1 /*
2  * mm/mmap.c
3  *
4  * Written by obz.
5  *
6  * Address space accounting code	<alan@lxorguk.ukuu.org.uk>
7  */
8 
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10 
11 #include <linux/kernel.h>
12 #include <linux/slab.h>
13 #include <linux/backing-dev.h>
14 #include <linux/mm.h>
15 #include <linux/vmacache.h>
16 #include <linux/shm.h>
17 #include <linux/mman.h>
18 #include <linux/pagemap.h>
19 #include <linux/swap.h>
20 #include <linux/syscalls.h>
21 #include <linux/capability.h>
22 #include <linux/init.h>
23 #include <linux/file.h>
24 #include <linux/fs.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/hugetlb.h>
28 #include <linux/profile.h>
29 #include <linux/export.h>
30 #include <linux/mount.h>
31 #include <linux/mempolicy.h>
32 #include <linux/rmap.h>
33 #include <linux/mmu_notifier.h>
34 #include <linux/mmdebug.h>
35 #include <linux/perf_event.h>
36 #include <linux/audit.h>
37 #include <linux/khugepaged.h>
38 #include <linux/uprobes.h>
39 #include <linux/rbtree_augmented.h>
40 #include <linux/sched/sysctl.h>
41 #include <linux/notifier.h>
42 #include <linux/memory.h>
43 #include <linux/printk.h>
44 #include <linux/userfaultfd_k.h>
45 
46 #include <asm/uaccess.h>
47 #include <asm/cacheflush.h>
48 #include <asm/tlb.h>
49 #include <asm/mmu_context.h>
50 
51 #include "internal.h"
52 
53 #ifndef arch_mmap_check
54 #define arch_mmap_check(addr, len, flags)	(0)
55 #endif
56 
57 #ifndef arch_rebalance_pgtables
58 #define arch_rebalance_pgtables(addr, len)		(addr)
59 #endif
60 
61 static void unmap_region(struct mm_struct *mm,
62 		struct vm_area_struct *vma, struct vm_area_struct *prev,
63 		unsigned long start, unsigned long end);
64 
65 /* description of effects of mapping type and prot in current implementation.
66  * this is due to the limited x86 page protection hardware.  The expected
67  * behavior is in parens:
68  *
69  * map_type	prot
70  *		PROT_NONE	PROT_READ	PROT_WRITE	PROT_EXEC
71  * MAP_SHARED	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
72  *		w: (no) no	w: (no) no	w: (yes) yes	w: (no) no
73  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
74  *
75  * MAP_PRIVATE	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
76  *		w: (no) no	w: (no) no	w: (copy) copy	w: (no) no
77  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
78  *
79  */
80 pgprot_t protection_map[16] = {
81 	__P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
82 	__S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
83 };
84 
vm_get_page_prot(unsigned long vm_flags)85 pgprot_t vm_get_page_prot(unsigned long vm_flags)
86 {
87 	return __pgprot(pgprot_val(protection_map[vm_flags &
88 				(VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
89 			pgprot_val(arch_vm_get_page_prot(vm_flags)));
90 }
91 EXPORT_SYMBOL(vm_get_page_prot);
92 
vm_pgprot_modify(pgprot_t oldprot,unsigned long vm_flags)93 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
94 {
95 	return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
96 }
97 
98 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
vma_set_page_prot(struct vm_area_struct * vma)99 void vma_set_page_prot(struct vm_area_struct *vma)
100 {
101 	unsigned long vm_flags = vma->vm_flags;
102 
103 	vma->vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
104 	if (vma_wants_writenotify(vma)) {
105 		vm_flags &= ~VM_SHARED;
106 		vma->vm_page_prot = vm_pgprot_modify(vma->vm_page_prot,
107 						     vm_flags);
108 	}
109 }
110 
111 
112 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS;  /* heuristic overcommit */
113 int sysctl_overcommit_ratio __read_mostly = 50;	/* default is 50% */
114 unsigned long sysctl_overcommit_kbytes __read_mostly;
115 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
116 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
117 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
118 /*
119  * Make sure vm_committed_as in one cacheline and not cacheline shared with
120  * other variables. It can be updated by several CPUs frequently.
121  */
122 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
123 
124 /*
125  * The global memory commitment made in the system can be a metric
126  * that can be used to drive ballooning decisions when Linux is hosted
127  * as a guest. On Hyper-V, the host implements a policy engine for dynamically
128  * balancing memory across competing virtual machines that are hosted.
129  * Several metrics drive this policy engine including the guest reported
130  * memory commitment.
131  */
vm_memory_committed(void)132 unsigned long vm_memory_committed(void)
133 {
134 	return percpu_counter_read_positive(&vm_committed_as);
135 }
136 EXPORT_SYMBOL_GPL(vm_memory_committed);
137 
138 /*
139  * Check that a process has enough memory to allocate a new virtual
140  * mapping. 0 means there is enough memory for the allocation to
141  * succeed and -ENOMEM implies there is not.
142  *
143  * We currently support three overcommit policies, which are set via the
144  * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
145  *
146  * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
147  * Additional code 2002 Jul 20 by Robert Love.
148  *
149  * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
150  *
151  * Note this is a helper function intended to be used by LSMs which
152  * wish to use this logic.
153  */
__vm_enough_memory(struct mm_struct * mm,long pages,int cap_sys_admin)154 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
155 {
156 	long free, allowed, reserve;
157 
158 	VM_WARN_ONCE(percpu_counter_read(&vm_committed_as) <
159 			-(s64)vm_committed_as_batch * num_online_cpus(),
160 			"memory commitment underflow");
161 
162 	vm_acct_memory(pages);
163 
164 	/*
165 	 * Sometimes we want to use more memory than we have
166 	 */
167 	if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
168 		return 0;
169 
170 	if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
171 		free = global_page_state(NR_FREE_PAGES);
172 		free += global_page_state(NR_FILE_PAGES);
173 
174 		/*
175 		 * shmem pages shouldn't be counted as free in this
176 		 * case, they can't be purged, only swapped out, and
177 		 * that won't affect the overall amount of available
178 		 * memory in the system.
179 		 */
180 		free -= global_page_state(NR_SHMEM);
181 
182 		free += get_nr_swap_pages();
183 
184 		/*
185 		 * Any slabs which are created with the
186 		 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
187 		 * which are reclaimable, under pressure.  The dentry
188 		 * cache and most inode caches should fall into this
189 		 */
190 		free += global_page_state(NR_SLAB_RECLAIMABLE);
191 
192 		/*
193 		 * Leave reserved pages. The pages are not for anonymous pages.
194 		 */
195 		if (free <= totalreserve_pages)
196 			goto error;
197 		else
198 			free -= totalreserve_pages;
199 
200 		/*
201 		 * Reserve some for root
202 		 */
203 		if (!cap_sys_admin)
204 			free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
205 
206 		if (free > pages)
207 			return 0;
208 
209 		goto error;
210 	}
211 
212 	allowed = vm_commit_limit();
213 	/*
214 	 * Reserve some for root
215 	 */
216 	if (!cap_sys_admin)
217 		allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
218 
219 	/*
220 	 * Don't let a single process grow so big a user can't recover
221 	 */
222 	if (mm) {
223 		reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
224 		allowed -= min_t(long, mm->total_vm / 32, reserve);
225 	}
226 
227 	if (percpu_counter_read_positive(&vm_committed_as) < allowed)
228 		return 0;
229 error:
230 	vm_unacct_memory(pages);
231 
232 	return -ENOMEM;
233 }
234 
235 /*
236  * Requires inode->i_mapping->i_mmap_rwsem
237  */
__remove_shared_vm_struct(struct vm_area_struct * vma,struct file * file,struct address_space * mapping)238 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
239 		struct file *file, struct address_space *mapping)
240 {
241 	if (vma->vm_flags & VM_DENYWRITE)
242 		atomic_inc(&file_inode(file)->i_writecount);
243 	if (vma->vm_flags & VM_SHARED)
244 		mapping_unmap_writable(mapping);
245 
246 	flush_dcache_mmap_lock(mapping);
247 	vma_interval_tree_remove(vma, &mapping->i_mmap);
248 	flush_dcache_mmap_unlock(mapping);
249 }
250 
251 /*
252  * Unlink a file-based vm structure from its interval tree, to hide
253  * vma from rmap and vmtruncate before freeing its page tables.
254  */
unlink_file_vma(struct vm_area_struct * vma)255 void unlink_file_vma(struct vm_area_struct *vma)
256 {
257 	struct file *file = vma->vm_file;
258 
259 	if (file) {
260 		struct address_space *mapping = file->f_mapping;
261 		i_mmap_lock_write(mapping);
262 		__remove_shared_vm_struct(vma, file, mapping);
263 		i_mmap_unlock_write(mapping);
264 	}
265 }
266 
267 /*
268  * Close a vm structure and free it, returning the next.
269  */
remove_vma(struct vm_area_struct * vma)270 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
271 {
272 	struct vm_area_struct *next = vma->vm_next;
273 
274 	might_sleep();
275 	if (vma->vm_ops && vma->vm_ops->close)
276 		vma->vm_ops->close(vma);
277 	if (vma->vm_file)
278 		fput(vma->vm_file);
279 	mpol_put(vma_policy(vma));
280 	kmem_cache_free(vm_area_cachep, vma);
281 	return next;
282 }
283 
284 static unsigned long do_brk(unsigned long addr, unsigned long len);
285 
SYSCALL_DEFINE1(brk,unsigned long,brk)286 SYSCALL_DEFINE1(brk, unsigned long, brk)
287 {
288 	unsigned long retval;
289 	unsigned long newbrk, oldbrk;
290 	struct mm_struct *mm = current->mm;
291 	unsigned long min_brk;
292 	bool populate;
293 
294 	down_write(&mm->mmap_sem);
295 
296 #ifdef CONFIG_COMPAT_BRK
297 	/*
298 	 * CONFIG_COMPAT_BRK can still be overridden by setting
299 	 * randomize_va_space to 2, which will still cause mm->start_brk
300 	 * to be arbitrarily shifted
301 	 */
302 	if (current->brk_randomized)
303 		min_brk = mm->start_brk;
304 	else
305 		min_brk = mm->end_data;
306 #else
307 	min_brk = mm->start_brk;
308 #endif
309 	if (brk < min_brk)
310 		goto out;
311 
312 	/*
313 	 * Check against rlimit here. If this check is done later after the test
314 	 * of oldbrk with newbrk then it can escape the test and let the data
315 	 * segment grow beyond its set limit the in case where the limit is
316 	 * not page aligned -Ram Gupta
317 	 */
318 	if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
319 			      mm->end_data, mm->start_data))
320 		goto out;
321 
322 	newbrk = PAGE_ALIGN(brk);
323 	oldbrk = PAGE_ALIGN(mm->brk);
324 	if (oldbrk == newbrk)
325 		goto set_brk;
326 
327 	/* Always allow shrinking brk. */
328 	if (brk <= mm->brk) {
329 		if (!do_munmap(mm, newbrk, oldbrk-newbrk))
330 			goto set_brk;
331 		goto out;
332 	}
333 
334 	/* Check against existing mmap mappings. */
335 	if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
336 		goto out;
337 
338 	/* Ok, looks good - let it rip. */
339 	if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
340 		goto out;
341 
342 set_brk:
343 	mm->brk = brk;
344 	populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
345 	up_write(&mm->mmap_sem);
346 	if (populate)
347 		mm_populate(oldbrk, newbrk - oldbrk);
348 	return brk;
349 
350 out:
351 	retval = mm->brk;
352 	up_write(&mm->mmap_sem);
353 	return retval;
354 }
355 
vma_compute_subtree_gap(struct vm_area_struct * vma)356 static long vma_compute_subtree_gap(struct vm_area_struct *vma)
357 {
358 	unsigned long max, subtree_gap;
359 	max = vma->vm_start;
360 	if (vma->vm_prev)
361 		max -= vma->vm_prev->vm_end;
362 	if (vma->vm_rb.rb_left) {
363 		subtree_gap = rb_entry(vma->vm_rb.rb_left,
364 				struct vm_area_struct, vm_rb)->rb_subtree_gap;
365 		if (subtree_gap > max)
366 			max = subtree_gap;
367 	}
368 	if (vma->vm_rb.rb_right) {
369 		subtree_gap = rb_entry(vma->vm_rb.rb_right,
370 				struct vm_area_struct, vm_rb)->rb_subtree_gap;
371 		if (subtree_gap > max)
372 			max = subtree_gap;
373 	}
374 	return max;
375 }
376 
377 #ifdef CONFIG_DEBUG_VM_RB
browse_rb(struct rb_root * root)378 static int browse_rb(struct rb_root *root)
379 {
380 	int i = 0, j, bug = 0;
381 	struct rb_node *nd, *pn = NULL;
382 	unsigned long prev = 0, pend = 0;
383 
384 	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
385 		struct vm_area_struct *vma;
386 		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
387 		if (vma->vm_start < prev) {
388 			pr_emerg("vm_start %lx < prev %lx\n",
389 				  vma->vm_start, prev);
390 			bug = 1;
391 		}
392 		if (vma->vm_start < pend) {
393 			pr_emerg("vm_start %lx < pend %lx\n",
394 				  vma->vm_start, pend);
395 			bug = 1;
396 		}
397 		if (vma->vm_start > vma->vm_end) {
398 			pr_emerg("vm_start %lx > vm_end %lx\n",
399 				  vma->vm_start, vma->vm_end);
400 			bug = 1;
401 		}
402 		if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
403 			pr_emerg("free gap %lx, correct %lx\n",
404 			       vma->rb_subtree_gap,
405 			       vma_compute_subtree_gap(vma));
406 			bug = 1;
407 		}
408 		i++;
409 		pn = nd;
410 		prev = vma->vm_start;
411 		pend = vma->vm_end;
412 	}
413 	j = 0;
414 	for (nd = pn; nd; nd = rb_prev(nd))
415 		j++;
416 	if (i != j) {
417 		pr_emerg("backwards %d, forwards %d\n", j, i);
418 		bug = 1;
419 	}
420 	return bug ? -1 : i;
421 }
422 
validate_mm_rb(struct rb_root * root,struct vm_area_struct * ignore)423 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
424 {
425 	struct rb_node *nd;
426 
427 	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
428 		struct vm_area_struct *vma;
429 		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
430 		VM_BUG_ON_VMA(vma != ignore &&
431 			vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
432 			vma);
433 	}
434 }
435 
validate_mm(struct mm_struct * mm)436 static void validate_mm(struct mm_struct *mm)
437 {
438 	int bug = 0;
439 	int i = 0;
440 	unsigned long highest_address = 0;
441 	struct vm_area_struct *vma = mm->mmap;
442 
443 	while (vma) {
444 		struct anon_vma *anon_vma = vma->anon_vma;
445 		struct anon_vma_chain *avc;
446 
447 		if (anon_vma) {
448 			anon_vma_lock_read(anon_vma);
449 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
450 				anon_vma_interval_tree_verify(avc);
451 			anon_vma_unlock_read(anon_vma);
452 		}
453 
454 		highest_address = vma->vm_end;
455 		vma = vma->vm_next;
456 		i++;
457 	}
458 	if (i != mm->map_count) {
459 		pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
460 		bug = 1;
461 	}
462 	if (highest_address != mm->highest_vm_end) {
463 		pr_emerg("mm->highest_vm_end %lx, found %lx\n",
464 			  mm->highest_vm_end, highest_address);
465 		bug = 1;
466 	}
467 	i = browse_rb(&mm->mm_rb);
468 	if (i != mm->map_count) {
469 		if (i != -1)
470 			pr_emerg("map_count %d rb %d\n", mm->map_count, i);
471 		bug = 1;
472 	}
473 	VM_BUG_ON_MM(bug, mm);
474 }
475 #else
476 #define validate_mm_rb(root, ignore) do { } while (0)
477 #define validate_mm(mm) do { } while (0)
478 #endif
479 
RB_DECLARE_CALLBACKS(static,vma_gap_callbacks,struct vm_area_struct,vm_rb,unsigned long,rb_subtree_gap,vma_compute_subtree_gap)480 RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb,
481 		     unsigned long, rb_subtree_gap, vma_compute_subtree_gap)
482 
483 /*
484  * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
485  * vma->vm_prev->vm_end values changed, without modifying the vma's position
486  * in the rbtree.
