1 /*
2  *  bootmem - A boot-time physical memory allocator and configurator
3  *
4  *  Copyright (C) 1999 Ingo Molnar
5  *                1999 Kanoj Sarcar, SGI
6  *                2008 Johannes Weiner
7  *
8  * Access to this subsystem has to be serialized externally (which is true
9  * for the boot process anyway).
10  */
11 #include <linux/init.h>
12 #include <linux/pfn.h>
13 #include <linux/slab.h>
14 #include <linux/bootmem.h>
15 #include <linux/export.h>
16 #include <linux/kmemleak.h>
17 #include <linux/range.h>
18 #include <linux/memblock.h>
19 #include <linux/bug.h>
20 #include <linux/io.h>
21 
22 #include <asm/processor.h>
23 
24 #include "internal.h"
25 
26 #ifndef CONFIG_NEED_MULTIPLE_NODES
27 struct pglist_data __refdata contig_page_data = {
28 	.bdata = &bootmem_node_data[0]
29 };
30 EXPORT_SYMBOL(contig_page_data);
31 #endif
32 
33 unsigned long max_low_pfn;
34 unsigned long min_low_pfn;
35 unsigned long max_pfn;
36 
37 bootmem_data_t bootmem_node_data[MAX_NUMNODES] __initdata;
38 
39 static struct list_head bdata_list __initdata = LIST_HEAD_INIT(bdata_list);
40 
41 static int bootmem_debug;
42 
bootmem_debug_setup(char * buf)43 static int __init bootmem_debug_setup(char *buf)
44 {
45 	bootmem_debug = 1;
46 	return 0;
47 }
48 early_param("bootmem_debug", bootmem_debug_setup);
49 
50 #define bdebug(fmt, args...) ({				\
51 	if (unlikely(bootmem_debug))			\
52 		printk(KERN_INFO			\
53 			"bootmem::%s " fmt,		\
54 			__func__, ## args);		\
55 })
56 
bootmap_bytes(unsigned long pages)57 static unsigned long __init bootmap_bytes(unsigned long pages)
58 {
59 	unsigned long bytes = DIV_ROUND_UP(pages, 8);
60 
61 	return ALIGN(bytes, sizeof(long));
62 }
63 
64 /**
65  * bootmem_bootmap_pages - calculate bitmap size in pages
66  * @pages: number of pages the bitmap has to represent
67  */
bootmem_bootmap_pages(unsigned long pages)68 unsigned long __init bootmem_bootmap_pages(unsigned long pages)
69 {
70 	unsigned long bytes = bootmap_bytes(pages);
71 
72 	return PAGE_ALIGN(bytes) >> PAGE_SHIFT;
73 }
74 
75 /*
76  * link bdata in order
77  */
link_bootmem(bootmem_data_t * bdata)78 static void __init link_bootmem(bootmem_data_t *bdata)
79 {
80 	bootmem_data_t *ent;
81 
82 	list_for_each_entry(ent, &bdata_list, list) {
83 		if (bdata->node_min_pfn < ent->node_min_pfn) {
84 			list_add_tail(&bdata->list, &ent->list);
85 			return;
86 		}
87 	}
88 
89 	list_add_tail(&bdata->list, &bdata_list);
90 }
91 
92 /*
93  * Called once to set up the allocator itself.
94  */
init_bootmem_core(bootmem_data_t * bdata,unsigned long mapstart,unsigned long start,unsigned long end)95 static unsigned long __init init_bootmem_core(bootmem_data_t *bdata,
96 	unsigned long mapstart, unsigned long start, unsigned long end)
97 {
98 	unsigned long mapsize;
99 
100 	mminit_validate_memmodel_limits(&start, &end);
101 	bdata->node_bootmem_map = phys_to_virt(PFN_PHYS(mapstart));
102 	bdata->node_min_pfn = start;
103 	bdata->node_low_pfn = end;
104 	link_bootmem(bdata);
105 
106 	/*
107 	 * Initially all pages are reserved - setup_arch() has to
108 	 * register free RAM areas explicitly.
