1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
5 * Copyright 2007-2010 Johannes Berg <johannes@sipsolutions.net>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12
13 #include <linux/jiffies.h>
14 #include <linux/slab.h>
15 #include <linux/kernel.h>
16 #include <linux/skbuff.h>
17 #include <linux/netdevice.h>
18 #include <linux/etherdevice.h>
19 #include <linux/rcupdate.h>
20 #include <linux/export.h>
21 #include <net/mac80211.h>
22 #include <net/ieee80211_radiotap.h>
23 #include <asm/unaligned.h>
24
25 #include "ieee80211_i.h"
26 #include "driver-ops.h"
27 #include "led.h"
28 #include "mesh.h"
29 #include "wep.h"
30 #include "wpa.h"
31 #include "tkip.h"
32 #include "wme.h"
33 #include "rate.h"
34
ieee80211_rx_stats(struct net_device * dev,u32 len)35 static inline void ieee80211_rx_stats(struct net_device *dev, u32 len)
36 {
37 struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
38
39 u64_stats_update_begin(&tstats->syncp);
40 tstats->rx_packets++;
41 tstats->rx_bytes += len;
42 u64_stats_update_end(&tstats->syncp);
43 }
44
ieee80211_get_bssid(struct ieee80211_hdr * hdr,size_t len,enum nl80211_iftype type)45 static u8 *ieee80211_get_bssid(struct ieee80211_hdr *hdr, size_t len,
46 enum nl80211_iftype type)
47 {
48 __le16 fc = hdr->frame_control;
49
50 if (ieee80211_is_data(fc)) {
51 if (len < 24) /* drop incorrect hdr len (data) */
52 return NULL;
53
54 if (ieee80211_has_a4(fc))
55 return NULL;
56 if (ieee80211_has_tods(fc))
57 return hdr->addr1;
58 if (ieee80211_has_fromds(fc))
59 return hdr->addr2;
60
61 return hdr->addr3;
62 }
63
64 if (ieee80211_is_mgmt(fc)) {
65 if (len < 24) /* drop incorrect hdr len (mgmt) */
66 return NULL;
67 return hdr->addr3;
68 }
69
70 if (ieee80211_is_ctl(fc)) {
71 if (ieee80211_is_pspoll(fc))
72 return hdr->addr1;
73
74 if (ieee80211_is_back_req(fc)) {
75 switch (type) {
76 case NL80211_IFTYPE_STATION:
77 return hdr->addr2;
78 case NL80211_IFTYPE_AP:
79 case NL80211_IFTYPE_AP_VLAN:
80 return hdr->addr1;
81 default:
82 break; /* fall through to the return */
83 }
84 }
85 }
86
87 return NULL;
88 }
89
90 /*
91 * monitor mode reception
92 *
93 * This function cleans up the SKB, i.e. it removes all the stuff
94 * only useful for monitoring.
95 */
remove_monitor_info(struct ieee80211_local * local,struct sk_buff * skb,unsigned int rtap_vendor_space)96 static struct sk_buff *remove_monitor_info(struct ieee80211_local *local,
97 struct sk_buff *skb,
98 unsigned int rtap_vendor_space)
99 {
100 if (ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)) {
101 if (likely(skb->len > FCS_LEN))
102 __pskb_trim(skb, skb->len - FCS_LEN);
103 else {
104 /* driver bug */
105 WARN_ON(1);
106 dev_kfree_skb(skb);
107 return NULL;
108 }
109 }
110
111 __pskb_pull(skb, rtap_vendor_space);
112
113 return skb;
114 }
115
should_drop_frame(struct sk_buff * skb,int present_fcs_len,unsigned int rtap_vendor_space)116 static inline bool should_drop_frame(struct sk_buff *skb, int present_fcs_len,
117 unsigned int rtap_vendor_space)
118 {
119 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
120 struct ieee80211_hdr *hdr;
121
122 hdr = (void *)(skb->data + rtap_vendor_space);
123
124 if (status->flag & (RX_FLAG_FAILED_FCS_CRC |
125 RX_FLAG_FAILED_PLCP_CRC))
126 return true;
127
128 if (unlikely(skb->len < 16 + present_fcs_len + rtap_vendor_space))
129 return true;
130
131 if (ieee80211_is_ctl(hdr->frame_control) &&
132 !ieee80211_is_pspoll(hdr->frame_control) &&
133 !ieee80211_is_back_req(hdr->frame_control))
134 return true;
135
136 return false;
137 }
138
139 static int
ieee80211_rx_radiotap_hdrlen(struct ieee80211_local * local,struct ieee80211_rx_status * status,struct sk_buff * skb)140 ieee80211_rx_radiotap_hdrlen(struct ieee80211_local *local,
141 struct ieee80211_rx_status *status,
142 struct sk_buff *skb)
143 {
144 int len;
145
146 /* always present fields */
147 len = sizeof(struct ieee80211_radiotap_header) + 8;
148
149 /* allocate extra bitmaps */
150 if (status->chains)
151 len += 4 * hweight8(status->chains);
152
153 if (ieee80211_have_rx_timestamp(status)) {
154 len = ALIGN(len, 8);
155 len += 8;
156 }
157 if (ieee80211_hw_check(&local->hw, SIGNAL_DBM))
158 len += 1;
159
160 /* antenna field, if we don't have per-chain info */
161 if (!status->chains)
162 len += 1;
163
164 /* padding for RX_FLAGS if necessary */
165 len = ALIGN(len, 2);
166
167 if (status->flag & RX_FLAG_HT) /* HT info */
168 len += 3;
169
170 if (status->flag & RX_FLAG_AMPDU_DETAILS) {
171 len = ALIGN(len, 4);
172 len += 8;
173 }
174
175 if (status->flag & RX_FLAG_VHT) {
176 len = ALIGN(len, 2);
177 len += 12;
178 }
179
180 if (status->chains) {
181 /* antenna and antenna signal fields */
182 len += 2 * hweight8(status->chains);
183 }
184
185 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
186 struct ieee80211_vendor_radiotap *rtap = (void *)skb->data;
187
188 /* vendor presence bitmap */
189 len += 4;
190 /* alignment for fixed 6-byte vendor data header */
191 len = ALIGN(len, 2);
192 /* vendor data header */
193 len += 6;
194 if (WARN_ON(rtap->align == 0))
195 rtap->align = 1;
196 len = ALIGN(len, rtap->align);
197 len += rtap->len + rtap->pad;
198 }
199
200 return len;
201 }
202
203 /*
204 * ieee80211_add_rx_radiotap_header - add radiotap header
205 *
206 * add a radiotap header containing all the fields which the hardware provided.
