I915_READ(pp_reg);
1265 if (!(val & PANEL_POWER_ON) ||
1266 ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
1267 locked = false;
1268
1269 I915_STATE_WARN(panel_pipe == pipe && locked,
1270 "panel assertion failure, pipe %c regs locked\n",
1271 pipe_name(pipe));
1272 }
1273
assert_cursor(struct drm_i915_private * dev_priv,enum pipe pipe,bool state)1274 static void assert_cursor(struct drm_i915_private *dev_priv,
1275 enum pipe pipe, bool state)
1276 {
1277 struct drm_device *dev = dev_priv->dev;
1278 bool cur_state;
1279
1280 if (IS_845G(dev) || IS_I865G(dev))
1281 cur_state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
1282 else
1283 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
1284
1285 I915_STATE_WARN(cur_state != state,
1286 "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1287 pipe_name(pipe), state_string(state), state_string(cur_state));
1288 }
1289 #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1290 #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1291
assert_pipe(struct drm_i915_private * dev_priv,enum pipe pipe,bool state)1292 void assert_pipe(struct drm_i915_private *dev_priv,
1293 enum pipe pipe, bool state)
1294 {
1295 int reg;
1296 u32 val;
1297 bool cur_state;
1298 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1299 pipe);
1300
1301 /* if we need the pipe quirk it must be always on */
1302 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1303 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1304 state = true;
1305
1306 if (!intel_display_power_is_enabled(dev_priv,
1307 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
1308 cur_state = false;
1309 } else {
1310 reg = PIPECONF(cpu_transcoder);
1311 val = I915_READ(reg);
1312 cur_state = !!(val & PIPECONF_ENABLE);
1313 }
1314
1315 I915_STATE_WARN(cur_state != state,
1316 "pipe %c assertion failure (expected %s, current %s)\n",
1317 pipe_name(pipe), state_string(state), state_string(cur_state));
1318 }
1319
assert_plane(struct drm_i915_private * dev_priv,enum plane plane,bool state)1320 static void assert_plane(struct drm_i915_private *dev_priv,
1321 enum plane plane, bool state)
1322 {
1323 int reg;
1324 u32 val;
1325 bool cur_state;
1326
1327 reg = DSPCNTR(plane);
1328 val = I915_READ(reg);
1329 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1330 I915_STATE_WARN(cur_state != state,
1331 "plane %c assertion failure (expected %s, current %s)\n",
1332 plane_name(plane), state_string(state), state_string(cur_state));
1333 }
1334
1335 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1336 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1337
assert_planes_disabled(struct drm_i915_private * dev_priv,enum pipe pipe)1338 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1339 enum pipe pipe)
1340 {
1341 struct drm_device *dev = dev_priv->dev;
1342 int reg, i;
1343 u32 val;
1344 int cur_pipe;
1345
1346 /* Primary planes are fixed to pipes on gen4+ */
1347 if (INTEL_INFO(dev)->gen >= 4) {
1348 reg = DSPCNTR(pipe);
1349 val = I915_READ(reg);
1350 I915_STATE_WARN(val & DISPLAY_PLANE_ENABLE,
1351 "plane %c assertion failure, should be disabled but not\n",
1352 plane_name(pipe));
1353 return;
1354 }
1355
1356 /* Need to check both planes against the pipe */
1357 for_each_pipe(dev_priv, i) {
1358 reg = DSPCNTR(i);
1359 val = I915_READ(reg);
1360 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1361 DISPPLANE_SEL_PIPE_SHIFT;
1362 I915_STATE_WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1363 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1364 plane_name(i), pipe_name(pipe));
1365 }
1366 }
1367
assert_sprites_disabled(struct drm_i915_private * dev_priv,enum pipe pipe)1368 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1369 enum pipe pipe)
1370 {
1371 struct drm_device *dev = dev_priv->dev;
1372 int reg, sprite;
1373 u32 val;
1374
1375 if (INTEL_INFO(dev)->gen >= 9) {
1376 for_each_sprite(dev_priv, pipe, sprite) {
1377 val = I915_READ(PLANE_CTL(pipe, sprite));
1378 I915_STATE_WARN(val & PLANE_CTL_ENABLE,
1379 "plane %d assertion failure, should be off on pipe %c but is still active\n",
1380 sprite, pipe_name(pipe));
1381 }
1382 } else if (IS_VALLEYVIEW(dev)) {
1383 for_each_sprite(dev_priv, pipe, sprite) {
1384 reg = SPCNTR(pipe, sprite);
1385 val = I915_READ(reg);
1386 I915_STATE_WARN(val & SP_ENABLE,
1387 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1388 sprite_name(pipe, sprite), pipe_name(pipe));
1389 }
1390 } else if (INTEL_INFO(dev)->gen >= 7) {
1391 reg = SPRCTL(pipe);
1392 val = I915_READ(reg);
1393 I915_STATE_WARN(val & SPRITE_ENABLE,
1394 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1395 plane_name(pipe), pipe_name(pipe));
1396 } else if (INTEL_INFO(dev)->gen >= 5) {
1397 reg = DVSCNTR(pipe);
1398 val = I915_READ(reg);
1399 I915_STATE_WARN(val & DVS_ENABLE,
1400 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1401 plane_name(pipe), pipe_name(pipe));
1402 }
1403 }
1404
assert_vblank_disabled(struct drm_crtc * crtc)1405 static void assert_vblank_disabled(struct drm_crtc *crtc)
1406 {
1407 if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0))
1408 drm_crtc_vblank_put(crtc);
1409 }
1410
ibx_assert_pch_refclk_enabled(struct drm_i915_private * dev_priv)1411 static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1412 {
1413 u32 val;
1414 bool enabled;
1415
1416 I915_STATE_WARN_ON(!(HAS_PCH_IBX(dev_priv->dev) || HAS_PCH_CPT(dev_priv->dev)));
1417
1418 val = I915_READ(PCH_DREF_CONTROL);
1419 enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1420 DREF_SUPERSPREAD_SOURCE_MASK));
1421 I915_STATE_WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1422 }
1423
assert_pch_transcoder_disabled(struct drm_i915_private * dev_priv,enum pipe pipe)1424 static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1425 enum pipe pipe)
1426 {
1427 int reg;
1428 u32 val;
1429 bool enabled;
1430
1431 reg = PCH_TRANSCONF(pipe);
1432 val = I915_READ(reg);
1433 enabled = !!(val & TRANS_ENABLE);
1434 I915_STATE_WARN(enabled,
1435 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1436 pipe_name(pipe));
1437 }
1438
dp_pipe_enabled(struct drm_i915_private * dev_priv,enum pipe pipe,u32 port_sel,u32 val)1439 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1440 enum pipe pipe, u32 port_sel, u32 val)
1441 {
1442 if ((val & DP_PORT_EN) == 0)
1443 return false;
1444
1445 if (HAS_PCH_CPT(dev_priv->dev)) {
1446 u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1447 u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1448 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1449 return false;
1450 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1451 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1452 return false;
1453 } else {
1454 if ((val & DP_PIPE_MASK) != (pipe << 30))
1455 return false;
1456 }
1457 return true;
1458 }
1459
hdmi_pipe_enabled(struct drm_i915_private * dev_priv,enum pipe pipe,u32 val)1460 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1461 enum pipe pipe, u32 val)
1462 {
1463 if ((val & SDVO_ENABLE) == 0)
1464 return false;
1465
1466 if (HAS_PCH_CPT(dev_priv->dev)) {
1467 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1468 return false;
1469 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1470 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1471 return false;
1472 } else {
1473 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1474 return false;
1475 }
1476 return true;
1477 }
1478
lvds_pipe_enabled(struct drm_i915_private * dev_priv,enum pipe pipe,u32 val)1479 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1480 enum pipe pipe, u32 val)
1481 {
1482 if ((val & LVDS_PORT_EN) == 0)
1483 return false;
1484
1485 if (HAS_PCH_CPT(dev_priv->dev)) {
1486 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1487 return false;
1488 } else {
1489 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1490 return false;
1491 }
1492 return true;
1493 }
1494
adpa_pipe_enabled(struct drm_i915_private * dev_priv,enum pipe pipe,u32 val)1495 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1496 enum pipe pipe, u32 val)
1497 {
1498 if ((val & ADPA_DAC_ENABLE) == 0)
1499 return false;
1500 if (HAS_PCH_CPT(dev_priv->dev)) {
1501 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1502 return false;
1503 } else {
1504 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1505 return false;
1506 }
1507 return true;
1508 }
1509
assert_pch_dp_disabled(struct drm_i915_private * dev_priv,enum pipe pipe,int reg,u32 port_sel)1510 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1511 enum pipe pipe, int reg, u32 port_sel)
1512 {
1513 u32 val = I915_READ(reg);
1514 I915_STATE_WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1515 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1516 reg, pipe_name(pipe));
1517
1518 I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1519 && (val & DP_PIPEB_SELECT),
1520 "IBX PCH dp port still using transcoder B\n");
1521 }
1522
assert_pch_hdmi_disabled(struct drm_i915_private * dev_priv,enum pipe pipe,int reg)1523 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1524 enum pipe pipe, int reg)
1525 {
1526 u32 val = I915_READ(reg);
1527 I915_STATE_WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1528 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1529 reg, pipe_name(pipe));
1530
1531 I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
1532 && (val & SDVO_PIPE_B_SELECT),
1533 "IBX PCH hdmi port still using transcoder B\n");
1534 }
1535
assert_pch_ports_disabled(struct drm_i915_private * dev_priv,enum pipe pipe)1536 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1537 enum pipe pipe)
1538 {
1539 int reg;
1540 u32 val;
1541
1542 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1543 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1544 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1545
1546 reg = PCH_ADPA;
1547 val = I915_READ(reg);
1548 I915_STATE_WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1549 "PCH VGA enabled on transcoder %c, should be disabled\n",
1550 pipe_name(pipe));
1551
1552 reg = PCH_LVDS;
1553 val = I915_READ(reg);
1554 I915_STATE_WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1555 "PCH LVDS enabled on transcoder %c, should be disabled\n",
1556 pipe_name(pipe));
1557
1558 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1559 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1560 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1561 }
1562
intel_init_dpio(struct drm_device * dev)1563 static void intel_init_dpio(struct drm_device *dev)
1564 {
1565 struct drm_i915_private *dev_priv = dev->dev_private;
1566
1567 if (!IS_VALLEYVIEW(dev))
1568 return;
1569
1570 /*
1571 * IOSF_PORT_DPIO is used for VLV x2 PHY (DP/HDMI B and C),
1572 * CHV x1 PHY (DP/HDMI D)
1573 * IOSF_PORT_DPIO_2 is used for CHV x2 PHY (DP/HDMI B and C)
1574 */
1575 if (IS_CHERRYVIEW(dev)) {
1576 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO_2;
1577 DPIO_PHY_IOSF_PORT(DPIO_PHY1) = IOSF_PORT_DPIO;
1578 } else {
1579 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO;
1580 }
1581 }
1582
vlv_enable_pll(struct intel_crtc * crtc,const struct intel_crtc_state * pipe_config)1583 static void vlv_enable_pll(struct intel_crtc *crtc,
1584 const struct intel_crtc_state *pipe_config)
1585 {
1586 struct drm_device *dev = crtc->base.dev;
1587 struct drm_i915_private *dev_priv = dev->dev_private;
1588 int reg = DPLL(crtc->pipe);
1589 u32 dpll = pipe_config->dpll_hw_state.dpll;
1590
1591 assert_pipe_disabled(dev_priv, crtc->pipe);
1592
1593 /* No really, not for ILK+ */
1594 BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1595
1596 /* PLL is protected by panel, make sure we can write it */
1597 if (IS_MOBILE(dev_priv->dev))
1598 assert_panel_unlocked(dev_priv, crtc->pipe);
1599
1600 I915_WRITE(reg, dpll);
1601 POSTING_READ(reg);
1602 udelay(150);
1603
1604 if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1605 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1606
1607 I915_WRITE(DPLL_MD(crtc->pipe), pipe_config->dpll_hw_state.dpll_md);
1608 POSTING_READ(DPLL_MD(crtc->pipe));
1609
1610 /* We do this three times for luck */
1611 I915_WRITE(reg, dpll);
1612 POSTING_READ(reg);
1613 udelay(150); /* wait for warmup */
1614 I915_WRITE(reg, dpll);
1615 POSTING_READ(reg);
1616 udelay(150); /* wait for warmup */
1617 I915_WRITE(reg, dpll);
1618 POSTING_READ(reg);
1619 udelay(150); /* wait for warmup */
1620 }
1621
chv_enable_pll(struct intel_crtc * crtc,const struct intel_crtc_state * pipe_config)1622 static void chv_enable_pll(struct intel_crtc *crtc,
1623 const struct intel_crtc_state *pipe_config)
1624 {
1625 struct drm_device *dev = crtc->base.dev;
1626 struct drm_i915_private *dev_priv = dev->dev_private;
1627 int pipe = crtc->pipe;
1628 enum dpio_channel port = vlv_pipe_to_channel(pipe);
1629 u32 tmp;
1630
1631 assert_pipe_disabled(dev_priv, crtc->pipe);
1632
1633 BUG_ON(!IS_CHERRYVIEW(dev_priv->dev));
1634
1635 mutex_lock(&dev_priv->dpio_lock);
1636
1637 /* Enable back the 10bit clock to display controller */
1638 tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1639 tmp |= DPIO_DCLKP_EN;
1640 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1641
1642 /*
1643 * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1644 */
1645 udelay(1);
1646
1647 /* Enable PLL */
1648 I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1649
1650 /* Check PLL is locked */
1651 if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1652 DRM_ERROR("PLL %d failed to lock\n", pipe);
1653
1654 /* not sure when this should be written */
1655 I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1656 POSTING_READ(DPLL_MD(pipe));
1657
1658 mutex_unlock(&dev_priv->dpio_lock);
1659 }
1660
intel_num_dvo_pipes(struct drm_device * dev)1661 static int intel_num_dvo_pipes(struct drm_device *dev)
1662 {
1663 struct intel_crtc *crtc;
1664 int count = 0;
1665
1666 for_each_intel_crtc(dev, crtc)
1667 count += crtc->active &&
1668 intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO);
1669
1670 return count;
1671 }
1672
i9xx_enable_pll(struct intel_crtc * crtc)1673 static void i9xx_enable_pll(struct intel_crtc *crtc)
1674 {
1675 struct drm_device *dev = crtc->base.dev;
1676 struct drm_i915_private *dev_priv = dev->dev_private;
1677 int reg = DPLL(crtc->pipe);
1678 u32 dpll = crtc->config->dpll_hw_state.dpll;
1679
1680 assert_pipe_disabled(dev_priv, crtc->pipe);
1681
1682 /* No really, not for ILK+ */
1683 BUG_ON(INTEL_INFO(dev)->gen >= 5);
1684
1685 /* PLL is protected by panel, make sure we can write it */
1686 if (IS_MOBILE(dev) && !IS_I830(dev))
1687 assert_panel_unlocked(dev_priv, crtc->pipe);
1688
1689 /* Enable DVO 2x clock on both PLLs if necessary */
1690 if (IS_I830(dev) && intel_num_dvo_pipes(dev) > 0) {
1691 /*
1692 * It appears to be important that we don't enable this
1693 * for the current pipe before otherwise configuring the
1694 * PLL. No idea how this should be handled if multiple
1695 * DVO outputs are enabled simultaneosly.
1696 */
1697 dpll |= DPLL_DVO_2X_MODE;
1698 I915_WRITE(DPLL(!crtc->pipe),
1699 I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
1700 }
1701
1702 I915_WRITE(reg, dpll);
1703
1704 /* Wait for the clocks to stabilize. */
1705 POSTING_READ(reg);
1706 udelay(150);
1707
1708 if (INTEL_INFO(dev)->gen >= 4) {
1709 I915_WRITE(DPLL_MD(crtc->pipe),
1710 crtc->config->dpll_hw_state.dpll_md);
1711 } else {
1712 /* The pixel multiplier can only be updated once the
1713 * DPLL is enabled and the clocks are stable.
1714 *
1715 * So write it again.
1716 */
1717 I915_WRITE(reg, dpll);
1718 }
1719
1720 /* We do this three times for luck */
1721 I915_WRITE(reg, dpll);
1722 POSTING_READ(reg);
1723 udelay(150); /* wait for warmup */
1724 I915_WRITE(reg, dpll);
1725 POSTING_READ(reg);
1726 udelay(150); /* wait for warmup */
1727 I915_WRITE(reg, dpll);
1728 POSTING_READ(reg);
1729 udelay(150); /* wait for warmup */
1730 }
1731
1732 /**
1733 * i9xx_disable_pll - disable a PLL
1734 * @dev_priv: i915 private structure
1735 * @pipe: pipe PLL to disable
1736 *
1737 * Disable the PLL for @pipe, making sure the pipe is off first.
1738 *
1739 * Note! This is for pre-ILK only.
1740 */
i9xx_disable_pll(struct intel_crtc * crtc)1741 static void i9xx_disable_pll(struct intel_crtc *crtc)
1742 {
1743 struct drm_device *dev = crtc->base.dev;
1744 struct drm_i915_private *dev_priv = dev->dev_private;
1745 enum pipe pipe = crtc->pipe;
1746
1747 /* Disable DVO 2x clock on both PLLs if necessary */
1748 if (IS_I830(dev) &&
1749 intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO) &&
1750 intel_num_dvo_pipes(dev) == 1) {
1751 I915_WRITE(DPLL(PIPE_B),
1752 I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
1753 I915_WRITE(DPLL(PIPE_A),
1754 I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
1755 }
1756
1757 /* Don't disable pipe or pipe PLLs if needed */
1758 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1759 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1760 return;
1761
1762 /* Make sure the pipe isn't still relying on us */
1763 assert_pipe_disabled(dev_priv, pipe);
1764
1765 I915_WRITE(DPLL(pipe), 0);
1766 POSTING_READ(DPLL(pipe));
1767 }
1768
vlv_disable_pll(struct drm_i915_private * dev_priv,enum pipe pipe)1769 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1770 {
1771 u32 val = 0;
1772
1773 /* Make sure the pipe isn't still relying on us */
1774 assert_pipe_disabled(dev_priv, pipe);
1775
1776 /*
1777 * Leave integrated clock source and reference clock enabled for pipe B.
1778 * The latter is needed for VGA hotplug / manual detection.
1779 */
1780 if (pipe == PIPE_B)
1781 val = DPLL_INTEGRATED_CRI_CLK_VLV | DPLL_REFA_CLK_ENABLE_VLV;
1782 I915_WRITE(DPLL(pipe), val);
1783 POSTING_READ(DPLL(pipe));
1784
1785 }
1786
chv_disable_pll(struct drm_i915_private * dev_priv,enum pipe pipe)1787 static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1788 {
1789 enum dpio_channel port = vlv_pipe_to_channel(pipe);
1790 u32 val;
1791
1792 /* Make sure the pipe isn't still relying on us */
1793 assert_pipe_disabled(dev_priv, pipe);
1794
1795 /* Set PLL en = 0 */
1796 val = DPLL_SSC_REF_CLOCK_CHV | DPLL_REFA_CLK_ENABLE_VLV;
1797 if (pipe != PIPE_A)
1798 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1799 I915_WRITE(DPLL(pipe), val);
1800 POSTING_READ(DPLL(pipe));
1801
1802 mutex_lock(&dev_priv->dpio_lock);
1803
1804 /* Disable 10bit clock to display controller */
1805 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1806 val &= ~DPIO_DCLKP_EN;
1807 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1808
1809 /* disable left/right clock distribution */
1810 if (pipe != PIPE_B) {
1811 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
1812 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
1813 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
1814 } else {
1815 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
1816 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
1817 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
1818 }
1819
1820 mutex_unlock(&dev_priv->dpio_lock);
1821 }
1822
vlv_wait_port_ready(struct drm_i915_private * dev_priv,struct intel_digital_port * dport)1823 void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1824 struct intel_digital_port *dport)
1825 {
1826 u32 port_mask;
1827 int dpll_reg;
1828
1829 switch (dport->port) {
1830 case PORT_B:
1831 port_mask = DPLL_PORTB_READY_MASK;
1832 dpll_reg = DPLL(0);
1833 break;
1834 case PORT_C:
1835 port_mask = DPLL_PORTC_READY_MASK;
1836 dpll_reg = DPLL(0);
1837 break;
1838 case PORT_D:
1839 port_mask = DPLL_PORTD_READY_MASK;
1840 dpll_reg = DPIO_PHY_STATUS;
1841 break;
1842 default:
1843 BUG();
1844 }
1845
1846 if (wait_for((I915_READ(dpll_reg) & port_mask) == 0, 1000))
1847 WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
1848 port_name(dport->port), I915_READ(dpll_reg));
1849 }
1850
intel_prepare_shared_dpll(struct intel_crtc * crtc)1851 static void intel_prepare_shared_dpll(struct intel_crtc *crtc)
1852 {
1853 struct drm_device *dev = crtc->base.dev;
1854 struct drm_i915_private *dev_priv = dev->dev_private;
1855 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1856
1857 if (WARN_ON(pll == NULL))
1858 return;
1859
1860 WARN_ON(!pll->config.crtc_mask);
1861 if (pll->active == 0) {
1862 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
1863 WARN_ON(pll->on);
1864 assert_shared_dpll_disabled(dev_priv, pll);
1865
1866 pll->mode_set(dev_priv, pll);
1867 }
1868 }
1869
1870 /**
1871 * intel_enable_shared_dpll - enable PCH PLL
1872 * @dev_priv: i915 private structure
1873 * @pipe: pipe PLL to enable
1874 *
1875 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1876 * drives the transcoder clock.
1877 */
intel_enable_shared_dpll(struct intel_crtc * crtc)1878 static void intel_enable_shared_dpll(struct intel_crtc *crtc)
1879 {
1880 struct drm_device *dev = crtc->base.dev;
1881 struct drm_i915_private *dev_priv = dev->dev_private;
1882 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1883
1884 if (WARN_ON(pll == NULL))
1885 return;
1886
1887 if (WARN_ON(pll->config.crtc_mask == 0))
1888 return;
1889
1890 DRM_DEBUG_KMS("enable %s (active %d, on? %d) for crtc %d\n",
1891 pll->name, pll->active, pll->on,
1892 crtc->base.base.id);
1893
1894 if (pll->active++) {
1895 WARN_ON(!pll->on);
1896 assert_shared_dpll_enabled(dev_priv, pll);
1897 return;
1898 }
1899 WARN_ON(pll->on);
1900
1901 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
1902
1903 DRM_DEBUG_KMS("enabling %s\n", pll->name);
1904 pll->enable(dev_priv, pll);
1905 pll->on = true;
1906 }
1907
intel_disable_shared_dpll(struct intel_crtc * crtc)1908 static void intel_disable_shared_dpll(struct intel_crtc *crtc)
1909 {
1910 struct drm_device *dev = crtc->base.dev;
1911 struct drm_i915_private *dev_priv = dev->dev_private;
1912 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1913
1914 /* PCH only available on ILK+ */
1915 BUG_ON(INTEL_INFO(dev)->gen < 5);
1916 if (WARN_ON(pll == NULL))
1917 return;
1918
1919 if (WARN_ON(pll->config.crtc_mask == 0))
1920 return;
1921
1922 DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1923 pll->name, pll->active, pll->on,
1924 crtc->base.base.id);
1925
1926 if (WARN_ON(pll->active == 0)) {
1927 assert_shared_dpll_disabled(dev_priv, pll);
1928 return;
1929 }
1930
1931 assert_shared_dpll_enabled(dev_priv, pll);
1932 WARN_ON(!pll->on);
1933 if (--pll->active)
1934 return;
1935
1936 DRM_DEBUG_KMS("disabling %s\n", pll->name);
1937 pll->disable(dev_priv, pll);
1938 pll->on = false;
1939
1940 intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
1941 }
1942
ironlake_enable_pch_transcoder(struct drm_i915_private * dev_priv,enum pipe pipe)1943 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1944 enum pipe pipe)
1945 {
1946 struct drm_device *dev = dev_priv->dev;
1947 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1948 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1949 uint32_t reg, val, pipeconf_val;
1950
1951 /* PCH only available on ILK+ */
1952 BUG_ON(!HAS_PCH_SPLIT(dev));
1953
1954 /* Make sure PCH DPLL is enabled */
1955 assert_shared_dpll_enabled(dev_priv,
1956 intel_crtc_to_shared_dpll(intel_crtc));
1957
1958 /* FDI must be feeding us bits for PCH ports */
1959 assert_fdi_tx_enabled(dev_priv, pipe);
1960 assert_fdi_rx_enabled(dev_priv, pipe);
1961
1962 if (HAS_PCH_CPT(dev)) {
1963 /* Workaround: Set the timing override bit before enabling the
1964 * pch transcoder. */
1965 reg = TRANS_CHICKEN2(pipe);
1966 val = I915_READ(reg);
1967 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1968 I915_WRITE(reg, val);
1969 }
1970
1971 reg = PCH_TRANSCONF(pipe);
1972 val = I915_READ(reg);
1973 pipeconf_val = I915_READ(PIPECONF(pipe));
1974
1975 if (HAS_PCH_IBX(dev_priv->dev)) {
1976 /*
1977 * make the BPC in transcoder be consistent with
1978 * that in pipeconf reg.
1979 */
1980 val &= ~PIPECONF_BPC_MASK;
1981 val |= pipeconf_val & PIPECONF_BPC_MASK;
1982 }
1983
1984 val &= ~TRANS_INTERLACE_MASK;
1985 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1986 if (HAS_PCH_IBX(dev_priv->dev) &&
1987 intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
1988 val |= TRANS_LEGACY_INTERLACED_ILK;
1989 else
1990 val |= TRANS_INTERLACED;
1991 else
1992 val |= TRANS_PROGRESSIVE;
1993
1994 I915_WRITE(reg, val | TRANS_ENABLE);
1995 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1996 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
1997 }
1998
lpt_enable_pch_transcoder(struct drm_i915_private * dev_priv,enum transcoder cpu_transcoder)1999 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
2000 enum transcoder cpu_transcoder)
2001 {
2002 u32 val, pipeconf_val;
2003
2004 /* PCH only available on ILK+ */
2005 BUG_ON(!HAS_PCH_SPLIT(dev_priv->dev));
2006
2007 /* FDI must be feeding us bits for PCH ports */
2008 assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
2009 assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
2010
2011 /* Workaround: set timing override bit. */
2012 val = I915_READ(_TRANSA_CHICKEN2);
2013 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
2014 I915_WRITE(_TRANSA_CHICKEN2, val);
2015
2016 val = TRANS_ENABLE;
2017 pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
2018
2019 if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
2020 PIPECONF_INTERLACED_ILK)
2021 val |= TRANS_INTERLACED;
2022 else
2023 val |= TRANS_PROGRESSIVE;
2024
2025 I915_WRITE(LPT_TRANSCONF, val);
2026 if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
2027 DRM_ERROR("Failed to enable PCH transcoder\n");
2028 }
2029
ironlake_disable_pch_transcoder(struct drm_i915_private * dev_priv,enum pipe pipe)2030 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
2031 enum pipe pipe)
2032 {
2033 struct drm_device *dev = dev_priv->dev;
2034 uint32_t reg, val;
2035
2036 /* FDI relies on the transcoder */
2037 assert_fdi_tx_disabled(dev_priv, pipe);
2038 assert_fdi_rx_disabled(dev_priv, pipe);
2039
2040 /* Ports must be off as well */
2041 assert_pch_ports_disabled(dev_priv, pipe);
2042
2043 reg = PCH_TRANSCONF(pipe);
2044 val = I915_READ(reg);
2045 val &= ~TRANS_ENABLE;
2046 I915_WRITE(reg, val);
2047 /* wait for PCH transcoder off, transcoder state */
2048 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
2049 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
2050
2051 if (!HAS_PCH_IBX(dev)) {
2052 /* Workaround: Clear the timing override chicken bit again. */
2053 reg = TRANS_CHICKEN2(pipe);
2054 val = I915_READ(reg);
2055 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
2056 I915_WRITE(reg, val);
2057 }
2058 }
2059
lpt_disable_pch_transcoder(struct drm_i915_private * dev_priv)2060 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
2061 {
2062 u32 val;
2063
2064 val = I915_READ(LPT_TRANSCONF);
2065 val &= ~TRANS_ENABLE;
2066 I915_WRITE(LPT_TRANSCONF, val);
2067 /* wait for PCH transcoder off, transcoder state */
2068 if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
2069 DRM_ERROR("Failed to disable PCH transcoder\n");
2070
2071 /* Workaround: clear timing override bit. */
2072 val = I915_READ(_TRANSA_CHICKEN2);
2073 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
2074 I915_WRITE(_TRANSA_CHICKEN2, val);
2075 }
2076
2077 /**
2078 * intel_enable_pipe - enable a pipe, asserting requirements
2079 * @crtc: crtc responsible for the pipe
2080 *
2081 * Enable @crtc's pipe, making sure that various hardware specific requirements
2082 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
2083 */
intel_enable_pipe(struct intel_crtc * crtc)2084 static void intel_enable_pipe(struct intel_crtc *crtc)
2085 {
2086 struct drm_device *dev = crtc->base.dev;
2087 struct drm_i915_private *dev_priv = dev->dev_private;
2088 enum pipe pipe = crtc->pipe;
2089 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
2090 pipe);
2091 enum pipe pch_transcoder;
2092 int reg;
2093 u32 val;
2094
2095 assert_planes_disabled(dev_priv, pipe);
2096 assert_cursor_disabled(dev_priv, pipe);
2097 assert_sprites_disabled(dev_priv, pipe);
2098
2099 if (HAS_PCH_LPT(dev_priv->dev))
2100 pch_transcoder = TRANSCODER_A;
2101 else
2102 pch_transcoder = pipe;
2103
2104 /*
2105 * A pipe without a PLL won't actually be able to drive bits from
2106 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
2107 * need the check.
2108 */
2109 if (!HAS_PCH_SPLIT(dev_priv->dev))
2110 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
2111 assert_dsi_pll_enabled(dev_priv);
2112 else
2113 assert_pll_enabled(dev_priv, pipe);
2114 else {
2115 if (crtc->config->has_pch_encoder) {
2116 /* if driving the PCH, we need FDI enabled */
2117 assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
2118 assert_fdi_tx_pll_enabled(dev_priv,
2119 (enum pipe) cpu_transcoder);
2120 }
2121 /* FIXME: assert CPU port conditions for SNB+ */
2122 }
2123
2124 reg = PIPECONF(cpu_transcoder);
2125 val = I915_READ(reg);
2126 if (val & PIPECONF_ENABLE) {
2127 WARN_ON(!((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
2128 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)));
2129 return;
2130 }
2131
2132 I915_WRITE(reg, val | PIPECONF_ENABLE);
2133 POSTING_READ(reg);
2134 }
2135
2136 /**
2137 * intel_disable_pipe - disable a pipe, asserting requirements
2138 * @crtc: crtc whose pipes is to be disabled
2139 *
2140 * Disable the pipe of @crtc, making sure that various hardware
2141 * specific requirements are met, if applicable, e.g. plane
2142 * disabled, panel fitter off, etc.
2143 *
2144 * Will wait until the pipe has shut down before returning.
2145 */
intel_disable_pipe(struct intel_crtc * crtc)2146 static void intel_disable_pipe(struct intel_crtc *crtc)
2147 {
2148 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
2149 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
2150 enum pipe pipe = crtc->pipe;
2151 int reg;
2152 u32 val;
2153
2154 /*
2155 * Make sure planes won't keep trying to pump pixels to us,
2156 * or we might hang the display.
2157 */
2158 assert_planes_disabled(dev_priv, pipe);
2159 assert_cursor_disabled(dev_priv, pipe);
2160 assert_sprites_disabled(dev_priv, pipe);
2161
2162 reg = PIPECONF(cpu_transcoder);
2163 val = I915_READ(reg);
2164 if ((val & PIPECONF_ENABLE) == 0)
2165 return;
2166
2167 /*
2168 * Double wide has implications for planes
2169 * so best keep it disabled when not needed.
2170 */
2171 if (crtc->config->double_wide)
2172 val &= ~PIPECONF_DOUBLE_WIDE;
2173
2174 /* Don't disable pipe or pipe PLLs if needed */
2175 if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) &&
2176 !(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
2177 val &= ~PIPECONF_ENABLE;
2178
2179 I915_WRITE(reg, val);
2180 if ((val & PIPECONF_ENABLE) == 0)
2181 intel_wait_for_pipe_off(crtc);
2182 }
2183
2184 /*
2185 * Plane regs are double buffered, going from enabled->disabled needs a
2186 * trigger in order to latch. The display address reg provides this.
2187 */
intel_flush_primary_plane(struct drm_i915_private * dev_priv,enum plane plane)2188 void intel_flush_primary_plane(struct drm_i915_private *dev_priv,
2189 enum plane plane)
2190 {
2191 struct drm_device *dev = dev_priv->dev;
2192 u32 reg = INTEL_INFO(dev)->gen >= 4 ? DSPSURF(plane) : DSPADDR(plane);
2193
2194 I915_WRITE(reg, I915_READ(reg));
2195 POSTING_READ(reg);
2196 }
2197
2198 /**
2199 * intel_enable_primary_hw_plane - enable the primary plane on a given pipe
2200 * @plane: plane to be enabled
2201 * @crtc: crtc for the plane
2202 *
2203 * Enable @plane on @crtc, making sure that the pipe is running first.
2204 */
intel_enable_primary_hw_plane(struct drm_plane * plane,struct drm_crtc * crtc)2205 static void intel_enable_primary_hw_plane(struct drm_plane *plane,
2206 struct drm_crtc *crtc)
2207 {
2208 struct drm_device *dev = plane->dev;
2209 struct drm_i915_private *dev_priv = dev->dev_private;
2210 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2211
2212 /* If the pipe isn't enabled, we can't pump pixels and may hang */
2213 assert_pipe_enabled(dev_priv, intel_crtc->pipe);
2214
2215 if (intel_crtc->primary_enabled)
2216 return;
2217
2218 intel_crtc->primary_enabled = true;
2219
2220 dev_priv->display.update_primary_plane(crtc, plane->fb,
2221 crtc->x, crtc->y);
2222
2223 /*
2224 * BDW signals flip done immediately if the plane
2225 * is disabled, even if the plane enable is already
2226 * armed to occur at the next vblank :(
2227 */
2228 if (IS_BROADWELL(dev))
2229 intel_wait_for_vblank(dev, intel_crtc->pipe);
2230 }
2231
2232 /**
2233 * intel_disable_primary_hw_plane - disable the primary hardware plane
2234 * @plane: plane to be disabled
2235 * @crtc: crtc for the plane
2236 *
2237 * Disable @plane on @crtc, making sure that the pipe is running first.
2238 */
intel_disable_primary_hw_plane(struct drm_plane * plane,struct drm_crtc * crtc)2239 static void intel_disable_primary_hw_plane(struct drm_plane *plane,
2240 struct drm_crtc *crtc)
2241 {
2242 struct drm_device *dev = plane->dev;
2243 struct drm_i915_private *dev_priv = dev->dev_private;
2244 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2245
2246 if (WARN_ON(!intel_crtc->active))
2247 return;
2248
2249 if (!intel_crtc->primary_enabled)
2250 return;
2251
2252 intel_crtc->primary_enabled = false;
2253
2254 dev_priv->display.update_primary_plane(crtc, plane->fb,
2255 crtc->x, crtc->y);
2256 }
2257
need_vtd_wa(struct drm_device * dev)2258 static bool need_vtd_wa(struct drm_device *dev)
2259 {
2260 #ifdef CONFIG_INTEL_IOMMU
2261 if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
2262 return true;
2263 #endif
2264 return false;
2265 }
2266
2267 unsigned int
intel_tile_height(struct drm_device * dev,uint32_t pixel_format,uint64_t fb_format_modifier)2268 intel_tile_height(struct drm_device *dev, uint32_t pixel_format,
2269 uint64_t fb_format_modifier)
2270 {
2271 unsigned int tile_height;
2272 uint32_t pixel_bytes;
2273
2274 switch (fb_format_modifier) {
2275 case DRM_FORMAT_MOD_NONE:
2276 tile_height = 1;
2277 break;
2278 case I915_FORMAT_MOD_X_TILED:
2279 tile_height = IS_GEN2(dev) ? 16 : 8;
2280 break;
2281 case I915_FORMAT_MOD_Y_TILED:
2282 tile_height = 32;
2283 break;
2284 case I915_FORMAT_MOD_Yf_TILED:
2285 pixel_bytes = drm_format_plane_cpp(pixel_format, 0);
2286 switch (pixel_bytes) {
2287 default:
2288 case 1:
2289 tile_height = 64;
2290 break;
2291 case 2:
2292 case 4:
2293 tile_height = 32;
2294 break;
2295 case 8:
2296 tile_height = 16;
2297 break;
2298 case 16:
2299 WARN_ONCE(1,
2300 "128-bit pixels are not supported for display!");
2301 tile_height = 16;
2302 break;
2303 }
2304 break;
2305 default:
2306 MISSING_CASE(fb_format_modifier);
2307 tile_height = 1;
2308 break;
2309 }
2310
2311 return tile_height;
2312 }
2313
2314 unsigned int
intel_fb_align_height(struct drm_device * dev,unsigned int height,uint32_t pixel_format,uint64_t fb_format_modifier)2315 intel_fb_align_height(struct drm_device *dev, unsigned int height,
2316 uint32_t pixel_format, uint64_t fb_format_modifier)
2317 {
2318 return ALIGN(height, intel_tile_height(dev, pixel_format,
2319 fb_format_modifier));
2320 }
2321
2322 static int
intel_fill_fb_ggtt_view(struct i915_ggtt_view * view,struct drm_framebuffer * fb,const struct drm_plane_state * plane_state)2323 intel_fill_fb_ggtt_view(struct i915_ggtt_view *view, struct drm_framebuffer *fb,
2324 const struct drm_plane_state *plane_state)
2325 {
2326 struct intel_rotation_info *info = &view->rotation_info;
2327
2328 *view = i915_ggtt_view_normal;
2329
2330 if (!plane_state)
2331 return 0;
2332
2333 if (!intel_rotation_90_or_270(plane_state->rotation))
2334 return 0;
2335
2336 *view = i915_ggtt_view_rotated;
2337
2338 info->height = fb->height;
2339 info->pixel_format = fb->pixel_format;
2340 info->pitch = fb->pitches[0];
2341 info->fb_modifier = fb->modifier[0];
2342
2343 if (!(info->fb_modifier == I915_FORMAT_MOD_Y_TILED ||
2344 info->fb_modifier == I915_FORMAT_MOD_Yf_TILED)) {
2345 DRM_DEBUG_KMS(
2346 "Y or Yf tiling is needed for 90/270 rotation!\n");
2347 return -EINVAL;
2348 }
2349
2350 return 0;
2351 }
2352
2353 int
intel_pin_and_fence_fb_obj(struct drm_plane * plane,struct drm_framebuffer * fb,const struct drm_plane_state * plane_state,struct intel_engine_cs * pipelined)2354 intel_pin_and_fence_fb_obj(struct drm_plane *plane,
2355 struct drm_framebuffer *fb,
2356 const struct drm_plane_state *plane_state,
2357 struct intel_engine_cs *pipelined)
2358 {
2359 struct drm_device *dev = fb->dev;
2360 struct drm_i915_private *dev_priv = dev->dev_private;
2361 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2362 struct i915_ggtt_view view;
2363 u32 alignment;
2364 int ret;
2365
2366 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2367
2368 switch (fb->modifier[0]) {
2369 case DRM_FORMAT_MOD_NONE:
2370 if (INTEL_INFO(dev)->gen >= 9)
2371 alignment = 256 * 1024;
2372 else if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
2373 alignment = 128 * 1024;
2374 else if (INTEL_INFO(dev)->gen >= 4)
2375 alignment = 4 * 1024;
2376 else
2377 alignment = 64 * 1024;
2378 break;
2379 case I915_FORMAT_MOD_X_TILED:
2380 if (INTEL_INFO(dev)->gen >= 9)
2381 alignment = 256 * 1024;
2382 else {
2383 /* pin() will align the object as required by fence */
2384 alignment = 0;
2385 }
2386 break;
2387 case I915_FORMAT_MOD_Y_TILED:
2388 case I915_FORMAT_MOD_Yf_TILED:
2389 if (WARN_ONCE(INTEL_INFO(dev)->gen < 9,
2390 "Y tiling bo slipped through, driver bug!\n"))
2391 return -EINVAL;
2392 alignment = 1 * 1024 * 1024;
2393 break;
2394 default:
2395 MISSING_CASE(fb->modifier[0]);
2396 return -EINVAL;
2397 }
2398
2399 ret = intel_fill_fb_ggtt_view(&view, fb, plane_state);
2400 if (ret)
2401 return ret;
2402
2403 /* Note that the w/a also requires 64 PTE of padding following the
2404 * bo. We currently fill all unused PTE with the shadow page and so
2405 * we should always have valid PTE following the scanout preventing
2406 * the VT-d warning.
2407 */
2408 if (need_vtd_wa(dev) && alignment < 256 * 1024)
2409 alignment = 256 * 1024;
2410
2411 /*
2412 * Global gtt pte registers are special registers which actually forward
2413 * writes to a chunk of system memory. Which means that there is no risk
2414 * that the register values disappear as soon as we call
2415 * intel_runtime_pm_put(), so it is correct to wrap only the
2416 * pin/unpin/fence and not more.
2417 */
2418 intel_runtime_pm_get(dev_priv);
2419
2420 dev_priv->mm.interruptible = false;
2421 ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined,
2422 &view);
2423 if (ret)
2424 goto err_interruptible;
2425
2426 /* Install a fence for tiled scan-out. Pre-i965 always needs a
2427 * fence, whereas 965+ only requires a fence if using
2428 * framebuffer compression. For simplicity, we always install
2429 * a fence as the cost is not that onerous.
2430 */
2431 ret = i915_gem_object_get_fence(obj);
2432 if (ret)
2433 goto err_unpin;
2434
2435 i915_gem_object_pin_fence(obj);
2436
2437 dev_priv->mm.interruptible = true;
2438 intel_runtime_pm_put(dev_priv);
2439 return 0;
2440
2441 err_unpin:
2442 i915_gem_object_unpin_from_display_plane(obj, &view);
2443 err_interruptible:
2444 dev_priv->mm.interruptible = true;
2445 intel_runtime_pm_put(dev_priv);
2446 return ret;
2447 }
2448
intel_unpin_fb_obj(struct drm_framebuffer * fb,const struct drm_plane_state * plane_state)2449 static void intel_unpin_fb_obj(struct drm_framebuffer *fb,
2450 const struct drm_plane_state *plane_state)
2451 {
2452 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2453 struct i915_ggtt_view view;
2454 int ret;
2455
2456 WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
2457
2458 ret = intel_fill_fb_ggtt_view(&view, fb, plane_state);
2459 WARN_ONCE(ret, "Couldn't get view from plane state!");
2460
2461 i915_gem_object_unpin_fence(obj);
2462 i915_gem_object_unpin_from_display_plane(obj, &view);
2463 }
2464
2465 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2466 * is assumed to be a power-of-two. */
intel_gen4_compute_page_offset(int * x,int * y,unsigned int tiling_mode,unsigned int cpp,unsigned int pitch)2467 unsigned long intel_gen4_compute_page_offset(int *x, int *y,
2468 unsigned int tiling_mode,
2469 unsigned int cpp,
2470 unsigned int pitch)
2471 {
2472 if (tiling_mode != I915_TILING_NONE) {
2473 unsigned int tile_rows, tiles;
2474
2475 tile_rows = *y / 8;
2476 *y %= 8;
2477
2478 tiles = *x / (512/cpp);
2479 *x %= 512/cpp;
2480
2481 return tile_rows * pitch * 8 + tiles * 4096;
2482 } else {
2483 unsigned int offset;
2484
2485 offset = *y * pitch + *x * cpp;
2486 *y = 0;
2487 *x = (offset & 4095) / cpp;
2488 return offset & -4096;
2489 }
2490 }
2491
i9xx_format_to_fourcc(int format)2492 static int i9xx_format_to_fourcc(int format)
2493 {
2494 switch (format) {
2495 case DISPPLANE_8BPP:
2496 return DRM_FORMAT_C8;
2497 case DISPPLANE_BGRX555:
2498 return DRM_FORMAT_XRGB1555;
2499 case DISPPLANE_BGRX565:
2500 return DRM_FORMAT_RGB565;
2501 default:
2502 case DISPPLANE_BGRX888:
2503 return DRM_FORMAT_XRGB8888;
2504 case DISPPLANE_RGBX888:
2505 return DRM_FORMAT_XBGR8888;
2506 case DISPPLANE_BGRX101010:
2507 return DRM_FORMAT_XRGB2101010;
2508 case DISPPLANE_RGBX101010:
2509 return DRM_FORMAT_XBGR2101010;
2510 }
2511 }
2512
skl_format_to_fourcc(int format,bool rgb_order,bool alpha)2513 static int skl_format_to_fourcc(int format, bool rgb_order, bool alpha)
2514 {
2515 switch (format) {
2516 case PLANE_CTL_FORMAT_RGB_565:
2517 return DRM_FORMAT_RGB565;
2518 default:
2519 case PLANE_CTL_FORMAT_XRGB_8888:
2520 if (rgb_order) {
2521 if (alpha)
2522 return DRM_FORMAT_ABGR8888;
2523 else
2524 return DRM_FORMAT_XBGR8888;
2525 } else {
2526 if (alpha)
2527 return DRM_FORMAT_ARGB8888;
2528 else
2529 return DRM_FORMAT_XRGB8888;
2530 }
2531 case PLANE_CTL_FORMAT_XRGB_2101010:
2532 if (rgb_order)
2533 return DRM_FORMAT_XBGR2101010;
2534 else
2535 return DRM_FORMAT_XRGB2101010;
2536 }
2537 }
2538
2539 static bool
intel_alloc_initial_plane_obj(struct intel_crtc * crtc,struct intel_initial_plane_config * plane_config)2540 intel_alloc_initial_plane_obj(struct intel_crtc *crtc,
2541 struct intel_initial_plane_config *plane_config)
2542 {
2543 struct drm_device *dev = crtc->base.dev;
2544 struct drm_i915_gem_object *obj = NULL;
2545 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2546 struct drm_framebuffer *fb = &plane_config->fb->base;
2547 u32 base_aligned = round_down(plane_config->base, PAGE_SIZE);
2548 u32 size_aligned = round_up(plane_config->base + plane_config->size,
2549 PAGE_SIZE);
2550
2551 size_aligned -= base_aligned;
2552
2553 if (plane_config->size == 0)
2554 return false;
2555
2556 obj = i915_gem_object_create_stolen_for_preallocated(dev,
2557 base_aligned,
2558 base_aligned,
2559 size_aligned);
2560 if (!obj)
2561 return false;
2562
2563 obj->tiling_mode = plane_config->tiling;
2564 if (obj->tiling_mode == I915_TILING_X)
2565 obj->stride = fb->pitches[0];
2566
2567 mode_cmd.pixel_format = fb->pixel_format;
2568 mode_cmd.width = fb->width;
2569 mode_cmd.height = fb->height;
2570 mode_cmd.pitches[0] = fb->pitches[0];
2571 mode_cmd.modifier[0] = fb->modifier[0];
2572 mode_cmd.flags = DRM_MODE_FB_MODIFIERS;
2573
2574 mutex_lock(&dev->struct_mutex);
2575 if (intel_framebuffer_init(dev, to_intel_framebuffer(fb),
2576 &mode_cmd, obj)) {
2577 DRM_DEBUG_KMS("intel fb init failed\n");
2578 goto out_unref_obj;
2579 }
2580 mutex_unlock(&dev->struct_mutex);
2581
2582 DRM_DEBUG_KMS("initial plane fb obj %p\n", obj);
2583 return true;
2584
2585 out_unref_obj:
2586 drm_gem_object_unreference(&obj->base);
2587 mutex_unlock(&dev->struct_mutex);
2588 return false;
2589 }
2590
2591 /* Update plane->state->fb to match plane->fb after driver-internal updates */
2592 static void
update_state_fb(struct drm_plane * plane)2593 update_state_fb(struct drm_plane *plane)
2594 {
2595 if (plane->fb == plane->state->fb)
2596 return;
2597
2598 if (plane->state->fb)
2599 drm_framebuffer_unreference(plane->state->fb);
2600 plane->state->fb = plane->fb;
2601 if (plane->state->fb)
2602 drm_framebuffer_reference(plane->state->fb);
2603 }
2604
2605 static void
intel_find_initial_plane_obj(struct intel_crtc * intel_crtc,struct intel_initial_plane_config * plane_config)2606 intel_find_initial_plane_obj(struct intel_crtc *intel_crtc,
2607 struct intel_initial_plane_config *plane_config)
2608 {
2609 struct drm_device *dev = intel_crtc->base.dev;
2610 struct drm_i915_private *dev_priv = dev->dev_private;
2611 struct drm_crtc *c;
2612 struct intel_crtc *i;
2613 struct drm_i915_gem_object *obj;
2614 struct drm_plane *primary = intel_crtc->base.primary;
2615 struct drm_framebuffer *fb;
2616
2617 if (!plane_config->fb)
2618 return;
2619
2620 if (intel_alloc_initial_plane_obj(intel_crtc, plane_config)) {
2621 fb = &plane_config->fb->base;
2622 goto valid_fb;
2623 }
2624
2625 kfree(plane_config->fb);
2626
2627 /*
2628 * Failed to alloc the obj, check to see if we should share
2629 * an fb with another CRTC instead
2630 */
2631 for_each_crtc(dev, c) {
2632 i = to_intel_crtc(c);
2633
2634 if (c == &intel_crtc->base)
2635 continue;
2636
2637 if (!i->active)
2638 continue;
2639
2640 fb = c->primary->fb;
2641 if (!fb)
2642 continue;
2643
2644 obj = intel_fb_obj(fb);
2645 if (i915_gem_obj_ggtt_offset(obj) == plane_config->base) {
2646 drm_framebuffer_reference(fb);
2647 goto valid_fb;
2648 }
2649 }
2650
2651 return;
2652
2653 valid_fb:
2654 obj = intel_fb_obj(fb);
2655 if (obj->tiling_mode != I915_TILING_NONE)
2656 dev_priv->preserve_bios_swizzle = true;
2657
2658 primary->fb = fb;
2659 primary->state->crtc = &intel_crtc->base;
2660 primary->crtc = &intel_crtc->base;
2661 update_state_fb(primary);
2662 obj->frontbuffer_bits |= INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe);
2663 }
2664
i9xx_update_primary_plane(struct drm_crtc * crtc,struct drm_framebuffer * fb,int x,int y)2665 static void i9xx_update_primary_plane(struct drm_crtc *crtc,
2666 struct drm_framebuffer *fb,
2667 int x, int y)
2668 {
2669 struct drm_device *dev = crtc->dev;
2670 struct drm_i915_private *dev_priv = dev->dev_private;
2671 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2672 struct drm_i915_gem_object *obj;
2673 int plane = intel_crtc->plane;
2674 unsigned long linear_offset;
2675 u32 dspcntr;
2676 u32 reg = DSPCNTR(plane);
2677 int pixel_size;
2678
2679 if (!intel_crtc->primary_enabled) {
2680 I915_WRITE(reg, 0);
2681 if (INTEL_INFO(dev)->gen >= 4)
2682 I915_WRITE(DSPSURF(plane), 0);
2683 else
2684 I915_WRITE(DSPADDR(plane), 0);
2685 POSTING_READ(reg);
2686 return;
2687 }
2688
2689 obj = intel_fb_obj(fb);
2690 if (WARN_ON(obj == NULL))
2691 return;
2692
2693 pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2694
2695 dspcntr = DISPPLANE_GAMMA_ENABLE;
2696
2697 dspcntr |= DISPLAY_PLANE_ENABLE;
2698
2699 if (INTEL_INFO(dev)->gen < 4) {
2700 if (intel_crtc->pipe == PIPE_B)
2701 dspcntr |= DISPPLANE_SEL_PIPE_B;
2702
2703 /* pipesrc and dspsize control the size that is scaled from,
2704 * which should always be the user's requested size.
2705 */
2706 I915_WRITE(DSPSIZE(plane),
2707 ((intel_crtc->config->pipe_src_h - 1) << 16) |
2708 (intel_crtc->config->pipe_src_w - 1));
2709 I915_WRITE(DSPPOS(plane), 0);
2710 } else if (IS_CHERRYVIEW(dev) && plane == PLANE_B) {
2711 I915_WRITE(PRIMSIZE(plane),
2712 ((intel_crtc->config->pipe_src_h - 1) << 16) |
2713 (intel_crtc->config->pipe_src_w - 1));
2714 I915_WRITE(PRIMPOS(plane), 0);
2715 I915_WRITE(PRIMCNSTALPHA(plane), 0);
2716 }
2717
2718 switch (fb->pixel_format) {
2719 case DRM_FORMAT_C8:
2720 dspcntr |= DISPPLANE_8BPP;
2721 break;
2722 case DRM_FORMAT_XRGB1555:
2723 case DRM_FORMAT_ARGB1555:
2724 dspcntr |= DISPPLANE_BGRX555;
2725 break;
2726 case DRM_FORMAT_RGB565:
2727 dspcntr |= DISPPLANE_BGRX565;
2728 break;
2729 case DRM_FORMAT_XRGB8888:
2730 case DRM_FORMAT_ARGB8888:
2731 dspcntr |= DISPPLANE_BGRX888;
2732 break;
2733 case DRM_FORMAT_XBGR8888:
2734 case DRM_FORMAT_ABGR8888:
2735 dspcntr |= DISPPLANE_RGBX888;
2736 break;
2737 case DRM_FORMAT_XRGB2101010:
2738 case DRM_FORMAT_ARGB2101010:
2739 dspcntr |= DISPPLANE_BGRX101010;
2740 break;
2741 case DRM_FORMAT_XBGR2101010:
2742 case DRM_FORMAT_ABGR2101010:
2743 dspcntr |= DISPPLANE_RGBX101010;
2744 break;
2745 default:
2746 BUG();
2747 }
2748
2749 if (INTEL_INFO(dev)->gen >= 4 &&
2750 obj->tiling_mode != I915_TILING_NONE)
2751 dspcntr |= DISPPLANE_TILED;
2752
2753 if (IS_G4X(dev))
2754 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2755
2756 linear_offset = y * fb->pitches[0] + x * pixel_size;
2757
2758 if (INTEL_INFO(dev)->gen >= 4) {
2759 intel_crtc->dspaddr_offset =
2760 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2761 pixel_size,
2762 fb->pitches[0]);
2763 linear_offset -= intel_crtc->dspaddr_offset;
2764 } else {
2765 intel_crtc->dspaddr_offset = linear_offset;
2766 }
2767
2768 if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180)) {
2769 dspcntr |= DISPPLANE_ROTATE_180;
2770
2771 x += (intel_crtc->config->pipe_src_w - 1);
2772 y += (intel_crtc->config->pipe_src_h - 1);
2773
2774 /* Finding the last pixel of the last line of the display
2775 data and adding to linear_offset*/
2776 linear_offset +=
2777 (intel_crtc->config->pipe_src_h - 1) * fb->pitches[0] +
2778 (intel_crtc->config->pipe_src_w - 1) * pixel_size;
2779 }
2780
2781 I915_WRITE(reg, dspcntr);
2782
2783 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2784 if (INTEL_INFO(dev)->gen >= 4) {
2785 I915_WRITE(DSPSURF(plane),
2786 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2787 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2788 I915_WRITE(DSPLINOFF(plane), linear_offset);
2789 } else
2790 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
2791 POSTING_READ(reg);
2792 }
2793
ironlake_update_primary_plane(struct drm_crtc * crtc,struct drm_framebuffer * fb,int x,int y)2794 static void ironlake_update_primary_plane(struct drm_crtc *crtc,
2795 struct drm_framebuffer *fb,
2796 int x, int y)
2797 {
2798 struct drm_device *dev = crtc->dev;
2799 struct drm_i915_private *dev_priv = dev->dev_private;
2800 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2801 struct drm_i915_gem_object *obj;
2802 int plane = intel_crtc->plane;
2803 unsigned long linear_offset;
2804 u32 dspcntr;
2805 u32 reg = DSPCNTR(plane);
2806 int pixel_size;
2807
2808 if (!intel_crtc->primary_enabled) {
2809 I915_WRITE(reg, 0);
2810 I915_WRITE(DSPSURF(plane), 0);
2811 POSTING_READ(reg);
2812 return;
2813 }
2814
2815 obj = intel_fb_obj(fb);
2816 if (WARN_ON(obj == NULL))
2817 return;
2818
2819 pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2820
2821 dspcntr = DISPPLANE_GAMMA_ENABLE;
2822
2823 dspcntr |= DISPLAY_PLANE_ENABLE;
2824
2825 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2826 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
2827
2828 switch (fb->pixel_format) {
2829 case DRM_FORMAT_C8:
2830 dspcntr |= DISPPLANE_8BPP;
2831 break;
2832 case DRM_FORMAT_RGB565:
2833 dspcntr |= DISPPLANE_BGRX565;
2834 break;
2835 case DRM_FORMAT_XRGB8888:
2836 case DRM_FORMAT_ARGB8888:
2837 dspcntr |= DISPPLANE_BGRX888;
2838 break;
2839 case DRM_FORMAT_XBGR8888:
2840 case DRM_FORMAT_ABGR8888:
2841 dspcntr |= DISPPLANE_RGBX888;
2842 break;
2843 case DRM_FORMAT_XRGB2101010:
2844 case DRM_FORMAT_ARGB2101010:
2845 dspcntr |= DISPPLANE_BGRX101010;
2846 break;
2847 case DRM_FORMAT_XBGR2101010:
2848 case DRM_FORMAT_ABGR2101010:
2849 dspcntr |= DISPPLANE_RGBX101010;
2850 break;
2851 default:
2852 BUG();
2853 }
2854
2855 if (obj->tiling_mode != I915_TILING_NONE)
2856 dspcntr |= DISPPLANE_TILED;
2857
2858 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
2859 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2860
2861 linear_offset = y * fb->pitches[0] + x * pixel_size;
2862 intel_crtc->dspaddr_offset =
2863 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2864 pixel_size,
2865 fb->pitches[0]);
2866 linear_offset -= intel_crtc->dspaddr_offset;
2867 if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180)) {
2868 dspcntr |= DISPPLANE_ROTATE_180;
2869
2870 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
2871 x += (intel_crtc->config->pipe_src_w - 1);
2872 y += (intel_crtc->config->pipe_src_h - 1);
2873
2874 /* Finding the last pixel of the last line of the display
2875 data and adding to linear_offset*/
2876 linear_offset +=
2877 (intel_crtc->config->pipe_src_h - 1) * fb->pitches[0] +
2878 (intel_crtc->config->pipe_src_w - 1) * pixel_size;
2879 }
2880 }
2881
2882 I915_WRITE(reg, dspcntr);
2883
2884 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2885 I915_WRITE(DSPSURF(plane),
2886 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2887 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2888 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2889 } else {
2890 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2891 I915_WRITE(DSPLINOFF(plane), linear_offset);
2892 }
2893 POSTING_READ(reg);
2894 }
2895
intel_fb_stride_alignment(struct drm_device * dev,uint64_t fb_modifier,uint32_t pixel_format)2896 u32 intel_fb_stride_alignment(struct drm_device *dev, uint64_t fb_modifier,
2897 uint32_t pixel_format)
2898 {
2899 u32 bits_per_pixel = drm_format_plane_cpp(pixel_format, 0) * 8;
2900
2901 /*
2902 * The stride is either expressed as a multiple of 64 bytes
2903 * chunks for linear buffers or in number of tiles for tiled
2904 * buffers.
2905 */
2906 switch (fb_modifier) {
2907 case DRM_FORMAT_MOD_NONE:
2908 return 64;
2909 case I915_FORMAT_MOD_X_TILED:
2910 if (INTEL_INFO(dev)->gen == 2)
2911 return 128;
2912 return 512;
2913 case I915_FORMAT_MOD_Y_TILED:
2914 /* No need to check for old gens and Y tiling since this is
2915 * about the display engine and those will be blocked before
2916 * we get here.