109 	 */
110 	mapsize = bootmap_bytes(end - start);
111 	memset(bdata->node_bootmem_map, 0xff, mapsize);
112 
113 	bdebug("nid=%td start=%lx map=%lx end=%lx mapsize=%lx\n",
114 		bdata - bootmem_node_data, start, mapstart, end, mapsize);
115 
116 	return mapsize;
117 }
118 
119 /**
120  * init_bootmem_node - register a node as boot memory
121  * @pgdat: node to register
122  * @freepfn: pfn where the bitmap for this node is to be placed
123  * @startpfn: first pfn on the node
124  * @endpfn: first pfn after the node
125  *
126  * Returns the number of bytes needed to hold the bitmap for this node.
127  */
init_bootmem_node(pg_data_t * pgdat,unsigned long freepfn,unsigned long startpfn,unsigned long endpfn)128 unsigned long __init init_bootmem_node(pg_data_t *pgdat, unsigned long freepfn,
129 				unsigned long startpfn, unsigned long endpfn)
130 {
131 	return init_bootmem_core(pgdat->bdata, freepfn, startpfn, endpfn);
132 }
133 
134 /**
135  * init_bootmem - register boot memory
136  * @start: pfn where the bitmap is to be placed
137  * @pages: number of available physical pages
138  *
139  * Returns the number of bytes needed to hold the bitmap.
140  */
init_bootmem(unsigned long start,unsigned long pages)141 unsigned long __init init_bootmem(unsigned long start, unsigned long pages)
142 {
143 	max_low_pfn = pages;
144 	min_low_pfn = start;
145 	return init_bootmem_core(NODE_DATA(0)->bdata, start, 0, pages);
146 }
147 
148 /*
149  * free_bootmem_late - free bootmem pages directly to page allocator
150  * @addr: starting physical address of the range
151  * @size: size of the range in bytes
152  *
153  * This is only useful when the bootmem allocator has already been torn
154  * down, but we are still initializing the system.  Pages are given directly
155  * to the page allocator, no bootmem metadata is updated because it is gone.
156  */
free_bootmem_late(unsigned long physaddr,unsigned long size)157 void __init free_bootmem_late(unsigned long physaddr, unsigned long size)
158 {
159 	unsigned long cursor, end;
160 
161 	kmemleak_free_part(__va(physaddr), size);
162 
163 	cursor = PFN_UP(physaddr);
164 	end = PFN_DOWN(physaddr + size);
165 
166 	for (; cursor < end; cursor++) {
167 		__free_pages_bootmem(pfn_to_page(cursor), cursor, 0);
168 		totalram_pages++;
169 	}
170 }
171 
free_all_bootmem_core(bootmem_data_t * bdata)172 static unsigned long __init free_all_bootmem_core(bootmem_data_t *bdata)
173 {
174 	struct page *page;
175 	unsigned long *map, start, end, pages, cur, count = 0;
176 
177 	if (!bdata->node_bootmem_map)
178 		return 0;
179 
180 	map = bdata->node_bootmem_map;
181 	start = bdata->node_min_pfn;
182 	end = bdata->node_low_pfn;
183 
184 	bdebug("nid=%td start=%lx end=%lx\n",
185 		bdata - bootmem_node_data, start, end);
186 
187 	while (start < end) {
188 		unsigned long idx, vec;
189 		unsigned shift;
190 
191 		idx = start - bdata->node_min_pfn;
192 		shift = idx & (BITS_PER_LONG - 1);
193 		/*
194 		 * vec holds at most BITS_PER_LONG map bits,
195 		 * bit 0 corresponds to start.
196 		 */
197 		vec = ~map[idx / BITS_PER_LONG];
198 
199 		if (shift) {
200 			vec >>= shift;
201 			if (end - start >= BITS_PER_LONG)
202 				vec |= ~map[idx / BITS_PER_LONG + 1] <<
203 					(BITS_PER_LONG - shift);
204 		}
205 		/*
206 		 * If we have a properly aligned and fully unreserved
207 		 * BITS_PER_LONG block of pages in front of us, free
208 		 * it in one go.
