1 /*
2  * Copyright © 2008-2010 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Zou Nan hai <nanhai.zou@intel.com>
26  *    Xiang Hai hao<haihao.xiang@intel.com>
27  *
28  */
29 
30 #include <drm/drmP.h>
31 #include "i915_drv.h"
32 #include <drm/i915_drm.h>
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35 
36 bool
intel_ring_initialized(struct intel_engine_cs * ring)37 intel_ring_initialized(struct intel_engine_cs *ring)
38 {
39 	struct drm_device *dev = ring->dev;
40 
41 	if (!dev)
42 		return false;
43 
44 	if (i915.enable_execlists) {
45 		struct intel_context *dctx = ring->default_context;
46 		struct intel_ringbuffer *ringbuf = dctx->engine[ring->id].ringbuf;
47 
48 		return ringbuf->obj;
49 	} else
50 		return ring->buffer && ring->buffer->obj;
51 }
52 
__intel_ring_space(int head,int tail,int size)53 int __intel_ring_space(int head, int tail, int size)
54 {
55 	int space = head - tail;
56 	if (space <= 0)
57 		space += size;
58 	return space - I915_RING_FREE_SPACE;
59 }
60 
intel_ring_update_space(struct intel_ringbuffer * ringbuf)61 void intel_ring_update_space(struct intel_ringbuffer *ringbuf)
62 {
63 	if (ringbuf->last_retired_head != -1) {
64 		ringbuf->head = ringbuf->last_retired_head;
65 		ringbuf->last_retired_head = -1;
66 	}
67 
68 	ringbuf->space = __intel_ring_space(ringbuf->head & HEAD_ADDR,
69 					    ringbuf->tail, ringbuf->size);
70 }
71 
intel_ring_space(struct intel_ringbuffer * ringbuf)72 int intel_ring_space(struct intel_ringbuffer *ringbuf)
73 {
74 	intel_ring_update_space(ringbuf);
75 	return ringbuf->space;
76 }
77 
intel_ring_stopped(struct intel_engine_cs * ring)78 bool intel_ring_stopped(struct intel_engine_cs *ring)
79 {
80 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
81 	return dev_priv->gpu_error.stop_rings & intel_ring_flag(ring);
82 }
83 
__intel_ring_advance(struct intel_engine_cs * ring)84 void __intel_ring_advance(struct intel_engine_cs *ring)
85 {
86 	struct intel_ringbuffer *ringbuf = ring->buffer;
87 	ringbuf->tail &= ringbuf->size - 1;
88 	if (intel_ring_stopped(ring))
89 		return;
90 	ring->write_tail(ring, ringbuf->tail);
91 }
92 
93 static int
gen2_render_ring_flush(struct intel_engine_cs * ring,u32 invalidate_domains,u32 flush_domains)94 gen2_render_ring_flush(struct intel_engine_cs *ring,
95 		       u32	invalidate_domains,
96 		       u32	flush_domains)
97 {
98 	u32 cmd;
99 	int ret;
100 
101 	cmd = MI_FLUSH;
102 	if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
103 		cmd |= MI_NO_WRITE_FLUSH;
104 
105 	if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
106 		cmd |= MI_READ_FLUSH;
107 
108 	ret = intel_ring_begin(ring, 2);
109 	if (ret)
110 		return ret;
111 
112 	intel_ring_emit(ring, cmd);
113 	intel_ring_emit(ring, MI_NOOP);
114 	intel_ring_advance(ring);
115 
116 	return 0;
117 }
118 
119 static int
gen4_render_ring_flush(struct intel_engine_cs * ring,u32 invalidate_domains,u32 flush_domains)120 gen4_render_ring_flush(struct intel_engine_cs *ring,
121 		       u32	invalidate_domains,
122 		       u32	flush_domains)
123 {
124 	struct drm_device *dev = ring->dev;
125 	u32 cmd;
126 	int ret;
127 
128 	/*
129 	 * read/write caches:
130 	 *
131 	 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
132 	 * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
133 	 * also flushed at 2d versus 3d pipeline switches.
134 	 *
135 	 * read-only caches:
136 	 *
137 	 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
138 	 * MI_READ_FLUSH is set, and is always flushed on 965.
139 	 *
140 	 * I915_GEM_DOMAIN_COMMAND may not exist?
141 	 *
142 	 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
143 	 * invalidated when MI_EXE_FLUSH is set.
144 	 *
145 	 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
146 	 * invalidated with every MI_FLUSH.
147 	 *
148 	 * TLBs:
149 	 *
150 	 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
151 	 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
152 	 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
153 	 * are flushed at any MI_FLUSH.
154 	 */
155 
156 	cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
157 	if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
158 		cmd &= ~MI_NO_WRITE_FLUSH;
159 	if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
160 		cmd |= MI_EXE_FLUSH;
161 
162 	if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
163 	    (IS_G4X(dev) || IS_GEN5(dev)))
164 		cmd |= MI_INVALIDATE_ISP;
165 
166 	ret = intel_ring_begin(ring, 2);
167 	if (ret)
168 		return ret;
169 
170 	intel_ring_emit(ring, cmd);
171 	intel_ring_emit(ring, MI_NOOP);
172 	intel_ring_advance(ring);
173 
174 	return 0;
175 }
176 
177 /**
178  * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
179  * implementing two workarounds on gen6.  From section 1.4.7.1
180  * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
181  *
182  * [DevSNB-C+{W/A}] Before any depth stall flush (including those
183  * produced by non-pipelined state commands), software needs to first
184  * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
185  * 0.
186  *
187  * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
188  * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
189  *
190  * And the workaround for these two requires this workaround first:
191  *
192  * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
193  * BEFORE the pipe-control with a post-sync op and no write-cache
194  * flushes.
195  *
196  * And this last workaround is tricky because of the requirements on
197  * that bit.  From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
198  * volume 2 part 1:
199  *
200  *     "1 of the following must also be set:
201  *      - Render Target Cache Flush Enable ([12] of DW1)
202  *      - Depth Cache Flush Enable ([0] of DW1)
203  *      - Stall at Pixel Scoreboard ([1] of DW1)
204  *      - Depth Stall ([13] of DW1)
205  *      - Post-Sync Operation ([13] of DW1)
206  *      - Notify Enable ([8] of DW1)"
207  *
208  * The cache flushes require the workaround flush that triggered this
209  * one, so we can't use it.  Depth stall would trigger the same.
210  * Post-sync nonzero is what triggered this second workaround, so we
211  * can't use that one either.  Notify enable is IRQs, which aren't
212  * really our business.  That leaves only stall at scoreboard.
213  */
214 static int
intel_emit_post_sync_nonzero_flush(struct intel_engine_cs * ring)215 intel_emit_post_sync_nonzero_flush(struct intel_engine_cs *ring)
216 {
217 	u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
218 	int ret;
219 
220 
221 	ret = intel_ring_begin(ring, 6);
222 	if (ret)
223 		return ret;
224 
225 	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
226 	intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
227 			PIPE_CONTROL_STALL_AT_SCOREBOARD);
228 	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
229 	intel_ring_emit(ring, 0); /* low dword */
230 	intel_ring_emit(ring, 0); /* high dword */
231 	intel_ring_emit(ring, MI_NOOP);
232 	intel_ring_advance(ring);
233 
234 	ret = intel_ring_begin(ring, 6);
235 	if (ret)
236 		return ret;
237 
238 	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
239 	intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
240 	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
241 	intel_ring_emit(ring, 0);
242 	intel_ring_emit(ring, 0);
243 	intel_ring_emit(ring, MI_NOOP);
244 	intel_ring_advance(ring);
245 
246 	return 0;
247 }
248 
249 static int
gen6_render_ring_flush(struct intel_engine_cs * ring,u32 invalidate_domains,u32 flush_domains)250 gen6_render_ring_flush(struct intel_engine_cs *ring,
251                          u32 invalidate_domains, u32 flush_domains)
252 {
253 	u32 flags = 0;
254 	u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
255 	int ret;
256 
257 	/* Force SNB workarounds for PIPE_CONTROL flushes */
258 	ret = intel_emit_post_sync_nonzero_flush(ring);
259 	if (ret)
260 		return ret;
261 
262 	/* Just flush everything.  Experiments have shown that reducing the
263 	 * number of bits based on the write domains has little performance
264 	 * impact.
265 	 */
266 	if (flush_domains) {
267 		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
268 		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
269 		/*
270 		 * Ensure that any following seqno writes only happen
271 		 * when the render cache is indeed flushed.
272 		 */
273 		flags |= PIPE_CONTROL_CS_STALL;
274 	}
275 	if (invalidate_domains) {
276 		flags |= PIPE_CONTROL_TLB_INVALIDATE;
277 		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
278 		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
279 		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
280 		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
281 		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
282 		/*
283 		 * TLB invalidate requires a post-sync write.
284 		 */
285 		flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
286 	}
287 
288 	ret = intel_ring_begin(ring, 4);
289 	if (ret)
290 		return ret;
291 
292 	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
293 	intel_ring_emit(ring, flags);
294 	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
295 	intel_ring_emit(ring, 0);
296 	intel_ring_advance(ring);
297 
298 	return 0;
299 }
300 
301 static int
gen7_render_ring_cs_stall_wa(struct intel_engine_cs * ring)302 gen7_render_ring_cs_stall_wa(struct intel_engine_cs *ring)
303 {
304 	int ret;
305 
306 	ret = intel_ring_begin(ring, 4);
307 	if (ret)
308 		return ret;
309 
310 	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
311 	intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
312 			      PIPE_CONTROL_STALL_AT_SCOREBOARD);
313 	intel_ring_emit(ring, 0);
314 	intel_ring_emit(ring, 0);
315 	intel_ring_advance(ring);
316 
317 	return 0;
318 }
319 
320 static int
gen7_render_ring_flush(struct intel_engine_cs * ring,u32 invalidate_domains,u32 flush_domains)321 gen7_render_ring_flush(struct intel_engine_cs *ring,
322 		       u32 invalidate_domains, u32 flush_domains)
323 {
324 	u32 flags = 0;
325 	u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
326 	int ret;
327 
328 	/*
329 	 * Ensure that any following seqno writes only happen when the render
330 	 * cache is indeed flushed.
331 	 *
332 	 * Workaround: 4th PIPE_CONTROL command (except the ones with only
333 	 * read-cache invalidate bits set) must have the CS_STALL bit set. We
334 	 * don't try to be clever and just set it unconditionally.
335 	 */
336 	flags |= PIPE_CONTROL_CS_STALL;
337 
338 	/* Just flush everything.  Experiments have shown that reducing the
339 	 * number of bits based on the write domains has little performance
340 	 * impact.
341 	 */
342 	if (flush_domains) {
343 		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
344 		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
345 		flags |= PIPE_CONTROL_FLUSH_ENABLE;
346 	}
347 	if (invalidate_domains) {
348 		flags |= PIPE_CONTROL_TLB_INVALIDATE;
349 		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
350 		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
351 		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
352 		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
353 		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
354 		flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
355 		/*
356 		 * TLB invalidate requires a post-sync write.
357 		 */
358 		flags |= PIPE_CONTROL_QW_WRITE;
359 		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
360 
361 		flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
362 
363 		/* Workaround: we must issue a pipe_control with CS-stall bit
364 		 * set before a pipe_control command that has the state cache
365 		 * invalidate bit set. */
366 		gen7_render_ring_cs_stall_wa(ring);
367 	}
368 
369 	ret = intel_ring_begin(ring, 4);
370 	if (ret)
371 		return ret;
372 
373 	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
374 	intel_ring_emit(ring, flags);
375 	intel_ring_emit(ring, scratch_addr);
376 	intel_ring_emit(ring, 0);
377 	intel_ring_advance(ring);
378 
379 	return 0;
380 }
381 
382 static int
gen8_emit_pipe_control(struct intel_engine_cs * ring,u32 flags,u32 scratch_addr)383 gen8_emit_pipe_control(struct intel_engine_cs *ring,
384 		       u32 flags, u32 scratch_addr)
385 {
386 	int ret;
387 
388 	ret = intel_ring_begin(ring, 6);
389 	if (ret)
390 		return ret;
391 
392 	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
393 	intel_ring_emit(ring, flags);
394 	intel_ring_emit(ring, scratch_addr);
395 	intel_ring_emit(ring, 0);
396 	intel_ring_emit(ring, 0);
397 	intel_ring_emit(ring, 0);
398 	intel_ring_advance(ring);
399 
400 	return 0;
401 }
402 
403 static int
gen8_render_ring_flush(struct intel_engine_cs * ring,u32 invalidate_domains,u32 flush_domains)404 gen8_render_ring_flush(struct intel_engine_cs *ring,
405 		       u32 invalidate_domains, u32 flush_domains)
406 {
407 	u32 flags = 0;
408 	u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
409 	int ret;
410 
411 	flags |= PIPE_CONTROL_CS_STALL;
412 
413 	if (flush_domains) {
414 		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
415 		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
416 		flags |= PIPE_CONTROL_FLUSH_ENABLE;
417 	}
418 	if (invalidate_domains) {
419 		flags |= PIPE_CONTROL_TLB_INVALIDATE;
420 		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
421 		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
422 		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
423 		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
424 		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
425 		flags |= PIPE_CONTROL_QW_WRITE;
426 		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
427 
428 		/* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
429 		ret = gen8_emit_pipe_control(ring,
430 					     PIPE_CONTROL_CS_STALL |
431 					     PIPE_CONTROL_STALL_AT_SCOREBOARD,
432 					     0);
433 		if (ret)
434 			return ret;
435 	}
436 
437 	return gen8_emit_pipe_control(ring, flags, scratch_addr);
438 }
439 
ring_write_tail(struct intel_engine_cs * ring,u32 value)440 static void ring_write_tail(struct intel_engine_cs *ring,
441 			    u32 value)
442 {
443 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
444 	I915_WRITE_TAIL(ring, value);
445 }
446 
intel_ring_get_active_head(struct intel_engine_cs * ring)447 u64 intel_ring_get_active_head(struct intel_engine_cs *ring)
448 {
449 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
450 	u64 acthd;
451 
452 	if (INTEL_INFO(ring->dev)->gen >= 8)
453 		acthd = I915_READ64_2x32(RING_ACTHD(ring->mmio_base),
454 					 RING_ACTHD_UDW(ring->mmio_base));
455 	else if (INTEL_INFO(ring->dev)->gen >= 4)
456 		acthd = I915_READ(RING_ACTHD(ring->mmio_base));
457 	else
458 		acthd = I915_READ(ACTHD);
459 
460 	return acthd;
461 }
462 
ring_setup_phys_status_page(struct intel_engine_cs * ring)463 static void ring_setup_phys_status_page(struct intel_engine_cs *ring)
464 {
465 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
466 	u32 addr;
467 
468 	addr = dev_priv->status_page_dmah->busaddr;
469 	if (INTEL_INFO(ring->dev)->gen >= 4)
470 		addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
471 	I915_WRITE(HWS_PGA, addr);
472 }
473 
intel_ring_setup_status_page(struct intel_engine_cs * ring)474 static void intel_ring_setup_status_page(struct intel_engine_cs *ring)
475 {
476 	struct drm_device *dev = ring->dev;
477 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
478 	u32 mmio = 0;
479 
480 	/* The ring status page addresses are no longer next to the rest of
481 	 * the ring registers as of gen7.
