1 /*******************************************************************************
2
3 Intel(R) 82576 Virtual Function Linux driver
4 Copyright(c) 2009 - 2012 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, see <http://www.gnu.org/licenses/>.
17
18 The full GNU General Public License is included in this distribution in
19 the file called "COPYING".
20
21 Contact Information:
22 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
23 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24
25 *******************************************************************************/
26
27 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
28
29 #include <linux/module.h>
30 #include <linux/types.h>
31 #include <linux/init.h>
32 #include <linux/pci.h>
33 #include <linux/vmalloc.h>
34 #include <linux/pagemap.h>
35 #include <linux/delay.h>
36 #include <linux/netdevice.h>
37 #include <linux/tcp.h>
38 #include <linux/ipv6.h>
39 #include <linux/slab.h>
40 #include <net/checksum.h>
41 #include <net/ip6_checksum.h>
42 #include <linux/mii.h>
43 #include <linux/ethtool.h>
44 #include <linux/if_vlan.h>
45 #include <linux/prefetch.h>
46
47 #include "igbvf.h"
48
49 #define DRV_VERSION "2.0.2-k"
50 char igbvf_driver_name[] = "igbvf";
51 const char igbvf_driver_version[] = DRV_VERSION;
52 static const char igbvf_driver_string[] =
53 "Intel(R) Gigabit Virtual Function Network Driver";
54 static const char igbvf_copyright[] =
55 "Copyright (c) 2009 - 2012 Intel Corporation.";
56
57 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
58 static int debug = -1;
59 module_param(debug, int, 0);
60 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
61
62 static int igbvf_poll(struct napi_struct *napi, int budget);
63 static void igbvf_reset(struct igbvf_adapter *);
64 static void igbvf_set_interrupt_capability(struct igbvf_adapter *);
65 static void igbvf_reset_interrupt_capability(struct igbvf_adapter *);
66
67 static struct igbvf_info igbvf_vf_info = {
68 .mac = e1000_vfadapt,
69 .flags = 0,
70 .pba = 10,
71 .init_ops = e1000_init_function_pointers_vf,
72 };
73
74 static struct igbvf_info igbvf_i350_vf_info = {
75 .mac = e1000_vfadapt_i350,
76 .flags = 0,
77 .pba = 10,
78 .init_ops = e1000_init_function_pointers_vf,
79 };
80
81 static const struct igbvf_info *igbvf_info_tbl[] = {
82 [board_vf] = &igbvf_vf_info,
83 [board_i350_vf] = &igbvf_i350_vf_info,
84 };
85
86 /**
87 * igbvf_desc_unused - calculate if we have unused descriptors
88 * @rx_ring: address of receive ring structure
89 **/
igbvf_desc_unused(struct igbvf_ring * ring)90 static int igbvf_desc_unused(struct igbvf_ring *ring)
91 {
92 if (ring->next_to_clean > ring->next_to_use)
93 return ring->next_to_clean - ring->next_to_use - 1;
94
95 return ring->count + ring->next_to_clean - ring->next_to_use - 1;
96 }
97
98 /**
99 * igbvf_receive_skb - helper function to handle Rx indications
100 * @adapter: board private structure
101 * @status: descriptor status field as written by hardware
102 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
103 * @skb: pointer to sk_buff to be indicated to stack
104 **/
igbvf_receive_skb(struct igbvf_adapter * adapter,struct net_device * netdev,struct sk_buff * skb,u32 status,u16 vlan)105 static void igbvf_receive_skb(struct igbvf_adapter *adapter,
106 struct net_device *netdev,
107 struct sk_buff *skb,
108 u32 status, u16 vlan)
109 {
110 u16 vid;
111
112 if (status & E1000_RXD_STAT_VP) {
113 if ((adapter->flags & IGBVF_FLAG_RX_LB_VLAN_BSWAP) &&
114 (status & E1000_RXDEXT_STATERR_LB))
115 vid = be16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
116 else
117 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
118 if (test_bit(vid, adapter->active_vlans))
119 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
120 }
121
122 napi_gro_receive(&adapter->rx_ring->napi, skb);
123 }
124
igbvf_rx_checksum_adv(struct igbvf_adapter * adapter,u32 status_err,struct sk_buff * skb)125 static inline void igbvf_rx_checksum_adv(struct igbvf_adapter *adapter,
126 u32 status_err, struct sk_buff *skb)
127 {
128 skb_checksum_none_assert(skb);
129
130 /* Ignore Checksum bit is set or checksum is disabled through ethtool */
131 if ((status_err & E1000_RXD_STAT_IXSM) ||
132 (adapter->flags & IGBVF_FLAG_RX_CSUM_DISABLED))
133 return;
134
135 /* TCP/UDP checksum error bit is set */
136 if (status_err &
137 (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
138 /* let the stack verify checksum errors */
139 adapter->hw_csum_err++;
140 return;
141 }
142
143 /* It must be a TCP or UDP packet with a valid checksum */
144 if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
145 skb->ip_summed = CHECKSUM_UNNECESSARY;
146
147 adapter->hw_csum_good++;
148 }
149
150 /**
151 * igbvf_alloc_rx_buffers - Replace used receive buffers; packet split
152 * @rx_ring: address of ring structure to repopulate
153 * @cleaned_count: number of buffers to repopulate
154 **/
igbvf_alloc_rx_buffers(struct igbvf_ring * rx_ring,int cleaned_count)155 static void igbvf_alloc_rx_buffers(struct igbvf_ring *rx_ring,
156 int cleaned_count)
157 {
158 struct igbvf_adapter *adapter = rx_ring->adapter;
159 struct net_device *netdev = adapter->netdev;
160 struct pci_dev *pdev = adapter->pdev;
161 union e1000_adv_rx_desc *rx_desc;
162 struct igbvf_buffer *buffer_info;
163 struct sk_buff *skb;
164 unsigned int i;
165 int bufsz;
166
167 i = rx_ring->next_to_use;
168 buffer_info = &rx_ring->buffer_info[i];
169
170 if (adapter->rx_ps_hdr_size)
171 bufsz = adapter->rx_ps_hdr_size;
172 else
173 bufsz = adapter->rx_buffer_len;
174
175 while (cleaned_count--) {
176 rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
177
178 if (adapter->rx_ps_hdr_size && !buffer_info->page_dma) {
179 if (!buffer_info->page) {
180 buffer_info->page = alloc_page(GFP_ATOMIC);
181 if (!buffer_info->page) {
182 adapter->alloc_rx_buff_failed++;
183 goto no_buffers;
184 }
185 buffer_info->page_offset = 0;
186 } else {
187 buffer_info->page_offset ^= PAGE_SIZE / 2;
188 }
189 buffer_info->page_dma =
190 dma_map_page(&pdev->dev, buffer_info->page,
191 buffer_info->page_offset,
192 PAGE_SIZE / 2,
193 DMA_FROM_DEVICE);
194 if (dma_mapping_error(&pdev->dev,
195 buffer_info->page_dma)) {
196 __free_page(buffer_info->page);
197 buffer_info->page = NULL;
198 dev_err(&pdev->dev, "RX DMA map failed\n");
199 break;
200 }
201 }
202
203 if (!buffer_info->skb) {
204 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
205 if (!skb) {
206 adapter->alloc_rx_buff_failed++;
207 goto no_buffers;
208 }
209
210 buffer_info->skb = skb;
211 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
212 bufsz,
213 DMA_FROM_DEVICE);
214 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
215 dev_kfree_skb(buffer_info->skb);
216 buffer_info->skb = NULL;
217 dev_err(&pdev->dev, "RX DMA map failed\n");
218 goto no_buffers;
219 }
220 }
221 /* Refresh the desc even if buffer_addrs didn't change because
222 * each write-back erases this info.
223 */
224 if (adapter->rx_ps_hdr_size) {
225 rx_desc->read.pkt_addr =
226 cpu_to_le64(buffer_info->page_dma);
227 rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
228 } else {
229 rx_desc->read.pkt_addr = cpu_to_le64(buffer_info->dma);
230 rx_desc->read.hdr_addr = 0;
231 }
232
233 i++;
234 if (i == rx_ring->count)
235 i = 0;
236 buffer_info = &rx_ring->buffer_info[i];
237 }
238
239 no_buffers:
240 if (rx_ring->next_to_use != i) {
241 rx_ring->next_to_use = i;
242 if (i == 0)
243 i = (rx_ring->count - 1);
244 else
245 i--;
246
247 /* Force memory writes to complete before letting h/w
248 * know there are new descriptors to fetch. (Only
249 * applicable for weak-ordered memory model archs,
250 * such as IA-64).
251 */
252 wmb();
253 writel(i, adapter->hw.hw_addr + rx_ring->tail);
254 }
255 }
256
257 /**
258 * igbvf_clean_rx_irq - Send received data up the network stack; legacy
259 * @adapter: board private structure
260 *
261 * the return value indicates whether actual cleaning was done, there
262 * is no guarantee that everything was cleaned
263 **/
igbvf_clean_rx_irq(struct igbvf_adapter * adapter,int * work_done,int work_to_do)264 static bool igbvf_clean_rx_irq(struct igbvf_adapter *adapter,
265 int *work_done, int work_to_do)
266 {
267 struct igbvf_ring *rx_ring = adapter->rx_ring;
268 struct net_device *netdev = adapter->netdev;
269 struct pci_dev *pdev = adapter->pdev;
270 union e1000_adv_rx_desc *rx_desc, *next_rxd;
271 struct igbvf_buffer *buffer_info, *next_buffer;
272 struct sk_buff *skb;
273 bool cleaned = false;
274 int cleaned_count = 0;
275 unsigned int total_bytes = 0, total_packets = 0;
276 unsigned int i;
277 u32 length, hlen, staterr;
278
279 i = rx_ring->next_to_clean;
280 rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
281 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
282
283 while (staterr & E1000_RXD_STAT_DD) {
284 if (*work_done >= work_to_do)
285 break;
286 (*work_done)++;
287 rmb(); /* read descriptor and rx_buffer_info after status DD */
288
289 buffer_info = &rx_ring->buffer_info[i];
290
291 /* HW will not DMA in data larger than the given buffer, even
292 * if it parses the (NFS, of course) header to be larger. In
293 * that case, it fills the header buffer and spills the rest
294 * into the page.