209 		 */
210 		if (IS_ALIGNED(start, BITS_PER_LONG) && vec == ~0UL) {
211 			int order = ilog2(BITS_PER_LONG);
212 
213 			__free_pages_bootmem(pfn_to_page(start), start, order);
214 			count += BITS_PER_LONG;
215 			start += BITS_PER_LONG;
216 		} else {
217 			cur = start;
218 
219 			start = ALIGN(start + 1, BITS_PER_LONG);
220 			while (vec && cur != start) {
221 				if (vec & 1) {
222 					page = pfn_to_page(cur);
223 					__free_pages_bootmem(page, cur, 0);
224 					count++;
225 				}
226 				vec >>= 1;
227 				++cur;
228 			}
229 		}
230 	}
231 
232 	cur = bdata->node_min_pfn;
233 	page = virt_to_page(bdata->node_bootmem_map);
234 	pages = bdata->node_low_pfn - bdata->node_min_pfn;
235 	pages = bootmem_bootmap_pages(pages);
236 	count += pages;
237 	while (pages--)
238 		__free_pages_bootmem(page++, cur++, 0);
239 	bdata->node_bootmem_map = NULL;
240 
241 	bdebug("nid=%td released=%lx\n", bdata - bootmem_node_data, count);
242 
243 	return count;
244 }
245 
246 static int reset_managed_pages_done __initdata;
247 
reset_node_managed_pages(pg_data_t * pgdat)248 void reset_node_managed_pages(pg_data_t *pgdat)
249 {
250 	struct zone *z;
251 
252 	for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
253 		z->managed_pages = 0;
254 }
255 
reset_all_zones_managed_pages(void)256 void __init reset_all_zones_managed_pages(void)
257 {
258 	struct pglist_data *pgdat;
259 
260 	if (reset_managed_pages_done)
261 		return;
262 
263 	for_each_online_pgdat(pgdat)
264 		reset_node_managed_pages(pgdat);
265 
266 	reset_managed_pages_done = 1;
267 }
268 
269 /**
270  * free_all_bootmem - release free pages to the buddy allocator
271  *
272  * Returns the number of pages actually released.
273  */
free_all_bootmem(void)274 unsigned long __init free_all_bootmem(void)
275 {
276 	unsigned long total_pages = 0;
277 	bootmem_data_t *bdata;
278 
279 	reset_all_zones_managed_pages();
280 
281 	list_for_each_entry(bdata, &bdata_list, list)
282 		total_pages += free_all_bootmem_core(bdata);
283 
284 	totalram_pages += total_pages;
285 
286 	return total_pages;
287 }
288 
__free(bootmem_data_t * bdata,unsigned long sidx,unsigned long eidx)289 static void __init __free(bootmem_data_t *bdata,
290 			unsigned long sidx, unsigned long eidx)
291 {
292 	unsigned long idx;
293 
294 	bdebug("nid=%td start=%lx end=%lx\n", bdata - bootmem_node_data,
295 		sidx + bdata->node_min_pfn,
296 		eidx + bdata->node_min_pfn);
297 
298 	if (WARN_ON(bdata->node_bootmem_map == NULL))
299 		return;
300 
301 	if (bdata->hint_idx > sidx)
302 		bdata->hint_idx = sidx;
303 
304 	for (idx = sidx; idx < eidx; idx++)
305 		if (!test_and_clear_bit(idx, bdata->node_bootmem_map))
306 			BUG();
307 }
308 
__reserve(bootmem_data_t * bdata,unsigned long sidx,unsigned long eidx,int flags)309 static int __init __reserve(bootmem_data_t *bdata, unsigned long sidx,
310 			unsigned long eidx, int flags)
311 {
312 	unsigned long idx;
313 	int exclusive = flags & BOOTMEM_EXCLUSIVE;
314 
315 	bdebug("nid=%td start=%lx end=%lx flags=%x\n",
316 		bdata - bootmem_node_data,
317 		sidx + bdata->node_min_pfn,
318 		eidx + bdata->node_min_pfn,
319 		flags);
320 
321 	if (WARN_ON(bdata->node_bootmem_map == NULL))
322 		return 0;
323 
324 	for (idx = sidx; idx < eidx; idx++)
325 		if (test_and_set_bit(idx, bdata->node_bootmem_map)) {
326 			if (exclusive) {
327 				__free(bdata, sidx, idx);
328 				return -EBUSY;
329 			}