482 	 */
483 	if (IS_GEN7(dev)) {
484 		switch (ring->id) {
485 		case RCS:
486 			mmio = RENDER_HWS_PGA_GEN7;
487 			break;
488 		case BCS:
489 			mmio = BLT_HWS_PGA_GEN7;
490 			break;
491 		/*
492 		 * VCS2 actually doesn't exist on Gen7. Only shut up
493 		 * gcc switch check warning
494 		 */
495 		case VCS2:
496 		case VCS:
497 			mmio = BSD_HWS_PGA_GEN7;
498 			break;
499 		case VECS:
500 			mmio = VEBOX_HWS_PGA_GEN7;
501 			break;
502 		}
503 	} else if (IS_GEN6(ring->dev)) {
504 		mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
505 	} else {
506 		/* XXX: gen8 returns to sanity */
507 		mmio = RING_HWS_PGA(ring->mmio_base);
508 	}
509 
510 	I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
511 	POSTING_READ(mmio);
512 
513 	/*
514 	 * Flush the TLB for this page
515 	 *
516 	 * FIXME: These two bits have disappeared on gen8, so a question
517 	 * arises: do we still need this and if so how should we go about
518 	 * invalidating the TLB?
519 	 */
520 	if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8) {
521 		u32 reg = RING_INSTPM(ring->mmio_base);
522 
523 		/* ring should be idle before issuing a sync flush*/
524 		WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
525 
526 		I915_WRITE(reg,
527 			   _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
528 					      INSTPM_SYNC_FLUSH));
529 		if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
530 			     1000))
531 			DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
532 				  ring->name);
533 	}
534 }
535 
stop_ring(struct intel_engine_cs * ring)536 static bool stop_ring(struct intel_engine_cs *ring)
537 {
538 	struct drm_i915_private *dev_priv = to_i915(ring->dev);
539 
540 	if (!IS_GEN2(ring->dev)) {
541 		I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
542 		if (wait_for((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
543 			DRM_ERROR("%s : timed out trying to stop ring\n", ring->name);
544 			/* Sometimes we observe that the idle flag is not
545 			 * set even though the ring is empty. So double
546 			 * check before giving up.
547 			 */
548 			if (I915_READ_HEAD(ring) != I915_READ_TAIL(ring))
549 				return false;
550 		}
551 	}
552 
553 	I915_WRITE_CTL(ring, 0);
554 	I915_WRITE_HEAD(ring, 0);
555 	ring->write_tail(ring, 0);
556 
557 	if (!IS_GEN2(ring->dev)) {
558 		(void)I915_READ_CTL(ring);
559 		I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
560 	}
561 
562 	return (I915_READ_HEAD(ring) & HEAD_ADDR) == 0;
563 }
564 
init_ring_common(struct intel_engine_cs * ring)565 static int init_ring_common(struct intel_engine_cs *ring)
566 {
567 	struct drm_device *dev = ring->dev;
568 	struct drm_i915_private *dev_priv = dev->dev_private;
569 	struct intel_ringbuffer *ringbuf = ring->buffer;
570 	struct drm_i915_gem_object *obj = ringbuf->obj;
571 	int ret = 0;
572 
573 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
574 
575 	if (!stop_ring(ring)) {
576 		/* G45 ring initialization often fails to reset head to zero */
577 		DRM_DEBUG_KMS("%s head not reset to zero "
578 			      "ctl %08x head %08x tail %08x start %08x\n",
579 			      ring->name,
580 			      I915_READ_CTL(ring),
581 			      I915_READ_HEAD(ring),
582 			      I915_READ_TAIL(ring),
583 			      I915_READ_START(ring));
584 
585 		if (!stop_ring(ring)) {
586 			DRM_ERROR("failed to set %s head to zero "
587 				  "ctl %08x head %08x tail %08x start %08x\n",
588 				  ring->name,
589 				  I915_READ_CTL(ring),
590 				  I915_READ_HEAD(ring),
591 				  I915_READ_TAIL(ring),
592 				  I915_READ_START(ring));
593 			ret = -EIO;
594 			goto out;
595 		}
596 	}
597 
598 	if (I915_NEED_GFX_HWS(dev))
599 		intel_ring_setup_status_page(ring);
600 	else
601 		ring_setup_phys_status_page(ring);
602 
603 	/* Enforce ordering by reading HEAD register back */
604 	I915_READ_HEAD(ring);
605 
606 	/* Initialize the ring. This must happen _after_ we've cleared the ring
607 	 * registers with the above sequence (the readback of the HEAD registers
608 	 * also enforces ordering), otherwise the hw might lose the new ring
609 	 * register values. */
610 	I915_WRITE_START(ring, i915_gem_obj_ggtt_offset(obj));
611 
612 	/* WaClearRingBufHeadRegAtInit:ctg,elk */
613 	if (I915_READ_HEAD(ring))
614 		DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
615 			  ring->name, I915_READ_HEAD(ring));
616 	I915_WRITE_HEAD(ring, 0);
617 	(void)I915_READ_HEAD(ring);
618 
619 	I915_WRITE_CTL(ring,
620 			((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES)
621 			| RING_VALID);
622 
623 	/* If the head is still not zero, the ring is dead */
624 	if (wait_for((I915_READ_CTL(ring) & RING_VALID) != 0 &&
625 		     I915_READ_START(ring) == i915_gem_obj_ggtt_offset(obj) &&
626 		     (I915_READ_HEAD(ring) & HEAD_ADDR) == 0, 50)) {
627 		DRM_ERROR("%s initialization failed "
628 			  "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
629 			  ring->name,
630 			  I915_READ_CTL(ring), I915_READ_CTL(ring) & RING_VALID,
631 			  I915_READ_HEAD(ring), I915_READ_TAIL(ring),
632 			  I915_READ_START(ring), (unsigned long)i915_gem_obj_ggtt_offset(obj));
633 		ret = -EIO;
634 		goto out;
635 	}
636 
637 	ringbuf->last_retired_head = -1;
638 	ringbuf->head = I915_READ_HEAD(ring);
639 	ringbuf->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
640 	intel_ring_update_space(ringbuf);
641 
642 	memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
643 
644 out:
645 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
646 
647 	return ret;
648 }
649 
650 void
intel_fini_pipe_control(struct intel_engine_cs * ring)651 intel_fini_pipe_control(struct intel_engine_cs *ring)
652 {
653 	struct drm_device *dev = ring->dev;
654 
655 	if (ring->scratch.obj == NULL)
656 		return;
657 
658 	if (INTEL_INFO(dev)->gen >= 5) {
659 		kunmap(sg_page(ring->scratch.obj->pages->sgl));
660 		i915_gem_object_ggtt_unpin(ring->scratch.obj);
661 	}
662 
663 	drm_gem_object_unreference(&ring->scratch.obj->base);
664 	ring->scratch.obj = NULL;
665 }
666 
667 int
intel_init_pipe_control(struct intel_engine_cs * ring)668 intel_init_pipe_control(struct intel_engine_cs *ring)
669 {
670 	int ret;
671 
672 	WARN_ON(ring->scratch.obj);
673 
674 	ring->scratch.obj = i915_gem_alloc_object(ring->dev, 4096);
675 	if (ring->scratch.obj == NULL) {
676 		DRM_ERROR("Failed to allocate seqno page\n");
677 		ret = -ENOMEM;
678 		goto err;
679 	}
680 
681 	ret = i915_gem_object_set_cache_level(ring->scratch.obj, I915_CACHE_LLC);
682 	if (ret)
683 		goto err_unref;
684 
685 	ret = i915_gem_obj_ggtt_pin(ring->scratch.obj, 4096, 0);
686 	if (ret)
687 		goto err_unref;
688 
689 	ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(ring->scratch.obj);
690 	ring->scratch.cpu_page = kmap(sg_page(ring->scratch.obj->pages->sgl));
691 	if (ring->scratch.cpu_page == NULL) {
692 		ret = -ENOMEM;
693 		goto err_unpin;
694 	}
695 
696 	DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
697 			 ring->name, ring->scratch.gtt_offset);
698 	return 0;
699 
700 err_unpin:
701 	i915_gem_object_ggtt_unpin(ring->scratch.obj);
702 err_unref:
703 	drm_gem_object_unreference(&ring->scratch.obj->base);
704 err:
705 	return ret;
706 }
707 
intel_ring_workarounds_emit(struct intel_engine_cs * ring,struct intel_context * ctx)708 static int intel_ring_workarounds_emit(struct intel_engine_cs *ring,
709 				       struct intel_context *ctx)
710 {
711 	int ret, i;
712 	struct drm_device *dev = ring->dev;
713 	struct drm_i915_private *dev_priv = dev->dev_private;
714 	struct i915_workarounds *w = &dev_priv->workarounds;
715 
716 	if (WARN_ON_ONCE(w->count == 0))
717 		return 0;
718 
719 	ring->gpu_caches_dirty = true;
720 	ret = intel_ring_flush_all_caches(ring);
721 	if (ret)
722 		return ret;
723 
724 	ret = intel_ring_begin(ring, (w->count * 2 + 2));
725 	if (ret)
726 		return ret;
727 
728 	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count));
729 	for (i = 0; i < w->count; i++) {
730 		intel_ring_emit(ring, w->reg[i].addr);
731 		intel_ring_emit(ring, w->reg[i].value);
732 	}
733 	intel_ring_emit(ring, MI_NOOP);
734 
735 	intel_ring_advance(ring);
736 
737 	ring->gpu_caches_dirty = true;
738 	ret = intel_ring_flush_all_caches(ring);
739 	if (ret)
740 		return ret;
741 
742 	DRM_DEBUG_DRIVER("Number of Workarounds emitted: %d\n", w->count);
743 
744 	return 0;
745 }
746 
intel_rcs_ctx_init(struct intel_engine_cs * ring,struct intel_context * ctx)747 static int intel_rcs_ctx_init(struct intel_engine_cs *ring,
748 			      struct intel_context *ctx)
749 {
750 	int ret;
751 
752 	ret = intel_ring_workarounds_emit(ring, ctx);
753 	if (ret != 0)
754 		return ret;
755 
756 	ret = i915_gem_render_state_init(ring);
757 	if (ret)
758 		DRM_ERROR("init render state: %d\n", ret);
759 
760 	return ret;
761 }
762 
wa_add(struct drm_i915_private * dev_priv,const u32 addr,const u32 mask,const u32 val)763 static int wa_add(struct drm_i915_private *dev_priv,
764 		  const u32 addr, const u32 mask, const u32 val)
765 {
766 	const u32 idx = dev_priv->workarounds.count;
767 
768 	if (WARN_ON(idx >= I915_MAX_WA_REGS))
769 		return -ENOSPC;
770 
771 	dev_priv->workarounds.reg[idx].addr = addr;
772 	dev_priv->workarounds.reg[idx].value = val;
773 	dev_priv->workarounds.reg[idx].mask = mask;
774 
775 	dev_priv->workarounds.count++;
776 
777 	return 0;
778 }
779 
780 #define WA_REG(addr, mask, val) { \
781 		const int r = wa_add(dev_priv, (addr), (mask), (val)); \
782 		if (r) \
783 			return r; \
784 	}
785 
786 #define WA_SET_BIT_MASKED(addr, mask) \
787 	WA_REG(addr, (mask), _MASKED_BIT_ENABLE(mask))
788 
789 #define WA_CLR_BIT_MASKED(addr, mask) \
790 	WA_REG(addr, (mask), _MASKED_BIT_DISABLE(mask))
791 
792 #define WA_SET_FIELD_MASKED(addr, mask, value) \
793 	WA_REG(addr, mask, _MASKED_FIELD(mask, value))
794 
795 #define WA_SET_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) | (mask))
796 #define WA_CLR_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) & ~(mask))
797 
798 #define WA_WRITE(addr, val) WA_REG(addr, 0xffffffff, val)
799 
bdw_init_workarounds(struct intel_engine_cs * ring)800 static int bdw_init_workarounds(struct intel_engine_cs *ring)
801 {
802 	struct drm_device *dev = ring->dev;
803 	struct drm_i915_private *dev_priv = dev->dev_private;
804 
805 	/* WaDisablePartialInstShootdown:bdw */
806 	/* WaDisableThreadStallDopClockGating:bdw (pre-production) */
807 	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
808 			  PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE |
809 			  STALL_DOP_GATING_DISABLE);
810 
811 	/* WaDisableDopClockGating:bdw */
812 	WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2,
813 			  DOP_CLOCK_GATING_DISABLE);
814 
815 	WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
816 			  GEN8_SAMPLER_POWER_BYPASS_DIS);
817 
818 	/* Use Force Non-Coherent whenever executing a 3D context. This is a
819 	 * workaround for for a possible hang in the unlikely event a TLB
820 	 * invalidation occurs during a PSD flush.