2917 */
2918 return 128;
2919 case I915_FORMAT_MOD_Yf_TILED:
2920 if (bits_per_pixel == 8)
2921 return 64;
2922 else
2923 return 128;
2924 default:
2925 MISSING_CASE(fb_modifier);
2926 return 64;
2927 }
2928 }
2929
intel_plane_obj_offset(struct intel_plane * intel_plane,struct drm_i915_gem_object * obj)2930 unsigned long intel_plane_obj_offset(struct intel_plane *intel_plane,
2931 struct drm_i915_gem_object *obj)
2932 {
2933 const struct i915_ggtt_view *view = &i915_ggtt_view_normal;
2934
2935 if (intel_rotation_90_or_270(intel_plane->base.state->rotation))
2936 view = &i915_ggtt_view_rotated;
2937
2938 return i915_gem_obj_ggtt_offset_view(obj, view);
2939 }
2940
skylake_update_primary_plane(struct drm_crtc * crtc,struct drm_framebuffer * fb,int x,int y)2941 static void skylake_update_primary_plane(struct drm_crtc *crtc,
2942 struct drm_framebuffer *fb,
2943 int x, int y)
2944 {
2945 struct drm_device *dev = crtc->dev;
2946 struct drm_i915_private *dev_priv = dev->dev_private;
2947 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2948 struct drm_i915_gem_object *obj;
2949 int pipe = intel_crtc->pipe;
2950 u32 plane_ctl, stride_div;
2951 unsigned long surf_addr;
2952
2953 if (!intel_crtc->primary_enabled) {
2954 I915_WRITE(PLANE_CTL(pipe, 0), 0);
2955 I915_WRITE(PLANE_SURF(pipe, 0), 0);
2956 POSTING_READ(PLANE_CTL(pipe, 0));
2957 return;
2958 }
2959
2960 plane_ctl = PLANE_CTL_ENABLE |
2961 PLANE_CTL_PIPE_GAMMA_ENABLE |
2962 PLANE_CTL_PIPE_CSC_ENABLE;
2963
2964 switch (fb->pixel_format) {
2965 case DRM_FORMAT_RGB565:
2966 plane_ctl |= PLANE_CTL_FORMAT_RGB_565;
2967 break;
2968 case DRM_FORMAT_XRGB8888:
2969 plane_ctl |= PLANE_CTL_FORMAT_XRGB_8888;
2970 break;
2971 case DRM_FORMAT_ARGB8888:
2972 plane_ctl |= PLANE_CTL_FORMAT_XRGB_8888;
2973 plane_ctl |= PLANE_CTL_ALPHA_SW_PREMULTIPLY;
2974 break;
2975 case DRM_FORMAT_XBGR8888:
2976 plane_ctl |= PLANE_CTL_ORDER_RGBX;
2977 plane_ctl |= PLANE_CTL_FORMAT_XRGB_8888;
2978 break;
2979 case DRM_FORMAT_ABGR8888:
2980 plane_ctl |= PLANE_CTL_ORDER_RGBX;
2981 plane_ctl |= PLANE_CTL_FORMAT_XRGB_8888;
2982 plane_ctl |= PLANE_CTL_ALPHA_SW_PREMULTIPLY;
2983 break;
2984 case DRM_FORMAT_XRGB2101010:
2985 plane_ctl |= PLANE_CTL_FORMAT_XRGB_2101010;
2986 break;
2987 case DRM_FORMAT_XBGR2101010:
2988 plane_ctl |= PLANE_CTL_ORDER_RGBX;
2989 plane_ctl |= PLANE_CTL_FORMAT_XRGB_2101010;
2990 break;
2991 default:
2992 BUG();
2993 }
2994
2995 switch (fb->modifier[0]) {
2996 case DRM_FORMAT_MOD_NONE:
2997 break;
2998 case I915_FORMAT_MOD_X_TILED:
2999 plane_ctl |= PLANE_CTL_TILED_X;
3000 break;
3001 case I915_FORMAT_MOD_Y_TILED:
3002 plane_ctl |= PLANE_CTL_TILED_Y;
3003 break;
3004 case I915_FORMAT_MOD_Yf_TILED:
3005 plane_ctl |= PLANE_CTL_TILED_YF;
3006 break;
3007 default:
3008 MISSING_CASE(fb->modifier[0]);
3009 }
3010
3011 plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE;
3012 if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180))
3013 plane_ctl |= PLANE_CTL_ROTATE_180;
3014
3015 obj = intel_fb_obj(fb);
3016 stride_div = intel_fb_stride_alignment(dev, fb->modifier[0],
3017 fb->pixel_format);
3018 surf_addr = intel_plane_obj_offset(to_intel_plane(crtc->primary), obj);
3019
3020 I915_WRITE(PLANE_CTL(pipe, 0), plane_ctl);
3021 I915_WRITE(PLANE_POS(pipe, 0), 0);
3022 I915_WRITE(PLANE_OFFSET(pipe, 0), (y << 16) | x);
3023 I915_WRITE(PLANE_SIZE(pipe, 0),
3024 (intel_crtc->config->pipe_src_h - 1) << 16 |
3025 (intel_crtc->config->pipe_src_w - 1));
3026 I915_WRITE(PLANE_STRIDE(pipe, 0), fb->pitches[0] / stride_div);
3027 I915_WRITE(PLANE_SURF(pipe, 0), surf_addr);
3028
3029 POSTING_READ(PLANE_SURF(pipe, 0));
3030 }
3031
3032 /* Assume fb object is pinned & idle & fenced and just update base pointers */
3033 static int
intel_pipe_set_base_atomic(struct drm_crtc * crtc,struct drm_framebuffer * fb,int x,int y,enum mode_set_atomic state)3034 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
3035 int x, int y, enum mode_set_atomic state)
3036 {
3037 struct drm_device *dev = crtc->dev;
3038 struct drm_i915_private *dev_priv = dev->dev_private;
3039
3040 if (dev_priv->display.disable_fbc)
3041 dev_priv->display.disable_fbc(dev);
3042
3043 dev_priv->display.update_primary_plane(crtc, fb, x, y);
3044
3045 return 0;
3046 }
3047
intel_complete_page_flips(struct drm_device * dev)3048 static void intel_complete_page_flips(struct drm_device *dev)
3049 {
3050 struct drm_crtc *crtc;
3051
3052 for_each_crtc(dev, crtc) {
3053 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3054 enum plane plane = intel_crtc->plane;
3055
3056 intel_prepare_page_flip(dev, plane);
3057 intel_finish_page_flip_plane(dev, plane);
3058 }
3059 }
3060
intel_update_primary_planes(struct drm_device * dev)3061 static void intel_update_primary_planes(struct drm_device *dev)
3062 {
3063 struct drm_i915_private *dev_priv = dev->dev_private;
3064 struct drm_crtc *crtc;
3065
3066 for_each_crtc(dev, crtc) {
3067 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3068
3069 drm_modeset_lock(&crtc->mutex, NULL);
3070 /*
3071 * FIXME: Once we have proper support for primary planes (and
3072 * disabling them without disabling the entire crtc) allow again
3073 * a NULL crtc->primary->fb.
3074 */
3075 if (intel_crtc->active && crtc->primary->fb)
3076 dev_priv->display.update_primary_plane(crtc,
3077 crtc->primary->fb,
3078 crtc->x,
3079 crtc->y);
3080 drm_modeset_unlock(&crtc->mutex);
3081 }
3082 }
3083
intel_prepare_reset(struct drm_device * dev)3084 void intel_prepare_reset(struct drm_device *dev)
3085 {
3086 struct drm_i915_private *dev_priv = to_i915(dev);
3087 struct intel_crtc *crtc;
3088
3089 /* no reset support for gen2 */
3090 if (IS_GEN2(dev))
3091 return;
3092
3093 /* reset doesn't touch the display */
3094 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
3095 return;
3096
3097 drm_modeset_lock_all(dev);
3098
3099 /*
3100 * Disabling the crtcs gracefully seems nicer. Also the
3101 * g33 docs say we should at least disable all the planes.
3102 */
3103 for_each_intel_crtc(dev, crtc) {
3104 if (crtc->active)
3105 dev_priv->display.crtc_disable(&crtc->base);
3106 }
3107 }
3108
intel_finish_reset(struct drm_device * dev)3109 void intel_finish_reset(struct drm_device *dev)
3110 {
3111 struct drm_i915_private *dev_priv = to_i915(dev);
3112
3113 /*
3114 * Flips in the rings will be nuked by the reset,
3115 * so complete all pending flips so that user space
3116 * will get its events and not get stuck.
3117 */
3118 intel_complete_page_flips(dev);
3119
3120 /* no reset support for gen2 */
3121 if (IS_GEN2(dev))
3122 return;
3123
3124 /* reset doesn't touch the display */
3125 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev)) {
3126 /*
3127 * Flips in the rings have been nuked by the reset,
3128 * so update the base address of all primary
3129 * planes to the the last fb to make sure we're
3130 * showing the correct fb after a reset.
3131 */
3132 intel_update_primary_planes(dev);
3133 return;
3134 }
3135
3136 /*
3137 * The display has been reset as well,
3138 * so need a full re-initialization.
3139 */
3140 intel_runtime_pm_disable_interrupts(dev_priv);
3141 intel_runtime_pm_enable_interrupts(dev_priv);
3142
3143 intel_modeset_init_hw(dev);
3144
3145 spin_lock_irq(&dev_priv->irq_lock);
3146 if (dev_priv->display.hpd_irq_setup)
3147 dev_priv->display.hpd_irq_setup(dev);
3148 spin_unlock_irq(&dev_priv->irq_lock);
3149
3150 intel_modeset_setup_hw_state(dev, true);
3151
3152 intel_hpd_init(dev_priv);
3153
3154 drm_modeset_unlock_all(dev);
3155 }
3156
3157 static int
intel_finish_fb(struct drm_framebuffer * old_fb)3158 intel_finish_fb(struct drm_framebuffer *old_fb)
3159 {
3160 struct drm_i915_gem_object *obj = intel_fb_obj(old_fb);
3161 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3162 bool was_interruptible = dev_priv->mm.interruptible;
3163 int ret;
3164
3165 /* Big Hammer, we also need to ensure that any pending
3166 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
3167 * current scanout is retired before unpinning the old
3168 * framebuffer.
3169 *
3170 * This should only fail upon a hung GPU, in which case we
3171 * can safely continue.
3172 */
3173 dev_priv->mm.interruptible = false;
3174 ret = i915_gem_object_finish_gpu(obj);
3175 dev_priv->mm.interruptible = was_interruptible;
3176
3177 return ret;
3178 }
3179
intel_crtc_has_pending_flip(struct drm_crtc * crtc)3180 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
3181 {
3182 struct drm_device *dev = crtc->dev;
3183 struct drm_i915_private *dev_priv = dev->dev_private;
3184 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3185 bool pending;
3186
3187 if (i915_reset_in_progress(&dev_priv->gpu_error) ||
3188 intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
3189 return false;
3190
3191 spin_lock_irq(&dev->event_lock);
3192 pending = to_intel_crtc(crtc)->unpin_work != NULL;
3193 spin_unlock_irq(&dev->event_lock);
3194
3195 return pending;
3196 }
3197
intel_update_pipe_size(struct intel_crtc * crtc)3198 static void intel_update_pipe_size(struct intel_crtc *crtc)
3199 {
3200 struct drm_device *dev = crtc->base.dev;
3201 struct drm_i915_private *dev_priv = dev->dev_private;
3202 const struct drm_display_mode *adjusted_mode;
3203
3204 if (!i915.fastboot)
3205 return;
3206
3207 /*
3208 * Update pipe size and adjust fitter if needed: the reason for this is
3209 * that in compute_mode_changes we check the native mode (not the pfit
3210 * mode) to see if we can flip rather than do a full mode set. In the
3211 * fastboot case, we'll flip, but if we don't update the pipesrc and
3212 * pfit state, we'll end up with a big fb scanned out into the wrong
3213 * sized surface.
3214 *
3215 * To fix this properly, we need to hoist the checks up into
3216 * compute_mode_changes (or above), check the actual pfit state and
3217 * whether the platform allows pfit disable with pipe active, and only
3218 * then update the pipesrc and pfit state, even on the flip path.
3219 */
3220
3221 adjusted_mode = &crtc->config->base.adjusted_mode;
3222
3223 I915_WRITE(PIPESRC(crtc->pipe),
3224 ((adjusted_mode->crtc_hdisplay - 1) << 16) |
3225 (adjusted_mode->crtc_vdisplay - 1));
3226 if (!crtc->config->pch_pfit.enabled &&
3227 (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
3228 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3229 I915_WRITE(PF_CTL(crtc->pipe), 0);
3230 I915_WRITE(PF_WIN_POS(crtc->pipe), 0);
3231 I915_WRITE(PF_WIN_SZ(crtc->pipe), 0);
3232 }
3233 crtc->config->pipe_src_w = adjusted_mode->crtc_hdisplay;
3234 crtc->config->pipe_src_h = adjusted_mode->crtc_vdisplay;
3235 }
3236
intel_fdi_normal_train(struct drm_crtc * crtc)3237 static void intel_fdi_normal_train(struct drm_crtc *crtc)
3238 {
3239 struct drm_device *dev = crtc->dev;
3240 struct drm_i915_private *dev_priv = dev->dev_private;
3241 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3242 int pipe = intel_crtc->pipe;
3243 u32 reg, temp;
3244
3245 /* enable normal train */
3246 reg = FDI_TX_CTL(pipe);
3247 temp = I915_READ(reg);
3248 if (IS_IVYBRIDGE(dev)) {
3249 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3250 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
3251 } else {
3252 temp &= ~FDI_LINK_TRAIN_NONE;
3253 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
3254 }
3255 I915_WRITE(reg, temp);
3256
3257 reg = FDI_RX_CTL(pipe);
3258 temp = I915_READ(reg);
3259 if (HAS_PCH_CPT(dev)) {
3260 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3261 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
3262 } else {
3263 temp &= ~FDI_LINK_TRAIN_NONE;
3264 temp |= FDI_LINK_TRAIN_NONE;
3265 }
3266 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
3267
3268 /* wait one idle pattern time */
3269 POSTING_READ(reg);
3270 udelay(1000);
3271
3272 /* IVB wants error correction enabled */
3273 if (IS_IVYBRIDGE(dev))
3274 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
3275 FDI_FE_ERRC_ENABLE);
3276 }
3277
3278 /* The FDI link training functions for ILK/Ibexpeak. */
ironlake_fdi_link_train(struct drm_crtc * crtc)3279 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
3280 {
3281 struct drm_device *dev = crtc->dev;
3282 struct drm_i915_private *dev_priv = dev->dev_private;
3283 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3284 int pipe = intel_crtc->pipe;
3285 u32 reg, temp, tries;
3286
3287 /* FDI needs bits from pipe first */
3288 assert_pipe_enabled(dev_priv, pipe);
3289
3290 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3291 for train result */
3292 reg = FDI_RX_IMR(pipe);
3293 temp = I915_READ(reg);
3294 temp &= ~FDI_RX_SYMBOL_LOCK;
3295 temp &= ~FDI_RX_BIT_LOCK;
3296 I915_WRITE(reg, temp);
3297 I915_READ(reg);
3298 udelay(150);
3299
3300 /* enable CPU FDI TX and PCH FDI RX */
3301 reg = FDI_TX_CTL(pipe);
3302 temp = I915_READ(reg);
3303 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3304 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3305 temp &= ~FDI_LINK_TRAIN_NONE;
3306 temp |= FDI_LINK_TRAIN_PATTERN_1;
3307 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3308
3309 reg = FDI_RX_CTL(pipe);
3310 temp = I915_READ(reg);
3311 temp &= ~FDI_LINK_TRAIN_NONE;
3312 temp |= FDI_LINK_TRAIN_PATTERN_1;
3313 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3314
3315 POSTING_READ(reg);
3316 udelay(150);
3317
3318 /* Ironlake workaround, enable clock pointer after FDI enable*/
3319 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3320 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
3321 FDI_RX_PHASE_SYNC_POINTER_EN);
3322
3323 reg = FDI_RX_IIR(pipe);
3324 for (tries = 0; tries < 5; tries++) {
3325 temp = I915_READ(reg);
3326 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3327
3328 if ((temp & FDI_RX_BIT_LOCK)) {
3329 DRM_DEBUG_KMS("FDI train 1 done.\n");
3330 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3331 break;
3332 }
3333 }
3334 if (tries == 5)
3335 DRM_ERROR("FDI train 1 fail!\n");
3336
3337 /* Train 2 */
3338 reg = FDI_TX_CTL(pipe);
3339 temp = I915_READ(reg);
3340 temp &= ~FDI_LINK_TRAIN_NONE;
3341 temp |= FDI_LINK_TRAIN_PATTERN_2;
3342 I915_WRITE(reg, temp);
3343
3344 reg = FDI_RX_CTL(pipe);
3345 temp = I915_READ(reg);
3346 temp &= ~FDI_LINK_TRAIN_NONE;
3347 temp |= FDI_LINK_TRAIN_PATTERN_2;
3348 I915_WRITE(reg, temp);
3349
3350 POSTING_READ(reg);
3351 udelay(150);
3352
3353 reg = FDI_RX_IIR(pipe);
3354 for (tries = 0; tries < 5; tries++) {
3355 temp = I915_READ(reg);
3356 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3357
3358 if (temp & FDI_RX_SYMBOL_LOCK) {
3359 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3360 DRM_DEBUG_KMS("FDI train 2 done.\n");
3361 break;
3362 }
3363 }
3364 if (tries == 5)
3365 DRM_ERROR("FDI train 2 fail!\n");
3366
3367 DRM_DEBUG_KMS("FDI train done\n");
3368
3369 }
3370
3371 static const int snb_b_fdi_train_param[] = {
3372 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
3373 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
3374 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
3375 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
3376 };
3377
3378 /* The FDI link training functions for SNB/Cougarpoint. */
gen6_fdi_link_train(struct drm_crtc * crtc)3379 static void gen6_fdi_link_train(struct drm_crtc *crtc)
3380 {
3381 struct drm_device *dev = crtc->dev;
3382 struct drm_i915_private *dev_priv = dev->dev_private;
3383 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3384 int pipe = intel_crtc->pipe;
3385 u32 reg, temp, i, retry;
3386
3387 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3388 for train result */
3389 reg = FDI_RX_IMR(pipe);
3390 temp = I915_READ(reg);
3391 temp &= ~FDI_RX_SYMBOL_LOCK;
3392 temp &= ~FDI_RX_BIT_LOCK;
3393 I915_WRITE(reg, temp);
3394
3395 POSTING_READ(reg);
3396 udelay(150);
3397
3398 /* enable CPU FDI TX and PCH FDI RX */
3399 reg = FDI_TX_CTL(pipe);
3400 temp = I915_READ(reg);
3401 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3402 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3403 temp &= ~FDI_LINK_TRAIN_NONE;
3404 temp |= FDI_LINK_TRAIN_PATTERN_1;
3405 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3406 /* SNB-B */
3407 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3408 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3409
3410 I915_WRITE(FDI_RX_MISC(pipe),
3411 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3412
3413 reg = FDI_RX_CTL(pipe);
3414 temp = I915_READ(reg);
3415 if (HAS_PCH_CPT(dev)) {
3416 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3417 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3418 } else {
3419 temp &= ~FDI_LINK_TRAIN_NONE;
3420 temp |= FDI_LINK_TRAIN_PATTERN_1;
3421 }
3422 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3423
3424 POSTING_READ(reg);
3425 udelay(150);
3426
3427 for (i = 0; i < 4; i++) {
3428 reg = FDI_TX_CTL(pipe);
3429 temp = I915_READ(reg);
3430 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3431 temp |= snb_b_fdi_train_param[i];
3432 I915_WRITE(reg, temp);
3433
3434 POSTING_READ(reg);
3435 udelay(500);
3436
3437 for (retry = 0; retry < 5; retry++) {
3438 reg = FDI_RX_IIR(pipe);
3439 temp = I915_READ(reg);
3440 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3441 if (temp & FDI_RX_BIT_LOCK) {
3442 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3443 DRM_DEBUG_KMS("FDI train 1 done.\n");
3444 break;
3445 }
3446 udelay(50);
3447 }
3448 if (retry < 5)
3449 break;
3450 }
3451 if (i == 4)
3452 DRM_ERROR("FDI train 1 fail!\n");
3453
3454 /* Train 2 */
3455 reg = FDI_TX_CTL(pipe);
3456 temp = I915_READ(reg);
3457 temp &= ~FDI_LINK_TRAIN_NONE;
3458 temp |= FDI_LINK_TRAIN_PATTERN_2;
3459 if (IS_GEN6(dev)) {
3460 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3461 /* SNB-B */
3462 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3463 }
3464 I915_WRITE(reg, temp);
3465
3466 reg = FDI_RX_CTL(pipe);
3467 temp = I915_READ(reg);
3468 if (HAS_PCH_CPT(dev)) {
3469 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3470 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3471 } else {
3472 temp &= ~FDI_LINK_TRAIN_NONE;
3473 temp |= FDI_LINK_TRAIN_PATTERN_2;
3474 }
3475 I915_WRITE(reg, temp);
3476
3477 POSTING_READ(reg);
3478 udelay(150);
3479
3480 for (i = 0; i < 4; i++) {
3481 reg = FDI_TX_CTL(pipe);
3482 temp = I915_READ(reg);
3483 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3484 temp |= snb_b_fdi_train_param[i];
3485 I915_WRITE(reg, temp);
3486
3487 POSTING_READ(reg);
3488 udelay(500);
3489
3490 for (retry = 0; retry < 5; retry++) {
3491 reg = FDI_RX_IIR(pipe);
3492 temp = I915_READ(reg);
3493 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3494 if (temp & FDI_RX_SYMBOL_LOCK) {
3495 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3496 DRM_DEBUG_KMS("FDI train 2 done.\n");
3497 break;
3498 }
3499 udelay(50);
3500 }
3501 if (retry < 5)
3502 break;
3503 }
3504 if (i == 4)
3505 DRM_ERROR("FDI train 2 fail!\n");
3506
3507 DRM_DEBUG_KMS("FDI train done.\n");
3508 }
3509
3510 /* Manual link training for Ivy Bridge A0 parts */
ivb_manual_fdi_link_train(struct drm_crtc * crtc)3511 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3512 {
3513 struct drm_device *dev = crtc->dev;
3514 struct drm_i915_private *dev_priv = dev->dev_private;
3515 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3516 int pipe = intel_crtc->pipe;
3517 u32 reg, temp, i, j;
3518
3519 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3520 for train result */
3521 reg = FDI_RX_IMR(pipe);
3522 temp = I915_READ(reg);
3523 temp &= ~FDI_RX_SYMBOL_LOCK;
3524 temp &= ~FDI_RX_BIT_LOCK;
3525 I915_WRITE(reg, temp);
3526
3527 POSTING_READ(reg);
3528 udelay(150);
3529
3530 DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3531 I915_READ(FDI_RX_IIR(pipe)));
3532
3533 /* Try each vswing and preemphasis setting twice before moving on */
3534 for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3535 /* disable first in case we need to retry */
3536 reg = FDI_TX_CTL(pipe);
3537 temp = I915_READ(reg);
3538 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3539 temp &= ~FDI_TX_ENABLE;
3540 I915_WRITE(reg, temp);
3541
3542 reg = FDI_RX_CTL(pipe);
3543 temp = I915_READ(reg);
3544 temp &= ~FDI_LINK_TRAIN_AUTO;
3545 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3546 temp &= ~FDI_RX_ENABLE;
3547 I915_WRITE(reg, temp);
3548
3549 /* enable CPU FDI TX and PCH FDI RX */
3550 reg = FDI_TX_CTL(pipe);
3551 temp = I915_READ(reg);
3552 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3553 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3554 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
3555 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3556 temp |= snb_b_fdi_train_param[j/2];
3557 temp |= FDI_COMPOSITE_SYNC;
3558 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3559
3560 I915_WRITE(FDI_RX_MISC(pipe),
3561 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3562
3563 reg = FDI_RX_CTL(pipe);
3564 temp = I915_READ(reg);
3565 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3566 temp |= FDI_COMPOSITE_SYNC;
3567 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3568
3569 POSTING_READ(reg);
3570 udelay(1); /* should be 0.5us */
3571
3572 for (i = 0; i < 4; i++) {
3573 reg = FDI_RX_IIR(pipe);
3574 temp = I915_READ(reg);
3575 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3576
3577 if (temp & FDI_RX_BIT_LOCK ||
3578 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
3579 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3580 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
3581 i);
3582 break;
3583 }
3584 udelay(1); /* should be 0.5us */
3585 }
3586 if (i == 4) {
3587 DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
3588 continue;
3589 }
3590
3591 /* Train 2 */
3592 reg = FDI_TX_CTL(pipe);
3593 temp = I915_READ(reg);
3594 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3595 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
3596 I915_WRITE(reg, temp);
3597
3598 reg = FDI_RX_CTL(pipe);
3599 temp = I915_READ(reg);
3600 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3601 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3602 I915_WRITE(reg, temp);
3603
3604 POSTING_READ(reg);
3605 udelay(2); /* should be 1.5us */
3606
3607 for (i = 0; i < 4; i++) {
3608 reg = FDI_RX_IIR(pipe);
3609 temp = I915_READ(reg);
3610 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3611
3612 if (temp & FDI_RX_SYMBOL_LOCK ||
3613 (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
3614 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3615 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
3616 i);
3617 goto train_done;
3618 }
3619 udelay(2); /* should be 1.5us */
3620 }
3621 if (i == 4)
3622 DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
3623 }
3624
3625 train_done:
3626 DRM_DEBUG_KMS("FDI train done.\n");
3627 }
3628
ironlake_fdi_pll_enable(struct intel_crtc * intel_crtc)3629 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
3630 {
3631 struct drm_device *dev = intel_crtc->base.dev;
3632 struct drm_i915_private *dev_priv = dev->dev_private;
3633 int pipe = intel_crtc->pipe;
3634 u32 reg, temp;
3635
3636
3637 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
3638 reg = FDI_RX_CTL(pipe);
3639 temp = I915_READ(reg);
3640 temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
3641 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3642 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3643 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
3644
3645 POSTING_READ(reg);
3646 udelay(200);
3647
3648 /* Switch from Rawclk to PCDclk */
3649 temp = I915_READ(reg);
3650 I915_WRITE(reg, temp | FDI_PCDCLK);
3651
3652 POSTING_READ(reg);
3653 udelay(200);
3654
3655 /* Enable CPU FDI TX PLL, always on for Ironlake */
3656 reg = FDI_TX_CTL(pipe);
3657 temp = I915_READ(reg);
3658 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3659 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
3660
3661 POSTING_READ(reg);
3662 udelay(100);
3663 }
3664 }
3665
ironlake_fdi_pll_disable(struct intel_crtc * intel_crtc)3666 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3667 {
3668 struct drm_device *dev = intel_crtc->base.dev;
3669 struct drm_i915_private *dev_priv = dev->dev_private;
3670 int pipe = intel_crtc->pipe;
3671 u32 reg, temp;
3672
3673 /* Switch from PCDclk to Rawclk */
3674 reg = FDI_RX_CTL(pipe);
3675 temp = I915_READ(reg);
3676 I915_WRITE(reg, temp & ~FDI_PCDCLK);
3677
3678 /* Disable CPU FDI TX PLL */
3679 reg = FDI_TX_CTL(pipe);
3680 temp = I915_READ(reg);
3681 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3682
3683 POSTING_READ(reg);
3684 udelay(100);
3685
3686 reg = FDI_RX_CTL(pipe);
3687 temp = I915_READ(reg);
3688 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3689
3690 /* Wait for the clocks to turn off. */
3691 POSTING_READ(reg);
3692 udelay(100);
3693 }
3694
ironlake_fdi_disable(struct drm_crtc * crtc)3695 static void ironlake_fdi_disable(struct drm_crtc *crtc)
3696 {
3697 struct drm_device *dev = crtc->dev;
3698 struct drm_i915_private *dev_priv = dev->dev_private;
3699 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3700 int pipe = intel_crtc->pipe;
3701 u32 reg, temp;
3702
3703 /* disable CPU FDI tx and PCH FDI rx */
3704 reg = FDI_TX_CTL(pipe);
3705 temp = I915_READ(reg);
3706 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3707 POSTING_READ(reg);
3708
3709 reg = FDI_RX_CTL(pipe);
3710 temp = I915_READ(reg);
3711 temp &= ~(0x7 << 16);
3712 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3713 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3714
3715 POSTING_READ(reg);
3716 udelay(100);
3717
3718 /* Ironlake workaround, disable clock pointer after downing FDI */
3719 if (HAS_PCH_IBX(dev))
3720 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3721
3722 /* still set train pattern 1 */
3723 reg = FDI_TX_CTL(pipe);
3724 temp = I915_READ(reg);
3725 temp &= ~FDI_LINK_TRAIN_NONE;
3726 temp |= FDI_LINK_TRAIN_PATTERN_1;
3727 I915_WRITE(reg, temp);
3728
3729 reg = FDI_RX_CTL(pipe);
3730 temp = I915_READ(reg);
3731 if (HAS_PCH_CPT(dev)) {
3732 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3733 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3734 } else {
3735 temp &= ~FDI_LINK_TRAIN_NONE;
3736 temp |= FDI_LINK_TRAIN_PATTERN_1;
3737 }
3738 /* BPC in FDI rx is consistent with that in PIPECONF */
3739 temp &= ~(0x07 << 16);
3740 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3741 I915_WRITE(reg, temp);
3742
3743 POSTING_READ(reg);
3744 udelay(100);
3745 }
3746
intel_has_pending_fb_unpin(struct drm_device * dev)3747 bool intel_has_pending_fb_unpin(struct drm_device *dev)
3748 {
3749 struct intel_crtc *crtc;
3750
3751 /* Note that we don't need to be called with mode_config.lock here
3752 * as our list of CRTC objects is static for the lifetime of the
3753 * device and so cannot disappear as we iterate. Similarly, we can
3754 * happily treat the predicates as racy, atomic checks as userspace
3755 * cannot claim and pin a new fb without at least acquring the
3756 * struct_mutex and so serialising with us.
3757 */
3758 for_each_intel_crtc(dev, crtc) {
3759 if (atomic_read(&crtc->unpin_work_count) == 0)
3760 continue;
3761
3762 if (crtc->unpin_work)
3763 intel_wait_for_vblank(dev, crtc->pipe);
3764
3765 return true;
3766 }
3767
3768 return false;
3769 }
3770
page_flip_completed(struct intel_crtc * intel_crtc)3771 static void page_flip_completed(struct intel_crtc *intel_crtc)
3772 {
3773 struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3774 struct intel_unpin_work *work = intel_crtc->unpin_work;
3775
3776 /* ensure that the unpin work is consistent wrt ->pending. */
3777 smp_rmb();
3778 intel_crtc->unpin_work = NULL;
3779
3780 if (work->event)
3781 drm_send_vblank_event(intel_crtc->base.dev,
3782 intel_crtc->pipe,
3783 work->event);
3784
3785 drm_crtc_vblank_put(&intel_crtc->base);
3786
3787 wake_up_all(&dev_priv->pending_flip_queue);
3788 queue_work(dev_priv->wq, &work->work);
3789
3790 trace_i915_flip_complete(intel_crtc->plane,
3791 work->pending_flip_obj);
3792 }
3793
intel_crtc_wait_for_pending_flips(struct drm_crtc * crtc)3794 void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
3795 {
3796 struct drm_device *dev = crtc->dev;
3797 struct drm_i915_private *dev_priv = dev->dev_private;
3798
3799 WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
3800 if (WARN_ON(wait_event_timeout(dev_priv->pending_flip_queue,
3801 !intel_crtc_has_pending_flip(crtc),
3802 60*HZ) == 0)) {
3803 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3804
3805 spin_lock_irq(&dev->event_lock);
3806 if (intel_crtc->unpin_work) {
3807 WARN_ONCE(1, "Removing stuck page flip\n");
3808 page_flip_completed(intel_crtc);
3809 }
3810 spin_unlock_irq(&dev->event_lock);
3811 }
3812
3813 if (crtc->primary->fb) {
3814 mutex_lock(&dev->struct_mutex);
3815 intel_finish_fb(crtc->primary->fb);
3816 mutex_unlock(&dev->struct_mutex);
3817 }
3818 }
3819
3820 /* Program iCLKIP clock to the desired frequency */
lpt_program_iclkip(struct drm_crtc * crtc)3821 static void lpt_program_iclkip(struct drm_crtc *crtc)
3822 {
3823 struct drm_device *dev = crtc->dev;
3824 struct drm_i915_private *dev_priv = dev->dev_private;
3825 int clock = to_intel_crtc(crtc)->config->base.adjusted_mode.crtc_clock;
3826 u32 divsel, phaseinc, auxdiv, phasedir = 0;
3827 u32 temp;
3828
3829 mutex_lock(&dev_priv->dpio_lock);
3830
3831 /* It is necessary to ungate the pixclk gate prior to programming
3832 * the divisors, and gate it back when it is done.
3833 */
3834 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3835
3836 /* Disable SSCCTL */
3837 intel_sbi_write(dev_priv, SBI_SSCCTL6,
3838 intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
3839 SBI_SSCCTL_DISABLE,
3840 SBI_ICLK);
3841
3842 /* 20MHz is a corner case which is out of range for the 7-bit divisor */
3843 if (clock == 20000) {
3844 auxdiv = 1;
3845 divsel = 0x41;
3846 phaseinc = 0x20;
3847 } else {
3848 /* The iCLK virtual clock root frequency is in MHz,
3849 * but the adjusted_mode->crtc_clock in in KHz. To get the
3850 * divisors, it is necessary to divide one by another, so we
3851 * convert the virtual clock precision to KHz here for higher
3852 * precision.
3853 */
3854 u32 iclk_virtual_root_freq = 172800 * 1000;
3855 u32 iclk_pi_range = 64;
3856 u32 desired_divisor, msb_divisor_value, pi_value;
3857
3858 desired_divisor = (iclk_virtual_root_freq / clock);
3859 msb_divisor_value = desired_divisor / iclk_pi_range;
3860 pi_value = desired_divisor % iclk_pi_range;
3861
3862 auxdiv = 0;
3863 divsel = msb_divisor_value - 2;
3864 phaseinc = pi_value;
3865 }
3866
3867 /* This should not happen with any sane values */
3868 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3869 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3870 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3871 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3872
3873 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
3874 clock,
3875 auxdiv,
3876 divsel,
3877 phasedir,
3878 phaseinc);
3879
3880 /* Program SSCDIVINTPHASE6 */
3881 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
3882 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3883 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3884 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3885 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3886 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3887 temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
3888 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
3889
3890 /* Program SSCAUXDIV */
3891 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
3892 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3893 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
3894 intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
3895
3896 /* Enable modulator and associated divider */
3897 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3898 temp &= ~SBI_SSCCTL_DISABLE;
3899 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
3900
3901 /* Wait for initialization time */
3902 udelay(24);
3903
3904 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
3905
3906 mutex_unlock(&dev_priv->dpio_lock);
3907 }
3908
ironlake_pch_transcoder_set_timings(struct intel_crtc * crtc,enum pipe pch_transcoder)3909 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
3910 enum pipe pch_transcoder)
3911 {
3912 struct drm_device *dev = crtc->base.dev;
3913 struct drm_i915_private *dev_priv = dev->dev_private;
3914 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
3915
3916 I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
3917 I915_READ(HTOTAL(cpu_transcoder)));
3918 I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
3919 I915_READ(HBLANK(cpu_transcoder)));
3920 I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
3921 I915_READ(HSYNC(cpu_transcoder)));
3922
3923 I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
3924 I915_READ(VTOTAL(cpu_transcoder)));
3925 I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
3926 I915_READ(VBLANK(cpu_transcoder)));
3927 I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
3928 I915_READ(VSYNC(cpu_transcoder)));
3929 I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
3930 I915_READ(VSYNCSHIFT(cpu_transcoder)));
3931 }
3932
cpt_set_fdi_bc_bifurcation(struct drm_device * dev,bool enable)3933 static void cpt_set_fdi_bc_bifurcation(struct drm_device *dev, bool enable)
3934 {
3935 struct drm_i915_private *dev_priv = dev->dev_private;
3936 uint32_t temp;
3937
3938 temp = I915_READ(SOUTH_CHICKEN1);
3939 if (!!(temp & FDI_BC_BIFURCATION_SELECT) == enable)
3940 return;
3941
3942 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
3943 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
3944
3945 temp &= ~FDI_BC_BIFURCATION_SELECT;
3946 if (enable)
3947 temp |= FDI_BC_BIFURCATION_SELECT;
3948
3949 DRM_DEBUG_KMS("%sabling fdi C rx\n", enable ? "en" : "dis");
3950 I915_WRITE(SOUTH_CHICKEN1, temp);
3951 POSTING_READ(SOUTH_CHICKEN1);
3952 }
3953
ivybridge_update_fdi_bc_bifurcation(struct intel_crtc * intel_crtc)3954 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
3955 {
3956 struct drm_device *dev = intel_crtc->base.dev;
3957
3958 switch (intel_crtc->pipe) {
3959 case PIPE_A:
3960 break;
3961 case PIPE_B:
3962 if (intel_crtc->config->fdi_lanes > 2)
3963 cpt_set_fdi_bc_bifurcation(dev, false);
3964 else
3965 cpt_set_fdi_bc_bifurcation(dev, true);
3966
3967 break;
3968 case PIPE_C:
3969 cpt_set_fdi_bc_bifurcation(dev, true);
3970
3971 break;
3972 default:
3973 BUG();
3974 }
3975 }
3976
3977 /*
3978 * Enable PCH resources required for PCH ports:
3979 * - PCH PLLs
3980 * - FDI training & RX/TX
3981 * - update transcoder timings
3982 * - DP transcoding bits
3983 * - transcoder
3984 */
ironlake_pch_enable(struct drm_crtc * crtc)3985 static void ironlake_pch_enable(struct drm_crtc *crtc)
3986 {
3987 struct drm_device *dev = crtc->dev;
3988 struct drm_i915_private *dev_priv = dev->dev_private;
3989 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3990 int pipe = intel_crtc->pipe;
3991 u32 reg, temp;
3992
3993 assert_pch_transcoder_disabled(dev_priv, pipe);
3994
3995 if (IS_IVYBRIDGE(dev))
3996 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
3997
3998 /* Write the TU size bits before fdi link training, so that error
3999 * detection works. */
4000 I915_WRITE(FDI_RX_TUSIZE1(pipe),
4001 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
4002
4003 /* For PCH output, training FDI link */
4004 dev_priv->display.fdi_link_train(crtc);
4005
4006 /* We need to program the right clock selection before writing the pixel
4007 * mutliplier into the DPLL. */
4008 if (HAS_PCH_CPT(dev)) {
4009 u32 sel;
4010
4011 temp = I915_READ(PCH_DPLL_SEL);
4012 temp |= TRANS_DPLL_ENABLE(pipe);
4013 sel = TRANS_DPLLB_SEL(pipe);
4014 if (intel_crtc->config->shared_dpll == DPLL_ID_PCH_PLL_B)
4015 temp |= sel;
4016 else
4017 temp &= ~sel;
4018 I915_WRITE(PCH_DPLL_SEL, temp);
4019 }
4020
4021 /* XXX: pch pll's can be enabled any time before we enable the PCH
4022 * transcoder, and we actually should do this to not upset any PCH
4023 * transcoder that already use the clock when we share it.
4024 *
4025 * Note that enable_shared_dpll tries to do the right thing, but
4026 * get_shared_dpll unconditionally resets the pll - we need that to have
4027 * the right LVDS enable sequence. */
4028 intel_enable_shared_dpll(intel_crtc);
4029
4030 /* set transcoder timing, panel must allow it */
4031 assert_panel_unlocked(dev_priv, pipe);
4032 ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
4033
4034 intel_fdi_normal_train(crtc);
4035
4036 /* For PCH DP, enable TRANS_DP_CTL */
4037 if (HAS_PCH_CPT(dev) && intel_crtc->config->has_dp_encoder) {
4038 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
4039 reg = TRANS_DP_CTL(pipe);
4040 temp = I915_READ(reg);
4041 temp &= ~(TRANS_DP_PORT_SEL_MASK |
4042 TRANS_DP_SYNC_MASK |
4043 TRANS_DP_BPC_MASK);
4044 temp |= (TRANS_DP_OUTPUT_ENABLE |
4045 TRANS_DP_ENH_FRAMING);
4046 temp |= bpc << 9; /* same format but at 11:9 */
4047
4048 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
4049 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
4050 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
4051 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
4052
4053 switch (intel_trans_dp_port_sel(crtc)) {
4054 case PCH_DP_B:
4055 temp |= TRANS_DP_PORT_SEL_B;
4056 break;
4057 case PCH_DP_C:
4058 temp |= TRANS_DP_PORT_SEL_C;
4059 break;
4060 case PCH_DP_D:
4061 temp |= TRANS_DP_PORT_SEL_D;
4062 break;
4063 default:
4064 BUG();
4065 }
4066
4067 I915_WRITE(reg, temp);
4068 }
4069
4070 ironlake_enable_pch_transcoder(dev_priv, pipe);
4071 }
4072
lpt_pch_enable(struct drm_crtc * crtc)4073 static void lpt_pch_enable(struct drm_crtc *crtc)
4074 {
4075 struct drm_device *dev = crtc->dev;
4076 struct drm_i915_private *dev_priv = dev->dev_private;
4077 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4078 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
4079
4080 assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
4081
4082 lpt_program_iclkip(crtc);
4083
4084 /* Set transcoder timing. */
4085 ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
4086
4087 lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
4088 }
4089
intel_put_shared_dpll(struct intel_crtc * crtc)4090 void intel_put_shared_dpll(struct intel_crtc *crtc)
4091 {
4092 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
4093
4094 if (pll == NULL)
4095 return;
4096
4097 if (!(pll->config.crtc_mask & (1 << crtc->pipe))) {
4098 WARN(1, "bad %s crtc mask\n", pll->name);
4099 return;
4100 }
4101
4102 pll->config.crtc_mask &= ~(1 << crtc->pipe);
4103 if (pll->config.crtc_mask == 0) {
4104 WARN_ON(pll->on);
4105 WARN_ON(pll->active);
4106 }
4107
4108 crtc->config->shared_dpll = DPLL_ID_PRIVATE;
4109 }
4110
intel_get_shared_dpll(struct intel_crtc * crtc,struct intel_crtc_state * crtc_state)4111 struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc,
4112 struct intel_crtc_state *crtc_state)
4113 {
4114 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
4115 struct intel_shared_dpll *pll;
4116 enum intel_dpll_id i;
4117
4118 if (HAS_PCH_IBX(dev_priv->dev)) {
4119 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
4120 i = (enum intel_dpll_id) crtc->pipe;
4121 pll = &dev_priv->shared_dplls[i];
4122
4123 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
4124 crtc->base.base.id, pll->name);
4125
4126 WARN_ON(pll->new_config->crtc_mask);
4127
4128 goto found;
4129 }
4130
4131 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4132 pll = &dev_priv->shared_dplls[i];
4133
4134 /* Only want to check enabled timings first */
4135 if (pll->new_config->crtc_mask == 0)
4136 continue;
4137
4138 if (memcmp(&crtc_state->dpll_hw_state,
4139 &pll->new_config->hw_state,
4140 sizeof(pll->new_config->hw_state)) == 0) {
4141 DRM_DEBUG_KMS("CRTC:%d sharing existing %s (crtc mask 0x%08x, ative %d)\n",
4142 crtc->base.base.id, pll->name,
4143 pll->new_config->crtc_mask,
4144 pll->active);
4145 goto found;
4146 }
4147 }
4148
4149 /* Ok no matching timings, maybe there's a free one? */
4150 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4151 pll = &dev_priv->shared_dplls[i];
4152 if (pll->new_config->crtc_mask == 0) {
4153 DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
4154 crtc->base.base.id, pll->name);
4155 goto found;
4156 }
4157 }
4158
4159 return NULL;
4160
4161 found:
4162 if (pll->new_config->crtc_mask == 0)
4163 pll->new_config->hw_state = crtc_state->dpll_hw_state;
4164
4165 crtc_state->shared_dpll = i;
4166 DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
4167 pipe_name(crtc->pipe));
4168
4169 pll->new_config->crtc_mask |= 1 << crtc->pipe;
4170
4171 return pll;
4172 }
4173
4174 /**
4175 * intel_shared_dpll_start_config - start a new PLL staged config
4176 * @dev_priv: DRM device
4177 * @clear_pipes: mask of pipes that will have their PLLs freed
4178 *
4179 * Starts a new PLL staged config, copying the current config but
4180 * releasing the references of pipes specified in clear_pipes.
4181 */
intel_shared_dpll_start_config(struct drm_i915_private * dev_priv,unsigned clear_pipes)4182 static int intel_shared_dpll_start_config(struct drm_i915_private *dev_priv,
4183 unsigned clear_pipes)
4184 {
4185 struct intel_shared_dpll *pll;
4186 enum intel_dpll_id i;
4187
4188 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4189 pll = &dev_priv->shared_dplls[i];
4190
4191 pll->new_config = kmemdup(&pll->config, sizeof pll->config,
4192 GFP_KERNEL);
4193 if (!pll->new_config)
4194 goto cleanup;
4195
4196 pll->new_config->crtc_mask &= ~clear_pipes;
4197 }
4198
4199 return 0;
4200
4201 cleanup:
4202 while (--i >= 0) {
4203 pll = &dev_priv->shared_dplls[i];
4204 kfree(pll->new_config);
4205 pll->new_config = NULL;
4206 }
4207
4208 return -ENOMEM;
4209 }
4210
intel_shared_dpll_commit(struct drm_i915_private * dev_priv)4211 static void intel_shared_dpll_commit(struct drm_i915_private *dev_priv)
4212 {
4213 struct intel_shared_dpll *pll;
4214 enum intel_dpll_id i;
4215
4216 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4217 pll = &dev_priv->shared_dplls[i];
4218
4219 WARN_ON(pll->new_config == &pll->config);
4220
4221 pll->config = *pll->new_config;
4222 kfree(pll->new_config);
4223 pll->new_config = NULL;
4224 }
4225 }
4226
intel_shared_dpll_abort_config(struct drm_i915_private * dev_priv)4227 static void intel_shared_dpll_abort_config(struct drm_i915_private *dev_priv)
4228 {
4229 struct intel_shared_dpll *pll;
4230 enum intel_dpll_id i;
4231
4232 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4233 pll = &dev_priv->shared_dplls[i];
4234
4235 WARN_ON(pll->new_config == &pll->config);
4236
4237 kfree(pll->new_config);
4238 pll->new_config = NULL;
4239 }
4240 }
4241
cpt_verify_modeset(struct drm_device * dev,int pipe)4242 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
4243 {
4244 struct drm_i915_private *dev_priv = dev->dev_private;
4245 int dslreg = PIPEDSL(pipe);
4246 u32 temp;
4247
4248 temp = I915_READ(dslreg);
4249 udelay(500);
4250 if (wait_for(I915_READ(dslreg) != temp, 5)) {
4251 if (wait_for(I915_READ(dslreg) != temp, 5))
4252 DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
4253 }
4254 }
4255
skylake_pfit_enable(struct intel_crtc * crtc)4256 static void skylake_pfit_enable(struct intel_crtc *crtc)
4257 {
4258 struct drm_device *dev = crtc->base.dev;
4259 struct drm_i915_private *dev_priv = dev->dev_private;
4260 int pipe = crtc->pipe;
4261
4262 if (crtc->config->pch_pfit.enabled) {
4263 I915_WRITE(PS_CTL(pipe), PS_ENABLE);
4264 I915_WRITE(PS_WIN_POS(pipe), crtc->config->pch_pfit.pos);
4265 I915_WRITE(PS_WIN_SZ(pipe), crtc->config->pch_pfit.size);
4266 }
4267 }
4268
ironlake_pfit_enable(struct intel_crtc * crtc)4269 static void ironlake_pfit_enable(struct intel_crtc *crtc)
4270 {
4271 struct drm_device *dev = crtc->base.dev;
4272 struct drm_i915_private *dev_priv = dev->dev_private;
4273 int pipe = crtc->pipe;
4274
4275 if (crtc->config->pch_pfit.enabled) {
4276 /* Force use of hard-coded filter coefficients
4277 * as some pre-programmed values are broken,
4278 * e.g. x201.
4279 */
4280 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
4281 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
4282 PF_PIPE_SEL_IVB(pipe));
4283 else
4284 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
4285 I915_WRITE(PF_WIN_POS(pipe), crtc->config->pch_pfit.pos);
4286 I915_WRITE(PF_WIN_SZ(pipe), crtc->config->pch_pfit.size);
4287 }
4288 }
4289
intel_enable_sprite_planes(struct drm_crtc * crtc)4290 static void intel_enable_sprite_planes(struct drm_crtc *crtc)
4291 {
4292 struct drm_device *dev = crtc->dev;
4293 enum pipe pipe = to_intel_crtc(crtc)->pipe;
4294 struct drm_plane *plane;
4295 struct intel_plane *intel_plane;
4296
4297 drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
4298 intel_plane = to_intel_plane(plane);
4299 if (intel_plane->pipe == pipe)
4300 intel_plane_restore(&intel_plane->base);
4301 }
4302 }
4303
4304 /*
4305 * Disable a plane internally without actually modifying the plane's state.
4306 * This will allow us to easily restore the plane later by just reprogramming
4307 * its state.
4308 */
disable_plane_internal(struct drm_plane * plane)4309 static void disable_plane_internal(struct drm_plane *plane)
4310 {
4311 struct intel_plane *intel_plane = to_intel_plane(plane);
4312 struct drm_plane_state *state =
4313 plane->funcs->atomic_duplicate_state(plane);
4314 struct intel_plane_state *intel_state = to_intel_plane_state(state);
4315
4316 intel_state->visible = false;
4317 intel_plane->commit_plane(plane, intel_state);
4318
4319 intel_plane_destroy_state(plane, state);
4320 }
4321
intel_disable_sprite_planes(struct drm_crtc * crtc)4322 static void intel_disable_sprite_planes(struct drm_crtc *crtc)
4323 {
4324 struct drm_device *dev = crtc->dev;
4325 enum pipe pipe = to_intel_crtc(crtc)->pipe;
4326 struct drm_plane *plane;
4327 struct intel_plane *intel_plane;
4328
4329 drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
4330 intel_plane = to_intel_plane(plane);
4331 if (plane->fb && intel_plane->pipe == pipe)
4332 disable_plane_internal(plane);
4333 }
4334 }
4335
hsw_enable_ips(struct intel_crtc * crtc)4336 void hsw_enable_ips(struct intel_crtc *crtc)
4337 {
4338 struct drm_device *dev = crtc->base.dev;
4339 struct drm_i915_private *dev_priv = dev->dev_private;
4340
4341 if (!crtc->config->ips_enabled)
4342 return;
4343
4344 /* We can only enable IPS after we enable a plane and wait for a vblank */
4345 intel_wait_for_vblank(dev, crtc->pipe);
4346
4347 assert_plane_enabled(dev_priv, crtc->plane);
4348 if (IS_BROADWELL(dev)) {
4349 mutex_lock(&dev_priv->rps.hw_lock);
4350 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
4351 mutex_unlock(&dev_priv->rps.hw_lock);
4352 /* Quoting Art Runyan: "its not safe to expect any particular
4353 * value in IPS_CTL bit 31 after enabling IPS through the
4354 * mailbox." Moreover, the mailbox may return a bogus state,
4355 * so we need to just enable it and continue on.
4356 */
4357 } else {
4358 I915_WRITE(IPS_CTL, IPS_ENABLE);
4359 /* The bit only becomes 1 in the next vblank, so this wait here
4360 * is essentially intel_wait_for_vblank. If we don't have this
4361 * and don't wait for vblanks until the end of crtc_enable, then
4362 * the HW state readout code will complain that the expected
4363 * IPS_CTL value is not the one we read. */
4364 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
4365 DRM_ERROR("Timed out waiting for IPS enable\n");
4366 }
4367 }
4368
hsw_disable_ips(struct intel_crtc * crtc)4369 void hsw_disable_ips(struct intel_crtc *crtc)
4370 {
4371 struct drm_device *dev = crtc->base.dev;
4372 struct drm_i915_private *dev_priv = dev->dev_private;
4373
4374 if (!crtc->config->ips_enabled)
4375 return;
4376
4377 assert_plane_enabled(dev_priv, crtc->plane);
4378 if (IS_BROADWELL(dev)) {
4379 mutex_lock(&dev_priv->rps.hw_lock);
4380 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
4381 mutex_unlock(&dev_priv->rps.hw_lock);
4382 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
4383 if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42))
4384 DRM_ERROR("Timed out waiting for IPS disable\n");
4385 } else {
4386 I915_WRITE(IPS_CTL, 0);
4387 POSTING_READ(IPS_CTL);
4388 }
4389
4390 /* We need to wait for a vblank before we can disable the plane. */
4391 intel_wait_for_vblank(dev, crtc->pipe);
4392 }
4393
4394 /** Loads the palette/gamma unit for the CRTC with the prepared values */
intel_crtc_load_lut(struct drm_crtc * crtc)4395 static void intel_crtc_load_lut(struct drm_crtc *crtc)
4396 {
4397 struct drm_device *dev = crtc->dev;
4398 struct drm_i915_private *dev_priv = dev->dev_private;
4399 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4400 enum pipe pipe = intel_crtc->pipe;
4401 int palreg = PALETTE(pipe);
4402 int i;
4403 bool reenable_ips = false;
4404
4405 /* The clocks have to be on to load the palette. */
4406 if (!crtc->state->enable || !intel_crtc->active)
4407 return;
4408
4409 if (!HAS_PCH_SPLIT(dev_priv->dev)) {
4410 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI))
4411 assert_dsi_pll_enabled(dev_priv);
4412 else
4413 assert_pll_enabled(dev_priv, pipe);
4414 }
4415
4416 /* use legacy palette for Ironlake */
4417 if (!HAS_GMCH_DISPLAY(dev))
4418 palreg = LGC_PALETTE(pipe);
4419
4420 /* Workaround : Do not read or write the pipe palette/gamma data while
4421 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
4422 */
4423 if (IS_HASWELL(dev) && intel_crtc->config->ips_enabled &&
4424 ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
4425 GAMMA_MODE_MODE_SPLIT)) {
4426 hsw_disable_ips(intel_crtc);
4427 reenable_ips = true;
4428 }
4429
4430 for (i = 0; i < 256; i++) {
4431 I915_WRITE(palreg + 4 * i,
4432 (intel_crtc->lut_r[i] << 16) |
4433 (intel_crtc->lut_g[i] << 8) |
4434 intel_crtc->lut_b[i]);
4435 }
4436
4437 if (reenable_ips)
4438 hsw_enable_ips(intel_crtc);
4439 }
4440
intel_crtc_dpms_overlay(struct intel_crtc * intel_crtc,bool enable)4441 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
4442 {
4443 if (!enable && intel_crtc->overlay) {
4444 struct drm_device *dev = intel_crtc->base.dev;
4445 struct drm_i915_private *dev_priv = dev->dev_private;
4446
4447 mutex_lock(&dev->struct_mutex);
4448 dev_priv->mm.interruptible = false;
4449 (void) intel_overlay_switch_off(intel_crtc->overlay);
4450 dev_priv->mm.interruptible = true;
4451 mutex_unlock(&dev->struct_mutex);
4452 }
4453
4454 /* Let userspace switch the overlay on again. In most cases userspace
4455 * has to recompute where to put it anyway.
4456 */
4457 }
4458
intel_crtc_enable_planes(struct drm_crtc * crtc)4459 static void intel_crtc_enable_planes(struct drm_crtc *crtc)
4460 {
4461 struct drm_device *dev = crtc->dev;
4462 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4463 int pipe = intel_crtc->pipe;
4464
4465 intel_enable_primary_hw_plane(crtc->primary, crtc);
4466 intel_enable_sprite_planes(crtc);
4467 intel_crtc_update_cursor(crtc, true);
4468 intel_crtc_dpms_overlay(intel_crtc, true);
4469
4470 hsw_enable_ips(intel_crtc);
4471
4472 mutex_lock(&dev->struct_mutex);
4473 intel_fbc_update(dev);
4474 mutex_unlock(&dev->struct_mutex);
4475
4476 /*
4477 * FIXME: Once we grow proper nuclear flip support out of this we need
4478 * to compute the mask of flip planes precisely. For the time being
4479 * consider this a flip from a NULL plane.
4480 */
4481 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
4482 }
4483
intel_crtc_disable_planes(struct drm_crtc * crtc)4484 static void intel_crtc_disable_planes(struct drm_crtc *crtc)
4485 {
4486 struct drm_device *dev = crtc->dev;
4487 struct drm_i915_private *dev_priv = dev->dev_private;
4488 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4489 int pipe = intel_crtc->pipe;
4490
4491 intel_crtc_wait_for_pending_flips(crtc);
4492
4493 if (dev_priv->fbc.crtc == intel_crtc)
4494 intel_fbc_disable(dev);
4495
4496 hsw_disable_ips(intel_crtc);
4497
4498 intel_crtc_dpms_overlay(intel_crtc, false);
4499 intel_crtc_update_cursor(crtc, false);
4500 intel_disable_sprite_planes(crtc);
4501 intel_disable_primary_hw_plane(crtc->primary, crtc);
4502
4503 /*
4504 * FIXME: Once we grow proper nuclear flip support out of this we need
4505 * to compute the mask of flip planes precisely. For the time being
4506 * consider this a flip to a NULL plane.
4507 */
4508 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
4509 }
4510
ironlake_crtc_enable(struct drm_crtc * crtc)4511 static void ironlake_crtc_enable(struct drm_crtc *crtc)
4512 {
4513 struct drm_device *dev = crtc->dev;
4514 struct drm_i915_private *dev_priv = dev->dev_private;
4515 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4516 struct intel_encoder *encoder;
4517 int pipe = intel_crtc->pipe;
4518
4519 WARN_ON(!crtc->state->enable);
4520
4521 if (intel_crtc->active)
4522 return;
4523
4524 if (intel_crtc->config->has_pch_encoder)
4525 intel_prepare_shared_dpll(intel_crtc);
4526
4527 if (intel_crtc->config->has_dp_encoder)
4528 intel_dp_set_m_n(intel_crtc, M1_N1);
4529
4530 intel_set_pipe_timings(intel_crtc);
4531
4532 if (intel_crtc->config->has_pch_encoder) {
4533 intel_cpu_transcoder_set_m_n(intel_crtc,
4534 &intel_crtc->config->fdi_m_n, NULL);
4535 }
4536
4537 ironlake_set_pipeconf(crtc);
4538
4539 intel_crtc->active = true;
4540
4541 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4542 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
4543
4544 for_each_encoder_on_crtc(dev, crtc, encoder)
4545 if (encoder->pre_enable)
4546 encoder->pre_enable(encoder);
4547
4548 if (intel_crtc->config->has_pch_encoder) {
4549 /* Note: FDI PLL enabling _must_ be done before we enable the
4550 * cpu pipes, hence this is separate from all the other fdi/pch
4551 * enabling. */
4552 ironlake_fdi_pll_enable(intel_crtc);
4553 } else {
4554 assert_fdi_tx_disabled(dev_priv, pipe);
4555 assert_fdi_rx_disabled(dev_priv, pipe);
4556 }
4557
4558 ironlake_pfit_enable(intel_crtc);
4559
4560 /*
4561 * On ILK+ LUT must be loaded before the pipe is running but with
4562 * clocks enabled
4563 */
4564 intel_crtc_load_lut(crtc);
4565
4566 intel_update_watermarks(crtc);
4567 intel_enable_pipe(intel_crtc);
4568
4569 if (intel_crtc->config->has_pch_encoder)
4570 ironlake_pch_enable(crtc);
4571
4572 assert_vblank_disabled(crtc);
4573 drm_crtc_vblank_on(crtc);
4574
4575 for_each_encoder_on_crtc(dev, crtc, encoder)
4576 encoder->enable(encoder);
4577
4578 if (HAS_PCH_CPT(dev))
4579 cpt_verify_modeset(dev, intel_crtc->pipe);
4580
4581 intel_crtc_enable_planes(crtc);
4582 }
4583
4584 /* IPS only exists on ULT machines and is tied to pipe A. */
hsw_crtc_supports_ips(struct intel_crtc * crtc)4585 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
4586 {
4587 return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
4588 }
4589
4590 /*
4591 * This implements the workaround described in the "notes" section of the mode
4592 * set sequence documentation. When going from no pipes or single pipe to
4593 * multiple pipes, and planes are enabled after the pipe, we need to wait at
4594 * least 2 vblanks on the first pipe before enabling planes on the second pipe.