330 			bdebug("silent double reserve of PFN %lx\n",
331 				idx + bdata->node_min_pfn);
332 		}
333 	return 0;
334 }
335 
mark_bootmem_node(bootmem_data_t * bdata,unsigned long start,unsigned long end,int reserve,int flags)336 static int __init mark_bootmem_node(bootmem_data_t *bdata,
337 				unsigned long start, unsigned long end,
338 				int reserve, int flags)
339 {
340 	unsigned long sidx, eidx;
341 
342 	bdebug("nid=%td start=%lx end=%lx reserve=%d flags=%x\n",
343 		bdata - bootmem_node_data, start, end, reserve, flags);
344 
345 	BUG_ON(start < bdata->node_min_pfn);
346 	BUG_ON(end > bdata->node_low_pfn);
347 
348 	sidx = start - bdata->node_min_pfn;
349 	eidx = end - bdata->node_min_pfn;
350 
351 	if (reserve)
352 		return __reserve(bdata, sidx, eidx, flags);
353 	else
354 		__free(bdata, sidx, eidx);
355 	return 0;
356 }
357 
mark_bootmem(unsigned long start,unsigned long end,int reserve,int flags)358 static int __init mark_bootmem(unsigned long start, unsigned long end,
359 				int reserve, int flags)
360 {
361 	unsigned long pos;
362 	bootmem_data_t *bdata;
363 
364 	pos = start;
365 	list_for_each_entry(bdata, &bdata_list, list) {
366 		int err;
367 		unsigned long max;
368 
369 		if (pos < bdata->node_min_pfn ||
370 		    pos >= bdata->node_low_pfn) {
371 			BUG_ON(pos != start);
372 			continue;
373 		}
374 
375 		max = min(bdata->node_low_pfn, end);
376 
377 		err = mark_bootmem_node(bdata, pos, max, reserve, flags);
378 		if (reserve && err) {
379 			mark_bootmem(start, pos, 0, 0);
380 			return err;
381 		}
382 
383 		if (max == end)
384 			return 0;
385 		pos = bdata->node_low_pfn;
386 	}
387 	BUG();
388 }
389 
390 /**
391  * free_bootmem_node - mark a page range as usable
392  * @pgdat: node the range resides on
393  * @physaddr: starting address of the range
394  * @size: size of the range in bytes
395  *
396  * Partial pages will be considered reserved and left as they are.
397  *
398  * The range must reside completely on the specified node.
399  */
free_bootmem_node(pg_data_t * pgdat,unsigned long physaddr,unsigned long size)400 void __init free_bootmem_node(pg_data_t *pgdat, unsigned long physaddr,
401 			      unsigned long size)
402 {
403 	unsigned long start, end;
404 
405 	kmemleak_free_part(__va(physaddr), size);
406 
407 	start = PFN_UP(physaddr);
408 	end = PFN_DOWN(physaddr + size);
409 
410 	mark_bootmem_node(pgdat->bdata, start, end, 0, 0);
411 }
412 
413 /**
414  * free_bootmem - mark a page range as usable
415  * @addr: starting physical address of the range
416  * @size: size of the range in bytes
417  *
418  * Partial pages will be considered reserved and left as they are.
419  *
420  * The range must be contiguous but may span node boundaries.
421  */
free_bootmem(unsigned long physaddr,unsigned long size)422 void __init free_bootmem(unsigned long physaddr, unsigned long size)
423 {
424 	unsigned long start, end;
425 
426 	kmemleak_free_part(__va(physaddr), size);
427 
428 	start = PFN_UP(physaddr);
429 	end = PFN_DOWN(physaddr + size);
430 
431 	mark_bootmem(start, end, 0, 0);
432 }
433 
434 /**
435  * reserve_bootmem_node - mark a page range as reserved
436  * @pgdat: node the range resides on
437  * @physaddr: starting address of the range
438  * @size: size of the range in bytes
439  * @flags: reservation flags (see linux/bootmem.h)
440  *
441  * Partial pages will be reserved.
442  *
443  * The range must reside completely on the specified node.