207 */
208 static void
ieee80211_add_rx_radiotap_header(struct ieee80211_local * local,struct sk_buff * skb,struct ieee80211_rate * rate,int rtap_len,bool has_fcs)209 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local,
210 struct sk_buff *skb,
211 struct ieee80211_rate *rate,
212 int rtap_len, bool has_fcs)
213 {
214 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
215 struct ieee80211_radiotap_header *rthdr;
216 unsigned char *pos;
217 __le32 *it_present;
218 u32 it_present_val;
219 u16 rx_flags = 0;
220 u16 channel_flags = 0;
221 int mpdulen, chain;
222 unsigned long chains = status->chains;
223 struct ieee80211_vendor_radiotap rtap = {};
224
225 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
226 rtap = *(struct ieee80211_vendor_radiotap *)skb->data;
227 /* rtap.len and rtap.pad are undone immediately */
228 skb_pull(skb, sizeof(rtap) + rtap.len + rtap.pad);
229 }
230
231 mpdulen = skb->len;
232 if (!(has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)))
233 mpdulen += FCS_LEN;
234
235 rthdr = (struct ieee80211_radiotap_header *)skb_push(skb, rtap_len);
236 memset(rthdr, 0, rtap_len - rtap.len - rtap.pad);
237 it_present = &rthdr->it_present;
238
239 /* radiotap header, set always present flags */
240 rthdr->it_len = cpu_to_le16(rtap_len);
241 it_present_val = BIT(IEEE80211_RADIOTAP_FLAGS) |
242 BIT(IEEE80211_RADIOTAP_CHANNEL) |
243 BIT(IEEE80211_RADIOTAP_RX_FLAGS);
244
245 if (!status->chains)
246 it_present_val |= BIT(IEEE80211_RADIOTAP_ANTENNA);
247
248 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) {
249 it_present_val |=
250 BIT(IEEE80211_RADIOTAP_EXT) |
251 BIT(IEEE80211_RADIOTAP_RADIOTAP_NAMESPACE);
252 put_unaligned_le32(it_present_val, it_present);
253 it_present++;
254 it_present_val = BIT(IEEE80211_RADIOTAP_ANTENNA) |
255 BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
256 }
257
258 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
259 it_present_val |= BIT(IEEE80211_RADIOTAP_VENDOR_NAMESPACE) |
260 BIT(IEEE80211_RADIOTAP_EXT);
261 put_unaligned_le32(it_present_val, it_present);
262 it_present++;
263 it_present_val = rtap.present;
264 }
265
266 put_unaligned_le32(it_present_val, it_present);
267
268 pos = (void *)(it_present + 1);
269
270 /* the order of the following fields is important */
271
272 /* IEEE80211_RADIOTAP_TSFT */
273 if (ieee80211_have_rx_timestamp(status)) {
274 /* padding */
275 while ((pos - (u8 *)rthdr) & 7)
276 *pos++ = 0;
277 put_unaligned_le64(
278 ieee80211_calculate_rx_timestamp(local, status,
279 mpdulen, 0),
280 pos);
281 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT);
282 pos += 8;
283 }
284
285 /* IEEE80211_RADIOTAP_FLAGS */
286 if (has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS))
287 *pos |= IEEE80211_RADIOTAP_F_FCS;
288 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
289 *pos |= IEEE80211_RADIOTAP_F_BADFCS;
290 if (status->flag & RX_FLAG_SHORTPRE)
291 *pos |= IEEE80211_RADIOTAP_F_SHORTPRE;
292 pos++;
293
294 /* IEEE80211_RADIOTAP_RATE */
295 if (!rate || status->flag & (RX_FLAG_HT | RX_FLAG_VHT)) {
296 /*
297 * Without rate information don't add it. If we have,
298 * MCS information is a separate field in radiotap,
299 * added below. The byte here is needed as padding
300 * for the channel though, so initialise it to 0.
301 */
302 *pos = 0;
303 } else {
304 int shift = 0;
305 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE);
306 if (status->flag & RX_FLAG_10MHZ)
307 shift = 1;
308 else if (status->flag & RX_FLAG_5MHZ)
309 shift = 2;
310 *pos = DIV_ROUND_UP(rate->bitrate, 5 * (1 << shift));
311 }
312 pos++;
313
314 /* IEEE80211_RADIOTAP_CHANNEL */
315 put_unaligned_le16(status->freq, pos);
316 pos += 2;
317 if (status->flag & RX_FLAG_10MHZ)
318 channel_flags |= IEEE80211_CHAN_HALF;
319 else if (status->flag & RX_FLAG_5MHZ)
320 channel_flags |= IEEE80211_CHAN_QUARTER;
321
322 if (status->band == IEEE80211_BAND_5GHZ)
323 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ;
324 else if (status->flag & (RX_FLAG_HT | RX_FLAG_VHT))
325 channel_flags |= IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
326 else if (rate && rate->flags & IEEE80211_RATE_ERP_G)
327 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ;
328 else if (rate)
329 channel_flags |= IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ;
330 else
331 channel_flags |= IEEE80211_CHAN_2GHZ;
332 put_unaligned_le16(channel_flags, pos);
333 pos += 2;
334
335 /* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */
336 if (ieee80211_hw_check(&local->hw, SIGNAL_DBM) &&
337 !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
338 *pos = status->signal;
339 rthdr->it_present |=
340 cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
341 pos++;
342 }
343
344 /* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */
345
346 if (!status->chains) {
347 /* IEEE80211_RADIOTAP_ANTENNA */
348 *pos = status->antenna;
349 pos++;
350 }
351
352 /* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */
353
354 /* IEEE80211_RADIOTAP_RX_FLAGS */
355 /* ensure 2 byte alignment for the 2 byte field as required */
356 if ((pos - (u8 *)rthdr) & 1)
357 *pos++ = 0;
358 if (status->flag & RX_FLAG_FAILED_PLCP_CRC)
359 rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP;
360 put_unaligned_le16(rx_flags, pos);
361 pos += 2;
362
363 if (status->flag & RX_FLAG_HT) {
364 unsigned int stbc;
365
366 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_MCS);
367 *pos++ = local->hw.radiotap_mcs_details;
368 *pos = 0;
369 if (status->flag & RX_FLAG_SHORT_GI)
370 *pos |= IEEE80211_RADIOTAP_MCS_SGI;
371 if (status->flag & RX_FLAG_40MHZ)
372 *pos |= IEEE80211_RADIOTAP_MCS_BW_40;
373 if (status->flag & RX_FLAG_HT_GF)
374 *pos |= IEEE80211_RADIOTAP_MCS_FMT_GF;
375 if (status->flag & RX_FLAG_LDPC)
376 *pos |= IEEE80211_RADIOTAP_MCS_FEC_LDPC;
377 stbc = (status->flag & RX_FLAG_STBC_MASK) >> RX_FLAG_STBC_SHIFT;
378 *pos |= stbc << IEEE80211_RADIOTAP_MCS_STBC_SHIFT;
379 pos++;
380 *pos++ = status->rate_idx;
381 }
382
383 if (status->flag & RX_FLAG_AMPDU_DETAILS) {
384 u16 flags = 0;
385
386 /* ensure 4 byte alignment */
387 while ((pos - (u8 *)rthdr) & 3)
388 pos++;
389 rthdr->it_present |=
390 cpu_to_le32(1 << IEEE80211_RADIOTAP_AMPDU_STATUS);
391 put_unaligned_le32(status->ampdu_reference, pos);
392 pos += 4;
393 if (status->flag & RX_FLAG_AMPDU_LAST_KNOWN)
394 flags |= IEEE80211_RADIOTAP_AMPDU_LAST_KNOWN;
395 if (status->flag & RX_FLAG_AMPDU_IS_LAST)
396 flags |= IEEE80211_RADIOTAP_AMPDU_IS_LAST;
397 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_ERROR)
398 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_ERR;
399 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
400 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_KNOWN;
401 put_unaligned_le16(flags, pos);
402 pos += 2;
403 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
404 *pos++ = status->ampdu_delimiter_crc;
405 else
406 *pos++ = 0;
407 *pos++ = 0;
408 }
409
410 if (status->flag & RX_FLAG_VHT) {
411 u16 known = local->hw.radiotap_vht_details;
412
413 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_VHT);
414 put_unaligned_le16(known, pos);
415 pos += 2;
416 /* flags */
417 if (status->flag & RX_FLAG_SHORT_GI)
418 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_SGI;
419 /* in VHT, STBC is binary */
420 if (status->flag & RX_FLAG_STBC_MASK)
421 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_STBC;
422 if (status->vht_flag & RX_VHT_FLAG_BF)
423 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_BEAMFORMED;
424 pos++;
425 /* bandwidth */
426 if (status->vht_flag & RX_VHT_FLAG_80MHZ)
427 *pos++ = 4;
428 else if (status->vht_flag & RX_VHT_FLAG_160MHZ)
429 *pos++ = 11;
430 else if (status->flag & RX_FLAG_40MHZ)
431 *pos++ = 1;
432 else /* 20 MHz */
433 *pos++ = 0;
434 /* MCS/NSS */
435 *pos = (status->rate_idx << 4) | status->vht_nss;
436 pos += 4;
437 /* coding field */
438 if (status->flag & RX_FLAG_LDPC)
439 *pos |= IEEE80211_RADIOTAP_CODING_LDPC_USER0;
440 pos++;
441 /* group ID */
442 pos++;
443 /* partial_aid */
444 pos += 2;
445 }
446
447 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) {
448 *pos++ = status->chain_signal[chain];
449 *pos++ = chain;
450 }
451
452 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
453 /* ensure 2 byte alignment for the vendor field as required */
454 if ((pos - (u8 *)rthdr) & 1)
455 *pos++ = 0;
456 *pos++ = rtap.oui[0];
457 *pos++ = rtap.oui[1];
458 *pos++ = rtap.oui[2];
459 *pos++ = rtap.subns;
460 put_unaligned_le16(rtap.len, pos);
461 pos += 2;
462 /* align the actual payload as requested */
463 while ((pos - (u8 *)rthdr) & (rtap.align - 1))
464 *pos++ = 0;
465 /* data (and possible padding) already follows */
466 }
467 }
468
469 /*
470 * This function copies a received frame to all monitor interfaces and
471 * returns a cleaned-up SKB that no longer includes the FCS nor the
472 * radiotap header the driver might have added.