821 	 */
822 	WA_SET_BIT_MASKED(HDC_CHICKEN0,
823 			  /* WaForceEnableNonCoherent:bdw */
824 			  HDC_FORCE_NON_COHERENT |
825 			  /* WaForceContextSaveRestoreNonCoherent:bdw */
826 			  HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
827 			  /* WaHdcDisableFetchWhenMasked:bdw */
828 			  HDC_DONOT_FETCH_MEM_WHEN_MASKED |
829 			  /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
830 			  (IS_BDW_GT3(dev) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
831 
832 	/* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
833 	 * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
834 	 *  polygons in the same 8x4 pixel/sample area to be processed without
835 	 *  stalling waiting for the earlier ones to write to Hierarchical Z
836 	 *  buffer."
837 	 *
838 	 * This optimization is off by default for Broadwell; turn it on.
839 	 */
840 	WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
841 
842 	/* Wa4x4STCOptimizationDisable:bdw */
843 	WA_SET_BIT_MASKED(CACHE_MODE_1,
844 			  GEN8_4x4_STC_OPTIMIZATION_DISABLE);
845 
846 	/*
847 	 * BSpec recommends 8x4 when MSAA is used,
848 	 * however in practice 16x4 seems fastest.
849 	 *
850 	 * Note that PS/WM thread counts depend on the WIZ hashing
851 	 * disable bit, which we don't touch here, but it's good
852 	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
853 	 */
854 	WA_SET_FIELD_MASKED(GEN7_GT_MODE,
855 			    GEN6_WIZ_HASHING_MASK,
856 			    GEN6_WIZ_HASHING_16x4);
857 
858 	return 0;
859 }
860 
chv_init_workarounds(struct intel_engine_cs * ring)861 static int chv_init_workarounds(struct intel_engine_cs *ring)
862 {
863 	struct drm_device *dev = ring->dev;
864 	struct drm_i915_private *dev_priv = dev->dev_private;
865 
866 	/* WaDisablePartialInstShootdown:chv */
867 	/* WaDisableThreadStallDopClockGating:chv */
868 	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
869 			  PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE |
870 			  STALL_DOP_GATING_DISABLE);
871 
872 	/* Use Force Non-Coherent whenever executing a 3D context. This is a
873 	 * workaround for a possible hang in the unlikely event a TLB
874 	 * invalidation occurs during a PSD flush.
875 	 */
876 	/* WaForceEnableNonCoherent:chv */
877 	/* WaHdcDisableFetchWhenMasked:chv */
878 	WA_SET_BIT_MASKED(HDC_CHICKEN0,
879 			  HDC_FORCE_NON_COHERENT |
880 			  HDC_DONOT_FETCH_MEM_WHEN_MASKED);
881 
882 	/* According to the CACHE_MODE_0 default value documentation, some
883 	 * CHV platforms disable this optimization by default.  Turn it on.
884 	 */
885 	WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
886 
887 	/* Wa4x4STCOptimizationDisable:chv */
888 	WA_SET_BIT_MASKED(CACHE_MODE_1,
889 			  GEN8_4x4_STC_OPTIMIZATION_DISABLE);
890 
891 	/* Improve HiZ throughput on CHV. */
892 	WA_SET_BIT_MASKED(HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);
893 
894 	/*
895 	 * BSpec recommends 8x4 when MSAA is used,
896 	 * however in practice 16x4 seems fastest.
897 	 *
898 	 * Note that PS/WM thread counts depend on the WIZ hashing
899 	 * disable bit, which we don't touch here, but it's good
900 	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
901 	 */
902 	WA_SET_FIELD_MASKED(GEN7_GT_MODE,
903 			    GEN6_WIZ_HASHING_MASK,
904 			    GEN6_WIZ_HASHING_16x4);
905 
906 	return 0;
907 }
908 
gen9_init_workarounds(struct intel_engine_cs * ring)909 static int gen9_init_workarounds(struct intel_engine_cs *ring)
910 {
911 	struct drm_device *dev = ring->dev;
912 	struct drm_i915_private *dev_priv = dev->dev_private;
913 
914 	/* WaDisablePartialInstShootdown:skl */
915 	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
916 			  PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
917 
918 	/* Syncing dependencies between camera and graphics */
919 	WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
920 			  GEN9_DISABLE_OCL_OOB_SUPPRESS_LOGIC);
921 
922 	if (INTEL_REVID(dev) == SKL_REVID_A0 ||
923 	    INTEL_REVID(dev) == SKL_REVID_B0) {
924 		/* WaDisableDgMirrorFixInHalfSliceChicken5:skl */
925 		WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
926 				  GEN9_DG_MIRROR_FIX_ENABLE);
927 	}
928 
929 	if (IS_SKYLAKE(dev) && INTEL_REVID(dev) <= SKL_REVID_B0) {
930 		/* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl */
931 		WA_SET_BIT_MASKED(GEN7_COMMON_SLICE_CHICKEN1,
932 				  GEN9_RHWO_OPTIMIZATION_DISABLE);
933 		WA_SET_BIT_MASKED(GEN9_SLICE_COMMON_ECO_CHICKEN0,
934 				  DISABLE_PIXEL_MASK_CAMMING);
935 	}
936 
937 	if (INTEL_REVID(dev) >= SKL_REVID_C0) {
938 		/* WaEnableYV12BugFixInHalfSliceChicken7:skl */
939 		WA_SET_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN7,
940 				  GEN9_ENABLE_YV12_BUGFIX);
941 	}
942 
943 	if (INTEL_REVID(dev) <= SKL_REVID_D0) {
944 		/*
945 		 *Use Force Non-Coherent whenever executing a 3D context. This
946 		 * is a workaround for a possible hang in the unlikely event
947 		 * a TLB invalidation occurs during a PSD flush.
948 		 */
949 		/* WaForceEnableNonCoherent:skl */
950 		WA_SET_BIT_MASKED(HDC_CHICKEN0,
951 				  HDC_FORCE_NON_COHERENT);
952 	}
953 
954 	/* Wa4x4STCOptimizationDisable:skl */
955 	WA_SET_BIT_MASKED(CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE);
956 
957 	/* WaDisablePartialResolveInVc:skl */
958 	WA_SET_BIT_MASKED(CACHE_MODE_1, GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE);
959 
960 	/* WaCcsTlbPrefetchDisable:skl */
961 	WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
962 			  GEN9_CCS_TLB_PREFETCH_ENABLE);
963 
964 	return 0;
965 }
966 
skl_tune_iz_hashing(struct intel_engine_cs * ring)967 static int skl_tune_iz_hashing(struct intel_engine_cs *ring)
968 {
969 	struct drm_device *dev = ring->dev;
970 	struct drm_i915_private *dev_priv = dev->dev_private;
971 	u8 vals[3] = { 0, 0, 0 };
972 	unsigned int i;
973 
974 	for (i = 0; i < 3; i++) {
975 		u8 ss;
976 
977 		/*
978 		 * Only consider slices where one, and only one, subslice has 7
979 		 * EUs
980 		 */
981 		if (hweight8(dev_priv->info.subslice_7eu[i]) != 1)
982 			continue;
983 
984 		/*
985 		 * subslice_7eu[i] != 0 (because of the check above) and
986 		 * ss_max == 4 (maximum number of subslices possible per slice)
987 		 *
988 		 * ->    0 <= ss <= 3;
989 		 */
990 		ss = ffs(dev_priv->info.subslice_7eu[i]) - 1;
991 		vals[i] = 3 - ss;
992 	}
993 
994 	if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0)
995 		return 0;
996 
997 	/* Tune IZ hashing. See intel_device_info_runtime_init() */
998 	WA_SET_FIELD_MASKED(GEN7_GT_MODE,
999 			    GEN9_IZ_HASHING_MASK(2) |
1000 			    GEN9_IZ_HASHING_MASK(1) |
1001 			    GEN9_IZ_HASHING_MASK(0),
1002 			    GEN9_IZ_HASHING(2, vals[2]) |
1003 			    GEN9_IZ_HASHING(1, vals[1]) |
1004 			    GEN9_IZ_HASHING(0, vals[0]));
1005 
1006 	return 0;
1007 }
1008 
1009 
skl_init_workarounds(struct intel_engine_cs * ring)1010 static int skl_init_workarounds(struct intel_engine_cs *ring)
1011 {
1012 	struct drm_device *dev = ring->dev;
1013 	struct drm_i915_private *dev_priv = dev->dev_private;
1014 
1015 	gen9_init_workarounds(ring);
1016 
1017 	/* WaDisablePowerCompilerClockGating:skl */
1018 	if (INTEL_REVID(dev) == SKL_REVID_B0)
1019 		WA_SET_BIT_MASKED(HIZ_CHICKEN,
1020 				  BDW_HIZ_POWER_COMPILER_CLOCK_GATING_DISABLE);
1021 
1022 	if (INTEL_REVID(dev) == SKL_REVID_C0 ||
1023 	    INTEL_REVID(dev) == SKL_REVID_D0)
1024 		/* WaBarrierPerformanceFixDisable:skl */
1025 		WA_SET_BIT_MASKED(HDC_CHICKEN0,
1026 				  HDC_FENCE_DEST_SLM_DISABLE |
1027 				  HDC_BARRIER_PERFORMANCE_DISABLE);
1028 
1029 	return skl_tune_iz_hashing(ring);
1030 }
1031 
init_workarounds_ring(struct intel_engine_cs * ring)1032 int init_workarounds_ring(struct intel_engine_cs *ring)
1033 {
1034 	struct drm_device *dev = ring->dev;
1035 	struct drm_i915_private *dev_priv = dev->dev_private;
1036 
1037 	WARN_ON(ring->id != RCS);
1038 
1039 	dev_priv->workarounds.count = 0;
1040 
1041 	if (IS_BROADWELL(dev))
1042 		return bdw_init_workarounds(ring);
1043 
1044 	if (IS_CHERRYVIEW(dev))
1045 		return chv_init_workarounds(ring);
1046 
1047 	if (IS_SKYLAKE(dev))
1048 		return skl_init_workarounds(ring);
1049 	else if (IS_GEN9(dev))
1050 		return gen9_init_workarounds(ring);
1051 
1052 	return 0;
1053 }
1054 
init_render_ring(struct intel_engine_cs * ring)1055 static int init_render_ring(struct intel_engine_cs *ring)
1056 {
1057 	struct drm_device *dev = ring->dev;
1058 	struct drm_i915_private *dev_priv = dev->dev_private;
1059 	int ret = init_ring_common(ring);
1060 	if (ret)
1061 		return ret;
1062 
1063 	/* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
1064 	if (INTEL_INFO(dev)->gen >= 4 && INTEL_INFO(dev)->gen < 7)
1065 		I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
1066 
1067 	/* We need to disable the AsyncFlip performance optimisations in order
1068 	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1069 	 * programmed to '1' on all products.
1070 	 *
1071 	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1072 	 */
1073 	if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 9)
1074 		I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1075 
1076 	/* Required for the hardware to program scanline values for waiting */
1077 	/* WaEnableFlushTlbInvalidationMode:snb */
1078 	if (INTEL_INFO(dev)->gen == 6)
1079 		I915_WRITE(GFX_MODE,
1080 			   _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
1081 
1082 	/* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
1083 	if (IS_GEN7(dev))
1084 		I915_WRITE(GFX_MODE_GEN7,
1085 			   _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
1086 			   _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
1087 
1088 	if (IS_GEN6(dev)) {
1089 		/* From the Sandybridge PRM, volume 1 part 3, page 24:
1090 		 * "If this bit is set, STCunit will have LRA as replacement
1091 		 *  policy. [...] This bit must be reset.  LRA replacement
1092 		 *  policy is not supported."