444  */
reserve_bootmem_node(pg_data_t * pgdat,unsigned long physaddr,unsigned long size,int flags)445 int __init reserve_bootmem_node(pg_data_t *pgdat, unsigned long physaddr,
446 				 unsigned long size, int flags)
447 {
448 	unsigned long start, end;
449 
450 	start = PFN_DOWN(physaddr);
451 	end = PFN_UP(physaddr + size);
452 
453 	return mark_bootmem_node(pgdat->bdata, start, end, 1, flags);
454 }
455 
456 /**
457  * reserve_bootmem - mark a page range as reserved
458  * @addr: starting address of the range
459  * @size: size of the range in bytes
460  * @flags: reservation flags (see linux/bootmem.h)
461  *
462  * Partial pages will be reserved.
463  *
464  * The range must be contiguous but may span node boundaries.
465  */
reserve_bootmem(unsigned long addr,unsigned long size,int flags)466 int __init reserve_bootmem(unsigned long addr, unsigned long size,
467 			    int flags)
468 {
469 	unsigned long start, end;
470 
471 	start = PFN_DOWN(addr);
472 	end = PFN_UP(addr + size);
473 
474 	return mark_bootmem(start, end, 1, flags);
475 }
476 
align_idx(struct bootmem_data * bdata,unsigned long idx,unsigned long step)477 static unsigned long __init align_idx(struct bootmem_data *bdata,
478 				      unsigned long idx, unsigned long step)
479 {
480 	unsigned long base = bdata->node_min_pfn;
481 
482 	/*
483 	 * Align the index with respect to the node start so that the
484 	 * combination of both satisfies the requested alignment.
485 	 */
486 
487 	return ALIGN(base + idx, step) - base;
488 }
489 
align_off(struct bootmem_data * bdata,unsigned long off,unsigned long align)490 static unsigned long __init align_off(struct bootmem_data *bdata,
491 				      unsigned long off, unsigned long align)
492 {
493 	unsigned long base = PFN_PHYS(bdata->node_min_pfn);
494 
495 	/* Same as align_idx for byte offsets */
496 
497 	return ALIGN(base + off, align) - base;
498 }
499 
alloc_bootmem_bdata(struct bootmem_data * bdata,unsigned long size,unsigned long align,unsigned long goal,unsigned long limit)500 static void * __init alloc_bootmem_bdata(struct bootmem_data *bdata,
501 					unsigned long size, unsigned long align,
502 					unsigned long goal, unsigned long limit)
503 {
504 	unsigned long fallback = 0;
505 	unsigned long min, max, start, sidx, midx, step;
506 
507 	bdebug("nid=%td size=%lx [%lu pages] align=%lx goal=%lx limit=%lx\n",
508 		bdata - bootmem_node_data, size, PAGE_ALIGN(size) >> PAGE_SHIFT,
509 		align, goal, limit);
510 
511 	BUG_ON(!size);
512 	BUG_ON(align & (align - 1));
513 	BUG_ON(limit && goal + size > limit);
514 
515 	if (!bdata->node_bootmem_map)
516 		return NULL;
517 
518 	min = bdata->node_min_pfn;
519 	max = bdata->node_low_pfn;
520 
521 	goal >>= PAGE_SHIFT;
522 	limit >>= PAGE_SHIFT;
523 
524 	if (limit && max > limit)
525 		max = limit;
526 	if (max <= min)
527 		return NULL;
528 
529 	step = max(align >> PAGE_SHIFT, 1UL);
530 
531 	if (goal && min < goal && goal < max)
532 		start = ALIGN(goal, step);
533 	else
534 		start = ALIGN(min, step);
535 
536 	sidx = start - bdata->node_min_pfn;
537 	midx = max - bdata->node_min_pfn;
538 
539 	if (bdata->hint_idx > sidx) {
540 		/*
541 		 * Handle the valid case of sidx being zero and still
542 		 * catch the fallback below.