295 */
296 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.hdr_info)
297 & E1000_RXDADV_HDRBUFLEN_MASK) >>
298 E1000_RXDADV_HDRBUFLEN_SHIFT;
299 if (hlen > adapter->rx_ps_hdr_size)
300 hlen = adapter->rx_ps_hdr_size;
301
302 length = le16_to_cpu(rx_desc->wb.upper.length);
303 cleaned = true;
304 cleaned_count++;
305
306 skb = buffer_info->skb;
307 prefetch(skb->data - NET_IP_ALIGN);
308 buffer_info->skb = NULL;
309 if (!adapter->rx_ps_hdr_size) {
310 dma_unmap_single(&pdev->dev, buffer_info->dma,
311 adapter->rx_buffer_len,
312 DMA_FROM_DEVICE);
313 buffer_info->dma = 0;
314 skb_put(skb, length);
315 goto send_up;
316 }
317
318 if (!skb_shinfo(skb)->nr_frags) {
319 dma_unmap_single(&pdev->dev, buffer_info->dma,
320 adapter->rx_ps_hdr_size,
321 DMA_FROM_DEVICE);
322 buffer_info->dma = 0;
323 skb_put(skb, hlen);
324 }
325
326 if (length) {
327 dma_unmap_page(&pdev->dev, buffer_info->page_dma,
328 PAGE_SIZE / 2,
329 DMA_FROM_DEVICE);
330 buffer_info->page_dma = 0;
331
332 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
333 buffer_info->page,
334 buffer_info->page_offset,
335 length);
336
337 if ((adapter->rx_buffer_len > (PAGE_SIZE / 2)) ||
338 (page_count(buffer_info->page) != 1))
339 buffer_info->page = NULL;
340 else
341 get_page(buffer_info->page);
342
343 skb->len += length;
344 skb->data_len += length;
345 skb->truesize += PAGE_SIZE / 2;
346 }
347 send_up:
348 i++;
349 if (i == rx_ring->count)
350 i = 0;
351 next_rxd = IGBVF_RX_DESC_ADV(*rx_ring, i);
352 prefetch(next_rxd);
353 next_buffer = &rx_ring->buffer_info[i];
354
355 if (!(staterr & E1000_RXD_STAT_EOP)) {
356 buffer_info->skb = next_buffer->skb;
357 buffer_info->dma = next_buffer->dma;
358 next_buffer->skb = skb;
359 next_buffer->dma = 0;
360 goto next_desc;
361 }
362
363 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
364 dev_kfree_skb_irq(skb);
365 goto next_desc;
366 }
367
368 total_bytes += skb->len;
369 total_packets++;
370
371 igbvf_rx_checksum_adv(adapter, staterr, skb);
372
373 skb->protocol = eth_type_trans(skb, netdev);
374
375 igbvf_receive_skb(adapter, netdev, skb, staterr,
376 rx_desc->wb.upper.vlan);
377
378 next_desc:
379 rx_desc->wb.upper.status_error = 0;
380
381 /* return some buffers to hardware, one at a time is too slow */
382 if (cleaned_count >= IGBVF_RX_BUFFER_WRITE) {
383 igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
384 cleaned_count = 0;
385 }
386
387 /* use prefetched values */
388 rx_desc = next_rxd;
389 buffer_info = next_buffer;
390
391 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
392 }
393
394 rx_ring->next_to_clean = i;
395 cleaned_count = igbvf_desc_unused(rx_ring);
396
397 if (cleaned_count)
398 igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
399
400 adapter->total_rx_packets += total_packets;
401 adapter->total_rx_bytes += total_bytes;
402 adapter->net_stats.rx_bytes += total_bytes;
403 adapter->net_stats.rx_packets += total_packets;
404 return cleaned;
405 }
406
igbvf_put_txbuf(struct igbvf_adapter * adapter,struct igbvf_buffer * buffer_info)407 static void igbvf_put_txbuf(struct igbvf_adapter *adapter,
408 struct igbvf_buffer *buffer_info)
409 {
410 if (buffer_info->dma) {
411 if (buffer_info->mapped_as_page)
412 dma_unmap_page(&adapter->pdev->dev,
413 buffer_info->dma,
414 buffer_info->length,
415 DMA_TO_DEVICE);
416 else
417 dma_unmap_single(&adapter->pdev->dev,
418 buffer_info->dma,
419 buffer_info->length,
420 DMA_TO_DEVICE);
421 buffer_info->dma = 0;
422 }
423 if (buffer_info->skb) {
424 dev_kfree_skb_any(buffer_info->skb);
425 buffer_info->skb = NULL;
426 }
427 buffer_info->time_stamp = 0;
428 }
429
430 /**
431 * igbvf_setup_tx_resources - allocate Tx resources (Descriptors)
432 * @adapter: board private structure
433 *
434 * Return 0 on success, negative on failure
435 **/
igbvf_setup_tx_resources(struct igbvf_adapter * adapter,struct igbvf_ring * tx_ring)436 int igbvf_setup_tx_resources(struct igbvf_adapter *adapter,
437 struct igbvf_ring *tx_ring)
438 {
439 struct pci_dev *pdev = adapter->pdev;
440 int size;
441
442 size = sizeof(struct igbvf_buffer) * tx_ring->count;
443 tx_ring->buffer_info = vzalloc(size);
444 if (!tx_ring->buffer_info)
445 goto err;
446
447 /* round up to nearest 4K */
448 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
449 tx_ring->size = ALIGN(tx_ring->size, 4096);
450
451 tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
452 &tx_ring->dma, GFP_KERNEL);
453 if (!tx_ring->desc)
454 goto err;
455
456 tx_ring->adapter = adapter;
457 tx_ring->next_to_use = 0;
458 tx_ring->next_to_clean = 0;
459
460 return 0;
461 err:
462 vfree(tx_ring->buffer_info);
463 dev_err(&adapter->pdev->dev,
464 "Unable to allocate memory for the transmit descriptor ring\n");
465 return -ENOMEM;
466 }
467
468 /**
469 * igbvf_setup_rx_resources - allocate Rx resources (Descriptors)
470 * @adapter: board private structure
471 *
472 * Returns 0 on success, negative on failure
473 **/
igbvf_setup_rx_resources(struct igbvf_adapter * adapter,struct igbvf_ring * rx_ring)474 int igbvf_setup_rx_resources(struct igbvf_adapter *adapter,
475 struct igbvf_ring *rx_ring)
476 {
477 struct pci_dev *pdev = adapter->pdev;
478 int size, desc_len;
479
480 size = sizeof(struct igbvf_buffer) * rx_ring->count;
481 rx_ring->buffer_info = vzalloc(size);
482 if (!rx_ring->buffer_info)
483 goto err;
484
485 desc_len = sizeof(union e1000_adv_rx_desc);
486
487 /* Round up to nearest 4K */
488 rx_ring->size = rx_ring->count * desc_len;
489 rx_ring->size = ALIGN(rx_ring->size, 4096);
490
491 rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
492 &rx_ring->dma, GFP_KERNEL);
493 if (!rx_ring->desc)
494 goto err;
495
496 rx_ring->next_to_clean = 0;
497 rx_ring->next_to_use = 0;
498
499 rx_ring->adapter = adapter;
500
501 return 0;
502
503 err:
504 vfree(rx_ring->buffer_info);
505 rx_ring->buffer_info = NULL;
506 dev_err(&adapter->pdev->dev,
507 "Unable to allocate memory for the receive descriptor ring\n");
508 return -ENOMEM;
509 }
510
511 /**
512 * igbvf_clean_tx_ring - Free Tx Buffers
513 * @tx_ring: ring to be cleaned
514 **/
igbvf_clean_tx_ring(struct igbvf_ring * tx_ring)515 static void igbvf_clean_tx_ring(struct igbvf_ring *tx_ring)
516 {
517 struct igbvf_adapter *adapter = tx_ring->adapter;
518 struct igbvf_buffer *buffer_info;
519 unsigned long size;
520 unsigned int i;
521
522 if (!tx_ring->buffer_info)
523 return;
524
525 /* Free all the Tx ring sk_buffs */
526 for (i = 0; i < tx_ring->count; i++) {
527 buffer_info = &tx_ring->buffer_info[i];
528 igbvf_put_txbuf(adapter, buffer_info);
529 }
530
531 size = sizeof(struct igbvf_buffer) * tx_ring->count;
532 memset(tx_ring->buffer_info, 0, size);
533
534 /* Zero out the descriptor ring */
535 memset(tx_ring->desc, 0, tx_ring->size);
536
537 tx_ring->next_to_use = 0;
538 tx_ring->next_to_clean = 0;
539
540 writel(0, adapter->hw.hw_addr + tx_ring->head);
541 writel(0, adapter->hw.hw_addr + tx_ring->tail);
542 }
543
544 /**
545 * igbvf_free_tx_resources - Free Tx Resources per Queue
546 * @tx_ring: ring to free resources from
547 *
548 * Free all transmit software resources
549 **/
igbvf_free_tx_resources(struct igbvf_ring * tx_ring)550 void igbvf_free_tx_resources(struct igbvf_ring *tx_ring)
551 {
552 struct pci_dev *pdev = tx_ring->adapter->pdev;
553
554 igbvf_clean_tx_ring(tx_ring);
555
556 vfree(tx_ring->buffer_info);
557 tx_ring->buffer_info = NULL;
558
559 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
560 tx_ring->dma);
561
562 tx_ring->desc = NULL;
563 }
564
565 /**
566 * igbvf_clean_rx_ring - Free Rx Buffers per Queue
567 * @adapter: board private structure
568 **/
igbvf_clean_rx_ring(struct igbvf_ring * rx_ring)569 static void igbvf_clean_rx_ring(struct igbvf_ring *rx_ring)
570 {
571 struct igbvf_adapter *adapter = rx_ring->adapter;
572 struct igbvf_buffer *buffer_info;
573 struct pci_dev *pdev = adapter->pdev;
574 unsigned long size;
575 unsigned int i;
576
577 if (!rx_ring->buffer_info)
578 return;
579
580 /* Free all the Rx ring sk_buffs */
581 for (i = 0; i < rx_ring->count; i++) {
582 buffer_info = &rx_ring->buffer_info[i];
583 if (buffer_info->dma) {
584 if (adapter->rx_ps_hdr_size) {
585 dma_unmap_single(&pdev->dev, buffer_info->dma,
586 adapter->rx_ps_hdr_size,
587 DMA_FROM_DEVICE);
588 } else {
589 dma_unmap_single(&pdev->dev, buffer_info->dma,
590 adapter->rx_buffer_len,
591 DMA_FROM_DEVICE);
592 }
593 buffer_info->dma = 0;
594 }
595
596 if (buffer_info->skb) {
597 dev_kfree_skb(buffer_info->skb);
598 buffer_info->skb = NULL;
599 }
600
601 if (buffer_info->page) {
602 if (buffer_info->page_dma)
603 dma_unmap_page(&pdev->dev,
604 buffer_info->page_dma,
605 PAGE_SIZE / 2,
606 DMA_FROM_DEVICE);
607 put_page(buffer_info->page);
608 buffer_info->page = NULL;
609 buffer_info->page_dma = 0;
610 buffer_info->page_offset = 0;
611 }
612 }
613
614 size = sizeof(struct igbvf_buffer) * rx_ring->count;
615 memset(rx_ring->buffer_info, 0, size);
616
617 /* Zero out the descriptor ring */
618 memset(rx_ring->desc, 0, rx_ring->size);
619
620 rx_ring->next_to_clean = 0;
621 rx_ring->next_to_use = 0;
622
623 writel(0, adapter->hw.hw_addr + rx_ring->head);
624 writel(0, adapter->hw.hw_addr + rx_ring->tail);
625 }
626
627 /**
628 * igbvf_free_rx_resources - Free Rx Resources
629 * @rx_ring: ring to clean the resources from
630 *
631 * Free all receive software resources
632 **/
633
igbvf_free_rx_resources(struct igbvf_ring * rx_ring)634 void igbvf_free_rx_resources(struct igbvf_ring *rx_ring)
635 {
636 struct pci_dev *pdev = rx_ring->adapter->pdev;
637
638 igbvf_clean_rx_ring(rx_ring);
639
640 vfree(rx_ring->buffer_info);
641 rx_ring->buffer_info = NULL;
642
643 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
644 rx_ring->dma);
645 rx_ring->desc = NULL;
646 }
647
648 /**
649 * igbvf_update_itr - update the dynamic ITR value based on statistics
650 * @adapter: pointer to adapter
651 * @itr_setting: current adapter->itr
652 * @packets: the number of packets during this measurement interval
653 * @bytes: the number of bytes during this measurement interval
654 *
655 * Stores a new ITR value based on packets and byte counts during the last
656 * interrupt. The advantage of per interrupt computation is faster updates
657 * and more accurate ITR for the current traffic pattern. Constants in this
658 * function were computed based on theoretical maximum wire speed and thresholds
659 * were set based on testing data as well as attempting to minimize response
660 * time while increasing bulk throughput.
661 **/
igbvf_update_itr(struct igbvf_adapter * adapter,enum latency_range itr_setting,int packets,int bytes)662 static enum latency_range igbvf_update_itr(struct igbvf_adapter *adapter,
663 enum latency_range itr_setting,
664 int packets, int bytes)
665 {
666 enum latency_range retval = itr_setting;
667
668 if (packets == 0)
669 goto update_itr_done;
670
671 switch (itr_setting) {
672 case lowest_latency:
673 /* handle TSO and jumbo frames */
674 if (bytes/packets > 8000)
675 retval = bulk_latency;
676 else if ((packets < 5) && (bytes > 512))
677 retval = low_latency;
678 break;
679 case low_latency: /* 50 usec aka 20000 ints/s */
680 if (bytes > 10000) {
681 /* this if handles the TSO accounting */
682 if (bytes/packets > 8000)
683 retval = bulk_latency;
684 else if ((packets < 10) || ((bytes/packets) > 1200))
685 retval = bulk_latency;
686 else if ((packets > 35))
687 retval = lowest_latency;
688 } else if (bytes/packets > 2000) {
689 retval = bulk_latency;
690 } else if (packets <= 2 && bytes < 512) {
691 retval = lowest_latency;
692 }
693 break;
694 case bulk_latency: /* 250 usec aka 4000 ints/s */
695 if (bytes > 25000) {
696 if (packets > 35)
697 retval = low_latency;
698 } else if (bytes < 6000) {
699 retval = low_latency;
700 }
701 break;
702 default:
703 break;
704 }
705
706 update_itr_done:
707 return retval;
708 }
709
igbvf_range_to_itr(enum latency_range current_range)710 static int igbvf_range_to_itr(enum latency_range current_range)
711 {
712 int new_itr;
713
714 switch (current_range) {
715 /* counts and packets in update_itr are dependent on these numbers */
716 case lowest_latency:
717 new_itr = IGBVF_70K_ITR;
718 break;
719 case low_latency:
720 new_itr = IGBVF_20K_ITR;
721 break;
722 case bulk_latency:
723 new_itr = IGBVF_4K_ITR;
724 break;
725 default:
726 new_itr = IGBVF_START_ITR;
727 break;
728 }
729 return new_itr;
730 }
731
igbvf_set_itr(struct igbvf_adapter * adapter)732 static void igbvf_set_itr(struct igbvf_adapter *adapter)
733 {
734 u32 new_itr;
735
736 adapter->tx_ring->itr_range =
737 igbvf_update_itr(adapter,
738 adapter->tx_ring->itr_val,
739 adapter->total_tx_packets,
740 adapter->total_tx_bytes);
741
742 /* conservative mode (itr 3) eliminates the lowest_latency setting */
743 if (adapter->requested_itr == 3 &&
744 adapter->tx_ring->itr_range == lowest_latency)
745 adapter->tx_ring->itr_range = low_latency;
746
747 new_itr = igbvf_range_to_itr(adapter->tx_ring->itr_range);
748
749 if (new_itr != adapter->tx_ring->itr_val) {
750 u32 current_itr = adapter->tx_ring->itr_val;
751 /* this attempts to bias the interrupt rate towards Bulk
752 * by adding intermediate steps when interrupt rate is
753 * increasing
754 */
755 new_itr = new_itr > current_itr ?
756 min(current_itr + (new_itr >> 2), new_itr) :
757 new_itr;
758 adapter->tx_ring->itr_val = new_itr;
759
760 adapter->tx_ring->set_itr = 1;
761 }
762
763 adapter->rx_ring->itr_range =
764 igbvf_update_itr(adapter, adapter->rx_ring->itr_val,
765 adapter->total_rx_packets,
766 adapter->total_rx_bytes);
767 if (adapter->requested_itr == 3 &&
768 adapter->rx_ring->itr_range == lowest_latency)
769 adapter->rx_ring->itr_range = low_latency;
770
771 new_itr = igbvf_range_to_itr(adapter->rx_ring->itr_range);
772
773 if (new_itr != adapter->rx_ring->itr_val) {
774 u32 current_itr = adapter->rx_ring->itr_val;
775
776 new_itr = new_itr > current_itr ?