4595 */
haswell_mode_set_planes_workaround(struct intel_crtc * crtc)4596 static void haswell_mode_set_planes_workaround(struct intel_crtc *crtc)
4597 {
4598 struct drm_device *dev = crtc->base.dev;
4599 struct intel_crtc *crtc_it, *other_active_crtc = NULL;
4600
4601 /* We want to get the other_active_crtc only if there's only 1 other
4602 * active crtc. */
4603 for_each_intel_crtc(dev, crtc_it) {
4604 if (!crtc_it->active || crtc_it == crtc)
4605 continue;
4606
4607 if (other_active_crtc)
4608 return;
4609
4610 other_active_crtc = crtc_it;
4611 }
4612 if (!other_active_crtc)
4613 return;
4614
4615 intel_wait_for_vblank(dev, other_active_crtc->pipe);
4616 intel_wait_for_vblank(dev, other_active_crtc->pipe);
4617 }
4618
haswell_crtc_enable(struct drm_crtc * crtc)4619 static void haswell_crtc_enable(struct drm_crtc *crtc)
4620 {
4621 struct drm_device *dev = crtc->dev;
4622 struct drm_i915_private *dev_priv = dev->dev_private;
4623 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4624 struct intel_encoder *encoder;
4625 int pipe = intel_crtc->pipe;
4626
4627 WARN_ON(!crtc->state->enable);
4628
4629 if (intel_crtc->active)
4630 return;
4631
4632 if (intel_crtc_to_shared_dpll(intel_crtc))
4633 intel_enable_shared_dpll(intel_crtc);
4634
4635 if (intel_crtc->config->has_dp_encoder)
4636 intel_dp_set_m_n(intel_crtc, M1_N1);
4637
4638 intel_set_pipe_timings(intel_crtc);
4639
4640 if (intel_crtc->config->cpu_transcoder != TRANSCODER_EDP) {
4641 I915_WRITE(PIPE_MULT(intel_crtc->config->cpu_transcoder),
4642 intel_crtc->config->pixel_multiplier - 1);
4643 }
4644
4645 if (intel_crtc->config->has_pch_encoder) {
4646 intel_cpu_transcoder_set_m_n(intel_crtc,
4647 &intel_crtc->config->fdi_m_n, NULL);
4648 }
4649
4650 haswell_set_pipeconf(crtc);
4651
4652 intel_set_pipe_csc(crtc);
4653
4654 intel_crtc->active = true;
4655
4656 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4657 for_each_encoder_on_crtc(dev, crtc, encoder)
4658 if (encoder->pre_enable)
4659 encoder->pre_enable(encoder);
4660
4661 if (intel_crtc->config->has_pch_encoder) {
4662 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4663 true);
4664 dev_priv->display.fdi_link_train(crtc);
4665 }
4666
4667 intel_ddi_enable_pipe_clock(intel_crtc);
4668
4669 if (IS_SKYLAKE(dev))
4670 skylake_pfit_enable(intel_crtc);
4671 else
4672 ironlake_pfit_enable(intel_crtc);
4673
4674 /*
4675 * On ILK+ LUT must be loaded before the pipe is running but with
4676 * clocks enabled
4677 */
4678 intel_crtc_load_lut(crtc);
4679
4680 intel_ddi_set_pipe_settings(crtc);
4681 intel_ddi_enable_transcoder_func(crtc);
4682
4683 intel_update_watermarks(crtc);
4684 intel_enable_pipe(intel_crtc);
4685
4686 if (intel_crtc->config->has_pch_encoder)
4687 lpt_pch_enable(crtc);
4688
4689 if (intel_crtc->config->dp_encoder_is_mst)
4690 intel_ddi_set_vc_payload_alloc(crtc, true);
4691
4692 assert_vblank_disabled(crtc);
4693 drm_crtc_vblank_on(crtc);
4694
4695 for_each_encoder_on_crtc(dev, crtc, encoder) {
4696 encoder->enable(encoder);
4697 intel_opregion_notify_encoder(encoder, true);
4698 }
4699
4700 /* If we change the relative order between pipe/planes enabling, we need
4701 * to change the workaround. */
4702 haswell_mode_set_planes_workaround(intel_crtc);
4703 intel_crtc_enable_planes(crtc);
4704 }
4705
skylake_pfit_disable(struct intel_crtc * crtc)4706 static void skylake_pfit_disable(struct intel_crtc *crtc)
4707 {
4708 struct drm_device *dev = crtc->base.dev;
4709 struct drm_i915_private *dev_priv = dev->dev_private;
4710 int pipe = crtc->pipe;
4711
4712 /* To avoid upsetting the power well on haswell only disable the pfit if
4713 * it's in use. The hw state code will make sure we get this right. */
4714 if (crtc->config->pch_pfit.enabled) {
4715 I915_WRITE(PS_CTL(pipe), 0);
4716 I915_WRITE(PS_WIN_POS(pipe), 0);
4717 I915_WRITE(PS_WIN_SZ(pipe), 0);
4718 }
4719 }
4720
ironlake_pfit_disable(struct intel_crtc * crtc)4721 static void ironlake_pfit_disable(struct intel_crtc *crtc)
4722 {
4723 struct drm_device *dev = crtc->base.dev;
4724 struct drm_i915_private *dev_priv = dev->dev_private;
4725 int pipe = crtc->pipe;
4726
4727 /* To avoid upsetting the power well on haswell only disable the pfit if
4728 * it's in use. The hw state code will make sure we get this right. */
4729 if (crtc->config->pch_pfit.enabled) {
4730 I915_WRITE(PF_CTL(pipe), 0);
4731 I915_WRITE(PF_WIN_POS(pipe), 0);
4732 I915_WRITE(PF_WIN_SZ(pipe), 0);
4733 }
4734 }
4735
ironlake_crtc_disable(struct drm_crtc * crtc)4736 static void ironlake_crtc_disable(struct drm_crtc *crtc)
4737 {
4738 struct drm_device *dev = crtc->dev;
4739 struct drm_i915_private *dev_priv = dev->dev_private;
4740 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4741 struct intel_encoder *encoder;
4742 int pipe = intel_crtc->pipe;
4743 u32 reg, temp;
4744
4745 if (!intel_crtc->active)
4746 return;
4747
4748 intel_crtc_disable_planes(crtc);
4749
4750 for_each_encoder_on_crtc(dev, crtc, encoder)
4751 encoder->disable(encoder);
4752
4753 drm_crtc_vblank_off(crtc);
4754 assert_vblank_disabled(crtc);
4755
4756 if (intel_crtc->config->has_pch_encoder)
4757 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
4758
4759 intel_disable_pipe(intel_crtc);
4760
4761 ironlake_pfit_disable(intel_crtc);
4762
4763 for_each_encoder_on_crtc(dev, crtc, encoder)
4764 if (encoder->post_disable)
4765 encoder->post_disable(encoder);
4766
4767 if (intel_crtc->config->has_pch_encoder) {
4768 ironlake_fdi_disable(crtc);
4769
4770 ironlake_disable_pch_transcoder(dev_priv, pipe);
4771
4772 if (HAS_PCH_CPT(dev)) {
4773 /* disable TRANS_DP_CTL */
4774 reg = TRANS_DP_CTL(pipe);
4775 temp = I915_READ(reg);
4776 temp &= ~(TRANS_DP_OUTPUT_ENABLE |
4777 TRANS_DP_PORT_SEL_MASK);
4778 temp |= TRANS_DP_PORT_SEL_NONE;
4779 I915_WRITE(reg, temp);
4780
4781 /* disable DPLL_SEL */
4782 temp = I915_READ(PCH_DPLL_SEL);
4783 temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
4784 I915_WRITE(PCH_DPLL_SEL, temp);
4785 }
4786
4787 /* disable PCH DPLL */
4788 intel_disable_shared_dpll(intel_crtc);
4789
4790 ironlake_fdi_pll_disable(intel_crtc);
4791 }
4792
4793 intel_crtc->active = false;
4794 intel_update_watermarks(crtc);
4795
4796 mutex_lock(&dev->struct_mutex);
4797 intel_fbc_update(dev);
4798 mutex_unlock(&dev->struct_mutex);
4799 }
4800
haswell_crtc_disable(struct drm_crtc * crtc)4801 static void haswell_crtc_disable(struct drm_crtc *crtc)
4802 {
4803 struct drm_device *dev = crtc->dev;
4804 struct drm_i915_private *dev_priv = dev->dev_private;
4805 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4806 struct intel_encoder *encoder;
4807 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
4808
4809 if (!intel_crtc->active)
4810 return;
4811
4812 intel_crtc_disable_planes(crtc);
4813
4814 for_each_encoder_on_crtc(dev, crtc, encoder) {
4815 intel_opregion_notify_encoder(encoder, false);
4816 encoder->disable(encoder);
4817 }
4818
4819 drm_crtc_vblank_off(crtc);
4820 assert_vblank_disabled(crtc);
4821
4822 if (intel_crtc->config->has_pch_encoder)
4823 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4824 false);
4825 intel_disable_pipe(intel_crtc);
4826
4827 if (intel_crtc->config->dp_encoder_is_mst)
4828 intel_ddi_set_vc_payload_alloc(crtc, false);
4829
4830 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
4831
4832 if (IS_SKYLAKE(dev))
4833 skylake_pfit_disable(intel_crtc);
4834 else
4835 ironlake_pfit_disable(intel_crtc);
4836
4837 intel_ddi_disable_pipe_clock(intel_crtc);
4838
4839 if (intel_crtc->config->has_pch_encoder) {
4840 lpt_disable_pch_transcoder(dev_priv);
4841 intel_ddi_fdi_disable(crtc);
4842 }
4843
4844 for_each_encoder_on_crtc(dev, crtc, encoder)
4845 if (encoder->post_disable)
4846 encoder->post_disable(encoder);
4847
4848 intel_crtc->active = false;
4849 intel_update_watermarks(crtc);
4850
4851 mutex_lock(&dev->struct_mutex);
4852 intel_fbc_update(dev);
4853 mutex_unlock(&dev->struct_mutex);
4854
4855 if (intel_crtc_to_shared_dpll(intel_crtc))
4856 intel_disable_shared_dpll(intel_crtc);
4857 }
4858
ironlake_crtc_off(struct drm_crtc * crtc)4859 static void ironlake_crtc_off(struct drm_crtc *crtc)
4860 {
4861 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4862 intel_put_shared_dpll(intel_crtc);
4863 }
4864
4865
i9xx_pfit_enable(struct intel_crtc * crtc)4866 static void i9xx_pfit_enable(struct intel_crtc *crtc)
4867 {
4868 struct drm_device *dev = crtc->base.dev;
4869 struct drm_i915_private *dev_priv = dev->dev_private;
4870 struct intel_crtc_state *pipe_config = crtc->config;
4871
4872 if (!pipe_config->gmch_pfit.control)
4873 return;
4874
4875 /*
4876 * The panel fitter should only be adjusted whilst the pipe is disabled,
4877 * according to register description and PRM.
4878 */
4879 WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
4880 assert_pipe_disabled(dev_priv, crtc->pipe);
4881
4882 I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
4883 I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
4884
4885 /* Border color in case we don't scale up to the full screen. Black by
4886 * default, change to something else for debugging. */
4887 I915_WRITE(BCLRPAT(crtc->pipe), 0);
4888 }
4889
port_to_power_domain(enum port port)4890 static enum intel_display_power_domain port_to_power_domain(enum port port)
4891 {
4892 switch (port) {
4893 case PORT_A:
4894 return POWER_DOMAIN_PORT_DDI_A_4_LANES;
4895 case PORT_B:
4896 return POWER_DOMAIN_PORT_DDI_B_4_LANES;
4897 case PORT_C:
4898 return POWER_DOMAIN_PORT_DDI_C_4_LANES;
4899 case PORT_D:
4900 return POWER_DOMAIN_PORT_DDI_D_4_LANES;
4901 default:
4902 WARN_ON_ONCE(1);
4903 return POWER_DOMAIN_PORT_OTHER;
4904 }
4905 }
4906
4907 #define for_each_power_domain(domain, mask) \
4908 for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++) \
4909 if ((1 << (domain)) & (mask))
4910
4911 enum intel_display_power_domain
intel_display_port_power_domain(struct intel_encoder * intel_encoder)4912 intel_display_port_power_domain(struct intel_encoder *intel_encoder)
4913 {
4914 struct drm_device *dev = intel_encoder->base.dev;
4915 struct intel_digital_port *intel_dig_port;
4916
4917 switch (intel_encoder->type) {
4918 case INTEL_OUTPUT_UNKNOWN:
4919 /* Only DDI platforms should ever use this output type */
4920 WARN_ON_ONCE(!HAS_DDI(dev));
4921 case INTEL_OUTPUT_DISPLAYPORT:
4922 case INTEL_OUTPUT_HDMI:
4923 case INTEL_OUTPUT_EDP:
4924 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
4925 return port_to_power_domain(intel_dig_port->port);
4926 case INTEL_OUTPUT_DP_MST:
4927 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
4928 return port_to_power_domain(intel_dig_port->port);
4929 case INTEL_OUTPUT_ANALOG:
4930 return POWER_DOMAIN_PORT_CRT;
4931 case INTEL_OUTPUT_DSI:
4932 return POWER_DOMAIN_PORT_DSI;
4933 default:
4934 return POWER_DOMAIN_PORT_OTHER;
4935 }
4936 }
4937
get_crtc_power_domains(struct drm_crtc * crtc)4938 static unsigned long get_crtc_power_domains(struct drm_crtc *crtc)
4939 {
4940 struct drm_device *dev = crtc->dev;
4941 struct intel_encoder *intel_encoder;
4942 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4943 enum pipe pipe = intel_crtc->pipe;
4944 unsigned long mask;
4945 enum transcoder transcoder;
4946
4947 transcoder = intel_pipe_to_cpu_transcoder(dev->dev_private, pipe);
4948
4949 mask = BIT(POWER_DOMAIN_PIPE(pipe));
4950 mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
4951 if (intel_crtc->config->pch_pfit.enabled ||
4952 intel_crtc->config->pch_pfit.force_thru)
4953 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
4954
4955 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
4956 mask |= BIT(intel_display_port_power_domain(intel_encoder));
4957
4958 return mask;
4959 }
4960
modeset_update_crtc_power_domains(struct drm_atomic_state * state)4961 static void modeset_update_crtc_power_domains(struct drm_atomic_state *state)
4962 {
4963 struct drm_device *dev = state->dev;
4964 struct drm_i915_private *dev_priv = dev->dev_private;
4965 unsigned long pipe_domains[I915_MAX_PIPES] = { 0, };
4966 struct intel_crtc *crtc;
4967
4968 /*
4969 * First get all needed power domains, then put all unneeded, to avoid
4970 * any unnecessary toggling of the power wells.
4971 */
4972 for_each_intel_crtc(dev, crtc) {
4973 enum intel_display_power_domain domain;
4974
4975 if (!crtc->base.state->enable)
4976 continue;
4977
4978 pipe_domains[crtc->pipe] = get_crtc_power_domains(&crtc->base);
4979
4980 for_each_power_domain(domain, pipe_domains[crtc->pipe])
4981 intel_display_power_get(dev_priv, domain);
4982 }
4983
4984 if (dev_priv->display.modeset_global_resources)
4985 dev_priv->display.modeset_global_resources(state);
4986
4987 for_each_intel_crtc(dev, crtc) {
4988 enum intel_display_power_domain domain;
4989
4990 for_each_power_domain(domain, crtc->enabled_power_domains)
4991 intel_display_power_put(dev_priv, domain);
4992
4993 crtc->enabled_power_domains = pipe_domains[crtc->pipe];
4994 }
4995
4996 intel_display_set_init_power(dev_priv, false);
4997 }
4998
4999 /* returns HPLL frequency in kHz */
valleyview_get_vco(struct drm_i915_private * dev_priv)5000 static int valleyview_get_vco(struct drm_i915_private *dev_priv)
5001 {
5002 int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
5003
5004 /* Obtain SKU information */
5005 mutex_lock(&dev_priv->dpio_lock);
5006 hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
5007 CCK_FUSE_HPLL_FREQ_MASK;
5008 mutex_unlock(&dev_priv->dpio_lock);
5009
5010 return vco_freq[hpll_freq] * 1000;
5011 }
5012
vlv_update_cdclk(struct drm_device * dev)5013 static void vlv_update_cdclk(struct drm_device *dev)
5014 {
5015 struct drm_i915_private *dev_priv = dev->dev_private;
5016
5017 dev_priv->vlv_cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
5018 DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz\n",
5019 dev_priv->vlv_cdclk_freq);
5020
5021 /*
5022 * Program the gmbus_freq based on the cdclk frequency.
5023 * BSpec erroneously claims we should aim for 4MHz, but
5024 * in fact 1MHz is the correct frequency.
5025 */
5026 I915_WRITE(GMBUSFREQ_VLV, DIV_ROUND_UP(dev_priv->vlv_cdclk_freq, 1000));
5027 }
5028
5029 /* Adjust CDclk dividers to allow high res or save power if possible */
valleyview_set_cdclk(struct drm_device * dev,int cdclk)5030 static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
5031 {
5032 struct drm_i915_private *dev_priv = dev->dev_private;
5033 u32 val, cmd;
5034
5035 WARN_ON(dev_priv->display.get_display_clock_speed(dev) != dev_priv->vlv_cdclk_freq);
5036
5037 if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
5038 cmd = 2;
5039 else if (cdclk == 266667)
5040 cmd = 1;
5041 else
5042 cmd = 0;
5043
5044 mutex_lock(&dev_priv->rps.hw_lock);
5045 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5046 val &= ~DSPFREQGUAR_MASK;
5047 val |= (cmd << DSPFREQGUAR_SHIFT);
5048 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5049 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5050 DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
5051 50)) {
5052 DRM_ERROR("timed out waiting for CDclk change\n");
5053 }
5054 mutex_unlock(&dev_priv->rps.hw_lock);
5055
5056 if (cdclk == 400000) {
5057 u32 divider;
5058
5059 divider = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
5060
5061 mutex_lock(&dev_priv->dpio_lock);
5062 /* adjust cdclk divider */
5063 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
5064 val &= ~DISPLAY_FREQUENCY_VALUES;
5065 val |= divider;
5066 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
5067
5068 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
5069 DISPLAY_FREQUENCY_STATUS) == (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
5070 50))
5071 DRM_ERROR("timed out waiting for CDclk change\n");
5072 mutex_unlock(&dev_priv->dpio_lock);
5073 }
5074
5075 mutex_lock(&dev_priv->dpio_lock);
5076 /* adjust self-refresh exit latency value */
5077 val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
5078 val &= ~0x7f;
5079
5080 /*
5081 * For high bandwidth configs, we set a higher latency in the bunit
5082 * so that the core display fetch happens in time to avoid underruns.
5083 */
5084 if (cdclk == 400000)
5085 val |= 4500 / 250; /* 4.5 usec */
5086 else
5087 val |= 3000 / 250; /* 3.0 usec */
5088 vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
5089 mutex_unlock(&dev_priv->dpio_lock);
5090
5091 vlv_update_cdclk(dev);
5092 }
5093
cherryview_set_cdclk(struct drm_device * dev,int cdclk)5094 static void cherryview_set_cdclk(struct drm_device *dev, int cdclk)
5095 {
5096 struct drm_i915_private *dev_priv = dev->dev_private;
5097 u32 val, cmd;
5098
5099 WARN_ON(dev_priv->display.get_display_clock_speed(dev) != dev_priv->vlv_cdclk_freq);
5100
5101 switch (cdclk) {
5102 case 333333:
5103 case 320000:
5104 case 266667:
5105 case 200000:
5106 break;
5107 default:
5108 MISSING_CASE(cdclk);
5109 return;
5110 }
5111
5112 /*
5113 * Specs are full of misinformation, but testing on actual
5114 * hardware has shown that we just need to write the desired
5115 * CCK divider into the Punit register.
5116 */
5117 cmd = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
5118
5119 mutex_lock(&dev_priv->rps.hw_lock);
5120 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5121 val &= ~DSPFREQGUAR_MASK_CHV;
5122 val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
5123 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5124 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5125 DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
5126 50)) {
5127 DRM_ERROR("timed out waiting for CDclk change\n");
5128 }
5129 mutex_unlock(&dev_priv->rps.hw_lock);
5130
5131 vlv_update_cdclk(dev);
5132 }
5133
valleyview_calc_cdclk(struct drm_i915_private * dev_priv,int max_pixclk)5134 static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
5135 int max_pixclk)
5136 {
5137 int freq_320 = (dev_priv->hpll_freq << 1) % 320000 != 0 ? 333333 : 320000;
5138 int limit = IS_CHERRYVIEW(dev_priv) ? 95 : 90;
5139
5140 /*
5141 * Really only a few cases to deal with, as only 4 CDclks are supported:
5142 * 200MHz
5143 * 267MHz
5144 * 320/333MHz (depends on HPLL freq)
5145 * 400MHz (VLV only)
5146 * So we check to see whether we're above 90% (VLV) or 95% (CHV)
5147 * of the lower bin and adjust if needed.
5148 *
5149 * We seem to get an unstable or solid color picture at 200MHz.
5150 * Not sure what's wrong. For now use 200MHz only when all pipes
5151 * are off.
5152 */
5153 if (!IS_CHERRYVIEW(dev_priv) &&
5154 max_pixclk > freq_320*limit/100)
5155 return 400000;
5156 else if (max_pixclk > 266667*limit/100)
5157 return freq_320;
5158 else if (max_pixclk > 0)
5159 return 266667;
5160 else
5161 return 200000;
5162 }
5163
5164 /* compute the max pixel clock for new configuration */
intel_mode_max_pixclk(struct drm_i915_private * dev_priv)5165 static int intel_mode_max_pixclk(struct drm_i915_private *dev_priv)
5166 {
5167 struct drm_device *dev = dev_priv->dev;
5168 struct intel_crtc *intel_crtc;
5169 int max_pixclk = 0;
5170
5171 for_each_intel_crtc(dev, intel_crtc) {
5172 if (intel_crtc->new_enabled)
5173 max_pixclk = max(max_pixclk,
5174 intel_crtc->new_config->base.adjusted_mode.crtc_clock);
5175 }
5176
5177 return max_pixclk;
5178 }
5179
valleyview_modeset_global_pipes(struct drm_device * dev,unsigned * prepare_pipes)5180 static void valleyview_modeset_global_pipes(struct drm_device *dev,
5181 unsigned *prepare_pipes)
5182 {
5183 struct drm_i915_private *dev_priv = dev->dev_private;
5184 struct intel_crtc *intel_crtc;
5185 int max_pixclk = intel_mode_max_pixclk(dev_priv);
5186
5187 if (valleyview_calc_cdclk(dev_priv, max_pixclk) ==
5188 dev_priv->vlv_cdclk_freq)
5189 return;
5190
5191 /* disable/enable all currently active pipes while we change cdclk */
5192 for_each_intel_crtc(dev, intel_crtc)
5193 if (intel_crtc->base.state->enable)
5194 *prepare_pipes |= (1 << intel_crtc->pipe);
5195 }
5196
vlv_program_pfi_credits(struct drm_i915_private * dev_priv)5197 static void vlv_program_pfi_credits(struct drm_i915_private *dev_priv)
5198 {
5199 unsigned int credits, default_credits;
5200
5201 if (IS_CHERRYVIEW(dev_priv))
5202 default_credits = PFI_CREDIT(12);
5203 else
5204 default_credits = PFI_CREDIT(8);
5205
5206 if (DIV_ROUND_CLOSEST(dev_priv->vlv_cdclk_freq, 1000) >= dev_priv->rps.cz_freq) {
5207 /* CHV suggested value is 31 or 63 */
5208 if (IS_CHERRYVIEW(dev_priv))
5209 credits = PFI_CREDIT_31;
5210 else
5211 credits = PFI_CREDIT(15);
5212 } else {
5213 credits = default_credits;
5214 }
5215
5216 /*
5217 * WA - write default credits before re-programming
5218 * FIXME: should we also set the resend bit here?
5219 */
5220 I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
5221 default_credits);
5222
5223 I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
5224 credits | PFI_CREDIT_RESEND);
5225
5226 /*
5227 * FIXME is this guaranteed to clear
5228 * immediately or should we poll for it?
5229 */
5230 WARN_ON(I915_READ(GCI_CONTROL) & PFI_CREDIT_RESEND);
5231 }
5232
valleyview_modeset_global_resources(struct drm_atomic_state * state)5233 static void valleyview_modeset_global_resources(struct drm_atomic_state *state)
5234 {
5235 struct drm_device *dev = state->dev;
5236 struct drm_i915_private *dev_priv = dev->dev_private;
5237 int max_pixclk = intel_mode_max_pixclk(dev_priv);
5238 int req_cdclk = valleyview_calc_cdclk(dev_priv, max_pixclk);
5239
5240 if (req_cdclk != dev_priv->vlv_cdclk_freq) {
5241 /*
5242 * FIXME: We can end up here with all power domains off, yet
5243 * with a CDCLK frequency other than the minimum. To account
5244 * for this take the PIPE-A power domain, which covers the HW
5245 * blocks needed for the following programming. This can be
5246 * removed once it's guaranteed that we get here either with
5247 * the minimum CDCLK set, or the required power domains
5248 * enabled.
5249 */
5250 intel_display_power_get(dev_priv, POWER_DOMAIN_PIPE_A);
5251
5252 if (IS_CHERRYVIEW(dev))
5253 cherryview_set_cdclk(dev, req_cdclk);
5254 else
5255 valleyview_set_cdclk(dev, req_cdclk);
5256
5257 vlv_program_pfi_credits(dev_priv);
5258
5259 intel_display_power_put(dev_priv, POWER_DOMAIN_PIPE_A);
5260 }
5261 }
5262
valleyview_crtc_enable(struct drm_crtc * crtc)5263 static void valleyview_crtc_enable(struct drm_crtc *crtc)
5264 {
5265 struct drm_device *dev = crtc->dev;
5266 struct drm_i915_private *dev_priv = to_i915(dev);
5267 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5268 struct intel_encoder *encoder;
5269 int pipe = intel_crtc->pipe;
5270 bool is_dsi;
5271
5272 WARN_ON(!crtc->state->enable);
5273
5274 if (intel_crtc->active)
5275 return;
5276
5277 is_dsi = intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI);
5278
5279 if (!is_dsi) {
5280 if (IS_CHERRYVIEW(dev))
5281 chv_prepare_pll(intel_crtc, intel_crtc->config);
5282 else
5283 vlv_prepare_pll(intel_crtc, intel_crtc->config);
5284 }
5285
5286 if (intel_crtc->config->has_dp_encoder)
5287 intel_dp_set_m_n(intel_crtc, M1_N1);
5288
5289 intel_set_pipe_timings(intel_crtc);
5290
5291 if (IS_CHERRYVIEW(dev) && pipe == PIPE_B) {
5292 struct drm_i915_private *dev_priv = dev->dev_private;
5293
5294 I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY);
5295 I915_WRITE(CHV_CANVAS(pipe), 0);
5296 }
5297
5298 i9xx_set_pipeconf(intel_crtc);
5299
5300 intel_crtc->active = true;
5301
5302 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5303
5304 for_each_encoder_on_crtc(dev, crtc, encoder)
5305 if (encoder->pre_pll_enable)
5306 encoder->pre_pll_enable(encoder);
5307
5308 if (!is_dsi) {
5309 if (IS_CHERRYVIEW(dev))
5310 chv_enable_pll(intel_crtc, intel_crtc->config);
5311 else
5312 vlv_enable_pll(intel_crtc, intel_crtc->config);
5313 }
5314
5315 for_each_encoder_on_crtc(dev, crtc, encoder)
5316 if (encoder->pre_enable)
5317 encoder->pre_enable(encoder);
5318
5319 i9xx_pfit_enable(intel_crtc);
5320
5321 intel_crtc_load_lut(crtc);
5322
5323 intel_update_watermarks(crtc);
5324 intel_enable_pipe(intel_crtc);
5325
5326 assert_vblank_disabled(crtc);
5327 drm_crtc_vblank_on(crtc);
5328
5329 for_each_encoder_on_crtc(dev, crtc, encoder)
5330 encoder->enable(encoder);
5331
5332 intel_crtc_enable_planes(crtc);
5333
5334 /* Underruns don't raise interrupts, so check manually. */
5335 i9xx_check_fifo_underruns(dev_priv);
5336 }
5337
i9xx_set_pll_dividers(struct intel_crtc * crtc)5338 static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
5339 {
5340 struct drm_device *dev = crtc->base.dev;
5341 struct drm_i915_private *dev_priv = dev->dev_private;
5342
5343 I915_WRITE(FP0(crtc->pipe), crtc->config->dpll_hw_state.fp0);
5344 I915_WRITE(FP1(crtc->pipe), crtc->config->dpll_hw_state.fp1);
5345 }
5346
i9xx_crtc_enable(struct drm_crtc * crtc)5347 static void i9xx_crtc_enable(struct drm_crtc *crtc)
5348 {
5349 struct drm_device *dev = crtc->dev;
5350 struct drm_i915_private *dev_priv = to_i915(dev);
5351 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5352 struct intel_encoder *encoder;
5353 int pipe = intel_crtc->pipe;
5354
5355 WARN_ON(!crtc->state->enable);
5356
5357 if (intel_crtc->active)
5358 return;
5359
5360 i9xx_set_pll_dividers(intel_crtc);
5361
5362 if (intel_crtc->config->has_dp_encoder)
5363 intel_dp_set_m_n(intel_crtc, M1_N1);
5364
5365 intel_set_pipe_timings(intel_crtc);
5366
5367 i9xx_set_pipeconf(intel_crtc);
5368
5369 intel_crtc->active = true;
5370
5371 if (!IS_GEN2(dev))
5372 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5373
5374 for_each_encoder_on_crtc(dev, crtc, encoder)
5375 if (encoder->pre_enable)
5376 encoder->pre_enable(encoder);
5377
5378 i9xx_enable_pll(intel_crtc);
5379
5380 i9xx_pfit_enable(intel_crtc);
5381
5382 intel_crtc_load_lut(crtc);
5383
5384 intel_update_watermarks(crtc);
5385 intel_enable_pipe(intel_crtc);
5386
5387 assert_vblank_disabled(crtc);
5388 drm_crtc_vblank_on(crtc);
5389
5390 for_each_encoder_on_crtc(dev, crtc, encoder)
5391 encoder->enable(encoder);
5392
5393 intel_crtc_enable_planes(crtc);
5394
5395 /*
5396 * Gen2 reports pipe underruns whenever all planes are disabled.
5397 * So don't enable underrun reporting before at least some planes
5398 * are enabled.
5399 * FIXME: Need to fix the logic to work when we turn off all planes
5400 * but leave the pipe running.
5401 */
5402 if (IS_GEN2(dev))
5403 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5404
5405 /* Underruns don't raise interrupts, so check manually. */
5406 i9xx_check_fifo_underruns(dev_priv);
5407 }
5408
i9xx_pfit_disable(struct intel_crtc * crtc)5409 static void i9xx_pfit_disable(struct intel_crtc *crtc)
5410 {
5411 struct drm_device *dev = crtc->base.dev;
5412 struct drm_i915_private *dev_priv = dev->dev_private;
5413
5414 if (!crtc->config->gmch_pfit.control)
5415 return;
5416
5417 assert_pipe_disabled(dev_priv, crtc->pipe);
5418
5419 DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
5420 I915_READ(PFIT_CONTROL));
5421 I915_WRITE(PFIT_CONTROL, 0);
5422 }
5423
i9xx_crtc_disable(struct drm_crtc * crtc)5424 static void i9xx_crtc_disable(struct drm_crtc *crtc)
5425 {
5426 struct drm_device *dev = crtc->dev;
5427 struct drm_i915_private *dev_priv = dev->dev_private;
5428 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5429 struct intel_encoder *encoder;
5430 int pipe = intel_crtc->pipe;
5431
5432 if (!intel_crtc->active)
5433 return;
5434
5435 /*
5436 * Gen2 reports pipe underruns whenever all planes are disabled.
5437 * So diasble underrun reporting before all the planes get disabled.
5438 * FIXME: Need to fix the logic to work when we turn off all planes
5439 * but leave the pipe running.
5440 */
5441 if (IS_GEN2(dev))
5442 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5443
5444 /*
5445 * Vblank time updates from the shadow to live plane control register
5446 * are blocked if the memory self-refresh mode is active at that
5447 * moment. So to make sure the plane gets truly disabled, disable
5448 * first the self-refresh mode. The self-refresh enable bit in turn
5449 * will be checked/applied by the HW only at the next frame start
5450 * event which is after the vblank start event, so we need to have a
5451 * wait-for-vblank between disabling the plane and the pipe.
5452 */
5453 intel_set_memory_cxsr(dev_priv, false);
5454 intel_crtc_disable_planes(crtc);
5455
5456 /*
5457 * On gen2 planes are double buffered but the pipe isn't, so we must
5458 * wait for planes to fully turn off before disabling the pipe.
5459 * We also need to wait on all gmch platforms because of the
5460 * self-refresh mode constraint explained above.
5461 */
5462 intel_wait_for_vblank(dev, pipe);
5463
5464 for_each_encoder_on_crtc(dev, crtc, encoder)
5465 encoder->disable(encoder);
5466
5467 drm_crtc_vblank_off(crtc);
5468 assert_vblank_disabled(crtc);
5469
5470 intel_disable_pipe(intel_crtc);
5471
5472 i9xx_pfit_disable(intel_crtc);
5473
5474 for_each_encoder_on_crtc(dev, crtc, encoder)
5475 if (encoder->post_disable)
5476 encoder->post_disable(encoder);
5477
5478 if (!intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI)) {
5479 if (IS_CHERRYVIEW(dev))
5480 chv_disable_pll(dev_priv, pipe);
5481 else if (IS_VALLEYVIEW(dev))
5482 vlv_disable_pll(dev_priv, pipe);
5483 else
5484 i9xx_disable_pll(intel_crtc);
5485 }
5486
5487 if (!IS_GEN2(dev))
5488 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5489
5490 intel_crtc->active = false;
5491 intel_update_watermarks(crtc);
5492
5493 mutex_lock(&dev->struct_mutex);
5494 intel_fbc_update(dev);
5495 mutex_unlock(&dev->struct_mutex);
5496 }
5497
i9xx_crtc_off(struct drm_crtc * crtc)5498 static void i9xx_crtc_off(struct drm_crtc *crtc)
5499 {
5500 }
5501
5502 /* Master function to enable/disable CRTC and corresponding power wells */
intel_crtc_control(struct drm_crtc * crtc,bool enable)5503 void intel_crtc_control(struct drm_crtc *crtc, bool enable)
5504 {
5505 struct drm_device *dev = crtc->dev;
5506 struct drm_i915_private *dev_priv = dev->dev_private;
5507 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5508 enum intel_display_power_domain domain;
5509 unsigned long domains;
5510
5511 if (enable) {
5512 if (!intel_crtc->active) {
5513 domains = get_crtc_power_domains(crtc);
5514 for_each_power_domain(domain, domains)
5515 intel_display_power_get(dev_priv, domain);
5516 intel_crtc->enabled_power_domains = domains;
5517
5518 dev_priv->display.crtc_enable(crtc);
5519 }
5520 } else {
5521 if (intel_crtc->active) {
5522 dev_priv->display.crtc_disable(crtc);
5523
5524 domains = intel_crtc->enabled_power_domains;
5525 for_each_power_domain(domain, domains)
5526 intel_display_power_put(dev_priv, domain);
5527 intel_crtc->enabled_power_domains = 0;
5528 }
5529 }
5530 }
5531
5532 /**
5533 * Sets the power management mode of the pipe and plane.
5534 */
intel_crtc_update_dpms(struct drm_crtc * crtc)5535 void intel_crtc_update_dpms(struct drm_crtc *crtc)
5536 {
5537 struct drm_device *dev = crtc->dev;
5538 struct intel_encoder *intel_encoder;
5539 bool enable = false;
5540
5541 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
5542 enable |= intel_encoder->connectors_active;
5543
5544 intel_crtc_control(crtc, enable);
5545 }
5546
intel_crtc_disable(struct drm_crtc * crtc)5547 static void intel_crtc_disable(struct drm_crtc *crtc)
5548 {
5549 struct drm_device *dev = crtc->dev;
5550 struct drm_connector *connector;
5551 struct drm_i915_private *dev_priv = dev->dev_private;
5552
5553 /* crtc should still be enabled when we disable it. */
5554 WARN_ON(!crtc->state->enable);
5555
5556 dev_priv->display.crtc_disable(crtc);
5557 dev_priv->display.off(crtc);
5558
5559 crtc->primary->funcs->disable_plane(crtc->primary);
5560
5561 /* Update computed state. */
5562 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
5563 if (!connector->encoder || !connector->encoder->crtc)
5564 continue;
5565
5566 if (connector->encoder->crtc != crtc)
5567 continue;
5568
5569 connector->dpms = DRM_MODE_DPMS_OFF;
5570 to_intel_encoder(connector->encoder)->connectors_active = false;
5571 }
5572 }
5573
intel_encoder_destroy(struct drm_encoder * encoder)5574 void intel_encoder_destroy(struct drm_encoder *encoder)
5575 {
5576 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
5577
5578 drm_encoder_cleanup(encoder);
5579 kfree(intel_encoder);
5580 }
5581
5582 /* Simple dpms helper for encoders with just one connector, no cloning and only
5583 * one kind of off state. It clamps all !ON modes to fully OFF and changes the
5584 * state of the entire output pipe. */
intel_encoder_dpms(struct intel_encoder * encoder,int mode)5585 static void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
5586 {
5587 if (mode == DRM_MODE_DPMS_ON) {
5588 encoder->connectors_active = true;
5589
5590 intel_crtc_update_dpms(encoder->base.crtc);
5591 } else {
5592 encoder->connectors_active = false;
5593
5594 intel_crtc_update_dpms(encoder->base.crtc);
5595 }
5596 }
5597
5598 /* Cross check the actual hw state with our own modeset state tracking (and it's
5599 * internal consistency). */
intel_connector_check_state(struct intel_connector * connector)5600 static void intel_connector_check_state(struct intel_connector *connector)
5601 {
5602 if (connector->get_hw_state(connector)) {
5603 struct intel_encoder *encoder = connector->encoder;
5604 struct drm_crtc *crtc;
5605 bool encoder_enabled;
5606 enum pipe pipe;
5607
5608 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
5609 connector->base.base.id,
5610 connector->base.name);
5611
5612 I915_STATE_WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
5613 "wrong connector dpms state\n");
5614 I915_STATE_WARN(connector->base.encoder != &encoder->base,
5615 "active connector not linked to encoder\n");
5616
5617 if (encoder) {
5618 I915_STATE_WARN(!encoder->connectors_active,
5619 "encoder->connectors_active not set\n");
5620
5621 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
5622 I915_STATE_WARN(!encoder_enabled, "encoder not enabled\n");
5623 if (I915_STATE_WARN_ON(!encoder->base.crtc))
5624 return;
5625
5626 crtc = encoder->base.crtc;
5627
5628 I915_STATE_WARN(!crtc->state->enable,
5629 "crtc not enabled\n");
5630 I915_STATE_WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
5631 I915_STATE_WARN(pipe != to_intel_crtc(crtc)->pipe,
5632 "encoder active on the wrong pipe\n");
5633 }
5634 }
5635 }
5636
intel_connector_init(struct intel_connector * connector)5637 int intel_connector_init(struct intel_connector *connector)
5638 {
5639 struct drm_connector_state *connector_state;
5640
5641 connector_state = kzalloc(sizeof *connector_state, GFP_KERNEL);
5642 if (!connector_state)
5643 return -ENOMEM;
5644
5645 connector->base.state = connector_state;
5646 return 0;
5647 }
5648
intel_connector_alloc(void)5649 struct intel_connector *intel_connector_alloc(void)
5650 {
5651 struct intel_connector *connector;
5652
5653 connector = kzalloc(sizeof *connector, GFP_KERNEL);
5654 if (!connector)
5655 return NULL;
5656
5657 if (intel_connector_init(connector) < 0) {
5658 kfree(connector);
5659 return NULL;
5660 }
5661
5662 return connector;
5663 }
5664
5665 /* Even simpler default implementation, if there's really no special case to
5666 * consider. */
intel_connector_dpms(struct drm_connector * connector,int mode)5667 void intel_connector_dpms(struct drm_connector *connector, int mode)
5668 {
5669 /* All the simple cases only support two dpms states. */
5670 if (mode != DRM_MODE_DPMS_ON)
5671 mode = DRM_MODE_DPMS_OFF;
5672
5673 if (mode == connector->dpms)
5674 return;
5675
5676 connector->dpms = mode;
5677
5678 /* Only need to change hw state when actually enabled */
5679 if (connector->encoder)
5680 intel_encoder_dpms(to_intel_encoder(connector->encoder), mode);
5681
5682 intel_modeset_check_state(connector->dev);
5683 }
5684
5685 /* Simple connector->get_hw_state implementation for encoders that support only
5686 * one connector and no cloning and hence the encoder state determines the state
5687 * of the connector. */
intel_connector_get_hw_state(struct intel_connector * connector)5688 bool intel_connector_get_hw_state(struct intel_connector *connector)
5689 {
5690 enum pipe pipe = 0;
5691 struct intel_encoder *encoder = connector->encoder;
5692
5693 return encoder->get_hw_state(encoder, &pipe);
5694 }
5695
pipe_required_fdi_lanes(struct drm_device * dev,enum pipe pipe)5696 static int pipe_required_fdi_lanes(struct drm_device *dev, enum pipe pipe)
5697 {
5698 struct intel_crtc *crtc =
5699 to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe));
5700
5701 if (crtc->base.state->enable &&
5702 crtc->config->has_pch_encoder)
5703 return crtc->config->fdi_lanes;
5704
5705 return 0;
5706 }
5707
ironlake_check_fdi_lanes(struct drm_device * dev,enum pipe pipe,struct intel_crtc_state * pipe_config)5708 static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
5709 struct intel_crtc_state *pipe_config)
5710 {
5711 DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
5712 pipe_name(pipe), pipe_config->fdi_lanes);
5713 if (pipe_config->fdi_lanes > 4) {
5714 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
5715 pipe_name(pipe), pipe_config->fdi_lanes);
5716 return false;
5717 }
5718
5719 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
5720 if (pipe_config->fdi_lanes > 2) {
5721 DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
5722 pipe_config->fdi_lanes);
5723 return false;
5724 } else {
5725 return true;
5726 }
5727 }
5728
5729 if (INTEL_INFO(dev)->num_pipes == 2)
5730 return true;
5731
5732 /* Ivybridge 3 pipe is really complicated */
5733 switch (pipe) {
5734 case PIPE_A:
5735 return true;
5736 case PIPE_B:
5737 if (pipe_config->fdi_lanes > 2 &&
5738 pipe_required_fdi_lanes(dev, PIPE_C) > 0) {
5739 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
5740 pipe_name(pipe), pipe_config->fdi_lanes);
5741 return false;
5742 }
5743 return true;
5744 case PIPE_C:
5745 if (pipe_config->fdi_lanes > 2) {
5746 DRM_DEBUG_KMS("only 2 lanes on pipe %c: required %i lanes\n",
5747 pipe_name(pipe), pipe_config->fdi_lanes);
5748 return false;
5749 }
5750 if (pipe_required_fdi_lanes(dev, PIPE_B) > 2) {
5751 DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
5752 return false;
5753 }
5754 return true;
5755 default:
5756 BUG();
5757 }
5758 }
5759
5760 #define RETRY 1
ironlake_fdi_compute_config(struct intel_crtc * intel_crtc,struct intel_crtc_state * pipe_config)5761 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
5762 struct intel_crtc_state *pipe_config)
5763 {
5764 struct drm_device *dev = intel_crtc->base.dev;
5765 struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
5766 int lane, link_bw, fdi_dotclock;
5767 bool setup_ok, needs_recompute = false;
5768
5769 retry:
5770 /* FDI is a binary signal running at ~2.7GHz, encoding
5771 * each output octet as 10 bits. The actual frequency
5772 * is stored as a divider into a 100MHz clock, and the
5773 * mode pixel clock is stored in units of 1KHz.
5774 * Hence the bw of each lane in terms of the mode signal
5775 * is:
5776 */
5777 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
5778
5779 fdi_dotclock = adjusted_mode->crtc_clock;
5780
5781 lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
5782 pipe_config->pipe_bpp);
5783
5784 pipe_config->fdi_lanes = lane;
5785
5786 intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
5787 link_bw, &pipe_config->fdi_m_n);
5788
5789 setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
5790 intel_crtc->pipe, pipe_config);
5791 if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
5792 pipe_config->pipe_bpp -= 2*3;
5793 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
5794 pipe_config->pipe_bpp);
5795 needs_recompute = true;
5796 pipe_config->bw_constrained = true;
5797
5798 goto retry;
5799 }
5800
5801 if (needs_recompute)
5802 return RETRY;
5803
5804 return setup_ok ? 0 : -EINVAL;
5805 }
5806
hsw_compute_ips_config(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)5807 static void hsw_compute_ips_config(struct intel_crtc *crtc,
5808 struct intel_crtc_state *pipe_config)
5809 {
5810 pipe_config->ips_enabled = i915.enable_ips &&
5811 hsw_crtc_supports_ips(crtc) &&
5812 pipe_config->pipe_bpp <= 24;
5813 }
5814
intel_crtc_compute_config(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)5815 static int intel_crtc_compute_config(struct intel_crtc *crtc,
5816 struct intel_crtc_state *pipe_config)
5817 {
5818 struct drm_device *dev = crtc->base.dev;
5819 struct drm_i915_private *dev_priv = dev->dev_private;
5820 struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
5821
5822 /* FIXME should check pixel clock limits on all platforms */
5823 if (INTEL_INFO(dev)->gen < 4) {
5824 int clock_limit =
5825 dev_priv->display.get_display_clock_speed(dev);
5826
5827 /*
5828 * Enable pixel doubling when the dot clock
5829 * is > 90% of the (display) core speed.
5830 *
5831 * GDG double wide on either pipe,
5832 * otherwise pipe A only.
5833 */
5834 if ((crtc->pipe == PIPE_A || IS_I915G(dev)) &&
5835 adjusted_mode->crtc_clock > clock_limit * 9 / 10) {
5836 clock_limit *= 2;
5837 pipe_config->double_wide = true;
5838 }
5839
5840 if (adjusted_mode->crtc_clock > clock_limit * 9 / 10)
5841 return -EINVAL;
5842 }
5843
5844 /*
5845 * Pipe horizontal size must be even in:
5846 * - DVO ganged mode
5847 * - LVDS dual channel mode
5848 * - Double wide pipe
5849 */
5850 if ((intel_pipe_will_have_type(pipe_config, INTEL_OUTPUT_LVDS) &&
5851 intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
5852 pipe_config->pipe_src_w &= ~1;
5853
5854 /* Cantiga+ cannot handle modes with a hsync front porch of 0.
5855 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
5856 */
5857 if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
5858 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
5859 return -EINVAL;
5860
5861 if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
5862 pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
5863 } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
5864 /* only a 8bpc pipe, with 6bpc dither through the panel fitter
5865 * for lvds. */
5866 pipe_config->pipe_bpp = 8*3;
5867 }
5868
5869 if (HAS_IPS(dev))
5870 hsw_compute_ips_config(crtc, pipe_config);
5871
5872 if (pipe_config->has_pch_encoder)
5873 return ironlake_fdi_compute_config(crtc, pipe_config);
5874
5875 return 0;
5876 }
5877
valleyview_get_display_clock_speed(struct drm_device * dev)5878 static int valleyview_get_display_clock_speed(struct drm_device *dev)
5879 {
5880 struct drm_i915_private *dev_priv = dev->dev_private;
5881 u32 val;
5882 int divider;
5883
5884 if (dev_priv->hpll_freq == 0)
5885 dev_priv->hpll_freq = valleyview_get_vco(dev_priv);
5886
5887 mutex_lock(&dev_priv->dpio_lock);
5888 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
5889 mutex_unlock(&dev_priv->dpio_lock);
5890
5891 divider = val & DISPLAY_FREQUENCY_VALUES;
5892
5893 WARN((val & DISPLAY_FREQUENCY_STATUS) !=
5894 (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
5895 "cdclk change in progress\n");
5896
5897 return DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, divider + 1);
5898 }
5899
i945_get_display_clock_speed(struct drm_device * dev)5900 static int i945_get_display_clock_speed(struct drm_device *dev)
5901 {
5902 return 400000;
5903 }
5904
i915_get_display_clock_speed(struct drm_device * dev)5905 static int i915_get_display_clock_speed(struct drm_device *dev)
5906 {
5907 return 333000;
5908 }
5909
i9xx_misc_get_display_clock_speed(struct drm_device * dev)5910 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
5911 {
5912 return 200000;
5913 }
5914
pnv_get_display_clock_speed(struct drm_device * dev)5915 static int pnv_get_display_clock_speed(struct drm_device *dev)
5916 {
5917 u16 gcfgc = 0;
5918
5919 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5920
5921 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5922 case GC_DISPLAY_CLOCK_267_MHZ_PNV:
5923 return 267000;
5924 case GC_DISPLAY_CLOCK_333_MHZ_PNV:
5925 return 333000;
5926 case GC_DISPLAY_CLOCK_444_MHZ_PNV:
5927 return 444000;
5928 case GC_DISPLAY_CLOCK_200_MHZ_PNV:
5929 return 200000;
5930 default:
5931 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
5932 case GC_DISPLAY_CLOCK_133_MHZ_PNV:
5933 return 133000;
5934 case GC_DISPLAY_CLOCK_167_MHZ_PNV:
5935 return 167000;
5936 }
5937 }
5938
i915gm_get_display_clock_speed(struct drm_device * dev)5939 static int i915gm_get_display_clock_speed(struct drm_device *dev)
5940 {
5941 u16 gcfgc = 0;
5942
5943 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5944
5945 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
5946 return 133000;
5947 else {
5948 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5949 case GC_DISPLAY_CLOCK_333_MHZ:
5950 return 333000;
5951 default:
5952 case GC_DISPLAY_CLOCK_190_200_MHZ:
5953 return 190000;
5954 }
5955 }
5956 }
5957
i865_get_display_clock_speed(struct drm_device * dev)5958 static int i865_get_display_clock_speed(struct drm_device *dev)
5959 {
5960 return 266000;
5961 }
5962
i855_get_display_clock_speed(struct drm_device * dev)5963 static int i855_get_display_clock_speed(struct drm_device *dev)
5964 {
5965 u16 hpllcc = 0;
5966 /* Assume that the hardware is in the high speed state. This
5967 * should be the default.
5968 */
5969 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
5970 case GC_CLOCK_133_200:
5971 case GC_CLOCK_100_200:
5972 return 200000;
5973 case GC_CLOCK_166_250:
5974 return 250000;
5975 case GC_CLOCK_100_133:
5976 return 133000;
5977 }
5978
5979 /* Shouldn't happen */
5980 return 0;
5981 }
5982
i830_get_display_clock_speed(struct drm_device * dev)5983 static int i830_get_display_clock_speed(struct drm_device *dev)
5984 {
5985 return 133000;
5986 }
5987
5988 static void
intel_reduce_m_n_ratio(uint32_t * num,uint32_t * den)5989 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
5990 {
5991 while (*num > DATA_LINK_M_N_MASK ||
5992 *den > DATA_LINK_M_N_MASK) {
5993 *num >>= 1;
5994 *den >>= 1;
5995 }
5996 }
5997
compute_m_n(unsigned int m,unsigned int n,uint32_t * ret_m,uint32_t * ret_n)5998 static void compute_m_n(unsigned int m, unsigned int n,
5999 uint32_t *ret_m, uint32_t *ret_n)
6000 {
6001 *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
6002 *ret_m = div_u64((uint64_t) m * *ret_n, n);
6003 intel_reduce_m_n_ratio(ret_m, ret_n);
6004 }
6005
6006 void
intel_link_compute_m_n(int bits_per_pixel,int nlanes,int pixel_clock,int link_clock,struct intel_link_m_n * m_n)6007 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
6008 int pixel_clock, int link_clock,
6009 struct intel_link_m_n *m_n)
6010 {
6011 m_n->tu = 64;
6012
6013 compute_m_n(bits_per_pixel * pixel_clock,
6014 link_clock * nlanes * 8,
6015 &m_n->gmch_m, &m_n->gmch_n);
6016
6017 compute_m_n(pixel_clock, link_clock,
6018 &m_n->link_m, &m_n->link_n);
6019 }
6020
intel_panel_use_ssc(struct drm_i915_private * dev_priv)6021 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
6022 {
6023 if (i915.panel_use_ssc >= 0)
6024 return i915.panel_use_ssc != 0;
6025 return dev_priv->vbt.lvds_use_ssc
6026 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
6027 }
6028
i9xx_get_refclk(const struct intel_crtc_state * crtc_state,int num_connectors)6029 static int i9xx_get_refclk(const struct intel_crtc_state *crtc_state,
6030 int num_connectors)
6031 {
6032 struct drm_device *dev = crtc_state->base.crtc->dev;
6033 struct drm_i915_private *dev_priv = dev->dev_private;
6034 int refclk;
6035
6036 WARN_ON(!crtc_state->base.state);
6037
6038 if (IS_VALLEYVIEW(dev)) {
6039 refclk = 100000;
6040 } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
6041 intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
6042 refclk = dev_priv->vbt.lvds_ssc_freq;
6043 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
6044 } else if (!IS_GEN2(dev)) {
6045 refclk = 96000;
6046 } else {
6047 refclk = 48000;
6048 }
6049
6050 return refclk;
6051 }
6052
pnv_dpll_compute_fp(struct dpll * dpll)6053 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
6054 {
6055 return (1 << dpll->n) << 16 | dpll->m2;
6056 }
6057
i9xx_dpll_compute_fp(struct dpll * dpll)6058 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
6059 {
6060 return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
6061 }
6062
i9xx_update_pll_dividers(struct intel_crtc * crtc,struct intel_crtc_state * crtc_state,intel_clock_t * reduced_clock)6063 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
6064 struct intel_crtc_state *crtc_state,
6065 intel_clock_t *reduced_clock)
6066 {
6067 struct drm_device *dev = crtc->base.dev;
6068 u32 fp, fp2 = 0;
6069
6070 if (IS_PINEVIEW(dev)) {
6071 fp = pnv_dpll_compute_fp(&crtc_state->dpll);
6072 if (reduced_clock)
6073 fp2 = pnv_dpll_compute_fp(reduced_clock);
6074 } else {
6075 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
6076 if (reduced_clock)
6077 fp2 = i9xx_dpll_compute_fp(reduced_clock);
6078 }
6079
6080 crtc_state->dpll_hw_state.fp0 = fp;
6081
6082 crtc->lowfreq_avail = false;
6083 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
6084 reduced_clock) {
6085 crtc_state->dpll_hw_state.fp1 = fp2;
6086 crtc->lowfreq_avail = true;
6087 } else {
6088 crtc_state->dpll_hw_state.fp1 = fp;
6089 }
6090 }
6091
vlv_pllb_recal_opamp(struct drm_i915_private * dev_priv,enum pipe pipe)6092 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
6093 pipe)
6094 {
6095 u32 reg_val;
6096
6097 /*
6098 * PLLB opamp always calibrates to max value of 0x3f, force enable it
6099 * and set it to a reasonable value instead.
6100 */
6101 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
6102 reg_val &= 0xffffff00;
6103 reg_val |= 0x00000030;
6104 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
6105
6106 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
6107 reg_val &= 0x8cffffff;
6108 reg_val = 0x8c000000;
6109 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
6110
6111 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
6112 reg_val &= 0xffffff00;
6113 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
6114
6115 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
6116 reg_val &= 0x00ffffff;
6117 reg_val |= 0xb0000000;
6118 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
6119 }
6120
intel_pch_transcoder_set_m_n(struct intel_crtc * crtc,struct intel_link_m_n * m_n)6121 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
6122 struct intel_link_m_n *m_n)
6123 {
6124 struct drm_device *dev = crtc->base.dev;
6125 struct drm_i915_private *dev_priv = dev->dev_private;
6126 int pipe = crtc->pipe;
6127
6128 I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
6129 I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
6130 I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
6131 I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
6132 }
6133
intel_cpu_transcoder_set_m_n(struct intel_crtc * crtc,struct intel_link_m_n * m_n,struct intel_link_m_n * m2_n2)6134 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
6135 struct intel_link_m_n *m_n,
6136 struct intel_link_m_n *m2_n2)
6137 {
6138 struct drm_device *dev = crtc->base.dev;
6139 struct drm_i915_private *dev_priv = dev->dev_private;
6140 int pipe = crtc->pipe;
6141 enum transcoder transcoder = crtc->config->cpu_transcoder;
6142
6143 if (INTEL_INFO(dev)->gen >= 5) {
6144 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
6145 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
6146 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
6147 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
6148 /* M2_N2 registers to be set only for gen < 8 (M2_N2 available
6149 * for gen < 8) and if DRRS is supported (to make sure the
6150 * registers are not unnecessarily accessed).
6151 */
6152 if (m2_n2 && (IS_CHERRYVIEW(dev) || INTEL_INFO(dev)->gen < 8) &&
6153 crtc->config->has_drrs) {
6154 I915_WRITE(PIPE_DATA_M2(transcoder),
6155 TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
6156 I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
6157 I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
6158 I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
6159 }
6160 } else {
6161 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
6162 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
6163 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
6164 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
6165 }
6166 }
6167
intel_dp_set_m_n(struct intel_crtc * crtc,enum link_m_n_set m_n)6168 void intel_dp_set_m_n(struct intel_crtc *crtc, enum link_m_n_set m_n)
6169 {
6170 struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL;
6171
6172 if (m_n == M1_N1) {
6173 dp_m_n = &crtc->config->dp_m_n;
6174 dp_m2_n2 = &crtc->config->dp_m2_n2;
6175 } else if (m_n == M2_N2) {
6176
6177 /*
6178 * M2_N2 registers are not supported. Hence m2_n2 divider value
6179 * needs to be programmed into M1_N1.
6180 */
6181 dp_m_n = &crtc->config->dp_m2_n2;
6182 } else {
6183 DRM_ERROR("Unsupported divider value\n");
6184 return;
6185 }
6186
6187 if (crtc->config->has_pch_encoder)
6188 intel_pch_transcoder_set_m_n(crtc, &crtc->config->dp_m_n);
6189 else
6190 intel_cpu_transcoder_set_m_n(crtc, dp_m_n, dp_m2_n2);
6191 }
6192
vlv_update_pll(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)6193 static void vlv_update_pll(struct intel_crtc *crtc,
6194 struct intel_crtc_state *pipe_config)
6195 {
6196 u32 dpll, dpll_md;
6197
6198 /*
6199 * Enable DPIO clock input. We should never disable the reference
6200 * clock for pipe B, since VGA hotplug / manual detection depends
6201 * on it.
6202 */
6203 dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
6204 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
6205 /* We should never disable this, set it here for state tracking */
6206 if (crtc->pipe == PIPE_B)
6207 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
6208 dpll |= DPLL_VCO_ENABLE;
6209 pipe_config->dpll_hw_state.dpll = dpll;
6210
6211 dpll_md = (pipe_config->pixel_multiplier - 1)
6212 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
6213 pipe_config->dpll_hw_state.dpll_md = dpll_md;
6214 }
6215
vlv_prepare_pll(struct intel_crtc * crtc,const struct intel_crtc_state * pipe_config)6216 static void vlv_prepare_pll(struct intel_crtc *crtc,
6217 const struct intel_crtc_state *pipe_config)
6218 {
6219 struct drm_device *dev = crtc->base.dev;
6220 struct drm_i915_private *dev_priv = dev->dev_private;
6221 int pipe = crtc->pipe;
6222 u32 mdiv;
6223 u32 bestn, bestm1, bestm2, bestp1, bestp2;
6224 u32 coreclk, reg_val;
6225
6226 mutex_lock(&dev_priv->dpio_lock);
6227
6228 bestn = pipe_config->dpll.n;
6229 bestm1 = pipe_config->dpll.m1;
6230 bestm2 = pipe_config->dpll.m2;
6231 bestp1 = pipe_config->dpll.p1;
6232 bestp2 = pipe_config->dpll.p2;
6233
6234 /* See eDP HDMI DPIO driver vbios notes doc */
6235
6236 /* PLL B needs special handling */
6237 if (pipe == PIPE_B)
6238 vlv_pllb_recal_opamp(dev_priv, pipe);
6239
6240 /* Set up Tx target for periodic Rcomp update */
6241 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
6242
6243 /* Disable target IRef on PLL */
6244 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
6245 reg_val &= 0x00ffffff;
6246 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
6247
6248 /* Disable fast lock */
6249 vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
6250
6251 /* Set idtafcrecal before PLL is enabled */
6252 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
6253 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
6254 mdiv |= ((bestn << DPIO_N_SHIFT));
6255 mdiv |= (1 << DPIO_K_SHIFT);
6256
6257 /*
6258 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
6259 * but we don't support that).