543 		 */
544 		fallback = sidx + 1;
545 		sidx = align_idx(bdata, bdata->hint_idx, step);
546 	}
547 
548 	while (1) {
549 		int merge;
550 		void *region;
551 		unsigned long eidx, i, start_off, end_off;
552 find_block:
553 		sidx = find_next_zero_bit(bdata->node_bootmem_map, midx, sidx);
554 		sidx = align_idx(bdata, sidx, step);
555 		eidx = sidx + PFN_UP(size);
556 
557 		if (sidx >= midx || eidx > midx)
558 			break;
559 
560 		for (i = sidx; i < eidx; i++)
561 			if (test_bit(i, bdata->node_bootmem_map)) {
562 				sidx = align_idx(bdata, i, step);
563 				if (sidx == i)
564 					sidx += step;
565 				goto find_block;
566 			}
567 
568 		if (bdata->last_end_off & (PAGE_SIZE - 1) &&
569 				PFN_DOWN(bdata->last_end_off) + 1 == sidx)
570 			start_off = align_off(bdata, bdata->last_end_off, align);
571 		else
572 			start_off = PFN_PHYS(sidx);
573 
574 		merge = PFN_DOWN(start_off) < sidx;
575 		end_off = start_off + size;
576 
577 		bdata->last_end_off = end_off;
578 		bdata->hint_idx = PFN_UP(end_off);
579 
580 		/*
581 		 * Reserve the area now:
582 		 */
583 		if (__reserve(bdata, PFN_DOWN(start_off) + merge,
584 				PFN_UP(end_off), BOOTMEM_EXCLUSIVE))
585 			BUG();
586 
587 		region = phys_to_virt(PFN_PHYS(bdata->node_min_pfn) +
588 				start_off);
589 		memset(region, 0, size);
590 		/*
591 		 * The min_count is set to 0 so that bootmem allocated blocks
592 		 * are never reported as leaks.
593 		 */
594 		kmemleak_alloc(region, size, 0, 0);
595 		return region;
596 	}
597 
598 	if (fallback) {
599 		sidx = align_idx(bdata, fallback - 1, step);
600 		fallback = 0;
601 		goto find_block;
602 	}
603 
604 	return NULL;
605 }
606 
alloc_bootmem_core(unsigned long size,unsigned long align,unsigned long goal,unsigned long limit)607 static void * __init alloc_bootmem_core(unsigned long size,
608 					unsigned long align,
609 					unsigned long goal,
610 					unsigned long limit)
611 {
612 	bootmem_data_t *bdata;
613 	void *region;
614 
615 	if (WARN_ON_ONCE(slab_is_available()))
616 		return kzalloc(size, GFP_NOWAIT);
617 
618 	list_for_each_entry(bdata, &bdata_list, list) {
619 		if (goal && bdata->node_low_pfn <= PFN_DOWN(goal))
620 			continue;
621 		if (limit && bdata->node_min_pfn >= PFN_DOWN(limit))
622 			break;
623 
624 		region = alloc_bootmem_bdata(bdata, size, align, goal, limit);
625 		if (region)
626 			return region;
627 	}
628 
629 	return NULL;
630 }
631 
___alloc_bootmem_nopanic(unsigned long size,unsigned long align,unsigned long goal,unsigned long limit)632 static void * __init ___alloc_bootmem_nopanic(unsigned long size,
633 					      unsigned long align,
634 					      unsigned long goal,
635 					      unsigned long limit)
636 {
637 	void *ptr;
638 
639 restart:
640 	ptr = alloc_bootmem_core(size, align, goal, limit);
641 	if (ptr)
642 		return ptr;
643 	if (goal) {
644 		goal = 0;
645 		goto restart;
646 	}
647 
648 	return NULL;
649 }
650 
651 /**
652  * __alloc_bootmem_nopanic - allocate boot memory without panicking
653  * @size: size of the request in bytes
654  * @align: alignment of the region
655  * @goal: preferred starting address of the region
656  *
657  * The goal is dropped if it can not be satisfied and the allocation will
658  * fall back to memory below @goal.
659  *
660  * Allocation may happen on any node in the system.
661  *
662  * Returns NULL on failure.
663  */
__alloc_bootmem_nopanic(unsigned long size,unsigned long align,unsigned long goal)664 void * __init __alloc_bootmem_nopanic(unsigned long size, unsigned long align,
665 					unsigned long goal)
666 {
667 	unsigned long limit = 0;
668 
669 	return ___alloc_bootmem_nopanic(size, align, goal, limit);
670 }
671 
___alloc_bootmem(unsigned long size,unsigned long align,unsigned long goal,unsigned long limit)672 static void * __init ___alloc_bootmem(unsigned long size, unsigned long align,
673 					unsigned long goal, unsigned long limit)
674 {
675 	void *mem = ___alloc_bootmem_nopanic(size, align, goal, limit);
676 
677 	if (mem)
678 		return mem;
679 	/*
680 	 * Whoops, we cannot satisfy the allocation request.