777 min(current_itr + (new_itr >> 2), new_itr) :
778 new_itr;
779 adapter->rx_ring->itr_val = new_itr;
780
781 adapter->rx_ring->set_itr = 1;
782 }
783 }
784
785 /**
786 * igbvf_clean_tx_irq - Reclaim resources after transmit completes
787 * @adapter: board private structure
788 *
789 * returns true if ring is completely cleaned
790 **/
igbvf_clean_tx_irq(struct igbvf_ring * tx_ring)791 static bool igbvf_clean_tx_irq(struct igbvf_ring *tx_ring)
792 {
793 struct igbvf_adapter *adapter = tx_ring->adapter;
794 struct net_device *netdev = adapter->netdev;
795 struct igbvf_buffer *buffer_info;
796 struct sk_buff *skb;
797 union e1000_adv_tx_desc *tx_desc, *eop_desc;
798 unsigned int total_bytes = 0, total_packets = 0;
799 unsigned int i, count = 0;
800 bool cleaned = false;
801
802 i = tx_ring->next_to_clean;
803 buffer_info = &tx_ring->buffer_info[i];
804 eop_desc = buffer_info->next_to_watch;
805
806 do {
807 /* if next_to_watch is not set then there is no work pending */
808 if (!eop_desc)
809 break;
810
811 /* prevent any other reads prior to eop_desc */
812 read_barrier_depends();
813
814 /* if DD is not set pending work has not been completed */
815 if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
816 break;
817
818 /* clear next_to_watch to prevent false hangs */
819 buffer_info->next_to_watch = NULL;
820
821 for (cleaned = false; !cleaned; count++) {
822 tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
823 cleaned = (tx_desc == eop_desc);
824 skb = buffer_info->skb;
825
826 if (skb) {
827 unsigned int segs, bytecount;
828
829 /* gso_segs is currently only valid for tcp */
830 segs = skb_shinfo(skb)->gso_segs ?: 1;
831 /* multiply data chunks by size of headers */
832 bytecount = ((segs - 1) * skb_headlen(skb)) +
833 skb->len;
834 total_packets += segs;
835 total_bytes += bytecount;
836 }
837
838 igbvf_put_txbuf(adapter, buffer_info);
839 tx_desc->wb.status = 0;
840
841 i++;
842 if (i == tx_ring->count)
843 i = 0;
844
845 buffer_info = &tx_ring->buffer_info[i];
846 }
847
848 eop_desc = buffer_info->next_to_watch;
849 } while (count < tx_ring->count);
850
851 tx_ring->next_to_clean = i;
852
853 if (unlikely(count && netif_carrier_ok(netdev) &&
854 igbvf_desc_unused(tx_ring) >= IGBVF_TX_QUEUE_WAKE)) {
855 /* Make sure that anybody stopping the queue after this
856 * sees the new next_to_clean.
857 */
858 smp_mb();
859 if (netif_queue_stopped(netdev) &&
860 !(test_bit(__IGBVF_DOWN, &adapter->state))) {
861 netif_wake_queue(netdev);
862 ++adapter->restart_queue;
863 }
864 }
865
866 adapter->net_stats.tx_bytes += total_bytes;
867 adapter->net_stats.tx_packets += total_packets;
868 return count < tx_ring->count;
869 }
870
igbvf_msix_other(int irq,void * data)871 static irqreturn_t igbvf_msix_other(int irq, void *data)
872 {
873 struct net_device *netdev = data;
874 struct igbvf_adapter *adapter = netdev_priv(netdev);
875 struct e1000_hw *hw = &adapter->hw;
876
877 adapter->int_counter1++;
878
879 netif_carrier_off(netdev);
880 hw->mac.get_link_status = 1;
881 if (!test_bit(__IGBVF_DOWN, &adapter->state))
882 mod_timer(&adapter->watchdog_timer, jiffies + 1);
883
884 ew32(EIMS, adapter->eims_other);
885
886 return IRQ_HANDLED;
887 }
888
igbvf_intr_msix_tx(int irq,void * data)889 static irqreturn_t igbvf_intr_msix_tx(int irq, void *data)
890 {
891 struct net_device *netdev = data;
892 struct igbvf_adapter *adapter = netdev_priv(netdev);
893 struct e1000_hw *hw = &adapter->hw;
894 struct igbvf_ring *tx_ring = adapter->tx_ring;
895
896 if (tx_ring->set_itr) {
897 writel(tx_ring->itr_val,
898 adapter->hw.hw_addr + tx_ring->itr_register);
899 adapter->tx_ring->set_itr = 0;
900 }
901
902 adapter->total_tx_bytes = 0;
903 adapter->total_tx_packets = 0;
904
905 /* auto mask will automatically re-enable the interrupt when we write
906 * EICS
907 */
908 if (!igbvf_clean_tx_irq(tx_ring))
909 /* Ring was not completely cleaned, so fire another interrupt */
910 ew32(EICS, tx_ring->eims_value);
911 else
912 ew32(EIMS, tx_ring->eims_value);
913
914 return IRQ_HANDLED;
915 }
916
igbvf_intr_msix_rx(int irq,void * data)917 static irqreturn_t igbvf_intr_msix_rx(int irq, void *data)
918 {
919 struct net_device *netdev = data;
920 struct igbvf_adapter *adapter = netdev_priv(netdev);
921
922 adapter->int_counter0++;
923
924 /* Write the ITR value calculated at the end of the
925 * previous interrupt.
926 */
927 if (adapter->rx_ring->set_itr) {
928 writel(adapter->rx_ring->itr_val,
929 adapter->hw.hw_addr + adapter->rx_ring->itr_register);
930 adapter->rx_ring->set_itr = 0;
931 }
932
933 if (napi_schedule_prep(&adapter->rx_ring->napi)) {
934 adapter->total_rx_bytes = 0;
935 adapter->total_rx_packets = 0;
936 __napi_schedule(&adapter->rx_ring->napi);
937 }
938
939 return IRQ_HANDLED;
940 }
941
942 #define IGBVF_NO_QUEUE -1
943
igbvf_assign_vector(struct igbvf_adapter * adapter,int rx_queue,int tx_queue,int msix_vector)944 static void igbvf_assign_vector(struct igbvf_adapter *adapter, int rx_queue,
945 int tx_queue, int msix_vector)
946 {
947 struct e1000_hw *hw = &adapter->hw;
948 u32 ivar, index;
949
950 /* 82576 uses a table-based method for assigning vectors.
951 * Each queue has a single entry in the table to which we write
952 * a vector number along with a "valid" bit. Sadly, the layout
953 * of the table is somewhat counterintuitive.
954 */
955 if (rx_queue > IGBVF_NO_QUEUE) {
956 index = (rx_queue >> 1);
957 ivar = array_er32(IVAR0, index);
958 if (rx_queue & 0x1) {
959 /* vector goes into third byte of register */
960 ivar = ivar & 0xFF00FFFF;
961 ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
962 } else {
963 /* vector goes into low byte of register */
964 ivar = ivar & 0xFFFFFF00;
965 ivar |= msix_vector | E1000_IVAR_VALID;
966 }
967 adapter->rx_ring[rx_queue].eims_value = 1 << msix_vector;
968 array_ew32(IVAR0, index, ivar);
969 }
970 if (tx_queue > IGBVF_NO_QUEUE) {
971 index = (tx_queue >> 1);
972 ivar = array_er32(IVAR0, index);
973 if (tx_queue & 0x1) {
974 /* vector goes into high byte of register */
975 ivar = ivar & 0x00FFFFFF;
976 ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
977 } else {
978 /* vector goes into second byte of register */
979 ivar = ivar & 0xFFFF00FF;
980 ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
981 }
982 adapter->tx_ring[tx_queue].eims_value = 1 << msix_vector;
983 array_ew32(IVAR0, index, ivar);
984 }
985 }
986
987 /**
988 * igbvf_configure_msix - Configure MSI-X hardware
989 * @adapter: board private structure
990 *
991 * igbvf_configure_msix sets up the hardware to properly
992 * generate MSI-X interrupts.
993 **/
igbvf_configure_msix(struct igbvf_adapter * adapter)994 static void igbvf_configure_msix(struct igbvf_adapter *adapter)
995 {
996 u32 tmp;
997 struct e1000_hw *hw = &adapter->hw;
998 struct igbvf_ring *tx_ring = adapter->tx_ring;
999 struct igbvf_ring *rx_ring = adapter->rx_ring;
1000 int vector = 0;
1001
1002 adapter->eims_enable_mask = 0;
1003
1004 igbvf_assign_vector(adapter, IGBVF_NO_QUEUE, 0, vector++);
1005 adapter->eims_enable_mask |= tx_ring->eims_value;
1006 writel(tx_ring->itr_val, hw->hw_addr + tx_ring->itr_register);
1007 igbvf_assign_vector(adapter, 0, IGBVF_NO_QUEUE, vector++);
1008 adapter->eims_enable_mask |= rx_ring->eims_value;
1009 writel(rx_ring->itr_val, hw->hw_addr + rx_ring->itr_register);
1010
1011 /* set vector for other causes, i.e. link changes */
1012
1013 tmp = (vector++ | E1000_IVAR_VALID);
1014
1015 ew32(IVAR_MISC, tmp);
1016
1017 adapter->eims_enable_mask = (1 << (vector)) - 1;
1018 adapter->eims_other = 1 << (vector - 1);
1019 e1e_flush();
1020 }
1021
igbvf_reset_interrupt_capability(struct igbvf_adapter * adapter)1022 static void igbvf_reset_interrupt_capability(struct igbvf_adapter *adapter)
1023 {
1024 if (adapter->msix_entries) {
1025 pci_disable_msix(adapter->pdev);
1026 kfree(adapter->msix_entries);
1027 adapter->msix_entries = NULL;
1028 }
1029 }
1030
1031 /**
1032 * igbvf_set_interrupt_capability - set MSI or MSI-X if supported
1033 * @adapter: board private structure
1034 *
1035 * Attempt to configure interrupts using the best available
1036 * capabilities of the hardware and kernel.
1037 **/
igbvf_set_interrupt_capability(struct igbvf_adapter * adapter)1038 static void igbvf_set_interrupt_capability(struct igbvf_adapter *adapter)
1039 {
1040 int err = -ENOMEM;
1041 int i;
1042
1043 /* we allocate 3 vectors, 1 for Tx, 1 for Rx, one for PF messages */
1044 adapter->msix_entries = kcalloc(3, sizeof(struct msix_entry),
1045 GFP_KERNEL);
1046 if (adapter->msix_entries) {
1047 for (i = 0; i < 3; i++)
1048 adapter->msix_entries[i].entry = i;
1049
1050 err = pci_enable_msix_range(adapter->pdev,
1051 adapter->msix_entries, 3, 3);
1052 }
1053
1054 if (err < 0) {
1055 /* MSI-X failed */
1056 dev_err(&adapter->pdev->dev,
1057 "Failed to initialize MSI-X interrupts.\n");
1058 igbvf_reset_interrupt_capability(adapter);
1059 }
1060 }
1061
1062 /**
1063 * igbvf_request_msix - Initialize MSI-X interrupts
1064 * @adapter: board private structure
1065 *
1066 * igbvf_request_msix allocates MSI-X vectors and requests interrupts from the
1067 * kernel.
1068 **/
igbvf_request_msix(struct igbvf_adapter * adapter)1069 static int igbvf_request_msix(struct igbvf_adapter *adapter)
1070 {
1071 struct net_device *netdev = adapter->netdev;
1072 int err = 0, vector = 0;
1073
1074 if (strlen(netdev->name) < (IFNAMSIZ - 5)) {
1075 sprintf(adapter->tx_ring->name, "%s-tx-0", netdev->name);
1076 sprintf(adapter->rx_ring->name, "%s-rx-0", netdev->name);
1077 } else {
1078 memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
1079 memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
1080 }
1081
1082 err = request_irq(adapter->msix_entries[vector].vector,
1083 igbvf_intr_msix_tx, 0, adapter->tx_ring->name,
1084 netdev);
1085 if (err)
1086 goto out;
1087
1088 adapter->tx_ring->itr_register = E1000_EITR(vector);
1089 adapter->tx_ring->itr_val = adapter->current_itr;
1090 vector++;
1091
1092 err = request_irq(adapter->msix_entries[vector].vector,
1093 igbvf_intr_msix_rx, 0, adapter->rx_ring->name,
1094 netdev);
1095 if (err)
1096 goto out;
1097
1098 adapter->rx_ring->itr_register = E1000_EITR(vector);
1099 adapter->rx_ring->itr_val = adapter->current_itr;
1100 vector++;
1101
1102 err = request_irq(adapter->msix_entries[vector].vector,
1103 igbvf_msix_other, 0, netdev->name, netdev);
1104 if (err)
1105 goto out;
1106
1107 igbvf_configure_msix(adapter);
1108 return 0;
1109 out:
1110 return err;
1111 }
1112
1113 /**
1114 * igbvf_alloc_queues - Allocate memory for all rings
1115 * @adapter: board private structure to initialize
1116 **/
igbvf_alloc_queues(struct igbvf_adapter * adapter)1117 static int igbvf_alloc_queues(struct igbvf_adapter *adapter)
1118 {
1119 struct net_device *netdev = adapter->netdev;
1120
1121 adapter->tx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
1122 if (!adapter->tx_ring)
1123 return -ENOMEM;
1124
1125 adapter->rx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
1126 if (!adapter->rx_ring) {
1127 kfree(adapter->tx_ring);
1128 return -ENOMEM;
1129 }
1130
1131 netif_napi_add(netdev, &adapter->rx_ring->napi, igbvf_poll, 64);
1132
1133 return 0;
1134 }
1135
1136 /**
1137 * igbvf_request_irq - initialize interrupts
1138 * @adapter: board private structure
1139 *
1140 * Attempts to configure interrupts using the best available
1141 * capabilities of the hardware and kernel.