487  */
488 static void vma_gap_update(struct vm_area_struct *vma)
489 {
490 	/*
491 	 * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
492 	 * function that does exacltly what we want.
493 	 */
494 	vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
495 }
496 
vma_rb_insert(struct vm_area_struct * vma,struct rb_root * root)497 static inline void vma_rb_insert(struct vm_area_struct *vma,
498 				 struct rb_root *root)
499 {
500 	/* All rb_subtree_gap values must be consistent prior to insertion */
501 	validate_mm_rb(root, NULL);
502 
503 	rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
504 }
505 
vma_rb_erase(struct vm_area_struct * vma,struct rb_root * root)506 static void vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
507 {
508 	/*
509 	 * All rb_subtree_gap values must be consistent prior to erase,
510 	 * with the possible exception of the vma being erased.
511 	 */
512 	validate_mm_rb(root, vma);
513 
514 	/*
515 	 * Note rb_erase_augmented is a fairly large inline function,
516 	 * so make sure we instantiate it only once with our desired
517 	 * augmented rbtree callbacks.
518 	 */
519 	rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
520 }
521 
522 /*
523  * vma has some anon_vma assigned, and is already inserted on that
524  * anon_vma's interval trees.
525  *
526  * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
527  * vma must be removed from the anon_vma's interval trees using
528  * anon_vma_interval_tree_pre_update_vma().
529  *
530  * After the update, the vma will be reinserted using
531  * anon_vma_interval_tree_post_update_vma().
532  *
533  * The entire update must be protected by exclusive mmap_sem and by
534  * the root anon_vma's mutex.
535  */
536 static inline void
anon_vma_interval_tree_pre_update_vma(struct vm_area_struct * vma)537 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
538 {
539 	struct anon_vma_chain *avc;
540 
541 	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
542 		anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
543 }
544 
545 static inline void
anon_vma_interval_tree_post_update_vma(struct vm_area_struct * vma)546 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
547 {
548 	struct anon_vma_chain *avc;
549 
550 	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
551 		anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
552 }
553 
find_vma_links(struct mm_struct * mm,unsigned long addr,unsigned long end,struct vm_area_struct ** pprev,struct rb_node *** rb_link,struct rb_node ** rb_parent)554 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
555 		unsigned long end, struct vm_area_struct **pprev,
556 		struct rb_node ***rb_link, struct rb_node **rb_parent)
557 {
558 	struct rb_node **__rb_link, *__rb_parent, *rb_prev;
559 
560 	__rb_link = &mm->mm_rb.rb_node;
561 	rb_prev = __rb_parent = NULL;
562 
563 	while (*__rb_link) {
564 		struct vm_area_struct *vma_tmp;
565 
566 		__rb_parent = *__rb_link;
567 		vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
568 
569 		if (vma_tmp->vm_end > addr) {
570 			/* Fail if an existing vma overlaps the area */
571 			if (vma_tmp->vm_start < end)
572 				return -ENOMEM;
573 			__rb_link = &__rb_parent->rb_left;
574 		} else {
575 			rb_prev = __rb_parent;
576 			__rb_link = &__rb_parent->rb_right;
577 		}
578 	}
579 
580 	*pprev = NULL;
581 	if (rb_prev)
582 		*pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
583 	*rb_link = __rb_link;
584 	*rb_parent = __rb_parent;
585 	return 0;
586 }
587 
count_vma_pages_range(struct mm_struct * mm,unsigned long addr,unsigned long end)588 static unsigned long count_vma_pages_range(struct mm_struct *mm,
589 		unsigned long addr, unsigned long end)
590 {
591 	unsigned long nr_pages = 0;
592 	struct vm_area_struct *vma;
593 
594 	/* Find first overlaping mapping */
595 	vma = find_vma_intersection(mm, addr, end);
596 	if (!vma)
597 		return 0;
598 
599 	nr_pages = (min(end, vma->vm_end) -
600 		max(addr, vma->vm_start)) >> PAGE_SHIFT;
601 
602 	/* Iterate over the rest of the overlaps */
603 	for (vma = vma->vm_next; vma; vma = vma->vm_next) {
604 		unsigned long overlap_len;
605 
606 		if (vma->vm_start > end)
607 			break;
608 
609 		overlap_len = min(end, vma->vm_end) - vma->vm_start;
610 		nr_pages += overlap_len >> PAGE_SHIFT;
611 	}
612 
613 	return nr_pages;
614 }
615 
__vma_link_rb(struct mm_struct * mm,struct vm_area_struct * vma,struct rb_node ** rb_link,struct rb_node * rb_parent)616 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
617 		struct rb_node **rb_link, struct rb_node *rb_parent)
618 {
619 	/* Update tracking information for the gap following the new vma. */
620 	if (vma->vm_next)
621 		vma_gap_update(vma->vm_next);
622 	else
623 		mm->highest_vm_end = vma->vm_end;
624 
625 	/*
626 	 * vma->vm_prev wasn't known when we followed the rbtree to find the
627 	 * correct insertion point for that vma. As a result, we could not
628 	 * update the vma vm_rb parents rb_subtree_gap values on the way down.
629 	 * So, we first insert the vma with a zero rb_subtree_gap value
630 	 * (to be consistent with what we did on the way down), and then
631 	 * immediately update the gap to the correct value. Finally we
632 	 * rebalance the rbtree after all augmented values have been set.
633 	 */
634 	rb_link_node(&vma->vm_rb, rb_parent, rb_link);
635 	vma->rb_subtree_gap = 0;
636 	vma_gap_update(vma);
637 	vma_rb_insert(vma, &mm->mm_rb);
638 }
639 
__vma_link_file(struct vm_area_struct * vma)640 static void __vma_link_file(struct vm_area_struct *vma)
641 {
642 	struct file *file;
643 
644 	file = vma->vm_file;
645 	if (file) {
646 		struct address_space *mapping = file->f_mapping;
647 
648 		if (vma->vm_flags & VM_DENYWRITE)
649 			atomic_dec(&file_inode(file)->i_writecount);
650 		if (vma->vm_flags & VM_SHARED)
651 			atomic_inc(&mapping->i_mmap_writable);
652 
653 		flush_dcache_mmap_lock(mapping);
654 		vma_interval_tree_insert(vma, &mapping->i_mmap);
655 		flush_dcache_mmap_unlock(mapping);
656 	}
657 }
658 
659 static void
__vma_link(struct mm_struct * mm,struct vm_area_struct * vma,struct vm_area_struct * prev,struct rb_node ** rb_link,struct rb_node * rb_parent)660 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
661 	struct vm_area_struct *prev, struct rb_node **rb_link,
662 	struct rb_node *rb_parent)
663 {
664 	__vma_link_list(mm, vma, prev, rb_parent);
665 	__vma_link_rb(mm, vma, rb_link, rb_parent);
666 }
667 
vma_link(struct mm_struct * mm,struct vm_area_struct * vma,struct vm_area_struct * prev,struct rb_node ** rb_link,struct rb_node * rb_parent)668 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
669 			struct vm_area_struct *prev, struct rb_node **rb_link,
670 			struct rb_node *rb_parent)
671 {
672 	struct address_space *mapping = NULL;
673 
674 	if (vma->vm_file) {
675 		mapping = vma->vm_file->f_mapping;
676 		i_mmap_lock_write(mapping);
677 	}
678 
679 	__vma_link(mm, vma, prev, rb_link, rb_parent);
680 	__vma_link_file(vma);
681 
682 	if (mapping)
683 		i_mmap_unlock_write(mapping);
684 
685 	mm->map_count++;
686 	validate_mm(mm);
687 }
688 
689 /*
690  * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
691  * mm's list and rbtree.  It has already been inserted into the interval tree.
692  */
__insert_vm_struct(struct mm_struct * mm,struct vm_area_struct * vma)693 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
694 {
695 	struct vm_area_struct *prev;
696 	struct rb_node **rb_link, *rb_parent;
697 
698 	if (find_vma_links(mm, vma->vm_start, vma->vm_end,
699 			   &prev, &rb_link, &rb_parent))
700 		BUG();
701 	__vma_link(mm, vma, prev, rb_link, rb_parent);
702 	mm->map_count++;
703 }
704 
705 static inline void
__vma_unlink(struct mm_struct * mm,struct vm_area_struct * vma,struct vm_area_struct * prev)706 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
707 		struct vm_area_struct *prev)
708 {
709 	struct vm_area_struct *next;
710 
711 	vma_rb_erase(vma, &mm->mm_rb);
712 	prev->vm_next = next = vma->vm_next;
713 	if (next)
714 		next->vm_prev = prev;
715 
716 	/* Kill the cache */
717 	vmacache_invalidate(mm);
718 }
719 
720 /*
721  * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
722  * is already present in an i_mmap tree without adjusting the tree.
723  * The following helper function should be used when such adjustments
724  * are necessary.  The "insert" vma (if any) is to be inserted
725  * before we drop the necessary locks.
726  */
vma_adjust(struct vm_area_struct * vma,unsigned long start,unsigned long end,pgoff_t pgoff,struct vm_area_struct * insert)727 int vma_adjust(struct vm_area_struct *vma, unsigned long start,
728 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
729 {
730 	struct mm_struct *mm = vma->vm_mm;
731 	struct vm_area_struct *next = vma->vm_next;
732 	struct vm_area_struct *importer = NULL;
733 	struct address_space *mapping = NULL;
734 	struct rb_root *root = NULL;
735 	struct anon_vma *anon_vma = NULL;
736 	struct file *file = vma->vm_file;
737 	bool start_changed = false, end_changed = false;
738 	long adjust_next = 0;
739 	int remove_next = 0;
740 
741 	if (next && !insert) {
742 		struct vm_area_struct *exporter = NULL;
743 
744 		if (end >= next->vm_end) {
745 			/*
746 			 * vma expands, overlapping all the next, and
747 			 * perhaps the one after too (mprotect case 6).
748 			 */
749 again:			remove_next = 1 + (end > next->vm_end);
750 			end = next->vm_end;
751 			exporter = next;
752 			importer = vma;
753 		} else if (end > next->vm_start) {
754 			/*
755 			 * vma expands, overlapping part of the next:
756 			 * mprotect case 5 shifting the boundary up.
757 			 */
758 			adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
759 			exporter = next;
760 			importer = vma;
761 		} else if (end < vma->vm_end) {
762 			/*
763 			 * vma shrinks, and !insert tells it's not
764 			 * split_vma inserting another: so it must be
765 			 * mprotect case 4 shifting the boundary down.
766 			 */
767 			adjust_next = -((vma->vm_end - end) >> PAGE_SHIFT);
768 			exporter = vma;
769 			importer = next;
770 		}
771 
772 		/*
773 		 * Easily overlooked: when mprotect shifts the boundary,
774 		 * make sure the expanding vma has anon_vma set if the
775 		 * shrinking vma had, to cover any anon pages imported.
776 		 */
777 		if (exporter && exporter->anon_vma && !importer->anon_vma) {
778 			int error;
779 
780 			importer->anon_vma = exporter->anon_vma;
781 			error = anon_vma_clone(importer, exporter);
782 			if (error)
783 				return error;
784 		}
785 	}
786 
787 	if (file) {
788 		mapping = file->f_mapping;
789 		root = &mapping->i_mmap;
790 		uprobe_munmap(vma, vma->vm_start, vma->vm_end);
791 
792 		if (adjust_next)
793 			uprobe_munmap(next, next->vm_start, next->vm_end);
794 
795 		i_mmap_lock_write(mapping);
796 		if (insert) {
797 			/*
798 			 * Put into interval tree now, so instantiated pages
799 			 * are visible to arm/parisc __flush_dcache_page
800 			 * throughout; but we cannot insert into address
801 			 * space until vma start or end is updated.
802 			 */
803 			__vma_link_file(insert);
804 		}
805 	}
806 
807 	vma_adjust_trans_huge(vma, start, end, adjust_next);
808 
809 	anon_vma = vma->anon_vma;
810 	if (!anon_vma && adjust_next)
811 		anon_vma = next->anon_vma;
812 	if (anon_vma) {
813 		VM_BUG_ON_VMA(adjust_next && next->anon_vma &&
814 			  anon_vma != next->anon_vma, next);
815 		anon_vma_lock_write(anon_vma);
816 		anon_vma_interval_tree_pre_update_vma(vma);
817 		if (adjust_next)
818 			anon_vma_interval_tree_pre_update_vma(next);
819 	}
820 
821 	if (root) {
822 		flush_dcache_mmap_lock(mapping);
823 		vma_interval_tree_remove(vma, root);
824 		if (adjust_next)
825 			vma_interval_tree_remove(next, root);
826 	}
827 
828 	if (start != vma->vm_start) {
829 		vma->vm_start = start;
830 		start_changed = true;
831 	}
832 	if (end != vma->vm_end) {
833 		vma->vm_end = end;
834 		end_changed = true;
835 	}
836 	vma->vm_pgoff = pgoff;
837 	if (adjust_next) {
838 		next->vm_start += adjust_next << PAGE_SHIFT;
839 		next->vm_pgoff += adjust_next;
840 	}
841 
842 	if (root) {
843 		if (adjust_next)
844 			vma_interval_tree_insert(next, root);
845 		vma_interval_tree_insert(vma, root);
846 		flush_dcache_mmap_unlock(mapping);
847 	}
848 
849 	if (remove_next) {
850 		/*
851 		 * vma_merge has merged next into vma, and needs
852 		 * us to remove next before dropping the locks.
853 		 */
854 		__vma_unlink(mm, next, vma);
855 		if (file)
856 			__remove_shared_vm_struct(next, file, mapping);
857 	} else if (insert) {
858 		/*
859 		 * split_vma has split insert from vma, and needs
860 		 * us to insert it before dropping the locks
861 		 * (it may either follow vma or precede it).
862 		 */
863 		__insert_vm_struct(mm, insert);
864 	} else {
865 		if (start_changed)
866 			vma_gap_update(vma);
867 		if (end_changed) {
868 			if (!next)
869 				mm->highest_vm_end = end;
870 			else if (!adjust_next)
871 				vma_gap_update(next);
872 		}
873 	}
874 
875 	if (anon_vma) {
876 		anon_vma_interval_tree_post_update_vma(vma);
877 		if (adjust_next)
878 			anon_vma_interval_tree_post_update_vma(next);
879 		anon_vma_unlock_write(anon_vma);
880 	}
881 	if (mapping)
882 		i_mmap_unlock_write(mapping);
883 
884 	if (root) {
885 		uprobe_mmap(vma);
886 
887 		if (adjust_next)
888 			uprobe_mmap(next);
889 	}
890 
891 	if (remove_next) {
892 		if (file) {
893 			uprobe_munmap(next, next->vm_start, next->vm_end);
894 			fput(file);
895 		}
896 		if (next->anon_vma)
897 			anon_vma_merge(vma, next);
898 		mm->map_count--;
899 		mpol_put(vma_policy(next));
900 		kmem_cache_free(vm_area_cachep, next);
901 		/*
902 		 * In mprotect's case 6 (see comments on vma_merge),
903 		 * we must remove another next too. It would clutter
904 		 * up the code too much to do both in one go.