681 	 */
682 	printk(KERN_ALERT "bootmem alloc of %lu bytes failed!\n", size);
683 	panic("Out of memory");
684 	return NULL;
685 }
686 
687 /**
688  * __alloc_bootmem - allocate boot memory
689  * @size: size of the request in bytes
690  * @align: alignment of the region
691  * @goal: preferred starting address of the region
692  *
693  * The goal is dropped if it can not be satisfied and the allocation will
694  * fall back to memory below @goal.
695  *
696  * Allocation may happen on any node in the system.
697  *
698  * The function panics if the request can not be satisfied.
699  */
__alloc_bootmem(unsigned long size,unsigned long align,unsigned long goal)700 void * __init __alloc_bootmem(unsigned long size, unsigned long align,
701 			      unsigned long goal)
702 {
703 	unsigned long limit = 0;
704 
705 	return ___alloc_bootmem(size, align, goal, limit);
706 }
707 
___alloc_bootmem_node_nopanic(pg_data_t * pgdat,unsigned long size,unsigned long align,unsigned long goal,unsigned long limit)708 void * __init ___alloc_bootmem_node_nopanic(pg_data_t *pgdat,
709 				unsigned long size, unsigned long align,
710 				unsigned long goal, unsigned long limit)
711 {
712 	void *ptr;
713 
714 	if (WARN_ON_ONCE(slab_is_available()))
715 		return kzalloc(size, GFP_NOWAIT);
716 again:
717 
718 	/* do not panic in alloc_bootmem_bdata() */
719 	if (limit && goal + size > limit)
720 		limit = 0;
721 
722 	ptr = alloc_bootmem_bdata(pgdat->bdata, size, align, goal, limit);
723 	if (ptr)
724 		return ptr;
725 
726 	ptr = alloc_bootmem_core(size, align, goal, limit);
727 	if (ptr)
728 		return ptr;
729 
730 	if (goal) {
731 		goal = 0;
732 		goto again;
733 	}
734 
735 	return NULL;
736 }
737 
__alloc_bootmem_node_nopanic(pg_data_t * pgdat,unsigned long size,unsigned long align,unsigned long goal)738 void * __init __alloc_bootmem_node_nopanic(pg_data_t *pgdat, unsigned long size,
739 				   unsigned long align, unsigned long goal)
740 {
741 	if (WARN_ON_ONCE(slab_is_available()))
742 		return kzalloc_node(size, GFP_NOWAIT, pgdat->node_id);
743 
744 	return ___alloc_bootmem_node_nopanic(pgdat, size, align, goal, 0);
745 }
746 
___alloc_bootmem_node(pg_data_t * pgdat,unsigned long size,unsigned long align,unsigned long goal,unsigned long limit)747 void * __init ___alloc_bootmem_node(pg_data_t *pgdat, unsigned long size,
748 				    unsigned long align, unsigned long goal,
749 				    unsigned long limit)
750 {
751 	void *ptr;
752 
753 	ptr = ___alloc_bootmem_node_nopanic(pgdat, size, align, goal, 0);
754 	if (ptr)
755 		return ptr;
756 
757 	printk(KERN_ALERT "bootmem alloc of %lu bytes failed!\n", size);
758 	panic("Out of memory");
759 	return NULL;
760 }
761 
762 /**
763  * __alloc_bootmem_node - allocate boot memory from a specific node
764  * @pgdat: node to allocate from
765  * @size: size of the request in bytes
766  * @align: alignment of the region
767  * @goal: preferred starting address of the region
768  *
769  * The goal is dropped if it can not be satisfied and the allocation will
770  * fall back to memory below @goal.
771  *
772  * Allocation may fall back to any node in the system if the specified node
773  * can not hold the requested memory.
774  *
775  * The function panics if the request can not be satisfied.