1093 		 */
1094 		I915_WRITE(CACHE_MODE_0,
1095 			   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
1096 	}
1097 
1098 	if (INTEL_INFO(dev)->gen >= 6)
1099 		I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1100 
1101 	if (HAS_L3_DPF(dev))
1102 		I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
1103 
1104 	return init_workarounds_ring(ring);
1105 }
1106 
render_ring_cleanup(struct intel_engine_cs * ring)1107 static void render_ring_cleanup(struct intel_engine_cs *ring)
1108 {
1109 	struct drm_device *dev = ring->dev;
1110 	struct drm_i915_private *dev_priv = dev->dev_private;
1111 
1112 	if (dev_priv->semaphore_obj) {
1113 		i915_gem_object_ggtt_unpin(dev_priv->semaphore_obj);
1114 		drm_gem_object_unreference(&dev_priv->semaphore_obj->base);
1115 		dev_priv->semaphore_obj = NULL;
1116 	}
1117 
1118 	intel_fini_pipe_control(ring);
1119 }
1120 
gen8_rcs_signal(struct intel_engine_cs * signaller,unsigned int num_dwords)1121 static int gen8_rcs_signal(struct intel_engine_cs *signaller,
1122 			   unsigned int num_dwords)
1123 {
1124 #define MBOX_UPDATE_DWORDS 8
1125 	struct drm_device *dev = signaller->dev;
1126 	struct drm_i915_private *dev_priv = dev->dev_private;
1127 	struct intel_engine_cs *waiter;
1128 	int i, ret, num_rings;
1129 
1130 	num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
1131 	num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
1132 #undef MBOX_UPDATE_DWORDS
1133 
1134 	ret = intel_ring_begin(signaller, num_dwords);
1135 	if (ret)
1136 		return ret;
1137 
1138 	for_each_ring(waiter, dev_priv, i) {
1139 		u32 seqno;
1140 		u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
1141 		if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
1142 			continue;
1143 
1144 		seqno = i915_gem_request_get_seqno(
1145 					   signaller->outstanding_lazy_request);
1146 		intel_ring_emit(signaller, GFX_OP_PIPE_CONTROL(6));
1147 		intel_ring_emit(signaller, PIPE_CONTROL_GLOBAL_GTT_IVB |
1148 					   PIPE_CONTROL_QW_WRITE |
1149 					   PIPE_CONTROL_FLUSH_ENABLE);
1150 		intel_ring_emit(signaller, lower_32_bits(gtt_offset));
1151 		intel_ring_emit(signaller, upper_32_bits(gtt_offset));
1152 		intel_ring_emit(signaller, seqno);
1153 		intel_ring_emit(signaller, 0);
1154 		intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
1155 					   MI_SEMAPHORE_TARGET(waiter->id));
1156 		intel_ring_emit(signaller, 0);
1157 	}
1158 
1159 	return 0;
1160 }
1161 
gen8_xcs_signal(struct intel_engine_cs * signaller,unsigned int num_dwords)1162 static int gen8_xcs_signal(struct intel_engine_cs *signaller,
1163 			   unsigned int num_dwords)
1164 {
1165 #define MBOX_UPDATE_DWORDS 6
1166 	struct drm_device *dev = signaller->dev;
1167 	struct drm_i915_private *dev_priv = dev->dev_private;
1168 	struct intel_engine_cs *waiter;
1169 	int i, ret, num_rings;
1170 
1171 	num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
1172 	num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
1173 #undef MBOX_UPDATE_DWORDS
1174 
1175 	ret = intel_ring_begin(signaller, num_dwords);
1176 	if (ret)
1177 		return ret;
1178 
1179 	for_each_ring(waiter, dev_priv, i) {
1180 		u32 seqno;
1181 		u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
1182 		if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
1183 			continue;
1184 
1185 		seqno = i915_gem_request_get_seqno(
1186 					   signaller->outstanding_lazy_request);
1187 		intel_ring_emit(signaller, (MI_FLUSH_DW + 1) |
1188 					   MI_FLUSH_DW_OP_STOREDW);
1189 		intel_ring_emit(signaller, lower_32_bits(gtt_offset) |
1190 					   MI_FLUSH_DW_USE_GTT);
1191 		intel_ring_emit(signaller, upper_32_bits(gtt_offset));
1192 		intel_ring_emit(signaller, seqno);
1193 		intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
1194 					   MI_SEMAPHORE_TARGET(waiter->id));
1195 		intel_ring_emit(signaller, 0);
1196 	}
1197 
1198 	return 0;
1199 }
1200 
gen6_signal(struct intel_engine_cs * signaller,unsigned int num_dwords)1201 static int gen6_signal(struct intel_engine_cs *signaller,
1202 		       unsigned int num_dwords)
1203 {
1204 	struct drm_device *dev = signaller->dev;
1205 	struct drm_i915_private *dev_priv = dev->dev_private;
1206 	struct intel_engine_cs *useless;
1207 	int i, ret, num_rings;
1208 
1209 #define MBOX_UPDATE_DWORDS 3
1210 	num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
1211 	num_dwords += round_up((num_rings-1) * MBOX_UPDATE_DWORDS, 2);
1212 #undef MBOX_UPDATE_DWORDS
1213 
1214 	ret = intel_ring_begin(signaller, num_dwords);
1215 	if (ret)
1216 		return ret;
1217 
1218 	for_each_ring(useless, dev_priv, i) {
1219 		u32 mbox_reg = signaller->semaphore.mbox.signal[i];
1220 		if (mbox_reg != GEN6_NOSYNC) {
1221 			u32 seqno = i915_gem_request_get_seqno(
1222 					   signaller->outstanding_lazy_request);
1223 			intel_ring_emit(signaller, MI_LOAD_REGISTER_IMM(1));
1224 			intel_ring_emit(signaller, mbox_reg);
1225 			intel_ring_emit(signaller, seqno);
1226 		}
1227 	}
1228 
1229 	/* If num_dwords was rounded, make sure the tail pointer is correct */
1230 	if (num_rings % 2 == 0)
1231 		intel_ring_emit(signaller, MI_NOOP);
1232 
1233 	return 0;
1234 }
1235 
1236 /**
1237  * gen6_add_request - Update the semaphore mailbox registers
1238  *
1239  * @ring - ring that is adding a request
1240  * @seqno - return seqno stuck into the ring
1241  *
1242  * Update the mailbox registers in the *other* rings with the current seqno.
1243  * This acts like a signal in the canonical semaphore.
1244  */
1245 static int
gen6_add_request(struct intel_engine_cs * ring)1246 gen6_add_request(struct intel_engine_cs *ring)
1247 {
1248 	int ret;
1249 
1250 	if (ring->semaphore.signal)
1251 		ret = ring->semaphore.signal(ring, 4);
1252 	else
1253 		ret = intel_ring_begin(ring, 4);
1254 
1255 	if (ret)
1256 		return ret;
1257 
1258 	intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1259 	intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1260 	intel_ring_emit(ring,
1261 		    i915_gem_request_get_seqno(ring->outstanding_lazy_request));
1262 	intel_ring_emit(ring, MI_USER_INTERRUPT);
1263 	__intel_ring_advance(ring);
1264 
1265 	return 0;
1266 }
1267 
i915_gem_has_seqno_wrapped(struct drm_device * dev,u32 seqno)1268 static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
1269 					      u32 seqno)
1270 {
1271 	struct drm_i915_private *dev_priv = dev->dev_private;
1272 	return dev_priv->last_seqno < seqno;
1273 }
1274 
1275 /**
1276  * intel_ring_sync - sync the waiter to the signaller on seqno
1277  *
1278  * @waiter - ring that is waiting
1279  * @signaller - ring which has, or will signal
1280  * @seqno - seqno which the waiter will block on
1281  */
1282 
1283 static int
gen8_ring_sync(struct intel_engine_cs * waiter,struct intel_engine_cs * signaller,u32 seqno)1284 gen8_ring_sync(struct intel_engine_cs *waiter,
1285 	       struct intel_engine_cs *signaller,
1286 	       u32 seqno)
1287 {
1288 	struct drm_i915_private *dev_priv = waiter->dev->dev_private;
1289 	int ret;
1290 
1291 	ret = intel_ring_begin(waiter, 4);
1292 	if (ret)
1293 		return ret;
1294 
1295 	intel_ring_emit(waiter, MI_SEMAPHORE_WAIT |
1296 				MI_SEMAPHORE_GLOBAL_GTT |
1297 				MI_SEMAPHORE_POLL |
1298 				MI_SEMAPHORE_SAD_GTE_SDD);
1299 	intel_ring_emit(waiter, seqno);
1300 	intel_ring_emit(waiter,
1301 			lower_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
1302 	intel_ring_emit(waiter,
1303 			upper_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
1304 	intel_ring_advance(waiter);
1305 	return 0;
1306 }
1307 
1308 static int
gen6_ring_sync(struct intel_engine_cs * waiter,struct intel_engine_cs * signaller,u32 seqno)1309 gen6_ring_sync(struct intel_engine_cs *waiter,
1310 	       struct intel_engine_cs *signaller,
1311 	       u32 seqno)
1312 {
1313 	u32 dw1 = MI_SEMAPHORE_MBOX |
1314 		  MI_SEMAPHORE_COMPARE |
1315 		  MI_SEMAPHORE_REGISTER;
1316 	u32 wait_mbox = signaller->semaphore.mbox.wait[waiter->id];
1317 	int ret;
1318 
1319 	/* Throughout all of the GEM code, seqno passed implies our current
1320 	 * seqno is >= the last seqno executed. However for hardware the
1321 	 * comparison is strictly greater than.
1322 	 */
1323 	seqno -= 1;
1324 
1325 	WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
1326 
1327 	ret = intel_ring_begin(waiter, 4);
1328 	if (ret)
1329 		return ret;
1330 
1331 	/* If seqno wrap happened, omit the wait with no-ops */
1332 	if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
1333 		intel_ring_emit(waiter, dw1 | wait_mbox);
1334 		intel_ring_emit(waiter, seqno);
1335 		intel_ring_emit(waiter, 0);
1336 		intel_ring_emit(waiter, MI_NOOP);
1337 	} else {
1338 		intel_ring_emit(waiter, MI_NOOP);
1339 		intel_ring_emit(waiter, MI_NOOP);
1340 		intel_ring_emit(waiter, MI_NOOP);
1341 		intel_ring_emit(waiter, MI_NOOP);
1342 	}
1343 	intel_ring_advance(waiter);
1344 
1345 	return 0;
1346 }
1347 
1348 #define PIPE_CONTROL_FLUSH(ring__, addr__)					\
1349 do {									\
1350 	intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |		\
1351 		 PIPE_CONTROL_DEPTH_STALL);				\
1352 	intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT);			\
1353 	intel_ring_emit(ring__, 0);							\
1354 	intel_ring_emit(ring__, 0);							\
1355 } while (0)
1356 
1357 static int
pc_render_add_request(struct intel_engine_cs * ring)1358 pc_render_add_request(struct intel_engine_cs *ring)
1359 {
1360 	u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1361 	int ret;
1362 
1363 	/* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
1364 	 * incoherent with writes to memory, i.e. completely fubar,
1365 	 * so we need to use PIPE_NOTIFY instead.
1366 	 *
1367 	 * However, we also need to workaround the qword write
1368 	 * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
1369 	 * memory before requesting an interrupt.
1370 	 */
1371 	ret = intel_ring_begin(ring, 32);
1372 	if (ret)
1373 		return ret;
1374 
1375 	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
1376 			PIPE_CONTROL_WRITE_FLUSH |
1377 			PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
1378 	intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
1379 	intel_ring_emit(ring,
1380 		    i915_gem_request_get_seqno(ring->outstanding_lazy_request));
1381 	intel_ring_emit(ring, 0);
1382 	PIPE_CONTROL_FLUSH(ring, scratch_addr);
1383 	scratch_addr += 2 * CACHELINE_BYTES; /* write to separate cachelines */
1384 	PIPE_CONTROL_FLUSH(ring, scratch_addr);
1385 	scratch_addr += 2 * CACHELINE_BYTES;
1386 	PIPE_CONTROL_FLUSH(ring, scratch_addr);
1387 	scratch_addr += 2 * CACHELINE_BYTES;
1388 	PIPE_CONTROL_FLUSH(ring, scratch_addr);
1389 	scratch_addr += 2 * CACHELINE_BYTES;
1390 	PIPE_CONTROL_FLUSH(ring, scratch_addr);
1391 	scratch_addr += 2 * CACHELINE_BYTES;
1392 	PIPE_CONTROL_FLUSH(ring, scratch_addr);
1393 
1394 	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
1395 			PIPE_CONTROL_WRITE_FLUSH |
1396 			PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
1397 			PIPE_CONTROL_NOTIFY);
1398 	intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
1399 	intel_ring_emit(ring,
1400 		    i915_gem_request_get_seqno(ring->outstanding_lazy_request));
1401 	intel_ring_emit(ring, 0);
1402 	__intel_ring_advance(ring);
1403 
1404 	return 0;
1405 }
1406 
1407 static u32
gen6_ring_get_seqno(struct intel_engine_cs * ring,bool lazy_coherency)1408 gen6_ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1409 {
1410 	/* Workaround to force correct ordering between irq and seqno writes on
1411 	 * ivb (and maybe also on snb) by reading from a CS register (like
1412 	 * ACTHD) before reading the status page. */
1413 	if (!lazy_coherency) {
1414 		struct drm_i915_private *dev_priv = ring->dev->dev_private;
1415 		POSTING_READ(RING_ACTHD(ring->mmio_base));
1416 	}
1417 
1418 	return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1419 }
1420 
1421 static u32
ring_get_seqno(struct intel_engine_cs * ring,bool lazy_coherency)1422 ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1423 {
1424 	return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1425 }
1426 
1427 static void
ring_set_seqno(struct intel_engine_cs * ring,u32 seqno)1428 ring_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1429 {
1430 	intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1431 }
1432 
1433 static u32
pc_render_get_seqno(struct intel_engine_cs * ring,bool lazy_coherency)1434 pc_render_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1435 {
1436 	return ring->scratch.cpu_page[0];
1437 }
1438 
1439 static void
pc_render_set_seqno(struct intel_engine_cs * ring,u32 seqno)1440 pc_render_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1441 {
1442 	ring->scratch.cpu_page[0] = seqno;
1443 }
1444 
1445 static bool
gen5_ring_get_irq(struct intel_engine_cs * ring)1446 gen5_ring_get_irq(struct intel_engine_cs *ring)
1447 {
1448 	struct drm_device *dev = ring->dev;
1449 	struct drm_i915_private *dev_priv = dev->dev_private;
1450 	unsigned long flags;
1451 
1452 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1453 		return false;
1454 
1455 	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1456 	if (ring->irq_refcount++ == 0)
1457 		gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
1458 	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1459 
1460 	return true;