1142 **/
igbvf_request_irq(struct igbvf_adapter * adapter)1143 static int igbvf_request_irq(struct igbvf_adapter *adapter)
1144 {
1145 int err = -1;
1146
1147 /* igbvf supports msi-x only */
1148 if (adapter->msix_entries)
1149 err = igbvf_request_msix(adapter);
1150
1151 if (!err)
1152 return err;
1153
1154 dev_err(&adapter->pdev->dev,
1155 "Unable to allocate interrupt, Error: %d\n", err);
1156
1157 return err;
1158 }
1159
igbvf_free_irq(struct igbvf_adapter * adapter)1160 static void igbvf_free_irq(struct igbvf_adapter *adapter)
1161 {
1162 struct net_device *netdev = adapter->netdev;
1163 int vector;
1164
1165 if (adapter->msix_entries) {
1166 for (vector = 0; vector < 3; vector++)
1167 free_irq(adapter->msix_entries[vector].vector, netdev);
1168 }
1169 }
1170
1171 /**
1172 * igbvf_irq_disable - Mask off interrupt generation on the NIC
1173 * @adapter: board private structure
1174 **/
igbvf_irq_disable(struct igbvf_adapter * adapter)1175 static void igbvf_irq_disable(struct igbvf_adapter *adapter)
1176 {
1177 struct e1000_hw *hw = &adapter->hw;
1178
1179 ew32(EIMC, ~0);
1180
1181 if (adapter->msix_entries)
1182 ew32(EIAC, 0);
1183 }
1184
1185 /**
1186 * igbvf_irq_enable - Enable default interrupt generation settings
1187 * @adapter: board private structure
1188 **/
igbvf_irq_enable(struct igbvf_adapter * adapter)1189 static void igbvf_irq_enable(struct igbvf_adapter *adapter)
1190 {
1191 struct e1000_hw *hw = &adapter->hw;
1192
1193 ew32(EIAC, adapter->eims_enable_mask);
1194 ew32(EIAM, adapter->eims_enable_mask);
1195 ew32(EIMS, adapter->eims_enable_mask);
1196 }
1197
1198 /**
1199 * igbvf_poll - NAPI Rx polling callback
1200 * @napi: struct associated with this polling callback
1201 * @budget: amount of packets driver is allowed to process this poll
1202 **/
igbvf_poll(struct napi_struct * napi,int budget)1203 static int igbvf_poll(struct napi_struct *napi, int budget)
1204 {
1205 struct igbvf_ring *rx_ring = container_of(napi, struct igbvf_ring, napi);
1206 struct igbvf_adapter *adapter = rx_ring->adapter;
1207 struct e1000_hw *hw = &adapter->hw;
1208 int work_done = 0;
1209
1210 igbvf_clean_rx_irq(adapter, &work_done, budget);
1211
1212 /* If not enough Rx work done, exit the polling mode */
1213 if (work_done < budget) {
1214 napi_complete_done(napi, work_done);
1215
1216 if (adapter->requested_itr & 3)
1217 igbvf_set_itr(adapter);
1218
1219 if (!test_bit(__IGBVF_DOWN, &adapter->state))
1220 ew32(EIMS, adapter->rx_ring->eims_value);
1221 }
1222
1223 return work_done;
1224 }
1225
1226 /**
1227 * igbvf_set_rlpml - set receive large packet maximum length
1228 * @adapter: board private structure
1229 *
1230 * Configure the maximum size of packets that will be received
1231 */
igbvf_set_rlpml(struct igbvf_adapter * adapter)1232 static void igbvf_set_rlpml(struct igbvf_adapter *adapter)
1233 {
1234 int max_frame_size;
1235 struct e1000_hw *hw = &adapter->hw;
1236
1237 max_frame_size = adapter->max_frame_size + VLAN_TAG_SIZE;
1238 e1000_rlpml_set_vf(hw, max_frame_size);
1239 }
1240
igbvf_vlan_rx_add_vid(struct net_device * netdev,__be16 proto,u16 vid)1241 static int igbvf_vlan_rx_add_vid(struct net_device *netdev,
1242 __be16 proto, u16 vid)
1243 {
1244 struct igbvf_adapter *adapter = netdev_priv(netdev);
1245 struct e1000_hw *hw = &adapter->hw;
1246
1247 if (hw->mac.ops.set_vfta(hw, vid, true)) {
1248 dev_err(&adapter->pdev->dev, "Failed to add vlan id %d\n", vid);
1249 return -EINVAL;
1250 }
1251 set_bit(vid, adapter->active_vlans);
1252 return 0;
1253 }
1254
igbvf_vlan_rx_kill_vid(struct net_device * netdev,__be16 proto,u16 vid)1255 static int igbvf_vlan_rx_kill_vid(struct net_device *netdev,
1256 __be16 proto, u16 vid)
1257 {
1258 struct igbvf_adapter *adapter = netdev_priv(netdev);
1259 struct e1000_hw *hw = &adapter->hw;
1260
1261 if (hw->mac.ops.set_vfta(hw, vid, false)) {
1262 dev_err(&adapter->pdev->dev,
1263 "Failed to remove vlan id %d\n", vid);
1264 return -EINVAL;
1265 }
1266 clear_bit(vid, adapter->active_vlans);
1267 return 0;
1268 }
1269
igbvf_restore_vlan(struct igbvf_adapter * adapter)1270 static void igbvf_restore_vlan(struct igbvf_adapter *adapter)
1271 {
1272 u16 vid;
1273
1274 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
1275 igbvf_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
1276 }
1277
1278 /**
1279 * igbvf_configure_tx - Configure Transmit Unit after Reset
1280 * @adapter: board private structure
1281 *
1282 * Configure the Tx unit of the MAC after a reset.
1283 **/
igbvf_configure_tx(struct igbvf_adapter * adapter)1284 static void igbvf_configure_tx(struct igbvf_adapter *adapter)
1285 {
1286 struct e1000_hw *hw = &adapter->hw;
1287 struct igbvf_ring *tx_ring = adapter->tx_ring;
1288 u64 tdba;
1289 u32 txdctl, dca_txctrl;
1290
1291 /* disable transmits */
1292 txdctl = er32(TXDCTL(0));
1293 ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
1294 e1e_flush();
1295 msleep(10);
1296
1297 /* Setup the HW Tx Head and Tail descriptor pointers */
1298 ew32(TDLEN(0), tx_ring->count * sizeof(union e1000_adv_tx_desc));
1299 tdba = tx_ring->dma;
1300 ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
1301 ew32(TDBAH(0), (tdba >> 32));
1302 ew32(TDH(0), 0);
1303 ew32(TDT(0), 0);
1304 tx_ring->head = E1000_TDH(0);
1305 tx_ring->tail = E1000_TDT(0);
1306
1307 /* Turn off Relaxed Ordering on head write-backs. The writebacks
1308 * MUST be delivered in order or it will completely screw up
1309 * our bookkeeping.
1310 */
1311 dca_txctrl = er32(DCA_TXCTRL(0));
1312 dca_txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
1313 ew32(DCA_TXCTRL(0), dca_txctrl);
1314
1315 /* enable transmits */
1316 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
1317 ew32(TXDCTL(0), txdctl);
1318
1319 /* Setup Transmit Descriptor Settings for eop descriptor */
1320 adapter->txd_cmd = E1000_ADVTXD_DCMD_EOP | E1000_ADVTXD_DCMD_IFCS;
1321
1322 /* enable Report Status bit */
1323 adapter->txd_cmd |= E1000_ADVTXD_DCMD_RS;
1324 }
1325
1326 /**
1327 * igbvf_setup_srrctl - configure the receive control registers
1328 * @adapter: Board private structure
1329 **/
igbvf_setup_srrctl(struct igbvf_adapter * adapter)1330 static void igbvf_setup_srrctl(struct igbvf_adapter *adapter)
1331 {
1332 struct e1000_hw *hw = &adapter->hw;
1333 u32 srrctl = 0;
1334
1335 srrctl &= ~(E1000_SRRCTL_DESCTYPE_MASK |
1336 E1000_SRRCTL_BSIZEHDR_MASK |
1337 E1000_SRRCTL_BSIZEPKT_MASK);
1338
1339 /* Enable queue drop to avoid head of line blocking */
1340 srrctl |= E1000_SRRCTL_DROP_EN;
1341
1342 /* Setup buffer sizes */
1343 srrctl |= ALIGN(adapter->rx_buffer_len, 1024) >>
1344 E1000_SRRCTL_BSIZEPKT_SHIFT;
1345
1346 if (adapter->rx_buffer_len < 2048) {
1347 adapter->rx_ps_hdr_size = 0;
1348 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
1349 } else {
1350 adapter->rx_ps_hdr_size = 128;
1351 srrctl |= adapter->rx_ps_hdr_size <<
1352 E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
1353 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
1354 }
1355
1356 ew32(SRRCTL(0), srrctl);
1357 }
1358
1359 /**
1360 * igbvf_configure_rx - Configure Receive Unit after Reset
1361 * @adapter: board private structure
1362 *
1363 * Configure the Rx unit of the MAC after a reset.
1364 **/
igbvf_configure_rx(struct igbvf_adapter * adapter)1365 static void igbvf_configure_rx(struct igbvf_adapter *adapter)
1366 {
1367 struct e1000_hw *hw = &adapter->hw;
1368 struct igbvf_ring *rx_ring = adapter->rx_ring;
1369 u64 rdba;
1370 u32 rdlen, rxdctl;
1371
1372 /* disable receives */
1373 rxdctl = er32(RXDCTL(0));
1374 ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
1375 e1e_flush();
1376 msleep(10);
1377
1378 rdlen = rx_ring->count * sizeof(union e1000_adv_rx_desc);
1379
1380 /* Setup the HW Rx Head and Tail Descriptor Pointers and
1381 * the Base and Length of the Rx Descriptor Ring
1382 */
1383 rdba = rx_ring->dma;
1384 ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
1385 ew32(RDBAH(0), (rdba >> 32));
1386 ew32(RDLEN(0), rx_ring->count * sizeof(union e1000_adv_rx_desc));
1387 rx_ring->head = E1000_RDH(0);
1388 rx_ring->tail = E1000_RDT(0);
1389 ew32(RDH(0), 0);
1390 ew32(RDT(0), 0);
1391
1392 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
1393 rxdctl &= 0xFFF00000;
1394 rxdctl |= IGBVF_RX_PTHRESH;
1395 rxdctl |= IGBVF_RX_HTHRESH << 8;
1396 rxdctl |= IGBVF_RX_WTHRESH << 16;
1397
1398 igbvf_set_rlpml(adapter);
1399
1400 /* enable receives */
1401 ew32(RXDCTL(0), rxdctl);
1402 }
1403
1404 /**
1405 * igbvf_set_multi - Multicast and Promiscuous mode set
1406 * @netdev: network interface device structure
1407 *
1408 * The set_multi entry point is called whenever the multicast address
1409 * list or the network interface flags are updated. This routine is
1410 * responsible for configuring the hardware for proper multicast,
1411 * promiscuous mode, and all-multi behavior.
1412 **/
igbvf_set_multi(struct net_device * netdev)1413 static void igbvf_set_multi(struct net_device *netdev)
1414 {
1415 struct igbvf_adapter *adapter = netdev_priv(netdev);
1416 struct e1000_hw *hw = &adapter->hw;
1417 struct netdev_hw_addr *ha;
1418 u8 *mta_list = NULL;
1419 int i;
1420
1421 if (!netdev_mc_empty(netdev)) {
1422 mta_list = kmalloc_array(netdev_mc_count(netdev), ETH_ALEN,
1423 GFP_ATOMIC);
1424 if (!mta_list)
1425 return;
1426 }
1427
1428 /* prepare a packed array of only addresses. */
1429 i = 0;
1430 netdev_for_each_mc_addr(ha, netdev)
1431 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
1432
1433 hw->mac.ops.update_mc_addr_list(hw, mta_list, i, 0, 0);
1434 kfree(mta_list);
1435 }
1436
1437 /**
1438 * igbvf_configure - configure the hardware for Rx and Tx
1439 * @adapter: private board structure
1440 **/
igbvf_configure(struct igbvf_adapter * adapter)1441 static void igbvf_configure(struct igbvf_adapter *adapter)
1442 {
1443 igbvf_set_multi(adapter->netdev);
1444
1445 igbvf_restore_vlan(adapter);
1446
1447 igbvf_configure_tx(adapter);
1448 igbvf_setup_srrctl(adapter);
1449 igbvf_configure_rx(adapter);
1450 igbvf_alloc_rx_buffers(adapter->rx_ring,
1451 igbvf_desc_unused(adapter->rx_ring));
1452 }
1453
1454 /* igbvf_reset - bring the hardware into a known good state
1455 * @adapter: private board structure
1456 *
1457 * This function boots the hardware and enables some settings that
1458 * require a configuration cycle of the hardware - those cannot be
1459 * set/changed during runtime. After reset the device needs to be
1460 * properly configured for Rx, Tx etc.