6260 * Note: don't use the DAC post divider as it seems unstable.
6261 */
6262 mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
6263 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
6264
6265 mdiv |= DPIO_ENABLE_CALIBRATION;
6266 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
6267
6268 /* Set HBR and RBR LPF coefficients */
6269 if (pipe_config->port_clock == 162000 ||
6270 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG) ||
6271 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
6272 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
6273 0x009f0003);
6274 else
6275 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
6276 0x00d0000f);
6277
6278 if (pipe_config->has_dp_encoder) {
6279 /* Use SSC source */
6280 if (pipe == PIPE_A)
6281 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
6282 0x0df40000);
6283 else
6284 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
6285 0x0df70000);
6286 } else { /* HDMI or VGA */
6287 /* Use bend source */
6288 if (pipe == PIPE_A)
6289 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
6290 0x0df70000);
6291 else
6292 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
6293 0x0df40000);
6294 }
6295
6296 coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
6297 coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
6298 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
6299 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
6300 coreclk |= 0x01000000;
6301 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
6302
6303 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
6304 mutex_unlock(&dev_priv->dpio_lock);
6305 }
6306
chv_update_pll(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)6307 static void chv_update_pll(struct intel_crtc *crtc,
6308 struct intel_crtc_state *pipe_config)
6309 {
6310 pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLOCK_CHV |
6311 DPLL_REFA_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS |
6312 DPLL_VCO_ENABLE;
6313 if (crtc->pipe != PIPE_A)
6314 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
6315
6316 pipe_config->dpll_hw_state.dpll_md =
6317 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
6318 }
6319
chv_prepare_pll(struct intel_crtc * crtc,const struct intel_crtc_state * pipe_config)6320 static void chv_prepare_pll(struct intel_crtc *crtc,
6321 const struct intel_crtc_state *pipe_config)
6322 {
6323 struct drm_device *dev = crtc->base.dev;
6324 struct drm_i915_private *dev_priv = dev->dev_private;
6325 int pipe = crtc->pipe;
6326 int dpll_reg = DPLL(crtc->pipe);
6327 enum dpio_channel port = vlv_pipe_to_channel(pipe);
6328 u32 loopfilter, tribuf_calcntr;
6329 u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
6330 u32 dpio_val;
6331 int vco;
6332
6333 bestn = pipe_config->dpll.n;
6334 bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
6335 bestm1 = pipe_config->dpll.m1;
6336 bestm2 = pipe_config->dpll.m2 >> 22;
6337 bestp1 = pipe_config->dpll.p1;
6338 bestp2 = pipe_config->dpll.p2;
6339 vco = pipe_config->dpll.vco;
6340 dpio_val = 0;
6341 loopfilter = 0;
6342
6343 /*
6344 * Enable Refclk and SSC
6345 */
6346 I915_WRITE(dpll_reg,
6347 pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
6348
6349 mutex_lock(&dev_priv->dpio_lock);
6350
6351 /* p1 and p2 divider */
6352 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
6353 5 << DPIO_CHV_S1_DIV_SHIFT |
6354 bestp1 << DPIO_CHV_P1_DIV_SHIFT |
6355 bestp2 << DPIO_CHV_P2_DIV_SHIFT |
6356 1 << DPIO_CHV_K_DIV_SHIFT);
6357
6358 /* Feedback post-divider - m2 */
6359 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
6360
6361 /* Feedback refclk divider - n and m1 */
6362 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
6363 DPIO_CHV_M1_DIV_BY_2 |
6364 1 << DPIO_CHV_N_DIV_SHIFT);
6365
6366 /* M2 fraction division */
6367 if (bestm2_frac)
6368 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
6369
6370 /* M2 fraction division enable */
6371 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
6372 dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN);
6373 dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT);
6374 if (bestm2_frac)
6375 dpio_val |= DPIO_CHV_FRAC_DIV_EN;
6376 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), dpio_val);
6377
6378 /* Program digital lock detect threshold */
6379 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW9(port));
6380 dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK |
6381 DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE);
6382 dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT);
6383 if (!bestm2_frac)
6384 dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE;
6385 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW9(port), dpio_val);
6386
6387 /* Loop filter */
6388 if (vco == 5400000) {
6389 loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT);
6390 loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT);
6391 loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT);
6392 tribuf_calcntr = 0x9;
6393 } else if (vco <= 6200000) {
6394 loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT);
6395 loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT);
6396 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
6397 tribuf_calcntr = 0x9;
6398 } else if (vco <= 6480000) {
6399 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
6400 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
6401 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
6402 tribuf_calcntr = 0x8;
6403 } else {
6404 /* Not supported. Apply the same limits as in the max case */
6405 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
6406 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
6407 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
6408 tribuf_calcntr = 0;
6409 }
6410 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
6411
6412 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW8(port));
6413 dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK;
6414 dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT);
6415 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW8(port), dpio_val);
6416
6417 /* AFC Recal */
6418 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
6419 vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
6420 DPIO_AFC_RECAL);
6421
6422 mutex_unlock(&dev_priv->dpio_lock);
6423 }
6424
6425 /**
6426 * vlv_force_pll_on - forcibly enable just the PLL
6427 * @dev_priv: i915 private structure
6428 * @pipe: pipe PLL to enable
6429 * @dpll: PLL configuration
6430 *
6431 * Enable the PLL for @pipe using the supplied @dpll config. To be used
6432 * in cases where we need the PLL enabled even when @pipe is not going to
6433 * be enabled.
6434 */
vlv_force_pll_on(struct drm_device * dev,enum pipe pipe,const struct dpll * dpll)6435 void vlv_force_pll_on(struct drm_device *dev, enum pipe pipe,
6436 const struct dpll *dpll)
6437 {
6438 struct intel_crtc *crtc =
6439 to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe));
6440 struct intel_crtc_state pipe_config = {
6441 .base.crtc = &crtc->base,
6442 .pixel_multiplier = 1,
6443 .dpll = *dpll,
6444 };
6445
6446 if (IS_CHERRYVIEW(dev)) {
6447 chv_update_pll(crtc, &pipe_config);
6448 chv_prepare_pll(crtc, &pipe_config);
6449 chv_enable_pll(crtc, &pipe_config);
6450 } else {
6451 vlv_update_pll(crtc, &pipe_config);
6452 vlv_prepare_pll(crtc, &pipe_config);
6453 vlv_enable_pll(crtc, &pipe_config);
6454 }
6455 }
6456
6457 /**
6458 * vlv_force_pll_off - forcibly disable just the PLL
6459 * @dev_priv: i915 private structure
6460 * @pipe: pipe PLL to disable
6461 *
6462 * Disable the PLL for @pipe. To be used in cases where we need
6463 * the PLL enabled even when @pipe is not going to be enabled.
6464 */
vlv_force_pll_off(struct drm_device * dev,enum pipe pipe)6465 void vlv_force_pll_off(struct drm_device *dev, enum pipe pipe)
6466 {
6467 if (IS_CHERRYVIEW(dev))
6468 chv_disable_pll(to_i915(dev), pipe);
6469 else
6470 vlv_disable_pll(to_i915(dev), pipe);
6471 }
6472
i9xx_update_pll(struct intel_crtc * crtc,struct intel_crtc_state * crtc_state,intel_clock_t * reduced_clock,int num_connectors)6473 static void i9xx_update_pll(struct intel_crtc *crtc,
6474 struct intel_crtc_state *crtc_state,
6475 intel_clock_t *reduced_clock,
6476 int num_connectors)
6477 {
6478 struct drm_device *dev = crtc->base.dev;
6479 struct drm_i915_private *dev_priv = dev->dev_private;
6480 u32 dpll;
6481 bool is_sdvo;
6482 struct dpll *clock = &crtc_state->dpll;
6483
6484 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
6485
6486 is_sdvo = intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO) ||
6487 intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI);
6488
6489 dpll = DPLL_VGA_MODE_DIS;
6490
6491 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
6492 dpll |= DPLLB_MODE_LVDS;
6493 else
6494 dpll |= DPLLB_MODE_DAC_SERIAL;
6495
6496 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
6497 dpll |= (crtc_state->pixel_multiplier - 1)
6498 << SDVO_MULTIPLIER_SHIFT_HIRES;
6499 }
6500
6501 if (is_sdvo)
6502 dpll |= DPLL_SDVO_HIGH_SPEED;
6503
6504 if (crtc_state->has_dp_encoder)
6505 dpll |= DPLL_SDVO_HIGH_SPEED;
6506
6507 /* compute bitmask from p1 value */
6508 if (IS_PINEVIEW(dev))
6509 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
6510 else {
6511 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6512 if (IS_G4X(dev) && reduced_clock)
6513 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
6514 }
6515 switch (clock->p2) {
6516 case 5:
6517 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
6518 break;
6519 case 7:
6520 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
6521 break;
6522 case 10:
6523 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
6524 break;
6525 case 14:
6526 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
6527 break;
6528 }
6529 if (INTEL_INFO(dev)->gen >= 4)
6530 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
6531
6532 if (crtc_state->sdvo_tv_clock)
6533 dpll |= PLL_REF_INPUT_TVCLKINBC;
6534 else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
6535 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
6536 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
6537 else
6538 dpll |= PLL_REF_INPUT_DREFCLK;
6539
6540 dpll |= DPLL_VCO_ENABLE;
6541 crtc_state->dpll_hw_state.dpll = dpll;
6542
6543 if (INTEL_INFO(dev)->gen >= 4) {
6544 u32 dpll_md = (crtc_state->pixel_multiplier - 1)
6545 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
6546 crtc_state->dpll_hw_state.dpll_md = dpll_md;
6547 }
6548 }
6549
i8xx_update_pll(struct intel_crtc * crtc,struct intel_crtc_state * crtc_state,intel_clock_t * reduced_clock,int num_connectors)6550 static void i8xx_update_pll(struct intel_crtc *crtc,
6551 struct intel_crtc_state *crtc_state,
6552 intel_clock_t *reduced_clock,
6553 int num_connectors)
6554 {
6555 struct drm_device *dev = crtc->base.dev;
6556 struct drm_i915_private *dev_priv = dev->dev_private;
6557 u32 dpll;
6558 struct dpll *clock = &crtc_state->dpll;
6559
6560 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
6561
6562 dpll = DPLL_VGA_MODE_DIS;
6563
6564 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
6565 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6566 } else {
6567 if (clock->p1 == 2)
6568 dpll |= PLL_P1_DIVIDE_BY_TWO;
6569 else
6570 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6571 if (clock->p2 == 4)
6572 dpll |= PLL_P2_DIVIDE_BY_4;
6573 }
6574
6575 if (!IS_I830(dev) && intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO))
6576 dpll |= DPLL_DVO_2X_MODE;
6577
6578 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
6579 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
6580 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
6581 else
6582 dpll |= PLL_REF_INPUT_DREFCLK;
6583
6584 dpll |= DPLL_VCO_ENABLE;
6585 crtc_state->dpll_hw_state.dpll = dpll;
6586 }
6587
intel_set_pipe_timings(struct intel_crtc * intel_crtc)6588 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
6589 {
6590 struct drm_device *dev = intel_crtc->base.dev;
6591 struct drm_i915_private *dev_priv = dev->dev_private;
6592 enum pipe pipe = intel_crtc->pipe;
6593 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
6594 struct drm_display_mode *adjusted_mode =
6595 &intel_crtc->config->base.adjusted_mode;
6596 uint32_t crtc_vtotal, crtc_vblank_end;
6597 int vsyncshift = 0;
6598
6599 /* We need to be careful not to changed the adjusted mode, for otherwise
6600 * the hw state checker will get angry at the mismatch. */
6601 crtc_vtotal = adjusted_mode->crtc_vtotal;
6602 crtc_vblank_end = adjusted_mode->crtc_vblank_end;
6603
6604 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
6605 /* the chip adds 2 halflines automatically */
6606 crtc_vtotal -= 1;
6607 crtc_vblank_end -= 1;
6608
6609 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
6610 vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
6611 else
6612 vsyncshift = adjusted_mode->crtc_hsync_start -
6613 adjusted_mode->crtc_htotal / 2;
6614 if (vsyncshift < 0)
6615 vsyncshift += adjusted_mode->crtc_htotal;
6616 }
6617
6618 if (INTEL_INFO(dev)->gen > 3)
6619 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
6620
6621 I915_WRITE(HTOTAL(cpu_transcoder),
6622 (adjusted_mode->crtc_hdisplay - 1) |
6623 ((adjusted_mode->crtc_htotal - 1) << 16));
6624 I915_WRITE(HBLANK(cpu_transcoder),
6625 (adjusted_mode->crtc_hblank_start - 1) |
6626 ((adjusted_mode->crtc_hblank_end - 1) << 16));
6627 I915_WRITE(HSYNC(cpu_transcoder),
6628 (adjusted_mode->crtc_hsync_start - 1) |
6629 ((adjusted_mode->crtc_hsync_end - 1) << 16));
6630
6631 I915_WRITE(VTOTAL(cpu_transcoder),
6632 (adjusted_mode->crtc_vdisplay - 1) |
6633 ((crtc_vtotal - 1) << 16));
6634 I915_WRITE(VBLANK(cpu_transcoder),
6635 (adjusted_mode->crtc_vblank_start - 1) |
6636 ((crtc_vblank_end - 1) << 16));
6637 I915_WRITE(VSYNC(cpu_transcoder),
6638 (adjusted_mode->crtc_vsync_start - 1) |
6639 ((adjusted_mode->crtc_vsync_end - 1) << 16));
6640
6641 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
6642 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
6643 * documented on the DDI_FUNC_CTL register description, EDP Input Select
6644 * bits. */
6645 if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
6646 (pipe == PIPE_B || pipe == PIPE_C))
6647 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
6648
6649 /* pipesrc controls the size that is scaled from, which should
6650 * always be the user's requested size.
6651 */
6652 I915_WRITE(PIPESRC(pipe),
6653 ((intel_crtc->config->pipe_src_w - 1) << 16) |
6654 (intel_crtc->config->pipe_src_h - 1));
6655 }
6656
intel_get_pipe_timings(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)6657 static void intel_get_pipe_timings(struct intel_crtc *crtc,
6658 struct intel_crtc_state *pipe_config)
6659 {
6660 struct drm_device *dev = crtc->base.dev;
6661 struct drm_i915_private *dev_priv = dev->dev_private;
6662 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
6663 uint32_t tmp;
6664
6665 tmp = I915_READ(HTOTAL(cpu_transcoder));
6666 pipe_config->base.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
6667 pipe_config->base.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
6668 tmp = I915_READ(HBLANK(cpu_transcoder));
6669 pipe_config->base.adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
6670 pipe_config->base.adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
6671 tmp = I915_READ(HSYNC(cpu_transcoder));
6672 pipe_config->base.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
6673 pipe_config->base.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
6674
6675 tmp = I915_READ(VTOTAL(cpu_transcoder));
6676 pipe_config->base.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
6677 pipe_config->base.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
6678 tmp = I915_READ(VBLANK(cpu_transcoder));
6679 pipe_config->base.adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
6680 pipe_config->base.adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
6681 tmp = I915_READ(VSYNC(cpu_transcoder));
6682 pipe_config->base.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
6683 pipe_config->base.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
6684
6685 if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
6686 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
6687 pipe_config->base.adjusted_mode.crtc_vtotal += 1;
6688 pipe_config->base.adjusted_mode.crtc_vblank_end += 1;
6689 }
6690
6691 tmp = I915_READ(PIPESRC(crtc->pipe));
6692 pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
6693 pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
6694
6695 pipe_config->base.mode.vdisplay = pipe_config->pipe_src_h;
6696 pipe_config->base.mode.hdisplay = pipe_config->pipe_src_w;
6697 }
6698
intel_mode_from_pipe_config(struct drm_display_mode * mode,struct intel_crtc_state * pipe_config)6699 void intel_mode_from_pipe_config(struct drm_display_mode *mode,
6700 struct intel_crtc_state *pipe_config)
6701 {
6702 mode->hdisplay = pipe_config->base.adjusted_mode.crtc_hdisplay;
6703 mode->htotal = pipe_config->base.adjusted_mode.crtc_htotal;
6704 mode->hsync_start = pipe_config->base.adjusted_mode.crtc_hsync_start;
6705 mode->hsync_end = pipe_config->base.adjusted_mode.crtc_hsync_end;
6706
6707 mode->vdisplay = pipe_config->base.adjusted_mode.crtc_vdisplay;
6708 mode->vtotal = pipe_config->base.adjusted_mode.crtc_vtotal;
6709 mode->vsync_start = pipe_config->base.adjusted_mode.crtc_vsync_start;
6710 mode->vsync_end = pipe_config->base.adjusted_mode.crtc_vsync_end;
6711
6712 mode->flags = pipe_config->base.adjusted_mode.flags;
6713
6714 mode->clock = pipe_config->base.adjusted_mode.crtc_clock;
6715 mode->flags |= pipe_config->base.adjusted_mode.flags;
6716 }
6717
i9xx_set_pipeconf(struct intel_crtc * intel_crtc)6718 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
6719 {
6720 struct drm_device *dev = intel_crtc->base.dev;
6721 struct drm_i915_private *dev_priv = dev->dev_private;
6722 uint32_t pipeconf;
6723
6724 pipeconf = 0;
6725
6726 if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
6727 (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
6728 pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
6729
6730 if (intel_crtc->config->double_wide)
6731 pipeconf |= PIPECONF_DOUBLE_WIDE;
6732
6733 /* only g4x and later have fancy bpc/dither controls */
6734 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
6735 /* Bspec claims that we can't use dithering for 30bpp pipes. */
6736 if (intel_crtc->config->dither && intel_crtc->config->pipe_bpp != 30)
6737 pipeconf |= PIPECONF_DITHER_EN |
6738 PIPECONF_DITHER_TYPE_SP;
6739
6740 switch (intel_crtc->config->pipe_bpp) {
6741 case 18:
6742 pipeconf |= PIPECONF_6BPC;
6743 break;
6744 case 24:
6745 pipeconf |= PIPECONF_8BPC;
6746 break;
6747 case 30:
6748 pipeconf |= PIPECONF_10BPC;
6749 break;
6750 default:
6751 /* Case prevented by intel_choose_pipe_bpp_dither. */
6752 BUG();
6753 }
6754 }
6755
6756 if (HAS_PIPE_CXSR(dev)) {
6757 if (intel_crtc->lowfreq_avail) {
6758 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
6759 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
6760 } else {
6761 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
6762 }
6763 }
6764
6765 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
6766 if (INTEL_INFO(dev)->gen < 4 ||
6767 intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
6768 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
6769 else
6770 pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
6771 } else
6772 pipeconf |= PIPECONF_PROGRESSIVE;
6773
6774 if (IS_VALLEYVIEW(dev) && intel_crtc->config->limited_color_range)
6775 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
6776
6777 I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
6778 POSTING_READ(PIPECONF(intel_crtc->pipe));
6779 }
6780
i9xx_crtc_compute_clock(struct intel_crtc * crtc,struct intel_crtc_state * crtc_state)6781 static int i9xx_crtc_compute_clock(struct intel_crtc *crtc,
6782 struct intel_crtc_state *crtc_state)
6783 {
6784 struct drm_device *dev = crtc->base.dev;
6785 struct drm_i915_private *dev_priv = dev->dev_private;
6786 int refclk, num_connectors = 0;
6787 intel_clock_t clock, reduced_clock;
6788 bool ok, has_reduced_clock = false;
6789 bool is_lvds = false, is_dsi = false;
6790 struct intel_encoder *encoder;
6791 const intel_limit_t *limit;
6792 struct drm_atomic_state *state = crtc_state->base.state;
6793 struct drm_connector_state *connector_state;
6794 int i;
6795
6796 for (i = 0; i < state->num_connector; i++) {
6797 if (!state->connectors[i])
6798 continue;
6799
6800 connector_state = state->connector_states[i];
6801 if (connector_state->crtc != &crtc->base)
6802 continue;
6803
6804 encoder = to_intel_encoder(connector_state->best_encoder);
6805
6806 switch (encoder->type) {
6807 case INTEL_OUTPUT_LVDS:
6808 is_lvds = true;
6809 break;
6810 case INTEL_OUTPUT_DSI:
6811 is_dsi = true;
6812 break;
6813 default:
6814 break;
6815 }
6816
6817 num_connectors++;
6818 }
6819
6820 if (is_dsi)
6821 return 0;
6822
6823 if (!crtc_state->clock_set) {
6824 refclk = i9xx_get_refclk(crtc_state, num_connectors);
6825
6826 /*
6827 * Returns a set of divisors for the desired target clock with
6828 * the given refclk, or FALSE. The returned values represent
6829 * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
6830 * 2) / p1 / p2.
6831 */
6832 limit = intel_limit(crtc_state, refclk);
6833 ok = dev_priv->display.find_dpll(limit, crtc_state,
6834 crtc_state->port_clock,
6835 refclk, NULL, &clock);
6836 if (!ok) {
6837 DRM_ERROR("Couldn't find PLL settings for mode!\n");
6838 return -EINVAL;
6839 }
6840
6841 if (is_lvds && dev_priv->lvds_downclock_avail) {
6842 /*
6843 * Ensure we match the reduced clock's P to the target
6844 * clock. If the clocks don't match, we can't switch
6845 * the display clock by using the FP0/FP1. In such case
6846 * we will disable the LVDS downclock feature.
6847 */
6848 has_reduced_clock =
6849 dev_priv->display.find_dpll(limit, crtc_state,
6850 dev_priv->lvds_downclock,
6851 refclk, &clock,
6852 &reduced_clock);
6853 }
6854 /* Compat-code for transition, will disappear. */
6855 crtc_state->dpll.n = clock.n;
6856 crtc_state->dpll.m1 = clock.m1;
6857 crtc_state->dpll.m2 = clock.m2;
6858 crtc_state->dpll.p1 = clock.p1;
6859 crtc_state->dpll.p2 = clock.p2;
6860 }
6861
6862 if (IS_GEN2(dev)) {
6863 i8xx_update_pll(crtc, crtc_state,
6864 has_reduced_clock ? &reduced_clock : NULL,
6865 num_connectors);
6866 } else if (IS_CHERRYVIEW(dev)) {
6867 chv_update_pll(crtc, crtc_state);
6868 } else if (IS_VALLEYVIEW(dev)) {
6869 vlv_update_pll(crtc, crtc_state);
6870 } else {
6871 i9xx_update_pll(crtc, crtc_state,
6872 has_reduced_clock ? &reduced_clock : NULL,
6873 num_connectors);
6874 }
6875
6876 return 0;
6877 }
6878
i9xx_get_pfit_config(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)6879 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
6880 struct intel_crtc_state *pipe_config)
6881 {
6882 struct drm_device *dev = crtc->base.dev;
6883 struct drm_i915_private *dev_priv = dev->dev_private;
6884 uint32_t tmp;
6885
6886 if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
6887 return;
6888
6889 tmp = I915_READ(PFIT_CONTROL);
6890 if (!(tmp & PFIT_ENABLE))
6891 return;
6892
6893 /* Check whether the pfit is attached to our pipe. */
6894 if (INTEL_INFO(dev)->gen < 4) {
6895 if (crtc->pipe != PIPE_B)
6896 return;
6897 } else {
6898 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
6899 return;
6900 }
6901
6902 pipe_config->gmch_pfit.control = tmp;
6903 pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
6904 if (INTEL_INFO(dev)->gen < 5)
6905 pipe_config->gmch_pfit.lvds_border_bits =
6906 I915_READ(LVDS) & LVDS_BORDER_ENABLE;
6907 }
6908
vlv_crtc_clock_get(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)6909 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
6910 struct intel_crtc_state *pipe_config)
6911 {
6912 struct drm_device *dev = crtc->base.dev;
6913 struct drm_i915_private *dev_priv = dev->dev_private;
6914 int pipe = pipe_config->cpu_transcoder;
6915 intel_clock_t clock;
6916 u32 mdiv;
6917 int refclk = 100000;
6918
6919 /* In case of MIPI DPLL will not even be used */
6920 if (!(pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE))
6921 return;
6922
6923 mutex_lock(&dev_priv->dpio_lock);
6924 mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
6925 mutex_unlock(&dev_priv->dpio_lock);
6926
6927 clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
6928 clock.m2 = mdiv & DPIO_M2DIV_MASK;
6929 clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
6930 clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
6931 clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
6932
6933 vlv_clock(refclk, &clock);
6934
6935 /* clock.dot is the fast clock */
6936 pipe_config->port_clock = clock.dot / 5;
6937 }
6938
6939 static void
i9xx_get_initial_plane_config(struct intel_crtc * crtc,struct intel_initial_plane_config * plane_config)6940 i9xx_get_initial_plane_config(struct intel_crtc *crtc,
6941 struct intel_initial_plane_config *plane_config)
6942 {
6943 struct drm_device *dev = crtc->base.dev;
6944 struct drm_i915_private *dev_priv = dev->dev_private;
6945 u32 val, base, offset;
6946 int pipe = crtc->pipe, plane = crtc->plane;
6947 int fourcc, pixel_format;
6948 unsigned int aligned_height;
6949 struct drm_framebuffer *fb;
6950 struct intel_framebuffer *intel_fb;
6951
6952 val = I915_READ(DSPCNTR(plane));
6953 if (!(val & DISPLAY_PLANE_ENABLE))
6954 return;
6955
6956 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
6957 if (!intel_fb) {
6958 DRM_DEBUG_KMS("failed to alloc fb\n");
6959 return;
6960 }
6961
6962 fb = &intel_fb->base;
6963
6964 if (INTEL_INFO(dev)->gen >= 4) {
6965 if (val & DISPPLANE_TILED) {
6966 plane_config->tiling = I915_TILING_X;
6967 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
6968 }
6969 }
6970
6971 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
6972 fourcc = i9xx_format_to_fourcc(pixel_format);
6973 fb->pixel_format = fourcc;
6974 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
6975
6976 if (INTEL_INFO(dev)->gen >= 4) {
6977 if (plane_config->tiling)
6978 offset = I915_READ(DSPTILEOFF(plane));
6979 else
6980 offset = I915_READ(DSPLINOFF(plane));
6981 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
6982 } else {
6983 base = I915_READ(DSPADDR(plane));
6984 }
6985 plane_config->base = base;
6986
6987 val = I915_READ(PIPESRC(pipe));
6988 fb->width = ((val >> 16) & 0xfff) + 1;
6989 fb->height = ((val >> 0) & 0xfff) + 1;
6990
6991 val = I915_READ(DSPSTRIDE(pipe));
6992 fb->pitches[0] = val & 0xffffffc0;
6993
6994 aligned_height = intel_fb_align_height(dev, fb->height,
6995 fb->pixel_format,
6996 fb->modifier[0]);
6997
6998 plane_config->size = fb->pitches[0] * aligned_height;
6999
7000 DRM_DEBUG_KMS("pipe/plane %c/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
7001 pipe_name(pipe), plane, fb->width, fb->height,
7002 fb->bits_per_pixel, base, fb->pitches[0],
7003 plane_config->size);
7004
7005 plane_config->fb = intel_fb;
7006 }
7007
chv_crtc_clock_get(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)7008 static void chv_crtc_clock_get(struct intel_crtc *crtc,
7009 struct intel_crtc_state *pipe_config)
7010 {
7011 struct drm_device *dev = crtc->base.dev;
7012 struct drm_i915_private *dev_priv = dev->dev_private;
7013 int pipe = pipe_config->cpu_transcoder;
7014 enum dpio_channel port = vlv_pipe_to_channel(pipe);
7015 intel_clock_t clock;
7016 u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2;
7017 int refclk = 100000;
7018
7019 mutex_lock(&dev_priv->dpio_lock);
7020 cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
7021 pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
7022 pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
7023 pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
7024 mutex_unlock(&dev_priv->dpio_lock);
7025
7026 clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
7027 clock.m2 = ((pll_dw0 & 0xff) << 22) | (pll_dw2 & 0x3fffff);
7028 clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
7029 clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
7030 clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
7031
7032 chv_clock(refclk, &clock);
7033
7034 /* clock.dot is the fast clock */
7035 pipe_config->port_clock = clock.dot / 5;
7036 }
7037
i9xx_get_pipe_config(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)7038 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
7039 struct intel_crtc_state *pipe_config)
7040 {
7041 struct drm_device *dev = crtc->base.dev;
7042 struct drm_i915_private *dev_priv = dev->dev_private;
7043 uint32_t tmp;
7044
7045 if (!intel_display_power_is_enabled(dev_priv,
7046 POWER_DOMAIN_PIPE(crtc->pipe)))
7047 return false;
7048
7049 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
7050 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
7051
7052 tmp = I915_READ(PIPECONF(crtc->pipe));
7053 if (!(tmp & PIPECONF_ENABLE))
7054 return false;
7055
7056 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
7057 switch (tmp & PIPECONF_BPC_MASK) {
7058 case PIPECONF_6BPC:
7059 pipe_config->pipe_bpp = 18;
7060 break;
7061 case PIPECONF_8BPC:
7062 pipe_config->pipe_bpp = 24;
7063 break;
7064 case PIPECONF_10BPC:
7065 pipe_config->pipe_bpp = 30;
7066 break;
7067 default:
7068 break;
7069 }
7070 }
7071
7072 if (IS_VALLEYVIEW(dev) && (tmp & PIPECONF_COLOR_RANGE_SELECT))
7073 pipe_config->limited_color_range = true;
7074
7075 if (INTEL_INFO(dev)->gen < 4)
7076 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
7077
7078 intel_get_pipe_timings(crtc, pipe_config);
7079
7080 i9xx_get_pfit_config(crtc, pipe_config);
7081
7082 if (INTEL_INFO(dev)->gen >= 4) {
7083 tmp = I915_READ(DPLL_MD(crtc->pipe));
7084 pipe_config->pixel_multiplier =
7085 ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
7086 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
7087 pipe_config->dpll_hw_state.dpll_md = tmp;
7088 } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
7089 tmp = I915_READ(DPLL(crtc->pipe));
7090 pipe_config->pixel_multiplier =
7091 ((tmp & SDVO_MULTIPLIER_MASK)
7092 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
7093 } else {
7094 /* Note that on i915G/GM the pixel multiplier is in the sdvo
7095 * port and will be fixed up in the encoder->get_config
7096 * function. */
7097 pipe_config->pixel_multiplier = 1;
7098 }
7099 pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
7100 if (!IS_VALLEYVIEW(dev)) {
7101 /*
7102 * DPLL_DVO_2X_MODE must be enabled for both DPLLs
7103 * on 830. Filter it out here so that we don't
7104 * report errors due to that.
7105 */
7106 if (IS_I830(dev))
7107 pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
7108
7109 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
7110 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
7111 } else {
7112 /* Mask out read-only status bits. */
7113 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
7114 DPLL_PORTC_READY_MASK |
7115 DPLL_PORTB_READY_MASK);
7116 }
7117
7118 if (IS_CHERRYVIEW(dev))
7119 chv_crtc_clock_get(crtc, pipe_config);
7120 else if (IS_VALLEYVIEW(dev))
7121 vlv_crtc_clock_get(crtc, pipe_config);
7122 else
7123 i9xx_crtc_clock_get(crtc, pipe_config);
7124
7125 return true;
7126 }
7127
ironlake_init_pch_refclk(struct drm_device * dev)7128 static void ironlake_init_pch_refclk(struct drm_device *dev)
7129 {
7130 struct drm_i915_private *dev_priv = dev->dev_private;
7131 struct intel_encoder *encoder;
7132 u32 val, final;
7133 bool has_lvds = false;
7134 bool has_cpu_edp = false;
7135 bool has_panel = false;
7136 bool has_ck505 = false;
7137 bool can_ssc = false;
7138
7139 /* We need to take the global config into account */
7140 for_each_intel_encoder(dev, encoder) {
7141 switch (encoder->type) {
7142 case INTEL_OUTPUT_LVDS:
7143 has_panel = true;
7144 has_lvds = true;
7145 break;
7146 case INTEL_OUTPUT_EDP:
7147 has_panel = true;
7148 if (enc_to_dig_port(&encoder->base)->port == PORT_A)
7149 has_cpu_edp = true;
7150 break;
7151 default:
7152 break;
7153 }
7154 }
7155
7156 if (HAS_PCH_IBX(dev)) {
7157 has_ck505 = dev_priv->vbt.display_clock_mode;
7158 can_ssc = has_ck505;
7159 } else {
7160 has_ck505 = false;
7161 can_ssc = true;
7162 }
7163
7164 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
7165 has_panel, has_lvds, has_ck505);
7166
7167 /* Ironlake: try to setup display ref clock before DPLL
7168 * enabling. This is only under driver's control after
7169 * PCH B stepping, previous chipset stepping should be
7170 * ignoring this setting.
7171 */
7172 val = I915_READ(PCH_DREF_CONTROL);
7173
7174 /* As we must carefully and slowly disable/enable each source in turn,
7175 * compute the final state we want first and check if we need to
7176 * make any changes at all.
7177 */
7178 final = val;
7179 final &= ~DREF_NONSPREAD_SOURCE_MASK;
7180 if (has_ck505)
7181 final |= DREF_NONSPREAD_CK505_ENABLE;
7182 else
7183 final |= DREF_NONSPREAD_SOURCE_ENABLE;
7184
7185 final &= ~DREF_SSC_SOURCE_MASK;
7186 final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
7187 final &= ~DREF_SSC1_ENABLE;
7188
7189 if (has_panel) {
7190 final |= DREF_SSC_SOURCE_ENABLE;
7191
7192 if (intel_panel_use_ssc(dev_priv) && can_ssc)
7193 final |= DREF_SSC1_ENABLE;
7194
7195 if (has_cpu_edp) {
7196 if (intel_panel_use_ssc(dev_priv) && can_ssc)
7197 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
7198 else
7199 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
7200 } else
7201 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
7202 } else {
7203 final |= DREF_SSC_SOURCE_DISABLE;
7204 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
7205 }
7206
7207 if (final == val)
7208 return;
7209
7210 /* Always enable nonspread source */
7211 val &= ~DREF_NONSPREAD_SOURCE_MASK;
7212
7213 if (has_ck505)
7214 val |= DREF_NONSPREAD_CK505_ENABLE;
7215 else
7216 val |= DREF_NONSPREAD_SOURCE_ENABLE;
7217
7218 if (has_panel) {
7219 val &= ~DREF_SSC_SOURCE_MASK;
7220 val |= DREF_SSC_SOURCE_ENABLE;
7221
7222 /* SSC must be turned on before enabling the CPU output */
7223 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
7224 DRM_DEBUG_KMS("Using SSC on panel\n");
7225 val |= DREF_SSC1_ENABLE;
7226 } else
7227 val &= ~DREF_SSC1_ENABLE;
7228
7229 /* Get SSC going before enabling the outputs */
7230 I915_WRITE(PCH_DREF_CONTROL, val);
7231 POSTING_READ(PCH_DREF_CONTROL);
7232 udelay(200);
7233
7234 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
7235
7236 /* Enable CPU source on CPU attached eDP */
7237 if (has_cpu_edp) {
7238 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
7239 DRM_DEBUG_KMS("Using SSC on eDP\n");
7240 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
7241 } else
7242 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
7243 } else
7244 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
7245
7246 I915_WRITE(PCH_DREF_CONTROL, val);
7247 POSTING_READ(PCH_DREF_CONTROL);
7248 udelay(200);
7249 } else {
7250 DRM_DEBUG_KMS("Disabling SSC entirely\n");
7251
7252 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
7253
7254 /* Turn off CPU output */
7255 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
7256
7257 I915_WRITE(PCH_DREF_CONTROL, val);
7258 POSTING_READ(PCH_DREF_CONTROL);
7259 udelay(200);
7260
7261 /* Turn off the SSC source */
7262 val &= ~DREF_SSC_SOURCE_MASK;
7263 val |= DREF_SSC_SOURCE_DISABLE;
7264
7265 /* Turn off SSC1 */
7266 val &= ~DREF_SSC1_ENABLE;
7267
7268 I915_WRITE(PCH_DREF_CONTROL, val);
7269 POSTING_READ(PCH_DREF_CONTROL);
7270 udelay(200);
7271 }
7272
7273 BUG_ON(val != final);
7274 }
7275
lpt_reset_fdi_mphy(struct drm_i915_private * dev_priv)7276 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
7277 {
7278 uint32_t tmp;
7279
7280 tmp = I915_READ(SOUTH_CHICKEN2);
7281 tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
7282 I915_WRITE(SOUTH_CHICKEN2, tmp);
7283
7284 if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
7285 FDI_MPHY_IOSFSB_RESET_STATUS, 100))
7286 DRM_ERROR("FDI mPHY reset assert timeout\n");
7287
7288 tmp = I915_READ(SOUTH_CHICKEN2);
7289 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
7290 I915_WRITE(SOUTH_CHICKEN2, tmp);
7291
7292 if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
7293 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
7294 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
7295 }
7296
7297 /* WaMPhyProgramming:hsw */
lpt_program_fdi_mphy(struct drm_i915_private * dev_priv)7298 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
7299 {
7300 uint32_t tmp;
7301
7302 tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
7303 tmp &= ~(0xFF << 24);
7304 tmp |= (0x12 << 24);
7305 intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
7306
7307 tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
7308 tmp |= (1 << 11);
7309 intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
7310
7311 tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
7312 tmp |= (1 << 11);
7313 intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
7314
7315 tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
7316 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
7317 intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
7318
7319 tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
7320 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
7321 intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
7322
7323 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
7324 tmp &= ~(7 << 13);
7325 tmp |= (5 << 13);
7326 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
7327
7328 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
7329 tmp &= ~(7 << 13);
7330 tmp |= (5 << 13);
7331 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
7332
7333 tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
7334 tmp &= ~0xFF;
7335 tmp |= 0x1C;
7336 intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
7337
7338 tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
7339 tmp &= ~0xFF;
7340 tmp |= 0x1C;
7341 intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
7342
7343 tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
7344 tmp &= ~(0xFF << 16);
7345 tmp |= (0x1C << 16);
7346 intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
7347
7348 tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
7349 tmp &= ~(0xFF << 16);
7350 tmp |= (0x1C << 16);
7351 intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
7352
7353 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
7354 tmp |= (1 << 27);
7355 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
7356
7357 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
7358 tmp |= (1 << 27);
7359 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
7360
7361 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
7362 tmp &= ~(0xF << 28);
7363 tmp |= (4 << 28);
7364 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
7365
7366 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
7367 tmp &= ~(0xF << 28);
7368 tmp |= (4 << 28);
7369 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
7370 }
7371
7372 /* Implements 3 different sequences from BSpec chapter "Display iCLK
7373 * Programming" based on the parameters passed:
7374 * - Sequence to enable CLKOUT_DP
7375 * - Sequence to enable CLKOUT_DP without spread
7376 * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
7377 */
lpt_enable_clkout_dp(struct drm_device * dev,bool with_spread,bool with_fdi)7378 static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
7379 bool with_fdi)
7380 {
7381 struct drm_i915_private *dev_priv = dev->dev_private;
7382 uint32_t reg, tmp;
7383
7384 if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
7385 with_spread = true;
7386 if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
7387 with_fdi, "LP PCH doesn't have FDI\n"))
7388 with_fdi = false;
7389
7390 mutex_lock(&dev_priv->dpio_lock);
7391
7392 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
7393 tmp &= ~SBI_SSCCTL_DISABLE;
7394 tmp |= SBI_SSCCTL_PATHALT;
7395 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7396
7397 udelay(24);
7398
7399 if (with_spread) {
7400 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
7401 tmp &= ~SBI_SSCCTL_PATHALT;
7402 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7403
7404 if (with_fdi) {
7405 lpt_reset_fdi_mphy(dev_priv);
7406 lpt_program_fdi_mphy(dev_priv);
7407 }
7408 }
7409
7410 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
7411 SBI_GEN0 : SBI_DBUFF0;
7412 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
7413 tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
7414 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
7415
7416 mutex_unlock(&dev_priv->dpio_lock);
7417 }
7418
7419 /* Sequence to disable CLKOUT_DP */
lpt_disable_clkout_dp(struct drm_device * dev)7420 static void lpt_disable_clkout_dp(struct drm_device *dev)
7421 {
7422 struct drm_i915_private *dev_priv = dev->dev_private;
7423 uint32_t reg, tmp;
7424
7425 mutex_lock(&dev_priv->dpio_lock);
7426
7427 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
7428 SBI_GEN0 : SBI_DBUFF0;
7429 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
7430 tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
7431 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
7432
7433 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
7434 if (!(tmp & SBI_SSCCTL_DISABLE)) {
7435 if (!(tmp & SBI_SSCCTL_PATHALT)) {
7436 tmp |= SBI_SSCCTL_PATHALT;
7437 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7438 udelay(32);
7439 }
7440 tmp |= SBI_SSCCTL_DISABLE;
7441 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7442 }
7443
7444 mutex_unlock(&dev_priv->dpio_lock);
7445 }
7446
lpt_init_pch_refclk(struct drm_device * dev)7447 static void lpt_init_pch_refclk(struct drm_device *dev)
7448 {
7449 struct intel_encoder *encoder;
7450 bool has_vga = false;
7451
7452 for_each_intel_encoder(dev, encoder) {
7453 switch (encoder->type) {
7454 case INTEL_OUTPUT_ANALOG:
7455 has_vga = true;
7456 break;
7457 default:
7458 break;
7459 }
7460 }
7461
7462 if (has_vga)
7463 lpt_enable_clkout_dp(dev, true, true);
7464 else
7465 lpt_disable_clkout_dp(dev);
7466 }
7467
7468 /*
7469 * Initialize reference clocks when the driver loads
7470 */
intel_init_pch_refclk(struct drm_device * dev)7471 void intel_init_pch_refclk(struct drm_device *dev)
7472 {
7473 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
7474 ironlake_init_pch_refclk(dev);
7475 else if (HAS_PCH_LPT(dev))
7476 lpt_init_pch_refclk(dev);
7477 }
7478
ironlake_get_refclk(struct intel_crtc_state * crtc_state)7479 static int ironlake_get_refclk(struct intel_crtc_state *crtc_state)
7480 {
7481 struct drm_device *dev = crtc_state->base.crtc->dev;
7482 struct drm_i915_private *dev_priv = dev->dev_private;
7483 struct drm_atomic_state *state = crtc_state->base.state;
7484 struct drm_connector_state *connector_state;
7485 struct intel_encoder *encoder;
7486 int num_connectors = 0, i;
7487 bool is_lvds = false;
7488
7489 for (i = 0; i < state->num_connector; i++) {
7490 if (!state->connectors[i])
7491 continue;
7492
7493 connector_state = state->connector_states[i];
7494 if (connector_state->crtc != crtc_state->base.crtc)
7495 continue;
7496
7497 encoder = to_intel_encoder(connector_state->best_encoder);
7498
7499 switch (encoder->type) {
7500 case INTEL_OUTPUT_LVDS:
7501 is_lvds = true;
7502 break;
7503 default:
7504 break;
7505 }
7506 num_connectors++;
7507 }
7508
7509 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
7510 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
7511 dev_priv->vbt.lvds_ssc_freq);
7512 return dev_priv->vbt.lvds_ssc_freq;
7513 }
7514
7515 return 120000;
7516 }
7517
ironlake_set_pipeconf(struct drm_crtc * crtc)7518 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
7519 {
7520 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
7521 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7522 int pipe = intel_crtc->pipe;
7523 uint32_t val;
7524
7525 val = 0;
7526
7527 switch (intel_crtc->config->pipe_bpp) {
7528 case 18:
7529 val |= PIPECONF_6BPC;
7530 break;
7531 case 24:
7532 val |= PIPECONF_8BPC;
7533 break;
7534 case 30:
7535 val |= PIPECONF_10BPC;
7536 break;
7537 case 36:
7538 val |= PIPECONF_12BPC;
7539 break;
7540 default:
7541 /* Case prevented by intel_choose_pipe_bpp_dither. */
7542 BUG();
7543 }
7544
7545 if (intel_crtc->config->dither)
7546 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
7547
7548 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
7549 val |= PIPECONF_INTERLACED_ILK;
7550 else
7551 val |= PIPECONF_PROGRESSIVE;
7552
7553 if (intel_crtc->config->limited_color_range)
7554 val |= PIPECONF_COLOR_RANGE_SELECT;
7555
7556 I915_WRITE(PIPECONF(pipe), val);
7557 POSTING_READ(PIPECONF(pipe));
7558 }
7559
7560 /*
7561 * Set up the pipe CSC unit.
7562 *
7563 * Currently only full range RGB to limited range RGB conversion
7564 * is supported, but eventually this should handle various
7565 * RGB<->YCbCr scenarios as well.
7566 */
intel_set_pipe_csc(struct drm_crtc * crtc)7567 static void intel_set_pipe_csc(struct drm_crtc *crtc)
7568 {
7569 struct drm_device *dev = crtc->dev;
7570 struct drm_i915_private *dev_priv = dev->dev_private;
7571 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7572 int pipe = intel_crtc->pipe;
7573 uint16_t coeff = 0x7800; /* 1.0 */
7574
7575 /*
7576 * TODO: Check what kind of values actually come out of the pipe
7577 * with these coeff/postoff values and adjust to get the best
7578 * accuracy. Perhaps we even need to take the bpc value into
7579 * consideration.
7580 */
7581
7582 if (intel_crtc->config->limited_color_range)
7583 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
7584
7585 /*
7586 * GY/GU and RY/RU should be the other way around according
7587 * to BSpec, but reality doesn't agree. Just set them up in
7588 * a way that results in the correct picture.
7589 */
7590 I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
7591 I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
7592
7593 I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
7594 I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
7595
7596 I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
7597 I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
7598
7599 I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
7600 I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
7601 I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
7602
7603 if (INTEL_INFO(dev)->gen > 6) {
7604 uint16_t postoff = 0;
7605
7606 if (intel_crtc->config->limited_color_range)
7607 postoff = (16 * (1 << 12) / 255) & 0x1fff;
7608
7609 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
7610 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
7611 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
7612
7613 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
7614 } else {
7615 uint32_t mode = CSC_MODE_YUV_TO_RGB;
7616
7617 if (intel_crtc->config->limited_color_range)
7618 mode |= CSC_BLACK_SCREEN_OFFSET;
7619
7620 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
7621 }
7622 }
7623
haswell_set_pipeconf(struct drm_crtc * crtc)7624 static void haswell_set_pipeconf(struct drm_crtc *crtc)
7625 {
7626 struct drm_device *dev = crtc->dev;
7627 struct drm_i915_private *dev_priv = dev->dev_private;
7628 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7629 enum pipe pipe = intel_crtc->pipe;
7630 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
7631 uint32_t val;
7632
7633 val = 0;
7634
7635 if (IS_HASWELL(dev) && intel_crtc->config->dither)
7636 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
7637
7638 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
7639 val |= PIPECONF_INTERLACED_ILK;
7640 else
7641 val |= PIPECONF_PROGRESSIVE;
7642
7643 I915_WRITE(PIPECONF(cpu_transcoder), val);
7644 POSTING_READ(PIPECONF(cpu_transcoder));
7645
7646 I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
7647 POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
7648
7649 if (IS_BROADWELL(dev) || INTEL_INFO(dev)->gen >= 9) {
7650 val = 0;
7651
7652 switch (intel_crtc->config->pipe_bpp) {
7653 case 18:
7654 val |= PIPEMISC_DITHER_6_BPC;
7655 break;
7656 case 24:
7657 val |= PIPEMISC_DITHER_8_BPC;
7658 break;
7659 case 30:
7660 val |= PIPEMISC_DITHER_10_BPC;
7661 break;
7662 case 36:
7663 val |= PIPEMISC_DITHER_12_BPC;
7664 break;
7665 default:
7666 /* Case prevented by pipe_config_set_bpp. */
7667 BUG();
7668 }
7669
7670 if (intel_crtc->config->dither)
7671 val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
7672
7673 I915_WRITE(PIPEMISC(pipe), val);
7674 }
7675 }
7676
ironlake_compute_clocks(struct drm_crtc * crtc,struct intel_crtc_state * crtc_state,intel_clock_t * clock,bool * has_reduced_clock,intel_clock_t * reduced_clock)7677 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
7678 struct intel_crtc_state *crtc_state,
7679 intel_clock_t *clock,
7680 bool *has_reduced_clock,
7681 intel_clock_t *reduced_clock)
7682 {
7683 struct drm_device *dev = crtc->dev;
7684 struct drm_i915_private *dev_priv = dev->dev_private;
7685 int refclk;
7686 const intel_limit_t *limit;
7687 bool ret, is_lvds = false;
7688
7689 is_lvds = intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS);
7690
7691 refclk = ironlake_get_refclk(crtc_state);
7692
7693 /*
7694 * Returns a set of divisors for the desired target clock with the given
7695 * refclk, or FALSE. The returned values represent the clock equation:
7696 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
7697 */
7698 limit = intel_limit(crtc_state, refclk);
7699 ret = dev_priv->display.find_dpll(limit, crtc_state,
7700 crtc_state->port_clock,
7701 refclk, NULL, clock);
7702 if (!ret)
7703 return false;
7704
7705 if (is_lvds && dev_priv->lvds_downclock_avail) {
7706 /*
7707 * Ensure we match the reduced clock's P to the target clock.
7708 * If the clocks don't match, we can't switch the display clock
7709 * by using the FP0/FP1. In such case we will disable the LVDS
7710 * downclock feature.
7711 */
7712 *has_reduced_clock =
7713 dev_priv->display.find_dpll(limit, crtc_state,
7714 dev_priv->lvds_downclock,
7715 refclk, clock,
7716 reduced_clock);
7717 }
7718
7719 return true;
7720 }
7721
ironlake_get_lanes_required(int target_clock,int link_bw,int bpp)7722 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
7723 {
7724 /*
7725 * Account for spread spectrum to avoid
7726 * oversubscribing the link. Max center spread
7727 * is 2.5%; use 5% for safety's sake.
7728 */
7729 u32 bps = target_clock * bpp * 21 / 20;
7730 return DIV_ROUND_UP(bps, link_bw * 8);
7731 }
7732
ironlake_needs_fb_cb_tune(struct dpll * dpll,int factor)7733 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
7734 {
7735 return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
7736 }
7737
ironlake_compute_dpll(struct intel_crtc * intel_crtc,struct intel_crtc_state * crtc_state,u32 * fp,intel_clock_t * reduced_clock,u32 * fp2)7738 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
7739 struct intel_crtc_state *crtc_state,
7740 u32 *fp,
7741 intel_clock_t *reduced_clock, u32 *fp2)
7742 {
7743 struct drm_crtc *crtc = &intel_crtc->base;
7744 struct drm_device *dev = crtc->dev;
7745 struct drm_i915_private *dev_priv = dev->dev_private;
7746 struct drm_atomic_state *state = crtc_state->base.state;
7747 struct drm_connector_state *connector_state;
7748 struct intel_encoder *encoder;
7749 uint32_t dpll;
7750 int factor, num_connectors = 0, i;
7751 bool is_lvds = false, is_sdvo = false;
7752
7753 for (i = 0; i < state->num_connector; i++) {
7754 if (!state->connectors[i])
7755 continue;
7756
7757 connector_state = state->connector_states[i];
7758 if (connector_state->crtc != crtc_state->base.crtc)
7759 continue;
7760
7761 encoder = to_intel_encoder(connector_state->best_encoder);
7762
7763 switch (encoder->type) {
7764 case INTEL_OUTPUT_LVDS:
7765 is_lvds = true;
7766 break;
7767 case INTEL_OUTPUT_SDVO:
7768 case INTEL_OUTPUT_HDMI:
7769 is_sdvo = true;
7770 break;
7771 default:
7772 break;
7773 }
7774
7775 num_connectors++;
7776 }
7777
7778 /* Enable autotuning of the PLL clock (if permissible) */
7779 factor = 21;
7780 if (is_lvds) {
7781 if ((intel_panel_use_ssc(dev_priv) &&
7782 dev_priv->vbt.lvds_ssc_freq == 100000) ||
7783 (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
7784 factor = 25;
7785 } else if (crtc_state->sdvo_tv_clock)
7786 factor = 20;
7787
7788 if (ironlake_needs_fb_cb_tune(&crtc_state->dpll, factor))
7789 *fp |= FP_CB_TUNE;
7790
7791 if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
7792 *fp2 |= FP_CB_TUNE;
7793
7794 dpll = 0;
7795
7796 if (is_lvds)
7797 dpll |= DPLLB_MODE_LVDS;
7798 else
7799 dpll |= DPLLB_MODE_DAC_SERIAL;
7800
7801 dpll |= (crtc_state->pixel_multiplier - 1)
7802 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
7803
7804 if (is_sdvo)
7805 dpll |= DPLL_SDVO_HIGH_SPEED;
7806 if (crtc_state->has_dp_encoder)
7807 dpll |= DPLL_SDVO_HIGH_SPEED;
7808
7809 /* compute bitmask from p1 value */
7810 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7811 /* also FPA1 */
7812 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
7813
7814 switch (crtc_state->dpll.p2) {
7815 case 5:
7816 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
7817 break;
7818 case 7:
7819 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
7820 break;
7821 case 10:
7822 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
7823 break;
7824 case 14:
7825 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
7826 break;
7827 }
7828
7829 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
7830 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7831 else
7832 dpll |= PLL_REF_INPUT_DREFCLK;
7833
7834 return dpll | DPLL_VCO_ENABLE;
7835 }
7836
ironlake_crtc_compute_clock(struct intel_crtc * crtc,struct intel_crtc_state * crtc_state)7837 static int ironlake_crtc_compute_clock(struct intel_crtc *crtc,
7838 struct intel_crtc_state *crtc_state)
7839 {
7840 struct drm_device *dev = crtc->base.dev;
7841 intel_clock_t clock, reduced_clock;
7842 u32 dpll = 0, fp = 0, fp2 = 0;
7843 bool ok, has_reduced_clock = false;
7844 bool is_lvds = false;
7845 struct intel_shared_dpll *pll;
7846
7847 is_lvds = intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS);
7848
7849 WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
7850 "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
7851
7852 ok = ironlake_compute_clocks(&crtc->base, crtc_state, &clock,
7853 &has_reduced_clock, &reduced_clock);
7854 if (!ok && !crtc_state->clock_set) {
7855 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7856 return -EINVAL;
7857 }
7858 /* Compat-code for transition, will disappear. */
7859 if (!crtc_state->clock_set) {
7860 crtc_state->dpll.n = clock.n;
7861 crtc_state->dpll.m1 = clock.m1;
7862 crtc_state->dpll.m2 = clock.m2;
7863 crtc_state->dpll.p1 = clock.p1;
7864 crtc_state->dpll.p2 = clock.p2;
7865 }
7866
7867 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
7868 if (crtc_state->has_pch_encoder) {
7869 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
7870 if (has_reduced_clock)
7871 fp2 = i9xx_dpll_compute_fp(&reduced_clock);
7872
7873 dpll = ironlake_compute_dpll(crtc, crtc_state,
7874 &fp, &reduced_clock,
7875 has_reduced_clock ? &fp2 : NULL);
7876
7877 crtc_state->dpll_hw_state.dpll = dpll;
7878 crtc_state->dpll_hw_state.fp0 = fp;
7879 if (has_reduced_clock)
7880 crtc_state->dpll_hw_state.fp1 = fp2;
7881 else
7882 crtc_state->dpll_hw_state.fp1 = fp;
7883
7884 pll = intel_get_shared_dpll(crtc, crtc_state);
7885 if (pll == NULL) {
7886 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
7887 pipe_name(crtc->pipe));
7888 return -EINVAL;
7889 }
7890 }
7891
7892 if (is_lvds && has_reduced_clock)
7893 crtc->lowfreq_avail = true;
7894 else
7895 crtc->lowfreq_avail = false;
7896
7897 return 0;
7898 }
7899
intel_pch_transcoder_get_m_n(struct intel_crtc * crtc,struct intel_link_m_n * m_n)7900 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
7901 struct intel_link_m_n *m_n)
7902 {
7903 struct drm_device *dev = crtc->base.dev;
7904 struct drm_i915_private *dev_priv = dev->dev_private;
7905 enum pipe pipe = crtc->pipe;
7906
7907 m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
7908 m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
7909 m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
7910 & ~TU_SIZE_MASK;
7911 m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
7912 m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
7913 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7914 }
7915
intel_cpu_transcoder_get_m_n(struct intel_crtc * crtc,enum transcoder transcoder,struct intel_link_m_n * m_n,struct intel_link_m_n * m2_n2)7916 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
7917 enum transcoder transcoder,
7918 struct intel_link_m_n *m_n,
7919 struct intel_link_m_n *m2_n2)
7920 {
7921 struct drm_device *dev = crtc->base.dev;
7922 struct drm_i915_private *dev_priv = dev->dev_private;
7923 enum pipe pipe = crtc->pipe;
7924
7925 if (INTEL_INFO(dev)->gen >= 5) {
7926 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
7927 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
7928 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
7929 & ~TU_SIZE_MASK;
7930 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
7931 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
7932 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7933 /* Read M2_N2 registers only for gen < 8 (M2_N2 available for
7934 * gen < 8) and if DRRS is supported (to make sure the
7935 * registers are not unnecessarily read).