473 */
474 static struct sk_buff *
ieee80211_rx_monitor(struct ieee80211_local * local,struct sk_buff * origskb,struct ieee80211_rate * rate)475 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb,
476 struct ieee80211_rate *rate)
477 {
478 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb);
479 struct ieee80211_sub_if_data *sdata;
480 int rt_hdrlen, needed_headroom;
481 struct sk_buff *skb, *skb2;
482 struct net_device *prev_dev = NULL;
483 int present_fcs_len = 0;
484 unsigned int rtap_vendor_space = 0;
485
486 if (unlikely(status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA)) {
487 struct ieee80211_vendor_radiotap *rtap = (void *)origskb->data;
488
489 rtap_vendor_space = sizeof(*rtap) + rtap->len + rtap->pad;
490 }
491
492 /*
493 * First, we may need to make a copy of the skb because
494 * (1) we need to modify it for radiotap (if not present), and
495 * (2) the other RX handlers will modify the skb we got.
496 *
497 * We don't need to, of course, if we aren't going to return
498 * the SKB because it has a bad FCS/PLCP checksum.
499 */
500
501 if (ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS))
502 present_fcs_len = FCS_LEN;
503
504 /* ensure hdr->frame_control and vendor radiotap data are in skb head */
505 if (!pskb_may_pull(origskb, 2 + rtap_vendor_space)) {
506 dev_kfree_skb(origskb);
507 return NULL;
508 }
509
510 if (!local->monitors) {
511 if (should_drop_frame(origskb, present_fcs_len,
512 rtap_vendor_space)) {
513 dev_kfree_skb(origskb);
514 return NULL;
515 }
516
517 return remove_monitor_info(local, origskb, rtap_vendor_space);
518 }
519
520 /* room for the radiotap header based on driver features */
521 rt_hdrlen = ieee80211_rx_radiotap_hdrlen(local, status, origskb);
522 needed_headroom = rt_hdrlen - rtap_vendor_space;
523
524 if (should_drop_frame(origskb, present_fcs_len, rtap_vendor_space)) {
525 /* only need to expand headroom if necessary */
526 skb = origskb;
527 origskb = NULL;
528
529 /*
530 * This shouldn't trigger often because most devices have an
531 * RX header they pull before we get here, and that should
532 * be big enough for our radiotap information. We should
533 * probably export the length to drivers so that we can have
534 * them allocate enough headroom to start with.
535 */
536 if (skb_headroom(skb) < needed_headroom &&
537 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) {
538 dev_kfree_skb(skb);
539 return NULL;
540 }
541 } else {
542 /*
543 * Need to make a copy and possibly remove radiotap header
544 * and FCS from the original.
545 */
546 skb = skb_copy_expand(origskb, needed_headroom, 0, GFP_ATOMIC);
547
548 origskb = remove_monitor_info(local, origskb,
549 rtap_vendor_space);
550
551 if (!skb)
552 return origskb;
553 }
554
555 /* prepend radiotap information */
556 ieee80211_add_rx_radiotap_header(local, skb, rate, rt_hdrlen, true);
557
558 skb_reset_mac_header(skb);
559 skb->ip_summed = CHECKSUM_UNNECESSARY;
560 skb->pkt_type = PACKET_OTHERHOST;
561 skb->protocol = htons(ETH_P_802_2);
562
563 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
564 if (sdata->vif.type != NL80211_IFTYPE_MONITOR)
565 continue;
566
567 if (sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES)
568 continue;
569
570 if (!ieee80211_sdata_running(sdata))
571 continue;
572
573 if (prev_dev) {
574 skb2 = skb_clone(skb, GFP_ATOMIC);
575 if (skb2) {
576 skb2->dev = prev_dev;
577 netif_receive_skb(skb2);
578 }
579 }
580
581 prev_dev = sdata->dev;
582 ieee80211_rx_stats(sdata->dev, skb->len);
583 }
584
585 if (prev_dev) {
586 skb->dev = prev_dev;
587 netif_receive_skb(skb);
588 } else
589 dev_kfree_skb(skb);
590
591 return origskb;
592 }
593
ieee80211_parse_qos(struct ieee80211_rx_data * rx)594 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx)
595 {
596 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
597 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
598 int tid, seqno_idx, security_idx;
599
600 /* does the frame have a qos control field? */
601 if (ieee80211_is_data_qos(hdr->frame_control)) {
602 u8 *qc = ieee80211_get_qos_ctl(hdr);
603 /* frame has qos control */
604 tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
605 if (*qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT)
606 status->rx_flags |= IEEE80211_RX_AMSDU;
607
608 seqno_idx = tid;
609 security_idx = tid;
610 } else {
611 /*
612 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"):
613 *
614 * Sequence numbers for management frames, QoS data
615 * frames with a broadcast/multicast address in the
616 * Address 1 field, and all non-QoS data frames sent
617 * by QoS STAs are assigned using an additional single
618 * modulo-4096 counter, [...]
619 *
620 * We also use that counter for non-QoS STAs.
621 */
622 seqno_idx = IEEE80211_NUM_TIDS;
623 security_idx = 0;
624 if (ieee80211_is_mgmt(hdr->frame_control))
625 security_idx = IEEE80211_NUM_TIDS;
626 tid = 0;
627 }
628
629 rx->seqno_idx = seqno_idx;
630 rx->security_idx = security_idx;
631 /* Set skb->priority to 1d tag if highest order bit of TID is not set.