905 		 */
906 		next = vma->vm_next;
907 		if (remove_next == 2)
908 			goto again;
909 		else if (next)
910 			vma_gap_update(next);
911 		else
912 			mm->highest_vm_end = end;
913 	}
914 	if (insert && file)
915 		uprobe_mmap(insert);
916 
917 	validate_mm(mm);
918 
919 	return 0;
920 }
921 
922 /*
923  * If the vma has a ->close operation then the driver probably needs to release
924  * per-vma resources, so we don't attempt to merge those.
925  */
is_mergeable_vma(struct vm_area_struct * vma,struct file * file,unsigned long vm_flags,struct vm_userfaultfd_ctx vm_userfaultfd_ctx)926 static inline int is_mergeable_vma(struct vm_area_struct *vma,
927 				struct file *file, unsigned long vm_flags,
928 				struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
929 {
930 	/*
931 	 * VM_SOFTDIRTY should not prevent from VMA merging, if we
932 	 * match the flags but dirty bit -- the caller should mark
933 	 * merged VMA as dirty. If dirty bit won't be excluded from
934 	 * comparison, we increase pressue on the memory system forcing
935 	 * the kernel to generate new VMAs when old one could be
936 	 * extended instead.
937 	 */
938 	if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
939 		return 0;
940 	if (vma->vm_file != file)
941 		return 0;
942 	if (vma->vm_ops && vma->vm_ops->close)
943 		return 0;
944 	if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
945 		return 0;
946 	return 1;
947 }
948 
is_mergeable_anon_vma(struct anon_vma * anon_vma1,struct anon_vma * anon_vma2,struct vm_area_struct * vma)949 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
950 					struct anon_vma *anon_vma2,
951 					struct vm_area_struct *vma)
952 {
953 	/*
954 	 * The list_is_singular() test is to avoid merging VMA cloned from
955 	 * parents. This can improve scalability caused by anon_vma lock.
956 	 */
957 	if ((!anon_vma1 || !anon_vma2) && (!vma ||
958 		list_is_singular(&vma->anon_vma_chain)))
959 		return 1;
960 	return anon_vma1 == anon_vma2;
961 }
962 
963 /*
964  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
965  * in front of (at a lower virtual address and file offset than) the vma.
966  *
967  * We cannot merge two vmas if they have differently assigned (non-NULL)
968  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
969  *
970  * We don't check here for the merged mmap wrapping around the end of pagecache
971  * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
972  * wrap, nor mmaps which cover the final page at index -1UL.
973  */
974 static int
can_vma_merge_before(struct vm_area_struct * vma,unsigned long vm_flags,struct anon_vma * anon_vma,struct file * file,pgoff_t vm_pgoff,struct vm_userfaultfd_ctx vm_userfaultfd_ctx)975 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
976 		     struct anon_vma *anon_vma, struct file *file,
977 		     pgoff_t vm_pgoff,
978 		     struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
979 {
980 	if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
981 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
982 		if (vma->vm_pgoff == vm_pgoff)
983 			return 1;
984 	}
985 	return 0;
986 }
987 
988 /*
989  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
990  * beyond (at a higher virtual address and file offset than) the vma.
991  *
992  * We cannot merge two vmas if they have differently assigned (non-NULL)
993  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
994  */
995 static int
can_vma_merge_after(struct vm_area_struct * vma,unsigned long vm_flags,struct anon_vma * anon_vma,struct file * file,pgoff_t vm_pgoff,struct vm_userfaultfd_ctx vm_userfaultfd_ctx)996 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
997 		    struct anon_vma *anon_vma, struct file *file,
998 		    pgoff_t vm_pgoff,
999 		    struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1000 {
1001 	if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1002 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1003 		pgoff_t vm_pglen;
1004 		vm_pglen = vma_pages(vma);
1005 		if (vma->vm_pgoff + vm_pglen == vm_pgoff)
1006 			return 1;
1007 	}
1008 	return 0;
1009 }
1010 
1011 /*
1012  * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
1013  * whether that can be merged with its predecessor or its successor.
1014  * Or both (it neatly fills a hole).
1015  *
1016  * In most cases - when called for mmap, brk or mremap - [addr,end) is
1017  * certain not to be mapped by the time vma_merge is called; but when
1018  * called for mprotect, it is certain to be already mapped (either at
1019  * an offset within prev, or at the start of next), and the flags of
1020  * this area are about to be changed to vm_flags - and the no-change
1021  * case has already been eliminated.
1022  *
1023  * The following mprotect cases have to be considered, where AAAA is
1024  * the area passed down from mprotect_fixup, never extending beyond one
1025  * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1026  *
1027  *     AAAA             AAAA                AAAA          AAAA
1028  *    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPNNNNXXXX
1029  *    cannot merge    might become    might become    might become
1030  *                    PPNNNNNNNNNN    PPPPPPPPPPNN    PPPPPPPPPPPP 6 or
1031  *    mmap, brk or    case 4 below    case 5 below    PPPPPPPPXXXX 7 or
1032  *    mremap move:                                    PPPPNNNNNNNN 8
1033  *        AAAA
1034  *    PPPP    NNNN    PPPPPPPPPPPP    PPPPPPPPNNNN    PPPPNNNNNNNN
1035  *    might become    case 1 below    case 2 below    case 3 below
1036  *
1037  * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
1038  * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
1039  */
vma_merge(struct mm_struct * mm,struct vm_area_struct * prev,unsigned long addr,unsigned long end,unsigned long vm_flags,struct anon_vma * anon_vma,struct file * file,pgoff_t pgoff,struct mempolicy * policy,struct vm_userfaultfd_ctx vm_userfaultfd_ctx)1040 struct vm_area_struct *vma_merge(struct mm_struct *mm,
1041 			struct vm_area_struct *prev, unsigned long addr,
1042 			unsigned long end, unsigned long vm_flags,
1043 			struct anon_vma *anon_vma, struct file *file,
1044 			pgoff_t pgoff, struct mempolicy *policy,
1045 			struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1046 {
1047 	pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1048 	struct vm_area_struct *area, *next;
1049 	int err;
1050 
1051 	/*
1052 	 * We later require that vma->vm_flags == vm_flags,
1053 	 * so this tests vma->vm_flags & VM_SPECIAL, too.
1054 	 */
1055 	if (vm_flags & VM_SPECIAL)
1056 		return NULL;
1057 
1058 	if (prev)
1059 		next = prev->vm_next;
1060 	else
1061 		next = mm->mmap;
1062 	area = next;
1063 	if (next && next->vm_end == end)		/* cases 6, 7, 8 */
1064 		next = next->vm_next;
1065 
1066 	/*
1067 	 * Can it merge with the predecessor?
1068 	 */
1069 	if (prev && prev->vm_end == addr &&
1070 			mpol_equal(vma_policy(prev), policy) &&
1071 			can_vma_merge_after(prev, vm_flags,
1072 					    anon_vma, file, pgoff,
1073 					    vm_userfaultfd_ctx)) {
1074 		/*
1075 		 * OK, it can.  Can we now merge in the successor as well?
1076 		 */
1077 		if (next && end == next->vm_start &&
1078 				mpol_equal(policy, vma_policy(next)) &&
1079 				can_vma_merge_before(next, vm_flags,
1080 						     anon_vma, file,
1081 						     pgoff+pglen,
1082 						     vm_userfaultfd_ctx) &&
1083 				is_mergeable_anon_vma(prev->anon_vma,
1084 						      next->anon_vma, NULL)) {
1085 							/* cases 1, 6 */
1086 			err = vma_adjust(prev, prev->vm_start,
1087 				next->vm_end, prev->vm_pgoff, NULL);
1088 		} else					/* cases 2, 5, 7 */
1089 			err = vma_adjust(prev, prev->vm_start,
1090 				end, prev->vm_pgoff, NULL);
1091 		if (err)
1092 			return NULL;
1093 		khugepaged_enter_vma_merge(prev, vm_flags);
1094 		return prev;
1095 	}
1096 
1097 	/*
1098 	 * Can this new request be merged in front of next?
1099 	 */
1100 	if (next && end == next->vm_start &&
1101 			mpol_equal(policy, vma_policy(next)) &&
1102 			can_vma_merge_before(next, vm_flags,
1103 					     anon_vma, file, pgoff+pglen,
1104 					     vm_userfaultfd_ctx)) {
1105 		if (prev && addr < prev->vm_end)	/* case 4 */
1106 			err = vma_adjust(prev, prev->vm_start,
1107 				addr, prev->vm_pgoff, NULL);
1108 		else					/* cases 3, 8 */
1109 			err = vma_adjust(area, addr, next->vm_end,
1110 				next->vm_pgoff - pglen, NULL);
1111 		if (err)
1112 			return NULL;
1113 		khugepaged_enter_vma_merge(area, vm_flags);
1114 		return area;
1115 	}
1116 
1117 	return NULL;
1118 }
1119 
1120 /*
1121  * Rough compatbility check to quickly see if it's even worth looking
1122  * at sharing an anon_vma.
1123  *
1124  * They need to have the same vm_file, and the flags can only differ
1125  * in things that mprotect may change.
1126  *
1127  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1128  * we can merge the two vma's. For example, we refuse to merge a vma if
1129  * there is a vm_ops->close() function, because that indicates that the
1130  * driver is doing some kind of reference counting. But that doesn't
1131  * really matter for the anon_vma sharing case.
1132  */
anon_vma_compatible(struct vm_area_struct * a,struct vm_area_struct * b)1133 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1134 {
1135 	return a->vm_end == b->vm_start &&
1136 		mpol_equal(vma_policy(a), vma_policy(b)) &&
1137 		a->vm_file == b->vm_file &&
1138 		!((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) &&
1139 		b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1140 }
1141 
1142 /*
1143  * Do some basic sanity checking to see if we can re-use the anon_vma
1144  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1145  * the same as 'old', the other will be the new one that is trying
1146  * to share the anon_vma.
1147  *
1148  * NOTE! This runs with mm_sem held for reading, so it is possible that
1149  * the anon_vma of 'old' is concurrently in the process of being set up
1150  * by another page fault trying to merge _that_. But that's ok: if it
1151  * is being set up, that automatically means that it will be a singleton
1152  * acceptable for merging, so we can do all of this optimistically. But
1153  * we do that READ_ONCE() to make sure that we never re-load the pointer.
1154  *
1155  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1156  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1157  * is to return an anon_vma that is "complex" due to having gone through
1158  * a fork).
1159  *
1160  * We also make sure that the two vma's are compatible (adjacent,
1161  * and with the same memory policies). That's all stable, even with just
1162  * a read lock on the mm_sem.
1163  */
reusable_anon_vma(struct vm_area_struct * old,struct vm_area_struct * a,struct vm_area_struct * b)1164 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1165 {
1166 	if (anon_vma_compatible(a, b)) {
1167 		struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1168 
1169 		if (anon_vma && list_is_singular(&old->anon_vma_chain))
1170 			return anon_vma;
1171 	}
1172 	return NULL;
1173 }
1174 
1175 /*
1176  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1177  * neighbouring vmas for a suitable anon_vma, before it goes off
1178  * to allocate a new anon_vma.  It checks because a repetitive
1179  * sequence of mprotects and faults may otherwise lead to distinct
1180  * anon_vmas being allocated, preventing vma merge in subsequent
1181  * mprotect.
1182  */
find_mergeable_anon_vma(struct vm_area_struct * vma)1183 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1184 {
1185 	struct anon_vma *anon_vma;
1186 	struct vm_area_struct *near;
1187 
1188 	near = vma->vm_next;
1189 	if (!near)
1190 		goto try_prev;
1191 
1192 	anon_vma = reusable_anon_vma(near, vma, near);
1193 	if (anon_vma)
1194 		return anon_vma;
1195 try_prev:
1196 	near = vma->vm_prev;
1197 	if (!near)
1198 		goto none;
1199 
1200 	anon_vma = reusable_anon_vma(near, near, vma);
1201 	if (anon_vma)
1202 		return anon_vma;
1203 none:
1204 	/*
1205 	 * There's no absolute need to look only at touching neighbours:
1206 	 * we could search further afield for "compatible" anon_vmas.
1207 	 * But it would probably just be a waste of time searching,
1208 	 * or lead to too many vmas hanging off the same anon_vma.
1209 	 * We're trying to allow mprotect remerging later on,
1210 	 * not trying to minimize memory used for anon_vmas.
1211 	 */
1212 	return NULL;
1213 }
1214 
1215 #ifdef CONFIG_PROC_FS
vm_stat_account(struct mm_struct * mm,unsigned long flags,struct file * file,long pages)1216 void vm_stat_account(struct mm_struct *mm, unsigned long flags,
1217 						struct file *file, long pages)
1218 {
1219 	const unsigned long stack_flags
1220 		= VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
1221 
1222 	mm->total_vm += pages;
1223 
1224 	if (file) {
1225 		mm->shared_vm += pages;
1226 		if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
1227 			mm->exec_vm += pages;
1228 	} else if (flags & stack_flags)
1229 		mm->stack_vm += pages;
1230 }
1231 #endif /* CONFIG_PROC_FS */
1232 
1233 /*
1234  * If a hint addr is less than mmap_min_addr change hint to be as
1235  * low as possible but still greater than mmap_min_addr
1236  */
round_hint_to_min(unsigned long hint)1237 static inline unsigned long round_hint_to_min(unsigned long hint)
1238 {
1239 	hint &= PAGE_MASK;
1240 	if (((void *)hint != NULL) &&
1241 	    (hint < mmap_min_addr))
1242 		return PAGE_ALIGN(mmap_min_addr);
1243 	return hint;
1244 }
1245 
mlock_future_check(struct mm_struct * mm,unsigned long flags,unsigned long len)1246 static inline int mlock_future_check(struct mm_struct *mm,
1247 				     unsigned long flags,
1248 				     unsigned long len)
1249 {
1250 	unsigned long locked, lock_limit;
1251 
1252 	/*  mlock MCL_FUTURE? */
1253 	if (flags & VM_LOCKED) {
1254 		locked = len >> PAGE_SHIFT;
1255 		locked += mm->locked_vm;
1256 		lock_limit = rlimit(RLIMIT_MEMLOCK);
1257 		lock_limit >>= PAGE_SHIFT;
1258 		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1259 			return -EAGAIN;
1260 	}
1261 	return 0;
1262 }
1263 
1264 /*
1265  * The caller must hold down_write(&current->mm->mmap_sem).
1266  */
do_mmap(struct file * file,unsigned long addr,unsigned long len,unsigned long prot,unsigned long flags,vm_flags_t vm_flags,unsigned long pgoff,unsigned long * populate)1267 unsigned long do_mmap(struct file *file, unsigned long addr,
1268 			unsigned long len, unsigned long prot,
1269 			unsigned long flags, vm_flags_t vm_flags,
1270 			unsigned long pgoff, unsigned long *populate)
1271 {
1272 	struct mm_struct *mm = current->mm;
1273 
1274 	*populate = 0;
1275 
1276 	if (!len)
1277 		return -EINVAL;
1278 
1279 	/*
1280 	 * Does the application expect PROT_READ to imply PROT_EXEC?
1281 	 *
1282 	 * (the exception is when the underlying filesystem is noexec
1283 	 *  mounted, in which case we dont add PROT_EXEC.)