776  */
__alloc_bootmem_node(pg_data_t * pgdat,unsigned long size,unsigned long align,unsigned long goal)777 void * __init __alloc_bootmem_node(pg_data_t *pgdat, unsigned long size,
778 				   unsigned long align, unsigned long goal)
779 {
780 	if (WARN_ON_ONCE(slab_is_available()))
781 		return kzalloc_node(size, GFP_NOWAIT, pgdat->node_id);
782 
783 	return  ___alloc_bootmem_node(pgdat, size, align, goal, 0);
784 }
785 
__alloc_bootmem_node_high(pg_data_t * pgdat,unsigned long size,unsigned long align,unsigned long goal)786 void * __init __alloc_bootmem_node_high(pg_data_t *pgdat, unsigned long size,
787 				   unsigned long align, unsigned long goal)
788 {
789 #ifdef MAX_DMA32_PFN
790 	unsigned long end_pfn;
791 
792 	if (WARN_ON_ONCE(slab_is_available()))
793 		return kzalloc_node(size, GFP_NOWAIT, pgdat->node_id);
794 
795 	/* update goal according ...MAX_DMA32_PFN */
796 	end_pfn = pgdat_end_pfn(pgdat);
797 
798 	if (end_pfn > MAX_DMA32_PFN + (128 >> (20 - PAGE_SHIFT)) &&
799 	    (goal >> PAGE_SHIFT) < MAX_DMA32_PFN) {
800 		void *ptr;
801 		unsigned long new_goal;
802 
803 		new_goal = MAX_DMA32_PFN << PAGE_SHIFT;
804 		ptr = alloc_bootmem_bdata(pgdat->bdata, size, align,
805 						 new_goal, 0);
806 		if (ptr)
807 			return ptr;
808 	}
809 #endif
810 
811 	return __alloc_bootmem_node(pgdat, size, align, goal);
812 
813 }
814 
815 #ifndef ARCH_LOW_ADDRESS_LIMIT
816 #define ARCH_LOW_ADDRESS_LIMIT	0xffffffffUL
817 #endif
818 
819 /**
820  * __alloc_bootmem_low - allocate low boot memory
821  * @size: size of the request in bytes
822  * @align: alignment of the region
823  * @goal: preferred starting address of the region
824  *
825  * The goal is dropped if it can not be satisfied and the allocation will
826  * fall back to memory below @goal.
827  *
828  * Allocation may happen on any node in the system.
829  *
830  * The function panics if the request can not be satisfied.
831  */
__alloc_bootmem_low(unsigned long size,unsigned long align,unsigned long goal)832 void * __init __alloc_bootmem_low(unsigned long size, unsigned long align,
833 				  unsigned long goal)
834 {
835 	return ___alloc_bootmem(size, align, goal, ARCH_LOW_ADDRESS_LIMIT);
836 }
837 
__alloc_bootmem_low_nopanic(unsigned long size,unsigned long align,unsigned long goal)838 void * __init __alloc_bootmem_low_nopanic(unsigned long size,
839 					  unsigned long align,
840 					  unsigned long goal)
841 {
842 	return ___alloc_bootmem_nopanic(size, align, goal,
843 					ARCH_LOW_ADDRESS_LIMIT);
844 }
845 
846 /**
847  * __alloc_bootmem_low_node - allocate low boot memory from a specific node
848  * @pgdat: node to allocate from
849  * @size: size of the request in bytes
850  * @align: alignment of the region
851  * @goal: preferred starting address of the region
852  *
853  * The goal is dropped if it can not be satisfied and the allocation will
854  * fall back to memory below @goal.
855  *
856  * Allocation may fall back to any node in the system if the specified node
857  * can not hold the requested memory.
858  *
859  * The function panics if the request can not be satisfied.
860  */
__alloc_bootmem_low_node(pg_data_t * pgdat,unsigned long size,unsigned long align,unsigned long goal)861 void * __init __alloc_bootmem_low_node(pg_data_t *pgdat, unsigned long size,
862 				       unsigned long align, unsigned long goal)
863 {
864 	if (WARN_ON_ONCE(slab_is_available()))
865 		return kzalloc_node(size, GFP_NOWAIT, pgdat->node_id);
866 
867 	return ___alloc_bootmem_node(pgdat, size, align,
868 				     goal, ARCH_LOW_ADDRESS_LIMIT);
869 }
870