1461 }
1462 
1463 static void
gen5_ring_put_irq(struct intel_engine_cs * ring)1464 gen5_ring_put_irq(struct intel_engine_cs *ring)
1465 {
1466 	struct drm_device *dev = ring->dev;
1467 	struct drm_i915_private *dev_priv = dev->dev_private;
1468 	unsigned long flags;
1469 
1470 	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1471 	if (--ring->irq_refcount == 0)
1472 		gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
1473 	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1474 }
1475 
1476 static bool
i9xx_ring_get_irq(struct intel_engine_cs * ring)1477 i9xx_ring_get_irq(struct intel_engine_cs *ring)
1478 {
1479 	struct drm_device *dev = ring->dev;
1480 	struct drm_i915_private *dev_priv = dev->dev_private;
1481 	unsigned long flags;
1482 
1483 	if (!intel_irqs_enabled(dev_priv))
1484 		return false;
1485 
1486 	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1487 	if (ring->irq_refcount++ == 0) {
1488 		dev_priv->irq_mask &= ~ring->irq_enable_mask;
1489 		I915_WRITE(IMR, dev_priv->irq_mask);
1490 		POSTING_READ(IMR);
1491 	}
1492 	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1493 
1494 	return true;
1495 }
1496 
1497 static void
i9xx_ring_put_irq(struct intel_engine_cs * ring)1498 i9xx_ring_put_irq(struct intel_engine_cs *ring)
1499 {
1500 	struct drm_device *dev = ring->dev;
1501 	struct drm_i915_private *dev_priv = dev->dev_private;
1502 	unsigned long flags;
1503 
1504 	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1505 	if (--ring->irq_refcount == 0) {
1506 		dev_priv->irq_mask |= ring->irq_enable_mask;
1507 		I915_WRITE(IMR, dev_priv->irq_mask);
1508 		POSTING_READ(IMR);
1509 	}
1510 	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1511 }
1512 
1513 static bool
i8xx_ring_get_irq(struct intel_engine_cs * ring)1514 i8xx_ring_get_irq(struct intel_engine_cs *ring)
1515 {
1516 	struct drm_device *dev = ring->dev;
1517 	struct drm_i915_private *dev_priv = dev->dev_private;
1518 	unsigned long flags;
1519 
1520 	if (!intel_irqs_enabled(dev_priv))
1521 		return false;
1522 
1523 	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1524 	if (ring->irq_refcount++ == 0) {
1525 		dev_priv->irq_mask &= ~ring->irq_enable_mask;
1526 		I915_WRITE16(IMR, dev_priv->irq_mask);
1527 		POSTING_READ16(IMR);
1528 	}
1529 	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1530 
1531 	return true;
1532 }
1533 
1534 static void
i8xx_ring_put_irq(struct intel_engine_cs * ring)1535 i8xx_ring_put_irq(struct intel_engine_cs *ring)
1536 {
1537 	struct drm_device *dev = ring->dev;
1538 	struct drm_i915_private *dev_priv = dev->dev_private;
1539 	unsigned long flags;
1540 
1541 	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1542 	if (--ring->irq_refcount == 0) {
1543 		dev_priv->irq_mask |= ring->irq_enable_mask;
1544 		I915_WRITE16(IMR, dev_priv->irq_mask);
1545 		POSTING_READ16(IMR);
1546 	}
1547 	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1548 }
1549 
1550 static int
bsd_ring_flush(struct intel_engine_cs * ring,u32 invalidate_domains,u32 flush_domains)1551 bsd_ring_flush(struct intel_engine_cs *ring,
1552 	       u32     invalidate_domains,
1553 	       u32     flush_domains)
1554 {
1555 	int ret;
1556 
1557 	ret = intel_ring_begin(ring, 2);
1558 	if (ret)
1559 		return ret;
1560 
1561 	intel_ring_emit(ring, MI_FLUSH);
1562 	intel_ring_emit(ring, MI_NOOP);
1563 	intel_ring_advance(ring);
1564 	return 0;
1565 }
1566 
1567 static int
i9xx_add_request(struct intel_engine_cs * ring)1568 i9xx_add_request(struct intel_engine_cs *ring)
1569 {
1570 	int ret;
1571 
1572 	ret = intel_ring_begin(ring, 4);
1573 	if (ret)
1574 		return ret;
1575 
1576 	intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1577 	intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1578 	intel_ring_emit(ring,
1579 		    i915_gem_request_get_seqno(ring->outstanding_lazy_request));
1580 	intel_ring_emit(ring, MI_USER_INTERRUPT);
1581 	__intel_ring_advance(ring);
1582 
1583 	return 0;
1584 }
1585 
1586 static bool
gen6_ring_get_irq(struct intel_engine_cs * ring)1587 gen6_ring_get_irq(struct intel_engine_cs *ring)
1588 {
1589 	struct drm_device *dev = ring->dev;
1590 	struct drm_i915_private *dev_priv = dev->dev_private;
1591 	unsigned long flags;
1592 
1593 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1594 		return false;
1595 
1596 	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1597 	if (ring->irq_refcount++ == 0) {
1598 		if (HAS_L3_DPF(dev) && ring->id == RCS)
1599 			I915_WRITE_IMR(ring,
1600 				       ~(ring->irq_enable_mask |
1601 					 GT_PARITY_ERROR(dev)));
1602 		else
1603 			I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1604 		gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
1605 	}
1606 	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1607 
1608 	return true;
1609 }
1610 
1611 static void
gen6_ring_put_irq(struct intel_engine_cs * ring)1612 gen6_ring_put_irq(struct intel_engine_cs *ring)
1613 {
1614 	struct drm_device *dev = ring->dev;
1615 	struct drm_i915_private *dev_priv = dev->dev_private;
1616 	unsigned long flags;
1617 
1618 	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1619 	if (--ring->irq_refcount == 0) {
1620 		if (HAS_L3_DPF(dev) && ring->id == RCS)
1621 			I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
1622 		else
1623 			I915_WRITE_IMR(ring, ~0);
1624 		gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
1625 	}
1626 	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1627 }
1628 
1629 static bool
hsw_vebox_get_irq(struct intel_engine_cs * ring)1630 hsw_vebox_get_irq(struct intel_engine_cs *ring)
1631 {
1632 	struct drm_device *dev = ring->dev;
1633 	struct drm_i915_private *dev_priv = dev->dev_private;
1634 	unsigned long flags;
1635 
1636 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1637 		return false;
1638 
1639 	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1640 	if (ring->irq_refcount++ == 0) {
1641 		I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1642 		gen6_enable_pm_irq(dev_priv, ring->irq_enable_mask);
1643 	}
1644 	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1645 
1646 	return true;
1647 }
1648 
1649 static void
hsw_vebox_put_irq(struct intel_engine_cs * ring)1650 hsw_vebox_put_irq(struct intel_engine_cs *ring)
1651 {
1652 	struct drm_device *dev = ring->dev;
1653 	struct drm_i915_private *dev_priv = dev->dev_private;
1654 	unsigned long flags;
1655 
1656 	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1657 	if (--ring->irq_refcount == 0) {
1658 		I915_WRITE_IMR(ring, ~0);
1659 		gen6_disable_pm_irq(dev_priv, ring->irq_enable_mask);
1660 	}
1661 	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1662 }
1663 
1664 static bool
gen8_ring_get_irq(struct intel_engine_cs * ring)1665 gen8_ring_get_irq(struct intel_engine_cs *ring)
1666 {
1667 	struct drm_device *dev = ring->dev;
1668 	struct drm_i915_private *dev_priv = dev->dev_private;
1669 	unsigned long flags;
1670 
1671 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1672 		return false;
1673 
1674 	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1675 	if (ring->irq_refcount++ == 0) {
1676 		if (HAS_L3_DPF(dev) && ring->id == RCS) {
1677 			I915_WRITE_IMR(ring,
1678 				       ~(ring->irq_enable_mask |
1679 					 GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
1680 		} else {
1681 			I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1682 		}
1683 		POSTING_READ(RING_IMR(ring->mmio_base));
1684 	}
1685 	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1686 
1687 	return true;
1688 }
1689 
1690 static void
gen8_ring_put_irq(struct intel_engine_cs * ring)1691 gen8_ring_put_irq(struct intel_engine_cs *ring)
1692 {
1693 	struct drm_device *dev = ring->dev;
1694 	struct drm_i915_private *dev_priv = dev->dev_private;
1695 	unsigned long flags;
1696 
1697 	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1698 	if (--ring->irq_refcount == 0) {
1699 		if (HAS_L3_DPF(dev) && ring->id == RCS) {
1700 			I915_WRITE_IMR(ring,
1701 				       ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
1702 		} else {
1703 			I915_WRITE_IMR(ring, ~0);
1704 		}
1705 		POSTING_READ(RING_IMR(ring->mmio_base));
1706 	}
1707 	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1708 }
1709 
1710 static int
i965_dispatch_execbuffer(struct intel_engine_cs * ring,u64 offset,u32 length,unsigned dispatch_flags)1711 i965_dispatch_execbuffer(struct intel_engine_cs *ring,
1712 			 u64 offset, u32 length,
1713 			 unsigned dispatch_flags)
1714 {
1715 	int ret;
1716 
1717 	ret = intel_ring_begin(ring, 2);
1718 	if (ret)
1719 		return ret;
1720 
1721 	intel_ring_emit(ring,
1722 			MI_BATCH_BUFFER_START |
1723 			MI_BATCH_GTT |
1724 			(dispatch_flags & I915_DISPATCH_SECURE ?
1725 			 0 : MI_BATCH_NON_SECURE_I965));
1726 	intel_ring_emit(ring, offset);
1727 	intel_ring_advance(ring);
1728 
1729 	return 0;
1730 }
1731 
1732 /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1733 #define I830_BATCH_LIMIT (256*1024)
1734 #define I830_TLB_ENTRIES (2)
1735 #define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
1736 static int
i830_dispatch_execbuffer(struct intel_engine_cs * ring,u64 offset,u32 len,unsigned dispatch_flags)1737 i830_dispatch_execbuffer(struct intel_engine_cs *ring,
1738 			 u64 offset, u32 len,
1739 			 unsigned dispatch_flags)
1740 {
1741 	u32 cs_offset = ring->scratch.gtt_offset;
1742 	int ret;
1743 
1744 	ret = intel_ring_begin(ring, 6);
1745 	if (ret)
1746 		return ret;
1747 
1748 	/* Evict the invalid PTE TLBs */
1749 	intel_ring_emit(ring, COLOR_BLT_CMD | BLT_WRITE_RGBA);
1750 	intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
1751 	intel_ring_emit(ring, I830_TLB_ENTRIES << 16 | 4); /* load each page */
1752 	intel_ring_emit(ring, cs_offset);
1753 	intel_ring_emit(ring, 0xdeadbeef);
1754 	intel_ring_emit(ring, MI_NOOP);
1755 	intel_ring_advance(ring);
1756 
1757 	if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
1758 		if (len > I830_BATCH_LIMIT)
1759 			return -ENOSPC;
1760 
1761 		ret = intel_ring_begin(ring, 6 + 2);
1762 		if (ret)
1763 			return ret;
1764 
1765 		/* Blit the batch (which has now all relocs applied) to the
1766 		 * stable batch scratch bo area (so that the CS never
1767 		 * stumbles over its tlb invalidation bug) ...
1768 		 */
1769 		intel_ring_emit(ring, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
1770 		intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
1771 		intel_ring_emit(ring, DIV_ROUND_UP(len, 4096) << 16 | 4096);
1772 		intel_ring_emit(ring, cs_offset);
1773 		intel_ring_emit(ring, 4096);
1774 		intel_ring_emit(ring, offset);
1775 
1776 		intel_ring_emit(ring, MI_FLUSH);
1777 		intel_ring_emit(ring, MI_NOOP);
1778 		intel_ring_advance(ring);
1779 
1780 		/* ... and execute it. */
1781 		offset = cs_offset;
1782 	}
1783 
1784 	ret = intel_ring_begin(ring, 4);
1785 	if (ret)
1786 		return ret;
1787 
1788 	intel_ring_emit(ring, MI_BATCH_BUFFER);
1789 	intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
1790 					0 : MI_BATCH_NON_SECURE));
1791 	intel_ring_emit(ring, offset + len - 8);
1792 	intel_ring_emit(ring, MI_NOOP);
1793 	intel_ring_advance(ring);
1794 
1795 	return 0;
1796 }
1797 
1798 static int
i915_dispatch_execbuffer(struct intel_engine_cs * ring,u64 offset,u32 len,unsigned dispatch_flags)1799 i915_dispatch_execbuffer(struct intel_engine_cs *ring,
1800 			 u64 offset, u32 len,
1801 			 unsigned dispatch_flags)
1802 {
1803 	int ret;
1804 
1805 	ret = intel_ring_begin(ring, 2);
1806 	if (ret)
1807 		return ret;
1808 
1809 	intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
1810 	intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
1811 					0 : MI_BATCH_NON_SECURE));
1812 	intel_ring_advance(ring);
1813 
1814 	return 0;
1815 }
1816 
cleanup_status_page(struct intel_engine_cs * ring)1817 static void cleanup_status_page(struct intel_engine_cs *ring)
1818 {
1819 	struct drm_i915_gem_object *obj;
1820 
1821 	obj = ring->status_page.obj;
1822 	if (obj == NULL)
1823 		return;
1824 
1825 	kunmap(sg_page(obj->pages->sgl));
1826 	i915_gem_object_ggtt_unpin(obj);
1827 	drm_gem_object_unreference(&obj->base);
1828 	ring->status_page.obj = NULL;
1829 }
1830 
init_status_page(struct intel_engine_cs * ring)1831 static int init_status_page(struct intel_engine_cs *ring)
1832 {
1833 	struct drm_i915_gem_object *obj;
1834 
1835 	if ((obj = ring->status_page.obj) == NULL) {
1836 		unsigned flags;
1837 		int ret;
1838 
1839 		obj = i915_gem_alloc_object(ring->dev, 4096);
1840 		if (obj == NULL) {
1841 			DRM_ERROR("Failed to allocate status page\n");
1842 			return -ENOMEM;
1843 		}
1844 
1845 		ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
1846 		if (ret)
1847 			goto err_unref;
1848 
1849 		flags = 0;
1850 		if (!HAS_LLC(ring->dev))
1851 			/* On g33, we cannot place HWS above 256MiB, so
1852 			 * restrict its pinning to the low mappable arena.
1853 			 * Though this restriction is not documented for
1854 			 * gen4, gen5, or byt, they also behave similarly
1855 			 * and hang if the HWS is placed at the top of the
1856 			 * GTT. To generalise, it appears that all !llc
1857 			 * platforms have issues with us placing the HWS
1858 			 * above the mappable region (even though we never
1859 			 * actualy map it).