7936 */
7937 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
7938 crtc->config->has_drrs) {
7939 m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
7940 m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
7941 m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
7942 & ~TU_SIZE_MASK;
7943 m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
7944 m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
7945 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7946 }
7947 } else {
7948 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
7949 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
7950 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
7951 & ~TU_SIZE_MASK;
7952 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
7953 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
7954 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7955 }
7956 }
7957
intel_dp_get_m_n(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)7958 void intel_dp_get_m_n(struct intel_crtc *crtc,
7959 struct intel_crtc_state *pipe_config)
7960 {
7961 if (pipe_config->has_pch_encoder)
7962 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
7963 else
7964 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
7965 &pipe_config->dp_m_n,
7966 &pipe_config->dp_m2_n2);
7967 }
7968
ironlake_get_fdi_m_n_config(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)7969 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
7970 struct intel_crtc_state *pipe_config)
7971 {
7972 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
7973 &pipe_config->fdi_m_n, NULL);
7974 }
7975
skylake_get_pfit_config(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)7976 static void skylake_get_pfit_config(struct intel_crtc *crtc,
7977 struct intel_crtc_state *pipe_config)
7978 {
7979 struct drm_device *dev = crtc->base.dev;
7980 struct drm_i915_private *dev_priv = dev->dev_private;
7981 uint32_t tmp;
7982
7983 tmp = I915_READ(PS_CTL(crtc->pipe));
7984
7985 if (tmp & PS_ENABLE) {
7986 pipe_config->pch_pfit.enabled = true;
7987 pipe_config->pch_pfit.pos = I915_READ(PS_WIN_POS(crtc->pipe));
7988 pipe_config->pch_pfit.size = I915_READ(PS_WIN_SZ(crtc->pipe));
7989 }
7990 }
7991
7992 static void
skylake_get_initial_plane_config(struct intel_crtc * crtc,struct intel_initial_plane_config * plane_config)7993 skylake_get_initial_plane_config(struct intel_crtc *crtc,
7994 struct intel_initial_plane_config *plane_config)
7995 {
7996 struct drm_device *dev = crtc->base.dev;
7997 struct drm_i915_private *dev_priv = dev->dev_private;
7998 u32 val, base, offset, stride_mult, tiling;
7999 int pipe = crtc->pipe;
8000 int fourcc, pixel_format;
8001 unsigned int aligned_height;
8002 struct drm_framebuffer *fb;
8003 struct intel_framebuffer *intel_fb;
8004
8005 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8006 if (!intel_fb) {
8007 DRM_DEBUG_KMS("failed to alloc fb\n");
8008 return;
8009 }
8010
8011 fb = &intel_fb->base;
8012
8013 val = I915_READ(PLANE_CTL(pipe, 0));
8014 if (!(val & PLANE_CTL_ENABLE))
8015 goto error;
8016
8017 pixel_format = val & PLANE_CTL_FORMAT_MASK;
8018 fourcc = skl_format_to_fourcc(pixel_format,
8019 val & PLANE_CTL_ORDER_RGBX,
8020 val & PLANE_CTL_ALPHA_MASK);
8021 fb->pixel_format = fourcc;
8022 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
8023
8024 tiling = val & PLANE_CTL_TILED_MASK;
8025 switch (tiling) {
8026 case PLANE_CTL_TILED_LINEAR:
8027 fb->modifier[0] = DRM_FORMAT_MOD_NONE;
8028 break;
8029 case PLANE_CTL_TILED_X:
8030 plane_config->tiling = I915_TILING_X;
8031 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
8032 break;
8033 case PLANE_CTL_TILED_Y:
8034 fb->modifier[0] = I915_FORMAT_MOD_Y_TILED;
8035 break;
8036 case PLANE_CTL_TILED_YF:
8037 fb->modifier[0] = I915_FORMAT_MOD_Yf_TILED;
8038 break;
8039 default:
8040 MISSING_CASE(tiling);
8041 goto error;
8042 }
8043
8044 base = I915_READ(PLANE_SURF(pipe, 0)) & 0xfffff000;
8045 plane_config->base = base;
8046
8047 offset = I915_READ(PLANE_OFFSET(pipe, 0));
8048
8049 val = I915_READ(PLANE_SIZE(pipe, 0));
8050 fb->height = ((val >> 16) & 0xfff) + 1;
8051 fb->width = ((val >> 0) & 0x1fff) + 1;
8052
8053 val = I915_READ(PLANE_STRIDE(pipe, 0));
8054 stride_mult = intel_fb_stride_alignment(dev, fb->modifier[0],
8055 fb->pixel_format);
8056 fb->pitches[0] = (val & 0x3ff) * stride_mult;
8057
8058 aligned_height = intel_fb_align_height(dev, fb->height,
8059 fb->pixel_format,
8060 fb->modifier[0]);
8061
8062 plane_config->size = fb->pitches[0] * aligned_height;
8063
8064 DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
8065 pipe_name(pipe), fb->width, fb->height,
8066 fb->bits_per_pixel, base, fb->pitches[0],
8067 plane_config->size);
8068
8069 plane_config->fb = intel_fb;
8070 return;
8071
8072 error:
8073 kfree(fb);
8074 }
8075
ironlake_get_pfit_config(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)8076 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
8077 struct intel_crtc_state *pipe_config)
8078 {
8079 struct drm_device *dev = crtc->base.dev;
8080 struct drm_i915_private *dev_priv = dev->dev_private;
8081 uint32_t tmp;
8082
8083 tmp = I915_READ(PF_CTL(crtc->pipe));
8084
8085 if (tmp & PF_ENABLE) {
8086 pipe_config->pch_pfit.enabled = true;
8087 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
8088 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
8089
8090 /* We currently do not free assignements of panel fitters on
8091 * ivb/hsw (since we don't use the higher upscaling modes which
8092 * differentiates them) so just WARN about this case for now. */
8093 if (IS_GEN7(dev)) {
8094 WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
8095 PF_PIPE_SEL_IVB(crtc->pipe));
8096 }
8097 }
8098 }
8099
8100 static void
ironlake_get_initial_plane_config(struct intel_crtc * crtc,struct intel_initial_plane_config * plane_config)8101 ironlake_get_initial_plane_config(struct intel_crtc *crtc,
8102 struct intel_initial_plane_config *plane_config)
8103 {
8104 struct drm_device *dev = crtc->base.dev;
8105 struct drm_i915_private *dev_priv = dev->dev_private;
8106 u32 val, base, offset;
8107 int pipe = crtc->pipe;
8108 int fourcc, pixel_format;
8109 unsigned int aligned_height;
8110 struct drm_framebuffer *fb;
8111 struct intel_framebuffer *intel_fb;
8112
8113 val = I915_READ(DSPCNTR(pipe));
8114 if (!(val & DISPLAY_PLANE_ENABLE))
8115 return;
8116
8117 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8118 if (!intel_fb) {
8119 DRM_DEBUG_KMS("failed to alloc fb\n");
8120 return;
8121 }
8122
8123 fb = &intel_fb->base;
8124
8125 if (INTEL_INFO(dev)->gen >= 4) {
8126 if (val & DISPPLANE_TILED) {
8127 plane_config->tiling = I915_TILING_X;
8128 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
8129 }
8130 }
8131
8132 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
8133 fourcc = i9xx_format_to_fourcc(pixel_format);
8134 fb->pixel_format = fourcc;
8135 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
8136
8137 base = I915_READ(DSPSURF(pipe)) & 0xfffff000;
8138 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
8139 offset = I915_READ(DSPOFFSET(pipe));
8140 } else {
8141 if (plane_config->tiling)
8142 offset = I915_READ(DSPTILEOFF(pipe));
8143 else
8144 offset = I915_READ(DSPLINOFF(pipe));
8145 }
8146 plane_config->base = base;
8147
8148 val = I915_READ(PIPESRC(pipe));
8149 fb->width = ((val >> 16) & 0xfff) + 1;
8150 fb->height = ((val >> 0) & 0xfff) + 1;
8151
8152 val = I915_READ(DSPSTRIDE(pipe));
8153 fb->pitches[0] = val & 0xffffffc0;
8154
8155 aligned_height = intel_fb_align_height(dev, fb->height,
8156 fb->pixel_format,
8157 fb->modifier[0]);
8158
8159 plane_config->size = fb->pitches[0] * aligned_height;
8160
8161 DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
8162 pipe_name(pipe), fb->width, fb->height,
8163 fb->bits_per_pixel, base, fb->pitches[0],
8164 plane_config->size);
8165
8166 plane_config->fb = intel_fb;
8167 }
8168
ironlake_get_pipe_config(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)8169 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
8170 struct intel_crtc_state *pipe_config)
8171 {
8172 struct drm_device *dev = crtc->base.dev;
8173 struct drm_i915_private *dev_priv = dev->dev_private;
8174 uint32_t tmp;
8175
8176 if (!intel_display_power_is_enabled(dev_priv,
8177 POWER_DOMAIN_PIPE(crtc->pipe)))
8178 return false;
8179
8180 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
8181 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
8182
8183 tmp = I915_READ(PIPECONF(crtc->pipe));
8184 if (!(tmp & PIPECONF_ENABLE))
8185 return false;
8186
8187 switch (tmp & PIPECONF_BPC_MASK) {
8188 case PIPECONF_6BPC:
8189 pipe_config->pipe_bpp = 18;
8190 break;
8191 case PIPECONF_8BPC:
8192 pipe_config->pipe_bpp = 24;
8193 break;
8194 case PIPECONF_10BPC:
8195 pipe_config->pipe_bpp = 30;
8196 break;
8197 case PIPECONF_12BPC:
8198 pipe_config->pipe_bpp = 36;
8199 break;
8200 default:
8201 break;
8202 }
8203
8204 if (tmp & PIPECONF_COLOR_RANGE_SELECT)
8205 pipe_config->limited_color_range = true;
8206
8207 if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
8208 struct intel_shared_dpll *pll;
8209
8210 pipe_config->has_pch_encoder = true;
8211
8212 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
8213 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
8214 FDI_DP_PORT_WIDTH_SHIFT) + 1;
8215
8216 ironlake_get_fdi_m_n_config(crtc, pipe_config);
8217
8218 if (HAS_PCH_IBX(dev_priv->dev)) {
8219 pipe_config->shared_dpll =
8220 (enum intel_dpll_id) crtc->pipe;
8221 } else {
8222 tmp = I915_READ(PCH_DPLL_SEL);
8223 if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
8224 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
8225 else
8226 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
8227 }
8228
8229 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
8230
8231 WARN_ON(!pll->get_hw_state(dev_priv, pll,
8232 &pipe_config->dpll_hw_state));
8233
8234 tmp = pipe_config->dpll_hw_state.dpll;
8235 pipe_config->pixel_multiplier =
8236 ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
8237 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
8238
8239 ironlake_pch_clock_get(crtc, pipe_config);
8240 } else {
8241 pipe_config->pixel_multiplier = 1;
8242 }
8243
8244 intel_get_pipe_timings(crtc, pipe_config);
8245
8246 ironlake_get_pfit_config(crtc, pipe_config);
8247
8248 return true;
8249 }
8250
assert_can_disable_lcpll(struct drm_i915_private * dev_priv)8251 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
8252 {
8253 struct drm_device *dev = dev_priv->dev;
8254 struct intel_crtc *crtc;
8255
8256 for_each_intel_crtc(dev, crtc)
8257 I915_STATE_WARN(crtc->active, "CRTC for pipe %c enabled\n",
8258 pipe_name(crtc->pipe));
8259
8260 I915_STATE_WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
8261 I915_STATE_WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
8262 I915_STATE_WARN(I915_READ(WRPLL_CTL1) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
8263 I915_STATE_WARN(I915_READ(WRPLL_CTL2) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
8264 I915_STATE_WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
8265 I915_STATE_WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
8266 "CPU PWM1 enabled\n");
8267 if (IS_HASWELL(dev))
8268 I915_STATE_WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
8269 "CPU PWM2 enabled\n");
8270 I915_STATE_WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
8271 "PCH PWM1 enabled\n");
8272 I915_STATE_WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
8273 "Utility pin enabled\n");
8274 I915_STATE_WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
8275
8276 /*
8277 * In theory we can still leave IRQs enabled, as long as only the HPD
8278 * interrupts remain enabled. We used to check for that, but since it's
8279 * gen-specific and since we only disable LCPLL after we fully disable
8280 * the interrupts, the check below should be enough.
8281 */
8282 I915_STATE_WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
8283 }
8284
hsw_read_dcomp(struct drm_i915_private * dev_priv)8285 static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
8286 {
8287 struct drm_device *dev = dev_priv->dev;
8288
8289 if (IS_HASWELL(dev))
8290 return I915_READ(D_COMP_HSW);
8291 else
8292 return I915_READ(D_COMP_BDW);
8293 }
8294
hsw_write_dcomp(struct drm_i915_private * dev_priv,uint32_t val)8295 static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
8296 {
8297 struct drm_device *dev = dev_priv->dev;
8298
8299 if (IS_HASWELL(dev)) {
8300 mutex_lock(&dev_priv->rps.hw_lock);
8301 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
8302 val))
8303 DRM_ERROR("Failed to write to D_COMP\n");
8304 mutex_unlock(&dev_priv->rps.hw_lock);
8305 } else {
8306 I915_WRITE(D_COMP_BDW, val);
8307 POSTING_READ(D_COMP_BDW);
8308 }
8309 }
8310
8311 /*
8312 * This function implements pieces of two sequences from BSpec:
8313 * - Sequence for display software to disable LCPLL
8314 * - Sequence for display software to allow package C8+
8315 * The steps implemented here are just the steps that actually touch the LCPLL
8316 * register. Callers should take care of disabling all the display engine
8317 * functions, doing the mode unset, fixing interrupts, etc.
8318 */
hsw_disable_lcpll(struct drm_i915_private * dev_priv,bool switch_to_fclk,bool allow_power_down)8319 static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
8320 bool switch_to_fclk, bool allow_power_down)
8321 {
8322 uint32_t val;
8323
8324 assert_can_disable_lcpll(dev_priv);
8325
8326 val = I915_READ(LCPLL_CTL);
8327
8328 if (switch_to_fclk) {
8329 val |= LCPLL_CD_SOURCE_FCLK;
8330 I915_WRITE(LCPLL_CTL, val);
8331
8332 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
8333 LCPLL_CD_SOURCE_FCLK_DONE, 1))
8334 DRM_ERROR("Switching to FCLK failed\n");
8335
8336 val = I915_READ(LCPLL_CTL);
8337 }
8338
8339 val |= LCPLL_PLL_DISABLE;
8340 I915_WRITE(LCPLL_CTL, val);
8341 POSTING_READ(LCPLL_CTL);
8342
8343 if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
8344 DRM_ERROR("LCPLL still locked\n");
8345
8346 val = hsw_read_dcomp(dev_priv);
8347 val |= D_COMP_COMP_DISABLE;
8348 hsw_write_dcomp(dev_priv, val);
8349 ndelay(100);
8350
8351 if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
8352 1))
8353 DRM_ERROR("D_COMP RCOMP still in progress\n");
8354
8355 if (allow_power_down) {
8356 val = I915_READ(LCPLL_CTL);
8357 val |= LCPLL_POWER_DOWN_ALLOW;
8358 I915_WRITE(LCPLL_CTL, val);
8359 POSTING_READ(LCPLL_CTL);
8360 }
8361 }
8362
8363 /*
8364 * Fully restores LCPLL, disallowing power down and switching back to LCPLL
8365 * source.
8366 */
hsw_restore_lcpll(struct drm_i915_private * dev_priv)8367 static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
8368 {
8369 uint32_t val;
8370
8371 val = I915_READ(LCPLL_CTL);
8372
8373 if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
8374 LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
8375 return;
8376
8377 /*
8378 * Make sure we're not on PC8 state before disabling PC8, otherwise
8379 * we'll hang the machine. To prevent PC8 state, just enable force_wake.
8380 */
8381 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
8382
8383 if (val & LCPLL_POWER_DOWN_ALLOW) {
8384 val &= ~LCPLL_POWER_DOWN_ALLOW;
8385 I915_WRITE(LCPLL_CTL, val);
8386 POSTING_READ(LCPLL_CTL);
8387 }
8388
8389 val = hsw_read_dcomp(dev_priv);
8390 val |= D_COMP_COMP_FORCE;
8391 val &= ~D_COMP_COMP_DISABLE;
8392 hsw_write_dcomp(dev_priv, val);
8393
8394 val = I915_READ(LCPLL_CTL);
8395 val &= ~LCPLL_PLL_DISABLE;
8396 I915_WRITE(LCPLL_CTL, val);
8397
8398 if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
8399 DRM_ERROR("LCPLL not locked yet\n");
8400
8401 if (val & LCPLL_CD_SOURCE_FCLK) {
8402 val = I915_READ(LCPLL_CTL);
8403 val &= ~LCPLL_CD_SOURCE_FCLK;
8404 I915_WRITE(LCPLL_CTL, val);
8405
8406 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
8407 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
8408 DRM_ERROR("Switching back to LCPLL failed\n");
8409 }
8410
8411 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
8412 }
8413
8414 /*
8415 * Package states C8 and deeper are really deep PC states that can only be
8416 * reached when all the devices on the system allow it, so even if the graphics
8417 * device allows PC8+, it doesn't mean the system will actually get to these
8418 * states. Our driver only allows PC8+ when going into runtime PM.
8419 *
8420 * The requirements for PC8+ are that all the outputs are disabled, the power
8421 * well is disabled and most interrupts are disabled, and these are also
8422 * requirements for runtime PM. When these conditions are met, we manually do
8423 * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
8424 * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
8425 * hang the machine.
8426 *
8427 * When we really reach PC8 or deeper states (not just when we allow it) we lose
8428 * the state of some registers, so when we come back from PC8+ we need to
8429 * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
8430 * need to take care of the registers kept by RC6. Notice that this happens even
8431 * if we don't put the device in PCI D3 state (which is what currently happens
8432 * because of the runtime PM support).
8433 *
8434 * For more, read "Display Sequences for Package C8" on the hardware
8435 * documentation.
8436 */
hsw_enable_pc8(struct drm_i915_private * dev_priv)8437 void hsw_enable_pc8(struct drm_i915_private *dev_priv)
8438 {
8439 struct drm_device *dev = dev_priv->dev;
8440 uint32_t val;
8441
8442 DRM_DEBUG_KMS("Enabling package C8+\n");
8443
8444 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
8445 val = I915_READ(SOUTH_DSPCLK_GATE_D);
8446 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
8447 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
8448 }
8449
8450 lpt_disable_clkout_dp(dev);
8451 hsw_disable_lcpll(dev_priv, true, true);
8452 }
8453
hsw_disable_pc8(struct drm_i915_private * dev_priv)8454 void hsw_disable_pc8(struct drm_i915_private *dev_priv)
8455 {
8456 struct drm_device *dev = dev_priv->dev;
8457 uint32_t val;
8458
8459 DRM_DEBUG_KMS("Disabling package C8+\n");
8460
8461 hsw_restore_lcpll(dev_priv);
8462 lpt_init_pch_refclk(dev);
8463
8464 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
8465 val = I915_READ(SOUTH_DSPCLK_GATE_D);
8466 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
8467 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
8468 }
8469
8470 intel_prepare_ddi(dev);
8471 }
8472
haswell_crtc_compute_clock(struct intel_crtc * crtc,struct intel_crtc_state * crtc_state)8473 static int haswell_crtc_compute_clock(struct intel_crtc *crtc,
8474 struct intel_crtc_state *crtc_state)
8475 {
8476 if (!intel_ddi_pll_select(crtc, crtc_state))
8477 return -EINVAL;
8478
8479 crtc->lowfreq_avail = false;
8480
8481 return 0;
8482 }
8483
skylake_get_ddi_pll(struct drm_i915_private * dev_priv,enum port port,struct intel_crtc_state * pipe_config)8484 static void skylake_get_ddi_pll(struct drm_i915_private *dev_priv,
8485 enum port port,
8486 struct intel_crtc_state *pipe_config)
8487 {
8488 u32 temp, dpll_ctl1;
8489
8490 temp = I915_READ(DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
8491 pipe_config->ddi_pll_sel = temp >> (port * 3 + 1);
8492
8493 switch (pipe_config->ddi_pll_sel) {
8494 case SKL_DPLL0:
8495 /*
8496 * On SKL the eDP DPLL (DPLL0 as we don't use SSC) is not part
8497 * of the shared DPLL framework and thus needs to be read out
8498 * separately
8499 */
8500 dpll_ctl1 = I915_READ(DPLL_CTRL1);
8501 pipe_config->dpll_hw_state.ctrl1 = dpll_ctl1 & 0x3f;
8502 break;
8503 case SKL_DPLL1:
8504 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL1;
8505 break;
8506 case SKL_DPLL2:
8507 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL2;
8508 break;
8509 case SKL_DPLL3:
8510 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL3;
8511 break;
8512 }
8513 }
8514
haswell_get_ddi_pll(struct drm_i915_private * dev_priv,enum port port,struct intel_crtc_state * pipe_config)8515 static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
8516 enum port port,
8517 struct intel_crtc_state *pipe_config)
8518 {
8519 pipe_config->ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
8520
8521 switch (pipe_config->ddi_pll_sel) {
8522 case PORT_CLK_SEL_WRPLL1:
8523 pipe_config->shared_dpll = DPLL_ID_WRPLL1;
8524 break;
8525 case PORT_CLK_SEL_WRPLL2:
8526 pipe_config->shared_dpll = DPLL_ID_WRPLL2;
8527 break;
8528 }
8529 }
8530
haswell_get_ddi_port_state(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)8531 static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
8532 struct intel_crtc_state *pipe_config)
8533 {
8534 struct drm_device *dev = crtc->base.dev;
8535 struct drm_i915_private *dev_priv = dev->dev_private;
8536 struct intel_shared_dpll *pll;
8537 enum port port;
8538 uint32_t tmp;
8539
8540 tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
8541
8542 port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
8543
8544 if (IS_SKYLAKE(dev))
8545 skylake_get_ddi_pll(dev_priv, port, pipe_config);
8546 else
8547 haswell_get_ddi_pll(dev_priv, port, pipe_config);
8548
8549 if (pipe_config->shared_dpll >= 0) {
8550 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
8551
8552 WARN_ON(!pll->get_hw_state(dev_priv, pll,
8553 &pipe_config->dpll_hw_state));
8554 }
8555
8556 /*
8557 * Haswell has only FDI/PCH transcoder A. It is which is connected to
8558 * DDI E. So just check whether this pipe is wired to DDI E and whether
8559 * the PCH transcoder is on.
8560 */
8561 if (INTEL_INFO(dev)->gen < 9 &&
8562 (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
8563 pipe_config->has_pch_encoder = true;
8564
8565 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
8566 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
8567 FDI_DP_PORT_WIDTH_SHIFT) + 1;
8568
8569 ironlake_get_fdi_m_n_config(crtc, pipe_config);
8570 }
8571 }
8572
haswell_get_pipe_config(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)8573 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
8574 struct intel_crtc_state *pipe_config)
8575 {
8576 struct drm_device *dev = crtc->base.dev;
8577 struct drm_i915_private *dev_priv = dev->dev_private;
8578 enum intel_display_power_domain pfit_domain;
8579 uint32_t tmp;
8580
8581 if (!intel_display_power_is_enabled(dev_priv,
8582 POWER_DOMAIN_PIPE(crtc->pipe)))
8583 return false;
8584
8585 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
8586 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
8587
8588 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
8589 if (tmp & TRANS_DDI_FUNC_ENABLE) {
8590 enum pipe trans_edp_pipe;
8591 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
8592 default:
8593 WARN(1, "unknown pipe linked to edp transcoder\n");
8594 case TRANS_DDI_EDP_INPUT_A_ONOFF:
8595 case TRANS_DDI_EDP_INPUT_A_ON:
8596 trans_edp_pipe = PIPE_A;
8597 break;
8598 case TRANS_DDI_EDP_INPUT_B_ONOFF:
8599 trans_edp_pipe = PIPE_B;
8600 break;
8601 case TRANS_DDI_EDP_INPUT_C_ONOFF:
8602 trans_edp_pipe = PIPE_C;
8603 break;
8604 }
8605
8606 if (trans_edp_pipe == crtc->pipe)
8607 pipe_config->cpu_transcoder = TRANSCODER_EDP;
8608 }
8609
8610 if (!intel_display_power_is_enabled(dev_priv,
8611 POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
8612 return false;
8613
8614 tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
8615 if (!(tmp & PIPECONF_ENABLE))
8616 return false;
8617
8618 haswell_get_ddi_port_state(crtc, pipe_config);
8619
8620 intel_get_pipe_timings(crtc, pipe_config);
8621
8622 pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
8623 if (intel_display_power_is_enabled(dev_priv, pfit_domain)) {
8624 if (IS_SKYLAKE(dev))
8625 skylake_get_pfit_config(crtc, pipe_config);
8626 else
8627 ironlake_get_pfit_config(crtc, pipe_config);
8628 }
8629
8630 if (IS_HASWELL(dev))
8631 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
8632 (I915_READ(IPS_CTL) & IPS_ENABLE);
8633
8634 if (pipe_config->cpu_transcoder != TRANSCODER_EDP) {
8635 pipe_config->pixel_multiplier =
8636 I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
8637 } else {
8638 pipe_config->pixel_multiplier = 1;
8639 }
8640
8641 return true;
8642 }
8643
i845_update_cursor(struct drm_crtc * crtc,u32 base)8644 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
8645 {
8646 struct drm_device *dev = crtc->dev;
8647 struct drm_i915_private *dev_priv = dev->dev_private;
8648 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8649 uint32_t cntl = 0, size = 0;
8650
8651 if (base) {
8652 unsigned int width = intel_crtc->base.cursor->state->crtc_w;
8653 unsigned int height = intel_crtc->base.cursor->state->crtc_h;
8654 unsigned int stride = roundup_pow_of_two(width) * 4;
8655
8656 switch (stride) {
8657 default:
8658 WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
8659 width, stride);
8660 stride = 256;
8661 /* fallthrough */
8662 case 256:
8663 case 512:
8664 case 1024:
8665 case 2048:
8666 break;
8667 }
8668
8669 cntl |= CURSOR_ENABLE |
8670 CURSOR_GAMMA_ENABLE |
8671 CURSOR_FORMAT_ARGB |
8672 CURSOR_STRIDE(stride);
8673
8674 size = (height << 12) | width;
8675 }
8676
8677 if (intel_crtc->cursor_cntl != 0 &&
8678 (intel_crtc->cursor_base != base ||
8679 intel_crtc->cursor_size != size ||
8680 intel_crtc->cursor_cntl != cntl)) {
8681 /* On these chipsets we can only modify the base/size/stride
8682 * whilst the cursor is disabled.
8683 */
8684 I915_WRITE(_CURACNTR, 0);
8685 POSTING_READ(_CURACNTR);
8686 intel_crtc->cursor_cntl = 0;
8687 }
8688
8689 if (intel_crtc->cursor_base != base) {
8690 I915_WRITE(_CURABASE, base);
8691 intel_crtc->cursor_base = base;
8692 }
8693
8694 if (intel_crtc->cursor_size != size) {
8695 I915_WRITE(CURSIZE, size);
8696 intel_crtc->cursor_size = size;
8697 }
8698
8699 if (intel_crtc->cursor_cntl != cntl) {
8700 I915_WRITE(_CURACNTR, cntl);
8701 POSTING_READ(_CURACNTR);
8702 intel_crtc->cursor_cntl = cntl;
8703 }
8704 }
8705
i9xx_update_cursor(struct drm_crtc * crtc,u32 base)8706 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
8707 {
8708 struct drm_device *dev = crtc->dev;
8709 struct drm_i915_private *dev_priv = dev->dev_private;
8710 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8711 int pipe = intel_crtc->pipe;
8712 uint32_t cntl;
8713
8714 cntl = 0;
8715 if (base) {
8716 cntl = MCURSOR_GAMMA_ENABLE;
8717 switch (intel_crtc->base.cursor->state->crtc_w) {
8718 case 64:
8719 cntl |= CURSOR_MODE_64_ARGB_AX;
8720 break;
8721 case 128:
8722 cntl |= CURSOR_MODE_128_ARGB_AX;
8723 break;
8724 case 256:
8725 cntl |= CURSOR_MODE_256_ARGB_AX;
8726 break;
8727 default:
8728 MISSING_CASE(intel_crtc->base.cursor->state->crtc_w);
8729 return;
8730 }
8731 cntl |= pipe << 28; /* Connect to correct pipe */
8732
8733 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
8734 cntl |= CURSOR_PIPE_CSC_ENABLE;
8735 }
8736
8737 if (crtc->cursor->state->rotation == BIT(DRM_ROTATE_180))
8738 cntl |= CURSOR_ROTATE_180;
8739
8740 if (intel_crtc->cursor_cntl != cntl) {
8741 I915_WRITE(CURCNTR(pipe), cntl);
8742 POSTING_READ(CURCNTR(pipe));
8743 intel_crtc->cursor_cntl = cntl;
8744 }
8745
8746 /* and commit changes on next vblank */
8747 I915_WRITE(CURBASE(pipe), base);
8748 POSTING_READ(CURBASE(pipe));
8749
8750 intel_crtc->cursor_base = base;
8751 }
8752
8753 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
intel_crtc_update_cursor(struct drm_crtc * crtc,bool on)8754 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
8755 bool on)
8756 {
8757 struct drm_device *dev = crtc->dev;
8758 struct drm_i915_private *dev_priv = dev->dev_private;
8759 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8760 int pipe = intel_crtc->pipe;
8761 int x = crtc->cursor_x;
8762 int y = crtc->cursor_y;
8763 u32 base = 0, pos = 0;
8764
8765 if (on)
8766 base = intel_crtc->cursor_addr;
8767
8768 if (x >= intel_crtc->config->pipe_src_w)
8769 base = 0;
8770
8771 if (y >= intel_crtc->config->pipe_src_h)
8772 base = 0;
8773
8774 if (x < 0) {
8775 if (x + intel_crtc->base.cursor->state->crtc_w <= 0)
8776 base = 0;
8777
8778 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
8779 x = -x;
8780 }
8781 pos |= x << CURSOR_X_SHIFT;
8782
8783 if (y < 0) {
8784 if (y + intel_crtc->base.cursor->state->crtc_h <= 0)
8785 base = 0;
8786
8787 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
8788 y = -y;
8789 }
8790 pos |= y << CURSOR_Y_SHIFT;
8791
8792 if (base == 0 && intel_crtc->cursor_base == 0)
8793 return;
8794
8795 I915_WRITE(CURPOS(pipe), pos);
8796
8797 /* ILK+ do this automagically */
8798 if (HAS_GMCH_DISPLAY(dev) &&
8799 crtc->cursor->state->rotation == BIT(DRM_ROTATE_180)) {
8800 base += (intel_crtc->base.cursor->state->crtc_h *
8801 intel_crtc->base.cursor->state->crtc_w - 1) * 4;
8802 }
8803
8804 if (IS_845G(dev) || IS_I865G(dev))
8805 i845_update_cursor(crtc, base);
8806 else
8807 i9xx_update_cursor(crtc, base);
8808 }
8809
cursor_size_ok(struct drm_device * dev,uint32_t width,uint32_t height)8810 static bool cursor_size_ok(struct drm_device *dev,
8811 uint32_t width, uint32_t height)
8812 {
8813 if (width == 0 || height == 0)
8814 return false;
8815
8816 /*
8817 * 845g/865g are special in that they are only limited by
8818 * the width of their cursors, the height is arbitrary up to
8819 * the precision of the register. Everything else requires
8820 * square cursors, limited to a few power-of-two sizes.
8821 */
8822 if (IS_845G(dev) || IS_I865G(dev)) {
8823 if ((width & 63) != 0)
8824 return false;
8825
8826 if (width > (IS_845G(dev) ? 64 : 512))
8827 return false;
8828
8829 if (height > 1023)
8830 return false;
8831 } else {
8832 switch (width | height) {
8833 case 256:
8834 case 128:
8835 if (IS_GEN2(dev))
8836 return false;
8837 case 64:
8838 break;
8839 default:
8840 return false;
8841 }
8842 }
8843
8844 return true;
8845 }
8846
intel_crtc_gamma_set(struct drm_crtc * crtc,u16 * red,u16 * green,u16 * blue,uint32_t start,uint32_t size)8847 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
8848 u16 *blue, uint32_t start, uint32_t size)
8849 {
8850 int end = (start + size > 256) ? 256 : start + size, i;
8851 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8852
8853 for (i = start; i < end; i++) {
8854 intel_crtc->lut_r[i] = red[i] >> 8;
8855 intel_crtc->lut_g[i] = green[i] >> 8;
8856 intel_crtc->lut_b[i] = blue[i] >> 8;
8857 }
8858
8859 intel_crtc_load_lut(crtc);
8860 }
8861
8862 /* VESA 640x480x72Hz mode to set on the pipe */
8863 static struct drm_display_mode load_detect_mode = {
8864 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
8865 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
8866 };
8867
8868 struct drm_framebuffer *
__intel_framebuffer_create(struct drm_device * dev,struct drm_mode_fb_cmd2 * mode_cmd,struct drm_i915_gem_object * obj)8869 __intel_framebuffer_create(struct drm_device *dev,
8870 struct drm_mode_fb_cmd2 *mode_cmd,
8871 struct drm_i915_gem_object *obj)
8872 {
8873 struct intel_framebuffer *intel_fb;
8874 int ret;
8875
8876 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8877 if (!intel_fb) {
8878 drm_gem_object_unreference(&obj->base);
8879 return ERR_PTR(-ENOMEM);
8880 }
8881
8882 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
8883 if (ret)
8884 goto err;
8885
8886 return &intel_fb->base;
8887 err:
8888 drm_gem_object_unreference(&obj->base);
8889 kfree(intel_fb);
8890
8891 return ERR_PTR(ret);
8892 }
8893
8894 static struct drm_framebuffer *
intel_framebuffer_create(struct drm_device * dev,struct drm_mode_fb_cmd2 * mode_cmd,struct drm_i915_gem_object * obj)8895 intel_framebuffer_create(struct drm_device *dev,
8896 struct drm_mode_fb_cmd2 *mode_cmd,
8897 struct drm_i915_gem_object *obj)
8898 {
8899 struct drm_framebuffer *fb;
8900 int ret;
8901
8902 ret = i915_mutex_lock_interruptible(dev);
8903 if (ret)
8904 return ERR_PTR(ret);
8905 fb = __intel_framebuffer_create(dev, mode_cmd, obj);
8906 mutex_unlock(&dev->struct_mutex);
8907
8908 return fb;
8909 }
8910
8911 static u32
intel_framebuffer_pitch_for_width(int width,int bpp)8912 intel_framebuffer_pitch_for_width(int width, int bpp)
8913 {
8914 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
8915 return ALIGN(pitch, 64);
8916 }
8917
8918 static u32
intel_framebuffer_size_for_mode(struct drm_display_mode * mode,int bpp)8919 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
8920 {
8921 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
8922 return PAGE_ALIGN(pitch * mode->vdisplay);
8923 }
8924
8925 static struct drm_framebuffer *
intel_framebuffer_create_for_mode(struct drm_device * dev,struct drm_display_mode * mode,int depth,int bpp)8926 intel_framebuffer_create_for_mode(struct drm_device *dev,
8927 struct drm_display_mode *mode,
8928 int depth, int bpp)
8929 {
8930 struct drm_i915_gem_object *obj;
8931 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
8932
8933 obj = i915_gem_alloc_object(dev,
8934 intel_framebuffer_size_for_mode(mode, bpp));
8935 if (obj == NULL)
8936 return ERR_PTR(-ENOMEM);
8937
8938 mode_cmd.width = mode->hdisplay;
8939 mode_cmd.height = mode->vdisplay;
8940 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
8941 bpp);
8942 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
8943
8944 return intel_framebuffer_create(dev, &mode_cmd, obj);
8945 }
8946
8947 static struct drm_framebuffer *
mode_fits_in_fbdev(struct drm_device * dev,struct drm_display_mode * mode)8948 mode_fits_in_fbdev(struct drm_device *dev,
8949 struct drm_display_mode *mode)
8950 {
8951 #ifdef CONFIG_DRM_I915_FBDEV
8952 struct drm_i915_private *dev_priv = dev->dev_private;
8953 struct drm_i915_gem_object *obj;
8954 struct drm_framebuffer *fb;
8955
8956 if (!dev_priv->fbdev)
8957 return NULL;
8958
8959 if (!dev_priv->fbdev->fb)
8960 return NULL;
8961
8962 obj = dev_priv->fbdev->fb->obj;
8963 BUG_ON(!obj);
8964
8965 fb = &dev_priv->fbdev->fb->base;
8966 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
8967 fb->bits_per_pixel))
8968 return NULL;
8969
8970 if (obj->base.size < mode->vdisplay * fb->pitches[0])
8971 return NULL;
8972
8973 return fb;
8974 #else
8975 return NULL;
8976 #endif
8977 }
8978
intel_get_load_detect_pipe(struct drm_connector * connector,struct drm_display_mode * mode,struct intel_load_detect_pipe * old,struct drm_modeset_acquire_ctx * ctx)8979 bool intel_get_load_detect_pipe(struct drm_connector *connector,
8980 struct drm_display_mode *mode,
8981 struct intel_load_detect_pipe *old,
8982 struct drm_modeset_acquire_ctx *ctx)
8983 {
8984 struct intel_crtc *intel_crtc;
8985 struct intel_encoder *intel_encoder =
8986 intel_attached_encoder(connector);
8987 struct drm_crtc *possible_crtc;
8988 struct drm_encoder *encoder = &intel_encoder->base;
8989 struct drm_crtc *crtc = NULL;
8990 struct drm_device *dev = encoder->dev;
8991 struct drm_framebuffer *fb;
8992 struct drm_mode_config *config = &dev->mode_config;
8993 struct drm_atomic_state *state = NULL;
8994 struct drm_connector_state *connector_state;
8995 int ret, i = -1;
8996
8997 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
8998 connector->base.id, connector->name,
8999 encoder->base.id, encoder->name);
9000
9001 retry:
9002 ret = drm_modeset_lock(&config->connection_mutex, ctx);
9003 if (ret)
9004 goto fail_unlock;
9005
9006 /*
9007 * Algorithm gets a little messy:
9008 *
9009 * - if the connector already has an assigned crtc, use it (but make
9010 * sure it's on first)
9011 *
9012 * - try to find the first unused crtc that can drive this connector,
9013 * and use that if we find one
9014 */
9015
9016 /* See if we already have a CRTC for this connector */
9017 if (encoder->crtc) {
9018 crtc = encoder->crtc;
9019
9020 ret = drm_modeset_lock(&crtc->mutex, ctx);
9021 if (ret)
9022 goto fail_unlock;
9023 ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
9024 if (ret)
9025 goto fail_unlock;
9026
9027 old->dpms_mode = connector->dpms;
9028 old->load_detect_temp = false;
9029
9030 /* Make sure the crtc and connector are running */
9031 if (connector->dpms != DRM_MODE_DPMS_ON)
9032 connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
9033
9034 return true;
9035 }
9036
9037 /* Find an unused one (if possible) */
9038 for_each_crtc(dev, possible_crtc) {
9039 i++;
9040 if (!(encoder->possible_crtcs & (1 << i)))
9041 continue;
9042 if (possible_crtc->state->enable)
9043 continue;
9044 /* This can occur when applying the pipe A quirk on resume. */
9045 if (to_intel_crtc(possible_crtc)->new_enabled)
9046 continue;
9047
9048 crtc = possible_crtc;
9049 break;
9050 }
9051
9052 /*
9053 * If we didn't find an unused CRTC, don't use any.
9054 */
9055 if (!crtc) {
9056 DRM_DEBUG_KMS("no pipe available for load-detect\n");
9057 goto fail_unlock;
9058 }
9059
9060 ret = drm_modeset_lock(&crtc->mutex, ctx);
9061 if (ret)
9062 goto fail_unlock;
9063 ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
9064 if (ret)
9065 goto fail_unlock;
9066 intel_encoder->new_crtc = to_intel_crtc(crtc);
9067 to_intel_connector(connector)->new_encoder = intel_encoder;
9068
9069 intel_crtc = to_intel_crtc(crtc);
9070 intel_crtc->new_enabled = true;
9071 intel_crtc->new_config = intel_crtc->config;
9072 old->dpms_mode = connector->dpms;
9073 old->load_detect_temp = true;
9074 old->release_fb = NULL;
9075
9076 state = drm_atomic_state_alloc(dev);
9077 if (!state)
9078 return false;
9079
9080 state->acquire_ctx = ctx;
9081
9082 connector_state = drm_atomic_get_connector_state(state, connector);
9083 if (IS_ERR(connector_state)) {
9084 ret = PTR_ERR(connector_state);
9085 goto fail;
9086 }
9087
9088 connector_state->crtc = crtc;
9089 connector_state->best_encoder = &intel_encoder->base;
9090
9091 if (!mode)
9092 mode = &load_detect_mode;
9093
9094 /* We need a framebuffer large enough to accommodate all accesses
9095 * that the plane may generate whilst we perform load detection.
9096 * We can not rely on the fbcon either being present (we get called
9097 * during its initialisation to detect all boot displays, or it may
9098 * not even exist) or that it is large enough to satisfy the
9099 * requested mode.
9100 */
9101 fb = mode_fits_in_fbdev(dev, mode);
9102 if (fb == NULL) {
9103 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
9104 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
9105 old->release_fb = fb;
9106 } else
9107 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
9108 if (IS_ERR(fb)) {
9109 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
9110 goto fail;
9111 }
9112
9113 if (intel_set_mode(crtc, mode, 0, 0, fb, state)) {
9114 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
9115 if (old->release_fb)
9116 old->release_fb->funcs->destroy(old->release_fb);
9117 goto fail;
9118 }
9119 crtc->primary->crtc = crtc;
9120
9121 /* let the connector get through one full cycle before testing */
9122 intel_wait_for_vblank(dev, intel_crtc->pipe);
9123 return true;
9124
9125 fail:
9126 intel_crtc->new_enabled = crtc->state->enable;
9127 if (intel_crtc->new_enabled)
9128 intel_crtc->new_config = intel_crtc->config;
9129 else
9130 intel_crtc->new_config = NULL;
9131 fail_unlock:
9132 if (state) {
9133 drm_atomic_state_free(state);
9134 state = NULL;
9135 }
9136
9137 if (ret == -EDEADLK) {
9138 drm_modeset_backoff(ctx);
9139 goto retry;
9140 }
9141
9142 return false;
9143 }
9144
intel_release_load_detect_pipe(struct drm_connector * connector,struct intel_load_detect_pipe * old,struct drm_modeset_acquire_ctx * ctx)9145 void intel_release_load_detect_pipe(struct drm_connector *connector,
9146 struct intel_load_detect_pipe *old,
9147 struct drm_modeset_acquire_ctx *ctx)
9148 {
9149 struct drm_device *dev = connector->dev;
9150 struct intel_encoder *intel_encoder =
9151 intel_attached_encoder(connector);
9152 struct drm_encoder *encoder = &intel_encoder->base;
9153 struct drm_crtc *crtc = encoder->crtc;
9154 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9155 struct drm_atomic_state *state;
9156 struct drm_connector_state *connector_state;
9157
9158 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
9159 connector->base.id, connector->name,
9160 encoder->base.id, encoder->name);
9161
9162 if (old->load_detect_temp) {
9163 state = drm_atomic_state_alloc(dev);
9164 if (!state)
9165 goto fail;
9166
9167 state->acquire_ctx = ctx;
9168
9169 connector_state = drm_atomic_get_connector_state(state, connector);
9170 if (IS_ERR(connector_state))
9171 goto fail;
9172
9173 to_intel_connector(connector)->new_encoder = NULL;
9174 intel_encoder->new_crtc = NULL;
9175 intel_crtc->new_enabled = false;
9176 intel_crtc->new_config = NULL;
9177
9178 connector_state->best_encoder = NULL;
9179 connector_state->crtc = NULL;
9180
9181 intel_set_mode(crtc, NULL, 0, 0, NULL, state);
9182
9183 drm_atomic_state_free(state);
9184
9185 if (old->release_fb) {
9186 drm_framebuffer_unregister_private(old->release_fb);
9187 drm_framebuffer_unreference(old->release_fb);
9188 }
9189
9190 return;
9191 }
9192
9193 /* Switch crtc and encoder back off if necessary */
9194 if (old->dpms_mode != DRM_MODE_DPMS_ON)
9195 connector->funcs->dpms(connector, old->dpms_mode);
9196
9197 return;
9198 fail:
9199 DRM_DEBUG_KMS("Couldn't release load detect pipe.\n");
9200 drm_atomic_state_free(state);
9201 }
9202
i9xx_pll_refclk(struct drm_device * dev,const struct intel_crtc_state * pipe_config)9203 static int i9xx_pll_refclk(struct drm_device *dev,
9204 const struct intel_crtc_state *pipe_config)
9205 {
9206 struct drm_i915_private *dev_priv = dev->dev_private;
9207 u32 dpll = pipe_config->dpll_hw_state.dpll;
9208
9209 if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
9210 return dev_priv->vbt.lvds_ssc_freq;
9211 else if (HAS_PCH_SPLIT(dev))
9212 return 120000;
9213 else if (!IS_GEN2(dev))
9214 return 96000;
9215 else
9216 return 48000;
9217 }
9218
9219 /* Returns the clock of the currently programmed mode of the given pipe. */
i9xx_crtc_clock_get(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)9220 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
9221 struct intel_crtc_state *pipe_config)
9222 {
9223 struct drm_device *dev = crtc->base.dev;
9224 struct drm_i915_private *dev_priv = dev->dev_private;
9225 int pipe = pipe_config->cpu_transcoder;
9226 u32 dpll = pipe_config->dpll_hw_state.dpll;
9227 u32 fp;
9228 intel_clock_t clock;
9229 int refclk = i9xx_pll_refclk(dev, pipe_config);
9230
9231 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
9232 fp = pipe_config->dpll_hw_state.fp0;
9233 else
9234 fp = pipe_config->dpll_hw_state.fp1;
9235
9236 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
9237 if (IS_PINEVIEW(dev)) {
9238 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
9239 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
9240 } else {
9241 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
9242 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
9243 }
9244
9245 if (!IS_GEN2(dev)) {
9246 if (IS_PINEVIEW(dev))
9247 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
9248 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
9249 else
9250 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
9251 DPLL_FPA01_P1_POST_DIV_SHIFT);
9252
9253 switch (dpll & DPLL_MODE_MASK) {
9254 case DPLLB_MODE_DAC_SERIAL:
9255 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
9256 5 : 10;
9257 break;
9258 case DPLLB_MODE_LVDS:
9259 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
9260 7 : 14;
9261 break;
9262 default:
9263 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
9264 "mode\n", (int)(dpll & DPLL_MODE_MASK));
9265 return;
9266 }
9267
9268 if (IS_PINEVIEW(dev))
9269 pineview_clock(refclk, &clock);
9270 else
9271 i9xx_clock(refclk, &clock);
9272 } else {
9273 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
9274 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
9275
9276 if (is_lvds) {
9277 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
9278 DPLL_FPA01_P1_POST_DIV_SHIFT);
9279
9280 if (lvds & LVDS_CLKB_POWER_UP)
9281 clock.p2 = 7;
9282 else
9283 clock.p2 = 14;
9284 } else {
9285 if (dpll & PLL_P1_DIVIDE_BY_TWO)
9286 clock.p1 = 2;
9287 else {
9288 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
9289 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
9290 }
9291 if (dpll & PLL_P2_DIVIDE_BY_4)
9292 clock.p2 = 4;
9293 else
9294 clock.p2 = 2;
9295 }
9296
9297 i9xx_clock(refclk, &clock);
9298 }
9299
9300 /*
9301 * This value includes pixel_multiplier. We will use
9302 * port_clock to compute adjusted_mode.crtc_clock in the
9303 * encoder's get_config() function.
9304 */
9305 pipe_config->port_clock = clock.dot;
9306 }
9307
intel_dotclock_calculate(int link_freq,const struct intel_link_m_n * m_n)9308 int intel_dotclock_calculate(int link_freq,
9309 const struct intel_link_m_n *m_n)
9310 {
9311 /*
9312 * The calculation for the data clock is:
9313 * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
9314 * But we want to avoid losing precison if possible, so:
9315 * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
9316 *
9317 * and the link clock is simpler:
9318 * link_clock = (m * link_clock) / n
9319 */
9320
9321 if (!m_n->link_n)
9322 return 0;
9323
9324 return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
9325 }
9326
ironlake_pch_clock_get(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)9327 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
9328 struct intel_crtc_state *pipe_config)
9329 {
9330 struct drm_device *dev = crtc->base.dev;
9331
9332 /* read out port_clock from the DPLL */
9333 i9xx_crtc_clock_get(crtc, pipe_config);
9334
9335 /*
9336 * This value does not include pixel_multiplier.
9337 * We will check that port_clock and adjusted_mode.crtc_clock
9338 * agree once we know their relationship in the encoder's
9339 * get_config() function.
9340 */
9341 pipe_config->base.adjusted_mode.crtc_clock =
9342 intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
9343 &pipe_config->fdi_m_n);
9344 }
9345
9346 /** Returns the currently programmed mode of the given pipe. */
intel_crtc_mode_get(struct drm_device * dev,struct drm_crtc * crtc)9347 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
9348 struct drm_crtc *crtc)
9349 {
9350 struct drm_i915_private *dev_priv = dev->dev_private;
9351 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9352 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
9353 struct drm_display_mode *mode;
9354 struct intel_crtc_state pipe_config;
9355 int htot = I915_READ(HTOTAL(cpu_transcoder));
9356 int hsync = I915_READ(HSYNC(cpu_transcoder));
9357 int vtot = I915_READ(VTOTAL(cpu_transcoder));
9358 int vsync = I915_READ(VSYNC(cpu_transcoder));
9359 enum pipe pipe = intel_crtc->pipe;
9360
9361 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
9362 if (!mode)
9363 return NULL;
9364
9365 /*
9366 * Construct a pipe_config sufficient for getting the clock info
9367 * back out of crtc_clock_get.
9368 *
9369 * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
9370 * to use a real value here instead.
9371 */
9372 pipe_config.cpu_transcoder = (enum transcoder) pipe;
9373 pipe_config.pixel_multiplier = 1;
9374 pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
9375 pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
9376 pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
9377 i9xx_crtc_clock_get(intel_crtc, &pipe_config);
9378
9379 mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
9380 mode->hdisplay = (htot & 0xffff) + 1;
9381 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
9382 mode->hsync_start = (hsync & 0xffff) + 1;
9383 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
9384 mode->vdisplay = (vtot & 0xffff) + 1;
9385 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
9386 mode->vsync_start = (vsync & 0xffff) + 1;
9387 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
9388
9389 drm_mode_set_name(mode);
9390
9391 return mode;
9392 }
9393
intel_decrease_pllclock(struct drm_crtc * crtc)9394 static void intel_decrease_pllclock(struct drm_crtc *crtc)
9395 {
9396 struct drm_device *dev = crtc->dev;
9397 struct drm_i915_private *dev_priv = dev->dev_private;
9398 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9399
9400 if (!HAS_GMCH_DISPLAY(dev))
9401 return;
9402
9403 if (!dev_priv->lvds_downclock_avail)
9404 return;
9405
9406 /*
9407 * Since this is called by a timer, we should never get here in
9408 * the manual case.
9409 */
9410 if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
9411 int pipe = intel_crtc->pipe;
9412 int dpll_reg = DPLL(pipe);
9413 int dpll;
9414
9415 DRM_DEBUG_DRIVER("downclocking LVDS\n");
9416
9417 assert_panel_unlocked(dev_priv, pipe);
9418
9419 dpll = I915_READ(dpll_reg);
9420 dpll |= DISPLAY_RATE_SELECT_FPA1;
9421 I915_WRITE(dpll_reg, dpll);
9422 intel_wait_for_vblank(dev, pipe);
9423 dpll = I915_READ(dpll_reg);
9424 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
9425 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
9426 }
9427
9428 }
9429
intel_mark_busy(struct drm_device * dev)9430 void intel_mark_busy(struct drm_device *dev)
9431 {
9432 struct drm_i915_private *dev_priv = dev->dev_private;
9433
9434 if (dev_priv->mm.busy)
9435 return;
9436
9437 intel_runtime_pm_get(dev_priv);
9438 i915_update_gfx_val(dev_priv);
9439 if (INTEL_INFO(dev)->gen >= 6)
9440 gen6_rps_busy(dev_priv);
9441 dev_priv->mm.busy = true;
9442 }
9443
intel_mark_idle(struct drm_device * dev)9444 void intel_mark_idle(struct drm_device *dev)
9445 {
9446 struct drm_i915_private *dev_priv = dev->dev_private;
9447 struct drm_crtc *crtc;
9448
9449 if (!dev_priv->mm.busy)
9450 return;
9451
9452 dev_priv->mm.busy = false;
9453
9454 for_each_crtc(dev, crtc) {
9455 if (!crtc->primary->fb)
9456 continue;
9457
9458 intel_decrease_pllclock(crtc);
9459 }
9460
9461 if (INTEL_INFO(dev)->gen >= 6)
9462 gen6_rps_idle(dev->dev_private);
9463
9464 intel_runtime_pm_put(dev_priv);
9465 }
9466
intel_crtc_set_state(struct intel_crtc * crtc,struct intel_crtc_state * crtc_state)9467 static void intel_crtc_set_state(struct intel_crtc *crtc,
9468 struct intel_crtc_state *crtc_state)
9469 {
9470 kfree(crtc->config);
9471 crtc->config = crtc_state;
9472 crtc->base.state = &crtc_state->base;
9473 }
9474
intel_crtc_destroy(struct drm_crtc * crtc)9475 static void intel_crtc_destroy(struct drm_crtc *crtc)
9476 {
9477 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9478 struct drm_device *dev = crtc->dev;
9479 struct intel_unpin_work *work;
9480
9481 spin_lock_irq(&dev->event_lock);
9482 work = intel_crtc->unpin_work;
9483 intel_crtc->unpin_work = NULL;
9484 spin_unlock_irq(&dev->event_lock);
9485
9486 if (work) {
9487 cancel_work_sync(&work->work);
9488 kfree(work);
9489 }
9490
9491 intel_crtc_set_state(intel_crtc, NULL);
9492 drm_crtc_cleanup(crtc);
9493
9494 kfree(intel_crtc);
9495 }
9496
intel_unpin_work_fn(struct work_struct * __work)9497 static void intel_unpin_work_fn(struct work_struct *__work)
9498 {
9499 struct intel_unpin_work *work =
9500 container_of(__work, struct intel_unpin_work, work);
9501 struct drm_device *dev = work->crtc->dev;
9502 enum pipe pipe = to_intel_crtc(work->crtc)->pipe;
9503
9504 mutex_lock(&dev->struct_mutex);
9505 intel_unpin_fb_obj(work->old_fb, work->crtc->primary->state);
9506 drm_gem_object_unreference(&work->pending_flip_obj->base);
9507
9508 intel_fbc_update(dev);
9509
9510 if (work->flip_queued_req)
9511 i915_gem_request_assign(&work->flip_queued_req, NULL);
9512 mutex_unlock(&dev->struct_mutex);
9513
9514 intel_frontbuffer_flip_complete(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
9515 drm_framebuffer_unreference(work->old_fb);
9516
9517 BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
9518 atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
9519
9520 kfree(work);
9521 }
9522
do_intel_finish_page_flip(struct drm_device * dev,struct drm_crtc * crtc)9523 static void do_intel_finish_page_flip(struct drm_device *dev,
9524 struct drm_crtc *crtc)
9525 {
9526 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9527 struct intel_unpin_work *work;
9528 unsigned long flags;
9529
9530 /* Ignore early vblank irqs */
9531 if (intel_crtc == NULL)
9532 return;
9533
9534 /*
9535 * This is called both by irq handlers and the reset code (to complete
9536 * lost pageflips) so needs the full irqsave spinlocks.
9537 */
9538 spin_lock_irqsave(&dev->event_lock, flags);
9539 work = intel_crtc->unpin_work;
9540
9541 /* Ensure we don't miss a work->pending update ... */
9542 smp_rmb();
9543
9544 if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
9545 spin_unlock_irqrestore(&dev->event_lock, flags);
9546 return;
9547 }
9548
9549 page_flip_completed(intel_crtc);
9550
9551 spin_unlock_irqrestore(&dev->event_lock, flags);
9552 }
9553
intel_finish_page_flip(struct drm_device * dev,int pipe)9554 void intel_finish_page_flip(struct drm_device *dev, int pipe)
9555 {
9556 struct drm_i915_private *dev_priv = dev->dev_private;
9557 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
9558
9559 do_intel_finish_page_flip(dev, crtc);
9560 }
9561
intel_finish_page_flip_plane(struct drm_device * dev,int plane)9562 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
9563 {
9564 struct drm_i915_private *dev_priv = dev->dev_private;
9565 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
9566
9567 do_intel_finish_page_flip(dev, crtc);
9568 }
9569
9570 /* Is 'a' after or equal to 'b'? */
g4x_flip_count_after_eq(u32 a,u32 b)9571 static bool g4x_flip_count_after_eq(u32 a, u32 b)
9572 {
9573 return !((a - b) & 0x80000000);
9574 }
9575
page_flip_finished(struct intel_crtc * crtc)9576 static bool page_flip_finished(struct intel_crtc *crtc)
9577 {
9578 struct drm_device *dev = crtc->base.dev;
9579 struct drm_i915_private *dev_priv = dev->dev_private;
9580
9581 if (i915_reset_in_progress(&dev_priv->gpu_error) ||
9582 crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
9583 return true;
9584
9585 /*
9586 * The relevant registers doen't exist on pre-ctg.
9587 * As the flip done interrupt doesn't trigger for mmio
9588 * flips on gmch platforms, a flip count check isn't
9589 * really needed there. But since ctg has the registers,
9590 * include it in the check anyway.
9591 */
9592 if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
9593 return true;
9594
9595 /*
9596 * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
9597 * used the same base address. In that case the mmio flip might
9598 * have completed, but the CS hasn't even executed the flip yet.
9599 *
9600 * A flip count check isn't enough as the CS might have updated
9601 * the base address just after start of vblank, but before we
9602 * managed to process the interrupt. This means we'd complete the
9603 * CS flip too soon.
9604 *
9605 * Combining both checks should get us a good enough result. It may
9606 * still happen that the CS flip has been executed, but has not
9607 * yet actually completed. But in case the base address is the same
9608 * anyway, we don't really care.
9609 */
9610 return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
9611 crtc->unpin_work->gtt_offset &&
9612 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_GM45(crtc->pipe)),
9613 crtc->unpin_work->flip_count);
9614 }
9615
intel_prepare_page_flip(struct drm_device * dev,int plane)9616 void intel_prepare_page_flip(struct drm_device *dev, int plane)
9617 {
9618 struct drm_i915_private *dev_priv = dev->dev_private;
9619 struct intel_crtc *intel_crtc =
9620 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
9621 unsigned long flags;
9622
9623
9624 /*
9625 * This is called both by irq handlers and the reset code (to complete
9626 * lost pageflips) so needs the full irqsave spinlocks.
9627 *
9628 * NB: An MMIO update of the plane base pointer will also
9629 * generate a page-flip completion irq, i.e. every modeset
9630 * is also accompanied by a spurious intel_prepare_page_flip().
9631 */
9632 spin_lock_irqsave(&dev->event_lock, flags);
9633 if (intel_crtc->unpin_work && page_flip_finished(intel_crtc))
9634 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
9635 spin_unlock_irqrestore(&dev->event_lock, flags);
9636 }
9637
intel_mark_page_flip_active(struct intel_crtc * intel_crtc)9638 static inline void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
9639 {
9640 /* Ensure that the work item is consistent when activating it ... */
9641 smp_wmb();
9642 atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
9643 /* and that it is marked active as soon as the irq could fire. */
9644 smp_wmb();
9645 }
9646
intel_gen2_queue_flip(struct drm_device * dev,struct drm_crtc * crtc,struct drm_framebuffer * fb,struct drm_i915_gem_object * obj,struct intel_engine_cs * ring,uint32_t flags)9647 static int intel_gen2_queue_flip(struct drm_device *dev,
9648 struct drm_crtc *crtc,
9649 struct drm_framebuffer *fb,
9650 struct drm_i915_gem_object *obj,
9651 struct intel_engine_cs *ring,
9652 uint32_t flags)
9653 {
9654 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9655 u32 flip_mask;
9656 int ret;
9657
9658 ret = intel_ring_begin(ring, 6);
9659 if (ret)
9660 return ret;
9661
9662 /* Can't queue multiple flips, so wait for the previous
9663 * one to finish before executing the next.
9664 */
9665 if (intel_crtc->plane)
9666 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
9667 else
9668 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
9669 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
9670 intel_ring_emit(ring, MI_NOOP);
9671 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9672 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9673 intel_ring_emit(ring, fb->pitches[0]);
9674 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9675 intel_ring_emit(ring, 0); /* aux display base address, unused */
9676
9677 intel_mark_page_flip_active(intel_crtc);
9678 __intel_ring_advance(ring);
9679 return 0;
9680 }
9681
intel_gen3_queue_flip(struct drm_device * dev,struct drm_crtc * crtc,struct drm_framebuffer * fb,struct drm_i915_gem_object * obj,struct intel_engine_cs * ring,uint32_t flags)9682 static int intel_gen3_queue_flip(struct drm_device *dev,
9683 struct drm_crtc *crtc,
9684 struct drm_framebuffer *fb,
9685 struct drm_i915_gem_object *obj,
9686 struct intel_engine_cs *ring,
9687 uint32_t flags)
9688 {
9689 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9690 u32 flip_mask;
9691 int ret;
9692
9693 ret = intel_ring_begin(ring, 6);
9694 if (ret)
9695 return ret;
9696
9697 if (intel_crtc->plane)
9698 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
9699 else
9700 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
9701 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
9702 intel_ring_emit(ring, MI_NOOP);
9703 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
9704 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9705 intel_ring_emit(ring, fb->pitches[0]);
9706 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9707 intel_ring_emit(ring, MI_NOOP);
9708
9709 intel_mark_page_flip_active(intel_crtc);
9710 __intel_ring_advance(ring);
9711 return 0;
9712 }
9713
intel_gen4_queue_flip(struct drm_device * dev,struct drm_crtc * crtc,struct drm_framebuffer * fb,struct drm_i915_gem_object * obj,struct intel_engine_cs * ring,uint32_t flags)9714 static int intel_gen4_queue_flip(struct drm_device *dev,
9715 struct drm_crtc *crtc,
9716 struct drm_framebuffer *fb,
9717 struct drm_i915_gem_object *obj,
9718 struct intel_engine_cs *ring,
9719 uint32_t flags)
9720 {
9721 struct drm_i915_private *dev_priv = dev->dev_private;
9722 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9723 uint32_t pf, pipesrc;
9724 int ret;
9725
9726 ret = intel_ring_begin(ring, 4);
9727 if (ret)
9728 return ret;
9729
9730 /* i965+ uses the linear or tiled offsets from the
9731 * Display Registers (which do not change across a page-flip)
9732 * so we need only reprogram the base address.
9733 */
9734 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9735 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9736 intel_ring_emit(ring, fb->pitches[0]);
9737 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset |
9738 obj->tiling_mode);
9739
9740 /* XXX Enabling the panel-fitter across page-flip is so far
9741 * untested on non-native modes, so ignore it for now.