1284 	 */
1285 	if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1286 		if (!(file && path_noexec(&file->f_path)))
1287 			prot |= PROT_EXEC;
1288 
1289 	if (!(flags & MAP_FIXED))
1290 		addr = round_hint_to_min(addr);
1291 
1292 	/* Careful about overflows.. */
1293 	len = PAGE_ALIGN(len);
1294 	if (!len)
1295 		return -ENOMEM;
1296 
1297 	/* offset overflow? */
1298 	if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1299 		return -EOVERFLOW;
1300 
1301 	/* Too many mappings? */
1302 	if (mm->map_count > sysctl_max_map_count)
1303 		return -ENOMEM;
1304 
1305 	/* Obtain the address to map to. we verify (or select) it and ensure
1306 	 * that it represents a valid section of the address space.
1307 	 */
1308 	addr = get_unmapped_area(file, addr, len, pgoff, flags);
1309 	if (offset_in_page(addr))
1310 		return addr;
1311 
1312 	/* Do simple checking here so the lower-level routines won't have
1313 	 * to. we assume access permissions have been handled by the open
1314 	 * of the memory object, so we don't do any here.
1315 	 */
1316 	vm_flags |= calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
1317 			mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1318 
1319 	if (flags & MAP_LOCKED)
1320 		if (!can_do_mlock())
1321 			return -EPERM;
1322 
1323 	if (mlock_future_check(mm, vm_flags, len))
1324 		return -EAGAIN;
1325 
1326 	if (file) {
1327 		struct inode *inode = file_inode(file);
1328 
1329 		switch (flags & MAP_TYPE) {
1330 		case MAP_SHARED:
1331 			if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1332 				return -EACCES;
1333 
1334 			/*
1335 			 * Make sure we don't allow writing to an append-only
1336 			 * file..
1337 			 */
1338 			if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1339 				return -EACCES;
1340 
1341 			/*
1342 			 * Make sure there are no mandatory locks on the file.
1343 			 */
1344 			if (locks_verify_locked(file))
1345 				return -EAGAIN;
1346 
1347 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1348 			if (!(file->f_mode & FMODE_WRITE))
1349 				vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1350 
1351 			/* fall through */
1352 		case MAP_PRIVATE:
1353 			if (!(file->f_mode & FMODE_READ))
1354 				return -EACCES;
1355 			if (path_noexec(&file->f_path)) {
1356 				if (vm_flags & VM_EXEC)
1357 					return -EPERM;
1358 				vm_flags &= ~VM_MAYEXEC;
1359 			}
1360 
1361 			if (!file->f_op->mmap)
1362 				return -ENODEV;
1363 			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1364 				return -EINVAL;
1365 			break;
1366 
1367 		default:
1368 			return -EINVAL;
1369 		}
1370 	} else {
1371 		switch (flags & MAP_TYPE) {
1372 		case MAP_SHARED:
1373 			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1374 				return -EINVAL;
1375 			/*
1376 			 * Ignore pgoff.
1377 			 */
1378 			pgoff = 0;
1379 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1380 			break;
1381 		case MAP_PRIVATE:
1382 			/*
1383 			 * Set pgoff according to addr for anon_vma.
1384 			 */
1385 			pgoff = addr >> PAGE_SHIFT;
1386 			break;
1387 		default:
1388 			return -EINVAL;
1389 		}
1390 	}
1391 
1392 	/*
1393 	 * Set 'VM_NORESERVE' if we should not account for the
1394 	 * memory use of this mapping.
1395 	 */
1396 	if (flags & MAP_NORESERVE) {
1397 		/* We honor MAP_NORESERVE if allowed to overcommit */
1398 		if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1399 			vm_flags |= VM_NORESERVE;
1400 
1401 		/* hugetlb applies strict overcommit unless MAP_NORESERVE */
1402 		if (file && is_file_hugepages(file))
1403 			vm_flags |= VM_NORESERVE;
1404 	}
1405 
1406 	addr = mmap_region(file, addr, len, vm_flags, pgoff);
1407 	if (!IS_ERR_VALUE(addr) &&
1408 	    ((vm_flags & VM_LOCKED) ||
1409 	     (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1410 		*populate = len;
1411 	return addr;
1412 }
1413 
SYSCALL_DEFINE6(mmap_pgoff,unsigned long,addr,unsigned long,len,unsigned long,prot,unsigned long,flags,unsigned long,fd,unsigned long,pgoff)1414 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1415 		unsigned long, prot, unsigned long, flags,
1416 		unsigned long, fd, unsigned long, pgoff)
1417 {
1418 	struct file *file = NULL;
1419 	unsigned long retval;
1420 
1421 	if (!(flags & MAP_ANONYMOUS)) {
1422 		audit_mmap_fd(fd, flags);
1423 		file = fget(fd);
1424 		if (!file)
1425 			return -EBADF;
1426 		if (is_file_hugepages(file))
1427 			len = ALIGN(len, huge_page_size(hstate_file(file)));
1428 		retval = -EINVAL;
1429 		if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file)))
1430 			goto out_fput;
1431 	} else if (flags & MAP_HUGETLB) {
1432 		struct user_struct *user = NULL;
1433 		struct hstate *hs;
1434 
1435 		hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & SHM_HUGE_MASK);
1436 		if (!hs)
1437 			return -EINVAL;
1438 
1439 		len = ALIGN(len, huge_page_size(hs));
1440 		/*
1441 		 * VM_NORESERVE is used because the reservations will be
1442 		 * taken when vm_ops->mmap() is called
1443 		 * A dummy user value is used because we are not locking
1444 		 * memory so no accounting is necessary
1445 		 */
1446 		file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1447 				VM_NORESERVE,
1448 				&user, HUGETLB_ANONHUGE_INODE,
1449 				(flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1450 		if (IS_ERR(file))
1451 			return PTR_ERR(file);
1452 	}
1453 
1454 	flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1455 
1456 	retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1457 out_fput:
1458 	if (file)
1459 		fput(file);
1460 	return retval;
1461 }
1462 
1463 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1464 struct mmap_arg_struct {
1465 	unsigned long addr;
1466 	unsigned long len;
1467 	unsigned long prot;
1468 	unsigned long flags;
1469 	unsigned long fd;
1470 	unsigned long offset;
1471 };
1472 
SYSCALL_DEFINE1(old_mmap,struct mmap_arg_struct __user *,arg)1473 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1474 {
1475 	struct mmap_arg_struct a;
1476 
1477 	if (copy_from_user(&a, arg, sizeof(a)))
1478 		return -EFAULT;
1479 	if (offset_in_page(a.offset))
1480 		return -EINVAL;
1481 
1482 	return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1483 			      a.offset >> PAGE_SHIFT);
1484 }
1485 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1486 
1487 /*
1488  * Some shared mappigns will want the pages marked read-only
1489  * to track write events. If so, we'll downgrade vm_page_prot
1490  * to the private version (using protection_map[] without the
1491  * VM_SHARED bit).
1492  */
vma_wants_writenotify(struct vm_area_struct * vma)1493 int vma_wants_writenotify(struct vm_area_struct *vma)
1494 {
1495 	vm_flags_t vm_flags = vma->vm_flags;
1496 	const struct vm_operations_struct *vm_ops = vma->vm_ops;
1497 
1498 	/* If it was private or non-writable, the write bit is already clear */
1499 	if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1500 		return 0;
1501 
1502 	/* The backer wishes to know when pages are first written to? */
1503 	if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
1504 		return 1;
1505 
1506 	/* The open routine did something to the protections that pgprot_modify
1507 	 * won't preserve? */
1508 	if (pgprot_val(vma->vm_page_prot) !=
1509 	    pgprot_val(vm_pgprot_modify(vma->vm_page_prot, vm_flags)))
1510 		return 0;
1511 
1512 	/* Do we need to track softdirty? */
1513 	if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY))
1514 		return 1;
1515 
1516 	/* Specialty mapping? */
1517 	if (vm_flags & VM_PFNMAP)
1518 		return 0;
1519 
1520 	/* Can the mapping track the dirty pages? */
1521 	return vma->vm_file && vma->vm_file->f_mapping &&
1522 		mapping_cap_account_dirty(vma->vm_file->f_mapping);
1523 }
1524 
1525 /*
1526  * We account for memory if it's a private writeable mapping,
1527  * not hugepages and VM_NORESERVE wasn't set.
1528  */
accountable_mapping(struct file * file,vm_flags_t vm_flags)1529 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1530 {
1531 	/*
1532 	 * hugetlb has its own accounting separate from the core VM
1533 	 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1534 	 */
1535 	if (file && is_file_hugepages(file))
1536 		return 0;
1537 
1538 	return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1539 }
1540 
mmap_region(struct file * file,unsigned long addr,unsigned long len,vm_flags_t vm_flags,unsigned long pgoff)1541 unsigned long mmap_region(struct file *file, unsigned long addr,
1542 		unsigned long len, vm_flags_t vm_flags, unsigned long pgoff)
1543 {
1544 	struct mm_struct *mm = current->mm;
1545 	struct vm_area_struct *vma, *prev;
1546 	int error;
1547 	struct rb_node **rb_link, *rb_parent;
1548 	unsigned long charged = 0;
1549 
1550 	/* Check against address space limit. */
1551 	if (!may_expand_vm(mm, len >> PAGE_SHIFT)) {
1552 		unsigned long nr_pages;
1553 
1554 		/*
1555 		 * MAP_FIXED may remove pages of mappings that intersects with
1556 		 * requested mapping. Account for the pages it would unmap.
1557 		 */
1558 		if (!(vm_flags & MAP_FIXED))
1559 			return -ENOMEM;
1560 
1561 		nr_pages = count_vma_pages_range(mm, addr, addr + len);
1562 
1563 		if (!may_expand_vm(mm, (len >> PAGE_SHIFT) - nr_pages))
1564 			return -ENOMEM;
1565 	}
1566 
1567 	/* Clear old maps */
1568 	while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
1569 			      &rb_parent)) {
1570 		if (do_munmap(mm, addr, len))
1571 			return -ENOMEM;
1572 	}
1573 
1574 	/*
1575 	 * Private writable mapping: check memory availability
1576 	 */
1577 	if (accountable_mapping(file, vm_flags)) {
1578 		charged = len >> PAGE_SHIFT;
1579 		if (security_vm_enough_memory_mm(mm, charged))
1580 			return -ENOMEM;
1581 		vm_flags |= VM_ACCOUNT;
1582 	}
1583 
1584 	/*
1585 	 * Can we just expand an old mapping?
1586 	 */
1587 	vma = vma_merge(mm, prev, addr, addr + len, vm_flags,
1588 			NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX);
1589 	if (vma)
1590 		goto out;
1591 
1592 	/*
1593 	 * Determine the object being mapped and call the appropriate
1594 	 * specific mapper. the address has already been validated, but
1595 	 * not unmapped, but the maps are removed from the list.
1596 	 */
1597 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1598 	if (!vma) {
1599 		error = -ENOMEM;
1600 		goto unacct_error;
1601 	}
1602 
1603 	vma->vm_mm = mm;
1604 	vma->vm_start = addr;
1605 	vma->vm_end = addr + len;
1606 	vma->vm_flags = vm_flags;
1607 	vma->vm_page_prot = vm_get_page_prot(vm_flags);
1608 	vma->vm_pgoff = pgoff;
1609 	INIT_LIST_HEAD(&vma->anon_vma_chain);
1610 
1611 	if (file) {
1612 		if (vm_flags & VM_DENYWRITE) {
1613 			error = deny_write_access(file);
1614 			if (error)
1615 				goto free_vma;
1616 		}
1617 		if (vm_flags & VM_SHARED) {
1618 			error = mapping_map_writable(file->f_mapping);
1619 			if (error)
1620 				goto allow_write_and_free_vma;
1621 		}
1622 
1623 		/* ->mmap() can change vma->vm_file, but must guarantee that
1624 		 * vma_link() below can deny write-access if VM_DENYWRITE is set
1625 		 * and map writably if VM_SHARED is set. This usually means the
1626 		 * new file must not have been exposed to user-space, yet.
1627 		 */
1628 		vma->vm_file = get_file(file);
1629 		error = file->f_op->mmap(file, vma);
1630 		if (error)
1631 			goto unmap_and_free_vma;
1632 
1633 		/* Can addr have changed??
1634 		 *
1635 		 * Answer: Yes, several device drivers can do it in their
1636 		 *         f_op->mmap method. -DaveM
1637 		 * Bug: If addr is changed, prev, rb_link, rb_parent should
1638 		 *      be updated for vma_link()
1639 		 */
1640 		WARN_ON_ONCE(addr != vma->vm_start);
1641 
1642 		addr = vma->vm_start;
1643 		vm_flags = vma->vm_flags;
1644 	} else if (vm_flags & VM_SHARED) {
1645 		error = shmem_zero_setup(vma);
1646 		if (error)
1647 			goto free_vma;
1648 	}
1649 
1650 	vma_link(mm, vma, prev, rb_link, rb_parent);
1651 	/* Once vma denies write, undo our temporary denial count */
1652 	if (file) {
1653 		if (vm_flags & VM_SHARED)
1654 			mapping_unmap_writable(file->f_mapping);
1655 		if (vm_flags & VM_DENYWRITE)
1656 			allow_write_access(file);
1657 	}
1658 	file = vma->vm_file;
1659 out:
1660 	perf_event_mmap(vma);
1661 
1662 	vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1663 	if (vm_flags & VM_LOCKED) {
1664 		if (!((vm_flags & VM_SPECIAL) || is_vm_hugetlb_page(vma) ||
1665 					vma == get_gate_vma(current->mm)))
1666 			mm->locked_vm += (len >> PAGE_SHIFT);
1667 		else
1668 			vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
1669 	}
1670 
1671 	if (file)
1672 		uprobe_mmap(vma);
1673 
1674 	/*
1675 	 * New (or expanded) vma always get soft dirty status.
1676 	 * Otherwise user-space soft-dirty page tracker won't
1677 	 * be able to distinguish situation when vma area unmapped,
1678 	 * then new mapped in-place (which must be aimed as
1679 	 * a completely new data area).