1860 			 */
1861 			flags |= PIN_MAPPABLE;
1862 		ret = i915_gem_obj_ggtt_pin(obj, 4096, flags);
1863 		if (ret) {
1864 err_unref:
1865 			drm_gem_object_unreference(&obj->base);
1866 			return ret;
1867 		}
1868 
1869 		ring->status_page.obj = obj;
1870 	}
1871 
1872 	ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
1873 	ring->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
1874 	memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1875 
1876 	DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
1877 			ring->name, ring->status_page.gfx_addr);
1878 
1879 	return 0;
1880 }
1881 
init_phys_status_page(struct intel_engine_cs * ring)1882 static int init_phys_status_page(struct intel_engine_cs *ring)
1883 {
1884 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
1885 
1886 	if (!dev_priv->status_page_dmah) {
1887 		dev_priv->status_page_dmah =
1888 			drm_pci_alloc(ring->dev, PAGE_SIZE, PAGE_SIZE);
1889 		if (!dev_priv->status_page_dmah)
1890 			return -ENOMEM;
1891 	}
1892 
1893 	ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
1894 	memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1895 
1896 	return 0;
1897 }
1898 
intel_unpin_ringbuffer_obj(struct intel_ringbuffer * ringbuf)1899 void intel_unpin_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
1900 {
1901 	iounmap(ringbuf->virtual_start);
1902 	ringbuf->virtual_start = NULL;
1903 	i915_gem_object_ggtt_unpin(ringbuf->obj);
1904 }
1905 
intel_pin_and_map_ringbuffer_obj(struct drm_device * dev,struct intel_ringbuffer * ringbuf)1906 int intel_pin_and_map_ringbuffer_obj(struct drm_device *dev,
1907 				     struct intel_ringbuffer *ringbuf)
1908 {
1909 	struct drm_i915_private *dev_priv = to_i915(dev);
1910 	struct drm_i915_gem_object *obj = ringbuf->obj;
1911 	int ret;
1912 
1913 	ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, PIN_MAPPABLE);
1914 	if (ret)
1915 		return ret;
1916 
1917 	ret = i915_gem_object_set_to_gtt_domain(obj, true);
1918 	if (ret) {
1919 		i915_gem_object_ggtt_unpin(obj);
1920 		return ret;
1921 	}
1922 
1923 	ringbuf->virtual_start = ioremap_wc(dev_priv->gtt.mappable_base +
1924 			i915_gem_obj_ggtt_offset(obj), ringbuf->size);
1925 	if (ringbuf->virtual_start == NULL) {
1926 		i915_gem_object_ggtt_unpin(obj);
1927 		return -EINVAL;
1928 	}
1929 
1930 	return 0;
1931 }
1932 
intel_destroy_ringbuffer_obj(struct intel_ringbuffer * ringbuf)1933 void intel_destroy_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
1934 {
1935 	drm_gem_object_unreference(&ringbuf->obj->base);
1936 	ringbuf->obj = NULL;
1937 }
1938 
intel_alloc_ringbuffer_obj(struct drm_device * dev,struct intel_ringbuffer * ringbuf)1939 int intel_alloc_ringbuffer_obj(struct drm_device *dev,
1940 			       struct intel_ringbuffer *ringbuf)
1941 {
1942 	struct drm_i915_gem_object *obj;
1943 
1944 	obj = NULL;
1945 	if (!HAS_LLC(dev))
1946 		obj = i915_gem_object_create_stolen(dev, ringbuf->size);
1947 	if (obj == NULL)
1948 		obj = i915_gem_alloc_object(dev, ringbuf->size);
1949 	if (obj == NULL)
1950 		return -ENOMEM;
1951 
1952 	/* mark ring buffers as read-only from GPU side by default */
1953 	obj->gt_ro = 1;
1954 
1955 	ringbuf->obj = obj;
1956 
1957 	return 0;
1958 }
1959 
intel_init_ring_buffer(struct drm_device * dev,struct intel_engine_cs * ring)1960 static int intel_init_ring_buffer(struct drm_device *dev,
1961 				  struct intel_engine_cs *ring)
1962 {
1963 	struct intel_ringbuffer *ringbuf;
1964 	int ret;
1965 
1966 	WARN_ON(ring->buffer);
1967 
1968 	ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
1969 	if (!ringbuf)
1970 		return -ENOMEM;
1971 	ring->buffer = ringbuf;
1972 
1973 	ring->dev = dev;
1974 	INIT_LIST_HEAD(&ring->active_list);
1975 	INIT_LIST_HEAD(&ring->request_list);
1976 	INIT_LIST_HEAD(&ring->execlist_queue);
1977 	ringbuf->size = 32 * PAGE_SIZE;
1978 	ringbuf->ring = ring;
1979 	memset(ring->semaphore.sync_seqno, 0, sizeof(ring->semaphore.sync_seqno));
1980 
1981 	init_waitqueue_head(&ring->irq_queue);
1982 
1983 	if (I915_NEED_GFX_HWS(dev)) {
1984 		ret = init_status_page(ring);
1985 		if (ret)
1986 			goto error;
1987 	} else {
1988 		BUG_ON(ring->id != RCS);
1989 		ret = init_phys_status_page(ring);
1990 		if (ret)
1991 			goto error;
1992 	}
1993 
1994 	WARN_ON(ringbuf->obj);
1995 
1996 	ret = intel_alloc_ringbuffer_obj(dev, ringbuf);
1997 	if (ret) {
1998 		DRM_ERROR("Failed to allocate ringbuffer %s: %d\n",
1999 				ring->name, ret);
2000 		goto error;
2001 	}
2002 
2003 	ret = intel_pin_and_map_ringbuffer_obj(dev, ringbuf);
2004 	if (ret) {
2005 		DRM_ERROR("Failed to pin and map ringbuffer %s: %d\n",
2006 				ring->name, ret);
2007 		intel_destroy_ringbuffer_obj(ringbuf);
2008 		goto error;
2009 	}
2010 
2011 	/* Workaround an erratum on the i830 which causes a hang if
2012 	 * the TAIL pointer points to within the last 2 cachelines
2013 	 * of the buffer.
2014 	 */
2015 	ringbuf->effective_size = ringbuf->size;
2016 	if (IS_I830(dev) || IS_845G(dev))
2017 		ringbuf->effective_size -= 2 * CACHELINE_BYTES;
2018 
2019 	ret = i915_cmd_parser_init_ring(ring);
2020 	if (ret)
2021 		goto error;
2022 
2023 	return 0;
2024 
2025 error:
2026 	kfree(ringbuf);
2027 	ring->buffer = NULL;
2028 	return ret;
2029 }
2030 
intel_cleanup_ring_buffer(struct intel_engine_cs * ring)2031 void intel_cleanup_ring_buffer(struct intel_engine_cs *ring)
2032 {
2033 	struct drm_i915_private *dev_priv;
2034 	struct intel_ringbuffer *ringbuf;
2035 
2036 	if (!intel_ring_initialized(ring))
2037 		return;
2038 
2039 	dev_priv = to_i915(ring->dev);
2040 	ringbuf = ring->buffer;
2041 
2042 	intel_stop_ring_buffer(ring);
2043 	WARN_ON(!IS_GEN2(ring->dev) && (I915_READ_MODE(ring) & MODE_IDLE) == 0);
2044 
2045 	intel_unpin_ringbuffer_obj(ringbuf);
2046 	intel_destroy_ringbuffer_obj(ringbuf);
2047 	i915_gem_request_assign(&ring->outstanding_lazy_request, NULL);
2048 
2049 	if (ring->cleanup)
2050 		ring->cleanup(ring);
2051 
2052 	cleanup_status_page(ring);
2053 
2054 	i915_cmd_parser_fini_ring(ring);
2055 
2056 	kfree(ringbuf);
2057 	ring->buffer = NULL;
2058 }
2059 
intel_ring_wait_request(struct intel_engine_cs * ring,int n)2060 static int intel_ring_wait_request(struct intel_engine_cs *ring, int n)
2061 {
2062 	struct intel_ringbuffer *ringbuf = ring->buffer;
2063 	struct drm_i915_gem_request *request;
2064 	int ret;
2065 
2066 	if (intel_ring_space(ringbuf) >= n)
2067 		return 0;
2068 
2069 	list_for_each_entry(request, &ring->request_list, list) {
2070 		if (__intel_ring_space(request->postfix, ringbuf->tail,
2071 				       ringbuf->size) >= n) {
2072 			break;
2073 		}
2074 	}
2075 
2076 	if (&request->list == &ring->request_list)
2077 		return -ENOSPC;
2078 
2079 	ret = i915_wait_request(request);
2080 	if (ret)
2081 		return ret;
2082 
2083 	i915_gem_retire_requests_ring(ring);
2084 
2085 	return 0;
2086 }
2087 
ring_wait_for_space(struct intel_engine_cs * ring,int n)2088 static int ring_wait_for_space(struct intel_engine_cs *ring, int n)
2089 {
2090 	struct drm_device *dev = ring->dev;
2091 	struct drm_i915_private *dev_priv = dev->dev_private;
2092 	struct intel_ringbuffer *ringbuf = ring->buffer;
2093 	unsigned long end;
2094 	int ret;
2095 
2096 	ret = intel_ring_wait_request(ring, n);
2097 	if (ret != -ENOSPC)
2098 		return ret;
2099 
2100 	/* force the tail write in case we have been skipping them */
2101 	__intel_ring_advance(ring);
2102 
2103 	/* With GEM the hangcheck timer should kick us out of the loop,
2104 	 * leaving it early runs the risk of corrupting GEM state (due
2105 	 * to running on almost untested codepaths). But on resume
2106 	 * timers don't work yet, so prevent a complete hang in that
2107 	 * case by choosing an insanely large timeout. */
2108 	end = jiffies + 60 * HZ;
2109 
2110 	ret = 0;
2111 	trace_i915_ring_wait_begin(ring);
2112 	do {
2113 		if (intel_ring_space(ringbuf) >= n)
2114 			break;
2115 		ringbuf->head = I915_READ_HEAD(ring);
2116 		if (intel_ring_space(ringbuf) >= n)
2117 			break;
2118 
2119 		msleep(1);
2120 
2121 		if (dev_priv->mm.interruptible && signal_pending(current)) {
2122 			ret = -ERESTARTSYS;
2123 			break;
2124 		}
2125 
2126 		ret = i915_gem_check_wedge(&dev_priv->gpu_error,
2127 					   dev_priv->mm.interruptible);
2128 		if (ret)
2129 			break;
2130 
2131 		if (time_after(jiffies, end)) {
2132 			ret = -EBUSY;
2133 			break;
2134 		}
2135 	} while (1);
2136 	trace_i915_ring_wait_end(ring);
2137 	return ret;
2138 }
2139 
intel_wrap_ring_buffer(struct intel_engine_cs * ring)2140 static int intel_wrap_ring_buffer(struct intel_engine_cs *ring)
2141 {
2142 	uint32_t __iomem *virt;
2143 	struct intel_ringbuffer *ringbuf = ring->buffer;
2144 	int rem = ringbuf->size - ringbuf->tail;
2145 
2146 	if (ringbuf->space < rem) {
2147 		int ret = ring_wait_for_space(ring, rem);
2148 		if (ret)
2149 			return ret;
2150 	}
2151 
2152 	virt = ringbuf->virtual_start + ringbuf->tail;
2153 	rem /= 4;
2154 	while (rem--)
2155 		iowrite32(MI_NOOP, virt++);
2156 
2157 	ringbuf->tail = 0;
2158 	intel_ring_update_space(ringbuf);
2159 
2160 	return 0;
2161 }
2162 
intel_ring_idle(struct intel_engine_cs * ring)2163 int intel_ring_idle(struct intel_engine_cs *ring)
2164 {
2165 	struct drm_i915_gem_request *req;
2166 	int ret;
2167 
2168 	/* We need to add any requests required to flush the objects and ring */
2169 	if (ring->outstanding_lazy_request) {
2170 		ret = i915_add_request(ring);
2171 		if (ret)
2172 			return ret;
2173 	}
2174 
2175 	/* Wait upon the last request to be completed */
2176 	if (list_empty(&ring->request_list))
2177 		return 0;
2178 
2179 	req = list_entry(ring->request_list.prev,
2180 			   struct drm_i915_gem_request,
2181 			   list);
2182 
2183 	return i915_wait_request(req);
2184 }
2185 
2186 static int
intel_ring_alloc_request(struct intel_engine_cs * ring)2187 intel_ring_alloc_request(struct intel_engine_cs *ring)
2188 {
2189 	int ret;
2190 	struct drm_i915_gem_request *request;
2191 	struct drm_i915_private *dev_private = ring->dev->dev_private;
2192 
2193 	if (ring->outstanding_lazy_request)
2194 		return 0;
2195 
2196 	request = kzalloc(sizeof(*request), GFP_KERNEL);
2197 	if (request == NULL)
2198 		return -ENOMEM;
2199 
2200 	kref_init(&request->ref);
2201 	request->ring = ring;
2202 	request->ringbuf = ring->buffer;
2203 	request->uniq = dev_private->request_uniq++;
2204 
2205 	ret = i915_gem_get_seqno(ring->dev, &request->seqno);
2206 	if (ret) {
2207 		kfree(request);
2208 		return ret;
2209 	}
2210 
2211 	ring->outstanding_lazy_request = request;
2212 	return 0;
2213 }
2214 
__intel_ring_prepare(struct intel_engine_cs * ring,int bytes)2215 static int __intel_ring_prepare(struct intel_engine_cs *ring,
2216 				int bytes)
2217 {
2218 	struct intel_ringbuffer *ringbuf = ring->buffer;
2219 	int ret;
2220 
2221 	if (unlikely(ringbuf->tail + bytes > ringbuf->effective_size)) {
2222 		ret = intel_wrap_ring_buffer(ring);
2223 		if (unlikely(ret))
2224 			return ret;
2225 	}
2226 
2227 	if (unlikely(ringbuf->space < bytes)) {
2228 		ret = ring_wait_for_space(ring, bytes);
2229 		if (unlikely(ret))
2230 			return ret;
2231 	}
2232 
2233 	return 0;
2234 }
2235 
intel_ring_begin(struct intel_engine_cs * ring,int num_dwords)2236 int intel_ring_begin(struct intel_engine_cs *ring,
2237 		     int num_dwords)
2238 {
2239 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
2240 	int ret;
2241 
2242 	ret = i915_gem_check_wedge(&dev_priv->gpu_error,
2243 				   dev_priv->mm.interruptible);
2244 	if (ret)
2245 		return ret;
2246 
2247 	ret = __intel_ring_prepare(ring, num_dwords * sizeof(uint32_t));
2248 	if (ret)
2249 		return ret;
2250 
2251 	/* Preallocate the olr before touching the ring */
2252 	ret = intel_ring_alloc_request(ring);
2253 	if (ret)
2254 		return ret;
2255 
2256 	ring->buffer->space -= num_dwords * sizeof(uint32_t);
2257 	return 0;
2258 }
2259 
2260 /* Align the ring tail to a cacheline boundary */
intel_ring_cacheline_align(struct intel_engine_cs * ring)2261 int intel_ring_cacheline_align(struct intel_engine_cs *ring)
2262 {
2263 	int num_dwords = (ring->buffer->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
2264 	int ret;
2265 
2266 	if (num_dwords == 0)
2267 		return 0;
2268 
2269 	num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
2270 	ret = intel_ring_begin(ring, num_dwords);
2271 	if (ret)
2272 		return ret;
2273 
2274 	while (num_dwords--)
2275 		intel_ring_emit(ring, MI_NOOP);
2276 
2277 	intel_ring_advance(ring);
2278 
2279 	return 0;
2280 }
2281 
intel_ring_init_seqno(struct intel_engine_cs * ring,u32 seqno)2282 void intel_ring_init_seqno(struct intel_engine_cs *ring, u32 seqno)
2283 {
2284 	struct drm_device *dev = ring->dev;
2285 	struct drm_i915_private *dev_priv = dev->dev_private;
2286 
2287 	BUG_ON(ring->outstanding_lazy_request);
2288 
2289 	if (INTEL_INFO(dev)->gen == 6 || INTEL_INFO(dev)->gen == 7) {
2290 		I915_WRITE(RING_SYNC_0(ring->mmio_base), 0);
2291 		I915_WRITE(RING_SYNC_1(ring->mmio_base), 0);
2292 		if (HAS_VEBOX(dev))
2293 			I915_WRITE(RING_SYNC_2(ring->mmio_base), 0);
2294 	}
2295 
2296 	ring->set_seqno(ring, seqno);
2297 	ring->hangcheck.seqno = seqno;
2298 }
2299 
gen6_bsd_ring_write_tail(struct intel_engine_cs * ring,u32 value)2300 static void gen6_bsd_ring_write_tail(struct intel_engine_cs *ring,
2301 				     u32 value)
2302 {
2303 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
2304 
2305        /* Every tail move must follow the sequence below */
2306 
2307 	/* Disable notification that the ring is IDLE. The GT
2308 	 * will then assume that it is busy and bring it out of rc6.