1461 */
igbvf_reset(struct igbvf_adapter * adapter)1462 static void igbvf_reset(struct igbvf_adapter *adapter)
1463 {
1464 struct e1000_mac_info *mac = &adapter->hw.mac;
1465 struct net_device *netdev = adapter->netdev;
1466 struct e1000_hw *hw = &adapter->hw;
1467
1468 /* Allow time for pending master requests to run */
1469 if (mac->ops.reset_hw(hw))
1470 dev_err(&adapter->pdev->dev, "PF still resetting\n");
1471
1472 mac->ops.init_hw(hw);
1473
1474 if (is_valid_ether_addr(adapter->hw.mac.addr)) {
1475 memcpy(netdev->dev_addr, adapter->hw.mac.addr,
1476 netdev->addr_len);
1477 memcpy(netdev->perm_addr, adapter->hw.mac.addr,
1478 netdev->addr_len);
1479 }
1480
1481 adapter->last_reset = jiffies;
1482 }
1483
igbvf_up(struct igbvf_adapter * adapter)1484 int igbvf_up(struct igbvf_adapter *adapter)
1485 {
1486 struct e1000_hw *hw = &adapter->hw;
1487
1488 /* hardware has been reset, we need to reload some things */
1489 igbvf_configure(adapter);
1490
1491 clear_bit(__IGBVF_DOWN, &adapter->state);
1492
1493 napi_enable(&adapter->rx_ring->napi);
1494 if (adapter->msix_entries)
1495 igbvf_configure_msix(adapter);
1496
1497 /* Clear any pending interrupts. */
1498 er32(EICR);
1499 igbvf_irq_enable(adapter);
1500
1501 /* start the watchdog */
1502 hw->mac.get_link_status = 1;
1503 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1504
1505 return 0;
1506 }
1507
igbvf_down(struct igbvf_adapter * adapter)1508 void igbvf_down(struct igbvf_adapter *adapter)
1509 {
1510 struct net_device *netdev = adapter->netdev;
1511 struct e1000_hw *hw = &adapter->hw;
1512 u32 rxdctl, txdctl;
1513
1514 /* signal that we're down so the interrupt handler does not
1515 * reschedule our watchdog timer
1516 */
1517 set_bit(__IGBVF_DOWN, &adapter->state);
1518
1519 /* disable receives in the hardware */
1520 rxdctl = er32(RXDCTL(0));
1521 ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
1522
1523 netif_carrier_off(netdev);
1524 netif_stop_queue(netdev);
1525
1526 /* disable transmits in the hardware */
1527 txdctl = er32(TXDCTL(0));
1528 ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
1529
1530 /* flush both disables and wait for them to finish */
1531 e1e_flush();
1532 msleep(10);
1533
1534 napi_disable(&adapter->rx_ring->napi);
1535
1536 igbvf_irq_disable(adapter);
1537
1538 del_timer_sync(&adapter->watchdog_timer);
1539
1540 /* record the stats before reset*/
1541 igbvf_update_stats(adapter);
1542
1543 adapter->link_speed = 0;
1544 adapter->link_duplex = 0;
1545
1546 igbvf_reset(adapter);
1547 igbvf_clean_tx_ring(adapter->tx_ring);
1548 igbvf_clean_rx_ring(adapter->rx_ring);
1549 }
1550
igbvf_reinit_locked(struct igbvf_adapter * adapter)1551 void igbvf_reinit_locked(struct igbvf_adapter *adapter)
1552 {
1553 might_sleep();
1554 while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
1555 usleep_range(1000, 2000);
1556 igbvf_down(adapter);
1557 igbvf_up(adapter);
1558 clear_bit(__IGBVF_RESETTING, &adapter->state);
1559 }
1560
1561 /**
1562 * igbvf_sw_init - Initialize general software structures (struct igbvf_adapter)
1563 * @adapter: board private structure to initialize
1564 *
1565 * igbvf_sw_init initializes the Adapter private data structure.
1566 * Fields are initialized based on PCI device information and
1567 * OS network device settings (MTU size).
1568 **/
igbvf_sw_init(struct igbvf_adapter * adapter)1569 static int igbvf_sw_init(struct igbvf_adapter *adapter)
1570 {
1571 struct net_device *netdev = adapter->netdev;
1572 s32 rc;
1573
1574 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
1575 adapter->rx_ps_hdr_size = 0;
1576 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1577 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
1578
1579 adapter->tx_int_delay = 8;
1580 adapter->tx_abs_int_delay = 32;
1581 adapter->rx_int_delay = 0;
1582 adapter->rx_abs_int_delay = 8;
1583 adapter->requested_itr = 3;
1584 adapter->current_itr = IGBVF_START_ITR;
1585
1586 /* Set various function pointers */
1587 adapter->ei->init_ops(&adapter->hw);
1588
1589 rc = adapter->hw.mac.ops.init_params(&adapter->hw);
1590 if (rc)
1591 return rc;
1592
1593 rc = adapter->hw.mbx.ops.init_params(&adapter->hw);
1594 if (rc)
1595 return rc;
1596
1597 igbvf_set_interrupt_capability(adapter);
1598
1599 if (igbvf_alloc_queues(adapter))
1600 return -ENOMEM;
1601
1602 spin_lock_init(&adapter->tx_queue_lock);
1603
1604 /* Explicitly disable IRQ since the NIC can be in any state. */
1605 igbvf_irq_disable(adapter);
1606
1607 spin_lock_init(&adapter->stats_lock);
1608
1609 set_bit(__IGBVF_DOWN, &adapter->state);
1610 return 0;
1611 }
1612
igbvf_initialize_last_counter_stats(struct igbvf_adapter * adapter)1613 static void igbvf_initialize_last_counter_stats(struct igbvf_adapter *adapter)
1614 {
1615 struct e1000_hw *hw = &adapter->hw;
1616
1617 adapter->stats.last_gprc = er32(VFGPRC);
1618 adapter->stats.last_gorc = er32(VFGORC);
1619 adapter->stats.last_gptc = er32(VFGPTC);
1620 adapter->stats.last_gotc = er32(VFGOTC);
1621 adapter->stats.last_mprc = er32(VFMPRC);
1622 adapter->stats.last_gotlbc = er32(VFGOTLBC);
1623 adapter->stats.last_gptlbc = er32(VFGPTLBC);
1624 adapter->stats.last_gorlbc = er32(VFGORLBC);
1625 adapter->stats.last_gprlbc = er32(VFGPRLBC);
1626
1627 adapter->stats.base_gprc = er32(VFGPRC);
1628 adapter->stats.base_gorc = er32(VFGORC);
1629 adapter->stats.base_gptc = er32(VFGPTC);
1630 adapter->stats.base_gotc = er32(VFGOTC);
1631 adapter->stats.base_mprc = er32(VFMPRC);
1632 adapter->stats.base_gotlbc = er32(VFGOTLBC);
1633 adapter->stats.base_gptlbc = er32(VFGPTLBC);
1634 adapter->stats.base_gorlbc = er32(VFGORLBC);
1635 adapter->stats.base_gprlbc = er32(VFGPRLBC);
1636 }
1637
1638 /**
1639 * igbvf_open - Called when a network interface is made active
1640 * @netdev: network interface device structure
1641 *
1642 * Returns 0 on success, negative value on failure
1643 *
1644 * The open entry point is called when a network interface is made
1645 * active by the system (IFF_UP). At this point all resources needed
1646 * for transmit and receive operations are allocated, the interrupt
1647 * handler is registered with the OS, the watchdog timer is started,
1648 * and the stack is notified that the interface is ready.
1649 **/
igbvf_open(struct net_device * netdev)1650 static int igbvf_open(struct net_device *netdev)
1651 {
1652 struct igbvf_adapter *adapter = netdev_priv(netdev);
1653 struct e1000_hw *hw = &adapter->hw;
1654 int err;
1655
1656 /* disallow open during test */
1657 if (test_bit(__IGBVF_TESTING, &adapter->state))
1658 return -EBUSY;
1659
1660 /* allocate transmit descriptors */
1661 err = igbvf_setup_tx_resources(adapter, adapter->tx_ring);
1662 if (err)
1663 goto err_setup_tx;
1664
1665 /* allocate receive descriptors */
1666 err = igbvf_setup_rx_resources(adapter, adapter->rx_ring);
1667 if (err)
1668 goto err_setup_rx;
1669
1670 /* before we allocate an interrupt, we must be ready to handle it.
1671 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1672 * as soon as we call pci_request_irq, so we have to setup our
1673 * clean_rx handler before we do so.
1674 */
1675 igbvf_configure(adapter);
1676
1677 err = igbvf_request_irq(adapter);
1678 if (err)
1679 goto err_req_irq;
1680
1681 /* From here on the code is the same as igbvf_up() */
1682 clear_bit(__IGBVF_DOWN, &adapter->state);
1683
1684 napi_enable(&adapter->rx_ring->napi);
1685
1686 /* clear any pending interrupts */
1687 er32(EICR);
1688
1689 igbvf_irq_enable(adapter);
1690
1691 /* start the watchdog */
1692 hw->mac.get_link_status = 1;
1693 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1694
1695 return 0;
1696
1697 err_req_irq:
1698 igbvf_free_rx_resources(adapter->rx_ring);
1699 err_setup_rx:
1700 igbvf_free_tx_resources(adapter->tx_ring);
1701 err_setup_tx:
1702 igbvf_reset(adapter);
1703
1704 return err;
1705 }
1706
1707 /**
1708 * igbvf_close - Disables a network interface
1709 * @netdev: network interface device structure
1710 *
1711 * Returns 0, this is not allowed to fail
1712 *
1713 * The close entry point is called when an interface is de-activated
1714 * by the OS. The hardware is still under the drivers control, but
1715 * needs to be disabled. A global MAC reset is issued to stop the
1716 * hardware, and all transmit and receive resources are freed.
1717 **/
igbvf_close(struct net_device * netdev)1718 static int igbvf_close(struct net_device *netdev)
1719 {
1720 struct igbvf_adapter *adapter = netdev_priv(netdev);
1721
1722 WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
1723 igbvf_down(adapter);
1724
1725 igbvf_free_irq(adapter);
1726
1727 igbvf_free_tx_resources(adapter->tx_ring);
1728 igbvf_free_rx_resources(adapter->rx_ring);
1729
1730 return 0;
1731 }
1732
1733 /**
1734 * igbvf_set_mac - Change the Ethernet Address of the NIC
1735 * @netdev: network interface device structure
1736 * @p: pointer to an address structure
1737 *
1738 * Returns 0 on success, negative on failure
1739 **/
igbvf_set_mac(struct net_device * netdev,void * p)1740 static int igbvf_set_mac(struct net_device *netdev, void *p)
1741 {
1742 struct igbvf_adapter *adapter = netdev_priv(netdev);
1743 struct e1000_hw *hw = &adapter->hw;
1744 struct sockaddr *addr = p;
1745
1746 if (!is_valid_ether_addr(addr->sa_data))
1747 return -EADDRNOTAVAIL;
1748
1749 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
1750
1751 hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
1752
1753 if (!ether_addr_equal(addr->sa_data, hw->mac.addr))
1754 return -EADDRNOTAVAIL;
1755
1756 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
1757
1758 return 0;
1759 }
1760
1761 #define UPDATE_VF_COUNTER(reg, name) \
1762 { \
1763 u32 current_counter = er32(reg); \
1764 if (current_counter < adapter->stats.last_##name) \
1765 adapter->stats.name += 0x100000000LL; \
1766 adapter->stats.last_##name = current_counter; \
1767 adapter->stats.name &= 0xFFFFFFFF00000000LL; \
1768 adapter->stats.name |= current_counter; \
1769 }
1770
1771 /**
1772 * igbvf_update_stats - Update the board statistics counters
1773 * @adapter: board private structure
1774 **/
igbvf_update_stats(struct igbvf_adapter * adapter)1775 void igbvf_update_stats(struct igbvf_adapter *adapter)
1776 {
1777 struct e1000_hw *hw = &adapter->hw;
1778 struct pci_dev *pdev = adapter->pdev;
1779
1780 /* Prevent stats update while adapter is being reset, link is down
1781 * or if the pci connection is down.
1782 */
1783 if (adapter->link_speed == 0)
1784 return;
1785
1786 if (test_bit(__IGBVF_RESETTING, &adapter->state))
1787 return;
1788
1789 if (pci_channel_offline(pdev))
1790 return;
1791
1792 UPDATE_VF_COUNTER(VFGPRC, gprc);
1793 UPDATE_VF_COUNTER(VFGORC, gorc);
1794 UPDATE_VF_COUNTER(VFGPTC, gptc);
1795 UPDATE_VF_COUNTER(VFGOTC, gotc);
1796 UPDATE_VF_COUNTER(VFMPRC, mprc);
1797 UPDATE_VF_COUNTER(VFGOTLBC, gotlbc);
1798 UPDATE_VF_COUNTER(VFGPTLBC, gptlbc);
1799 UPDATE_VF_COUNTER(VFGORLBC, gorlbc);
1800 UPDATE_VF_COUNTER(VFGPRLBC, gprlbc);
1801
1802 /* Fill out the OS statistics structure */
1803 adapter->net_stats.multicast = adapter->stats.mprc;
1804 }
1805
igbvf_print_link_info(struct igbvf_adapter * adapter)1806 static void igbvf_print_link_info(struct igbvf_adapter *adapter)
1807 {
1808 dev_info(&adapter->pdev->dev, "Link is Up %d Mbps %s Duplex\n",
1809 adapter->link_speed,
1810 adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half");
1811 }
1812
igbvf_has_link(struct igbvf_adapter * adapter)1813 static bool igbvf_has_link(struct igbvf_adapter *adapter)
1814 {
1815 struct e1000_hw *hw = &adapter->hw;
1816 s32 ret_val = E1000_SUCCESS;
1817 bool link_active;
1818
1819 /* If interface is down, stay link down */
1820 if (test_bit(__IGBVF_DOWN, &adapter->state))
1821 return false;
1822
1823 ret_val = hw->mac.ops.check_for_link(hw);
1824 link_active = !hw->mac.get_link_status;
1825
1826 /* if check for link returns error we will need to reset */
1827 if (ret_val && time_after(jiffies, adapter->last_reset + (10 * HZ)))
1828 schedule_work(&adapter->reset_task);
1829
1830 return link_active;
1831 }
1832
1833 /**
1834 * igbvf_watchdog - Timer Call-back
1835 * @data: pointer to adapter cast into an unsigned long
1836 **/
igbvf_watchdog(unsigned long data)1837 static void igbvf_watchdog(unsigned long data)
1838 {
1839 struct igbvf_adapter *adapter = (struct igbvf_adapter *)data;
1840
1841 /* Do the rest outside of interrupt context */
1842 schedule_work(&adapter->watchdog_task);
1843 }
1844
igbvf_watchdog_task(struct work_struct * work)1845 static void igbvf_watchdog_task(struct work_struct *work)
1846 {
1847 struct igbvf_adapter *adapter = container_of(work,
1848 struct igbvf_adapter,
1849 watchdog_task);
1850 struct net_device *netdev = adapter->netdev;
1851 struct e1000_mac_info *mac = &adapter->hw.mac;
1852 struct igbvf_ring *tx_ring = adapter->tx_ring;
1853 struct e1000_hw *hw = &adapter->hw;
1854 u32 link;
1855 int tx_pending = 0;
1856
1857 link = igbvf_has_link(adapter);
1858
1859 if (link) {
1860 if (!netif_carrier_ok(netdev)) {
1861 mac->ops.get_link_up_info(&adapter->hw,
1862 &adapter->link_speed,
1863 &adapter->link_duplex);
1864 igbvf_print_link_info(adapter);
1865
1866 netif_carrier_on(netdev);
1867 netif_wake_queue(netdev);
1868 }
1869 } else {
1870 if (netif_carrier_ok(netdev)) {
1871 adapter->link_speed = 0;
1872 adapter->link_duplex = 0;
1873 dev_info(&adapter->pdev->dev, "Link is Down\n");
1874 netif_carrier_off(netdev);
1875 netif_stop_queue(netdev);
1876 }
1877 }
1878
1879 if (netif_carrier_ok(netdev)) {
1880 igbvf_update_stats(adapter);
1881 } else {
1882 tx_pending = (igbvf_desc_unused(tx_ring) + 1 <
1883 tx_ring->count);
1884 if (tx_pending) {
1885 /* We've lost link, so the controller stops DMA,
1886 * but we've got queued Tx work that's never going
1887 * to get done, so reset controller to flush Tx.