1680 	 */
1681 	vma->vm_flags |= VM_SOFTDIRTY;
1682 
1683 	vma_set_page_prot(vma);
1684 
1685 	return addr;
1686 
1687 unmap_and_free_vma:
1688 	vma->vm_file = NULL;
1689 	fput(file);
1690 
1691 	/* Undo any partial mapping done by a device driver. */
1692 	unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1693 	charged = 0;
1694 	if (vm_flags & VM_SHARED)
1695 		mapping_unmap_writable(file->f_mapping);
1696 allow_write_and_free_vma:
1697 	if (vm_flags & VM_DENYWRITE)
1698 		allow_write_access(file);
1699 free_vma:
1700 	kmem_cache_free(vm_area_cachep, vma);
1701 unacct_error:
1702 	if (charged)
1703 		vm_unacct_memory(charged);
1704 	return error;
1705 }
1706 
unmapped_area(struct vm_unmapped_area_info * info)1707 unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1708 {
1709 	/*
1710 	 * We implement the search by looking for an rbtree node that
1711 	 * immediately follows a suitable gap. That is,
1712 	 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1713 	 * - gap_end   = vma->vm_start        >= info->low_limit  + length;
1714 	 * - gap_end - gap_start >= length
1715 	 */
1716 
1717 	struct mm_struct *mm = current->mm;
1718 	struct vm_area_struct *vma;
1719 	unsigned long length, low_limit, high_limit, gap_start, gap_end;
1720 
1721 	/* Adjust search length to account for worst case alignment overhead */
1722 	length = info->length + info->align_mask;
1723 	if (length < info->length)
1724 		return -ENOMEM;
1725 
1726 	/* Adjust search limits by the desired length */
1727 	if (info->high_limit < length)
1728 		return -ENOMEM;
1729 	high_limit = info->high_limit - length;
1730 
1731 	if (info->low_limit > high_limit)
1732 		return -ENOMEM;
1733 	low_limit = info->low_limit + length;
1734 
1735 	/* Check if rbtree root looks promising */
1736 	if (RB_EMPTY_ROOT(&mm->mm_rb))
1737 		goto check_highest;
1738 	vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1739 	if (vma->rb_subtree_gap < length)
1740 		goto check_highest;
1741 
1742 	while (true) {
1743 		/* Visit left subtree if it looks promising */
1744 		gap_end = vma->vm_start;
1745 		if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1746 			struct vm_area_struct *left =
1747 				rb_entry(vma->vm_rb.rb_left,
1748 					 struct vm_area_struct, vm_rb);
1749 			if (left->rb_subtree_gap >= length) {
1750 				vma = left;
1751 				continue;
1752 			}
1753 		}
1754 
1755 		gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1756 check_current:
1757 		/* Check if current node has a suitable gap */
1758 		if (gap_start > high_limit)
1759 			return -ENOMEM;
1760 		if (gap_end >= low_limit && gap_end - gap_start >= length)
1761 			goto found;
1762 
1763 		/* Visit right subtree if it looks promising */
1764 		if (vma->vm_rb.rb_right) {
1765 			struct vm_area_struct *right =
1766 				rb_entry(vma->vm_rb.rb_right,
1767 					 struct vm_area_struct, vm_rb);
1768 			if (right->rb_subtree_gap >= length) {
1769 				vma = right;
1770 				continue;
1771 			}
1772 		}
1773 
1774 		/* Go back up the rbtree to find next candidate node */
1775 		while (true) {
1776 			struct rb_node *prev = &vma->vm_rb;
1777 			if (!rb_parent(prev))
1778 				goto check_highest;
1779 			vma = rb_entry(rb_parent(prev),
1780 				       struct vm_area_struct, vm_rb);
1781 			if (prev == vma->vm_rb.rb_left) {
1782 				gap_start = vma->vm_prev->vm_end;
1783 				gap_end = vma->vm_start;
1784 				goto check_current;
1785 			}
1786 		}
1787 	}
1788 
1789 check_highest:
1790 	/* Check highest gap, which does not precede any rbtree node */
1791 	gap_start = mm->highest_vm_end;
1792 	gap_end = ULONG_MAX;  /* Only for VM_BUG_ON below */
1793 	if (gap_start > high_limit)
1794 		return -ENOMEM;
1795 
1796 found:
1797 	/* We found a suitable gap. Clip it with the original low_limit. */
1798 	if (gap_start < info->low_limit)
1799 		gap_start = info->low_limit;
1800 
1801 	/* Adjust gap address to the desired alignment */
1802 	gap_start += (info->align_offset - gap_start) & info->align_mask;
1803 
1804 	VM_BUG_ON(gap_start + info->length > info->high_limit);
1805 	VM_BUG_ON(gap_start + info->length > gap_end);
1806 	return gap_start;
1807 }
1808 
unmapped_area_topdown(struct vm_unmapped_area_info * info)1809 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1810 {
1811 	struct mm_struct *mm = current->mm;
1812 	struct vm_area_struct *vma;
1813 	unsigned long length, low_limit, high_limit, gap_start, gap_end;
1814 
1815 	/* Adjust search length to account for worst case alignment overhead */
1816 	length = info->length + info->align_mask;
1817 	if (length < info->length)
1818 		return -ENOMEM;
1819 
1820 	/*
1821 	 * Adjust search limits by the desired length.
1822 	 * See implementation comment at top of unmapped_area().
1823 	 */
1824 	gap_end = info->high_limit;
1825 	if (gap_end < length)
1826 		return -ENOMEM;
1827 	high_limit = gap_end - length;
1828 
1829 	if (info->low_limit > high_limit)
1830 		return -ENOMEM;
1831 	low_limit = info->low_limit + length;
1832 
1833 	/* Check highest gap, which does not precede any rbtree node */
1834 	gap_start = mm->highest_vm_end;
1835 	if (gap_start <= high_limit)
1836 		goto found_highest;
1837 
1838 	/* Check if rbtree root looks promising */
1839 	if (RB_EMPTY_ROOT(&mm->mm_rb))
1840 		return -ENOMEM;
1841 	vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1842 	if (vma->rb_subtree_gap < length)
1843 		return -ENOMEM;
1844 
1845 	while (true) {
1846 		/* Visit right subtree if it looks promising */
1847 		gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1848 		if (gap_start <= high_limit && vma->vm_rb.rb_right) {
1849 			struct vm_area_struct *right =
1850 				rb_entry(vma->vm_rb.rb_right,
1851 					 struct vm_area_struct, vm_rb);
1852 			if (right->rb_subtree_gap >= length) {
1853 				vma = right;
1854 				continue;
1855 			}
1856 		}
1857 
1858 check_current:
1859 		/* Check if current node has a suitable gap */
1860 		gap_end = vma->vm_start;
1861 		if (gap_end < low_limit)
1862 			return -ENOMEM;
1863 		if (gap_start <= high_limit && gap_end - gap_start >= length)
1864 			goto found;
1865 
1866 		/* Visit left subtree if it looks promising */
1867 		if (vma->vm_rb.rb_left) {
1868 			struct vm_area_struct *left =
1869 				rb_entry(vma->vm_rb.rb_left,
1870 					 struct vm_area_struct, vm_rb);
1871 			if (left->rb_subtree_gap >= length) {
1872 				vma = left;
1873 				continue;
1874 			}
1875 		}
1876 
1877 		/* Go back up the rbtree to find next candidate node */
1878 		while (true) {
1879 			struct rb_node *prev = &vma->vm_rb;
1880 			if (!rb_parent(prev))
1881 				return -ENOMEM;
1882 			vma = rb_entry(rb_parent(prev),
1883 				       struct vm_area_struct, vm_rb);
1884 			if (prev == vma->vm_rb.rb_right) {
1885 				gap_start = vma->vm_prev ?
1886 					vma->vm_prev->vm_end : 0;
1887 				goto check_current;
1888 			}
1889 		}
1890 	}
1891 
1892 found:
1893 	/* We found a suitable gap. Clip it with the original high_limit. */
1894 	if (gap_end > info->high_limit)
1895 		gap_end = info->high_limit;
1896 
1897 found_highest:
1898 	/* Compute highest gap address at the desired alignment */
1899 	gap_end -= info->length;
1900 	gap_end -= (gap_end - info->align_offset) & info->align_mask;
1901 
1902 	VM_BUG_ON(gap_end < info->low_limit);
1903 	VM_BUG_ON(gap_end < gap_start);
1904 	return gap_end;
1905 }
1906 
1907 /* Get an address range which is currently unmapped.
1908  * For shmat() with addr=0.
1909  *
1910  * Ugly calling convention alert:
1911  * Return value with the low bits set means error value,
1912  * ie
1913  *	if (ret & ~PAGE_MASK)
1914  *		error = ret;
1915  *
1916  * This function "knows" that -ENOMEM has the bits set.
1917  */
1918 #ifndef HAVE_ARCH_UNMAPPED_AREA
1919 unsigned long
arch_get_unmapped_area(struct file * filp,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)1920 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1921 		unsigned long len, unsigned long pgoff, unsigned long flags)
1922 {
1923 	struct mm_struct *mm = current->mm;
1924 	struct vm_area_struct *vma;
1925 	struct vm_unmapped_area_info info;
1926 
1927 	if (len > TASK_SIZE - mmap_min_addr)
1928 		return -ENOMEM;
1929 
1930 	if (flags & MAP_FIXED)
1931 		return addr;
1932 
1933 	if (addr) {
1934 		addr = PAGE_ALIGN(addr);
1935 		vma = find_vma(mm, addr);
1936 		if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1937 		    (!vma || addr + len <= vma->vm_start))
1938 			return addr;
1939 	}
1940 
1941 	info.flags = 0;
1942 	info.length = len;
1943 	info.low_limit = mm->mmap_base;
1944 	info.high_limit = TASK_SIZE;
1945 	info.align_mask = 0;
1946 	return vm_unmapped_area(&info);
1947 }
1948 #endif
1949 
1950 /*
1951  * This mmap-allocator allocates new areas top-down from below the
1952  * stack's low limit (the base):
1953  */
1954 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1955 unsigned long
arch_get_unmapped_area_topdown(struct file * filp,const unsigned long addr0,const unsigned long len,const unsigned long pgoff,const unsigned long flags)1956 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1957 			  const unsigned long len, const unsigned long pgoff,
1958 			  const unsigned long flags)
1959 {
1960 	struct vm_area_struct *vma;
1961 	struct mm_struct *mm = current->mm;
1962 	unsigned long addr = addr0;
1963 	struct vm_unmapped_area_info info;
1964 
1965 	/* requested length too big for entire address space */
1966 	if (len > TASK_SIZE - mmap_min_addr)
1967 		return -ENOMEM;
1968 
1969 	if (flags & MAP_FIXED)
1970 		return addr;
1971 
1972 	/* requesting a specific address */
1973 	if (addr) {
1974 		addr = PAGE_ALIGN(addr);
1975 		vma = find_vma(mm, addr);
1976 		if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1977 				(!vma || addr + len <= vma->vm_start))
1978 			return addr;
1979 	}
1980 
1981 	info.flags = VM_UNMAPPED_AREA_TOPDOWN;
1982 	info.length = len;
1983 	info.low_limit = max(PAGE_SIZE, mmap_min_addr);
1984 	info.high_limit = mm->mmap_base;
1985 	info.align_mask = 0;
1986 	addr = vm_unmapped_area(&info);
1987 
1988 	/*
1989 	 * A failed mmap() very likely causes application failure,
1990 	 * so fall back to the bottom-up function here. This scenario
1991 	 * can happen with large stack limits and large mmap()
1992 	 * allocations.
1993 	 */
1994 	if (offset_in_page(addr)) {
1995 		VM_BUG_ON(addr != -ENOMEM);
1996 		info.flags = 0;
1997 		info.low_limit = TASK_UNMAPPED_BASE;
1998 		info.high_limit = TASK_SIZE;
1999 		addr = vm_unmapped_area(&info);
2000 	}
2001 
2002 	return addr;
2003 }
2004 #endif
2005 
2006 unsigned long
get_unmapped_area(struct file * file,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)2007 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
2008 		unsigned long pgoff, unsigned long flags)
2009 {
2010 	unsigned long (*get_area)(struct file *, unsigned long,
2011 				  unsigned long, unsigned long, unsigned long);
2012 
2013 	unsigned long error = arch_mmap_check(addr, len, flags);
2014 	if (error)
2015 		return error;
2016 
2017 	/* Careful about overflows.. */
2018 	if (len > TASK_SIZE)
2019 		return -ENOMEM;
2020 
2021 	get_area = current->mm->get_unmapped_area;
2022 	if (file && file->f_op->get_unmapped_area)
2023 		get_area = file->f_op->get_unmapped_area;
2024 	addr = get_area(file, addr, len, pgoff, flags);
2025 	if (IS_ERR_VALUE(addr))
2026 		return addr;
2027 
2028 	if (addr > TASK_SIZE - len)
2029 		return -ENOMEM;
2030 	if (offset_in_page(addr))
2031 		return -EINVAL;
2032 
2033 	addr = arch_rebalance_pgtables(addr, len);
2034 	error = security_mmap_addr(addr);
2035 	return error ? error : addr;
2036 }
2037 
2038 EXPORT_SYMBOL(get_unmapped_area);
2039 
2040 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
find_vma(struct mm_struct * mm,unsigned long addr)2041 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2042 {
2043 	struct rb_node *rb_node;
2044 	struct vm_area_struct *vma;
2045 
2046 	/* Check the cache first. */
2047 	vma = vmacache_find(mm, addr);
2048 	if (likely(vma))
2049 		return vma;
2050 
2051 	rb_node = mm->mm_rb.rb_node;
2052 
2053 	while (rb_node) {
2054 		struct vm_area_struct *tmp;
2055 
2056 		tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2057 
2058 		if (tmp->vm_end > addr) {
2059 			vma = tmp;
2060 			if (tmp->vm_start <= addr)
2061 				break;
2062 			rb_node = rb_node->rb_left;
2063 		} else
2064 			rb_node = rb_node->rb_right;
2065 	}
2066 
2067 	if (vma)
2068 		vmacache_update(addr, vma);
2069 	return vma;
2070 }
2071 
2072 EXPORT_SYMBOL(find_vma);
2073 
2074 /*
2075  * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2076  */
2077 struct vm_area_struct *
find_vma_prev(struct mm_struct * mm,unsigned long addr,struct vm_area_struct ** pprev)2078 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2079 			struct vm_area_struct **pprev)
2080 {
2081 	struct vm_area_struct *vma;
2082 
2083 	vma = find_vma(mm, addr);
2084 	if (vma) {
2085 		*pprev = vma->vm_prev;
2086 	} else {
2087 		struct rb_node *rb_node = mm->mm_rb.rb_node;
2088 		*pprev = NULL;
2089 		while (rb_node) {
2090 			*pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2091 			rb_node = rb_node->rb_right;
2092 		}
2093 	}
2094 	return vma;
2095 }
2096 
2097 /*
2098  * Verify that the stack growth is acceptable and
2099  * update accounting. This is shared with both the
2100  * grow-up and grow-down cases.
2101  */
acct_stack_growth(struct vm_area_struct * vma,unsigned long size,unsigned long grow)2102 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
2103 {
2104 	struct mm_struct *mm = vma->vm_mm;
2105 	struct rlimit *rlim = current->signal->rlim;
2106 	unsigned long new_start, actual_size;
2107 
2108 	/* address space limit tests */
2109 	if (!may_expand_vm(mm, grow))
2110 		return -ENOMEM;
2111 
2112 	/* Stack limit test */
2113 	actual_size = size;
2114 	if (size && (vma->vm_flags & (VM_GROWSUP | VM_GROWSDOWN)))
2115 		actual_size -= PAGE_SIZE;
2116 	if (actual_size > READ_ONCE(rlim[RLIMIT_STACK].rlim_cur))
2117 		return -ENOMEM;
2118 
2119 	/* mlock limit tests */
2120 	if (vma->vm_flags & VM_LOCKED) {
2121 		unsigned long locked;
2122 		unsigned long limit;
2123 		locked = mm->locked_vm + grow;
2124 		limit = READ_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
2125 		limit >>= PAGE_SHIFT;
2126 		if (locked > limit && !capable(CAP_IPC_LOCK))
2127 			return -ENOMEM;
2128 	}
2129 
2130 	/* Check to ensure the stack will not grow into a hugetlb-only region */
2131 	new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2132 			vma->vm_end - size;
2133 	if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2134 		return -EFAULT;
2135 
2136 	/*
2137 	 * Overcommit..  This must be the final test, as it will
2138 	 * update security statistics.
2139 	 */
2140 	if (security_vm_enough_memory_mm(mm, grow))
2141 		return -ENOMEM;
2142 
2143 	return 0;
2144 }
2145 
2146 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2147 /*
2148  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2149  * vma is the last one with address > vma->vm_end.  Have to extend vma.