632 * For now, set skb->priority to 0 for other cases. */
633 rx->skb->priority = (tid > 7) ? 0 : tid;
634 }
635
636 /**
637 * DOC: Packet alignment
638 *
639 * Drivers always need to pass packets that are aligned to two-byte boundaries
640 * to the stack.
641 *
642 * Additionally, should, if possible, align the payload data in a way that
643 * guarantees that the contained IP header is aligned to a four-byte
644 * boundary. In the case of regular frames, this simply means aligning the
645 * payload to a four-byte boundary (because either the IP header is directly
646 * contained, or IV/RFC1042 headers that have a length divisible by four are
647 * in front of it). If the payload data is not properly aligned and the
648 * architecture doesn't support efficient unaligned operations, mac80211
649 * will align the data.
650 *
651 * With A-MSDU frames, however, the payload data address must yield two modulo
652 * four because there are 14-byte 802.3 headers within the A-MSDU frames that
653 * push the IP header further back to a multiple of four again. Thankfully, the
654 * specs were sane enough this time around to require padding each A-MSDU
655 * subframe to a length that is a multiple of four.
656 *
657 * Padding like Atheros hardware adds which is between the 802.11 header and
658 * the payload is not supported, the driver is required to move the 802.11
659 * header to be directly in front of the payload in that case.
660 */
ieee80211_verify_alignment(struct ieee80211_rx_data * rx)661 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx)
662 {
663 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
664 WARN_ONCE((unsigned long)rx->skb->data & 1,
665 "unaligned packet at 0x%p\n", rx->skb->data);
666 #endif
667 }
668
669
670 /* rx handlers */
671
ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff * skb)672 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb)
673 {
674 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
675
676 if (is_multicast_ether_addr(hdr->addr1))
677 return 0;
678
679 return ieee80211_is_robust_mgmt_frame(skb);
680 }
681
682
ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff * skb)683 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb)
684 {
685 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
686
687 if (!is_multicast_ether_addr(hdr->addr1))
688 return 0;
689
690 return ieee80211_is_robust_mgmt_frame(skb);
691 }
692
693
694 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */
ieee80211_get_mmie_keyidx(struct sk_buff * skb)695 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb)
696 {
697 struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data;
698 struct ieee80211_mmie *mmie;
699 struct ieee80211_mmie_16 *mmie16;
700
701 if (skb->len < 24 + sizeof(*mmie) || !is_multicast_ether_addr(hdr->da))
702 return -1;
703
704 if (!ieee80211_is_robust_mgmt_frame(skb))
705 return -1; /* not a robust management frame */
706
707 mmie = (struct ieee80211_mmie *)
708 (skb->data + skb->len - sizeof(*mmie));
709 if (mmie->element_id == WLAN_EID_MMIE &&
710 mmie->length == sizeof(*mmie) - 2)
711 return le16_to_cpu(mmie->key_id);
712
713 mmie16 = (struct ieee80211_mmie_16 *)
714 (skb->data + skb->len - sizeof(*mmie16));
715 if (skb->len >= 24 + sizeof(*mmie16) &&
716 mmie16->element_id == WLAN_EID_MMIE &&
717 mmie16->length == sizeof(*mmie16) - 2)
718 return le16_to_cpu(mmie16->key_id);
719
720 return -1;
721 }
722
iwl80211_get_cs_keyid(const struct ieee80211_cipher_scheme * cs,struct sk_buff * skb)723 static int iwl80211_get_cs_keyid(const struct ieee80211_cipher_scheme *cs,
724 struct sk_buff *skb)
725 {
726 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
727 __le16 fc;
728 int hdrlen;
729 u8 keyid;
730
731 fc = hdr->frame_control;
732 hdrlen = ieee80211_hdrlen(fc);
733
734 if (skb->len < hdrlen + cs->hdr_len)
735 return -EINVAL;
736
737 skb_copy_bits(skb, hdrlen + cs->key_idx_off, &keyid, 1);
738 keyid &= cs->key_idx_mask;
739 keyid >>= cs->key_idx_shift;
740
741 return keyid;
742 }
743
ieee80211_rx_mesh_check(struct ieee80211_rx_data * rx)744 static ieee80211_rx_result ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx)
745 {
746 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
747 char *dev_addr = rx->sdata->vif.addr;
748
749 if (ieee80211_is_data(hdr->frame_control)) {
750 if (is_multicast_ether_addr(hdr->addr1)) {
751 if (ieee80211_has_tods(hdr->frame_control) ||
752 !ieee80211_has_fromds(hdr->frame_control))
753 return RX_DROP_MONITOR;
754 if (ether_addr_equal(hdr->addr3, dev_addr))
755 return RX_DROP_MONITOR;
756 } else {
757 if (!ieee80211_has_a4(hdr->frame_control))
758 return RX_DROP_MONITOR;
759 if (ether_addr_equal(hdr->addr4, dev_addr))
760 return RX_DROP_MONITOR;
761 }
762 }
763
764 /* If there is not an established peer link and this is not a peer link
765 * establisment frame, beacon or probe, drop the frame.
766 */
767
768 if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) {
769 struct ieee80211_mgmt *mgmt;
770
771 if (!ieee80211_is_mgmt(hdr->frame_control))
772 return RX_DROP_MONITOR;
773
774 if (ieee80211_is_action(hdr->frame_control)) {
775 u8 category;
776
777 /* make sure category field is present */
778 if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE)
779 return RX_DROP_MONITOR;
780
781 mgmt = (struct ieee80211_mgmt *)hdr;
782 category = mgmt->u.action.category;
783 if (category != WLAN_CATEGORY_MESH_ACTION &&
784 category != WLAN_CATEGORY_SELF_PROTECTED)
785 return RX_DROP_MONITOR;
786 return RX_CONTINUE;
787 }
788
789 if (ieee80211_is_probe_req(hdr->frame_control) ||
790 ieee80211_is_probe_resp(hdr->frame_control) ||
791 ieee80211_is_beacon(hdr->frame_control) ||
792 ieee80211_is_auth(hdr->frame_control))
793 return RX_CONTINUE;
794
795 return RX_DROP_MONITOR;
796 }
797
798 return RX_CONTINUE;
799 }
800
ieee80211_release_reorder_frame(struct ieee80211_sub_if_data * sdata,struct tid_ampdu_rx * tid_agg_rx,int index,struct sk_buff_head * frames)801 static void ieee80211_release_reorder_frame(struct ieee80211_sub_if_data *sdata,
802 struct tid_ampdu_rx *tid_agg_rx,
803 int index,
804 struct sk_buff_head *frames)
805 {
806 struct sk_buff_head *skb_list = &tid_agg_rx->reorder_buf[index];
807 struct sk_buff *skb;
808 struct ieee80211_rx_status *status;
809
810 lockdep_assert_held(&tid_agg_rx->reorder_lock);
811
812 if (skb_queue_empty(skb_list))
813 goto no_frame;
814
815 if (!ieee80211_rx_reorder_ready(skb_list)) {
816 __skb_queue_purge(skb_list);
817 goto no_frame;
818 }
819
820 /* release frames from the reorder ring buffer */
821 tid_agg_rx->stored_mpdu_num--;
822 while ((skb = __skb_dequeue(skb_list))) {
823 status = IEEE80211_SKB_RXCB(skb);
824 status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE;
825 __skb_queue_tail(frames, skb);
826 }
827
828 no_frame:
829 tid_agg_rx->head_seq_num = ieee80211_sn_inc(tid_agg_rx->head_seq_num);
830 }
831
ieee80211_release_reorder_frames(struct ieee80211_sub_if_data * sdata,struct tid_ampdu_rx * tid_agg_rx,u16 head_seq_num,struct sk_buff_head * frames)832 static void ieee80211_release_reorder_frames(struct ieee80211_sub_if_data *sdata,
833 struct tid_ampdu_rx *tid_agg_rx,
834 u16 head_seq_num,
835 struct sk_buff_head *frames)
836 {
837 int index;
838
839 lockdep_assert_held(&tid_agg_rx->reorder_lock);
840
841 while (ieee80211_sn_less(tid_agg_rx->head_seq_num, head_seq_num)) {
842 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
843 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
844 frames);
845 }
846 }
847
848 /*
849 * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If
850 * the skb was added to the buffer longer than this time ago, the earlier
851 * frames that have not yet been received are assumed to be lost and the skb
852 * can be released for processing. This may also release other skb's from the
853 * reorder buffer if there are no additional gaps between the frames.