1888 * (Do the reset outside of interrupt context).
1889 */
1890 adapter->tx_timeout_count++;
1891 schedule_work(&adapter->reset_task);
1892 }
1893 }
1894
1895 /* Cause software interrupt to ensure Rx ring is cleaned */
1896 ew32(EICS, adapter->rx_ring->eims_value);
1897
1898 /* Reset the timer */
1899 if (!test_bit(__IGBVF_DOWN, &adapter->state))
1900 mod_timer(&adapter->watchdog_timer,
1901 round_jiffies(jiffies + (2 * HZ)));
1902 }
1903
1904 #define IGBVF_TX_FLAGS_CSUM 0x00000001
1905 #define IGBVF_TX_FLAGS_VLAN 0x00000002
1906 #define IGBVF_TX_FLAGS_TSO 0x00000004
1907 #define IGBVF_TX_FLAGS_IPV4 0x00000008
1908 #define IGBVF_TX_FLAGS_VLAN_MASK 0xffff0000
1909 #define IGBVF_TX_FLAGS_VLAN_SHIFT 16
1910
igbvf_tso(struct igbvf_adapter * adapter,struct igbvf_ring * tx_ring,struct sk_buff * skb,u32 tx_flags,u8 * hdr_len,__be16 protocol)1911 static int igbvf_tso(struct igbvf_adapter *adapter,
1912 struct igbvf_ring *tx_ring,
1913 struct sk_buff *skb, u32 tx_flags, u8 *hdr_len,
1914 __be16 protocol)
1915 {
1916 struct e1000_adv_tx_context_desc *context_desc;
1917 struct igbvf_buffer *buffer_info;
1918 u32 info = 0, tu_cmd = 0;
1919 u32 mss_l4len_idx, l4len;
1920 unsigned int i;
1921 int err;
1922
1923 *hdr_len = 0;
1924
1925 err = skb_cow_head(skb, 0);
1926 if (err < 0) {
1927 dev_err(&adapter->pdev->dev, "igbvf_tso returning an error\n");
1928 return err;
1929 }
1930
1931 l4len = tcp_hdrlen(skb);
1932 *hdr_len += l4len;
1933
1934 if (protocol == htons(ETH_P_IP)) {
1935 struct iphdr *iph = ip_hdr(skb);
1936
1937 iph->tot_len = 0;
1938 iph->check = 0;
1939 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
1940 iph->daddr, 0,
1941 IPPROTO_TCP,
1942 0);
1943 } else if (skb_is_gso_v6(skb)) {
1944 ipv6_hdr(skb)->payload_len = 0;
1945 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
1946 &ipv6_hdr(skb)->daddr,
1947 0, IPPROTO_TCP, 0);
1948 }
1949
1950 i = tx_ring->next_to_use;
1951
1952 buffer_info = &tx_ring->buffer_info[i];
1953 context_desc = IGBVF_TX_CTXTDESC_ADV(*tx_ring, i);
1954 /* VLAN MACLEN IPLEN */
1955 if (tx_flags & IGBVF_TX_FLAGS_VLAN)
1956 info |= (tx_flags & IGBVF_TX_FLAGS_VLAN_MASK);
1957 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
1958 *hdr_len += skb_network_offset(skb);
1959 info |= (skb_transport_header(skb) - skb_network_header(skb));
1960 *hdr_len += (skb_transport_header(skb) - skb_network_header(skb));
1961 context_desc->vlan_macip_lens = cpu_to_le32(info);
1962
1963 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
1964 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
1965
1966 if (protocol == htons(ETH_P_IP))
1967 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
1968 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
1969
1970 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
1971
1972 /* MSS L4LEN IDX */
1973 mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT);
1974 mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT);
1975
1976 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
1977 context_desc->seqnum_seed = 0;
1978
1979 buffer_info->time_stamp = jiffies;
1980 buffer_info->dma = 0;
1981 i++;
1982 if (i == tx_ring->count)
1983 i = 0;
1984
1985 tx_ring->next_to_use = i;
1986
1987 return true;
1988 }
1989
igbvf_tx_csum(struct igbvf_adapter * adapter,struct igbvf_ring * tx_ring,struct sk_buff * skb,u32 tx_flags,__be16 protocol)1990 static inline bool igbvf_tx_csum(struct igbvf_adapter *adapter,
1991 struct igbvf_ring *tx_ring,
1992 struct sk_buff *skb, u32 tx_flags,
1993 __be16 protocol)
1994 {
1995 struct e1000_adv_tx_context_desc *context_desc;
1996 unsigned int i;
1997 struct igbvf_buffer *buffer_info;
1998 u32 info = 0, tu_cmd = 0;
1999
2000 if ((skb->ip_summed == CHECKSUM_PARTIAL) ||
2001 (tx_flags & IGBVF_TX_FLAGS_VLAN)) {
2002 i = tx_ring->next_to_use;
2003 buffer_info = &tx_ring->buffer_info[i];
2004 context_desc = IGBVF_TX_CTXTDESC_ADV(*tx_ring, i);
2005
2006 if (tx_flags & IGBVF_TX_FLAGS_VLAN)
2007 info |= (tx_flags & IGBVF_TX_FLAGS_VLAN_MASK);
2008
2009 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
2010 if (skb->ip_summed == CHECKSUM_PARTIAL)
2011 info |= (skb_transport_header(skb) -
2012 skb_network_header(skb));
2013
2014 context_desc->vlan_macip_lens = cpu_to_le32(info);
2015
2016 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
2017
2018 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2019 switch (protocol) {
2020 case htons(ETH_P_IP):
2021 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
2022 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2023 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2024 break;
2025 case htons(ETH_P_IPV6):
2026 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2027 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2028 break;
2029 default:
2030 break;
2031 }
2032 }
2033
2034 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
2035 context_desc->seqnum_seed = 0;
2036 context_desc->mss_l4len_idx = 0;
2037
2038 buffer_info->time_stamp = jiffies;
2039 buffer_info->dma = 0;
2040 i++;
2041 if (i == tx_ring->count)
2042 i = 0;
2043 tx_ring->next_to_use = i;
2044
2045 return true;
2046 }
2047
2048 return false;
2049 }
2050
igbvf_maybe_stop_tx(struct net_device * netdev,int size)2051 static int igbvf_maybe_stop_tx(struct net_device *netdev, int size)
2052 {
2053 struct igbvf_adapter *adapter = netdev_priv(netdev);
2054
2055 /* there is enough descriptors then we don't need to worry */
2056 if (igbvf_desc_unused(adapter->tx_ring) >= size)
2057 return 0;
2058
2059 netif_stop_queue(netdev);
2060
2061 /* Herbert's original patch had:
2062 * smp_mb__after_netif_stop_queue();
2063 * but since that doesn't exist yet, just open code it.
2064 */
2065 smp_mb();
2066
2067 /* We need to check again just in case room has been made available */
2068 if (igbvf_desc_unused(adapter->tx_ring) < size)
2069 return -EBUSY;
2070
2071 netif_wake_queue(netdev);
2072
2073 ++adapter->restart_queue;
2074 return 0;
2075 }
2076
2077 #define IGBVF_MAX_TXD_PWR 16
2078 #define IGBVF_MAX_DATA_PER_TXD (1 << IGBVF_MAX_TXD_PWR)
2079
igbvf_tx_map_adv(struct igbvf_adapter * adapter,struct igbvf_ring * tx_ring,struct sk_buff * skb)2080 static inline int igbvf_tx_map_adv(struct igbvf_adapter *adapter,
2081 struct igbvf_ring *tx_ring,
2082 struct sk_buff *skb)
2083 {
2084 struct igbvf_buffer *buffer_info;
2085 struct pci_dev *pdev = adapter->pdev;
2086 unsigned int len = skb_headlen(skb);
2087 unsigned int count = 0, i;
2088 unsigned int f;
2089
2090 i = tx_ring->next_to_use;
2091
2092 buffer_info = &tx_ring->buffer_info[i];
2093 BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
2094 buffer_info->length = len;
2095 /* set time_stamp *before* dma to help avoid a possible race */
2096 buffer_info->time_stamp = jiffies;
2097 buffer_info->mapped_as_page = false;
2098 buffer_info->dma = dma_map_single(&pdev->dev, skb->data, len,
2099 DMA_TO_DEVICE);
2100 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2101 goto dma_error;
2102
2103 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
2104 const struct skb_frag_struct *frag;
2105
2106 count++;
2107 i++;
2108 if (i == tx_ring->count)
2109 i = 0;
2110
2111 frag = &skb_shinfo(skb)->frags[f];
2112 len = skb_frag_size(frag);
2113
2114 buffer_info = &tx_ring->buffer_info[i];
2115 BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
2116 buffer_info->length = len;
2117 buffer_info->time_stamp = jiffies;
2118 buffer_info->mapped_as_page = true;
2119 buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag, 0, len,
2120 DMA_TO_DEVICE);
2121 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2122 goto dma_error;
2123 }
2124
2125 tx_ring->buffer_info[i].skb = skb;
2126
2127 return ++count;
2128
2129 dma_error:
2130 dev_err(&pdev->dev, "TX DMA map failed\n");
2131
2132 /* clear timestamp and dma mappings for failed buffer_info mapping */
2133 buffer_info->dma = 0;
2134 buffer_info->time_stamp = 0;
2135 buffer_info->length = 0;
2136 buffer_info->mapped_as_page = false;
2137 if (count)
2138 count--;
2139
2140 /* clear timestamp and dma mappings for remaining portion of packet */
2141 while (count--) {
2142 if (i == 0)
2143 i += tx_ring->count;
2144 i--;
2145 buffer_info = &tx_ring->buffer_info[i];
2146 igbvf_put_txbuf(adapter, buffer_info);
2147 }
2148
2149 return 0;
2150 }
2151
igbvf_tx_queue_adv(struct igbvf_adapter * adapter,struct igbvf_ring * tx_ring,int tx_flags,int count,unsigned int first,u32 paylen,u8 hdr_len)2152 static inline void igbvf_tx_queue_adv(struct igbvf_adapter *adapter,
2153 struct igbvf_ring *tx_ring,
2154 int tx_flags, int count,
2155 unsigned int first, u32 paylen,
2156 u8 hdr_len)
2157 {
2158 union e1000_adv_tx_desc *tx_desc = NULL;
2159 struct igbvf_buffer *buffer_info;
2160 u32 olinfo_status = 0, cmd_type_len;
2161 unsigned int i;
2162
2163 cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
2164 E1000_ADVTXD_DCMD_DEXT);
2165
2166 if (tx_flags & IGBVF_TX_FLAGS_VLAN)
2167 cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
2168
2169 if (tx_flags & IGBVF_TX_FLAGS_TSO) {
2170 cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
2171
2172 /* insert tcp checksum */
2173 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2174
2175 /* insert ip checksum */
2176 if (tx_flags & IGBVF_TX_FLAGS_IPV4)
2177 olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
2178
2179 } else if (tx_flags & IGBVF_TX_FLAGS_CSUM) {
2180 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2181 }
2182
2183 olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
2184
2185 i = tx_ring->next_to_use;
2186 while (count--) {
2187 buffer_info = &tx_ring->buffer_info[i];
2188 tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
2189 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
2190 tx_desc->read.cmd_type_len =
2191 cpu_to_le32(cmd_type_len | buffer_info->length);
2192 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2193 i++;
2194 if (i == tx_ring->count)
2195 i = 0;
2196 }
2197
2198 tx_desc->read.cmd_type_len |= cpu_to_le32(adapter->txd_cmd);
2199 /* Force memory writes to complete before letting h/w
2200 * know there are new descriptors to fetch. (Only
2201 * applicable for weak-ordered memory model archs,
2202 * such as IA-64).