9742 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
9743 */
9744 pf = 0;
9745 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
9746 intel_ring_emit(ring, pf | pipesrc);
9747
9748 intel_mark_page_flip_active(intel_crtc);
9749 __intel_ring_advance(ring);
9750 return 0;
9751 }
9752
intel_gen6_queue_flip(struct drm_device * dev,struct drm_crtc * crtc,struct drm_framebuffer * fb,struct drm_i915_gem_object * obj,struct intel_engine_cs * ring,uint32_t flags)9753 static int intel_gen6_queue_flip(struct drm_device *dev,
9754 struct drm_crtc *crtc,
9755 struct drm_framebuffer *fb,
9756 struct drm_i915_gem_object *obj,
9757 struct intel_engine_cs *ring,
9758 uint32_t flags)
9759 {
9760 struct drm_i915_private *dev_priv = dev->dev_private;
9761 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9762 uint32_t pf, pipesrc;
9763 int ret;
9764
9765 ret = intel_ring_begin(ring, 4);
9766 if (ret)
9767 return ret;
9768
9769 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9770 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9771 intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
9772 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9773
9774 /* Contrary to the suggestions in the documentation,
9775 * "Enable Panel Fitter" does not seem to be required when page
9776 * flipping with a non-native mode, and worse causes a normal
9777 * modeset to fail.
9778 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
9779 */
9780 pf = 0;
9781 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
9782 intel_ring_emit(ring, pf | pipesrc);
9783
9784 intel_mark_page_flip_active(intel_crtc);
9785 __intel_ring_advance(ring);
9786 return 0;
9787 }
9788
intel_gen7_queue_flip(struct drm_device * dev,struct drm_crtc * crtc,struct drm_framebuffer * fb,struct drm_i915_gem_object * obj,struct intel_engine_cs * ring,uint32_t flags)9789 static int intel_gen7_queue_flip(struct drm_device *dev,
9790 struct drm_crtc *crtc,
9791 struct drm_framebuffer *fb,
9792 struct drm_i915_gem_object *obj,
9793 struct intel_engine_cs *ring,
9794 uint32_t flags)
9795 {
9796 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9797 uint32_t plane_bit = 0;
9798 int len, ret;
9799
9800 switch (intel_crtc->plane) {
9801 case PLANE_A:
9802 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
9803 break;
9804 case PLANE_B:
9805 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
9806 break;
9807 case PLANE_C:
9808 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
9809 break;
9810 default:
9811 WARN_ONCE(1, "unknown plane in flip command\n");
9812 return -ENODEV;
9813 }
9814
9815 len = 4;
9816 if (ring->id == RCS) {
9817 len += 6;
9818 /*
9819 * On Gen 8, SRM is now taking an extra dword to accommodate
9820 * 48bits addresses, and we need a NOOP for the batch size to
9821 * stay even.
9822 */
9823 if (IS_GEN8(dev))
9824 len += 2;
9825 }
9826
9827 /*
9828 * BSpec MI_DISPLAY_FLIP for IVB:
9829 * "The full packet must be contained within the same cache line."
9830 *
9831 * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
9832 * cacheline, if we ever start emitting more commands before
9833 * the MI_DISPLAY_FLIP we may need to first emit everything else,
9834 * then do the cacheline alignment, and finally emit the
9835 * MI_DISPLAY_FLIP.
9836 */
9837 ret = intel_ring_cacheline_align(ring);
9838 if (ret)
9839 return ret;
9840
9841 ret = intel_ring_begin(ring, len);
9842 if (ret)
9843 return ret;
9844
9845 /* Unmask the flip-done completion message. Note that the bspec says that
9846 * we should do this for both the BCS and RCS, and that we must not unmask
9847 * more than one flip event at any time (or ensure that one flip message
9848 * can be sent by waiting for flip-done prior to queueing new flips).
9849 * Experimentation says that BCS works despite DERRMR masking all
9850 * flip-done completion events and that unmasking all planes at once
9851 * for the RCS also doesn't appear to drop events. Setting the DERRMR
9852 * to zero does lead to lockups within MI_DISPLAY_FLIP.
9853 */
9854 if (ring->id == RCS) {
9855 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
9856 intel_ring_emit(ring, DERRMR);
9857 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
9858 DERRMR_PIPEB_PRI_FLIP_DONE |
9859 DERRMR_PIPEC_PRI_FLIP_DONE));
9860 if (IS_GEN8(dev))
9861 intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8(1) |
9862 MI_SRM_LRM_GLOBAL_GTT);
9863 else
9864 intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) |
9865 MI_SRM_LRM_GLOBAL_GTT);
9866 intel_ring_emit(ring, DERRMR);
9867 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
9868 if (IS_GEN8(dev)) {
9869 intel_ring_emit(ring, 0);
9870 intel_ring_emit(ring, MI_NOOP);
9871 }
9872 }
9873
9874 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
9875 intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
9876 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9877 intel_ring_emit(ring, (MI_NOOP));
9878
9879 intel_mark_page_flip_active(intel_crtc);
9880 __intel_ring_advance(ring);
9881 return 0;
9882 }
9883
use_mmio_flip(struct intel_engine_cs * ring,struct drm_i915_gem_object * obj)9884 static bool use_mmio_flip(struct intel_engine_cs *ring,
9885 struct drm_i915_gem_object *obj)
9886 {
9887 /*
9888 * This is not being used for older platforms, because
9889 * non-availability of flip done interrupt forces us to use
9890 * CS flips. Older platforms derive flip done using some clever
9891 * tricks involving the flip_pending status bits and vblank irqs.
9892 * So using MMIO flips there would disrupt this mechanism.
9893 */
9894
9895 if (ring == NULL)
9896 return true;
9897
9898 if (INTEL_INFO(ring->dev)->gen < 5)
9899 return false;
9900
9901 if (i915.use_mmio_flip < 0)
9902 return false;
9903 else if (i915.use_mmio_flip > 0)
9904 return true;
9905 else if (i915.enable_execlists)
9906 return true;
9907 else
9908 return ring != i915_gem_request_get_ring(obj->last_read_req);
9909 }
9910
skl_do_mmio_flip(struct intel_crtc * intel_crtc)9911 static void skl_do_mmio_flip(struct intel_crtc *intel_crtc)
9912 {
9913 struct drm_device *dev = intel_crtc->base.dev;
9914 struct drm_i915_private *dev_priv = dev->dev_private;
9915 struct drm_framebuffer *fb = intel_crtc->base.primary->fb;
9916 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
9917 struct drm_i915_gem_object *obj = intel_fb->obj;
9918 const enum pipe pipe = intel_crtc->pipe;
9919 u32 ctl, stride;
9920
9921 ctl = I915_READ(PLANE_CTL(pipe, 0));
9922 ctl &= ~PLANE_CTL_TILED_MASK;
9923 if (obj->tiling_mode == I915_TILING_X)
9924 ctl |= PLANE_CTL_TILED_X;
9925
9926 /*
9927 * The stride is either expressed as a multiple of 64 bytes chunks for
9928 * linear buffers or in number of tiles for tiled buffers.
9929 */
9930 stride = fb->pitches[0] >> 6;
9931 if (obj->tiling_mode == I915_TILING_X)
9932 stride = fb->pitches[0] >> 9; /* X tiles are 512 bytes wide */
9933
9934 /*
9935 * Both PLANE_CTL and PLANE_STRIDE are not updated on vblank but on
9936 * PLANE_SURF updates, the update is then guaranteed to be atomic.
9937 */
9938 I915_WRITE(PLANE_CTL(pipe, 0), ctl);
9939 I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
9940
9941 I915_WRITE(PLANE_SURF(pipe, 0), intel_crtc->unpin_work->gtt_offset);
9942 POSTING_READ(PLANE_SURF(pipe, 0));
9943 }
9944
ilk_do_mmio_flip(struct intel_crtc * intel_crtc)9945 static void ilk_do_mmio_flip(struct intel_crtc *intel_crtc)
9946 {
9947 struct drm_device *dev = intel_crtc->base.dev;
9948 struct drm_i915_private *dev_priv = dev->dev_private;
9949 struct intel_framebuffer *intel_fb =
9950 to_intel_framebuffer(intel_crtc->base.primary->fb);
9951 struct drm_i915_gem_object *obj = intel_fb->obj;
9952 u32 dspcntr;
9953 u32 reg;
9954
9955 reg = DSPCNTR(intel_crtc->plane);
9956 dspcntr = I915_READ(reg);
9957
9958 if (obj->tiling_mode != I915_TILING_NONE)
9959 dspcntr |= DISPPLANE_TILED;
9960 else
9961 dspcntr &= ~DISPPLANE_TILED;
9962
9963 I915_WRITE(reg, dspcntr);
9964
9965 I915_WRITE(DSPSURF(intel_crtc->plane),
9966 intel_crtc->unpin_work->gtt_offset);
9967 POSTING_READ(DSPSURF(intel_crtc->plane));
9968
9969 }
9970
9971 /*
9972 * XXX: This is the temporary way to update the plane registers until we get
9973 * around to using the usual plane update functions for MMIO flips
9974 */
intel_do_mmio_flip(struct intel_crtc * intel_crtc)9975 static void intel_do_mmio_flip(struct intel_crtc *intel_crtc)
9976 {
9977 struct drm_device *dev = intel_crtc->base.dev;
9978 bool atomic_update;
9979 u32 start_vbl_count;
9980
9981 intel_mark_page_flip_active(intel_crtc);
9982
9983 atomic_update = intel_pipe_update_start(intel_crtc, &start_vbl_count);
9984
9985 if (INTEL_INFO(dev)->gen >= 9)
9986 skl_do_mmio_flip(intel_crtc);
9987 else
9988 /* use_mmio_flip() retricts MMIO flips to ilk+ */
9989 ilk_do_mmio_flip(intel_crtc);
9990
9991 if (atomic_update)
9992 intel_pipe_update_end(intel_crtc, start_vbl_count);
9993 }
9994
intel_mmio_flip_work_func(struct work_struct * work)9995 static void intel_mmio_flip_work_func(struct work_struct *work)
9996 {
9997 struct intel_crtc *crtc =
9998 container_of(work, struct intel_crtc, mmio_flip.work);
9999 struct intel_mmio_flip *mmio_flip;
10000
10001 mmio_flip = &crtc->mmio_flip;
10002 if (mmio_flip->req)
10003 WARN_ON(__i915_wait_request(mmio_flip->req,
10004 crtc->reset_counter,
10005 false, NULL, NULL) != 0);
10006
10007 intel_do_mmio_flip(crtc);
10008 if (mmio_flip->req) {
10009 mutex_lock(&crtc->base.dev->struct_mutex);
10010 i915_gem_request_assign(&mmio_flip->req, NULL);
10011 mutex_unlock(&crtc->base.dev->struct_mutex);
10012 }
10013 }
10014
intel_queue_mmio_flip(struct drm_device * dev,struct drm_crtc * crtc,struct drm_framebuffer * fb,struct drm_i915_gem_object * obj,struct intel_engine_cs * ring,uint32_t flags)10015 static int intel_queue_mmio_flip(struct drm_device *dev,
10016 struct drm_crtc *crtc,
10017 struct drm_framebuffer *fb,
10018 struct drm_i915_gem_object *obj,
10019 struct intel_engine_cs *ring,
10020 uint32_t flags)
10021 {
10022 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10023
10024 i915_gem_request_assign(&intel_crtc->mmio_flip.req,
10025 obj->last_write_req);
10026
10027 schedule_work(&intel_crtc->mmio_flip.work);
10028
10029 return 0;
10030 }
10031
intel_default_queue_flip(struct drm_device * dev,struct drm_crtc * crtc,struct drm_framebuffer * fb,struct drm_i915_gem_object * obj,struct intel_engine_cs * ring,uint32_t flags)10032 static int intel_default_queue_flip(struct drm_device *dev,
10033 struct drm_crtc *crtc,
10034 struct drm_framebuffer *fb,
10035 struct drm_i915_gem_object *obj,
10036 struct intel_engine_cs *ring,
10037 uint32_t flags)
10038 {
10039 return -ENODEV;
10040 }
10041
__intel_pageflip_stall_check(struct drm_device * dev,struct drm_crtc * crtc)10042 static bool __intel_pageflip_stall_check(struct drm_device *dev,
10043 struct drm_crtc *crtc)
10044 {
10045 struct drm_i915_private *dev_priv = dev->dev_private;
10046 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10047 struct intel_unpin_work *work = intel_crtc->unpin_work;
10048 u32 addr;
10049
10050 if (atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE)
10051 return true;
10052
10053 if (!work->enable_stall_check)
10054 return false;
10055
10056 if (work->flip_ready_vblank == 0) {
10057 if (work->flip_queued_req &&
10058 !i915_gem_request_completed(work->flip_queued_req, true))
10059 return false;
10060
10061 work->flip_ready_vblank = drm_crtc_vblank_count(crtc);
10062 }
10063
10064 if (drm_crtc_vblank_count(crtc) - work->flip_ready_vblank < 3)
10065 return false;
10066
10067 /* Potential stall - if we see that the flip has happened,
10068 * assume a missed interrupt. */
10069 if (INTEL_INFO(dev)->gen >= 4)
10070 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane)));
10071 else
10072 addr = I915_READ(DSPADDR(intel_crtc->plane));
10073
10074 /* There is a potential issue here with a false positive after a flip
10075 * to the same address. We could address this by checking for a
10076 * non-incrementing frame counter.
10077 */
10078 return addr == work->gtt_offset;
10079 }
10080
intel_check_page_flip(struct drm_device * dev,int pipe)10081 void intel_check_page_flip(struct drm_device *dev, int pipe)
10082 {
10083 struct drm_i915_private *dev_priv = dev->dev_private;
10084 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
10085 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10086
10087 WARN_ON(!in_interrupt());
10088
10089 if (crtc == NULL)
10090 return;
10091
10092 spin_lock(&dev->event_lock);
10093 if (intel_crtc->unpin_work && __intel_pageflip_stall_check(dev, crtc)) {
10094 WARN_ONCE(1, "Kicking stuck page flip: queued at %d, now %d\n",
10095 intel_crtc->unpin_work->flip_queued_vblank,
10096 drm_vblank_count(dev, pipe));
10097 page_flip_completed(intel_crtc);
10098 }
10099 spin_unlock(&dev->event_lock);
10100 }
10101
intel_crtc_page_flip(struct drm_crtc * crtc,struct drm_framebuffer * fb,struct drm_pending_vblank_event * event,uint32_t page_flip_flags)10102 static int intel_crtc_page_flip(struct drm_crtc *crtc,
10103 struct drm_framebuffer *fb,
10104 struct drm_pending_vblank_event *event,
10105 uint32_t page_flip_flags)
10106 {
10107 struct drm_device *dev = crtc->dev;
10108 struct drm_i915_private *dev_priv = dev->dev_private;
10109 struct drm_framebuffer *old_fb = crtc->primary->fb;
10110 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
10111 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10112 struct drm_plane *primary = crtc->primary;
10113 enum pipe pipe = intel_crtc->pipe;
10114 struct intel_unpin_work *work;
10115 struct intel_engine_cs *ring;
10116 int ret;
10117
10118 /*
10119 * drm_mode_page_flip_ioctl() should already catch this, but double
10120 * check to be safe. In the future we may enable pageflipping from
10121 * a disabled primary plane.
10122 */
10123 if (WARN_ON(intel_fb_obj(old_fb) == NULL))
10124 return -EBUSY;
10125
10126 /* Can't change pixel format via MI display flips. */
10127 if (fb->pixel_format != crtc->primary->fb->pixel_format)
10128 return -EINVAL;
10129
10130 /*
10131 * TILEOFF/LINOFF registers can't be changed via MI display flips.
10132 * Note that pitch changes could also affect these register.
10133 */
10134 if (INTEL_INFO(dev)->gen > 3 &&
10135 (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
10136 fb->pitches[0] != crtc->primary->fb->pitches[0]))
10137 return -EINVAL;
10138
10139 if (i915_terminally_wedged(&dev_priv->gpu_error))
10140 goto out_hang;
10141
10142 work = kzalloc(sizeof(*work), GFP_KERNEL);
10143 if (work == NULL)
10144 return -ENOMEM;
10145
10146 work->event = event;
10147 work->crtc = crtc;
10148 work->old_fb = old_fb;
10149 INIT_WORK(&work->work, intel_unpin_work_fn);
10150
10151 ret = drm_crtc_vblank_get(crtc);
10152 if (ret)
10153 goto free_work;
10154
10155 /* We borrow the event spin lock for protecting unpin_work */
10156 spin_lock_irq(&dev->event_lock);
10157 if (intel_crtc->unpin_work) {
10158 /* Before declaring the flip queue wedged, check if
10159 * the hardware completed the operation behind our backs.
10160 */
10161 if (__intel_pageflip_stall_check(dev, crtc)) {
10162 DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n");
10163 page_flip_completed(intel_crtc);
10164 } else {
10165 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
10166 spin_unlock_irq(&dev->event_lock);
10167
10168 drm_crtc_vblank_put(crtc);
10169 kfree(work);
10170 return -EBUSY;
10171 }
10172 }
10173 intel_crtc->unpin_work = work;
10174 spin_unlock_irq(&dev->event_lock);
10175
10176 if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
10177 flush_workqueue(dev_priv->wq);
10178
10179 /* Reference the objects for the scheduled work. */
10180 drm_framebuffer_reference(work->old_fb);
10181 drm_gem_object_reference(&obj->base);
10182
10183 crtc->primary->fb = fb;
10184 update_state_fb(crtc->primary);
10185
10186 work->pending_flip_obj = obj;
10187
10188 ret = i915_mutex_lock_interruptible(dev);
10189 if (ret)
10190 goto cleanup;
10191
10192 atomic_inc(&intel_crtc->unpin_work_count);
10193 intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
10194
10195 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
10196 work->flip_count = I915_READ(PIPE_FLIPCOUNT_GM45(pipe)) + 1;
10197
10198 if (IS_VALLEYVIEW(dev)) {
10199 ring = &dev_priv->ring[BCS];
10200 if (obj->tiling_mode != intel_fb_obj(work->old_fb)->tiling_mode)
10201 /* vlv: DISPLAY_FLIP fails to change tiling */
10202 ring = NULL;
10203 } else if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
10204 ring = &dev_priv->ring[BCS];
10205 } else if (INTEL_INFO(dev)->gen >= 7) {
10206 ring = i915_gem_request_get_ring(obj->last_read_req);
10207 if (ring == NULL || ring->id != RCS)
10208 ring = &dev_priv->ring[BCS];
10209 } else {
10210 ring = &dev_priv->ring[RCS];
10211 }
10212
10213 ret = intel_pin_and_fence_fb_obj(crtc->primary, fb,
10214 crtc->primary->state, ring);
10215 if (ret)
10216 goto cleanup_pending;
10217
10218 work->gtt_offset = intel_plane_obj_offset(to_intel_plane(primary), obj)
10219 + intel_crtc->dspaddr_offset;
10220
10221 if (use_mmio_flip(ring, obj)) {
10222 ret = intel_queue_mmio_flip(dev, crtc, fb, obj, ring,
10223 page_flip_flags);
10224 if (ret)
10225 goto cleanup_unpin;
10226
10227 i915_gem_request_assign(&work->flip_queued_req,
10228 obj->last_write_req);
10229 } else {
10230 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, ring,
10231 page_flip_flags);
10232 if (ret)
10233 goto cleanup_unpin;
10234
10235 i915_gem_request_assign(&work->flip_queued_req,
10236 intel_ring_get_request(ring));
10237 }
10238
10239 work->flip_queued_vblank = drm_crtc_vblank_count(crtc);
10240 work->enable_stall_check = true;
10241
10242 i915_gem_track_fb(intel_fb_obj(work->old_fb), obj,
10243 INTEL_FRONTBUFFER_PRIMARY(pipe));
10244
10245 intel_fbc_disable(dev);
10246 intel_frontbuffer_flip_prepare(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
10247 mutex_unlock(&dev->struct_mutex);
10248
10249 trace_i915_flip_request(intel_crtc->plane, obj);
10250
10251 return 0;
10252
10253 cleanup_unpin:
10254 intel_unpin_fb_obj(fb, crtc->primary->state);
10255 cleanup_pending:
10256 atomic_dec(&intel_crtc->unpin_work_count);
10257 mutex_unlock(&dev->struct_mutex);
10258 cleanup:
10259 crtc->primary->fb = old_fb;
10260 update_state_fb(crtc->primary);
10261
10262 drm_gem_object_unreference_unlocked(&obj->base);
10263 drm_framebuffer_unreference(work->old_fb);
10264
10265 spin_lock_irq(&dev->event_lock);
10266 intel_crtc->unpin_work = NULL;
10267 spin_unlock_irq(&dev->event_lock);
10268
10269 drm_crtc_vblank_put(crtc);
10270 free_work:
10271 kfree(work);
10272
10273 if (ret == -EIO) {
10274 out_hang:
10275 ret = intel_plane_restore(primary);
10276 if (ret == 0 && event) {
10277 spin_lock_irq(&dev->event_lock);
10278 drm_send_vblank_event(dev, pipe, event);
10279 spin_unlock_irq(&dev->event_lock);
10280 }
10281 }
10282 return ret;
10283 }
10284
10285 static struct drm_crtc_helper_funcs intel_helper_funcs = {
10286 .mode_set_base_atomic = intel_pipe_set_base_atomic,
10287 .load_lut = intel_crtc_load_lut,
10288 .atomic_begin = intel_begin_crtc_commit,
10289 .atomic_flush = intel_finish_crtc_commit,
10290 };
10291
10292 /**
10293 * intel_modeset_update_staged_output_state
10294 *
10295 * Updates the staged output configuration state, e.g. after we've read out the
10296 * current hw state.
10297 */
intel_modeset_update_staged_output_state(struct drm_device * dev)10298 static void intel_modeset_update_staged_output_state(struct drm_device *dev)
10299 {
10300 struct intel_crtc *crtc;
10301 struct intel_encoder *encoder;
10302 struct intel_connector *connector;
10303
10304 for_each_intel_connector(dev, connector) {
10305 connector->new_encoder =
10306 to_intel_encoder(connector->base.encoder);
10307 }
10308
10309 for_each_intel_encoder(dev, encoder) {
10310 encoder->new_crtc =
10311 to_intel_crtc(encoder->base.crtc);
10312 }
10313
10314 for_each_intel_crtc(dev, crtc) {
10315 crtc->new_enabled = crtc->base.state->enable;
10316
10317 if (crtc->new_enabled)
10318 crtc->new_config = crtc->config;
10319 else
10320 crtc->new_config = NULL;
10321 }
10322 }
10323
10324 /* Transitional helper to copy current connector/encoder state to
10325 * connector->state. This is needed so that code that is partially
10326 * converted to atomic does the right thing.
10327 */
intel_modeset_update_connector_atomic_state(struct drm_device * dev)10328 static void intel_modeset_update_connector_atomic_state(struct drm_device *dev)
10329 {
10330 struct intel_connector *connector;
10331
10332 for_each_intel_connector(dev, connector) {
10333 if (connector->base.encoder) {
10334 connector->base.state->best_encoder =
10335 connector->base.encoder;
10336 connector->base.state->crtc =
10337 connector->base.encoder->crtc;
10338 } else {
10339 connector->base.state->best_encoder = NULL;
10340 connector->base.state->crtc = NULL;
10341 }
10342 }
10343 }
10344
10345 /**
10346 * intel_modeset_commit_output_state
10347 *
10348 * This function copies the stage display pipe configuration to the real one.
10349 */
intel_modeset_commit_output_state(struct drm_device * dev)10350 static void intel_modeset_commit_output_state(struct drm_device *dev)
10351 {
10352 struct intel_crtc *crtc;
10353 struct intel_encoder *encoder;
10354 struct intel_connector *connector;
10355
10356 for_each_intel_connector(dev, connector) {
10357 connector->base.encoder = &connector->new_encoder->base;
10358 }
10359
10360 for_each_intel_encoder(dev, encoder) {
10361 encoder->base.crtc = &encoder->new_crtc->base;
10362 }
10363
10364 for_each_intel_crtc(dev, crtc) {
10365 crtc->base.state->enable = crtc->new_enabled;
10366 crtc->base.enabled = crtc->new_enabled;
10367 }
10368
10369 intel_modeset_update_connector_atomic_state(dev);
10370 }
10371
10372 static void
connected_sink_compute_bpp(struct intel_connector * connector,struct intel_crtc_state * pipe_config)10373 connected_sink_compute_bpp(struct intel_connector *connector,
10374 struct intel_crtc_state *pipe_config)
10375 {
10376 int bpp = pipe_config->pipe_bpp;
10377
10378 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
10379 connector->base.base.id,
10380 connector->base.name);
10381
10382 /* Don't use an invalid EDID bpc value */
10383 if (connector->base.display_info.bpc &&
10384 connector->base.display_info.bpc * 3 < bpp) {
10385 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
10386 bpp, connector->base.display_info.bpc*3);
10387 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
10388 }
10389
10390 /* Clamp bpp to default limit on screens without EDID 1.4 */
10391 if (connector->base.display_info.bpc == 0) {
10392 int type = connector->base.connector_type;
10393 int clamp_bpp = 24;
10394
10395 /* Fall back to 18 bpp when DP sink capability is unknown. */
10396 if (type == DRM_MODE_CONNECTOR_DisplayPort ||
10397 type == DRM_MODE_CONNECTOR_eDP)
10398 clamp_bpp = 18;
10399
10400 if (bpp > clamp_bpp) {
10401 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of %d\n",
10402 bpp, clamp_bpp);
10403 pipe_config->pipe_bpp = clamp_bpp;
10404 }
10405 }
10406 }
10407
10408 static int
compute_baseline_pipe_bpp(struct intel_crtc * crtc,struct drm_framebuffer * fb,struct intel_crtc_state * pipe_config)10409 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
10410 struct drm_framebuffer *fb,
10411 struct intel_crtc_state *pipe_config)
10412 {
10413 struct drm_device *dev = crtc->base.dev;
10414 struct drm_atomic_state *state;
10415 struct intel_connector *connector;
10416 int bpp, i;
10417
10418 switch (fb->pixel_format) {
10419 case DRM_FORMAT_C8:
10420 bpp = 8*3; /* since we go through a colormap */
10421 break;
10422 case DRM_FORMAT_XRGB1555:
10423 case DRM_FORMAT_ARGB1555:
10424 /* checked in intel_framebuffer_init already */
10425 if (WARN_ON(INTEL_INFO(dev)->gen > 3))
10426 return -EINVAL;
10427 case DRM_FORMAT_RGB565:
10428 bpp = 6*3; /* min is 18bpp */
10429 break;
10430 case DRM_FORMAT_XBGR8888:
10431 case DRM_FORMAT_ABGR8888:
10432 /* checked in intel_framebuffer_init already */
10433 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
10434 return -EINVAL;
10435 case DRM_FORMAT_XRGB8888:
10436 case DRM_FORMAT_ARGB8888:
10437 bpp = 8*3;
10438 break;
10439 case DRM_FORMAT_XRGB2101010:
10440 case DRM_FORMAT_ARGB2101010:
10441 case DRM_FORMAT_XBGR2101010:
10442 case DRM_FORMAT_ABGR2101010:
10443 /* checked in intel_framebuffer_init already */
10444 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
10445 return -EINVAL;
10446 bpp = 10*3;
10447 break;
10448 /* TODO: gen4+ supports 16 bpc floating point, too. */
10449 default:
10450 DRM_DEBUG_KMS("unsupported depth\n");
10451 return -EINVAL;
10452 }
10453
10454 pipe_config->pipe_bpp = bpp;
10455
10456 state = pipe_config->base.state;
10457
10458 /* Clamp display bpp to EDID value */
10459 for (i = 0; i < state->num_connector; i++) {
10460 if (!state->connectors[i])
10461 continue;
10462
10463 connector = to_intel_connector(state->connectors[i]);
10464 if (state->connector_states[i]->crtc != &crtc->base)
10465 continue;
10466
10467 connected_sink_compute_bpp(connector, pipe_config);
10468 }
10469
10470 return bpp;
10471 }
10472
intel_dump_crtc_timings(const struct drm_display_mode * mode)10473 static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
10474 {
10475 DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
10476 "type: 0x%x flags: 0x%x\n",
10477 mode->crtc_clock,
10478 mode->crtc_hdisplay, mode->crtc_hsync_start,
10479 mode->crtc_hsync_end, mode->crtc_htotal,
10480 mode->crtc_vdisplay, mode->crtc_vsync_start,
10481 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
10482 }
10483
intel_dump_pipe_config(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config,const char * context)10484 static void intel_dump_pipe_config(struct intel_crtc *crtc,
10485 struct intel_crtc_state *pipe_config,
10486 const char *context)
10487 {
10488 DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id,
10489 context, pipe_name(crtc->pipe));
10490
10491 DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
10492 DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
10493 pipe_config->pipe_bpp, pipe_config->dither);
10494 DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
10495 pipe_config->has_pch_encoder,
10496 pipe_config->fdi_lanes,
10497 pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
10498 pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
10499 pipe_config->fdi_m_n.tu);
10500 DRM_DEBUG_KMS("dp: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
10501 pipe_config->has_dp_encoder,
10502 pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
10503 pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
10504 pipe_config->dp_m_n.tu);
10505
10506 DRM_DEBUG_KMS("dp: %i, gmch_m2: %u, gmch_n2: %u, link_m2: %u, link_n2: %u, tu2: %u\n",
10507 pipe_config->has_dp_encoder,
10508 pipe_config->dp_m2_n2.gmch_m,
10509 pipe_config->dp_m2_n2.gmch_n,
10510 pipe_config->dp_m2_n2.link_m,
10511 pipe_config->dp_m2_n2.link_n,
10512 pipe_config->dp_m2_n2.tu);
10513
10514 DRM_DEBUG_KMS("audio: %i, infoframes: %i\n",
10515 pipe_config->has_audio,
10516 pipe_config->has_infoframe);
10517
10518 DRM_DEBUG_KMS("requested mode:\n");
10519 drm_mode_debug_printmodeline(&pipe_config->base.mode);
10520 DRM_DEBUG_KMS("adjusted mode:\n");
10521 drm_mode_debug_printmodeline(&pipe_config->base.adjusted_mode);
10522 intel_dump_crtc_timings(&pipe_config->base.adjusted_mode);
10523 DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
10524 DRM_DEBUG_KMS("pipe src size: %dx%d\n",
10525 pipe_config->pipe_src_w, pipe_config->pipe_src_h);
10526 DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
10527 pipe_config->gmch_pfit.control,
10528 pipe_config->gmch_pfit.pgm_ratios,
10529 pipe_config->gmch_pfit.lvds_border_bits);
10530 DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
10531 pipe_config->pch_pfit.pos,
10532 pipe_config->pch_pfit.size,
10533 pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
10534 DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
10535 DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
10536 }
10537
encoders_cloneable(const struct intel_encoder * a,const struct intel_encoder * b)10538 static bool encoders_cloneable(const struct intel_encoder *a,
10539 const struct intel_encoder *b)
10540 {
10541 /* masks could be asymmetric, so check both ways */
10542 return a == b || (a->cloneable & (1 << b->type) &&
10543 b->cloneable & (1 << a->type));
10544 }
10545
check_single_encoder_cloning(struct intel_crtc * crtc,struct intel_encoder * encoder)10546 static bool check_single_encoder_cloning(struct intel_crtc *crtc,
10547 struct intel_encoder *encoder)
10548 {
10549 struct drm_device *dev = crtc->base.dev;
10550 struct intel_encoder *source_encoder;
10551
10552 for_each_intel_encoder(dev, source_encoder) {
10553 if (source_encoder->new_crtc != crtc)
10554 continue;
10555
10556 if (!encoders_cloneable(encoder, source_encoder))
10557 return false;
10558 }
10559
10560 return true;
10561 }
10562
check_encoder_cloning(struct intel_crtc * crtc)10563 static bool check_encoder_cloning(struct intel_crtc *crtc)
10564 {
10565 struct drm_device *dev = crtc->base.dev;
10566 struct intel_encoder *encoder;
10567
10568 for_each_intel_encoder(dev, encoder) {
10569 if (encoder->new_crtc != crtc)
10570 continue;
10571
10572 if (!check_single_encoder_cloning(crtc, encoder))
10573 return false;
10574 }
10575
10576 return true;
10577 }
10578
check_digital_port_conflicts(struct drm_device * dev)10579 static bool check_digital_port_conflicts(struct drm_device *dev)
10580 {
10581 struct intel_connector *connector;
10582 unsigned int used_ports = 0;
10583
10584 /*
10585 * Walk the connector list instead of the encoder
10586 * list to detect the problem on ddi platforms
10587 * where there's just one encoder per digital port.
10588 */
10589 for_each_intel_connector(dev, connector) {
10590 struct intel_encoder *encoder = connector->new_encoder;
10591
10592 if (!encoder)
10593 continue;
10594
10595 WARN_ON(!encoder->new_crtc);
10596
10597 switch (encoder->type) {
10598 unsigned int port_mask;
10599 case INTEL_OUTPUT_UNKNOWN:
10600 if (WARN_ON(!HAS_DDI(dev)))
10601 break;
10602 case INTEL_OUTPUT_DISPLAYPORT:
10603 case INTEL_OUTPUT_HDMI:
10604 case INTEL_OUTPUT_EDP:
10605 port_mask = 1 << enc_to_dig_port(&encoder->base)->port;
10606
10607 /* the same port mustn't appear more than once */
10608 if (used_ports & port_mask)
10609 return false;
10610
10611 used_ports |= port_mask;
10612 default:
10613 break;
10614 }
10615 }
10616
10617 return true;
10618 }
10619
10620 static void
clear_intel_crtc_state(struct intel_crtc_state * crtc_state)10621 clear_intel_crtc_state(struct intel_crtc_state *crtc_state)
10622 {
10623 struct drm_crtc_state tmp_state;
10624
10625 /* Clear only the intel specific part of the crtc state */
10626 tmp_state = crtc_state->base;
10627 memset(crtc_state, 0, sizeof *crtc_state);
10628 crtc_state->base = tmp_state;
10629 }
10630
10631 static struct intel_crtc_state *
intel_modeset_pipe_config(struct drm_crtc * crtc,struct drm_framebuffer * fb,struct drm_display_mode * mode,struct drm_atomic_state * state)10632 intel_modeset_pipe_config(struct drm_crtc *crtc,
10633 struct drm_framebuffer *fb,
10634 struct drm_display_mode *mode,
10635 struct drm_atomic_state *state)
10636 {
10637 struct drm_device *dev = crtc->dev;
10638 struct intel_encoder *encoder;
10639 struct intel_connector *connector;
10640 struct drm_connector_state *connector_state;
10641 struct intel_crtc_state *pipe_config;
10642 int plane_bpp, ret = -EINVAL;
10643 int i;
10644 bool retry = true;
10645
10646 if (!check_encoder_cloning(to_intel_crtc(crtc))) {
10647 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
10648 return ERR_PTR(-EINVAL);
10649 }
10650
10651 if (!check_digital_port_conflicts(dev)) {
10652 DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n");
10653 return ERR_PTR(-EINVAL);
10654 }
10655
10656 pipe_config = intel_atomic_get_crtc_state(state, to_intel_crtc(crtc));
10657 if (IS_ERR(pipe_config))
10658 return pipe_config;
10659
10660 clear_intel_crtc_state(pipe_config);
10661
10662 pipe_config->base.crtc = crtc;
10663 drm_mode_copy(&pipe_config->base.adjusted_mode, mode);
10664 drm_mode_copy(&pipe_config->base.mode, mode);
10665
10666 pipe_config->cpu_transcoder =
10667 (enum transcoder) to_intel_crtc(crtc)->pipe;
10668 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
10669
10670 /*
10671 * Sanitize sync polarity flags based on requested ones. If neither
10672 * positive or negative polarity is requested, treat this as meaning
10673 * negative polarity.
10674 */
10675 if (!(pipe_config->base.adjusted_mode.flags &
10676 (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
10677 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
10678
10679 if (!(pipe_config->base.adjusted_mode.flags &
10680 (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
10681 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
10682
10683 /* Compute a starting value for pipe_config->pipe_bpp taking the source
10684 * plane pixel format and any sink constraints into account. Returns the
10685 * source plane bpp so that dithering can be selected on mismatches
10686 * after encoders and crtc also have had their say. */
10687 plane_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
10688 fb, pipe_config);
10689 if (plane_bpp < 0)
10690 goto fail;
10691
10692 /*
10693 * Determine the real pipe dimensions. Note that stereo modes can
10694 * increase the actual pipe size due to the frame doubling and
10695 * insertion of additional space for blanks between the frame. This
10696 * is stored in the crtc timings. We use the requested mode to do this
10697 * computation to clearly distinguish it from the adjusted mode, which
10698 * can be changed by the connectors in the below retry loop.
10699 */
10700 drm_crtc_get_hv_timing(&pipe_config->base.mode,
10701 &pipe_config->pipe_src_w,
10702 &pipe_config->pipe_src_h);
10703
10704 encoder_retry:
10705 /* Ensure the port clock defaults are reset when retrying. */
10706 pipe_config->port_clock = 0;
10707 pipe_config->pixel_multiplier = 1;
10708
10709 /* Fill in default crtc timings, allow encoders to overwrite them. */
10710 drm_mode_set_crtcinfo(&pipe_config->base.adjusted_mode,
10711 CRTC_STEREO_DOUBLE);
10712
10713 /* Pass our mode to the connectors and the CRTC to give them a chance to
10714 * adjust it according to limitations or connector properties, and also
10715 * a chance to reject the mode entirely.
10716 */
10717 for (i = 0; i < state->num_connector; i++) {
10718 connector = to_intel_connector(state->connectors[i]);
10719 if (!connector)
10720 continue;
10721
10722 connector_state = state->connector_states[i];
10723 if (connector_state->crtc != crtc)
10724 continue;
10725
10726 encoder = to_intel_encoder(connector_state->best_encoder);
10727
10728 if (!(encoder->compute_config(encoder, pipe_config))) {
10729 DRM_DEBUG_KMS("Encoder config failure\n");
10730 goto fail;
10731 }
10732 }
10733
10734 /* Set default port clock if not overwritten by the encoder. Needs to be
10735 * done afterwards in case the encoder adjusts the mode. */
10736 if (!pipe_config->port_clock)
10737 pipe_config->port_clock = pipe_config->base.adjusted_mode.crtc_clock
10738 * pipe_config->pixel_multiplier;
10739
10740 ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
10741 if (ret < 0) {
10742 DRM_DEBUG_KMS("CRTC fixup failed\n");
10743 goto fail;
10744 }
10745
10746 if (ret == RETRY) {
10747 if (WARN(!retry, "loop in pipe configuration computation\n")) {
10748 ret = -EINVAL;
10749 goto fail;
10750 }
10751
10752 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
10753 retry = false;
10754 goto encoder_retry;
10755 }
10756
10757 pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
10758 DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
10759 plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
10760
10761 return pipe_config;
10762 fail:
10763 return ERR_PTR(ret);
10764 }
10765
10766 /* Computes which crtcs are affected and sets the relevant bits in the mask. For
10767 * simplicity we use the crtc's pipe number (because it's easier to obtain). */
10768 static void
intel_modeset_affected_pipes(struct drm_crtc * crtc,unsigned * modeset_pipes,unsigned * prepare_pipes,unsigned * disable_pipes)10769 intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
10770 unsigned *prepare_pipes, unsigned *disable_pipes)
10771 {
10772 struct intel_crtc *intel_crtc;
10773 struct drm_device *dev = crtc->dev;
10774 struct intel_encoder *encoder;
10775 struct intel_connector *connector;
10776 struct drm_crtc *tmp_crtc;
10777
10778 *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
10779
10780 /* Check which crtcs have changed outputs connected to them, these need
10781 * to be part of the prepare_pipes mask. We don't (yet) support global
10782 * modeset across multiple crtcs, so modeset_pipes will only have one
10783 * bit set at most. */
10784 for_each_intel_connector(dev, connector) {
10785 if (connector->base.encoder == &connector->new_encoder->base)
10786 continue;
10787
10788 if (connector->base.encoder) {
10789 tmp_crtc = connector->base.encoder->crtc;
10790
10791 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
10792 }
10793
10794 if (connector->new_encoder)
10795 *prepare_pipes |=
10796 1 << connector->new_encoder->new_crtc->pipe;
10797 }
10798
10799 for_each_intel_encoder(dev, encoder) {
10800 if (encoder->base.crtc == &encoder->new_crtc->base)
10801 continue;
10802
10803 if (encoder->base.crtc) {
10804 tmp_crtc = encoder->base.crtc;
10805
10806 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
10807 }
10808
10809 if (encoder->new_crtc)
10810 *prepare_pipes |= 1 << encoder->new_crtc->pipe;
10811 }
10812
10813 /* Check for pipes that will be enabled/disabled ... */
10814 for_each_intel_crtc(dev, intel_crtc) {
10815 if (intel_crtc->base.state->enable == intel_crtc->new_enabled)
10816 continue;
10817
10818 if (!intel_crtc->new_enabled)
10819 *disable_pipes |= 1 << intel_crtc->pipe;
10820 else
10821 *prepare_pipes |= 1 << intel_crtc->pipe;
10822 }
10823
10824
10825 /* set_mode is also used to update properties on life display pipes. */
10826 intel_crtc = to_intel_crtc(crtc);
10827 if (intel_crtc->new_enabled)
10828 *prepare_pipes |= 1 << intel_crtc->pipe;
10829
10830 /*
10831 * For simplicity do a full modeset on any pipe where the output routing
10832 * changed. We could be more clever, but that would require us to be
10833 * more careful with calling the relevant encoder->mode_set functions.
10834 */
10835 if (*prepare_pipes)
10836 *modeset_pipes = *prepare_pipes;
10837
10838 /* ... and mask these out. */
10839 *modeset_pipes &= ~(*disable_pipes);
10840 *prepare_pipes &= ~(*disable_pipes);
10841
10842 /*
10843 * HACK: We don't (yet) fully support global modesets. intel_set_config
10844 * obies this rule, but the modeset restore mode of
10845 * intel_modeset_setup_hw_state does not.
10846 */
10847 *modeset_pipes &= 1 << intel_crtc->pipe;
10848 *prepare_pipes &= 1 << intel_crtc->pipe;
10849
10850 DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
10851 *modeset_pipes, *prepare_pipes, *disable_pipes);
10852 }
10853
intel_crtc_in_use(struct drm_crtc * crtc)10854 static bool intel_crtc_in_use(struct drm_crtc *crtc)
10855 {
10856 struct drm_encoder *encoder;
10857 struct drm_device *dev = crtc->dev;
10858
10859 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
10860 if (encoder->crtc == crtc)
10861 return true;
10862
10863 return false;
10864 }
10865
10866 static void
intel_modeset_update_state(struct drm_device * dev,unsigned prepare_pipes)10867 intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
10868 {
10869 struct drm_i915_private *dev_priv = dev->dev_private;
10870 struct intel_encoder *intel_encoder;
10871 struct intel_crtc *intel_crtc;
10872 struct drm_connector *connector;
10873
10874 intel_shared_dpll_commit(dev_priv);
10875
10876 for_each_intel_encoder(dev, intel_encoder) {
10877 if (!intel_encoder->base.crtc)
10878 continue;
10879
10880 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
10881
10882 if (prepare_pipes & (1 << intel_crtc->pipe))
10883 intel_encoder->connectors_active = false;
10884 }
10885
10886 intel_modeset_commit_output_state(dev);
10887
10888 /* Double check state. */
10889 for_each_intel_crtc(dev, intel_crtc) {
10890 WARN_ON(intel_crtc->base.state->enable != intel_crtc_in_use(&intel_crtc->base));
10891 WARN_ON(intel_crtc->new_config &&
10892 intel_crtc->new_config != intel_crtc->config);
10893 WARN_ON(intel_crtc->base.state->enable != !!intel_crtc->new_config);
10894 }
10895
10896 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
10897 if (!connector->encoder || !connector->encoder->crtc)
10898 continue;
10899
10900 intel_crtc = to_intel_crtc(connector->encoder->crtc);
10901
10902 if (prepare_pipes & (1 << intel_crtc->pipe)) {
10903 struct drm_property *dpms_property =
10904 dev->mode_config.dpms_property;
10905
10906 connector->dpms = DRM_MODE_DPMS_ON;
10907 drm_object_property_set_value(&connector->base,
10908 dpms_property,
10909 DRM_MODE_DPMS_ON);
10910
10911 intel_encoder = to_intel_encoder(connector->encoder);
10912 intel_encoder->connectors_active = true;
10913 }
10914 }
10915
10916 }
10917
intel_fuzzy_clock_check(int clock1,int clock2)10918 static bool intel_fuzzy_clock_check(int clock1, int clock2)
10919 {
10920 int diff;
10921
10922 if (clock1 == clock2)
10923 return true;
10924
10925 if (!clock1 || !clock2)
10926 return false;
10927
10928 diff = abs(clock1 - clock2);
10929
10930 if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
10931 return true;
10932
10933 return false;
10934 }
10935
10936 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
10937 list_for_each_entry((intel_crtc), \
10938 &(dev)->mode_config.crtc_list, \
10939 base.head) \
10940 if (mask & (1 <<(intel_crtc)->pipe))
10941
10942 static bool
intel_pipe_config_compare(struct drm_device * dev,struct intel_crtc_state * current_config,struct intel_crtc_state * pipe_config)10943 intel_pipe_config_compare(struct drm_device *dev,
10944 struct intel_crtc_state *current_config,
10945 struct intel_crtc_state *pipe_config)
10946 {
10947 #define PIPE_CONF_CHECK_X(name) \
10948 if (current_config->name != pipe_config->name) { \
10949 DRM_ERROR("mismatch in " #name " " \
10950 "(expected 0x%08x, found 0x%08x)\n", \
10951 current_config->name, \
10952 pipe_config->name); \
10953 return false; \
10954 }
10955
10956 #define PIPE_CONF_CHECK_I(name) \
10957 if (current_config->name != pipe_config->name) { \
10958 DRM_ERROR("mismatch in " #name " " \
10959 "(expected %i, found %i)\n", \
10960 current_config->name, \
10961 pipe_config->name); \
10962 return false; \
10963 }
10964
10965 /* This is required for BDW+ where there is only one set of registers for
10966 * switching between high and low RR.
10967 * This macro can be used whenever a comparison has to be made between one
10968 * hw state and multiple sw state variables.
10969 */
10970 #define PIPE_CONF_CHECK_I_ALT(name, alt_name) \
10971 if ((current_config->name != pipe_config->name) && \
10972 (current_config->alt_name != pipe_config->name)) { \
10973 DRM_ERROR("mismatch in " #name " " \
10974 "(expected %i or %i, found %i)\n", \
10975 current_config->name, \
10976 current_config->alt_name, \
10977 pipe_config->name); \
10978 return false; \
10979 }
10980
10981 #define PIPE_CONF_CHECK_FLAGS(name, mask) \
10982 if ((current_config->name ^ pipe_config->name) & (mask)) { \
10983 DRM_ERROR("mismatch in " #name "(" #mask ") " \
10984 "(expected %i, found %i)\n", \
10985 current_config->name & (mask), \
10986 pipe_config->name & (mask)); \
10987 return false; \
10988 }
10989
10990 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
10991 if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
10992 DRM_ERROR("mismatch in " #name " " \
10993 "(expected %i, found %i)\n", \
10994 current_config->name, \
10995 pipe_config->name); \
10996 return false; \
10997 }
10998
10999 #define PIPE_CONF_QUIRK(quirk) \
11000 ((current_config->quirks | pipe_config->quirks) & (quirk))
11001
11002 PIPE_CONF_CHECK_I(cpu_transcoder);
11003
11004 PIPE_CONF_CHECK_I(has_pch_encoder);
11005 PIPE_CONF_CHECK_I(fdi_lanes);
11006 PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
11007 PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
11008 PIPE_CONF_CHECK_I(fdi_m_n.link_m);
11009 PIPE_CONF_CHECK_I(fdi_m_n.link_n);
11010 PIPE_CONF_CHECK_I(fdi_m_n.tu);
11011
11012 PIPE_CONF_CHECK_I(has_dp_encoder);
11013
11014 if (INTEL_INFO(dev)->gen < 8) {
11015 PIPE_CONF_CHECK_I(dp_m_n.gmch_m);
11016 PIPE_CONF_CHECK_I(dp_m_n.gmch_n);
11017 PIPE_CONF_CHECK_I(dp_m_n.link_m);
11018 PIPE_CONF_CHECK_I(dp_m_n.link_n);
11019 PIPE_CONF_CHECK_I(dp_m_n.tu);
11020
11021 if (current_config->has_drrs) {
11022 PIPE_CONF_CHECK_I(dp_m2_n2.gmch_m);
11023 PIPE_CONF_CHECK_I(dp_m2_n2.gmch_n);
11024 PIPE_CONF_CHECK_I(dp_m2_n2.link_m);
11025 PIPE_CONF_CHECK_I(dp_m2_n2.link_n);
11026 PIPE_CONF_CHECK_I(dp_m2_n2.tu);
11027 }
11028 } else {
11029 PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_m, dp_m2_n2.gmch_m);
11030 PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_n, dp_m2_n2.gmch_n);
11031 PIPE_CONF_CHECK_I_ALT(dp_m_n.link_m, dp_m2_n2.link_m);
11032 PIPE_CONF_CHECK_I_ALT(dp_m_n.link_n, dp_m2_n2.link_n);
11033 PIPE_CONF_CHECK_I_ALT(dp_m_n.tu, dp_m2_n2.tu);
11034 }
11035
11036 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hdisplay);
11037 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_htotal);
11038 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_start);
11039 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_end);
11040 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_start);
11041 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_end);
11042
11043 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vdisplay);
11044 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vtotal);
11045 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_start);
11046 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_end);
11047 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_start);
11048 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_end);
11049
11050 PIPE_CONF_CHECK_I(pixel_multiplier);
11051 PIPE_CONF_CHECK_I(has_hdmi_sink);
11052 if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
11053 IS_VALLEYVIEW(dev))
11054 PIPE_CONF_CHECK_I(limited_color_range);
11055 PIPE_CONF_CHECK_I(has_infoframe);
11056
11057 PIPE_CONF_CHECK_I(has_audio);
11058
11059 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
11060 DRM_MODE_FLAG_INTERLACE);
11061
11062 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
11063 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
11064 DRM_MODE_FLAG_PHSYNC);
11065 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
11066 DRM_MODE_FLAG_NHSYNC);
11067 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
11068 DRM_MODE_FLAG_PVSYNC);
11069 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
11070 DRM_MODE_FLAG_NVSYNC);
11071 }
11072
11073 PIPE_CONF_CHECK_I(pipe_src_w);
11074 PIPE_CONF_CHECK_I(pipe_src_h);
11075
11076 /*
11077 * FIXME: BIOS likes to set up a cloned config with lvds+external
11078 * screen. Since we don't yet re-compute the pipe config when moving
11079 * just the lvds port away to another pipe the sw tracking won't match.
11080 *
11081 * Proper atomic modesets with recomputed global state will fix this.
11082 * Until then just don't check gmch state for inherited modes.
11083 */
11084 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_INHERITED_MODE)) {
11085 PIPE_CONF_CHECK_I(gmch_pfit.control);
11086 /* pfit ratios are autocomputed by the hw on gen4+ */
11087 if (INTEL_INFO(dev)->gen < 4)
11088 PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
11089 PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
11090 }
11091
11092 PIPE_CONF_CHECK_I(pch_pfit.enabled);
11093 if (current_config->pch_pfit.enabled) {
11094 PIPE_CONF_CHECK_I(pch_pfit.pos);
11095 PIPE_CONF_CHECK_I(pch_pfit.size);
11096 }
11097
11098 /* BDW+ don't expose a synchronous way to read the state */
11099 if (IS_HASWELL(dev))
11100 PIPE_CONF_CHECK_I(ips_enabled);
11101
11102 PIPE_CONF_CHECK_I(double_wide);
11103
11104 PIPE_CONF_CHECK_X(ddi_pll_sel);
11105
11106 PIPE_CONF_CHECK_I(shared_dpll);
11107 PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
11108 PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
11109 PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
11110 PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
11111 PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
11112 PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
11113 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
11114 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
11115
11116 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
11117 PIPE_CONF_CHECK_I(pipe_bpp);
11118
11119 PIPE_CONF_CHECK_CLOCK_FUZZY(base.adjusted_mode.crtc_clock);
11120 PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
11121
11122 #undef PIPE_CONF_CHECK_X
11123 #undef PIPE_CONF_CHECK_I
11124 #undef PIPE_CONF_CHECK_I_ALT
11125 #undef PIPE_CONF_CHECK_FLAGS
11126 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
11127 #undef PIPE_CONF_QUIRK
11128
11129 return true;
11130 }
11131
check_wm_state(struct drm_device * dev)11132 static void check_wm_state(struct drm_device *dev)
11133 {
11134 struct drm_i915_private *dev_priv = dev->dev_private;
11135 struct skl_ddb_allocation hw_ddb, *sw_ddb;
11136 struct intel_crtc *intel_crtc;
11137 int plane;
11138
11139 if (INTEL_INFO(dev)->gen < 9)
11140 return;
11141
11142 skl_ddb_get_hw_state(dev_priv, &hw_ddb);
11143 sw_ddb = &dev_priv->wm.skl_hw.ddb;
11144
11145 for_each_intel_crtc(dev, intel_crtc) {
11146 struct skl_ddb_entry *hw_entry, *sw_entry;
11147 const enum pipe pipe = intel_crtc->pipe;
11148
11149 if (!intel_crtc->active)
11150 continue;
11151
11152 /* planes */
11153 for_each_plane(dev_priv, pipe, plane) {
11154 hw_entry = &hw_ddb.plane[pipe][plane];
11155 sw_entry = &sw_ddb->plane[pipe][plane];
11156
11157 if (skl_ddb_entry_equal(hw_entry, sw_entry))
11158 continue;
11159
11160 DRM_ERROR("mismatch in DDB state pipe %c plane %d "
11161 "(expected (%u,%u), found (%u,%u))\n",
11162 pipe_name(pipe), plane + 1,
11163 sw_entry->start, sw_entry->end,
11164 hw_entry->start, hw_entry->end);
11165 }
11166
11167 /* cursor */
11168 hw_entry = &hw_ddb.cursor[pipe];
11169 sw_entry = &sw_ddb->cursor[pipe];
11170
11171 if (skl_ddb_entry_equal(hw_entry, sw_entry))
11172 continue;
11173
11174 DRM_ERROR("mismatch in DDB state pipe %c cursor "
11175 "(expected (%u,%u), found (%u,%u))\n",
11176 pipe_name(pipe),
11177 sw_entry->start, sw_entry->end,
11178 hw_entry->start, hw_entry->end);
11179 }
11180 }
11181
11182 static void
check_connector_state(struct drm_device * dev)11183 check_connector_state(struct drm_device *dev)
11184 {
11185 struct intel_connector *connector;
11186
11187 for_each_intel_connector(dev, connector) {
11188 /* This also checks the encoder/connector hw state with the
11189 * ->get_hw_state callbacks. */
11190 intel_connector_check_state(connector);
11191
11192 I915_STATE_WARN(&connector->new_encoder->base != connector->base.encoder,
11193 "connector's staged encoder doesn't match current encoder\n");
11194 }
11195 }
11196
11197 static void
check_encoder_state(struct drm_device * dev)11198 check_encoder_state(struct drm_device *dev)
11199 {
11200 struct intel_encoder *encoder;
11201 struct intel_connector *connector;
11202
11203 for_each_intel_encoder(dev, encoder) {
11204 bool enabled = false;
11205 bool active = false;
11206 enum pipe pipe, tracked_pipe;
11207
11208 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
11209 encoder->base.base.id,
11210 encoder->base.name);
11211
11212 I915_STATE_WARN(&encoder->new_crtc->base != encoder->base.crtc,
11213 "encoder's stage crtc doesn't match current crtc\n");
11214 I915_STATE_WARN(encoder->connectors_active && !encoder->base.crtc,
11215 "encoder's active_connectors set, but no crtc\n");
11216
11217 for_each_intel_connector(dev, connector) {
11218 if (connector->base.encoder != &encoder->base)
11219 continue;
11220 enabled = true;
11221 if (connector->base.dpms != DRM_MODE_DPMS_OFF)
11222 active = true;
11223 }
11224
11225 I915_STATE_WARN(!!encoder->base.crtc != enabled,
11226 "encoder's enabled state mismatch "
11227 "(expected %i, found %i)\n",
11228 !!encoder->base.crtc, enabled);
11229 I915_STATE_WARN(active && !encoder->base.crtc,
11230 "active encoder with no crtc\n");
11231
11232 I915_STATE_WARN(encoder->connectors_active != active,
11233 "encoder's computed active state doesn't match tracked active state "
11234 "(expected %i, found %i)\n", active, encoder->connectors_active);
11235
11236 active = encoder->get_hw_state(encoder, &pipe);
11237 I915_STATE_WARN(active != encoder->connectors_active,
11238 "encoder's hw state doesn't match sw tracking "
11239 "(expected %i, found %i)\n",
11240 encoder->connectors_active, active);
11241
11242 if (!encoder->base.crtc)
11243 continue;
11244
11245 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
11246 I915_STATE_WARN(active && pipe != tracked_pipe,
11247 "active encoder's pipe doesn't match"
11248 "(expected %i, found %i)\n",
11249 tracked_pipe, pipe);
11250
11251 }
11252 }
11253
11254 static void
check_crtc_state(struct drm_device * dev)11255 check_crtc_state(struct drm_device *dev)
11256 {
11257 struct drm_i915_private *dev_priv = dev->dev_private;
11258 struct intel_crtc *crtc;
11259 struct intel_encoder *encoder;
11260 struct intel_crtc_state pipe_config;
11261
11262 for_each_intel_crtc(dev, crtc) {
11263 bool enabled = false;
11264 bool active = false;
11265
11266 memset(&pipe_config, 0, sizeof(pipe_config));
11267
11268 DRM_DEBUG_KMS("[CRTC:%d]\n",
11269 crtc->base.base.id);
11270
11271 I915_STATE_WARN(crtc->active && !crtc->base.state->enable,
11272 "active crtc, but not enabled in sw tracking\n");
11273
11274 for_each_intel_encoder(dev, encoder) {
11275 if (encoder->base.crtc != &crtc->base)
11276 continue;
11277 enabled = true;
11278 if (encoder->connectors_active)
11279 active = true;
11280 }
11281
11282 I915_STATE_WARN(active != crtc->active,
11283 "crtc's computed active state doesn't match tracked active state "
11284 "(expected %i, found %i)\n", active, crtc->active);
11285 I915_STATE_WARN(enabled != crtc->base.state->enable,
11286 "crtc's computed enabled state doesn't match tracked enabled state "
11287 "(expected %i, found %i)\n", enabled,
11288 crtc->base.state->enable);
11289
11290 active = dev_priv->display.get_pipe_config(crtc,
11291 &pipe_config);
11292
11293 /* hw state is inconsistent with the pipe quirk */
11294 if ((crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
11295 (crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
11296 active = crtc->active;
11297
11298 for_each_intel_encoder(dev, encoder) {
11299 enum pipe pipe;
11300 if (encoder->base.crtc != &crtc->base)
11301 continue;
11302 if (encoder->get_hw_state(encoder, &pipe))
11303 encoder->get_config(encoder, &pipe_config);
11304 }
11305
11306 I915_STATE_WARN(crtc->active != active,
11307 "crtc active state doesn't match with hw state "
11308 "(expected %i, found %i)\n", crtc->active, active);
11309
11310 if (active &&
11311 !intel_pipe_config_compare(dev, crtc->config, &pipe_config)) {
11312 I915_STATE_WARN(1, "pipe state doesn't match!\n");
11313 intel_dump_pipe_config(crtc, &pipe_config,
11314 "[hw state]");
11315 intel_dump_pipe_config(crtc, crtc->config,
11316 "[sw state]");
11317 }
11318 }
11319 }
11320
11321 static void
check_shared_dpll_state(struct drm_device * dev)11322 check_shared_dpll_state(struct drm_device *dev)
11323 {
11324 struct drm_i915_private *dev_priv = dev->dev_private;
11325 struct intel_crtc *crtc;
11326 struct intel_dpll_hw_state dpll_hw_state;
11327 int i;
11328
11329 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
11330 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
11331 int enabled_crtcs = 0, active_crtcs = 0;
11332 bool active;
11333
11334 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
11335
11336 DRM_DEBUG_KMS("%s\n", pll->name);
11337
11338 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
11339
11340 I915_STATE_WARN(pll->active > hweight32(pll->config.crtc_mask),
11341 "more active pll users than references: %i vs %i\n",
11342 pll->active, hweight32(pll->config.crtc_mask));
11343 I915_STATE_WARN(pll->active && !pll->on,
11344 "pll in active use but not on in sw tracking\n");
11345 I915_STATE_WARN(pll->on && !pll->active,
11346 "pll in on but not on in use in sw tracking\n");
11347 I915_STATE_WARN(pll->on != active,
11348 "pll on state mismatch (expected %i, found %i)\n",
11349 pll->on, active);
11350
11351 for_each_intel_crtc(dev, crtc) {
11352 if (crtc->base.state->enable && intel_crtc_to_shared_dpll(crtc) == pll)
11353 enabled_crtcs++;
11354 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
11355 active_crtcs++;
11356 }
11357 I915_STATE_WARN(pll->active != active_crtcs,
11358 "pll active crtcs mismatch (expected %i, found %i)\n",
11359 pll->active, active_crtcs);
11360 I915_STATE_WARN(hweight32(pll->config.crtc_mask) != enabled_crtcs,
11361 "pll enabled crtcs mismatch (expected %i, found %i)\n",
11362 hweight32(pll->config.crtc_mask), enabled_crtcs);
11363
11364 I915_STATE_WARN(pll->on && memcmp(&pll->config.hw_state, &dpll_hw_state,
11365 sizeof(dpll_hw_state)),
11366 "pll hw state mismatch\n");
11367 }
11368 }
11369
11370 void
intel_modeset_check_state(struct drm_device * dev)11371 intel_modeset_check_state(struct drm_device *dev)
11372 {
11373 check_wm_state(dev);
11374 check_connector_state(dev);
11375 check_encoder_state(dev);
11376 check_crtc_state(dev);
11377 check_shared_dpll_state(dev);
11378 }
11379
ironlake_check_encoder_dotclock(const struct intel_crtc_state * pipe_config,int dotclock)11380 void ironlake_check_encoder_dotclock(const struct intel_crtc_state *pipe_config,
11381 int dotclock)
11382 {
11383 /*
11384 * FDI already provided one idea for the dotclock.