2309 	 */
2310 	I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
2311 		   _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2312 
2313 	/* Clear the context id. Here be magic! */
2314 	I915_WRITE64(GEN6_BSD_RNCID, 0x0);
2315 
2316 	/* Wait for the ring not to be idle, i.e. for it to wake up. */
2317 	if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
2318 		      GEN6_BSD_SLEEP_INDICATOR) == 0,
2319 		     50))
2320 		DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
2321 
2322 	/* Now that the ring is fully powered up, update the tail */
2323 	I915_WRITE_TAIL(ring, value);
2324 	POSTING_READ(RING_TAIL(ring->mmio_base));
2325 
2326 	/* Let the ring send IDLE messages to the GT again,
2327 	 * and so let it sleep to conserve power when idle.
2328 	 */
2329 	I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
2330 		   _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2331 }
2332 
gen6_bsd_ring_flush(struct intel_engine_cs * ring,u32 invalidate,u32 flush)2333 static int gen6_bsd_ring_flush(struct intel_engine_cs *ring,
2334 			       u32 invalidate, u32 flush)
2335 {
2336 	uint32_t cmd;
2337 	int ret;
2338 
2339 	ret = intel_ring_begin(ring, 4);
2340 	if (ret)
2341 		return ret;
2342 
2343 	cmd = MI_FLUSH_DW;
2344 	if (INTEL_INFO(ring->dev)->gen >= 8)
2345 		cmd += 1;
2346 
2347 	/* We always require a command barrier so that subsequent
2348 	 * commands, such as breadcrumb interrupts, are strictly ordered
2349 	 * wrt the contents of the write cache being flushed to memory
2350 	 * (and thus being coherent from the CPU).
2351 	 */
2352 	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2353 
2354 	/*
2355 	 * Bspec vol 1c.5 - video engine command streamer:
2356 	 * "If ENABLED, all TLBs will be invalidated once the flush
2357 	 * operation is complete. This bit is only valid when the
2358 	 * Post-Sync Operation field is a value of 1h or 3h."
2359 	 */
2360 	if (invalidate & I915_GEM_GPU_DOMAINS)
2361 		cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;
2362 
2363 	intel_ring_emit(ring, cmd);
2364 	intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2365 	if (INTEL_INFO(ring->dev)->gen >= 8) {
2366 		intel_ring_emit(ring, 0); /* upper addr */
2367 		intel_ring_emit(ring, 0); /* value */
2368 	} else  {
2369 		intel_ring_emit(ring, 0);
2370 		intel_ring_emit(ring, MI_NOOP);
2371 	}
2372 	intel_ring_advance(ring);
2373 	return 0;
2374 }
2375 
2376 static int
gen8_ring_dispatch_execbuffer(struct intel_engine_cs * ring,u64 offset,u32 len,unsigned dispatch_flags)2377 gen8_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
2378 			      u64 offset, u32 len,
2379 			      unsigned dispatch_flags)
2380 {
2381 	bool ppgtt = USES_PPGTT(ring->dev) &&
2382 			!(dispatch_flags & I915_DISPATCH_SECURE);
2383 	int ret;
2384 
2385 	ret = intel_ring_begin(ring, 4);
2386 	if (ret)
2387 		return ret;
2388 
2389 	/* FIXME(BDW): Address space and security selectors. */
2390 	intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8));
2391 	intel_ring_emit(ring, lower_32_bits(offset));
2392 	intel_ring_emit(ring, upper_32_bits(offset));
2393 	intel_ring_emit(ring, MI_NOOP);
2394 	intel_ring_advance(ring);
2395 
2396 	return 0;
2397 }
2398 
2399 static int
hsw_ring_dispatch_execbuffer(struct intel_engine_cs * ring,u64 offset,u32 len,unsigned dispatch_flags)2400 hsw_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
2401 			     u64 offset, u32 len,
2402 			     unsigned dispatch_flags)
2403 {
2404 	int ret;
2405 
2406 	ret = intel_ring_begin(ring, 2);
2407 	if (ret)
2408 		return ret;
2409 
2410 	intel_ring_emit(ring,
2411 			MI_BATCH_BUFFER_START |
2412 			(dispatch_flags & I915_DISPATCH_SECURE ?
2413 			 0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW));
2414 	/* bit0-7 is the length on GEN6+ */
2415 	intel_ring_emit(ring, offset);
2416 	intel_ring_advance(ring);
2417 
2418 	return 0;
2419 }
2420 
2421 static int
gen6_ring_dispatch_execbuffer(struct intel_engine_cs * ring,u64 offset,u32 len,unsigned dispatch_flags)2422 gen6_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
2423 			      u64 offset, u32 len,
2424 			      unsigned dispatch_flags)
2425 {
2426 	int ret;
2427 
2428 	ret = intel_ring_begin(ring, 2);
2429 	if (ret)
2430 		return ret;
2431 
2432 	intel_ring_emit(ring,
2433 			MI_BATCH_BUFFER_START |
2434 			(dispatch_flags & I915_DISPATCH_SECURE ?
2435 			 0 : MI_BATCH_NON_SECURE_I965));
2436 	/* bit0-7 is the length on GEN6+ */
2437 	intel_ring_emit(ring, offset);
2438 	intel_ring_advance(ring);
2439 
2440 	return 0;
2441 }
2442 
2443 /* Blitter support (SandyBridge+) */
2444 
gen6_ring_flush(struct intel_engine_cs * ring,u32 invalidate,u32 flush)2445 static int gen6_ring_flush(struct intel_engine_cs *ring,
2446 			   u32 invalidate, u32 flush)
2447 {
2448 	struct drm_device *dev = ring->dev;
2449 	uint32_t cmd;
2450 	int ret;
2451 
2452 	ret = intel_ring_begin(ring, 4);
2453 	if (ret)
2454 		return ret;
2455 
2456 	cmd = MI_FLUSH_DW;
2457 	if (INTEL_INFO(dev)->gen >= 8)
2458 		cmd += 1;
2459 
2460 	/* We always require a command barrier so that subsequent
2461 	 * commands, such as breadcrumb interrupts, are strictly ordered
2462 	 * wrt the contents of the write cache being flushed to memory
2463 	 * (and thus being coherent from the CPU).
2464 	 */
2465 	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2466 
2467 	/*
2468 	 * Bspec vol 1c.3 - blitter engine command streamer:
2469 	 * "If ENABLED, all TLBs will be invalidated once the flush
2470 	 * operation is complete. This bit is only valid when the
2471 	 * Post-Sync Operation field is a value of 1h or 3h."
2472 	 */
2473 	if (invalidate & I915_GEM_DOMAIN_RENDER)
2474 		cmd |= MI_INVALIDATE_TLB;
2475 	intel_ring_emit(ring, cmd);
2476 	intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2477 	if (INTEL_INFO(dev)->gen >= 8) {
2478 		intel_ring_emit(ring, 0); /* upper addr */
2479 		intel_ring_emit(ring, 0); /* value */
2480 	} else  {
2481 		intel_ring_emit(ring, 0);
2482 		intel_ring_emit(ring, MI_NOOP);
2483 	}
2484 	intel_ring_advance(ring);
2485 
2486 	return 0;
2487 }
2488 
intel_init_render_ring_buffer(struct drm_device * dev)2489 int intel_init_render_ring_buffer(struct drm_device *dev)
2490 {
2491 	struct drm_i915_private *dev_priv = dev->dev_private;
2492 	struct intel_engine_cs *ring = &dev_priv->ring[RCS];
2493 	struct drm_i915_gem_object *obj;
2494 	int ret;
2495 
2496 	ring->name = "render ring";
2497 	ring->id = RCS;
2498 	ring->mmio_base = RENDER_RING_BASE;
2499 
2500 	if (INTEL_INFO(dev)->gen >= 8) {
2501 		if (i915_semaphore_is_enabled(dev)) {
2502 			obj = i915_gem_alloc_object(dev, 4096);
2503 			if (obj == NULL) {
2504 				DRM_ERROR("Failed to allocate semaphore bo. Disabling semaphores\n");
2505 				i915.semaphores = 0;
2506 			} else {
2507 				i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
2508 				ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_NONBLOCK);
2509 				if (ret != 0) {
2510 					drm_gem_object_unreference(&obj->base);
2511 					DRM_ERROR("Failed to pin semaphore bo. Disabling semaphores\n");
2512 					i915.semaphores = 0;
2513 				} else
2514 					dev_priv->semaphore_obj = obj;
2515 			}
2516 		}
2517 
2518 		ring->init_context = intel_rcs_ctx_init;
2519 		ring->add_request = gen6_add_request;
2520 		ring->flush = gen8_render_ring_flush;
2521 		ring->irq_get = gen8_ring_get_irq;
2522 		ring->irq_put = gen8_ring_put_irq;
2523 		ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2524 		ring->get_seqno = gen6_ring_get_seqno;
2525 		ring->set_seqno = ring_set_seqno;
2526 		if (i915_semaphore_is_enabled(dev)) {
2527 			WARN_ON(!dev_priv->semaphore_obj);
2528 			ring->semaphore.sync_to = gen8_ring_sync;
2529 			ring->semaphore.signal = gen8_rcs_signal;
2530 			GEN8_RING_SEMAPHORE_INIT;
2531 		}
2532 	} else if (INTEL_INFO(dev)->gen >= 6) {
2533 		ring->add_request = gen6_add_request;
2534 		ring->flush = gen7_render_ring_flush;
2535 		if (INTEL_INFO(dev)->gen == 6)
2536 			ring->flush = gen6_render_ring_flush;
2537 		ring->irq_get = gen6_ring_get_irq;
2538 		ring->irq_put = gen6_ring_put_irq;
2539 		ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2540 		ring->get_seqno = gen6_ring_get_seqno;
2541 		ring->set_seqno = ring_set_seqno;
2542 		if (i915_semaphore_is_enabled(dev)) {
2543 			ring->semaphore.sync_to = gen6_ring_sync;
2544 			ring->semaphore.signal = gen6_signal;
2545 			/*
2546 			 * The current semaphore is only applied on pre-gen8
2547 			 * platform.  And there is no VCS2 ring on the pre-gen8
2548 			 * platform. So the semaphore between RCS and VCS2 is
2549 			 * initialized as INVALID.  Gen8 will initialize the
2550 			 * sema between VCS2 and RCS later.