854 *
855 * Callers must hold tid_agg_rx->reorder_lock.
856 */
857 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10)
858
ieee80211_sta_reorder_release(struct ieee80211_sub_if_data * sdata,struct tid_ampdu_rx * tid_agg_rx,struct sk_buff_head * frames)859 static void ieee80211_sta_reorder_release(struct ieee80211_sub_if_data *sdata,
860 struct tid_ampdu_rx *tid_agg_rx,
861 struct sk_buff_head *frames)
862 {
863 int index, i, j;
864
865 lockdep_assert_held(&tid_agg_rx->reorder_lock);
866
867 /* release the buffer until next missing frame */
868 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
869 if (!ieee80211_rx_reorder_ready(&tid_agg_rx->reorder_buf[index]) &&
870 tid_agg_rx->stored_mpdu_num) {
871 /*
872 * No buffers ready to be released, but check whether any
873 * frames in the reorder buffer have timed out.
874 */
875 int skipped = 1;
876 for (j = (index + 1) % tid_agg_rx->buf_size; j != index;
877 j = (j + 1) % tid_agg_rx->buf_size) {
878 if (!ieee80211_rx_reorder_ready(
879 &tid_agg_rx->reorder_buf[j])) {
880 skipped++;
881 continue;
882 }
883 if (skipped &&
884 !time_after(jiffies, tid_agg_rx->reorder_time[j] +
885 HT_RX_REORDER_BUF_TIMEOUT))
886 goto set_release_timer;
887
888 /* don't leave incomplete A-MSDUs around */
889 for (i = (index + 1) % tid_agg_rx->buf_size; i != j;
890 i = (i + 1) % tid_agg_rx->buf_size)
891 __skb_queue_purge(&tid_agg_rx->reorder_buf[i]);
892
893 ht_dbg_ratelimited(sdata,
894 "release an RX reorder frame due to timeout on earlier frames\n");
895 ieee80211_release_reorder_frame(sdata, tid_agg_rx, j,
896 frames);
897
898 /*
899 * Increment the head seq# also for the skipped slots.
900 */
901 tid_agg_rx->head_seq_num =
902 (tid_agg_rx->head_seq_num +
903 skipped) & IEEE80211_SN_MASK;
904 skipped = 0;
905 }
906 } else while (ieee80211_rx_reorder_ready(
907 &tid_agg_rx->reorder_buf[index])) {
908 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
909 frames);
910 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
911 }
912
913 if (tid_agg_rx->stored_mpdu_num) {
914 j = index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
915
916 for (; j != (index - 1) % tid_agg_rx->buf_size;
917 j = (j + 1) % tid_agg_rx->buf_size) {
918 if (ieee80211_rx_reorder_ready(
919 &tid_agg_rx->reorder_buf[j]))
920 break;
921 }
922
923 set_release_timer:
924
925 if (!tid_agg_rx->removed)
926 mod_timer(&tid_agg_rx->reorder_timer,
927 tid_agg_rx->reorder_time[j] + 1 +
928 HT_RX_REORDER_BUF_TIMEOUT);
929 } else {
930 del_timer(&tid_agg_rx->reorder_timer);
931 }
932 }
933
934 /*
935 * As this function belongs to the RX path it must be under
936 * rcu_read_lock protection. It returns false if the frame
937 * can be processed immediately, true if it was consumed.
938 */
ieee80211_sta_manage_reorder_buf(struct ieee80211_sub_if_data * sdata,struct tid_ampdu_rx * tid_agg_rx,struct sk_buff * skb,struct sk_buff_head * frames)939 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_sub_if_data *sdata,
940 struct tid_ampdu_rx *tid_agg_rx,
941 struct sk_buff *skb,
942 struct sk_buff_head *frames)
943 {
944 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
945 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
946 u16 sc = le16_to_cpu(hdr->seq_ctrl);
947 u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4;
948 u16 head_seq_num, buf_size;
949 int index;
950 bool ret = true;
951
952 spin_lock(&tid_agg_rx->reorder_lock);
953
954 /*
955 * Offloaded BA sessions have no known starting sequence number so pick
956 * one from first Rxed frame for this tid after BA was started.
957 */
958 if (unlikely(tid_agg_rx->auto_seq)) {
959 tid_agg_rx->auto_seq = false;
960 tid_agg_rx->ssn = mpdu_seq_num;
961 tid_agg_rx->head_seq_num = mpdu_seq_num;
962 }
963
964 buf_size = tid_agg_rx->buf_size;
965 head_seq_num = tid_agg_rx->head_seq_num;
966
967 /* frame with out of date sequence number */
968 if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) {
969 dev_kfree_skb(skb);
970 goto out;
971 }
972
973 /*
974 * If frame the sequence number exceeds our buffering window
975 * size release some previous frames to make room for this one.
976 */
977 if (!ieee80211_sn_less(mpdu_seq_num, head_seq_num + buf_size)) {
978 head_seq_num = ieee80211_sn_inc(
979 ieee80211_sn_sub(mpdu_seq_num, buf_size));
980 /* release stored frames up to new head to stack */
981 ieee80211_release_reorder_frames(sdata, tid_agg_rx,
982 head_seq_num, frames);
983 }
984
985 /* Now the new frame is always in the range of the reordering buffer */
986
987 index = mpdu_seq_num % tid_agg_rx->buf_size;
988
989 /* check if we already stored this frame */
990 if (ieee80211_rx_reorder_ready(&tid_agg_rx->reorder_buf[index])) {
991 dev_kfree_skb(skb);
992 goto out;
993 }
994
995 /*
996 * If the current MPDU is in the right order and nothing else
997 * is stored we can process it directly, no need to buffer it.
998 * If it is first but there's something stored, we may be able
999 * to release frames after this one.
1000 */
1001 if (mpdu_seq_num == tid_agg_rx->head_seq_num &&
1002 tid_agg_rx->stored_mpdu_num == 0) {
1003 if (!(status->flag & RX_FLAG_AMSDU_MORE))
1004 tid_agg_rx->head_seq_num =
1005 ieee80211_sn_inc(tid_agg_rx->head_seq_num);
1006 ret = false;
1007 goto out;
1008 }
1009
1010 /* put the frame in the reordering buffer */
1011 __skb_queue_tail(&tid_agg_rx->reorder_buf[index], skb);
1012 if (!(status->flag & RX_FLAG_AMSDU_MORE)) {
1013 tid_agg_rx->reorder_time[index] = jiffies;
1014 tid_agg_rx->stored_mpdu_num++;
1015 ieee80211_sta_reorder_release(sdata, tid_agg_rx, frames);
1016 }
1017
1018 out:
1019 spin_unlock(&tid_agg_rx->reorder_lock);
1020 return ret;
1021 }
1022
1023 /*
1024 * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns
1025 * true if the MPDU was buffered, false if it should be processed.