2203 */
2204 wmb();
2205
2206 tx_ring->buffer_info[first].next_to_watch = tx_desc;
2207 tx_ring->next_to_use = i;
2208 writel(i, adapter->hw.hw_addr + tx_ring->tail);
2209 /* we need this if more than one processor can write to our tail
2210 * at a time, it synchronizes IO on IA64/Altix systems
2211 */
2212 mmiowb();
2213 }
2214
igbvf_xmit_frame_ring_adv(struct sk_buff * skb,struct net_device * netdev,struct igbvf_ring * tx_ring)2215 static netdev_tx_t igbvf_xmit_frame_ring_adv(struct sk_buff *skb,
2216 struct net_device *netdev,
2217 struct igbvf_ring *tx_ring)
2218 {
2219 struct igbvf_adapter *adapter = netdev_priv(netdev);
2220 unsigned int first, tx_flags = 0;
2221 u8 hdr_len = 0;
2222 int count = 0;
2223 int tso = 0;
2224 __be16 protocol = vlan_get_protocol(skb);
2225
2226 if (test_bit(__IGBVF_DOWN, &adapter->state)) {
2227 dev_kfree_skb_any(skb);
2228 return NETDEV_TX_OK;
2229 }
2230
2231 if (skb->len <= 0) {
2232 dev_kfree_skb_any(skb);
2233 return NETDEV_TX_OK;
2234 }
2235
2236 /* need: count + 4 desc gap to keep tail from touching
2237 * + 2 desc gap to keep tail from touching head,
2238 * + 1 desc for skb->data,
2239 * + 1 desc for context descriptor,
2240 * head, otherwise try next time
2241 */
2242 if (igbvf_maybe_stop_tx(netdev, skb_shinfo(skb)->nr_frags + 4)) {
2243 /* this is a hard error */
2244 return NETDEV_TX_BUSY;
2245 }
2246
2247 if (skb_vlan_tag_present(skb)) {
2248 tx_flags |= IGBVF_TX_FLAGS_VLAN;
2249 tx_flags |= (skb_vlan_tag_get(skb) <<
2250 IGBVF_TX_FLAGS_VLAN_SHIFT);
2251 }
2252
2253 if (protocol == htons(ETH_P_IP))
2254 tx_flags |= IGBVF_TX_FLAGS_IPV4;
2255
2256 first = tx_ring->next_to_use;
2257
2258 tso = skb_is_gso(skb) ?
2259 igbvf_tso(adapter, tx_ring, skb, tx_flags, &hdr_len, protocol) : 0;
2260 if (unlikely(tso < 0)) {
2261 dev_kfree_skb_any(skb);
2262 return NETDEV_TX_OK;
2263 }
2264
2265 if (tso)
2266 tx_flags |= IGBVF_TX_FLAGS_TSO;
2267 else if (igbvf_tx_csum(adapter, tx_ring, skb, tx_flags, protocol) &&
2268 (skb->ip_summed == CHECKSUM_PARTIAL))
2269 tx_flags |= IGBVF_TX_FLAGS_CSUM;
2270
2271 /* count reflects descriptors mapped, if 0 then mapping error
2272 * has occurred and we need to rewind the descriptor queue
2273 */
2274 count = igbvf_tx_map_adv(adapter, tx_ring, skb);
2275
2276 if (count) {
2277 igbvf_tx_queue_adv(adapter, tx_ring, tx_flags, count,
2278 first, skb->len, hdr_len);
2279 /* Make sure there is space in the ring for the next send. */
2280 igbvf_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 4);
2281 } else {
2282 dev_kfree_skb_any(skb);
2283 tx_ring->buffer_info[first].time_stamp = 0;
2284 tx_ring->next_to_use = first;
2285 }
2286
2287 return NETDEV_TX_OK;
2288 }
2289
igbvf_xmit_frame(struct sk_buff * skb,struct net_device * netdev)2290 static netdev_tx_t igbvf_xmit_frame(struct sk_buff *skb,
2291 struct net_device *netdev)
2292 {
2293 struct igbvf_adapter *adapter = netdev_priv(netdev);
2294 struct igbvf_ring *tx_ring;
2295
2296 if (test_bit(__IGBVF_DOWN, &adapter->state)) {
2297 dev_kfree_skb_any(skb);
2298 return NETDEV_TX_OK;
2299 }
2300
2301 tx_ring = &adapter->tx_ring[0];
2302
2303 return igbvf_xmit_frame_ring_adv(skb, netdev, tx_ring);
2304 }
2305
2306 /**
2307 * igbvf_tx_timeout - Respond to a Tx Hang
2308 * @netdev: network interface device structure
2309 **/
igbvf_tx_timeout(struct net_device * netdev)2310 static void igbvf_tx_timeout(struct net_device *netdev)
2311 {
2312 struct igbvf_adapter *adapter = netdev_priv(netdev);
2313
2314 /* Do the reset outside of interrupt context */
2315 adapter->tx_timeout_count++;
2316 schedule_work(&adapter->reset_task);
2317 }
2318
igbvf_reset_task(struct work_struct * work)2319 static void igbvf_reset_task(struct work_struct *work)
2320 {
2321 struct igbvf_adapter *adapter;
2322
2323 adapter = container_of(work, struct igbvf_adapter, reset_task);
2324
2325 igbvf_reinit_locked(adapter);
2326 }
2327
2328 /**
2329 * igbvf_get_stats - Get System Network Statistics
2330 * @netdev: network interface device structure
2331 *
2332 * Returns the address of the device statistics structure.
2333 * The statistics are actually updated from the timer callback.
2334 **/
igbvf_get_stats(struct net_device * netdev)2335 static struct net_device_stats *igbvf_get_stats(struct net_device *netdev)
2336 {
2337 struct igbvf_adapter *adapter = netdev_priv(netdev);
2338
2339 /* only return the current stats */
2340 return &adapter->net_stats;
2341 }
2342
2343 /**
2344 * igbvf_change_mtu - Change the Maximum Transfer Unit
2345 * @netdev: network interface device structure
2346 * @new_mtu: new value for maximum frame size
2347 *
2348 * Returns 0 on success, negative on failure
2349 **/
igbvf_change_mtu(struct net_device * netdev,int new_mtu)2350 static int igbvf_change_mtu(struct net_device *netdev, int new_mtu)
2351 {
2352 struct igbvf_adapter *adapter = netdev_priv(netdev);
2353 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
2354
2355 if (new_mtu < 68 || new_mtu > INT_MAX - ETH_HLEN - ETH_FCS_LEN ||
2356 max_frame > MAX_JUMBO_FRAME_SIZE)
2357 return -EINVAL;
2358
2359 #define MAX_STD_JUMBO_FRAME_SIZE 9234
2360 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
2361 dev_err(&adapter->pdev->dev, "MTU > 9216 not supported.\n");
2362 return -EINVAL;
2363 }
2364
2365 while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
2366 usleep_range(1000, 2000);
2367 /* igbvf_down has a dependency on max_frame_size */
2368 adapter->max_frame_size = max_frame;
2369 if (netif_running(netdev))
2370 igbvf_down(adapter);
2371
2372 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
2373 * means we reserve 2 more, this pushes us to allocate from the next
2374 * larger slab size.
2375 * i.e. RXBUFFER_2048 --> size-4096 slab
2376 * However with the new *_jumbo_rx* routines, jumbo receives will use
2377 * fragmented skbs
2378 */
2379
2380 if (max_frame <= 1024)
2381 adapter->rx_buffer_len = 1024;
2382 else if (max_frame <= 2048)
2383 adapter->rx_buffer_len = 2048;
2384 else
2385 #if (PAGE_SIZE / 2) > 16384
2386 adapter->rx_buffer_len = 16384;
2387 #else
2388 adapter->rx_buffer_len = PAGE_SIZE / 2;
2389 #endif
2390
2391 /* adjust allocation if LPE protects us, and we aren't using SBP */
2392 if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
2393 (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
2394 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN +
2395 ETH_FCS_LEN;
2396
2397 dev_info(&adapter->pdev->dev, "changing MTU from %d to %d\n",
2398 netdev->mtu, new_mtu);
2399 netdev->mtu = new_mtu;
2400
2401 if (netif_running(netdev))
2402 igbvf_up(adapter);
2403 else
2404 igbvf_reset(adapter);
2405
2406 clear_bit(__IGBVF_RESETTING, &adapter->state);
2407
2408 return 0;
2409 }
2410
igbvf_ioctl(struct net_device * netdev,struct ifreq * ifr,int cmd)2411 static int igbvf_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
2412 {
2413 switch (cmd) {
2414 default:
2415 return -EOPNOTSUPP;
2416 }
2417 }
2418
igbvf_suspend(struct pci_dev * pdev,pm_message_t state)2419 static int igbvf_suspend(struct pci_dev *pdev, pm_message_t state)
2420 {
2421 struct net_device *netdev = pci_get_drvdata(pdev);
2422 struct igbvf_adapter *adapter = netdev_priv(netdev);
2423 #ifdef CONFIG_PM
2424 int retval = 0;
2425 #endif
2426
2427 netif_device_detach(netdev);
2428
2429 if (netif_running(netdev)) {
2430 WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
2431 igbvf_down(adapter);
2432 igbvf_free_irq(adapter);
2433 }
2434
2435 #ifdef CONFIG_PM
2436 retval = pci_save_state(pdev);
2437 if (retval)
2438 return retval;
2439 #endif
2440
2441 pci_disable_device(pdev);
2442
2443 return 0;
2444 }
2445
2446 #ifdef CONFIG_PM
igbvf_resume(struct pci_dev * pdev)2447 static int igbvf_resume(struct pci_dev *pdev)
2448 {
2449 struct net_device *netdev = pci_get_drvdata(pdev);
2450 struct igbvf_adapter *adapter = netdev_priv(netdev);
2451 u32 err;
2452
2453 pci_restore_state(pdev);
2454 err = pci_enable_device_mem(pdev);
2455 if (err) {
2456 dev_err(&pdev->dev, "Cannot enable PCI device from suspend\n");
2457 return err;
2458 }
2459
2460 pci_set_master(pdev);
2461
2462 if (netif_running(netdev)) {
2463 err = igbvf_request_irq(adapter);
2464 if (err)
2465 return err;
2466 }
2467
2468 igbvf_reset(adapter);
2469
2470 if (netif_running(netdev))
2471 igbvf_up(adapter);
2472
2473 netif_device_attach(netdev);
2474
2475 return 0;
2476 }
2477 #endif
2478
igbvf_shutdown(struct pci_dev * pdev)2479 static void igbvf_shutdown(struct pci_dev *pdev)
2480 {
2481 igbvf_suspend(pdev, PMSG_SUSPEND);
2482 }
2483
2484 #ifdef CONFIG_NET_POLL_CONTROLLER
2485 /* Polling 'interrupt' - used by things like netconsole to send skbs
2486 * without having to re-enable interrupts. It's not called while
2487 * the interrupt routine is executing.
2488 */
igbvf_netpoll(struct net_device * netdev)2489 static void igbvf_netpoll(struct net_device *netdev)
2490 {
2491 struct igbvf_adapter *adapter = netdev_priv(netdev);
2492
2493 disable_irq(adapter->pdev->irq);
2494
2495 igbvf_clean_tx_irq(adapter->tx_ring);
2496
2497 enable_irq(adapter->pdev->irq);
2498 }
2499 #endif
2500
2501 /**
2502 * igbvf_io_error_detected - called when PCI error is detected
2503 * @pdev: Pointer to PCI device
2504 * @state: The current pci connection state
2505 *
2506 * This function is called after a PCI bus error affecting
2507 * this device has been detected.
2508 */
igbvf_io_error_detected(struct pci_dev * pdev,pci_channel_state_t state)2509 static pci_ers_result_t igbvf_io_error_detected(struct pci_dev *pdev,
2510 pci_channel_state_t state)
2511 {
2512 struct net_device *netdev = pci_get_drvdata(pdev);
2513 struct igbvf_adapter *adapter = netdev_priv(netdev);
2514
2515 netif_device_detach(netdev);
2516
2517 if (state == pci_channel_io_perm_failure)
2518 return PCI_ERS_RESULT_DISCONNECT;
2519
2520 if (netif_running(netdev))
2521 igbvf_down(adapter);
2522 pci_disable_device(pdev);
2523
2524 /* Request a slot slot reset. */
2525 return PCI_ERS_RESULT_NEED_RESET;
2526 }
2527
2528 /**
2529 * igbvf_io_slot_reset - called after the pci bus has been reset.
2530 * @pdev: Pointer to PCI device
2531 *
2532 * Restart the card from scratch, as if from a cold-boot. Implementation
2533 * resembles the first-half of the igbvf_resume routine.
2534 */
igbvf_io_slot_reset(struct pci_dev * pdev)2535 static pci_ers_result_t igbvf_io_slot_reset(struct pci_dev *pdev)
2536 {
2537 struct net_device *netdev = pci_get_drvdata(pdev);
2538 struct igbvf_adapter *adapter = netdev_priv(netdev);
2539
2540 if (pci_enable_device_mem(pdev)) {
2541 dev_err(&pdev->dev,
2542 "Cannot re-enable PCI device after reset.\n");
2543 return PCI_ERS_RESULT_DISCONNECT;
2544 }
2545 pci_set_master(pdev);
2546
2547 igbvf_reset(adapter);
2548
2549 return PCI_ERS_RESULT_RECOVERED;
2550 }
2551
2552 /**
2553 * igbvf_io_resume - called when traffic can start flowing again.
2554 * @pdev: Pointer to PCI device
2555 *
2556 * This callback is called when the error recovery driver tells us that
2557 * its OK to resume normal operation. Implementation resembles the
2558 * second-half of the igbvf_resume routine.