2551 			 */
2552 			ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_INVALID;
2553 			ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_RV;
2554 			ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_RB;
2555 			ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_RVE;
2556 			ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2557 			ring->semaphore.mbox.signal[RCS] = GEN6_NOSYNC;
2558 			ring->semaphore.mbox.signal[VCS] = GEN6_VRSYNC;
2559 			ring->semaphore.mbox.signal[BCS] = GEN6_BRSYNC;
2560 			ring->semaphore.mbox.signal[VECS] = GEN6_VERSYNC;
2561 			ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2562 		}
2563 	} else if (IS_GEN5(dev)) {
2564 		ring->add_request = pc_render_add_request;
2565 		ring->flush = gen4_render_ring_flush;
2566 		ring->get_seqno = pc_render_get_seqno;
2567 		ring->set_seqno = pc_render_set_seqno;
2568 		ring->irq_get = gen5_ring_get_irq;
2569 		ring->irq_put = gen5_ring_put_irq;
2570 		ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
2571 					GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
2572 	} else {
2573 		ring->add_request = i9xx_add_request;
2574 		if (INTEL_INFO(dev)->gen < 4)
2575 			ring->flush = gen2_render_ring_flush;
2576 		else
2577 			ring->flush = gen4_render_ring_flush;
2578 		ring->get_seqno = ring_get_seqno;
2579 		ring->set_seqno = ring_set_seqno;
2580 		if (IS_GEN2(dev)) {
2581 			ring->irq_get = i8xx_ring_get_irq;
2582 			ring->irq_put = i8xx_ring_put_irq;
2583 		} else {
2584 			ring->irq_get = i9xx_ring_get_irq;
2585 			ring->irq_put = i9xx_ring_put_irq;
2586 		}
2587 		ring->irq_enable_mask = I915_USER_INTERRUPT;
2588 	}
2589 	ring->write_tail = ring_write_tail;
2590 
2591 	if (IS_HASWELL(dev))
2592 		ring->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
2593 	else if (IS_GEN8(dev))
2594 		ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2595 	else if (INTEL_INFO(dev)->gen >= 6)
2596 		ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2597 	else if (INTEL_INFO(dev)->gen >= 4)
2598 		ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2599 	else if (IS_I830(dev) || IS_845G(dev))
2600 		ring->dispatch_execbuffer = i830_dispatch_execbuffer;
2601 	else
2602 		ring->dispatch_execbuffer = i915_dispatch_execbuffer;
2603 	ring->init_hw = init_render_ring;
2604 	ring->cleanup = render_ring_cleanup;
2605 
2606 	/* Workaround batchbuffer to combat CS tlb bug. */
2607 	if (HAS_BROKEN_CS_TLB(dev)) {
2608 		obj = i915_gem_alloc_object(dev, I830_WA_SIZE);
2609 		if (obj == NULL) {
2610 			DRM_ERROR("Failed to allocate batch bo\n");
2611 			return -ENOMEM;
2612 		}
2613 
2614 		ret = i915_gem_obj_ggtt_pin(obj, 0, 0);
2615 		if (ret != 0) {
2616 			drm_gem_object_unreference(&obj->base);
2617 			DRM_ERROR("Failed to ping batch bo\n");
2618 			return ret;
2619 		}
2620 
2621 		ring->scratch.obj = obj;
2622 		ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
2623 	}
2624 
2625 	ret = intel_init_ring_buffer(dev, ring);
2626 	if (ret)
2627 		return ret;
2628 
2629 	if (INTEL_INFO(dev)->gen >= 5) {
2630 		ret = intel_init_pipe_control(ring);
2631 		if (ret)
2632 			return ret;
2633 	}
2634 
2635 	return 0;
2636 }
2637 
intel_init_bsd_ring_buffer(struct drm_device * dev)2638 int intel_init_bsd_ring_buffer(struct drm_device *dev)
2639 {
2640 	struct drm_i915_private *dev_priv = dev->dev_private;
2641 	struct intel_engine_cs *ring = &dev_priv->ring[VCS];
2642 
2643 	ring->name = "bsd ring";
2644 	ring->id = VCS;
2645 
2646 	ring->write_tail = ring_write_tail;
2647 	if (INTEL_INFO(dev)->gen >= 6) {
2648 		ring->mmio_base = GEN6_BSD_RING_BASE;
2649 		/* gen6 bsd needs a special wa for tail updates */
2650 		if (IS_GEN6(dev))
2651 			ring->write_tail = gen6_bsd_ring_write_tail;
2652 		ring->flush = gen6_bsd_ring_flush;
2653 		ring->add_request = gen6_add_request;
2654 		ring->get_seqno = gen6_ring_get_seqno;
2655 		ring->set_seqno = ring_set_seqno;
2656 		if (INTEL_INFO(dev)->gen >= 8) {
2657 			ring->irq_enable_mask =
2658 				GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
2659 			ring->irq_get = gen8_ring_get_irq;
2660 			ring->irq_put = gen8_ring_put_irq;
2661 			ring->dispatch_execbuffer =
2662 				gen8_ring_dispatch_execbuffer;
2663 			if (i915_semaphore_is_enabled(dev)) {
2664 				ring->semaphore.sync_to = gen8_ring_sync;
2665 				ring->semaphore.signal = gen8_xcs_signal;
2666 				GEN8_RING_SEMAPHORE_INIT;
2667 			}
2668 		} else {
2669 			ring->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2670 			ring->irq_get = gen6_ring_get_irq;
2671 			ring->irq_put = gen6_ring_put_irq;
2672 			ring->dispatch_execbuffer =
2673 				gen6_ring_dispatch_execbuffer;
2674 			if (i915_semaphore_is_enabled(dev)) {
2675 				ring->semaphore.sync_to = gen6_ring_sync;
2676 				ring->semaphore.signal = gen6_signal;
2677 				ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VR;
2678 				ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_INVALID;
2679 				ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VB;
2680 				ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_VVE;
2681 				ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2682 				ring->semaphore.mbox.signal[RCS] = GEN6_RVSYNC;
2683 				ring->semaphore.mbox.signal[VCS] = GEN6_NOSYNC;
2684 				ring->semaphore.mbox.signal[BCS] = GEN6_BVSYNC;
2685 				ring->semaphore.mbox.signal[VECS] = GEN6_VEVSYNC;
2686 				ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2687 			}
2688 		}
2689 	} else {
2690 		ring->mmio_base = BSD_RING_BASE;
2691 		ring->flush = bsd_ring_flush;
2692 		ring->add_request = i9xx_add_request;
2693 		ring->get_seqno = ring_get_seqno;
2694 		ring->set_seqno = ring_set_seqno;
2695 		if (IS_GEN5(dev)) {
2696 			ring->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2697 			ring->irq_get = gen5_ring_get_irq;
2698 			ring->irq_put = gen5_ring_put_irq;
2699 		} else {
2700 			ring->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2701 			ring->irq_get = i9xx_ring_get_irq;
2702 			ring->irq_put = i9xx_ring_put_irq;
2703 		}
2704 		ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2705 	}
2706 	ring->init_hw = init_ring_common;
2707 
2708 	return intel_init_ring_buffer(dev, ring);
2709 }
2710 
2711 /**
2712  * Initialize the second BSD ring (eg. Broadwell GT3, Skylake GT3)
2713  */
intel_init_bsd2_ring_buffer(struct drm_device * dev)2714 int intel_init_bsd2_ring_buffer(struct drm_device *dev)
2715 {
2716 	struct drm_i915_private *dev_priv = dev->dev_private;
2717 	struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
2718 
2719 	ring->name = "bsd2 ring";
2720 	ring->id = VCS2;
2721 
2722 	ring->write_tail = ring_write_tail;
2723 	ring->mmio_base = GEN8_BSD2_RING_BASE;
2724 	ring->flush = gen6_bsd_ring_flush;
2725 	ring->add_request = gen6_add_request;
2726 	ring->get_seqno = gen6_ring_get_seqno;
2727 	ring->set_seqno = ring_set_seqno;
2728 	ring->irq_enable_mask =
2729 			GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
2730 	ring->irq_get = gen8_ring_get_irq;
2731 	ring->irq_put = gen8_ring_put_irq;
2732 	ring->dispatch_execbuffer =
2733 			gen8_ring_dispatch_execbuffer;
2734 	if (i915_semaphore_is_enabled(dev)) {
2735 		ring->semaphore.sync_to = gen8_ring_sync;
2736 		ring->semaphore.signal = gen8_xcs_signal;
2737 		GEN8_RING_SEMAPHORE_INIT;
2738 	}
2739 	ring->init_hw = init_ring_common;
2740 
2741 	return intel_init_ring_buffer(dev, ring);
2742 }
2743 
intel_init_blt_ring_buffer(struct drm_device * dev)2744 int intel_init_blt_ring_buffer(struct drm_device *dev)
2745 {
2746 	struct drm_i915_private *dev_priv = dev->dev_private;
2747 	struct intel_engine_cs *ring = &dev_priv->ring[BCS];
2748 
2749 	ring->name = "blitter ring";
2750 	ring->id = BCS;
2751 
2752 	ring->mmio_base = BLT_RING_BASE;
2753 	ring->write_tail = ring_write_tail;
2754 	ring->flush = gen6_ring_flush;
2755 	ring->add_request = gen6_add_request;
2756 	ring->get_seqno = gen6_ring_get_seqno;
2757 	ring->set_seqno = ring_set_seqno;
2758 	if (INTEL_INFO(dev)->gen >= 8) {
2759 		ring->irq_enable_mask =
2760 			GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
2761 		ring->irq_get = gen8_ring_get_irq;
2762 		ring->irq_put = gen8_ring_put_irq;
2763 		ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2764 		if (i915_semaphore_is_enabled(dev)) {
2765 			ring->semaphore.sync_to = gen8_ring_sync;
2766 			ring->semaphore.signal = gen8_xcs_signal;
2767 			GEN8_RING_SEMAPHORE_INIT;
2768 		}
2769 	} else {
2770 		ring->irq_enable_mask = GT_BLT_USER_INTERRUPT;
2771 		ring->irq_get = gen6_ring_get_irq;
2772 		ring->irq_put = gen6_ring_put_irq;
2773 		ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2774 		if (i915_semaphore_is_enabled(dev)) {
2775 			ring->semaphore.signal = gen6_signal;
2776 			ring->semaphore.sync_to = gen6_ring_sync;
2777 			/*
2778 			 * The current semaphore is only applied on pre-gen8
2779 			 * platform.  And there is no VCS2 ring on the pre-gen8
2780 			 * platform. So the semaphore between BCS and VCS2 is
2781 			 * initialized as INVALID.  Gen8 will initialize the
2782 			 * sema between BCS and VCS2 later.
2783 			 */
2784 			ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_BR;
2785 			ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_BV;
2786 			ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_INVALID;
2787 			ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_BVE;
2788 			ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2789 			ring->semaphore.mbox.signal[RCS] = GEN6_RBSYNC;
2790 			ring->semaphore.mbox.signal[VCS] = GEN6_VBSYNC;
2791 			ring->semaphore.mbox.signal[BCS] = GEN6_NOSYNC;
2792 			ring->semaphore.mbox.signal[VECS] = GEN6_VEBSYNC;
2793 			ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2794 		}
2795 	}
2796 	ring->init_hw = init_ring_common;
2797 
2798 	return intel_init_ring_buffer(dev, ring);
2799 }
2800 
intel_init_vebox_ring_buffer(struct drm_device * dev)2801 int intel_init_vebox_ring_buffer(struct drm_device *dev)
2802 {
2803 	struct drm_i915_private *dev_priv = dev->dev_private;
2804 	struct intel_engine_cs *ring = &dev_priv->ring[VECS];
2805 
2806 	ring->name = "video enhancement ring";
2807 	ring->id = VECS;
2808 
2809 	ring->mmio_base = VEBOX_RING_BASE;
2810 	ring->write_tail = ring_write_tail;
2811 	ring->flush = gen6_ring_flush;
2812 	ring->add_request = gen6_add_request;
2813 	ring->get_seqno = gen6_ring_get_seqno;
2814 	ring->set_seqno = ring_set_seqno;
2815 
2816 	if (INTEL_INFO(dev)->gen >= 8) {
2817 		ring->irq_enable_mask =
2818 			GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
2819 		ring->irq_get = gen8_ring_get_irq;
2820 		ring->irq_put = gen8_ring_put_irq;
2821 		ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2822 		if (i915_semaphore_is_enabled(dev)) {
2823 			ring->semaphore.sync_to = gen8_ring_sync;
2824 			ring->semaphore.signal = gen8_xcs_signal;
2825 			GEN8_RING_SEMAPHORE_INIT;
2826 		}
2827 	} else {
2828 		ring->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
2829 		ring->irq_get = hsw_vebox_get_irq;
2830 		ring->irq_put = hsw_vebox_put_irq;
2831 		ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2832 		if (i915_semaphore_is_enabled(dev)) {
2833 			ring->semaphore.sync_to = gen6_ring_sync;
2834 			ring->semaphore.signal = gen6_signal;
2835 			ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VER;
2836 			ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_VEV;
2837 			ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VEB;
2838 			ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_INVALID;
2839 			ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2840 			ring->semaphore.mbox.signal[RCS] = GEN6_RVESYNC;
2841 			ring->semaphore.mbox.signal[VCS] = GEN6_VVESYNC;
2842 			ring->semaphore.mbox.signal[BCS] = GEN6_BVESYNC;
2843 			ring->semaphore.mbox.signal[VECS] = GEN6_NOSYNC;
2844 			ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2845 		}
2846 	}
2847 	ring->init_hw = init_ring_common;
2848 
2849 	return intel_init_ring_buffer(dev, ring);
2850 }
2851 
2852 int
intel_ring_flush_all_caches(struct intel_engine_cs * ring)2853 intel_ring_flush_all_caches(struct intel_engine_cs *ring)
2854 {
2855 	int ret;
2856 
2857 	if (!ring->gpu_caches_dirty)
2858 		return 0;
2859 
2860 	ret = ring->flush(ring, 0, I915_GEM_GPU_DOMAINS);
2861 	if (ret)
2862 		return ret;
2863 
2864 	trace_i915_gem_ring_flush(ring, 0, I915_GEM_GPU_DOMAINS);
2865 
2866 	ring->gpu_caches_dirty = false;
2867 	return 0;
2868 }
2869 
2870 int
intel_ring_invalidate_all_caches(struct intel_engine_cs * ring)2871 intel_ring_invalidate_all_caches(struct intel_engine_cs *ring)
2872 {
2873 	uint32_t flush_domains;
2874 	int ret;
2875 
2876 	flush_domains = 0;
2877 	if (ring->gpu_caches_dirty)
2878 		flush_domains = I915_GEM_GPU_DOMAINS;
2879 
2880 	ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
2881 	if (ret)
2882 		return ret;
2883 
2884 	trace_i915_gem_ring_flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
2885 
2886 	ring->gpu_caches_dirty = false;
2887 	return 0;
2888 }
2889 
2890 void
intel_stop_ring_buffer(struct intel_engine_cs * ring)2891 intel_stop_ring_buffer(struct intel_engine_cs *ring)
2892 {
2893 	int ret;
2894 
2895 	if (!intel_ring_initialized(ring))
2896 		return;
2897 
2898 	ret = intel_ring_idle(ring);
2899 	if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
2900 		DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
2901 			  ring->name, ret);
2902 
2903 	stop_ring(ring);
2904 }
2905