1026 */
ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data * rx,struct sk_buff_head * frames)1027 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx,
1028 struct sk_buff_head *frames)
1029 {
1030 struct sk_buff *skb = rx->skb;
1031 struct ieee80211_local *local = rx->local;
1032 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1033 struct sta_info *sta = rx->sta;
1034 struct tid_ampdu_rx *tid_agg_rx;
1035 u16 sc;
1036 u8 tid, ack_policy;
1037
1038 if (!ieee80211_is_data_qos(hdr->frame_control) ||
1039 is_multicast_ether_addr(hdr->addr1))
1040 goto dont_reorder;
1041
1042 /*
1043 * filter the QoS data rx stream according to
1044 * STA/TID and check if this STA/TID is on aggregation
1045 */
1046
1047 if (!sta)
1048 goto dont_reorder;
1049
1050 ack_policy = *ieee80211_get_qos_ctl(hdr) &
1051 IEEE80211_QOS_CTL_ACK_POLICY_MASK;
1052 tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
1053
1054 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
1055 if (!tid_agg_rx)
1056 goto dont_reorder;
1057
1058 /* qos null data frames are excluded */
1059 if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC)))
1060 goto dont_reorder;
1061
1062 /* not part of a BA session */
1063 if (ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK &&
1064 ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_NORMAL)
1065 goto dont_reorder;
1066
1067 /* new, potentially un-ordered, ampdu frame - process it */
1068
1069 /* reset session timer */
1070 if (tid_agg_rx->timeout)
1071 tid_agg_rx->last_rx = jiffies;
1072
1073 /* if this mpdu is fragmented - terminate rx aggregation session */
1074 sc = le16_to_cpu(hdr->seq_ctrl);
1075 if (sc & IEEE80211_SCTL_FRAG) {
1076 skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
1077 skb_queue_tail(&rx->sdata->skb_queue, skb);
1078 ieee80211_queue_work(&local->hw, &rx->sdata->work);
1079 return;
1080 }
1081
1082 /*
1083 * No locking needed -- we will only ever process one
1084 * RX packet at a time, and thus own tid_agg_rx. All
1085 * other code manipulating it needs to (and does) make
1086 * sure that we cannot get to it any more before doing
1087 * anything with it.
1088 */
1089 if (ieee80211_sta_manage_reorder_buf(rx->sdata, tid_agg_rx, skb,
1090 frames))
1091 return;
1092
1093 dont_reorder:
1094 __skb_queue_tail(frames, skb);
1095 }
1096
1097 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_check_dup(struct ieee80211_rx_data * rx)1098 ieee80211_rx_h_check_dup(struct ieee80211_rx_data *rx)
1099 {
1100 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1101 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1102
1103 /*
1104 * Drop duplicate 802.11 retransmissions
1105 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery")
1106 */
1107
1108 if (rx->skb->len < 24)
1109 return RX_CONTINUE;
1110
1111 if (ieee80211_is_ctl(hdr->frame_control) ||
1112 ieee80211_is_qos_nullfunc(hdr->frame_control) ||
1113 is_multicast_ether_addr(hdr->addr1))
1114 return RX_CONTINUE;
1115
1116 if (!rx->sta)
1117 return RX_CONTINUE;
1118
1119 if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
1120 rx->sta->last_seq_ctrl[rx->seqno_idx] == hdr->seq_ctrl)) {
1121 I802_DEBUG_INC(rx->local->dot11FrameDuplicateCount);
1122 rx->sta->rx_stats.num_duplicates++;
1123 return RX_DROP_UNUSABLE;
1124 } else if (!(status->flag & RX_FLAG_AMSDU_MORE)) {
1125 rx->sta->last_seq_ctrl[rx->seqno_idx] = hdr->seq_ctrl;
1126 }
1127
1128 return RX_CONTINUE;
1129 }
1130
1131 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_check(struct ieee80211_rx_data * rx)1132 ieee80211_rx_h_check(struct ieee80211_rx_data *rx)
1133 {
1134 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1135
1136 /* Drop disallowed frame classes based on STA auth/assoc state;
1137 * IEEE 802.11, Chap 5.5.
1138 *
1139 * mac80211 filters only based on association state, i.e. it drops
1140 * Class 3 frames from not associated stations. hostapd sends
1141 * deauth/disassoc frames when needed. In addition, hostapd is
1142 * responsible for filtering on both auth and assoc states.
1143 */
1144
1145 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
1146 return ieee80211_rx_mesh_check(rx);
1147
1148 if (unlikely((ieee80211_is_data(hdr->frame_control) ||
1149 ieee80211_is_pspoll(hdr->frame_control)) &&
1150 rx->sdata->vif.type != NL80211_IFTYPE_ADHOC &&
1151 rx->sdata->vif.type != NL80211_IFTYPE_WDS &&
1152 rx->sdata->vif.type != NL80211_IFTYPE_OCB &&
1153 (!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_ASSOC)))) {
1154 /*
1155 * accept port control frames from the AP even when it's not
1156 * yet marked ASSOC to prevent a race where we don't set the
1157 * assoc bit quickly enough before it sends the first frame
1158 */
1159 if (rx->sta && rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
1160 ieee80211_is_data_present(hdr->frame_control)) {
1161 unsigned int hdrlen;
1162 __be16 ethertype;
1163
1164 hdrlen = ieee80211_hdrlen(hdr->frame_control);
1165
1166 if (rx->skb->len < hdrlen + 8)
1167 return RX_DROP_MONITOR;
1168
1169 skb_copy_bits(rx->skb, hdrlen + 6, ðertype, 2);
1170 if (ethertype == rx->sdata->control_port_protocol)
1171 return RX_CONTINUE;
1172 }
1173
1174 if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
1175 cfg80211_rx_spurious_frame(rx->sdata->dev,
1176 hdr->addr2,
1177 GFP_ATOMIC))
1178 return RX_DROP_UNUSABLE;
1179
1180 return RX_DROP_MONITOR;
1181 }
1182
1183 return RX_CONTINUE;
1184 }
1185
1186
1187 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_check_more_data(struct ieee80211_rx_data * rx)1188 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx)
1189 {
1190 struct ieee80211_local *local;
1191 struct ieee80211_hdr *hdr;
1192 struct sk_buff *skb;
1193
1194 local = rx->local;
1195 skb = rx->skb;
1196 hdr = (struct ieee80211_hdr *) skb->data;
1197
1198 if (!local->pspolling)
1199 return RX_CONTINUE;
1200
1201 if (!ieee80211_has_fromds(hdr->frame_control))
1202 /* this is not from AP */
1203 return RX_CONTINUE;
1204
1205 if (!ieee80211_is_data(hdr->frame_control))
1206 return RX_CONTINUE;
1207
1208 if (!ieee80211_has_moredata(hdr->frame_control)) {
1209 /* AP has no more frames buffered for us */
1210 local->pspolling = false;
1211 return RX_CONTINUE;
1212 }
1213
1214 /* more data bit is set, let's request a new frame from the AP */
1215 ieee80211_send_pspoll(local, rx->sdata);
1216
1217 return RX_CONTINUE;
1218 }
1219
sta_ps_start(struct sta_info * sta)1220 static void sta_ps_start(struct sta_info *sta)
1221 {
1222 struct ieee80211_sub_if_data *sdata = sta->sdata;
1223 struct ieee80211_local *local = sdata->local;
1224 struct ps_data *ps;
1225 int tid;
1226
1227 if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
1228 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
1229 ps = &sdata->bss->ps;
1230 else
1231 return;
1232
1233 atomic_inc(&ps->num_sta_ps);
1234 set_sta_flag(sta, WLAN_STA_PS_STA);
1235 if (!ieee80211_hw_check(&local->hw, AP_LINK_PS))
1236 drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta);
1237 ps_dbg(sdata, "STA %pM aid %d enters power save mode\n",
1238 sta->sta.addr, sta->sta.aid);
1239
1240 ieee80211_clear_fast_xmit(sta);
1241
1242 if (!sta->sta.txq[0])
1243 return;
1244
1245 for (tid = 0; tid < ARRAY_SIZE(sta->sta.txq); tid++) {
1246 struct txq_info *txqi = to_txq_info(sta->sta.txq[tid]);
1247
1248 if (!skb_queue_len(&txqi->queue))
1249 set_bit(tid, &sta->txq_buffered_tids);
1250 else
1251 clear_bit(tid, &sta->txq_buffered_tids);
1252 }
1253 }
1254
sta_ps_end(struct sta_info * sta)1255 static void sta_ps_end(struct sta_info *sta)
1256 {
1257 ps_dbg(sta->sdata, "STA %pM aid %d exits power save mode\n",
1258 sta->sta.addr, sta->sta.aid);
1259
1260 if (test_sta_flag(sta, WLAN_STA_PS_DRIVER)) {
1261 /*
1262 * Clear the flag only if the other one is still set
1263 * so that the TX path won't start TX'ing new frames
1264 * directly ... In the case that the driver flag isn't
1265 * set ieee80211_sta_ps_deliver_wakeup() will clear it.