2150  */
expand_upwards(struct vm_area_struct * vma,unsigned long address)2151 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2152 {
2153 	struct mm_struct *mm = vma->vm_mm;
2154 	int error = 0;
2155 
2156 	if (!(vma->vm_flags & VM_GROWSUP))
2157 		return -EFAULT;
2158 
2159 	/* Guard against wrapping around to address 0. */
2160 	if (address < PAGE_ALIGN(address+4))
2161 		address = PAGE_ALIGN(address+4);
2162 	else
2163 		return -ENOMEM;
2164 
2165 	/* We must make sure the anon_vma is allocated. */
2166 	if (unlikely(anon_vma_prepare(vma)))
2167 		return -ENOMEM;
2168 
2169 	/*
2170 	 * vma->vm_start/vm_end cannot change under us because the caller
2171 	 * is required to hold the mmap_sem in read mode.  We need the
2172 	 * anon_vma lock to serialize against concurrent expand_stacks.
2173 	 */
2174 	anon_vma_lock_write(vma->anon_vma);
2175 
2176 	/* Somebody else might have raced and expanded it already */
2177 	if (address > vma->vm_end) {
2178 		unsigned long size, grow;
2179 
2180 		size = address - vma->vm_start;
2181 		grow = (address - vma->vm_end) >> PAGE_SHIFT;
2182 
2183 		error = -ENOMEM;
2184 		if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2185 			error = acct_stack_growth(vma, size, grow);
2186 			if (!error) {
2187 				/*
2188 				 * vma_gap_update() doesn't support concurrent
2189 				 * updates, but we only hold a shared mmap_sem
2190 				 * lock here, so we need to protect against
2191 				 * concurrent vma expansions.
2192 				 * anon_vma_lock_write() doesn't help here, as
2193 				 * we don't guarantee that all growable vmas
2194 				 * in a mm share the same root anon vma.
2195 				 * So, we reuse mm->page_table_lock to guard
2196 				 * against concurrent vma expansions.
2197 				 */
2198 				spin_lock(&mm->page_table_lock);
2199 				if (vma->vm_flags & VM_LOCKED)
2200 					mm->locked_vm += grow;
2201 				vm_stat_account(mm, vma->vm_flags,
2202 						vma->vm_file, grow);
2203 				anon_vma_interval_tree_pre_update_vma(vma);
2204 				vma->vm_end = address;
2205 				anon_vma_interval_tree_post_update_vma(vma);
2206 				if (vma->vm_next)
2207 					vma_gap_update(vma->vm_next);
2208 				else
2209 					mm->highest_vm_end = address;
2210 				spin_unlock(&mm->page_table_lock);
2211 
2212 				perf_event_mmap(vma);
2213 			}
2214 		}
2215 	}
2216 	anon_vma_unlock_write(vma->anon_vma);
2217 	khugepaged_enter_vma_merge(vma, vma->vm_flags);
2218 	validate_mm(mm);
2219 	return error;
2220 }
2221 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2222 
2223 /*
2224  * vma is the first one with address < vma->vm_start.  Have to extend vma.
2225  */
expand_downwards(struct vm_area_struct * vma,unsigned long address)2226 int expand_downwards(struct vm_area_struct *vma,
2227 				   unsigned long address)
2228 {
2229 	struct mm_struct *mm = vma->vm_mm;
2230 	int error;
2231 
2232 	address &= PAGE_MASK;
2233 	error = security_mmap_addr(address);
2234 	if (error)
2235 		return error;
2236 
2237 	/* We must make sure the anon_vma is allocated. */
2238 	if (unlikely(anon_vma_prepare(vma)))
2239 		return -ENOMEM;
2240 
2241 	/*
2242 	 * vma->vm_start/vm_end cannot change under us because the caller
2243 	 * is required to hold the mmap_sem in read mode.  We need the
2244 	 * anon_vma lock to serialize against concurrent expand_stacks.
2245 	 */
2246 	anon_vma_lock_write(vma->anon_vma);
2247 
2248 	/* Somebody else might have raced and expanded it already */
2249 	if (address < vma->vm_start) {
2250 		unsigned long size, grow;
2251 
2252 		size = vma->vm_end - address;
2253 		grow = (vma->vm_start - address) >> PAGE_SHIFT;
2254 
2255 		error = -ENOMEM;
2256 		if (grow <= vma->vm_pgoff) {
2257 			error = acct_stack_growth(vma, size, grow);
2258 			if (!error) {
2259 				/*
2260 				 * vma_gap_update() doesn't support concurrent
2261 				 * updates, but we only hold a shared mmap_sem
2262 				 * lock here, so we need to protect against
2263 				 * concurrent vma expansions.
2264 				 * anon_vma_lock_write() doesn't help here, as
2265 				 * we don't guarantee that all growable vmas
2266 				 * in a mm share the same root anon vma.
2267 				 * So, we reuse mm->page_table_lock to guard
2268 				 * against concurrent vma expansions.
2269 				 */
2270 				spin_lock(&mm->page_table_lock);
2271 				if (vma->vm_flags & VM_LOCKED)
2272 					mm->locked_vm += grow;
2273 				vm_stat_account(mm, vma->vm_flags,
2274 						vma->vm_file, grow);
2275 				anon_vma_interval_tree_pre_update_vma(vma);
2276 				vma->vm_start = address;
2277 				vma->vm_pgoff -= grow;
2278 				anon_vma_interval_tree_post_update_vma(vma);
2279 				vma_gap_update(vma);
2280 				spin_unlock(&mm->page_table_lock);
2281 
2282 				perf_event_mmap(vma);
2283 			}
2284 		}
2285 	}
2286 	anon_vma_unlock_write(vma->anon_vma);
2287 	khugepaged_enter_vma_merge(vma, vma->vm_flags);
2288 	validate_mm(mm);
2289 	return error;
2290 }
2291 
2292 /*
2293  * Note how expand_stack() refuses to expand the stack all the way to
2294  * abut the next virtual mapping, *unless* that mapping itself is also
2295  * a stack mapping. We want to leave room for a guard page, after all
2296  * (the guard page itself is not added here, that is done by the
2297  * actual page faulting logic)
2298  *
2299  * This matches the behavior of the guard page logic (see mm/memory.c:
2300  * check_stack_guard_page()), which only allows the guard page to be
2301  * removed under these circumstances.
2302  */
2303 #ifdef CONFIG_STACK_GROWSUP
expand_stack(struct vm_area_struct * vma,unsigned long address)2304 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2305 {
2306 	struct vm_area_struct *next;
2307 
2308 	address &= PAGE_MASK;
2309 	next = vma->vm_next;
2310 	if (next && next->vm_start == address + PAGE_SIZE) {
2311 		if (!(next->vm_flags & VM_GROWSUP))
2312 			return -ENOMEM;
2313 	}
2314 	return expand_upwards(vma, address);
2315 }
2316 
2317 struct vm_area_struct *
find_extend_vma(struct mm_struct * mm,unsigned long addr)2318 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2319 {
2320 	struct vm_area_struct *vma, *prev;
2321 
2322 	addr &= PAGE_MASK;
2323 	vma = find_vma_prev(mm, addr, &prev);
2324 	if (vma && (vma->vm_start <= addr))
2325 		return vma;
2326 	if (!prev || expand_stack(prev, addr))
2327 		return NULL;
2328 	if (prev->vm_flags & VM_LOCKED)
2329 		populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2330 	return prev;
2331 }
2332 #else
expand_stack(struct vm_area_struct * vma,unsigned long address)2333 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2334 {
2335 	struct vm_area_struct *prev;
2336 
2337 	address &= PAGE_MASK;
2338 	prev = vma->vm_prev;
2339 	if (prev && prev->vm_end == address) {
2340 		if (!(prev->vm_flags & VM_GROWSDOWN))
2341 			return -ENOMEM;
2342 	}
2343 	return expand_downwards(vma, address);
2344 }
2345 
2346 struct vm_area_struct *
find_extend_vma(struct mm_struct * mm,unsigned long addr)2347 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2348 {
2349 	struct vm_area_struct *vma;
2350 	unsigned long start;
2351 
2352 	addr &= PAGE_MASK;
2353 	vma = find_vma(mm, addr);
2354 	if (!vma)
2355 		return NULL;
2356 	if (vma->vm_start <= addr)
2357 		return vma;
2358 	if (!(vma->vm_flags & VM_GROWSDOWN))
2359 		return NULL;
2360 	start = vma->vm_start;
2361 	if (expand_stack(vma, addr))
2362 		return NULL;
2363 	if (vma->vm_flags & VM_LOCKED)
2364 		populate_vma_page_range(vma, addr, start, NULL);
2365 	return vma;
2366 }
2367 #endif
2368 
2369 EXPORT_SYMBOL_GPL(find_extend_vma);
2370 
2371 /*
2372  * Ok - we have the memory areas we should free on the vma list,
2373  * so release them, and do the vma updates.
2374  *
2375  * Called with the mm semaphore held.
2376  */
remove_vma_list(struct mm_struct * mm,struct vm_area_struct * vma)2377 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2378 {
2379 	unsigned long nr_accounted = 0;
2380 
2381 	/* Update high watermark before we lower total_vm */
2382 	update_hiwater_vm(mm);
2383 	do {
2384 		long nrpages = vma_pages(vma);
2385 
2386 		if (vma->vm_flags & VM_ACCOUNT)
2387 			nr_accounted += nrpages;
2388 		vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
2389 		vma = remove_vma(vma);
2390 	} while (vma);
2391 	vm_unacct_memory(nr_accounted);
2392 	validate_mm(mm);
2393 }
2394 
2395 /*
2396  * Get rid of page table information in the indicated region.
2397  *
2398  * Called with the mm semaphore held.
2399  */
unmap_region(struct mm_struct * mm,struct vm_area_struct * vma,struct vm_area_struct * prev,unsigned long start,unsigned long end)2400 static void unmap_region(struct mm_struct *mm,
2401 		struct vm_area_struct *vma, struct vm_area_struct *prev,
2402 		unsigned long start, unsigned long end)
2403 {
2404 	struct vm_area_struct *next = prev ? prev->vm_next : mm->mmap;
2405 	struct mmu_gather tlb;
2406 
2407 	lru_add_drain();
2408 	tlb_gather_mmu(&tlb, mm, start, end);
2409 	update_hiwater_rss(mm);
2410 	unmap_vmas(&tlb, vma, start, end);
2411 	free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2412 				 next ? next->vm_start : USER_PGTABLES_CEILING);
2413 	tlb_finish_mmu(&tlb, start, end);
2414 }
2415 
2416 /*
2417  * Create a list of vma's touched by the unmap, removing them from the mm's
2418  * vma list as we go..
2419  */
2420 static void
detach_vmas_to_be_unmapped(struct mm_struct * mm,struct vm_area_struct * vma,struct vm_area_struct * prev,unsigned long end)2421 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2422 	struct vm_area_struct *prev, unsigned long end)
2423 {
2424 	struct vm_area_struct **insertion_point;
2425 	struct vm_area_struct *tail_vma = NULL;
2426 
2427 	insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2428 	vma->vm_prev = NULL;
2429 	do {
2430 		vma_rb_erase(vma, &mm->mm_rb);
2431 		mm->map_count--;
2432 		tail_vma = vma;
2433 		vma = vma->vm_next;
2434 	} while (vma && vma->vm_start < end);
2435 	*insertion_point = vma;
2436 	if (vma) {
2437 		vma->vm_prev = prev;
2438 		vma_gap_update(vma);
2439 	} else
2440 		mm->highest_vm_end = prev ? prev->vm_end : 0;
2441 	tail_vma->vm_next = NULL;
2442 
2443 	/* Kill the cache */
2444 	vmacache_invalidate(mm);
2445 }
2446 
2447 /*
2448  * __split_vma() bypasses sysctl_max_map_count checking.  We use this on the
2449  * munmap path where it doesn't make sense to fail.
2450  */
__split_vma(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,int new_below)2451 static int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2452 	      unsigned long addr, int new_below)
2453 {
2454 	struct vm_area_struct *new;
2455 	int err;
2456 
2457 	if (is_vm_hugetlb_page(vma) && (addr &
2458 					~(huge_page_mask(hstate_vma(vma)))))
2459 		return -EINVAL;
2460 
2461 	new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2462 	if (!new)
2463 		return -ENOMEM;
2464 
2465 	/* most fields are the same, copy all, and then fixup */
2466 	*new = *vma;
2467 
2468 	INIT_LIST_HEAD(&new->anon_vma_chain);
2469 
2470 	if (new_below)
2471 		new->vm_end = addr;
2472 	else {
2473 		new->vm_start = addr;
2474 		new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2475 	}
2476 
2477 	err = vma_dup_policy(vma, new);
2478 	if (err)
2479 		goto out_free_vma;
2480 
2481 	err = anon_vma_clone(new, vma);
2482 	if (err)
2483 		goto out_free_mpol;
2484 
2485 	if (new->vm_file)
2486 		get_file(new->vm_file);
2487 
2488 	if (new->vm_ops && new->vm_ops->open)
2489 		new->vm_ops->open(new);
2490 
2491 	if (new_below)
2492 		err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2493 			((addr - new->vm_start) >> PAGE_SHIFT), new);
2494 	else
2495 		err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2496 
2497 	/* Success. */
2498 	if (!err)
2499 		return 0;
2500 
2501 	/* Clean everything up if vma_adjust failed. */
2502 	if (new->vm_ops && new->vm_ops->close)
2503 		new->vm_ops->close(new);
2504 	if (new->vm_file)
2505 		fput(new->vm_file);
2506 	unlink_anon_vmas(new);
2507  out_free_mpol:
2508 	mpol_put(vma_policy(new));
2509  out_free_vma:
2510 	kmem_cache_free(vm_area_cachep, new);
2511 	return err;
2512 }
2513 
2514 /*
2515  * Split a vma into two pieces at address 'addr', a new vma is allocated
2516  * either for the first part or the tail.
2517  */
split_vma(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,int new_below)2518 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2519 	      unsigned long addr, int new_below)
2520 {
2521 	if (mm->map_count >= sysctl_max_map_count)
2522 		return -ENOMEM;
2523 
2524 	return __split_vma(mm, vma, addr, new_below);
2525 }
2526 
2527 /* Munmap is split into 2 main parts -- this part which finds
2528  * what needs doing, and the areas themselves, which do the
2529  * work.  This now handles partial unmappings.
2530  * Jeremy Fitzhardinge <jeremy@goop.org>
2531  */
do_munmap(struct mm_struct * mm,unsigned long start,size_t len)2532 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
2533 {
2534 	unsigned long end;
2535 	struct vm_area_struct *vma, *prev, *last;
2536 
2537 	if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2538 		return -EINVAL;
2539 
2540 	len = PAGE_ALIGN(len);
2541 	if (len == 0)
2542 		return -EINVAL;
2543 
2544 	/* Find the first overlapping VMA */
2545 	vma = find_vma(mm, start);
2546 	if (!vma)
2547 		return 0;
2548 	prev = vma->vm_prev;
2549 	/* we have  start < vma->vm_end  */
2550 
2551 	/* if it doesn't overlap, we have nothing.. */
2552 	end = start + len;
2553 	if (vma->vm_start >= end)
2554 		return 0;
2555 
2556 	/*
2557 	 * If we need to split any vma, do it now to save pain later.
2558 	 *
2559 	 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2560 	 * unmapped vm_area_struct will remain in use: so lower split_vma
2561 	 * places tmp vma above, and higher split_vma places tmp vma below.
2562 	 */
2563 	if (start > vma->vm_start) {
2564 		int error;
2565 
2566 		/*
2567 		 * Make sure that map_count on return from munmap() will
2568 		 * not exceed its limit; but let map_count go just above
2569 		 * its limit temporarily, to help free resources as expected.