11385 * Yell if the encoder disagrees.
11386 */
11387 WARN(!intel_fuzzy_clock_check(pipe_config->base.adjusted_mode.crtc_clock, dotclock),
11388 "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
11389 pipe_config->base.adjusted_mode.crtc_clock, dotclock);
11390 }
11391
update_scanline_offset(struct intel_crtc * crtc)11392 static void update_scanline_offset(struct intel_crtc *crtc)
11393 {
11394 struct drm_device *dev = crtc->base.dev;
11395
11396 /*
11397 * The scanline counter increments at the leading edge of hsync.
11398 *
11399 * On most platforms it starts counting from vtotal-1 on the
11400 * first active line. That means the scanline counter value is
11401 * always one less than what we would expect. Ie. just after
11402 * start of vblank, which also occurs at start of hsync (on the
11403 * last active line), the scanline counter will read vblank_start-1.
11404 *
11405 * On gen2 the scanline counter starts counting from 1 instead
11406 * of vtotal-1, so we have to subtract one (or rather add vtotal-1
11407 * to keep the value positive), instead of adding one.
11408 *
11409 * On HSW+ the behaviour of the scanline counter depends on the output
11410 * type. For DP ports it behaves like most other platforms, but on HDMI
11411 * there's an extra 1 line difference. So we need to add two instead of
11412 * one to the value.
11413 */
11414 if (IS_GEN2(dev)) {
11415 const struct drm_display_mode *mode = &crtc->config->base.adjusted_mode;
11416 int vtotal;
11417
11418 vtotal = mode->crtc_vtotal;
11419 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
11420 vtotal /= 2;
11421
11422 crtc->scanline_offset = vtotal - 1;
11423 } else if (HAS_DDI(dev) &&
11424 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI)) {
11425 crtc->scanline_offset = 2;
11426 } else
11427 crtc->scanline_offset = 1;
11428 }
11429
11430 static struct intel_crtc_state *
intel_modeset_compute_config(struct drm_crtc * crtc,struct drm_display_mode * mode,struct drm_framebuffer * fb,struct drm_atomic_state * state,unsigned * modeset_pipes,unsigned * prepare_pipes,unsigned * disable_pipes)11431 intel_modeset_compute_config(struct drm_crtc *crtc,
11432 struct drm_display_mode *mode,
11433 struct drm_framebuffer *fb,
11434 struct drm_atomic_state *state,
11435 unsigned *modeset_pipes,
11436 unsigned *prepare_pipes,
11437 unsigned *disable_pipes)
11438 {
11439 struct drm_device *dev = crtc->dev;
11440 struct intel_crtc_state *pipe_config = NULL;
11441 struct intel_crtc *intel_crtc;
11442 int ret = 0;
11443
11444 ret = drm_atomic_add_affected_connectors(state, crtc);
11445 if (ret)
11446 return ERR_PTR(ret);
11447
11448 intel_modeset_affected_pipes(crtc, modeset_pipes,
11449 prepare_pipes, disable_pipes);
11450
11451 for_each_intel_crtc_masked(dev, *disable_pipes, intel_crtc) {
11452 pipe_config = intel_atomic_get_crtc_state(state, intel_crtc);
11453 if (IS_ERR(pipe_config))
11454 return pipe_config;
11455
11456 pipe_config->base.enable = false;
11457 }
11458
11459 /*
11460 * Note this needs changes when we start tracking multiple modes
11461 * and crtcs. At that point we'll need to compute the whole config
11462 * (i.e. one pipe_config for each crtc) rather than just the one
11463 * for this crtc.
11464 */
11465 for_each_intel_crtc_masked(dev, *modeset_pipes, intel_crtc) {
11466 /* FIXME: For now we still expect modeset_pipes has at most
11467 * one bit set. */
11468 if (WARN_ON(&intel_crtc->base != crtc))
11469 continue;
11470
11471 pipe_config = intel_modeset_pipe_config(crtc, fb, mode, state);
11472 if (IS_ERR(pipe_config))
11473 return pipe_config;
11474
11475 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
11476 "[modeset]");
11477 }
11478
11479 return intel_atomic_get_crtc_state(state, to_intel_crtc(crtc));;
11480 }
11481
__intel_set_mode_setup_plls(struct drm_device * dev,unsigned modeset_pipes,unsigned disable_pipes)11482 static int __intel_set_mode_setup_plls(struct drm_device *dev,
11483 unsigned modeset_pipes,
11484 unsigned disable_pipes)
11485 {
11486 struct drm_i915_private *dev_priv = to_i915(dev);
11487 unsigned clear_pipes = modeset_pipes | disable_pipes;
11488 struct intel_crtc *intel_crtc;
11489 int ret = 0;
11490
11491 if (!dev_priv->display.crtc_compute_clock)
11492 return 0;
11493
11494 ret = intel_shared_dpll_start_config(dev_priv, clear_pipes);
11495 if (ret)
11496 goto done;
11497
11498 for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
11499 struct intel_crtc_state *state = intel_crtc->new_config;
11500 ret = dev_priv->display.crtc_compute_clock(intel_crtc,
11501 state);
11502 if (ret) {
11503 intel_shared_dpll_abort_config(dev_priv);
11504 goto done;
11505 }
11506 }
11507
11508 done:
11509 return ret;
11510 }
11511
__intel_set_mode(struct drm_crtc * crtc,struct drm_display_mode * mode,int x,int y,struct drm_framebuffer * fb,struct intel_crtc_state * pipe_config,unsigned modeset_pipes,unsigned prepare_pipes,unsigned disable_pipes)11512 static int __intel_set_mode(struct drm_crtc *crtc,
11513 struct drm_display_mode *mode,
11514 int x, int y, struct drm_framebuffer *fb,
11515 struct intel_crtc_state *pipe_config,
11516 unsigned modeset_pipes,
11517 unsigned prepare_pipes,
11518 unsigned disable_pipes)
11519 {
11520 struct drm_device *dev = crtc->dev;
11521 struct drm_i915_private *dev_priv = dev->dev_private;
11522 struct drm_display_mode *saved_mode;
11523 struct intel_crtc_state *crtc_state_copy = NULL;
11524 struct intel_crtc *intel_crtc;
11525 int ret = 0;
11526
11527 saved_mode = kmalloc(sizeof(*saved_mode), GFP_KERNEL);
11528 if (!saved_mode)
11529 return -ENOMEM;
11530
11531 crtc_state_copy = kmalloc(sizeof(*crtc_state_copy), GFP_KERNEL);
11532 if (!crtc_state_copy) {
11533 ret = -ENOMEM;
11534 goto done;
11535 }
11536
11537 *saved_mode = crtc->mode;
11538
11539 if (modeset_pipes)
11540 to_intel_crtc(crtc)->new_config = pipe_config;
11541
11542 /*
11543 * See if the config requires any additional preparation, e.g.
11544 * to adjust global state with pipes off. We need to do this
11545 * here so we can get the modeset_pipe updated config for the new
11546 * mode set on this crtc. For other crtcs we need to use the
11547 * adjusted_mode bits in the crtc directly.
11548 */
11549 if (IS_VALLEYVIEW(dev)) {
11550 valleyview_modeset_global_pipes(dev, &prepare_pipes);
11551
11552 /* may have added more to prepare_pipes than we should */
11553 prepare_pipes &= ~disable_pipes;
11554 }
11555
11556 ret = __intel_set_mode_setup_plls(dev, modeset_pipes, disable_pipes);
11557 if (ret)
11558 goto done;
11559
11560 for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
11561 intel_crtc_disable(&intel_crtc->base);
11562
11563 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
11564 if (intel_crtc->base.state->enable)
11565 dev_priv->display.crtc_disable(&intel_crtc->base);
11566 }
11567
11568 /* crtc->mode is already used by the ->mode_set callbacks, hence we need
11569 * to set it here already despite that we pass it down the callchain.
11570 *
11571 * Note we'll need to fix this up when we start tracking multiple
11572 * pipes; here we assume a single modeset_pipe and only track the
11573 * single crtc and mode.
11574 */
11575 if (modeset_pipes) {
11576 crtc->mode = *mode;
11577 /* mode_set/enable/disable functions rely on a correct pipe
11578 * config. */
11579 intel_crtc_set_state(to_intel_crtc(crtc), pipe_config);
11580
11581 /*
11582 * Calculate and store various constants which
11583 * are later needed by vblank and swap-completion
11584 * timestamping. They are derived from true hwmode.
11585 */
11586 drm_calc_timestamping_constants(crtc,
11587 &pipe_config->base.adjusted_mode);
11588 }
11589
11590 /* Only after disabling all output pipelines that will be changed can we
11591 * update the the output configuration. */
11592 intel_modeset_update_state(dev, prepare_pipes);
11593
11594 modeset_update_crtc_power_domains(pipe_config->base.state);
11595
11596 /* Set up the DPLL and any encoders state that needs to adjust or depend
11597 * on the DPLL.
11598 */
11599 for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
11600 struct drm_plane *primary = intel_crtc->base.primary;
11601 int vdisplay, hdisplay;
11602
11603 drm_crtc_get_hv_timing(mode, &hdisplay, &vdisplay);
11604 ret = primary->funcs->update_plane(primary, &intel_crtc->base,
11605 fb, 0, 0,
11606 hdisplay, vdisplay,
11607 x << 16, y << 16,
11608 hdisplay << 16, vdisplay << 16);
11609 }
11610
11611 /* Now enable the clocks, plane, pipe, and connectors that we set up. */
11612 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
11613 update_scanline_offset(intel_crtc);
11614
11615 dev_priv->display.crtc_enable(&intel_crtc->base);
11616 }
11617
11618 /* FIXME: add subpixel order */
11619 done:
11620 if (ret && crtc->state->enable)
11621 crtc->mode = *saved_mode;
11622
11623 if (ret == 0 && pipe_config) {
11624 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11625
11626 /* The pipe_config will be freed with the atomic state, so
11627 * make a copy. */
11628 memcpy(crtc_state_copy, intel_crtc->config,
11629 sizeof *crtc_state_copy);
11630 intel_crtc->config = crtc_state_copy;
11631 intel_crtc->base.state = &crtc_state_copy->base;
11632
11633 if (modeset_pipes)
11634 intel_crtc->new_config = intel_crtc->config;
11635 } else {
11636 kfree(crtc_state_copy);
11637 }
11638
11639 kfree(saved_mode);
11640 return ret;
11641 }
11642
intel_set_mode_pipes(struct drm_crtc * crtc,struct drm_display_mode * mode,int x,int y,struct drm_framebuffer * fb,struct intel_crtc_state * pipe_config,unsigned modeset_pipes,unsigned prepare_pipes,unsigned disable_pipes)11643 static int intel_set_mode_pipes(struct drm_crtc *crtc,
11644 struct drm_display_mode *mode,
11645 int x, int y, struct drm_framebuffer *fb,
11646 struct intel_crtc_state *pipe_config,
11647 unsigned modeset_pipes,
11648 unsigned prepare_pipes,
11649 unsigned disable_pipes)
11650 {
11651 int ret;
11652
11653 ret = __intel_set_mode(crtc, mode, x, y, fb, pipe_config, modeset_pipes,
11654 prepare_pipes, disable_pipes);
11655
11656 if (ret == 0)
11657 intel_modeset_check_state(crtc->dev);
11658
11659 return ret;
11660 }
11661
intel_set_mode(struct drm_crtc * crtc,struct drm_display_mode * mode,int x,int y,struct drm_framebuffer * fb,struct drm_atomic_state * state)11662 static int intel_set_mode(struct drm_crtc *crtc,
11663 struct drm_display_mode *mode,
11664 int x, int y, struct drm_framebuffer *fb,
11665 struct drm_atomic_state *state)
11666 {
11667 struct intel_crtc_state *pipe_config;
11668 unsigned modeset_pipes, prepare_pipes, disable_pipes;
11669 int ret = 0;
11670
11671 pipe_config = intel_modeset_compute_config(crtc, mode, fb, state,
11672 &modeset_pipes,
11673 &prepare_pipes,
11674 &disable_pipes);
11675
11676 if (IS_ERR(pipe_config)) {
11677 ret = PTR_ERR(pipe_config);
11678 goto out;
11679 }
11680
11681 ret = intel_set_mode_pipes(crtc, mode, x, y, fb, pipe_config,
11682 modeset_pipes, prepare_pipes,
11683 disable_pipes);
11684 if (ret)
11685 goto out;
11686
11687 out:
11688 return ret;
11689 }
11690
intel_crtc_restore_mode(struct drm_crtc * crtc)11691 void intel_crtc_restore_mode(struct drm_crtc *crtc)
11692 {
11693 struct drm_device *dev = crtc->dev;
11694 struct drm_atomic_state *state;
11695 struct intel_encoder *encoder;
11696 struct intel_connector *connector;
11697 struct drm_connector_state *connector_state;
11698
11699 state = drm_atomic_state_alloc(dev);
11700 if (!state) {
11701 DRM_DEBUG_KMS("[CRTC:%d] mode restore failed, out of memory",
11702 crtc->base.id);
11703 return;
11704 }
11705
11706 state->acquire_ctx = dev->mode_config.acquire_ctx;
11707
11708 /* The force restore path in the HW readout code relies on the staged
11709 * config still keeping the user requested config while the actual
11710 * state has been overwritten by the configuration read from HW. We
11711 * need to copy the staged config to the atomic state, otherwise the
11712 * mode set will just reapply the state the HW is already in. */
11713 for_each_intel_encoder(dev, encoder) {
11714 if (&encoder->new_crtc->base != crtc)
11715 continue;
11716
11717 for_each_intel_connector(dev, connector) {
11718 if (connector->new_encoder != encoder)
11719 continue;
11720
11721 connector_state = drm_atomic_get_connector_state(state, &connector->base);
11722 if (IS_ERR(connector_state)) {
11723 DRM_DEBUG_KMS("Failed to add [CONNECTOR:%d:%s] to state: %ld\n",
11724 connector->base.base.id,
11725 connector->base.name,
11726 PTR_ERR(connector_state));
11727 continue;
11728 }
11729
11730 connector_state->crtc = crtc;
11731 connector_state->best_encoder = &encoder->base;
11732 }
11733 }
11734
11735 intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->primary->fb,
11736 state);
11737
11738 drm_atomic_state_free(state);
11739 }
11740
11741 #undef for_each_intel_crtc_masked
11742
intel_set_config_free(struct intel_set_config * config)11743 static void intel_set_config_free(struct intel_set_config *config)
11744 {
11745 if (!config)
11746 return;
11747
11748 kfree(config->save_connector_encoders);
11749 kfree(config->save_encoder_crtcs);
11750 kfree(config->save_crtc_enabled);
11751 kfree(config);
11752 }
11753
intel_set_config_save_state(struct drm_device * dev,struct intel_set_config * config)11754 static int intel_set_config_save_state(struct drm_device *dev,
11755 struct intel_set_config *config)
11756 {
11757 struct drm_crtc *crtc;
11758 struct drm_encoder *encoder;
11759 struct drm_connector *connector;
11760 int count;
11761
11762 config->save_crtc_enabled =
11763 kcalloc(dev->mode_config.num_crtc,
11764 sizeof(bool), GFP_KERNEL);
11765 if (!config->save_crtc_enabled)
11766 return -ENOMEM;
11767
11768 config->save_encoder_crtcs =
11769 kcalloc(dev->mode_config.num_encoder,
11770 sizeof(struct drm_crtc *), GFP_KERNEL);
11771 if (!config->save_encoder_crtcs)
11772 return -ENOMEM;
11773
11774 config->save_connector_encoders =
11775 kcalloc(dev->mode_config.num_connector,
11776 sizeof(struct drm_encoder *), GFP_KERNEL);
11777 if (!config->save_connector_encoders)
11778 return -ENOMEM;
11779
11780 /* Copy data. Note that driver private data is not affected.
11781 * Should anything bad happen only the expected state is
11782 * restored, not the drivers personal bookkeeping.
11783 */
11784 count = 0;
11785 for_each_crtc(dev, crtc) {
11786 config->save_crtc_enabled[count++] = crtc->state->enable;
11787 }
11788
11789 count = 0;
11790 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
11791 config->save_encoder_crtcs[count++] = encoder->crtc;
11792 }
11793
11794 count = 0;
11795 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
11796 config->save_connector_encoders[count++] = connector->encoder;
11797 }
11798
11799 return 0;
11800 }
11801
intel_set_config_restore_state(struct drm_device * dev,struct intel_set_config * config)11802 static void intel_set_config_restore_state(struct drm_device *dev,
11803 struct intel_set_config *config)
11804 {
11805 struct intel_crtc *crtc;
11806 struct intel_encoder *encoder;
11807 struct intel_connector *connector;
11808 int count;
11809
11810 count = 0;
11811 for_each_intel_crtc(dev, crtc) {
11812 crtc->new_enabled = config->save_crtc_enabled[count++];
11813
11814 if (crtc->new_enabled)
11815 crtc->new_config = crtc->config;
11816 else
11817 crtc->new_config = NULL;
11818 }
11819
11820 count = 0;
11821 for_each_intel_encoder(dev, encoder) {
11822 encoder->new_crtc =
11823 to_intel_crtc(config->save_encoder_crtcs[count++]);
11824 }
11825
11826 count = 0;
11827 for_each_intel_connector(dev, connector) {
11828 connector->new_encoder =
11829 to_intel_encoder(config->save_connector_encoders[count++]);
11830 }
11831 }
11832
11833 static bool
is_crtc_connector_off(struct drm_mode_set * set)11834 is_crtc_connector_off(struct drm_mode_set *set)
11835 {
11836 int i;
11837
11838 if (set->num_connectors == 0)
11839 return false;
11840
11841 if (WARN_ON(set->connectors == NULL))
11842 return false;
11843
11844 for (i = 0; i < set->num_connectors; i++)
11845 if (set->connectors[i]->encoder &&
11846 set->connectors[i]->encoder->crtc == set->crtc &&
11847 set->connectors[i]->dpms != DRM_MODE_DPMS_ON)
11848 return true;
11849
11850 return false;
11851 }
11852
11853 static void
intel_set_config_compute_mode_changes(struct drm_mode_set * set,struct intel_set_config * config)11854 intel_set_config_compute_mode_changes(struct drm_mode_set *set,
11855 struct intel_set_config *config)
11856 {
11857
11858 /* We should be able to check here if the fb has the same properties
11859 * and then just flip_or_move it */
11860 if (is_crtc_connector_off(set)) {
11861 config->mode_changed = true;
11862 } else if (set->crtc->primary->fb != set->fb) {
11863 /*
11864 * If we have no fb, we can only flip as long as the crtc is
11865 * active, otherwise we need a full mode set. The crtc may
11866 * be active if we've only disabled the primary plane, or
11867 * in fastboot situations.
11868 */
11869 if (set->crtc->primary->fb == NULL) {
11870 struct intel_crtc *intel_crtc =
11871 to_intel_crtc(set->crtc);
11872
11873 if (intel_crtc->active) {
11874 DRM_DEBUG_KMS("crtc has no fb, will flip\n");
11875 config->fb_changed = true;
11876 } else {
11877 DRM_DEBUG_KMS("inactive crtc, full mode set\n");
11878 config->mode_changed = true;
11879 }
11880 } else if (set->fb == NULL) {
11881 config->mode_changed = true;
11882 } else if (set->fb->pixel_format !=
11883 set->crtc->primary->fb->pixel_format) {
11884 config->mode_changed = true;
11885 } else {
11886 config->fb_changed = true;
11887 }
11888 }
11889
11890 if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
11891 config->fb_changed = true;
11892
11893 if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
11894 DRM_DEBUG_KMS("modes are different, full mode set\n");
11895 drm_mode_debug_printmodeline(&set->crtc->mode);
11896 drm_mode_debug_printmodeline(set->mode);
11897 config->mode_changed = true;
11898 }
11899
11900 DRM_DEBUG_KMS("computed changes for [CRTC:%d], mode_changed=%d, fb_changed=%d\n",
11901 set->crtc->base.id, config->mode_changed, config->fb_changed);
11902 }
11903
11904 static int
intel_modeset_stage_output_state(struct drm_device * dev,struct drm_mode_set * set,struct intel_set_config * config,struct drm_atomic_state * state)11905 intel_modeset_stage_output_state(struct drm_device *dev,
11906 struct drm_mode_set *set,
11907 struct intel_set_config *config,
11908 struct drm_atomic_state *state)
11909 {
11910 struct intel_connector *connector;
11911 struct drm_connector_state *connector_state;
11912 struct intel_encoder *encoder;
11913 struct intel_crtc *crtc;
11914 int ro;
11915
11916 /* The upper layers ensure that we either disable a crtc or have a list
11917 * of connectors. For paranoia, double-check this. */
11918 WARN_ON(!set->fb && (set->num_connectors != 0));
11919 WARN_ON(set->fb && (set->num_connectors == 0));
11920
11921 for_each_intel_connector(dev, connector) {
11922 /* Otherwise traverse passed in connector list and get encoders
11923 * for them. */
11924 for (ro = 0; ro < set->num_connectors; ro++) {
11925 if (set->connectors[ro] == &connector->base) {
11926 connector->new_encoder = intel_find_encoder(connector, to_intel_crtc(set->crtc)->pipe);
11927 break;
11928 }
11929 }
11930
11931 /* If we disable the crtc, disable all its connectors. Also, if
11932 * the connector is on the changing crtc but not on the new
11933 * connector list, disable it. */
11934 if ((!set->fb || ro == set->num_connectors) &&
11935 connector->base.encoder &&
11936 connector->base.encoder->crtc == set->crtc) {
11937 connector->new_encoder = NULL;
11938
11939 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
11940 connector->base.base.id,
11941 connector->base.name);
11942 }
11943
11944
11945 if (&connector->new_encoder->base != connector->base.encoder) {
11946 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] encoder changed, full mode switch\n",
11947 connector->base.base.id,
11948 connector->base.name);
11949 config->mode_changed = true;
11950 }
11951 }
11952 /* connector->new_encoder is now updated for all connectors. */
11953
11954 /* Update crtc of enabled connectors. */
11955 for_each_intel_connector(dev, connector) {
11956 struct drm_crtc *new_crtc;
11957
11958 if (!connector->new_encoder)
11959 continue;
11960
11961 new_crtc = connector->new_encoder->base.crtc;
11962
11963 for (ro = 0; ro < set->num_connectors; ro++) {
11964 if (set->connectors[ro] == &connector->base)
11965 new_crtc = set->crtc;
11966 }
11967
11968 /* Make sure the new CRTC will work with the encoder */
11969 if (!drm_encoder_crtc_ok(&connector->new_encoder->base,
11970 new_crtc)) {
11971 return -EINVAL;
11972 }
11973 connector->new_encoder->new_crtc = to_intel_crtc(new_crtc);
11974
11975 connector_state =
11976 drm_atomic_get_connector_state(state, &connector->base);
11977 if (IS_ERR(connector_state))
11978 return PTR_ERR(connector_state);
11979
11980 connector_state->crtc = new_crtc;
11981 connector_state->best_encoder = &connector->new_encoder->base;
11982
11983 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
11984 connector->base.base.id,
11985 connector->base.name,
11986 new_crtc->base.id);
11987 }
11988
11989 /* Check for any encoders that needs to be disabled. */
11990 for_each_intel_encoder(dev, encoder) {
11991 int num_connectors = 0;
11992 for_each_intel_connector(dev, connector) {
11993 if (connector->new_encoder == encoder) {
11994 WARN_ON(!connector->new_encoder->new_crtc);
11995 num_connectors++;
11996 }
11997 }
11998
11999 if (num_connectors == 0)
12000 encoder->new_crtc = NULL;
12001 else if (num_connectors > 1)
12002 return -EINVAL;
12003
12004 /* Only now check for crtc changes so we don't miss encoders
12005 * that will be disabled. */
12006 if (&encoder->new_crtc->base != encoder->base.crtc) {
12007 DRM_DEBUG_KMS("[ENCODER:%d:%s] crtc changed, full mode switch\n",
12008 encoder->base.base.id,
12009 encoder->base.name);
12010 config->mode_changed = true;
12011 }
12012 }
12013 /* Now we've also updated encoder->new_crtc for all encoders. */
12014 for_each_intel_connector(dev, connector) {
12015 connector_state =
12016 drm_atomic_get_connector_state(state, &connector->base);
12017 if (IS_ERR(connector_state))
12018 return PTR_ERR(connector_state);
12019
12020 if (connector->new_encoder) {
12021 if (connector->new_encoder != connector->encoder)
12022 connector->encoder = connector->new_encoder;
12023 } else {
12024 connector_state->crtc = NULL;
12025 }
12026 }
12027 for_each_intel_crtc(dev, crtc) {
12028 crtc->new_enabled = false;
12029
12030 for_each_intel_encoder(dev, encoder) {
12031 if (encoder->new_crtc == crtc) {
12032 crtc->new_enabled = true;
12033 break;
12034 }
12035 }
12036
12037 if (crtc->new_enabled != crtc->base.state->enable) {
12038 DRM_DEBUG_KMS("[CRTC:%d] %sabled, full mode switch\n",
12039 crtc->base.base.id,
12040 crtc->new_enabled ? "en" : "dis");
12041 config->mode_changed = true;
12042 }
12043
12044 if (crtc->new_enabled)
12045 crtc->new_config = crtc->config;
12046 else
12047 crtc->new_config = NULL;
12048 }
12049
12050 return 0;
12051 }
12052
disable_crtc_nofb(struct intel_crtc * crtc)12053 static void disable_crtc_nofb(struct intel_crtc *crtc)
12054 {
12055 struct drm_device *dev = crtc->base.dev;
12056 struct intel_encoder *encoder;
12057 struct intel_connector *connector;
12058
12059 DRM_DEBUG_KMS("Trying to restore without FB -> disabling pipe %c\n",
12060 pipe_name(crtc->pipe));
12061
12062 for_each_intel_connector(dev, connector) {
12063 if (connector->new_encoder &&
12064 connector->new_encoder->new_crtc == crtc)
12065 connector->new_encoder = NULL;
12066 }
12067
12068 for_each_intel_encoder(dev, encoder) {
12069 if (encoder->new_crtc == crtc)
12070 encoder->new_crtc = NULL;
12071 }
12072
12073 crtc->new_enabled = false;
12074 crtc->new_config = NULL;
12075 }
12076
intel_crtc_set_config(struct drm_mode_set * set)12077 static int intel_crtc_set_config(struct drm_mode_set *set)
12078 {
12079 struct drm_device *dev;
12080 struct drm_mode_set save_set;
12081 struct drm_atomic_state *state = NULL;
12082 struct intel_set_config *config;
12083 struct intel_crtc_state *pipe_config;
12084 unsigned modeset_pipes, prepare_pipes, disable_pipes;
12085 int ret;
12086
12087 BUG_ON(!set);
12088 BUG_ON(!set->crtc);
12089 BUG_ON(!set->crtc->helper_private);
12090
12091 /* Enforce sane interface api - has been abused by the fb helper. */
12092 BUG_ON(!set->mode && set->fb);
12093 BUG_ON(set->fb && set->num_connectors == 0);
12094
12095 if (set->fb) {
12096 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
12097 set->crtc->base.id, set->fb->base.id,
12098 (int)set->num_connectors, set->x, set->y);
12099 } else {
12100 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
12101 }
12102
12103 dev = set->crtc->dev;
12104
12105 ret = -ENOMEM;
12106 config = kzalloc(sizeof(*config), GFP_KERNEL);
12107 if (!config)
12108 goto out_config;
12109
12110 ret = intel_set_config_save_state(dev, config);
12111 if (ret)
12112 goto out_config;
12113
12114 save_set.crtc = set->crtc;
12115 save_set.mode = &set->crtc->mode;
12116 save_set.x = set->crtc->x;
12117 save_set.y = set->crtc->y;
12118 save_set.fb = set->crtc->primary->fb;
12119
12120 /* Compute whether we need a full modeset, only an fb base update or no
12121 * change at all. In the future we might also check whether only the
12122 * mode changed, e.g. for LVDS where we only change the panel fitter in
12123 * such cases. */
12124 intel_set_config_compute_mode_changes(set, config);
12125
12126 state = drm_atomic_state_alloc(dev);
12127 if (!state) {
12128 ret = -ENOMEM;
12129 goto out_config;
12130 }
12131
12132 state->acquire_ctx = dev->mode_config.acquire_ctx;
12133
12134 ret = intel_modeset_stage_output_state(dev, set, config, state);
12135 if (ret)
12136 goto fail;
12137
12138 pipe_config = intel_modeset_compute_config(set->crtc, set->mode,
12139 set->fb, state,
12140 &modeset_pipes,
12141 &prepare_pipes,
12142 &disable_pipes);
12143 if (IS_ERR(pipe_config)) {
12144 ret = PTR_ERR(pipe_config);
12145 goto fail;
12146 } else if (pipe_config) {
12147 if (pipe_config->has_audio !=
12148 to_intel_crtc(set->crtc)->config->has_audio)
12149 config->mode_changed = true;
12150
12151 /*
12152 * Note we have an issue here with infoframes: current code
12153 * only updates them on the full mode set path per hw
12154 * requirements. So here we should be checking for any
12155 * required changes and forcing a mode set.
12156 */
12157 }
12158
12159 intel_update_pipe_size(to_intel_crtc(set->crtc));
12160
12161 if (config->mode_changed) {
12162 ret = intel_set_mode_pipes(set->crtc, set->mode,
12163 set->x, set->y, set->fb, pipe_config,
12164 modeset_pipes, prepare_pipes,
12165 disable_pipes);
12166 } else if (config->fb_changed) {
12167 struct intel_crtc *intel_crtc = to_intel_crtc(set->crtc);
12168 struct drm_plane *primary = set->crtc->primary;
12169 int vdisplay, hdisplay;
12170
12171 drm_crtc_get_hv_timing(set->mode, &hdisplay, &vdisplay);
12172 ret = primary->funcs->update_plane(primary, set->crtc, set->fb,
12173 0, 0, hdisplay, vdisplay,
12174 set->x << 16, set->y << 16,
12175 hdisplay << 16, vdisplay << 16);
12176
12177 /*
12178 * We need to make sure the primary plane is re-enabled if it
12179 * has previously been turned off.
12180 */
12181 if (!intel_crtc->primary_enabled && ret == 0) {
12182 WARN_ON(!intel_crtc->active);
12183 intel_enable_primary_hw_plane(set->crtc->primary, set->crtc);
12184 }
12185
12186 /*
12187 * In the fastboot case this may be our only check of the
12188 * state after boot. It would be better to only do it on
12189 * the first update, but we don't have a nice way of doing that
12190 * (and really, set_config isn't used much for high freq page
12191 * flipping, so increasing its cost here shouldn't be a big
12192 * deal).
12193 */
12194 if (i915.fastboot && ret == 0)
12195 intel_modeset_check_state(set->crtc->dev);
12196 }
12197
12198 if (ret) {
12199 DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
12200 set->crtc->base.id, ret);
12201 fail:
12202 intel_set_config_restore_state(dev, config);
12203
12204 drm_atomic_state_clear(state);
12205
12206 /*
12207 * HACK: if the pipe was on, but we didn't have a framebuffer,
12208 * force the pipe off to avoid oopsing in the modeset code
12209 * due to fb==NULL. This should only happen during boot since
12210 * we don't yet reconstruct the FB from the hardware state.
12211 */
12212 if (to_intel_crtc(save_set.crtc)->new_enabled && !save_set.fb)
12213 disable_crtc_nofb(to_intel_crtc(save_set.crtc));
12214
12215 /* Try to restore the config */
12216 if (config->mode_changed &&
12217 intel_set_mode(save_set.crtc, save_set.mode,
12218 save_set.x, save_set.y, save_set.fb,
12219 state))
12220 DRM_ERROR("failed to restore config after modeset failure\n");
12221 }
12222
12223 out_config:
12224 if (state)
12225 drm_atomic_state_free(state);
12226
12227 intel_set_config_free(config);
12228 return ret;
12229 }
12230
12231 static const struct drm_crtc_funcs intel_crtc_funcs = {
12232 .gamma_set = intel_crtc_gamma_set,
12233 .set_config = intel_crtc_set_config,
12234 .destroy = intel_crtc_destroy,
12235 .page_flip = intel_crtc_page_flip,
12236 .atomic_duplicate_state = intel_crtc_duplicate_state,
12237 .atomic_destroy_state = intel_crtc_destroy_state,
12238 };
12239
ibx_pch_dpll_get_hw_state(struct drm_i915_private * dev_priv,struct intel_shared_dpll * pll,struct intel_dpll_hw_state * hw_state)12240 static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
12241 struct intel_shared_dpll *pll,
12242 struct intel_dpll_hw_state *hw_state)
12243 {
12244 uint32_t val;
12245
12246 if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
12247 return false;
12248
12249 val = I915_READ(PCH_DPLL(pll->id));
12250 hw_state->dpll = val;
12251 hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
12252 hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
12253
12254 return val & DPLL_VCO_ENABLE;
12255 }
12256
ibx_pch_dpll_mode_set(struct drm_i915_private * dev_priv,struct intel_shared_dpll * pll)12257 static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
12258 struct intel_shared_dpll *pll)
12259 {
12260 I915_WRITE(PCH_FP0(pll->id), pll->config.hw_state.fp0);
12261 I915_WRITE(PCH_FP1(pll->id), pll->config.hw_state.fp1);
12262 }
12263
ibx_pch_dpll_enable(struct drm_i915_private * dev_priv,struct intel_shared_dpll * pll)12264 static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
12265 struct intel_shared_dpll *pll)
12266 {
12267 /* PCH refclock must be enabled first */
12268 ibx_assert_pch_refclk_enabled(dev_priv);
12269
12270 I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
12271
12272 /* Wait for the clocks to stabilize. */
12273 POSTING_READ(PCH_DPLL(pll->id));
12274 udelay(150);
12275
12276 /* The pixel multiplier can only be updated once the
12277 * DPLL is enabled and the clocks are stable.
12278 *
12279 * So write it again.
12280 */
12281 I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
12282 POSTING_READ(PCH_DPLL(pll->id));
12283 udelay(200);
12284 }
12285
ibx_pch_dpll_disable(struct drm_i915_private * dev_priv,struct intel_shared_dpll * pll)12286 static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
12287 struct intel_shared_dpll *pll)
12288 {
12289 struct drm_device *dev = dev_priv->dev;
12290 struct intel_crtc *crtc;
12291
12292 /* Make sure no transcoder isn't still depending on us. */
12293 for_each_intel_crtc(dev, crtc) {
12294 if (intel_crtc_to_shared_dpll(crtc) == pll)
12295 assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
12296 }
12297
12298 I915_WRITE(PCH_DPLL(pll->id), 0);
12299 POSTING_READ(PCH_DPLL(pll->id));
12300 udelay(200);
12301 }
12302
12303 static char *ibx_pch_dpll_names[] = {
12304 "PCH DPLL A",
12305 "PCH DPLL B",
12306 };
12307
ibx_pch_dpll_init(struct drm_device * dev)12308 static void ibx_pch_dpll_init(struct drm_device *dev)
12309 {
12310 struct drm_i915_private *dev_priv = dev->dev_private;
12311 int i;
12312
12313 dev_priv->num_shared_dpll = 2;
12314
12315 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
12316 dev_priv->shared_dplls[i].id = i;
12317 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
12318 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
12319 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
12320 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
12321 dev_priv->shared_dplls[i].get_hw_state =
12322 ibx_pch_dpll_get_hw_state;
12323 }
12324 }
12325
intel_shared_dpll_init(struct drm_device * dev)12326 static void intel_shared_dpll_init(struct drm_device *dev)
12327 {
12328 struct drm_i915_private *dev_priv = dev->dev_private;
12329
12330 if (HAS_DDI(dev))
12331 intel_ddi_pll_init(dev);
12332 else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
12333 ibx_pch_dpll_init(dev);
12334 else
12335 dev_priv->num_shared_dpll = 0;
12336
12337 BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
12338 }
12339
12340 /**
12341 * intel_wm_need_update - Check whether watermarks need updating
12342 * @plane: drm plane
12343 * @state: new plane state
12344 *
12345 * Check current plane state versus the new one to determine whether
12346 * watermarks need to be recalculated.
12347 *
12348 * Returns true or false.
12349 */
intel_wm_need_update(struct drm_plane * plane,struct drm_plane_state * state)12350 bool intel_wm_need_update(struct drm_plane *plane,
12351 struct drm_plane_state *state)
12352 {
12353 /* Update watermarks on tiling changes. */
12354 if (!plane->state->fb || !state->fb ||
12355 plane->state->fb->modifier[0] != state->fb->modifier[0] ||
12356 plane->state->rotation != state->rotation)
12357 return true;
12358
12359 return false;
12360 }
12361
12362 /**
12363 * intel_prepare_plane_fb - Prepare fb for usage on plane
12364 * @plane: drm plane to prepare for
12365 * @fb: framebuffer to prepare for presentation
12366 *
12367 * Prepares a framebuffer for usage on a display plane. Generally this
12368 * involves pinning the underlying object and updating the frontbuffer tracking
12369 * bits. Some older platforms need special physical address handling for
12370 * cursor planes.
12371 *
12372 * Returns 0 on success, negative error code on failure.
12373 */
12374 int
intel_prepare_plane_fb(struct drm_plane * plane,struct drm_framebuffer * fb,const struct drm_plane_state * new_state)12375 intel_prepare_plane_fb(struct drm_plane *plane,
12376 struct drm_framebuffer *fb,
12377 const struct drm_plane_state *new_state)
12378 {
12379 struct drm_device *dev = plane->dev;
12380 struct intel_plane *intel_plane = to_intel_plane(plane);
12381 enum pipe pipe = intel_plane->pipe;
12382 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
12383 struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->fb);
12384 unsigned frontbuffer_bits = 0;
12385 int ret = 0;
12386
12387 if (!obj)
12388 return 0;
12389
12390 switch (plane->type) {
12391 case DRM_PLANE_TYPE_PRIMARY:
12392 frontbuffer_bits = INTEL_FRONTBUFFER_PRIMARY(pipe);
12393 break;
12394 case DRM_PLANE_TYPE_CURSOR:
12395 frontbuffer_bits = INTEL_FRONTBUFFER_CURSOR(pipe);
12396 break;
12397 case DRM_PLANE_TYPE_OVERLAY:
12398 frontbuffer_bits = INTEL_FRONTBUFFER_SPRITE(pipe);
12399 break;
12400 }
12401
12402 mutex_lock(&dev->struct_mutex);
12403
12404 if (plane->type == DRM_PLANE_TYPE_CURSOR &&
12405 INTEL_INFO(dev)->cursor_needs_physical) {
12406 int align = IS_I830(dev) ? 16 * 1024 : 256;
12407 ret = i915_gem_object_attach_phys(obj, align);
12408 if (ret)
12409 DRM_DEBUG_KMS("failed to attach phys object\n");
12410 } else {
12411 ret = intel_pin_and_fence_fb_obj(plane, fb, new_state, NULL);
12412 }
12413
12414 if (ret == 0)
12415 i915_gem_track_fb(old_obj, obj, frontbuffer_bits);
12416
12417 mutex_unlock(&dev->struct_mutex);
12418
12419 return ret;
12420 }
12421
12422 /**
12423 * intel_cleanup_plane_fb - Cleans up an fb after plane use
12424 * @plane: drm plane to clean up for
12425 * @fb: old framebuffer that was on plane
12426 *
12427 * Cleans up a framebuffer that has just been removed from a plane.
12428 */
12429 void
intel_cleanup_plane_fb(struct drm_plane * plane,struct drm_framebuffer * fb,const struct drm_plane_state * old_state)12430 intel_cleanup_plane_fb(struct drm_plane *plane,
12431 struct drm_framebuffer *fb,
12432 const struct drm_plane_state *old_state)
12433 {
12434 struct drm_device *dev = plane->dev;
12435 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
12436
12437 if (WARN_ON(!obj))
12438 return;
12439
12440 if (plane->type != DRM_PLANE_TYPE_CURSOR ||
12441 !INTEL_INFO(dev)->cursor_needs_physical) {
12442 mutex_lock(&dev->struct_mutex);
12443 intel_unpin_fb_obj(fb, old_state);
12444 mutex_unlock(&dev->struct_mutex);
12445 }
12446 }
12447
12448 static int
intel_check_primary_plane(struct drm_plane * plane,struct intel_plane_state * state)12449 intel_check_primary_plane(struct drm_plane *plane,
12450 struct intel_plane_state *state)
12451 {
12452 struct drm_device *dev = plane->dev;
12453 struct drm_i915_private *dev_priv = dev->dev_private;
12454 struct drm_crtc *crtc = state->base.crtc;
12455 struct intel_crtc *intel_crtc;
12456 struct drm_framebuffer *fb = state->base.fb;
12457 struct drm_rect *dest = &state->dst;
12458 struct drm_rect *src = &state->src;
12459 const struct drm_rect *clip = &state->clip;
12460 int ret;
12461
12462 crtc = crtc ? crtc : plane->crtc;
12463 intel_crtc = to_intel_crtc(crtc);
12464
12465 ret = drm_plane_helper_check_update(plane, crtc, fb,
12466 src, dest, clip,
12467 DRM_PLANE_HELPER_NO_SCALING,
12468 DRM_PLANE_HELPER_NO_SCALING,
12469 false, true, &state->visible);
12470 if (ret)
12471 return ret;
12472
12473 if (intel_crtc->active) {
12474 intel_crtc->atomic.wait_for_flips = true;
12475
12476 /*
12477 * FBC does not work on some platforms for rotated
12478 * planes, so disable it when rotation is not 0 and
12479 * update it when rotation is set back to 0.
12480 *
12481 * FIXME: This is redundant with the fbc update done in
12482 * the primary plane enable function except that that
12483 * one is done too late. We eventually need to unify
12484 * this.
12485 */
12486 if (intel_crtc->primary_enabled &&
12487 INTEL_INFO(dev)->gen <= 4 && !IS_G4X(dev) &&
12488 dev_priv->fbc.crtc == intel_crtc &&
12489 state->base.rotation != BIT(DRM_ROTATE_0)) {
12490 intel_crtc->atomic.disable_fbc = true;
12491 }
12492
12493 if (state->visible) {
12494 /*
12495 * BDW signals flip done immediately if the plane
12496 * is disabled, even if the plane enable is already
12497 * armed to occur at the next vblank :(
12498 */
12499 if (IS_BROADWELL(dev) && !intel_crtc->primary_enabled)
12500 intel_crtc->atomic.wait_vblank = true;
12501 }
12502
12503 /*
12504 * FIXME: Actually if we will still have any other plane enabled
12505 * on the pipe we could let IPS enabled still, but for
12506 * now lets consider that when we make primary invisible
12507 * by setting DSPCNTR to 0 on update_primary_plane function
12508 * IPS needs to be disable.
12509 */
12510 if (!state->visible || !fb)
12511 intel_crtc->atomic.disable_ips = true;
12512
12513 intel_crtc->atomic.fb_bits |=
12514 INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe);
12515
12516 intel_crtc->atomic.update_fbc = true;
12517
12518 if (intel_wm_need_update(plane, &state->base))
12519 intel_crtc->atomic.update_wm = true;
12520 }
12521
12522 return 0;
12523 }
12524
12525 static void
intel_commit_primary_plane(struct drm_plane * plane,struct intel_plane_state * state)12526 intel_commit_primary_plane(struct drm_plane *plane,
12527 struct intel_plane_state *state)
12528 {
12529 struct drm_crtc *crtc = state->base.crtc;
12530 struct drm_framebuffer *fb = state->base.fb;
12531 struct drm_device *dev = plane->dev;
12532 struct drm_i915_private *dev_priv = dev->dev_private;
12533 struct intel_crtc *intel_crtc;
12534 struct drm_rect *src = &state->src;
12535
12536 crtc = crtc ? crtc : plane->crtc;
12537 intel_crtc = to_intel_crtc(crtc);
12538
12539 plane->fb = fb;
12540 crtc->x = src->x1 >> 16;
12541 crtc->y = src->y1 >> 16;
12542
12543 if (intel_crtc->active) {
12544 if (state->visible) {
12545 /* FIXME: kill this fastboot hack */
12546 intel_update_pipe_size(intel_crtc);
12547
12548 intel_crtc->primary_enabled = true;
12549
12550 dev_priv->display.update_primary_plane(crtc, plane->fb,
12551 crtc->x, crtc->y);
12552 } else {
12553 /*
12554 * If clipping results in a non-visible primary plane,
12555 * we'll disable the primary plane. Note that this is
12556 * a bit different than what happens if userspace
12557 * explicitly disables the plane by passing fb=0
12558 * because plane->fb still gets set and pinned.
12559 */
12560 intel_disable_primary_hw_plane(plane, crtc);
12561 }
12562 }
12563 }
12564
intel_begin_crtc_commit(struct drm_crtc * crtc)12565 static void intel_begin_crtc_commit(struct drm_crtc *crtc)
12566 {
12567 struct drm_device *dev = crtc->dev;
12568 struct drm_i915_private *dev_priv = dev->dev_private;
12569 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12570 struct intel_plane *intel_plane;
12571 struct drm_plane *p;
12572 unsigned fb_bits = 0;
12573
12574 /* Track fb's for any planes being disabled */
12575 list_for_each_entry(p, &dev->mode_config.plane_list, head) {
12576 intel_plane = to_intel_plane(p);
12577
12578 if (intel_crtc->atomic.disabled_planes &
12579 (1 << drm_plane_index(p))) {
12580 switch (p->type) {
12581 case DRM_PLANE_TYPE_PRIMARY:
12582 fb_bits = INTEL_FRONTBUFFER_PRIMARY(intel_plane->pipe);
12583 break;
12584 case DRM_PLANE_TYPE_CURSOR:
12585 fb_bits = INTEL_FRONTBUFFER_CURSOR(intel_plane->pipe);
12586 break;
12587 case DRM_PLANE_TYPE_OVERLAY:
12588 fb_bits = INTEL_FRONTBUFFER_SPRITE(intel_plane->pipe);
12589 break;
12590 }
12591
12592 mutex_lock(&dev->struct_mutex);
12593 i915_gem_track_fb(intel_fb_obj(p->fb), NULL, fb_bits);
12594 mutex_unlock(&dev->struct_mutex);
12595 }
12596 }
12597
12598 if (intel_crtc->atomic.wait_for_flips)
12599 intel_crtc_wait_for_pending_flips(crtc);
12600
12601 if (intel_crtc->atomic.disable_fbc)
12602 intel_fbc_disable(dev);
12603
12604 if (intel_crtc->atomic.disable_ips)
12605 hsw_disable_ips(intel_crtc);
12606
12607 if (intel_crtc->atomic.pre_disable_primary)
12608 intel_pre_disable_primary(crtc);
12609
12610 if (intel_crtc->atomic.update_wm)
12611 intel_update_watermarks(crtc);
12612
12613 intel_runtime_pm_get(dev_priv);
12614
12615 /* Perform vblank evasion around commit operation */
12616 if (intel_crtc->active)
12617 intel_crtc->atomic.evade =
12618 intel_pipe_update_start(intel_crtc,
12619 &intel_crtc->atomic.start_vbl_count);
12620 }
12621
intel_finish_crtc_commit(struct drm_crtc * crtc)12622 static void intel_finish_crtc_commit(struct drm_crtc *crtc)
12623 {
12624 struct drm_device *dev = crtc->dev;
12625 struct drm_i915_private *dev_priv = dev->dev_private;
12626 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12627 struct drm_plane *p;
12628
12629 if (intel_crtc->atomic.evade)
12630 intel_pipe_update_end(intel_crtc,
12631 intel_crtc->atomic.start_vbl_count);
12632
12633 intel_runtime_pm_put(dev_priv);
12634
12635 if (intel_crtc->atomic.wait_vblank)
12636 intel_wait_for_vblank(dev, intel_crtc->pipe);
12637
12638 intel_frontbuffer_flip(dev, intel_crtc->atomic.fb_bits);
12639
12640 if (intel_crtc->atomic.update_fbc) {
12641 mutex_lock(&dev->struct_mutex);
12642 intel_fbc_update(dev);
12643 mutex_unlock(&dev->struct_mutex);
12644 }
12645
12646 if (intel_crtc->atomic.post_enable_primary)
12647 intel_post_enable_primary(crtc);
12648
12649 drm_for_each_legacy_plane(p, &dev->mode_config.plane_list)
12650 if (intel_crtc->atomic.update_sprite_watermarks & drm_plane_index(p))
12651 intel_update_sprite_watermarks(p, crtc, 0, 0, 0,
12652 false, false);
12653
12654 memset(&intel_crtc->atomic, 0, sizeof(intel_crtc->atomic));
12655 }
12656
12657 /**
12658 * intel_plane_destroy - destroy a plane
12659 * @plane: plane to destroy
12660 *
12661 * Common destruction function for all types of planes (primary, cursor,
12662 * sprite).
12663 */
intel_plane_destroy(struct drm_plane * plane)12664 void intel_plane_destroy(struct drm_plane *plane)
12665 {
12666 struct intel_plane *intel_plane = to_intel_plane(plane);
12667 drm_plane_cleanup(plane);
12668 kfree(intel_plane);
12669 }
12670
12671 const struct drm_plane_funcs intel_plane_funcs = {
12672 .update_plane = drm_plane_helper_update,
12673 .disable_plane = drm_plane_helper_disable,
12674 .destroy = intel_plane_destroy,
12675 .set_property = drm_atomic_helper_plane_set_property,
12676 .atomic_get_property = intel_plane_atomic_get_property,
12677 .atomic_set_property = intel_plane_atomic_set_property,
12678 .atomic_duplicate_state = intel_plane_duplicate_state,
12679 .atomic_destroy_state = intel_plane_destroy_state,
12680
12681 };
12682
intel_primary_plane_create(struct drm_device * dev,int pipe)12683 static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
12684 int pipe)
12685 {
12686 struct intel_plane *primary;
12687 struct intel_plane_state *state;
12688 const uint32_t *intel_primary_formats;
12689 int num_formats;
12690
12691 primary = kzalloc(sizeof(*primary), GFP_KERNEL);
12692 if (primary == NULL)
12693 return NULL;
12694
12695 state = intel_create_plane_state(&primary->base);
12696 if (!state) {
12697 kfree(primary);
12698 return NULL;
12699 }
12700 primary->base.state = &state->base;
12701
12702 primary->can_scale = false;
12703 primary->max_downscale = 1;
12704 primary->pipe = pipe;
12705 primary->plane = pipe;
12706 primary->check_plane = intel_check_primary_plane;
12707 primary->commit_plane = intel_commit_primary_plane;
12708 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
12709 primary->plane = !pipe;
12710
12711 if (INTEL_INFO(dev)->gen <= 3) {
12712 intel_primary_formats = intel_primary_formats_gen2;
12713 num_formats = ARRAY_SIZE(intel_primary_formats_gen2);
12714 } else {
12715 intel_primary_formats = intel_primary_formats_gen4;
12716 num_formats = ARRAY_SIZE(intel_primary_formats_gen4);
12717 }
12718
12719 drm_universal_plane_init(dev, &primary->base, 0,
12720 &intel_plane_funcs,
12721 intel_primary_formats, num_formats,
12722 DRM_PLANE_TYPE_PRIMARY);
12723
12724 if (INTEL_INFO(dev)->gen >= 4) {
12725 if (!dev->mode_config.rotation_property)
12726 dev->mode_config.rotation_property =
12727 drm_mode_create_rotation_property(dev,
12728 BIT(DRM_ROTATE_0) |
12729 BIT(DRM_ROTATE_180));
12730 if (dev->mode_config.rotation_property)
12731 drm_object_attach_property(&primary->base.base,
12732 dev->mode_config.rotation_property,
12733 state->base.rotation);
12734 }
12735
12736 drm_plane_helper_add(&primary->base, &intel_plane_helper_funcs);
12737
12738 return &primary->base;
12739 }
12740
12741 static int
intel_check_cursor_plane(struct drm_plane * plane,struct intel_plane_state * state)12742 intel_check_cursor_plane(struct drm_plane *plane,
12743 struct intel_plane_state *state)
12744 {
12745 struct drm_crtc *crtc = state->base.crtc;
12746 struct drm_device *dev = plane->dev;
12747 struct drm_framebuffer *fb = state->base.fb;
12748 struct drm_rect *dest = &state->dst;
12749 struct drm_rect *src = &state->src;
12750 const struct drm_rect *clip = &state->clip;
12751 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
12752 struct intel_crtc *intel_crtc;
12753 unsigned stride;
12754 int ret;
12755
12756 crtc = crtc ? crtc : plane->crtc;
12757 intel_crtc = to_intel_crtc(crtc);
12758
12759 ret = drm_plane_helper_check_update(plane, crtc, fb,
12760 src, dest, clip,
12761 DRM_PLANE_HELPER_NO_SCALING,
12762 DRM_PLANE_HELPER_NO_SCALING,
12763 true, true, &state->visible);
12764 if (ret)
12765 return ret;
12766
12767
12768 /* if we want to turn off the cursor ignore width and height */
12769 if (!obj)
12770 goto finish;
12771
12772 /* Check for which cursor types we support */
12773 if (!cursor_size_ok(dev, state->base.crtc_w, state->base.crtc_h)) {
12774 DRM_DEBUG("Cursor dimension %dx%d not supported\n",
12775 state->base.crtc_w, state->base.crtc_h);
12776 return -EINVAL;
12777 }
12778
12779 stride = roundup_pow_of_two(state->base.crtc_w) * 4;
12780 if (obj->base.size < stride * state->base.crtc_h) {
12781 DRM_DEBUG_KMS("buffer is too small\n");
12782 return -ENOMEM;
12783 }
12784
12785 if (fb->modifier[0] != DRM_FORMAT_MOD_NONE) {
12786 DRM_DEBUG_KMS("cursor cannot be tiled\n");
12787 ret = -EINVAL;
12788 }
12789
12790 finish:
12791 if (intel_crtc->active) {
12792 if (plane->state->crtc_w != state->base.crtc_w)
12793 intel_crtc->atomic.update_wm = true;
12794
12795 intel_crtc->atomic.fb_bits |=
12796 INTEL_FRONTBUFFER_CURSOR(intel_crtc->pipe);
12797 }
12798
12799 return ret;
12800 }
12801
12802 static void
intel_commit_cursor_plane(struct drm_plane * plane,struct intel_plane_state * state)12803 intel_commit_cursor_plane(struct drm_plane *plane,
12804 struct intel_plane_state *state)
12805 {
12806 struct drm_crtc *crtc = state->base.crtc;
12807 struct drm_device *dev = plane->dev;
12808 struct intel_crtc *intel_crtc;
12809 struct drm_i915_gem_object *obj = intel_fb_obj(state->base.fb);
12810 uint32_t addr;
12811
12812 crtc = crtc ? crtc : plane->crtc;
12813 intel_crtc = to_intel_crtc(crtc);
12814
12815 plane->fb = state->base.fb;
12816 crtc->cursor_x = state->base.crtc_x;
12817 crtc->cursor_y = state->base.crtc_y;
12818
12819 if (intel_crtc->cursor_bo == obj)
12820 goto update;
12821
12822 if (!obj)
12823 addr = 0;
12824 else if (!INTEL_INFO(dev)->cursor_needs_physical)
12825 addr = i915_gem_obj_ggtt_offset(obj);
12826 else
12827 addr = obj->phys_handle->busaddr;
12828
12829 intel_crtc->cursor_addr = addr;
12830 intel_crtc->cursor_bo = obj;
12831 update:
12832
12833 if (intel_crtc->active)
12834 intel_crtc_update_cursor(crtc, state->visible);
12835 }
12836
intel_cursor_plane_create(struct drm_device * dev,int pipe)12837 static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
12838 int pipe)
12839 {
12840 struct intel_plane *cursor;
12841 struct intel_plane_state *state;
12842
12843 cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
12844 if (cursor == NULL)
12845 return NULL;
12846
12847 state = intel_create_plane_state(&cursor->base);
12848 if (!state) {
12849 kfree(cursor);
12850 return NULL;
12851 }
12852 cursor->base.state = &state->base;
12853
12854 cursor->can_scale = false;
12855 cursor->max_downscale = 1;
12856 cursor->pipe = pipe;
12857 cursor->plane = pipe;
12858 cursor->check_plane = intel_check_cursor_plane;
12859 cursor->commit_plane = intel_commit_cursor_plane;
12860
12861 drm_universal_plane_init(dev, &cursor->base, 0,
12862 &intel_plane_funcs,
12863 intel_cursor_formats,
12864 ARRAY_SIZE(intel_cursor_formats),
12865 DRM_PLANE_TYPE_CURSOR);
12866
12867 if (INTEL_INFO(dev)->gen >= 4) {
12868 if (!dev->mode_config.rotation_property)
12869 dev->mode_config.rotation_property =
12870 drm_mode_create_rotation_property(dev,
12871 BIT(DRM_ROTATE_0) |
12872 BIT(DRM_ROTATE_180));
12873 if (dev->mode_config.rotation_property)
12874 drm_object_attach_property(&cursor->base.base,
12875 dev->mode_config.rotation_property,
12876 state->base.rotation);
12877 }
12878
12879 drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs);
12880
12881 return &cursor->base;
12882 }
12883
intel_crtc_init(struct drm_device * dev,int pipe)12884 static void intel_crtc_init(struct drm_device *dev, int pipe)
12885 {
12886 struct drm_i915_private *dev_priv = dev->dev_private;
12887 struct intel_crtc *intel_crtc;
12888 struct intel_crtc_state *crtc_state = NULL;
12889 struct drm_plane *primary = NULL;
12890 struct drm_plane *cursor = NULL;
12891 int i, ret;
12892
12893 intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
12894 if (intel_crtc == NULL)
12895 return;
12896
12897 crtc_state = kzalloc(sizeof(*crtc_state), GFP_KERNEL);
12898 if (!crtc_state)
12899 goto fail;
12900 intel_crtc_set_state(intel_crtc, crtc_state);
12901 crtc_state->base.crtc = &intel_crtc->base;
12902
12903 primary = intel_primary_plane_create(dev, pipe);
12904 if (!primary)
12905 goto fail;
12906
12907 cursor = intel_cursor_plane_create(dev, pipe);
12908 if (!cursor)
12909 goto fail;
12910
12911 ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
12912 cursor, &intel_crtc_funcs);
12913 if (ret)
12914 goto fail;
12915
12916 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
12917 for (i = 0; i < 256; i++) {
12918 intel_crtc->lut_r[i] = i;
12919 intel_crtc->lut_g[i] = i;
12920 intel_crtc->lut_b[i] = i;
12921 }
12922
12923 /*
12924 * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
12925 * is hooked to pipe B. Hence we want plane A feeding pipe B.