1266 */
1267 clear_sta_flag(sta, WLAN_STA_PS_STA);
1268 ps_dbg(sta->sdata, "STA %pM aid %d driver-ps-blocked\n",
1269 sta->sta.addr, sta->sta.aid);
1270 return;
1271 }
1272
1273 set_sta_flag(sta, WLAN_STA_PS_DELIVER);
1274 clear_sta_flag(sta, WLAN_STA_PS_STA);
1275 ieee80211_sta_ps_deliver_wakeup(sta);
1276 }
1277
ieee80211_sta_ps_transition(struct ieee80211_sta * pubsta,bool start)1278 int ieee80211_sta_ps_transition(struct ieee80211_sta *pubsta, bool start)
1279 {
1280 struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1281 bool in_ps;
1282
1283 WARN_ON(!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS));
1284
1285 /* Don't let the same PS state be set twice */
1286 in_ps = test_sta_flag(sta, WLAN_STA_PS_STA);
1287 if ((start && in_ps) || (!start && !in_ps))
1288 return -EINVAL;
1289
1290 if (start)
1291 sta_ps_start(sta);
1292 else
1293 sta_ps_end(sta);
1294
1295 return 0;
1296 }
1297 EXPORT_SYMBOL(ieee80211_sta_ps_transition);
1298
1299 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data * rx)1300 ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data *rx)
1301 {
1302 struct ieee80211_sub_if_data *sdata = rx->sdata;
1303 struct ieee80211_hdr *hdr = (void *)rx->skb->data;
1304 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1305 int tid, ac;
1306
1307 if (!rx->sta)
1308 return RX_CONTINUE;
1309
1310 if (sdata->vif.type != NL80211_IFTYPE_AP &&
1311 sdata->vif.type != NL80211_IFTYPE_AP_VLAN)
1312 return RX_CONTINUE;
1313
1314 /*
1315 * The device handles station powersave, so don't do anything about
1316 * uAPSD and PS-Poll frames (the latter shouldn't even come up from
1317 * it to mac80211 since they're handled.)
1318 */
1319 if (ieee80211_hw_check(&sdata->local->hw, AP_LINK_PS))
1320 return RX_CONTINUE;
1321
1322 /*
1323 * Don't do anything if the station isn't already asleep. In
1324 * the uAPSD case, the station will probably be marked asleep,
1325 * in the PS-Poll case the station must be confused ...
1326 */
1327 if (!test_sta_flag(rx->sta, WLAN_STA_PS_STA))
1328 return RX_CONTINUE;
1329
1330 if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) {
1331 if (!test_sta_flag(rx->sta, WLAN_STA_SP)) {
1332 if (!test_sta_flag(rx->sta, WLAN_STA_PS_DRIVER))
1333 ieee80211_sta_ps_deliver_poll_response(rx->sta);
1334 else
1335 set_sta_flag(rx->sta, WLAN_STA_PSPOLL);
1336 }
1337
1338 /* Free PS Poll skb here instead of returning RX_DROP that would
1339 * count as an dropped frame. */
1340 dev_kfree_skb(rx->skb);
1341
1342 return RX_QUEUED;
1343 } else if (!ieee80211_has_morefrags(hdr->frame_control) &&
1344 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1345 ieee80211_has_pm(hdr->frame_control) &&
1346 (ieee80211_is_data_qos(hdr->frame_control) ||
1347 ieee80211_is_qos_nullfunc(hdr->frame_control))) {
1348 tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
1349 ac = ieee802_1d_to_ac[tid & 7];
1350
1351 /*
1352 * If this AC is not trigger-enabled do nothing.
1353 *
1354 * NB: This could/should check a separate bitmap of trigger-
1355 * enabled queues, but for now we only implement uAPSD w/o
1356 * TSPEC changes to the ACs, so they're always the same.
1357 */
1358 if (!(rx->sta->sta.uapsd_queues & BIT(ac)))
1359 return RX_CONTINUE;
1360
1361 /* if we are in a service period, do nothing */
1362 if (test_sta_flag(rx->sta, WLAN_STA_SP))
1363 return RX_CONTINUE;
1364
1365 if (!test_sta_flag(rx->sta, WLAN_STA_PS_DRIVER))
1366 ieee80211_sta_ps_deliver_uapsd(rx->sta);
1367 else
1368 set_sta_flag(rx->sta, WLAN_STA_UAPSD);
1369 }
1370
1371 return RX_CONTINUE;
1372 }
1373
1374 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_sta_process(struct ieee80211_rx_data * rx)1375 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx)
1376 {
1377 struct sta_info *sta = rx->sta;
1378 struct sk_buff *skb = rx->skb;
1379 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1380 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1381 int i;
1382
1383 if (!sta)
1384 return RX_CONTINUE;
1385
1386 /*
1387 * Update last_rx only for IBSS packets which are for the current
1388 * BSSID and for station already AUTHORIZED to avoid keeping the
1389 * current IBSS network alive in cases where other STAs start
1390 * using different BSSID. This will also give the station another
1391 * chance to restart the authentication/authorization in case
1392 * something went wrong the first time.
1393 */
1394 if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) {
1395 u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len,
1396 NL80211_IFTYPE_ADHOC);
1397 if (ether_addr_equal(bssid, rx->sdata->u.ibss.bssid) &&
1398 test_sta_flag(sta, WLAN_STA_AUTHORIZED)) {
1399 sta->rx_stats.last_rx = jiffies;
1400 if (ieee80211_is_data(hdr->frame_control) &&
1401 !is_multicast_ether_addr(hdr->addr1)) {
1402 sta->rx_stats.last_rate_idx =
1403 status->rate_idx;
1404 sta->rx_stats.last_rate_flag =
1405 status->flag;
1406 sta->rx_stats.last_rate_vht_flag =
1407 status->vht_flag;
1408 sta->rx_stats.last_rate_vht_nss =
1409 status->vht_nss;
1410 }
1411 }
1412 } else if (rx->sdata->vif.type == NL80211_IFTYPE_OCB) {
1413 sta->rx_stats.last_rx = jiffies;
1414 } else if (!is_multicast_ether_addr(hdr->addr1)) {
1415 /*
1416 * Mesh beacons will update last_rx when if they are found to
1417 * match the current local configuration when processed.