2559 */
igbvf_io_resume(struct pci_dev * pdev)2560 static void igbvf_io_resume(struct pci_dev *pdev)
2561 {
2562 struct net_device *netdev = pci_get_drvdata(pdev);
2563 struct igbvf_adapter *adapter = netdev_priv(netdev);
2564
2565 if (netif_running(netdev)) {
2566 if (igbvf_up(adapter)) {
2567 dev_err(&pdev->dev,
2568 "can't bring device back up after reset\n");
2569 return;
2570 }
2571 }
2572
2573 netif_device_attach(netdev);
2574 }
2575
igbvf_print_device_info(struct igbvf_adapter * adapter)2576 static void igbvf_print_device_info(struct igbvf_adapter *adapter)
2577 {
2578 struct e1000_hw *hw = &adapter->hw;
2579 struct net_device *netdev = adapter->netdev;
2580 struct pci_dev *pdev = adapter->pdev;
2581
2582 if (hw->mac.type == e1000_vfadapt_i350)
2583 dev_info(&pdev->dev, "Intel(R) I350 Virtual Function\n");
2584 else
2585 dev_info(&pdev->dev, "Intel(R) 82576 Virtual Function\n");
2586 dev_info(&pdev->dev, "Address: %pM\n", netdev->dev_addr);
2587 }
2588
igbvf_set_features(struct net_device * netdev,netdev_features_t features)2589 static int igbvf_set_features(struct net_device *netdev,
2590 netdev_features_t features)
2591 {
2592 struct igbvf_adapter *adapter = netdev_priv(netdev);
2593
2594 if (features & NETIF_F_RXCSUM)
2595 adapter->flags &= ~IGBVF_FLAG_RX_CSUM_DISABLED;
2596 else
2597 adapter->flags |= IGBVF_FLAG_RX_CSUM_DISABLED;
2598
2599 return 0;
2600 }
2601
2602 static const struct net_device_ops igbvf_netdev_ops = {
2603 .ndo_open = igbvf_open,
2604 .ndo_stop = igbvf_close,
2605 .ndo_start_xmit = igbvf_xmit_frame,
2606 .ndo_get_stats = igbvf_get_stats,
2607 .ndo_set_rx_mode = igbvf_set_multi,
2608 .ndo_set_mac_address = igbvf_set_mac,
2609 .ndo_change_mtu = igbvf_change_mtu,
2610 .ndo_do_ioctl = igbvf_ioctl,
2611 .ndo_tx_timeout = igbvf_tx_timeout,
2612 .ndo_vlan_rx_add_vid = igbvf_vlan_rx_add_vid,
2613 .ndo_vlan_rx_kill_vid = igbvf_vlan_rx_kill_vid,
2614 #ifdef CONFIG_NET_POLL_CONTROLLER
2615 .ndo_poll_controller = igbvf_netpoll,
2616 #endif
2617 .ndo_set_features = igbvf_set_features,
2618 .ndo_features_check = passthru_features_check,
2619 };
2620
2621 /**
2622 * igbvf_probe - Device Initialization Routine
2623 * @pdev: PCI device information struct
2624 * @ent: entry in igbvf_pci_tbl
2625 *
2626 * Returns 0 on success, negative on failure
2627 *
2628 * igbvf_probe initializes an adapter identified by a pci_dev structure.
2629 * The OS initialization, configuring of the adapter private structure,
2630 * and a hardware reset occur.
2631 **/
igbvf_probe(struct pci_dev * pdev,const struct pci_device_id * ent)2632 static int igbvf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2633 {
2634 struct net_device *netdev;
2635 struct igbvf_adapter *adapter;
2636 struct e1000_hw *hw;
2637 const struct igbvf_info *ei = igbvf_info_tbl[ent->driver_data];
2638
2639 static int cards_found;
2640 int err, pci_using_dac;
2641
2642 err = pci_enable_device_mem(pdev);
2643 if (err)
2644 return err;
2645
2646 pci_using_dac = 0;
2647 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2648 if (!err) {
2649 pci_using_dac = 1;
2650 } else {
2651 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
2652 if (err) {
2653 dev_err(&pdev->dev,
2654 "No usable DMA configuration, aborting\n");
2655 goto err_dma;
2656 }
2657 }
2658
2659 err = pci_request_regions(pdev, igbvf_driver_name);
2660 if (err)
2661 goto err_pci_reg;
2662
2663 pci_set_master(pdev);
2664
2665 err = -ENOMEM;
2666 netdev = alloc_etherdev(sizeof(struct igbvf_adapter));
2667 if (!netdev)
2668 goto err_alloc_etherdev;
2669
2670 SET_NETDEV_DEV(netdev, &pdev->dev);
2671
2672 pci_set_drvdata(pdev, netdev);
2673 adapter = netdev_priv(netdev);
2674 hw = &adapter->hw;
2675 adapter->netdev = netdev;
2676 adapter->pdev = pdev;
2677 adapter->ei = ei;
2678 adapter->pba = ei->pba;
2679 adapter->flags = ei->flags;
2680 adapter->hw.back = adapter;
2681 adapter->hw.mac.type = ei->mac;
2682 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
2683
2684 /* PCI config space info */
2685
2686 hw->vendor_id = pdev->vendor;
2687 hw->device_id = pdev->device;
2688 hw->subsystem_vendor_id = pdev->subsystem_vendor;
2689 hw->subsystem_device_id = pdev->subsystem_device;
2690 hw->revision_id = pdev->revision;
2691
2692 err = -EIO;
2693 adapter->hw.hw_addr = ioremap(pci_resource_start(pdev, 0),
2694 pci_resource_len(pdev, 0));
2695
2696 if (!adapter->hw.hw_addr)
2697 goto err_ioremap;
2698
2699 if (ei->get_variants) {
2700 err = ei->get_variants(adapter);
2701 if (err)
2702 goto err_get_variants;
2703 }
2704
2705 /* setup adapter struct */
2706 err = igbvf_sw_init(adapter);
2707 if (err)
2708 goto err_sw_init;
2709
2710 /* construct the net_device struct */
2711 netdev->netdev_ops = &igbvf_netdev_ops;
2712
2713 igbvf_set_ethtool_ops(netdev);
2714 netdev->watchdog_timeo = 5 * HZ;
2715 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2716
2717 adapter->bd_number = cards_found++;
2718
2719 netdev->hw_features = NETIF_F_SG |
2720 NETIF_F_IP_CSUM |
2721 NETIF_F_IPV6_CSUM |
2722 NETIF_F_TSO |
2723 NETIF_F_TSO6 |
2724 NETIF_F_RXCSUM;
2725
2726 netdev->features = netdev->hw_features |
2727 NETIF_F_HW_VLAN_CTAG_TX |
2728 NETIF_F_HW_VLAN_CTAG_RX |
2729 NETIF_F_HW_VLAN_CTAG_FILTER;
2730
2731 if (pci_using_dac)
2732 netdev->features |= NETIF_F_HIGHDMA;
2733
2734 netdev->vlan_features |= NETIF_F_TSO;
2735 netdev->vlan_features |= NETIF_F_TSO6;
2736 netdev->vlan_features |= NETIF_F_IP_CSUM;
2737 netdev->vlan_features |= NETIF_F_IPV6_CSUM;
2738 netdev->vlan_features |= NETIF_F_SG;
2739
2740 /*reset the controller to put the device in a known good state */
2741 err = hw->mac.ops.reset_hw(hw);
2742 if (err) {
2743 dev_info(&pdev->dev,
2744 "PF still in reset state. Is the PF interface up?\n");
2745 } else {
2746 err = hw->mac.ops.read_mac_addr(hw);
2747 if (err)
2748 dev_info(&pdev->dev, "Error reading MAC address.\n");
2749 else if (is_zero_ether_addr(adapter->hw.mac.addr))
2750 dev_info(&pdev->dev,
2751 "MAC address not assigned by administrator.\n");
2752 memcpy(netdev->dev_addr, adapter->hw.mac.addr,
2753 netdev->addr_len);
2754 }
2755
2756 if (!is_valid_ether_addr(netdev->dev_addr)) {
2757 dev_info(&pdev->dev, "Assigning random MAC address.\n");
2758 eth_hw_addr_random(netdev);
2759 memcpy(adapter->hw.mac.addr, netdev->dev_addr,
2760 netdev->addr_len);
2761 }
2762
2763 setup_timer(&adapter->watchdog_timer, &igbvf_watchdog,
2764 (unsigned long)adapter);
2765
2766 INIT_WORK(&adapter->reset_task, igbvf_reset_task);
2767 INIT_WORK(&adapter->watchdog_task, igbvf_watchdog_task);
2768
2769 /* ring size defaults */
2770 adapter->rx_ring->count = 1024;
2771 adapter->tx_ring->count = 1024;
2772
2773 /* reset the hardware with the new settings */
2774 igbvf_reset(adapter);
2775
2776 /* set hardware-specific flags */
2777 if (adapter->hw.mac.type == e1000_vfadapt_i350)
2778 adapter->flags |= IGBVF_FLAG_RX_LB_VLAN_BSWAP;
2779
2780 strcpy(netdev->name, "eth%d");
2781 err = register_netdev(netdev);
2782 if (err)
2783 goto err_hw_init;
2784
2785 /* tell the stack to leave us alone until igbvf_open() is called */
2786 netif_carrier_off(netdev);
2787 netif_stop_queue(netdev);
2788
2789 igbvf_print_device_info(adapter);
2790
2791 igbvf_initialize_last_counter_stats(adapter);
2792
2793 return 0;
2794
2795 err_hw_init:
2796 kfree(adapter->tx_ring);
2797 kfree(adapter->rx_ring);
2798 err_sw_init:
2799 igbvf_reset_interrupt_capability(adapter);
2800 err_get_variants:
2801 iounmap(adapter->hw.hw_addr);
2802 err_ioremap:
2803 free_netdev(netdev);
2804 err_alloc_etherdev:
2805 pci_release_regions(pdev);
2806 err_pci_reg:
2807 err_dma:
2808 pci_disable_device(pdev);
2809 return err;
2810 }
2811
2812 /**
2813 * igbvf_remove - Device Removal Routine
2814 * @pdev: PCI device information struct
2815 *
2816 * igbvf_remove is called by the PCI subsystem to alert the driver
2817 * that it should release a PCI device. The could be caused by a
2818 * Hot-Plug event, or because the driver is going to be removed from
2819 * memory.
2820 **/
igbvf_remove(struct pci_dev * pdev)2821 static void igbvf_remove(struct pci_dev *pdev)
2822 {
2823 struct net_device *netdev = pci_get_drvdata(pdev);
2824 struct igbvf_adapter *adapter = netdev_priv(netdev);
2825 struct e1000_hw *hw = &adapter->hw;
2826
2827 /* The watchdog timer may be rescheduled, so explicitly
2828 * disable it from being rescheduled.
2829 */
2830 set_bit(__IGBVF_DOWN, &adapter->state);
2831 del_timer_sync(&adapter->watchdog_timer);
2832
2833 cancel_work_sync(&adapter->reset_task);
2834 cancel_work_sync(&adapter->watchdog_task);
2835
2836 unregister_netdev(netdev);
2837
2838 igbvf_reset_interrupt_capability(adapter);
2839
2840 /* it is important to delete the NAPI struct prior to freeing the
2841 * Rx ring so that you do not end up with null pointer refs
2842 */
2843 netif_napi_del(&adapter->rx_ring->napi);
2844 kfree(adapter->tx_ring);
2845 kfree(adapter->rx_ring);
2846
2847 iounmap(hw->hw_addr);
2848 if (hw->flash_address)
2849 iounmap(hw->flash_address);
2850 pci_release_regions(pdev);
2851
2852 free_netdev(netdev);
2853
2854 pci_disable_device(pdev);
2855 }
2856
2857 /* PCI Error Recovery (ERS) */
2858 static const struct pci_error_handlers igbvf_err_handler = {
2859 .error_detected = igbvf_io_error_detected,
2860 .slot_reset = igbvf_io_slot_reset,
2861 .resume = igbvf_io_resume,
2862 };
2863
2864 static const struct pci_device_id igbvf_pci_tbl[] = {
2865 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_VF), board_vf },
2866 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_VF), board_i350_vf },
2867 { } /* terminate list */
2868 };
2869 MODULE_DEVICE_TABLE(pci, igbvf_pci_tbl);
2870
2871 /* PCI Device API Driver */
2872 static struct pci_driver igbvf_driver = {
2873 .name = igbvf_driver_name,
2874 .id_table = igbvf_pci_tbl,
2875 .probe = igbvf_probe,
2876 .remove = igbvf_remove,
2877 #ifdef CONFIG_PM
2878 /* Power Management Hooks */
2879 .suspend = igbvf_suspend,
2880 .resume = igbvf_resume,
2881 #endif
2882 .shutdown = igbvf_shutdown,
2883 .err_handler = &igbvf_err_handler
2884 };
2885
2886 /**
2887 * igbvf_init_module - Driver Registration Routine
2888 *
2889 * igbvf_init_module is the first routine called when the driver is
2890 * loaded. All it does is register with the PCI subsystem.
2891 **/
igbvf_init_module(void)2892 static int __init igbvf_init_module(void)
2893 {
2894 int ret;
2895
2896 pr_info("%s - version %s\n", igbvf_driver_string, igbvf_driver_version);
2897 pr_info("%s\n", igbvf_copyright);
2898
2899 ret = pci_register_driver(&igbvf_driver);
2900
2901 return ret;
2902 }
2903 module_init(igbvf_init_module);
2904
2905 /**
2906 * igbvf_exit_module - Driver Exit Cleanup Routine
2907 *
2908 * igbvf_exit_module is called just before the driver is removed
2909 * from memory.
2910 **/
igbvf_exit_module(void)2911 static void __exit igbvf_exit_module(void)
2912 {
2913 pci_unregister_driver(&igbvf_driver);
2914 }
2915 module_exit(igbvf_exit_module);
2916
2917 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
2918 MODULE_DESCRIPTION("Intel(R) Gigabit Virtual Function Network Driver");
2919 MODULE_LICENSE("GPL");
2920 MODULE_VERSION(DRV_VERSION);
2921
2922 /* netdev.c */
2923