12926 */
12927 intel_crtc->pipe = pipe;
12928 intel_crtc->plane = pipe;
12929 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
12930 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
12931 intel_crtc->plane = !pipe;
12932 }
12933
12934 intel_crtc->cursor_base = ~0;
12935 intel_crtc->cursor_cntl = ~0;
12936 intel_crtc->cursor_size = ~0;
12937
12938 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
12939 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
12940 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
12941 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
12942
12943 INIT_WORK(&intel_crtc->mmio_flip.work, intel_mmio_flip_work_func);
12944
12945 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
12946
12947 WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
12948 return;
12949
12950 fail:
12951 if (primary)
12952 drm_plane_cleanup(primary);
12953 if (cursor)
12954 drm_plane_cleanup(cursor);
12955 kfree(crtc_state);
12956 kfree(intel_crtc);
12957 }
12958
intel_get_pipe_from_connector(struct intel_connector * connector)12959 enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
12960 {
12961 struct drm_encoder *encoder = connector->base.encoder;
12962 struct drm_device *dev = connector->base.dev;
12963
12964 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
12965
12966 if (!encoder || WARN_ON(!encoder->crtc))
12967 return INVALID_PIPE;
12968
12969 return to_intel_crtc(encoder->crtc)->pipe;
12970 }
12971
intel_get_pipe_from_crtc_id(struct drm_device * dev,void * data,struct drm_file * file)12972 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
12973 struct drm_file *file)
12974 {
12975 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
12976 struct drm_crtc *drmmode_crtc;
12977 struct intel_crtc *crtc;
12978
12979 drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
12980
12981 if (!drmmode_crtc) {
12982 DRM_ERROR("no such CRTC id\n");
12983 return -ENOENT;
12984 }
12985
12986 crtc = to_intel_crtc(drmmode_crtc);
12987 pipe_from_crtc_id->pipe = crtc->pipe;
12988
12989 return 0;
12990 }
12991
intel_encoder_clones(struct intel_encoder * encoder)12992 static int intel_encoder_clones(struct intel_encoder *encoder)
12993 {
12994 struct drm_device *dev = encoder->base.dev;
12995 struct intel_encoder *source_encoder;
12996 int index_mask = 0;
12997 int entry = 0;
12998
12999 for_each_intel_encoder(dev, source_encoder) {
13000 if (encoders_cloneable(encoder, source_encoder))
13001 index_mask |= (1 << entry);
13002
13003 entry++;
13004 }
13005
13006 return index_mask;
13007 }
13008
has_edp_a(struct drm_device * dev)13009 static bool has_edp_a(struct drm_device *dev)
13010 {
13011 struct drm_i915_private *dev_priv = dev->dev_private;
13012
13013 if (!IS_MOBILE(dev))
13014 return false;
13015
13016 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
13017 return false;
13018
13019 if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
13020 return false;
13021
13022 return true;
13023 }
13024
intel_crt_present(struct drm_device * dev)13025 static bool intel_crt_present(struct drm_device *dev)
13026 {
13027 struct drm_i915_private *dev_priv = dev->dev_private;
13028
13029 if (INTEL_INFO(dev)->gen >= 9)
13030 return false;
13031
13032 if (IS_HSW_ULT(dev) || IS_BDW_ULT(dev))
13033 return false;
13034
13035 if (IS_CHERRYVIEW(dev))
13036 return false;
13037
13038 if (IS_VALLEYVIEW(dev) && !dev_priv->vbt.int_crt_support)
13039 return false;
13040
13041 return true;
13042 }
13043
intel_setup_outputs(struct drm_device * dev)13044 static void intel_setup_outputs(struct drm_device *dev)
13045 {
13046 struct drm_i915_private *dev_priv = dev->dev_private;
13047 struct intel_encoder *encoder;
13048 bool dpd_is_edp = false;
13049
13050 intel_lvds_init(dev);
13051
13052 if (intel_crt_present(dev))
13053 intel_crt_init(dev);
13054
13055 if (HAS_DDI(dev)) {
13056 int found;
13057
13058 /*
13059 * Haswell uses DDI functions to detect digital outputs.
13060 * On SKL pre-D0 the strap isn't connected, so we assume
13061 * it's there.
13062 */
13063 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
13064 /* WaIgnoreDDIAStrap: skl */
13065 if (found ||
13066 (IS_SKYLAKE(dev) && INTEL_REVID(dev) < SKL_REVID_D0))
13067 intel_ddi_init(dev, PORT_A);
13068
13069 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
13070 * register */
13071 found = I915_READ(SFUSE_STRAP);
13072
13073 if (found & SFUSE_STRAP_DDIB_DETECTED)
13074 intel_ddi_init(dev, PORT_B);
13075 if (found & SFUSE_STRAP_DDIC_DETECTED)
13076 intel_ddi_init(dev, PORT_C);
13077 if (found & SFUSE_STRAP_DDID_DETECTED)
13078 intel_ddi_init(dev, PORT_D);
13079 } else if (HAS_PCH_SPLIT(dev)) {
13080 int found;
13081 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
13082
13083 if (has_edp_a(dev))
13084 intel_dp_init(dev, DP_A, PORT_A);
13085
13086 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
13087 /* PCH SDVOB multiplex with HDMIB */
13088 found = intel_sdvo_init(dev, PCH_SDVOB, true);
13089 if (!found)
13090 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
13091 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
13092 intel_dp_init(dev, PCH_DP_B, PORT_B);
13093 }
13094
13095 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
13096 intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
13097
13098 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
13099 intel_hdmi_init(dev, PCH_HDMID, PORT_D);
13100
13101 if (I915_READ(PCH_DP_C) & DP_DETECTED)
13102 intel_dp_init(dev, PCH_DP_C, PORT_C);
13103
13104 if (I915_READ(PCH_DP_D) & DP_DETECTED)
13105 intel_dp_init(dev, PCH_DP_D, PORT_D);
13106 } else if (IS_VALLEYVIEW(dev)) {
13107 /*
13108 * The DP_DETECTED bit is the latched state of the DDC
13109 * SDA pin at boot. However since eDP doesn't require DDC
13110 * (no way to plug in a DP->HDMI dongle) the DDC pins for
13111 * eDP ports may have been muxed to an alternate function.
13112 * Thus we can't rely on the DP_DETECTED bit alone to detect
13113 * eDP ports. Consult the VBT as well as DP_DETECTED to
13114 * detect eDP ports.
13115 */
13116 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED &&
13117 !intel_dp_is_edp(dev, PORT_B))
13118 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
13119 PORT_B);
13120 if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED ||
13121 intel_dp_is_edp(dev, PORT_B))
13122 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
13123
13124 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED &&
13125 !intel_dp_is_edp(dev, PORT_C))
13126 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
13127 PORT_C);
13128 if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED ||
13129 intel_dp_is_edp(dev, PORT_C))
13130 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
13131
13132 if (IS_CHERRYVIEW(dev)) {
13133 if (I915_READ(VLV_DISPLAY_BASE + CHV_HDMID) & SDVO_DETECTED)
13134 intel_hdmi_init(dev, VLV_DISPLAY_BASE + CHV_HDMID,
13135 PORT_D);
13136 /* eDP not supported on port D, so don't check VBT */
13137 if (I915_READ(VLV_DISPLAY_BASE + DP_D) & DP_DETECTED)
13138 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_D, PORT_D);
13139 }
13140
13141 intel_dsi_init(dev);
13142 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
13143 bool found = false;
13144
13145 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
13146 DRM_DEBUG_KMS("probing SDVOB\n");
13147 found = intel_sdvo_init(dev, GEN3_SDVOB, true);
13148 if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
13149 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
13150 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
13151 }
13152
13153 if (!found && SUPPORTS_INTEGRATED_DP(dev))
13154 intel_dp_init(dev, DP_B, PORT_B);
13155 }
13156
13157 /* Before G4X SDVOC doesn't have its own detect register */
13158
13159 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
13160 DRM_DEBUG_KMS("probing SDVOC\n");
13161 found = intel_sdvo_init(dev, GEN3_SDVOC, false);
13162 }
13163
13164 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
13165
13166 if (SUPPORTS_INTEGRATED_HDMI(dev)) {
13167 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
13168 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
13169 }
13170 if (SUPPORTS_INTEGRATED_DP(dev))
13171 intel_dp_init(dev, DP_C, PORT_C);
13172 }
13173
13174 if (SUPPORTS_INTEGRATED_DP(dev) &&
13175 (I915_READ(DP_D) & DP_DETECTED))
13176 intel_dp_init(dev, DP_D, PORT_D);
13177 } else if (IS_GEN2(dev))
13178 intel_dvo_init(dev);
13179
13180 if (SUPPORTS_TV(dev))
13181 intel_tv_init(dev);
13182
13183 intel_psr_init(dev);
13184
13185 for_each_intel_encoder(dev, encoder) {
13186 encoder->base.possible_crtcs = encoder->crtc_mask;
13187 encoder->base.possible_clones =
13188 intel_encoder_clones(encoder);
13189 }
13190
13191 intel_init_pch_refclk(dev);
13192
13193 drm_helper_move_panel_connectors_to_head(dev);
13194 }
13195
intel_user_framebuffer_destroy(struct drm_framebuffer * fb)13196 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
13197 {
13198 struct drm_device *dev = fb->dev;
13199 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
13200
13201 drm_framebuffer_cleanup(fb);
13202 mutex_lock(&dev->struct_mutex);
13203 WARN_ON(!intel_fb->obj->framebuffer_references--);
13204 drm_gem_object_unreference(&intel_fb->obj->base);
13205 mutex_unlock(&dev->struct_mutex);
13206 kfree(intel_fb);
13207 }
13208
intel_user_framebuffer_create_handle(struct drm_framebuffer * fb,struct drm_file * file,unsigned int * handle)13209 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
13210 struct drm_file *file,
13211 unsigned int *handle)
13212 {
13213 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
13214 struct drm_i915_gem_object *obj = intel_fb->obj;
13215
13216 if (obj->userptr.mm) {
13217 DRM_DEBUG("attempting to use a userptr for a framebuffer, denied\n");
13218 return -EINVAL;
13219 }
13220
13221 return drm_gem_handle_create(file, &obj->base, handle);
13222 }
13223
13224 static const struct drm_framebuffer_funcs intel_fb_funcs = {
13225 .destroy = intel_user_framebuffer_destroy,
13226 .create_handle = intel_user_framebuffer_create_handle,
13227 };
13228
13229 static
intel_fb_pitch_limit(struct drm_device * dev,uint64_t fb_modifier,uint32_t pixel_format)13230 u32 intel_fb_pitch_limit(struct drm_device *dev, uint64_t fb_modifier,
13231 uint32_t pixel_format)
13232 {
13233 u32 gen = INTEL_INFO(dev)->gen;
13234
13235 if (gen >= 9) {
13236 /* "The stride in bytes must not exceed the of the size of 8K
13237 * pixels and 32K bytes."
13238 */
13239 return min(8192*drm_format_plane_cpp(pixel_format, 0), 32768);
13240 } else if (gen >= 5 && !IS_VALLEYVIEW(dev)) {
13241 return 32*1024;
13242 } else if (gen >= 4) {
13243 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
13244 return 16*1024;
13245 else
13246 return 32*1024;
13247 } else if (gen >= 3) {
13248 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
13249 return 8*1024;
13250 else
13251 return 16*1024;
13252 } else {
13253 /* XXX DSPC is limited to 4k tiled */
13254 return 8*1024;
13255 }
13256 }
13257
intel_framebuffer_init(struct drm_device * dev,struct intel_framebuffer * intel_fb,struct drm_mode_fb_cmd2 * mode_cmd,struct drm_i915_gem_object * obj)13258 static int intel_framebuffer_init(struct drm_device *dev,
13259 struct intel_framebuffer *intel_fb,
13260 struct drm_mode_fb_cmd2 *mode_cmd,
13261 struct drm_i915_gem_object *obj)
13262 {
13263 unsigned int aligned_height;
13264 int ret;
13265 u32 pitch_limit, stride_alignment;
13266
13267 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
13268
13269 if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) {
13270 /* Enforce that fb modifier and tiling mode match, but only for
13271 * X-tiled. This is needed for FBC. */
13272 if (!!(obj->tiling_mode == I915_TILING_X) !=
13273 !!(mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED)) {
13274 DRM_DEBUG("tiling_mode doesn't match fb modifier\n");
13275 return -EINVAL;
13276 }
13277 } else {
13278 if (obj->tiling_mode == I915_TILING_X)
13279 mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED;
13280 else if (obj->tiling_mode == I915_TILING_Y) {
13281 DRM_DEBUG("No Y tiling for legacy addfb\n");
13282 return -EINVAL;
13283 }
13284 }
13285
13286 /* Passed in modifier sanity checking. */
13287 switch (mode_cmd->modifier[0]) {
13288 case I915_FORMAT_MOD_Y_TILED:
13289 case I915_FORMAT_MOD_Yf_TILED:
13290 if (INTEL_INFO(dev)->gen < 9) {
13291 DRM_DEBUG("Unsupported tiling 0x%llx!\n",
13292 mode_cmd->modifier[0]);
13293 return -EINVAL;
13294 }
13295 case DRM_FORMAT_MOD_NONE:
13296 case I915_FORMAT_MOD_X_TILED:
13297 break;
13298 default:
13299 DRM_DEBUG("Unsupported fb modifier 0x%llx!\n",
13300 mode_cmd->modifier[0]);
13301 return -EINVAL;
13302 }
13303
13304 stride_alignment = intel_fb_stride_alignment(dev, mode_cmd->modifier[0],
13305 mode_cmd->pixel_format);
13306 if (mode_cmd->pitches[0] & (stride_alignment - 1)) {
13307 DRM_DEBUG("pitch (%d) must be at least %u byte aligned\n",
13308 mode_cmd->pitches[0], stride_alignment);
13309 return -EINVAL;
13310 }
13311
13312 pitch_limit = intel_fb_pitch_limit(dev, mode_cmd->modifier[0],
13313 mode_cmd->pixel_format);
13314 if (mode_cmd->pitches[0] > pitch_limit) {
13315 DRM_DEBUG("%s pitch (%u) must be at less than %d\n",
13316 mode_cmd->modifier[0] != DRM_FORMAT_MOD_NONE ?
13317 "tiled" : "linear",
13318 mode_cmd->pitches[0], pitch_limit);
13319 return -EINVAL;
13320 }
13321
13322 if (mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED &&
13323 mode_cmd->pitches[0] != obj->stride) {
13324 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
13325 mode_cmd->pitches[0], obj->stride);
13326 return -EINVAL;
13327 }
13328
13329 /* Reject formats not supported by any plane early. */
13330 switch (mode_cmd->pixel_format) {
13331 case DRM_FORMAT_C8:
13332 case DRM_FORMAT_RGB565:
13333 case DRM_FORMAT_XRGB8888:
13334 case DRM_FORMAT_ARGB8888:
13335 break;
13336 case DRM_FORMAT_XRGB1555:
13337 case DRM_FORMAT_ARGB1555:
13338 if (INTEL_INFO(dev)->gen > 3) {
13339 DRM_DEBUG("unsupported pixel format: %s\n",
13340 drm_get_format_name(mode_cmd->pixel_format));
13341 return -EINVAL;
13342 }
13343 break;
13344 case DRM_FORMAT_XBGR8888:
13345 case DRM_FORMAT_ABGR8888:
13346 case DRM_FORMAT_XRGB2101010:
13347 case DRM_FORMAT_ARGB2101010:
13348 case DRM_FORMAT_XBGR2101010:
13349 case DRM_FORMAT_ABGR2101010:
13350 if (INTEL_INFO(dev)->gen < 4) {
13351 DRM_DEBUG("unsupported pixel format: %s\n",
13352 drm_get_format_name(mode_cmd->pixel_format));
13353 return -EINVAL;
13354 }
13355 break;
13356 case DRM_FORMAT_YUYV:
13357 case DRM_FORMAT_UYVY:
13358 case DRM_FORMAT_YVYU:
13359 case DRM_FORMAT_VYUY:
13360 if (INTEL_INFO(dev)->gen < 5) {
13361 DRM_DEBUG("unsupported pixel format: %s\n",
13362 drm_get_format_name(mode_cmd->pixel_format));
13363 return -EINVAL;
13364 }
13365 break;
13366 default:
13367 DRM_DEBUG("unsupported pixel format: %s\n",
13368 drm_get_format_name(mode_cmd->pixel_format));
13369 return -EINVAL;
13370 }
13371
13372 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
13373 if (mode_cmd->offsets[0] != 0)
13374 return -EINVAL;
13375
13376 aligned_height = intel_fb_align_height(dev, mode_cmd->height,
13377 mode_cmd->pixel_format,
13378 mode_cmd->modifier[0]);
13379 /* FIXME drm helper for size checks (especially planar formats)? */
13380 if (obj->base.size < aligned_height * mode_cmd->pitches[0])
13381 return -EINVAL;
13382
13383 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
13384 intel_fb->obj = obj;
13385 intel_fb->obj->framebuffer_references++;
13386
13387 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
13388 if (ret) {
13389 DRM_ERROR("framebuffer init failed %d\n", ret);
13390 return ret;
13391 }
13392
13393 return 0;
13394 }
13395
13396 static struct drm_framebuffer *
intel_user_framebuffer_create(struct drm_device * dev,struct drm_file * filp,struct drm_mode_fb_cmd2 * mode_cmd)13397 intel_user_framebuffer_create(struct drm_device *dev,
13398 struct drm_file *filp,
13399 struct drm_mode_fb_cmd2 *mode_cmd)
13400 {
13401 struct drm_i915_gem_object *obj;
13402
13403 obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
13404 mode_cmd->handles[0]));
13405 if (&obj->base == NULL)
13406 return ERR_PTR(-ENOENT);
13407
13408 return intel_framebuffer_create(dev, mode_cmd, obj);
13409 }
13410
13411 #ifndef CONFIG_DRM_I915_FBDEV
intel_fbdev_output_poll_changed(struct drm_device * dev)13412 static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
13413 {
13414 }
13415 #endif
13416
13417 static const struct drm_mode_config_funcs intel_mode_funcs = {
13418 .fb_create = intel_user_framebuffer_create,
13419 .output_poll_changed = intel_fbdev_output_poll_changed,
13420 .atomic_check = intel_atomic_check,
13421 .atomic_commit = intel_atomic_commit,
13422 };
13423
13424 /* Set up chip specific display functions */
intel_init_display(struct drm_device * dev)13425 static void intel_init_display(struct drm_device *dev)
13426 {
13427 struct drm_i915_private *dev_priv = dev->dev_private;
13428
13429 if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
13430 dev_priv->display.find_dpll = g4x_find_best_dpll;
13431 else if (IS_CHERRYVIEW(dev))
13432 dev_priv->display.find_dpll = chv_find_best_dpll;
13433 else if (IS_VALLEYVIEW(dev))
13434 dev_priv->display.find_dpll = vlv_find_best_dpll;
13435 else if (IS_PINEVIEW(dev))
13436 dev_priv->display.find_dpll = pnv_find_best_dpll;
13437 else
13438 dev_priv->display.find_dpll = i9xx_find_best_dpll;
13439
13440 if (INTEL_INFO(dev)->gen >= 9) {
13441 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
13442 dev_priv->display.get_initial_plane_config =
13443 skylake_get_initial_plane_config;
13444 dev_priv->display.crtc_compute_clock =
13445 haswell_crtc_compute_clock;
13446 dev_priv->display.crtc_enable = haswell_crtc_enable;
13447 dev_priv->display.crtc_disable = haswell_crtc_disable;
13448 dev_priv->display.off = ironlake_crtc_off;
13449 dev_priv->display.update_primary_plane =
13450 skylake_update_primary_plane;
13451 } else if (HAS_DDI(dev)) {
13452 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
13453 dev_priv->display.get_initial_plane_config =
13454 ironlake_get_initial_plane_config;
13455 dev_priv->display.crtc_compute_clock =
13456 haswell_crtc_compute_clock;
13457 dev_priv->display.crtc_enable = haswell_crtc_enable;
13458 dev_priv->display.crtc_disable = haswell_crtc_disable;
13459 dev_priv->display.off = ironlake_crtc_off;
13460 dev_priv->display.update_primary_plane =
13461 ironlake_update_primary_plane;
13462 } else if (HAS_PCH_SPLIT(dev)) {
13463 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
13464 dev_priv->display.get_initial_plane_config =
13465 ironlake_get_initial_plane_config;
13466 dev_priv->display.crtc_compute_clock =
13467 ironlake_crtc_compute_clock;
13468 dev_priv->display.crtc_enable = ironlake_crtc_enable;
13469 dev_priv->display.crtc_disable = ironlake_crtc_disable;
13470 dev_priv->display.off = ironlake_crtc_off;
13471 dev_priv->display.update_primary_plane =
13472 ironlake_update_primary_plane;
13473 } else if (IS_VALLEYVIEW(dev)) {
13474 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
13475 dev_priv->display.get_initial_plane_config =
13476 i9xx_get_initial_plane_config;
13477 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
13478 dev_priv->display.crtc_enable = valleyview_crtc_enable;
13479 dev_priv->display.crtc_disable = i9xx_crtc_disable;
13480 dev_priv->display.off = i9xx_crtc_off;
13481 dev_priv->display.update_primary_plane =
13482 i9xx_update_primary_plane;
13483 } else {
13484 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
13485 dev_priv->display.get_initial_plane_config =
13486 i9xx_get_initial_plane_config;
13487 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
13488 dev_priv->display.crtc_enable = i9xx_crtc_enable;
13489 dev_priv->display.crtc_disable = i9xx_crtc_disable;
13490 dev_priv->display.off = i9xx_crtc_off;
13491 dev_priv->display.update_primary_plane =
13492 i9xx_update_primary_plane;
13493 }
13494
13495 /* Returns the core display clock speed */
13496 if (IS_VALLEYVIEW(dev))
13497 dev_priv->display.get_display_clock_speed =
13498 valleyview_get_display_clock_speed;
13499 else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
13500 dev_priv->display.get_display_clock_speed =
13501 i945_get_display_clock_speed;
13502 else if (IS_I915G(dev))
13503 dev_priv->display.get_display_clock_speed =
13504 i915_get_display_clock_speed;
13505 else if (IS_I945GM(dev) || IS_845G(dev))
13506 dev_priv->display.get_display_clock_speed =
13507 i9xx_misc_get_display_clock_speed;
13508 else if (IS_PINEVIEW(dev))
13509 dev_priv->display.get_display_clock_speed =
13510 pnv_get_display_clock_speed;
13511 else if (IS_I915GM(dev))
13512 dev_priv->display.get_display_clock_speed =
13513 i915gm_get_display_clock_speed;
13514 else if (IS_I865G(dev))
13515 dev_priv->display.get_display_clock_speed =
13516 i865_get_display_clock_speed;
13517 else if (IS_I85X(dev))
13518 dev_priv->display.get_display_clock_speed =
13519 i855_get_display_clock_speed;
13520 else /* 852, 830 */
13521 dev_priv->display.get_display_clock_speed =
13522 i830_get_display_clock_speed;
13523
13524 if (IS_GEN5(dev)) {
13525 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
13526 } else if (IS_GEN6(dev)) {
13527 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
13528 } else if (IS_IVYBRIDGE(dev)) {
13529 /* FIXME: detect B0+ stepping and use auto training */
13530 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
13531 } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
13532 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
13533 } else if (IS_VALLEYVIEW(dev)) {
13534 dev_priv->display.modeset_global_resources =
13535 valleyview_modeset_global_resources;
13536 }
13537
13538 switch (INTEL_INFO(dev)->gen) {
13539 case 2:
13540 dev_priv->display.queue_flip = intel_gen2_queue_flip;
13541 break;
13542
13543 case 3:
13544 dev_priv->display.queue_flip = intel_gen3_queue_flip;
13545 break;
13546
13547 case 4:
13548 case 5:
13549 dev_priv->display.queue_flip = intel_gen4_queue_flip;
13550 break;
13551
13552 case 6:
13553 dev_priv->display.queue_flip = intel_gen6_queue_flip;
13554 break;
13555 case 7:
13556 case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
13557 dev_priv->display.queue_flip = intel_gen7_queue_flip;
13558 break;
13559 case 9:
13560 /* Drop through - unsupported since execlist only. */
13561 default:
13562 /* Default just returns -ENODEV to indicate unsupported */
13563 dev_priv->display.queue_flip = intel_default_queue_flip;
13564 }
13565
13566 intel_panel_init_backlight_funcs(dev);
13567
13568 mutex_init(&dev_priv->pps_mutex);
13569 }
13570
13571 /*
13572 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
13573 * resume, or other times. This quirk makes sure that's the case for
13574 * affected systems.
13575 */
quirk_pipea_force(struct drm_device * dev)13576 static void quirk_pipea_force(struct drm_device *dev)
13577 {
13578 struct drm_i915_private *dev_priv = dev->dev_private;
13579
13580 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
13581 DRM_INFO("applying pipe a force quirk\n");
13582 }
13583
quirk_pipeb_force(struct drm_device * dev)13584 static void quirk_pipeb_force(struct drm_device *dev)
13585 {
13586 struct drm_i915_private *dev_priv = dev->dev_private;
13587
13588 dev_priv->quirks |= QUIRK_PIPEB_FORCE;
13589 DRM_INFO("applying pipe b force quirk\n");
13590 }
13591
13592 /*
13593 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
13594 */
quirk_ssc_force_disable(struct drm_device * dev)13595 static void quirk_ssc_force_disable(struct drm_device *dev)
13596 {
13597 struct drm_i915_private *dev_priv = dev->dev_private;
13598 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
13599 DRM_INFO("applying lvds SSC disable quirk\n");
13600 }
13601
13602 /*
13603 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
13604 * brightness value
13605 */
quirk_invert_brightness(struct drm_device * dev)13606 static void quirk_invert_brightness(struct drm_device *dev)
13607 {
13608 struct drm_i915_private *dev_priv = dev->dev_private;
13609 dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
13610 DRM_INFO("applying inverted panel brightness quirk\n");
13611 }
13612
13613 /* Some VBT's incorrectly indicate no backlight is present */
quirk_backlight_present(struct drm_device * dev)13614 static void quirk_backlight_present(struct drm_device *dev)
13615 {
13616 struct drm_i915_private *dev_priv = dev->dev_private;
13617 dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
13618 DRM_INFO("applying backlight present quirk\n");
13619 }
13620
13621 struct intel_quirk {
13622 int device;
13623 int subsystem_vendor;
13624 int subsystem_device;
13625 void (*hook)(struct drm_device *dev);
13626 };
13627
13628 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
13629 struct intel_dmi_quirk {
13630 void (*hook)(struct drm_device *dev);
13631 const struct dmi_system_id (*dmi_id_list)[];
13632 };
13633
intel_dmi_reverse_brightness(const struct dmi_system_id * id)13634 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
13635 {
13636 DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
13637 return 1;
13638 }
13639
13640 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
13641 {
13642 .dmi_id_list = &(const struct dmi_system_id[]) {
13643 {
13644 .callback = intel_dmi_reverse_brightness,
13645 .ident = "NCR Corporation",
13646 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
13647 DMI_MATCH(DMI_PRODUCT_NAME, ""),
13648 },
13649 },
13650 { } /* terminating entry */
13651 },
13652 .hook = quirk_invert_brightness,
13653 },
13654 };
13655
13656 static struct intel_quirk intel_quirks[] = {
13657 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
13658 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
13659
13660 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
13661 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
13662
13663 /* 830 needs to leave pipe A & dpll A up */
13664 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
13665
13666 /* 830 needs to leave pipe B & dpll B up */
13667 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipeb_force },
13668
13669 /* Lenovo U160 cannot use SSC on LVDS */
13670 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
13671
13672 /* Sony Vaio Y cannot use SSC on LVDS */
13673 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
13674
13675 /* Acer Aspire 5734Z must invert backlight brightness */
13676 { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
13677
13678 /* Acer/eMachines G725 */
13679 { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
13680
13681 /* Acer/eMachines e725 */
13682 { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
13683
13684 /* Acer/Packard Bell NCL20 */
13685 { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
13686
13687 /* Acer Aspire 4736Z */
13688 { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
13689
13690 /* Acer Aspire 5336 */
13691 { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
13692
13693 /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
13694 { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
13695
13696 /* Acer C720 Chromebook (Core i3 4005U) */
13697 { 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
13698
13699 /* Apple Macbook 2,1 (Core 2 T7400) */
13700 { 0x27a2, 0x8086, 0x7270, quirk_backlight_present },
13701
13702 /* Toshiba CB35 Chromebook (Celeron 2955U) */
13703 { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
13704
13705 /* HP Chromebook 14 (Celeron 2955U) */
13706 { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
13707
13708 /* Dell Chromebook 11 */
13709 { 0x0a06, 0x1028, 0x0a35, quirk_backlight_present },
13710 };
13711
intel_init_quirks(struct drm_device * dev)13712 static void intel_init_quirks(struct drm_device *dev)
13713 {
13714 struct pci_dev *d = dev->pdev;
13715 int i;
13716
13717 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
13718 struct intel_quirk *q = &intel_quirks[i];
13719
13720 if (d->device == q->device &&
13721 (d->subsystem_vendor == q->subsystem_vendor ||
13722 q->subsystem_vendor == PCI_ANY_ID) &&
13723 (d->subsystem_device == q->subsystem_device ||
13724 q->subsystem_device == PCI_ANY_ID))
13725 q->hook(dev);
13726 }
13727 for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
13728 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
13729 intel_dmi_quirks[i].hook(dev);
13730 }
13731 }
13732
13733 /* Disable the VGA plane that we never use */
i915_disable_vga(struct drm_device * dev)13734 static void i915_disable_vga(struct drm_device *dev)
13735 {
13736 struct drm_i915_private *dev_priv = dev->dev_private;
13737 u8 sr1;
13738 u32 vga_reg = i915_vgacntrl_reg(dev);
13739
13740 /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
13741 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
13742 outb(SR01, VGA_SR_INDEX);
13743 sr1 = inb(VGA_SR_DATA);
13744 outb(sr1 | 1<<5, VGA_SR_DATA);
13745 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
13746 udelay(300);
13747
13748 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
13749 POSTING_READ(vga_reg);
13750 }
13751
intel_modeset_init_hw(struct drm_device * dev)13752 void intel_modeset_init_hw(struct drm_device *dev)
13753 {
13754 intel_prepare_ddi(dev);
13755
13756 if (IS_VALLEYVIEW(dev))
13757 vlv_update_cdclk(dev);
13758
13759 intel_init_clock_gating(dev);
13760
13761 intel_enable_gt_powersave(dev);
13762 }
13763
intel_modeset_init(struct drm_device * dev)13764 void intel_modeset_init(struct drm_device *dev)
13765 {
13766 struct drm_i915_private *dev_priv = dev->dev_private;
13767 int sprite, ret;
13768 enum pipe pipe;
13769 struct intel_crtc *crtc;
13770
13771 drm_mode_config_init(dev);
13772
13773 dev->mode_config.min_width = 0;
13774 dev->mode_config.min_height = 0;
13775
13776 dev->mode_config.preferred_depth = 24;
13777 dev->mode_config.prefer_shadow = 1;
13778
13779 dev->mode_config.allow_fb_modifiers = true;
13780
13781 dev->mode_config.funcs = &intel_mode_funcs;
13782
13783 intel_init_quirks(dev);
13784
13785 intel_init_pm(dev);
13786
13787 if (INTEL_INFO(dev)->num_pipes == 0)
13788 return;
13789
13790 /*
13791 * There may be no VBT; and if the BIOS enabled SSC we can
13792 * just keep using it to avoid unnecessary flicker. Whereas if the
13793 * BIOS isn't using it, don't assume it will work even if the VBT
13794 * indicates as much.
13795 */
13796 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
13797 bool bios_lvds_use_ssc = !!(I915_READ(PCH_DREF_CONTROL) &
13798 DREF_SSC1_ENABLE);
13799
13800 if (dev_priv->vbt.lvds_use_ssc != bios_lvds_use_ssc) {
13801 DRM_DEBUG_KMS("SSC %sabled by BIOS, overriding VBT which says %sabled\n",
13802 bios_lvds_use_ssc ? "en" : "dis",
13803 dev_priv->vbt.lvds_use_ssc ? "en" : "dis");
13804 dev_priv->vbt.lvds_use_ssc = bios_lvds_use_ssc;
13805 }
13806 }
13807
13808 intel_init_display(dev);
13809 intel_init_audio(dev);
13810
13811 if (IS_GEN2(dev)) {
13812 dev->mode_config.max_width = 2048;
13813 dev->mode_config.max_height = 2048;
13814 } else if (IS_GEN3(dev)) {
13815 dev->mode_config.max_width = 4096;
13816 dev->mode_config.max_height = 4096;
13817 } else {
13818 dev->mode_config.max_width = 8192;
13819 dev->mode_config.max_height = 8192;
13820 }
13821
13822 if (IS_845G(dev) || IS_I865G(dev)) {
13823 dev->mode_config.cursor_width = IS_845G(dev) ? 64 : 512;
13824 dev->mode_config.cursor_height = 1023;
13825 } else if (IS_GEN2(dev)) {
13826 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
13827 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
13828 } else {
13829 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
13830 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
13831 }
13832
13833 dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
13834
13835 DRM_DEBUG_KMS("%d display pipe%s available.\n",
13836 INTEL_INFO(dev)->num_pipes,
13837 INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
13838
13839 for_each_pipe(dev_priv, pipe) {
13840 intel_crtc_init(dev, pipe);
13841 for_each_sprite(dev_priv, pipe, sprite) {
13842 ret = intel_plane_init(dev, pipe, sprite);
13843 if (ret)
13844 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
13845 pipe_name(pipe), sprite_name(pipe, sprite), ret);
13846 }
13847 }
13848
13849 intel_init_dpio(dev);
13850
13851 intel_shared_dpll_init(dev);
13852
13853 /* Just disable it once at startup */
13854 i915_disable_vga(dev);
13855 intel_setup_outputs(dev);
13856
13857 /* Just in case the BIOS is doing something questionable. */
13858 intel_fbc_disable(dev);
13859
13860 drm_modeset_lock_all(dev);
13861 intel_modeset_setup_hw_state(dev, false);
13862 drm_modeset_unlock_all(dev);
13863
13864 for_each_intel_crtc(dev, crtc) {
13865 if (!crtc->active)
13866 continue;
13867
13868 /*
13869 * Note that reserving the BIOS fb up front prevents us
13870 * from stuffing other stolen allocations like the ring
13871 * on top. This prevents some ugliness at boot time, and
13872 * can even allow for smooth boot transitions if the BIOS
13873 * fb is large enough for the active pipe configuration.
13874 */
13875 if (dev_priv->display.get_initial_plane_config) {
13876 dev_priv->display.get_initial_plane_config(crtc,
13877 &crtc->plane_config);
13878 /*
13879 * If the fb is shared between multiple heads, we'll
13880 * just get the first one.
13881 */
13882 intel_find_initial_plane_obj(crtc, &crtc->plane_config);
13883 }
13884 }
13885 }
13886
intel_enable_pipe_a(struct drm_device * dev)13887 static void intel_enable_pipe_a(struct drm_device *dev)
13888 {
13889 struct intel_connector *connector;
13890 struct drm_connector *crt = NULL;
13891 struct intel_load_detect_pipe load_detect_temp;
13892 struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
13893
13894 /* We can't just switch on the pipe A, we need to set things up with a
13895 * proper mode and output configuration. As a gross hack, enable pipe A
13896 * by enabling the load detect pipe once. */
13897 for_each_intel_connector(dev, connector) {
13898 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
13899 crt = &connector->base;
13900 break;
13901 }
13902 }
13903
13904 if (!crt)
13905 return;
13906
13907 if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
13908 intel_release_load_detect_pipe(crt, &load_detect_temp, ctx);
13909 }
13910
13911 static bool
intel_check_plane_mapping(struct intel_crtc * crtc)13912 intel_check_plane_mapping(struct intel_crtc *crtc)
13913 {
13914 struct drm_device *dev = crtc->base.dev;
13915 struct drm_i915_private *dev_priv = dev->dev_private;
13916 u32 reg, val;
13917
13918 if (INTEL_INFO(dev)->num_pipes == 1)
13919 return true;
13920
13921 reg = DSPCNTR(!crtc->plane);
13922 val = I915_READ(reg);
13923
13924 if ((val & DISPLAY_PLANE_ENABLE) &&
13925 (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
13926 return false;
13927
13928 return true;
13929 }
13930
intel_sanitize_crtc(struct intel_crtc * crtc)13931 static void intel_sanitize_crtc(struct intel_crtc *crtc)
13932 {
13933 struct drm_device *dev = crtc->base.dev;
13934 struct drm_i915_private *dev_priv = dev->dev_private;
13935 u32 reg;
13936
13937 /* Clear any frame start delays used for debugging left by the BIOS */
13938 reg = PIPECONF(crtc->config->cpu_transcoder);
13939 I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
13940
13941 /* restore vblank interrupts to correct state */
13942 drm_crtc_vblank_reset(&crtc->base);
13943 if (crtc->active) {
13944 update_scanline_offset(crtc);
13945 drm_crtc_vblank_on(&crtc->base);
13946 }
13947
13948 /* We need to sanitize the plane -> pipe mapping first because this will
13949 * disable the crtc (and hence change the state) if it is wrong. Note
13950 * that gen4+ has a fixed plane -> pipe mapping. */
13951 if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
13952 struct intel_connector *connector;
13953 bool plane;
13954
13955 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
13956 crtc->base.base.id);
13957
13958 /* Pipe has the wrong plane attached and the plane is active.
13959 * Temporarily change the plane mapping and disable everything
13960 * ... */
13961 plane = crtc->plane;
13962 crtc->plane = !plane;
13963 crtc->primary_enabled = true;
13964 dev_priv->display.crtc_disable(&crtc->base);
13965 crtc->plane = plane;
13966
13967 /* ... and break all links. */
13968 for_each_intel_connector(dev, connector) {
13969 if (connector->encoder->base.crtc != &crtc->base)
13970 continue;
13971
13972 connector->base.dpms = DRM_MODE_DPMS_OFF;
13973 connector->base.encoder = NULL;
13974 }
13975 /* multiple connectors may have the same encoder:
13976 * handle them and break crtc link separately */
13977 for_each_intel_connector(dev, connector)
13978 if (connector->encoder->base.crtc == &crtc->base) {
13979 connector->encoder->base.crtc = NULL;
13980 connector->encoder->connectors_active = false;
13981 }
13982
13983 WARN_ON(crtc->active);
13984 crtc->base.state->enable = false;
13985 crtc->base.enabled = false;
13986 }
13987
13988 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
13989 crtc->pipe == PIPE_A && !crtc->active) {
13990 /* BIOS forgot to enable pipe A, this mostly happens after
13991 * resume. Force-enable the pipe to fix this, the update_dpms
13992 * call below we restore the pipe to the right state, but leave
13993 * the required bits on. */
13994 intel_enable_pipe_a(dev);
13995 }
13996
13997 /* Adjust the state of the output pipe according to whether we
13998 * have active connectors/encoders. */
13999 intel_crtc_update_dpms(&crtc->base);
14000
14001 if (crtc->active != crtc->base.state->enable) {
14002 struct intel_encoder *encoder;
14003
14004 /* This can happen either due to bugs in the get_hw_state
14005 * functions or because the pipe is force-enabled due to the
14006 * pipe A quirk. */
14007 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
14008 crtc->base.base.id,
14009 crtc->base.state->enable ? "enabled" : "disabled",
14010 crtc->active ? "enabled" : "disabled");
14011
14012 crtc->base.state->enable = crtc->active;
14013 crtc->base.enabled = crtc->active;
14014
14015 /* Because we only establish the connector -> encoder ->
14016 * crtc links if something is active, this means the
14017 * crtc is now deactivated. Break the links. connector
14018 * -> encoder links are only establish when things are
14019 * actually up, hence no need to break them. */
14020 WARN_ON(crtc->active);
14021
14022 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
14023 WARN_ON(encoder->connectors_active);
14024 encoder->base.crtc = NULL;
14025 }
14026 }
14027
14028 if (crtc->active || HAS_GMCH_DISPLAY(dev)) {
14029 /*
14030 * We start out with underrun reporting disabled to avoid races.
14031 * For correct bookkeeping mark this on active crtcs.
14032 *
14033 * Also on gmch platforms we dont have any hardware bits to
14034 * disable the underrun reporting. Which means we need to start
14035 * out with underrun reporting disabled also on inactive pipes,
14036 * since otherwise we'll complain about the garbage we read when
14037 * e.g. coming up after runtime pm.
14038 *
14039 * No protection against concurrent access is required - at
14040 * worst a fifo underrun happens which also sets this to false.
14041 */
14042 crtc->cpu_fifo_underrun_disabled = true;
14043 crtc->pch_fifo_underrun_disabled = true;
14044 }
14045 }
14046
intel_sanitize_encoder(struct intel_encoder * encoder)14047 static void intel_sanitize_encoder(struct intel_encoder *encoder)
14048 {
14049 struct intel_connector *connector;
14050 struct drm_device *dev = encoder->base.dev;
14051
14052 /* We need to check both for a crtc link (meaning that the
14053 * encoder is active and trying to read from a pipe) and the
14054 * pipe itself being active. */
14055 bool has_active_crtc = encoder->base.crtc &&
14056 to_intel_crtc(encoder->base.crtc)->active;
14057
14058 if (encoder->connectors_active && !has_active_crtc) {
14059 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
14060 encoder->base.base.id,
14061 encoder->base.name);
14062
14063 /* Connector is active, but has no active pipe. This is
14064 * fallout from our resume register restoring. Disable
14065 * the encoder manually again. */
14066 if (encoder->base.crtc) {
14067 DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
14068 encoder->base.base.id,
14069 encoder->base.name);
14070 encoder->disable(encoder);
14071 if (encoder->post_disable)
14072 encoder->post_disable(encoder);
14073 }
14074 encoder->base.crtc = NULL;
14075 encoder->connectors_active = false;
14076
14077 /* Inconsistent output/port/pipe state happens presumably due to
14078 * a bug in one of the get_hw_state functions. Or someplace else
14079 * in our code, like the register restore mess on resume. Clamp
14080 * things to off as a safer default. */
14081 for_each_intel_connector(dev, connector) {
14082 if (connector->encoder != encoder)
14083 continue;
14084 connector->base.dpms = DRM_MODE_DPMS_OFF;
14085 connector->base.encoder = NULL;
14086 }
14087 }
14088 /* Enabled encoders without active connectors will be fixed in
14089 * the crtc fixup. */
14090 }
14091
i915_redisable_vga_power_on(struct drm_device * dev)14092 void i915_redisable_vga_power_on(struct drm_device *dev)
14093 {
14094 struct drm_i915_private *dev_priv = dev->dev_private;
14095 u32 vga_reg = i915_vgacntrl_reg(dev);
14096
14097 if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
14098 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
14099 i915_disable_vga(dev);
14100 }
14101 }
14102
i915_redisable_vga(struct drm_device * dev)14103 void i915_redisable_vga(struct drm_device *dev)
14104 {
14105 struct drm_i915_private *dev_priv = dev->dev_private;
14106
14107 /* This function can be called both from intel_modeset_setup_hw_state or
14108 * at a very early point in our resume sequence, where the power well
14109 * structures are not yet restored. Since this function is at a very
14110 * paranoid "someone might have enabled VGA while we were not looking"
14111 * level, just check if the power well is enabled instead of trying to
14112 * follow the "don't touch the power well if we don't need it" policy
14113 * the rest of the driver uses. */
14114 if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_VGA))
14115 return;
14116
14117 i915_redisable_vga_power_on(dev);
14118 }
14119
primary_get_hw_state(struct intel_crtc * crtc)14120 static bool primary_get_hw_state(struct intel_crtc *crtc)
14121 {
14122 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
14123
14124 if (!crtc->active)
14125 return false;
14126
14127 return I915_READ(DSPCNTR(crtc->plane)) & DISPLAY_PLANE_ENABLE;
14128 }
14129
intel_modeset_readout_hw_state(struct drm_device * dev)14130 static void intel_modeset_readout_hw_state(struct drm_device *dev)
14131 {
14132 struct drm_i915_private *dev_priv = dev->dev_private;
14133 enum pipe pipe;
14134 struct intel_crtc *crtc;
14135 struct intel_encoder *encoder;
14136 struct intel_connector *connector;
14137 int i;
14138
14139 for_each_intel_crtc(dev, crtc) {
14140 memset(crtc->config, 0, sizeof(*crtc->config));
14141
14142 crtc->config->quirks |= PIPE_CONFIG_QUIRK_INHERITED_MODE;
14143
14144 crtc->active = dev_priv->display.get_pipe_config(crtc,
14145 crtc->config);
14146
14147 crtc->base.state->enable = crtc->active;
14148 crtc->base.enabled = crtc->active;
14149 crtc->primary_enabled = primary_get_hw_state(crtc);
14150
14151 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
14152 crtc->base.base.id,
14153 crtc->active ? "enabled" : "disabled");
14154 }
14155
14156 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
14157 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
14158
14159 pll->on = pll->get_hw_state(dev_priv, pll,
14160 &pll->config.hw_state);
14161 pll->active = 0;
14162 pll->config.crtc_mask = 0;
14163 for_each_intel_crtc(dev, crtc) {
14164 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll) {
14165 pll->active++;
14166 pll->config.crtc_mask |= 1 << crtc->pipe;
14167 }
14168 }
14169
14170 DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n",
14171 pll->name, pll->config.crtc_mask, pll->on);
14172
14173 if (pll->config.crtc_mask)
14174 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
14175 }
14176
14177 for_each_intel_encoder(dev, encoder) {
14178 pipe = 0;
14179
14180 if (encoder->get_hw_state(encoder, &pipe)) {
14181 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
14182 encoder->base.crtc = &crtc->base;
14183 encoder->get_config(encoder, crtc->config);
14184 } else {
14185 encoder->base.crtc = NULL;
14186 }
14187
14188 encoder->connectors_active = false;
14189 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
14190 encoder->base.base.id,
14191 encoder->base.name,
14192 encoder->base.crtc ? "enabled" : "disabled",
14193 pipe_name(pipe));
14194 }
14195
14196 for_each_intel_connector(dev, connector) {
14197 if (connector->get_hw_state(connector)) {
14198 connector->base.dpms = DRM_MODE_DPMS_ON;
14199 connector->encoder->connectors_active = true;
14200 connector->base.encoder = &connector->encoder->base;
14201 } else {
14202 connector->base.dpms = DRM_MODE_DPMS_OFF;
14203 connector->base.encoder = NULL;
14204 }
14205 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
14206 connector->base.base.id,
14207 connector->base.name,
14208 connector->base.encoder ? "enabled" : "disabled");
14209 }
14210 }
14211
14212 /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
14213 * and i915 state tracking structures. */
intel_modeset_setup_hw_state(struct drm_device * dev,bool force_restore)14214 void intel_modeset_setup_hw_state(struct drm_device *dev,
14215 bool force_restore)
14216 {
14217 struct drm_i915_private *dev_priv = dev->dev_private;
14218 enum pipe pipe;
14219 struct intel_crtc *crtc;
14220 struct intel_encoder *encoder;
14221 int i;
14222
14223 intel_modeset_readout_hw_state(dev);
14224
14225 /*
14226 * Now that we have the config, copy it to each CRTC struct
14227 * Note that this could go away if we move to using crtc_config
14228 * checking everywhere.
14229 */
14230 for_each_intel_crtc(dev, crtc) {
14231 if (crtc->active && i915.fastboot) {
14232 intel_mode_from_pipe_config(&crtc->base.mode,
14233 crtc->config);
14234 DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
14235 crtc->base.base.id);
14236 drm_mode_debug_printmodeline(&crtc->base.mode);
14237 }
14238 }
14239
14240 /* HW state is read out, now we need to sanitize this mess. */
14241 for_each_intel_encoder(dev, encoder) {
14242 intel_sanitize_encoder(encoder);
14243 }
14244
14245 for_each_pipe(dev_priv, pipe) {
14246 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
14247 intel_sanitize_crtc(crtc);
14248 intel_dump_pipe_config(crtc, crtc->config,
14249 "[setup_hw_state]");
14250 }
14251
14252 intel_modeset_update_connector_atomic_state(dev);
14253
14254 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
14255 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
14256
14257 if (!pll->on || pll->active)
14258 continue;
14259
14260 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
14261
14262 pll->disable(dev_priv, pll);
14263 pll->on = false;
14264 }
14265
14266 if (IS_GEN9(dev))
14267 skl_wm_get_hw_state(dev);
14268 else if (HAS_PCH_SPLIT(dev))
14269 ilk_wm_get_hw_state(dev);
14270
14271 if (force_restore) {
14272 i915_redisable_vga(dev);
14273
14274 /*
14275 * We need to use raw interfaces for restoring state to avoid
14276 * checking (bogus) intermediate states.
14277 */
14278 for_each_pipe(dev_priv, pipe) {
14279 struct drm_crtc *crtc =
14280 dev_priv->pipe_to_crtc_mapping[pipe];
14281
14282 intel_crtc_restore_mode(crtc);
14283 }
14284 } else {
14285 intel_modeset_update_staged_output_state(dev);
14286 }
14287
14288 intel_modeset_check_state(dev);
14289 }
14290
intel_modeset_gem_init(struct drm_device * dev)14291 void intel_modeset_gem_init(struct drm_device *dev)
14292 {
14293 struct drm_crtc *c;
14294 struct drm_i915_gem_object *obj;
14295 int ret;
14296
14297 mutex_lock(&dev->struct_mutex);
14298 intel_init_gt_powersave(dev);
14299 mutex_unlock(&dev->struct_mutex);
14300
14301 intel_modeset_init_hw(dev);
14302
14303 intel_setup_overlay(dev);
14304
14305 /*
14306 * Make sure any fbs we allocated at startup are properly
14307 * pinned & fenced. When we do the allocation it's too early
14308 * for this.
14309 */
14310 for_each_crtc(dev, c) {
14311 obj = intel_fb_obj(c->primary->fb);
14312 if (obj == NULL)
14313 continue;
14314
14315 mutex_lock(&dev->struct_mutex);
14316 ret = intel_pin_and_fence_fb_obj(c->primary,
14317 c->primary->fb,
14318 c->primary->state,
14319 NULL);
14320 mutex_unlock(&dev->struct_mutex);
14321 if (ret) {
14322 DRM_ERROR("failed to pin boot fb on pipe %d\n",
14323 to_intel_crtc(c)->pipe);
14324 drm_framebuffer_unreference(c->primary->fb);
14325 c->primary->fb = NULL;
14326 update_state_fb(c->primary);
14327 }
14328 }
14329
14330 intel_backlight_register(dev);
14331 }
14332
intel_connector_unregister(struct intel_connector * intel_connector)14333 void intel_connector_unregister(struct intel_connector *intel_connector)
14334 {
14335 struct drm_connector *connector = &intel_connector->base;
14336
14337 intel_panel_destroy_backlight(connector);
14338 drm_connector_unregister(connector);
14339 }
14340
intel_modeset_cleanup(struct drm_device * dev)14341 void intel_modeset_cleanup(struct drm_device *dev)
14342 {
14343 struct drm_i915_private *dev_priv = dev->dev_private;
14344 struct drm_connector *connector;
14345
14346 intel_disable_gt_powersave(dev);
14347
14348 intel_backlight_unregister(dev);
14349
14350 /*
14351 * Interrupts and polling as the first thing to avoid creating havoc.
14352 * Too much stuff here (turning of connectors, ...) would
14353 * experience fancy races otherwise.
14354 */
14355 intel_irq_uninstall(dev_priv);
14356
14357 /*
14358 * Due to the hpd irq storm handling the hotplug work can re-arm the
14359 * poll handlers. Hence disable polling after hpd handling is shut down.
14360 */
14361 drm_kms_helper_poll_fini(dev);
14362
14363 mutex_lock(&dev->struct_mutex);
14364
14365 intel_unregister_dsm_handler();
14366
14367 intel_fbc_disable(dev);
14368
14369 mutex_unlock(&dev->struct_mutex);
14370
14371 /* flush any delayed tasks or pending work */
14372 flush_scheduled_work();
14373
14374 /* destroy the backlight and sysfs files before encoders/connectors */
14375 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
14376 struct intel_connector *intel_connector;
14377
14378 intel_connector = to_intel_connector(connector);
14379 intel_connector->unregister(intel_connector);
14380 }
14381
14382 drm_mode_config_cleanup(dev);
14383
14384 intel_cleanup_overlay(dev);
14385
14386 mutex_lock(&dev->struct_mutex);
14387 intel_cleanup_gt_powersave(dev);
14388 mutex_unlock(&dev->struct_mutex);
14389 }
14390
14391 /*
14392 * Return which encoder is currently attached for connector.
14393 */
intel_best_encoder(struct drm_connector * connector)14394 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
14395 {
14396 return &intel_attached_encoder(connector)->base;
14397 }
14398
intel_connector_attach_encoder(struct intel_connector * connector,struct intel_encoder * encoder)14399 void intel_connector_attach_encoder(struct intel_connector *connector,
14400 struct intel_encoder *encoder)
14401 {
14402 connector->encoder = encoder;
14403 drm_mode_connector_attach_encoder(&connector->base,
14404 &encoder->base);
14405 }
14406
14407 /*
14408 * set vga decode state - true == enable VGA decode
14409 */
intel_modeset_vga_set_state(struct drm_device * dev,bool state)14410 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
14411 {
14412 struct drm_i915_private *dev_priv = dev->dev_private;
14413 unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
14414 u16 gmch_ctrl;
14415
14416 if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
14417 DRM_ERROR("failed to read control word\n");
14418 return -EIO;
14419 }
14420
14421 if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
14422 return 0;
14423
14424 if (state)
14425 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
14426 else
14427 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
14428
14429 if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
14430 DRM_ERROR("failed to write control word\n");
14431 return -EIO;
14432 }
14433
14434 return 0;
14435 }
14436
14437 struct intel_display_error_state {
14438
14439 u32 power_well_driver;
14440
14441 int num_transcoders;
14442
14443 struct intel_cursor_error_state {
14444 u32 control;
14445 u32 position;
14446 u32 base;
14447 u32 size;
14448 } cursor[I915_MAX_PIPES];
14449
14450 struct intel_pipe_error_state {
14451 bool power_domain_on;
14452 u32 source;
14453 u32 stat;
14454 } pipe[I915_MAX_PIPES];
14455
14456 struct intel_plane_error_state {
14457 u32 control;
14458 u32 stride;
14459 u32 size;
14460 u32 pos;
14461 u32 addr;
14462 u32 surface;
14463 u32 tile_offset;
14464 } plane[I915_MAX_PIPES];
14465
14466 struct intel_transcoder_error_state {
14467 bool power_domain_on;
14468 enum transcoder cpu_transcoder;
14469
14470 u32 conf;
14471
14472 u32 htotal;
14473 u32 hblank;
14474 u32 hsync;
14475 u32 vtotal;
14476 u32 vblank;
14477 u32 vsync;
14478 } transcoder[4];
14479 };
14480
14481 struct intel_display_error_state *
intel_display_capture_error_state(struct drm_device * dev)14482 intel_display_capture_error_state(struct drm_device *dev)
14483 {
14484 struct drm_i915_private *dev_priv = dev->dev_private;
14485 struct intel_display_error_state *error;
14486 int transcoders[] = {
14487 TRANSCODER_A,
14488 TRANSCODER_B,
14489 TRANSCODER_C,
14490 TRANSCODER_EDP,
14491 };
14492 int i;
14493
14494 if (INTEL_INFO(dev)->num_pipes == 0)
14495 return NULL;
14496
14497 error = kzalloc(sizeof(*error), GFP_ATOMIC);
14498 if (error == NULL)
14499 return NULL;
14500
14501 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
14502 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
14503
14504 for_each_pipe(dev_priv, i) {
14505 error->pipe[i].power_domain_on =
14506 __intel_display_power_is_enabled(dev_priv,
14507 POWER_DOMAIN_PIPE(i));
14508 if (!error->pipe[i].power_domain_on)
14509 continue;
14510
14511 error->cursor[i].control = I915_READ(CURCNTR(i));
14512 error->cursor[i].position = I915_READ(CURPOS(i));
14513 error->cursor[i].base = I915_READ(CURBASE(i));
14514
14515 error->plane[i].control = I915_READ(DSPCNTR(i));
14516 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
14517 if (INTEL_INFO(dev)->gen <= 3) {
14518 error->plane[i].size = I915_READ(DSPSIZE(i));
14519 error->plane[i].pos = I915_READ(DSPPOS(i));
14520 }
14521 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
14522 error->plane[i].addr = I915_READ(DSPADDR(i));
14523 if (INTEL_INFO(dev)->gen >= 4) {
14524 error->plane[i].surface = I915_READ(DSPSURF(i));
14525 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
14526 }
14527
14528 error->pipe[i].source = I915_READ(PIPESRC(i));
14529
14530 if (HAS_GMCH_DISPLAY(dev))
14531 error->pipe[i].stat = I915_READ(PIPESTAT(i));
14532 }
14533
14534 error->num_transcoders = INTEL_INFO(dev)->num_pipes;
14535 if (HAS_DDI(dev_priv->dev))
14536 error->num_transcoders++; /* Account for eDP. */
14537
14538 for (i = 0; i < error->num_transcoders; i++) {
14539 enum transcoder cpu_transcoder = transcoders[i];
14540
14541 error->transcoder[i].power_domain_on =
14542 __intel_display_power_is_enabled(dev_priv,
14543 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
14544 if (!error->transcoder[i].power_domain_on)
14545 continue;
14546
14547 error->transcoder[i].cpu_transcoder = cpu_transcoder;
14548
14549 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
14550 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
14551 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
14552 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
14553 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
14554 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
14555 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
14556 }
14557
14558 return error;
14559 }
14560
14561 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
14562
14563 void
intel_display_print_error_state(struct drm_i915_error_state_buf * m,struct drm_device * dev,struct intel_display_error_state * error)14564 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
14565 struct drm_device *dev,
14566 struct intel_display_error_state *error)
14567 {
14568 struct drm_i915_private *dev_priv = dev->dev_private;
14569 int i;
14570
14571 if (!error)
14572 return;
14573
14574 err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
14575 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
14576 err_printf(m, "PWR_WELL_CTL2: %08x\n",
14577 error->power_well_driver);
14578 for_each_pipe(dev_priv, i) {
14579 err_printf(m, "Pipe [%d]:\n", i);
14580 err_printf(m, " Power: %s\n",
14581 error->pipe[i].power_domain_on ? "on" : "off");
14582 err_printf(m, " SRC: %08x\n", error->pipe[i].source);
14583 err_printf(m, " STAT: %08x\n", error->pipe[i].stat);
14584
14585 err_printf(m, "Plane [%d]:\n", i);
14586 err_printf(m, " CNTR: %08x\n", error->plane[i].control);
14587 err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
14588 if (INTEL_INFO(dev)->gen <= 3) {
14589 err_printf(m, " SIZE: %08x\n", error->plane[i].size);
14590 err_printf(m, " POS: %08x\n", error->plane[i].pos);
14591 }
14592 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
14593 err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
14594 if (INTEL_INFO(dev)->gen >= 4) {
14595 err_printf(m, " SURF: %08x\n", error->plane[i].surface);
14596 err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
14597 }
14598
14599 err_printf(m, "Cursor [%d]:\n", i);
14600 err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
14601 err_printf(m, " POS: %08x\n", error->cursor[i].position);
14602 err_printf(m, " BASE: %08x\n", error->cursor[i].base);
14603 }
14604
14605 for (i = 0; i < error->num_transcoders; i++) {
14606 err_printf(m, "CPU transcoder: %c\n",
14607 transcoder_name(error->transcoder[i].cpu_transcoder));
14608 err_printf(m, " Power: %s\n",
14609 error->transcoder[i].power_domain_on ? "on" : "off");
14610 err_printf(m, " CONF: %08x\n", error->transcoder[i].conf);
14611 err_printf(m, " HTOTAL: %08x\n", error->transcoder[i].htotal);
14612 err_printf(m, " HBLANK: %08x\n", error->transcoder[i].hblank);
14613 err_printf(m, " HSYNC: %08x\n", error->transcoder[i].hsync);
14614 err_printf(m, " VTOTAL: %08x\n", error->transcoder[i].vtotal);
14615 err_printf(m, " VBLANK: %08x\n", error->transcoder[i].vblank);
14616 err_printf(m, " VSYNC: %08x\n", error->transcoder[i].vsync);
14617 }
14618 }
14619
intel_modeset_preclose(struct drm_device * dev,struct drm_file * file)14620 void intel_modeset_preclose(struct drm_device *dev, struct drm_file *file)
14621 {
14622 struct intel_crtc *crtc;
14623
14624 for_each_intel_crtc(dev, crtc) {
14625 struct intel_unpin_work *work;
14626
14627 spin_lock_irq(&dev->event_lock);
14628
14629 work = crtc->unpin_work;
14630
14631 if (work && work->event &&
14632 work->event->base.file_priv == file) {
14633 kfree(work->event);
14634 work->event = NULL;
14635 }
14636
14637 spin_unlock_irq(&dev->event_lock);
14638 }
14639 }
14640