2570 		 */
2571 		if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2572 			return -ENOMEM;
2573 
2574 		error = __split_vma(mm, vma, start, 0);
2575 		if (error)
2576 			return error;
2577 		prev = vma;
2578 	}
2579 
2580 	/* Does it split the last one? */
2581 	last = find_vma(mm, end);
2582 	if (last && end > last->vm_start) {
2583 		int error = __split_vma(mm, last, end, 1);
2584 		if (error)
2585 			return error;
2586 	}
2587 	vma = prev ? prev->vm_next : mm->mmap;
2588 
2589 	/*
2590 	 * unlock any mlock()ed ranges before detaching vmas
2591 	 */
2592 	if (mm->locked_vm) {
2593 		struct vm_area_struct *tmp = vma;
2594 		while (tmp && tmp->vm_start < end) {
2595 			if (tmp->vm_flags & VM_LOCKED) {
2596 				mm->locked_vm -= vma_pages(tmp);
2597 				munlock_vma_pages_all(tmp);
2598 			}
2599 			tmp = tmp->vm_next;
2600 		}
2601 	}
2602 
2603 	/*
2604 	 * Remove the vma's, and unmap the actual pages
2605 	 */
2606 	detach_vmas_to_be_unmapped(mm, vma, prev, end);
2607 	unmap_region(mm, vma, prev, start, end);
2608 
2609 	arch_unmap(mm, vma, start, end);
2610 
2611 	/* Fix up all other VM information */
2612 	remove_vma_list(mm, vma);
2613 
2614 	return 0;
2615 }
2616 
vm_munmap(unsigned long start,size_t len)2617 int vm_munmap(unsigned long start, size_t len)
2618 {
2619 	int ret;
2620 	struct mm_struct *mm = current->mm;
2621 
2622 	down_write(&mm->mmap_sem);
2623 	ret = do_munmap(mm, start, len);
2624 	up_write(&mm->mmap_sem);
2625 	return ret;
2626 }
2627 EXPORT_SYMBOL(vm_munmap);
2628 
SYSCALL_DEFINE2(munmap,unsigned long,addr,size_t,len)2629 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2630 {
2631 	profile_munmap(addr);
2632 	return vm_munmap(addr, len);
2633 }
2634 
2635 
2636 /*
2637  * Emulation of deprecated remap_file_pages() syscall.
2638  */
SYSCALL_DEFINE5(remap_file_pages,unsigned long,start,unsigned long,size,unsigned long,prot,unsigned long,pgoff,unsigned long,flags)2639 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2640 		unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2641 {
2642 
2643 	struct mm_struct *mm = current->mm;
2644 	struct vm_area_struct *vma;
2645 	unsigned long populate = 0;
2646 	unsigned long ret = -EINVAL;
2647 	struct file *file;
2648 
2649 	pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. "
2650 			"See Documentation/vm/remap_file_pages.txt.\n",
2651 			current->comm, current->pid);
2652 
2653 	if (prot)
2654 		return ret;
2655 	start = start & PAGE_MASK;
2656 	size = size & PAGE_MASK;
2657 
2658 	if (start + size <= start)
2659 		return ret;
2660 
2661 	/* Does pgoff wrap? */
2662 	if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2663 		return ret;
2664 
2665 	down_write(&mm->mmap_sem);
2666 	vma = find_vma(mm, start);
2667 
2668 	if (!vma || !(vma->vm_flags & VM_SHARED))
2669 		goto out;
2670 
2671 	if (start < vma->vm_start)
2672 		goto out;
2673 
2674 	if (start + size > vma->vm_end) {
2675 		struct vm_area_struct *next;
2676 
2677 		for (next = vma->vm_next; next; next = next->vm_next) {
2678 			/* hole between vmas ? */
2679 			if (next->vm_start != next->vm_prev->vm_end)
2680 				goto out;
2681 
2682 			if (next->vm_file != vma->vm_file)
2683 				goto out;
2684 
2685 			if (next->vm_flags != vma->vm_flags)
2686 				goto out;
2687 
2688 			if (start + size <= next->vm_end)
2689 				break;
2690 		}
2691 
2692 		if (!next)
2693 			goto out;
2694 	}
2695 
2696 	prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
2697 	prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
2698 	prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
2699 
2700 	flags &= MAP_NONBLOCK;
2701 	flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
2702 	if (vma->vm_flags & VM_LOCKED) {
2703 		struct vm_area_struct *tmp;
2704 		flags |= MAP_LOCKED;
2705 
2706 		/* drop PG_Mlocked flag for over-mapped range */
2707 		for (tmp = vma; tmp->vm_start >= start + size;
2708 				tmp = tmp->vm_next) {
2709 			munlock_vma_pages_range(tmp,
2710 					max(tmp->vm_start, start),
2711 					min(tmp->vm_end, start + size));
2712 		}
2713 	}
2714 
2715 	file = get_file(vma->vm_file);
2716 	ret = do_mmap_pgoff(vma->vm_file, start, size,
2717 			prot, flags, pgoff, &populate);
2718 	fput(file);
2719 out:
2720 	up_write(&mm->mmap_sem);
2721 	if (populate)
2722 		mm_populate(ret, populate);
2723 	if (!IS_ERR_VALUE(ret))
2724 		ret = 0;
2725 	return ret;
2726 }
2727 
verify_mm_writelocked(struct mm_struct * mm)2728 static inline void verify_mm_writelocked(struct mm_struct *mm)
2729 {
2730 #ifdef CONFIG_DEBUG_VM
2731 	if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2732 		WARN_ON(1);
2733 		up_read(&mm->mmap_sem);
2734 	}
2735 #endif
2736 }
2737 
2738 /*
2739  *  this is really a simplified "do_mmap".  it only handles
2740  *  anonymous maps.  eventually we may be able to do some
2741  *  brk-specific accounting here.
2742  */
do_brk(unsigned long addr,unsigned long len)2743 static unsigned long do_brk(unsigned long addr, unsigned long len)
2744 {
2745 	struct mm_struct *mm = current->mm;
2746 	struct vm_area_struct *vma, *prev;
2747 	unsigned long flags;
2748 	struct rb_node **rb_link, *rb_parent;
2749 	pgoff_t pgoff = addr >> PAGE_SHIFT;
2750 	int error;
2751 
2752 	len = PAGE_ALIGN(len);
2753 	if (!len)
2754 		return addr;
2755 
2756 	flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2757 
2758 	error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2759 	if (offset_in_page(error))
2760 		return error;
2761 
2762 	error = mlock_future_check(mm, mm->def_flags, len);
2763 	if (error)
2764 		return error;
2765 
2766 	/*
2767 	 * mm->mmap_sem is required to protect against another thread
2768 	 * changing the mappings in case we sleep.
2769 	 */
2770 	verify_mm_writelocked(mm);
2771 
2772 	/*
2773 	 * Clear old maps.  this also does some error checking for us
2774 	 */
2775 	while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
2776 			      &rb_parent)) {
2777 		if (do_munmap(mm, addr, len))
2778 			return -ENOMEM;
2779 	}
2780 
2781 	/* Check against address space limits *after* clearing old maps... */
2782 	if (!may_expand_vm(mm, len >> PAGE_SHIFT))
2783 		return -ENOMEM;
2784 
2785 	if (mm->map_count > sysctl_max_map_count)
2786 		return -ENOMEM;
2787 
2788 	if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2789 		return -ENOMEM;
2790 
2791 	/* Can we just expand an old private anonymous mapping? */
2792 	vma = vma_merge(mm, prev, addr, addr + len, flags,
2793 			NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX);
2794 	if (vma)
2795 		goto out;
2796 
2797 	/*
2798 	 * create a vma struct for an anonymous mapping
2799 	 */
2800 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2801 	if (!vma) {
2802 		vm_unacct_memory(len >> PAGE_SHIFT);
2803 		return -ENOMEM;
2804 	}
2805 
2806 	INIT_LIST_HEAD(&vma->anon_vma_chain);
2807 	vma->vm_mm = mm;
2808 	vma->vm_start = addr;
2809 	vma->vm_end = addr + len;
2810 	vma->vm_pgoff = pgoff;
2811 	vma->vm_flags = flags;
2812 	vma->vm_page_prot = vm_get_page_prot(flags);
2813 	vma_link(mm, vma, prev, rb_link, rb_parent);
2814 out:
2815 	perf_event_mmap(vma);
2816 	mm->total_vm += len >> PAGE_SHIFT;
2817 	if (flags & VM_LOCKED)
2818 		mm->locked_vm += (len >> PAGE_SHIFT);
2819 	vma->vm_flags |= VM_SOFTDIRTY;
2820 	return addr;
2821 }
2822 
vm_brk(unsigned long addr,unsigned long len)2823 unsigned long vm_brk(unsigned long addr, unsigned long len)
2824 {
2825 	struct mm_struct *mm = current->mm;
2826 	unsigned long ret;
2827 	bool populate;
2828 
2829 	down_write(&mm->mmap_sem);
2830 	ret = do_brk(addr, len);
2831 	populate = ((mm->def_flags & VM_LOCKED) != 0);
2832 	up_write(&mm->mmap_sem);
2833 	if (populate)
2834 		mm_populate(addr, len);
2835 	return ret;
2836 }
2837 EXPORT_SYMBOL(vm_brk);
2838 
2839 /* Release all mmaps. */
exit_mmap(struct mm_struct * mm)2840 void exit_mmap(struct mm_struct *mm)
2841 {
2842 	struct mmu_gather tlb;
2843 	struct vm_area_struct *vma;
2844 	unsigned long nr_accounted = 0;
2845 
2846 	/* mm's last user has gone, and its about to be pulled down */
2847 	mmu_notifier_release(mm);
2848 
2849 	if (mm->locked_vm) {
2850 		vma = mm->mmap;
2851 		while (vma) {
2852 			if (vma->vm_flags & VM_LOCKED)
2853 				munlock_vma_pages_all(vma);
2854 			vma = vma->vm_next;
2855 		}
2856 	}
2857 
2858 	arch_exit_mmap(mm);
2859 
2860 	vma = mm->mmap;
2861 	if (!vma)	/* Can happen if dup_mmap() received an OOM */
2862 		return;
2863 
2864 	lru_add_drain();
2865 	flush_cache_mm(mm);
2866 	tlb_gather_mmu(&tlb, mm, 0, -1);
2867 	/* update_hiwater_rss(mm) here? but nobody should be looking */
2868 	/* Use -1 here to ensure all VMAs in the mm are unmapped */
2869 	unmap_vmas(&tlb, vma, 0, -1);
2870 
2871 	free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
2872 	tlb_finish_mmu(&tlb, 0, -1);
2873 
2874 	/*
2875 	 * Walk the list again, actually closing and freeing it,
2876 	 * with preemption enabled, without holding any MM locks.
2877 	 */
2878 	while (vma) {
2879 		if (vma->vm_flags & VM_ACCOUNT)
2880 			nr_accounted += vma_pages(vma);
2881 		vma = remove_vma(vma);
2882 	}
2883 	vm_unacct_memory(nr_accounted);
2884 }
2885 
2886 /* Insert vm structure into process list sorted by address
2887  * and into the inode's i_mmap tree.  If vm_file is non-NULL
2888  * then i_mmap_rwsem is taken here.
2889  */
insert_vm_struct(struct mm_struct * mm,struct vm_area_struct * vma)2890 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
2891 {
2892 	struct vm_area_struct *prev;
2893 	struct rb_node **rb_link, *rb_parent;
2894 
2895 	if (find_vma_links(mm, vma->vm_start, vma->vm_end,
2896 			   &prev, &rb_link, &rb_parent))
2897 		return -ENOMEM;
2898 	if ((vma->vm_flags & VM_ACCOUNT) &&
2899 	     security_vm_enough_memory_mm(mm, vma_pages(vma)))
2900 		return -ENOMEM;
2901 
2902 	/*
2903 	 * The vm_pgoff of a purely anonymous vma should be irrelevant
2904 	 * until its first write fault, when page's anon_vma and index
2905 	 * are set.  But now set the vm_pgoff it will almost certainly
2906 	 * end up with (unless mremap moves it elsewhere before that
2907 	 * first wfault), so /proc/pid/maps tells a consistent story.
2908 	 *
2909 	 * By setting it to reflect the virtual start address of the
2910 	 * vma, merges and splits can happen in a seamless way, just
2911 	 * using the existing file pgoff checks and manipulations.
2912 	 * Similarly in do_mmap_pgoff and in do_brk.
2913 	 */
2914 	if (vma_is_anonymous(vma)) {
2915 		BUG_ON(vma->anon_vma);
2916 		vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2917 	}
2918 
2919 	vma_link(mm, vma, prev, rb_link, rb_parent);
2920 	return 0;
2921 }
2922 
2923 /*
2924  * Copy the vma structure to a new location in the same mm,
2925  * prior to moving page table entries, to effect an mremap move.
2926  */
copy_vma(struct vm_area_struct ** vmap,unsigned long addr,unsigned long len,pgoff_t pgoff,bool * need_rmap_locks)2927 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2928 	unsigned long addr, unsigned long len, pgoff_t pgoff,
2929 	bool *need_rmap_locks)
2930 {
2931 	struct vm_area_struct *vma = *vmap;
2932 	unsigned long vma_start = vma->vm_start;
2933 	struct mm_struct *mm = vma->vm_mm;
2934 	struct vm_area_struct *new_vma, *prev;
2935 	struct rb_node **rb_link, *rb_parent;
2936 	bool faulted_in_anon_vma = true;
2937 
2938 	/*
2939 	 * If anonymous vma has not yet been faulted, update new pgoff
2940 	 * to match new location, to increase its chance of merging.
2941 	 */
2942 	if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
2943 		pgoff = addr >> PAGE_SHIFT;
2944 		faulted_in_anon_vma = false;
2945 	}
2946 
2947 	if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
2948 		return NULL;	/* should never get here */
2949 	new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2950 			    vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
2951 			    vma->vm_userfaultfd_ctx);
2952 	if (new_vma) {
2953 		/*
2954 		 * Source vma may have been merged into new_vma
2955 		 */
2956 		if (unlikely(vma_start >= new_vma->vm_start &&
2957 			     vma_start < new_vma->vm_end)) {
2958 			/*
2959 			 * The only way we can get a vma_merge with
2960 			 * self during an mremap is if the vma hasn't
2961 			 * been faulted in yet and we were allowed to
2962 			 * reset the dst vma->vm_pgoff to the
2963 			 * destination address of the mremap to allow
2964 			 * the merge to happen. mremap must change the
2965 			 * vm_pgoff linearity between src and dst vmas
2966 			 * (in turn preventing a vma_merge) to be
2967 			 * safe. It is only safe to keep the vm_pgoff
2968 			 * linear if there are no pages mapped yet.
2969 			 */
2970 			VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
2971 			*vmap = vma = new_vma;
2972 		}
2973 		*need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
2974 	} else {
2975 		new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2976 		if (!new_vma)
2977 			goto out;
2978 		*new_vma = *vma;
2979 		new_vma->vm_start = addr;
2980 		new_vma->vm_end = addr + len;
2981 		new_vma->vm_pgoff = pgoff;
2982 		if (vma_dup_policy(vma, new_vma))
2983 			goto out_free_vma;
2984 		INIT_LIST_HEAD(&new_vma->anon_vma_chain);
2985 		if (anon_vma_clone(new_vma, vma))
2986 			goto out_free_mempol;
2987 		if (new_vma->vm_file)
2988 			get_file(new_vma->vm_file);
2989 		if (new_vma->vm_ops && new_vma->vm_ops->open)
2990 			new_vma->vm_ops->open(new_vma);
2991 		vma_link(mm, new_vma, prev, rb_link, rb_parent);
2992 		*need_rmap_locks = false;
2993 	}
2994 	return new_vma;
2995 
2996 out_free_mempol:
2997 	mpol_put(vma_policy(new_vma));
2998 out_free_vma:
2999 	kmem_cache_free(vm_area_cachep, new_vma);
3000 out:
3001 	return NULL;
3002 }
3003 
3004 /*
3005  * Return true if the calling process may expand its vm space by the passed
3006  * number of pages
3007  */
may_expand_vm(struct mm_struct * mm,unsigned long npages)3008 int may_expand_vm(struct mm_struct *mm, unsigned long npages)
3009 {
3010 	unsigned long cur = mm->total_vm;	/* pages */
3011 	unsigned long lim;
3012 
3013 	lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT;
3014 
3015 	if (cur + npages > lim)
3016 		return 0;
3017 	return 1;
3018 }
3019 
3020 static int special_mapping_fault(struct vm_area_struct *vma,
3021 				 struct vm_fault *vmf);
3022 
3023 /*
3024  * Having a close hook prevents vma merging regardless of flags.
3025  */
special_mapping_close(struct vm_area_struct * vma)3026 static void special_mapping_close(struct vm_area_struct *vma)
3027 {
3028 }
3029 
special_mapping_name(struct vm_area_struct * vma)3030 static const char *special_mapping_name(struct vm_area_struct *vma)
3031 {
3032 	return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3033 }
3034 
3035 static const struct vm_operations_struct special_mapping_vmops = {
3036 	.close = special_mapping_close,
3037 	.fault = special_mapping_fault,
3038 	.name = special_mapping_name,
3039 };
3040 
3041 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3042 	.close = special_mapping_close,
3043 	.fault = special_mapping_fault,
3044 };
3045 
special_mapping_fault(struct vm_area_struct * vma,struct vm_fault * vmf)3046 static int special_mapping_fault(struct vm_area_struct *vma,
3047 				struct vm_fault *vmf)
3048 {
3049 	pgoff_t pgoff;
3050 	struct page **pages;
3051 
3052 	if (vma->vm_ops == &legacy_special_mapping_vmops)
3053 		pages = vma->vm_private_data;
3054 	else
3055 		pages = ((struct vm_special_mapping *)vma->vm_private_data)->
3056 			pages;
3057 
3058 	for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3059 		pgoff--;
3060 
3061 	if (*pages) {
3062 		struct page *page = *pages;
3063 		get_page(page);
3064 		vmf->page = page;
3065 		return 0;
3066 	}
3067 
3068 	return VM_FAULT_SIGBUS;
3069 }
3070 
__install_special_mapping(struct mm_struct * mm,unsigned long addr,unsigned long len,unsigned long vm_flags,void * priv,const struct vm_operations_struct * ops)3071 static struct vm_area_struct *__install_special_mapping(
3072 	struct mm_struct *mm,
3073 	unsigned long addr, unsigned long len,
3074 	unsigned long vm_flags, void *priv,
3075 	const struct vm_operations_struct *ops)
3076 {
3077 	int ret;
3078 	struct vm_area_struct *vma;
3079 
3080 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
3081 	if (unlikely(vma == NULL))
3082 		return ERR_PTR(-ENOMEM);
3083 
3084 	INIT_LIST_HEAD(&vma->anon_vma_chain);
3085 	vma->vm_mm = mm;
3086 	vma->vm_start = addr;
3087 	vma->vm_end = addr + len;
3088 
3089 	vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
3090 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3091 
3092 	vma->vm_ops = ops;
3093 	vma->vm_private_data = priv;
3094 
3095 	ret = insert_vm_struct(mm, vma);
3096 	if (ret)
3097 		goto out;
3098 
3099 	mm->total_vm += len >> PAGE_SHIFT;
3100 
3101 	perf_event_mmap(vma);
3102 
3103 	return vma;
3104 
3105 out:
3106 	kmem_cache_free(vm_area_cachep, vma);
3107 	return ERR_PTR(ret);
3108 }
3109 
3110 /*
3111  * Called with mm->mmap_sem held for writing.
3112  * Insert a new vma covering the given region, with the given flags.
3113  * Its pages are supplied by the given array of struct page *.
3114  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3115  * The region past the last page supplied will always produce SIGBUS.
3116  * The array pointer and the pages it points to are assumed to stay alive
3117  * for as long as this mapping might exist.
3118  */
_install_special_mapping(struct mm_struct * mm,unsigned long addr,unsigned long len,unsigned long vm_flags,const struct vm_special_mapping * spec)3119 struct vm_area_struct *_install_special_mapping(
3120 	struct mm_struct *mm,
3121 	unsigned long addr, unsigned long len,
3122 	unsigned long vm_flags, const struct vm_special_mapping *spec)
3123 {
3124 	return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3125 					&special_mapping_vmops);
3126 }
3127 
install_special_mapping(struct mm_struct * mm,unsigned long addr,unsigned long len,unsigned long vm_flags,struct page ** pages)3128 int install_special_mapping(struct mm_struct *mm,
3129 			    unsigned long addr, unsigned long len,
3130 			    unsigned long vm_flags, struct page **pages)
3131 {
3132 	struct vm_area_struct *vma = __install_special_mapping(
3133 		mm, addr, len, vm_flags, (void *)pages,
3134 		&legacy_special_mapping_vmops);
3135 
3136 	return PTR_ERR_OR_ZERO(vma);
3137 }
3138 
3139 static DEFINE_MUTEX(mm_all_locks_mutex);
3140 
vm_lock_anon_vma(struct mm_struct * mm,struct anon_vma * anon_vma)3141 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3142 {
3143 	if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3144 		/*
3145 		 * The LSB of head.next can't change from under us
3146 		 * because we hold the mm_all_locks_mutex.
3147 		 */
3148 		down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
3149 		/*
3150 		 * We can safely modify head.next after taking the
3151 		 * anon_vma->root->rwsem. If some other vma in this mm shares
3152 		 * the same anon_vma we won't take it again.
3153 		 *
3154 		 * No need of atomic instructions here, head.next
3155 		 * can't change from under us thanks to the
3156 		 * anon_vma->root->rwsem.
3157 		 */
3158 		if (__test_and_set_bit(0, (unsigned long *)
3159 				       &anon_vma->root->rb_root.rb_node))
3160 			BUG();
3161 	}
3162 }
3163 
vm_lock_mapping(struct mm_struct * mm,struct address_space * mapping)3164 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3165 {
3166 	if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3167 		/*
3168 		 * AS_MM_ALL_LOCKS can't change from under us because
3169 		 * we hold the mm_all_locks_mutex.
3170 		 *
3171 		 * Operations on ->flags have to be atomic because
3172 		 * even if AS_MM_ALL_LOCKS is stable thanks to the
3173 		 * mm_all_locks_mutex, there may be other cpus
3174 		 * changing other bitflags in parallel to us.
3175 		 */
3176 		if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3177 			BUG();
3178 		down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_sem);
3179 	}
3180 }
3181 
3182 /*
3183  * This operation locks against the VM for all pte/vma/mm related
3184  * operations that could ever happen on a certain mm. This includes
3185  * vmtruncate, try_to_unmap, and all page faults.
3186  *
3187  * The caller must take the mmap_sem in write mode before calling
3188  * mm_take_all_locks(). The caller isn't allowed to release the
3189  * mmap_sem until mm_drop_all_locks() returns.
3190  *
3191  * mmap_sem in write mode is required in order to block all operations
3192  * that could modify pagetables and free pages without need of
3193  * altering the vma layout. It's also needed in write mode to avoid new
3194  * anon_vmas to be associated with existing vmas.
3195  *
3196  * A single task can't take more than one mm_take_all_locks() in a row
3197  * or it would deadlock.
3198  *
3199  * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3200  * mapping->flags avoid to take the same lock twice, if more than one
3201  * vma in this mm is backed by the same anon_vma or address_space.
3202  *
3203  * We can take all the locks in random order because the VM code
3204  * taking i_mmap_rwsem or anon_vma->rwsem outside the mmap_sem never
3205  * takes more than one of them in a row. Secondly we're protected
3206  * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
3207  *
3208  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3209  * that may have to take thousand of locks.
3210  *
3211  * mm_take_all_locks() can fail if it's interrupted by signals.
3212  */
mm_take_all_locks(struct mm_struct * mm)3213 int mm_take_all_locks(struct mm_struct *mm)
3214 {
3215 	struct vm_area_struct *vma;
3216 	struct anon_vma_chain *avc;
3217 
3218 	BUG_ON(down_read_trylock(&mm->mmap_sem));
3219 
3220 	mutex_lock(&mm_all_locks_mutex);
3221 
3222 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3223 		if (signal_pending(current))
3224 			goto out_unlock;
3225 		if (vma->vm_file && vma->vm_file->f_mapping)
3226 			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3227 	}
3228 
3229 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3230 		if (signal_pending(current))
3231 			goto out_unlock;
3232 		if (vma->anon_vma)
3233 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3234 				vm_lock_anon_vma(mm, avc->anon_vma);
3235 	}
3236 
3237 	return 0;
3238 
3239 out_unlock:
3240 	mm_drop_all_locks(mm);
3241 	return -EINTR;
3242 }
3243 
vm_unlock_anon_vma(struct anon_vma * anon_vma)3244 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3245 {
3246 	if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3247 		/*
3248 		 * The LSB of head.next can't change to 0 from under
3249 		 * us because we hold the mm_all_locks_mutex.
3250 		 *
3251 		 * We must however clear the bitflag before unlocking
3252 		 * the vma so the users using the anon_vma->rb_root will
3253 		 * never see our bitflag.
3254 		 *
3255 		 * No need of atomic instructions here, head.next
3256 		 * can't change from under us until we release the
3257 		 * anon_vma->root->rwsem.
3258 		 */
3259 		if (!__test_and_clear_bit(0, (unsigned long *)
3260 					  &anon_vma->root->rb_root.rb_node))
3261 			BUG();
3262 		anon_vma_unlock_write(anon_vma);
3263 	}
3264 }
3265 
vm_unlock_mapping(struct address_space * mapping)3266 static void vm_unlock_mapping(struct address_space *mapping)
3267 {
3268 	if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3269 		/*
3270 		 * AS_MM_ALL_LOCKS can't change to 0 from under us
3271 		 * because we hold the mm_all_locks_mutex.
3272 		 */
3273 		i_mmap_unlock_write(mapping);
3274 		if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3275 					&mapping->flags))
3276 			BUG();
3277 	}
3278 }
3279 
3280 /*
3281  * The mmap_sem cannot be released by the caller until
3282  * mm_drop_all_locks() returns.
3283  */
mm_drop_all_locks(struct mm_struct * mm)3284 void mm_drop_all_locks(struct mm_struct *mm)
3285 {
3286 	struct vm_area_struct *vma;
3287 	struct anon_vma_chain *avc;
3288 
3289 	BUG_ON(down_read_trylock(&mm->mmap_sem));
3290 	BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3291 
3292 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3293 		if (vma->anon_vma)
3294 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3295 				vm_unlock_anon_vma(avc->anon_vma);
3296 		if (vma->vm_file && vma->vm_file->f_mapping)
3297 			vm_unlock_mapping(vma->vm_file->f_mapping);
3298 	}
3299 
3300 	mutex_unlock(&mm_all_locks_mutex);
3301 }
3302 
3303 /*
3304  * initialise the VMA slab
3305  */
mmap_init(void)3306 void __init mmap_init(void)
3307 {
3308 	int ret;
3309 
3310 	ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3311 	VM_BUG_ON(ret);
3312 }
3313 
3314 /*
3315  * Initialise sysctl_user_reserve_kbytes.
3316  *
3317  * This is intended to prevent a user from starting a single memory hogging
3318  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3319  * mode.
3320  *
3321  * The default value is min(3% of free memory, 128MB)
3322  * 128MB is enough to recover with sshd/login, bash, and top/kill.
3323  */
init_user_reserve(void)3324 static int init_user_reserve(void)
3325 {
3326 	unsigned long free_kbytes;
3327 
3328 	free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3329 
3330 	sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3331 	return 0;
3332 }
3333 subsys_initcall(init_user_reserve);
3334 
3335 /*
3336  * Initialise sysctl_admin_reserve_kbytes.
3337  *
3338  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3339  * to log in and kill a memory hogging process.
3340  *
3341  * Systems with more than 256MB will reserve 8MB, enough to recover
3342  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3343  * only reserve 3% of free pages by default.
3344  */
init_admin_reserve(void)3345 static int init_admin_reserve(void)
3346 {
3347 	unsigned long free_kbytes;
3348 
3349 	free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3350 
3351 	sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3352 	return 0;
3353 }
3354 subsys_initcall(init_admin_reserve);
3355 
3356 /*
3357  * Reinititalise user and admin reserves if memory is added or removed.
3358  *
3359  * The default user reserve max is 128MB, and the default max for the
3360  * admin reserve is 8MB. These are usually, but not always, enough to
3361  * enable recovery from a memory hogging process using login/sshd, a shell,
3362  * and tools like top. It may make sense to increase or even disable the
3363  * reserve depending on the existence of swap or variations in the recovery
3364  * tools. So, the admin may have changed them.
3365  *
3366  * If memory is added and the reserves have been eliminated or increased above
3367  * the default max, then we'll trust the admin.
3368  *
3369  * If memory is removed and there isn't enough free memory, then we
3370  * need to reset the reserves.
3371  *
3372  * Otherwise keep the reserve set by the admin.
3373  */
reserve_mem_notifier(struct notifier_block * nb,unsigned long action,void * data)3374 static int reserve_mem_notifier(struct notifier_block *nb,
3375 			     unsigned long action, void *data)
3376 {
3377 	unsigned long tmp, free_kbytes;
3378 
3379 	switch (action) {
3380 	case MEM_ONLINE:
3381 		/* Default max is 128MB. Leave alone if modified by operator. */
3382 		tmp = sysctl_user_reserve_kbytes;
3383 		if (0 < tmp && tmp < (1UL << 17))
3384 			init_user_reserve();
3385 
3386 		/* Default max is 8MB.  Leave alone if modified by operator. */
3387 		tmp = sysctl_admin_reserve_kbytes;
3388 		if (0 < tmp && tmp < (1UL << 13))
3389 			init_admin_reserve();
3390 
3391 		break;
3392 	case MEM_OFFLINE:
3393 		free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3394 
3395 		if (sysctl_user_reserve_kbytes > free_kbytes) {
3396 			init_user_reserve();
3397 			pr_info("vm.user_reserve_kbytes reset to %lu\n",
3398 				sysctl_user_reserve_kbytes);
3399 		}
3400 
3401 		if (sysctl_admin_reserve_kbytes > free_kbytes) {
3402 			init_admin_reserve();
3403 			pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3404 				sysctl_admin_reserve_kbytes);
3405 		}
3406 		break;
3407 	default:
3408 		break;
3409 	}
3410 	return NOTIFY_OK;
3411 }
3412 
3413 static struct notifier_block reserve_mem_nb = {
3414 	.notifier_call = reserve_mem_notifier,
3415 };
3416 
init_reserve_notifier(void)3417 static int __meminit init_reserve_notifier(void)
3418 {
3419 	if (register_hotmemory_notifier(&reserve_mem_nb))
3420 		pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3421 
3422 	return 0;
3423 }
3424 subsys_initcall(init_reserve_notifier);
3425