1418 */
1419 sta->rx_stats.last_rx = jiffies;
1420 if (ieee80211_is_data(hdr->frame_control)) {
1421 sta->rx_stats.last_rate_idx = status->rate_idx;
1422 sta->rx_stats.last_rate_flag = status->flag;
1423 sta->rx_stats.last_rate_vht_flag = status->vht_flag;
1424 sta->rx_stats.last_rate_vht_nss = status->vht_nss;
1425 }
1426 }
1427
1428 if (rx->sdata->vif.type == NL80211_IFTYPE_STATION)
1429 ieee80211_sta_rx_notify(rx->sdata, hdr);
1430
1431 sta->rx_stats.fragments++;
1432 sta->rx_stats.bytes += rx->skb->len;
1433 if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
1434 sta->rx_stats.last_signal = status->signal;
1435 ewma_signal_add(&sta->rx_stats.avg_signal, -status->signal);
1436 }
1437
1438 if (status->chains) {
1439 sta->rx_stats.chains = status->chains;
1440 for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) {
1441 int signal = status->chain_signal[i];
1442
1443 if (!(status->chains & BIT(i)))
1444 continue;
1445
1446 sta->rx_stats.chain_signal_last[i] = signal;
1447 ewma_signal_add(&sta->rx_stats.chain_signal_avg[i],
1448 -signal);
1449 }
1450 }
1451
1452 /*
1453 * Change STA power saving mode only at the end of a frame
1454 * exchange sequence.
1455 */
1456 if (!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS) &&
1457 !ieee80211_has_morefrags(hdr->frame_control) &&
1458 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1459 (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1460 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) &&
1461 /* PM bit is only checked in frames where it isn't reserved,
1462 * in AP mode it's reserved in non-bufferable management frames
1463 * (cf. IEEE 802.11-2012 8.2.4.1.7 Power Management field)
1464 */
1465 (!ieee80211_is_mgmt(hdr->frame_control) ||
1466 ieee80211_is_bufferable_mmpdu(hdr->frame_control))) {
1467 if (test_sta_flag(sta, WLAN_STA_PS_STA)) {
1468 if (!ieee80211_has_pm(hdr->frame_control))
1469 sta_ps_end(sta);
1470 } else {
1471 if (ieee80211_has_pm(hdr->frame_control))
1472 sta_ps_start(sta);
1473 }
1474 }
1475
1476 /* mesh power save support */
1477 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
1478 ieee80211_mps_rx_h_sta_process(sta, hdr);
1479
1480 /*
1481 * Drop (qos-)data::nullfunc frames silently, since they
1482 * are used only to control station power saving mode.
1483 */
1484 if (ieee80211_is_nullfunc(hdr->frame_control) ||
1485 ieee80211_is_qos_nullfunc(hdr->frame_control)) {
1486 I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc);
1487
1488 /*
1489 * If we receive a 4-addr nullfunc frame from a STA
1490 * that was not moved to a 4-addr STA vlan yet send
1491 * the event to userspace and for older hostapd drop
1492 * the frame to the monitor interface.
1493 */
1494 if (ieee80211_has_a4(hdr->frame_control) &&
1495 (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1496 (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1497 !rx->sdata->u.vlan.sta))) {
1498 if (!test_and_set_sta_flag(sta, WLAN_STA_4ADDR_EVENT))
1499 cfg80211_rx_unexpected_4addr_frame(
1500 rx->sdata->dev, sta->sta.addr,
1501 GFP_ATOMIC);
1502 return RX_DROP_MONITOR;
1503 }
1504 /*
1505 * Update counter and free packet here to avoid
1506 * counting this as a dropped packed.
1507 */
1508 sta->rx_stats.packets++;
1509 dev_kfree_skb(rx->skb);
1510 return RX_QUEUED;
1511 }
1512
1513 return RX_CONTINUE;
1514 } /* ieee80211_rx_h_sta_process */
1515
1516 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_decrypt(struct ieee80211_rx_data * rx)1517 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx)
1518 {
1519 struct sk_buff *skb = rx->skb;
1520 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1521 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1522 int keyidx;
1523 int hdrlen;
1524 ieee80211_rx_result result = RX_DROP_UNUSABLE;
1525 struct ieee80211_key *sta_ptk = NULL;
1526 int mmie_keyidx = -1;
1527 __le16 fc;
1528 const struct ieee80211_cipher_scheme *cs = NULL;
1529
1530 /*
1531 * Key selection 101
1532 *
1533 * There are four types of keys:
1534 * - GTK (group keys)
1535 * - IGTK (group keys for management frames)
1536 * - PTK (pairwise keys)
1537 * - STK (station-to-station pairwise keys)
1538 *
1539 * When selecting a key, we have to distinguish between multicast
1540 * (including broadcast) and unicast frames, the latter can only
1541 * use PTKs and STKs while the former always use GTKs and IGTKs.
1542 * Unless, of course, actual WEP keys ("pre-RSNA") are used, then
1543 * unicast frames can also use key indices like GTKs. Hence, if we
1544 * don't have a PTK/STK we check the key index for a WEP key.
1545 *
1546 * Note that in a regular BSS, multicast frames are sent by the
1547 * AP only, associated stations unicast the frame to the AP first
1548 * which then multicasts it on their behalf.
1549 *
1550 * There is also a slight problem in IBSS mode: GTKs are negotiated
1551 * with each station, that is something we don't currently handle.
1552 * The spec seems to expect that one negotiates the same key with
1553 * every station but there's no such requirement; VLANs could be
1554 * possible.
1555 */
1556
1557 /* start without a key */
1558 rx->key = NULL;
1559 fc = hdr->frame_control;
1560
1561 if (rx->sta) {
1562 int keyid = rx->sta->ptk_idx;
1563
1564 if (ieee80211_has_protected(fc) && rx->sta->cipher_scheme) {
1565 cs = rx->sta->cipher_scheme;
1566 keyid = iwl80211_get_cs_keyid(cs, rx->skb);
1567 if (unlikely(keyid < 0))
1568 return RX_DROP_UNUSABLE;
1569 }
1570 sta_ptk = rcu_dereference(rx->sta->ptk[keyid]);
1571 }
1572
1573 if (!ieee80211_has_protected(fc))
1574 mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb);
1575
1576 if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) {
1577 rx->key = sta_ptk;
1578 if ((status->flag & RX_FLAG_DECRYPTED) &&
1579 (status->flag & RX_FLAG_IV_STRIPPED))
1580 return RX_CONTINUE;
1581 /* Skip decryption if the frame is not protected. */
1582 if (!ieee80211_has_protected(fc))
1583 return RX_CONTINUE;
1584 } else if (mmie_keyidx >= 0) {
1585 /* Broadcast/multicast robust management frame / BIP */
1586 if ((status->flag & RX_FLAG_DECRYPTED) &&
1587 (status->flag & RX_FLAG_IV_STRIPPED))
1588 return RX_CONTINUE;
1589
1590 if (mmie_keyidx < NUM_DEFAULT_KEYS ||
1591 mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
1592 return RX_DROP_MONITOR; /* unexpected BIP keyidx */
1593 if (rx->sta)
1594 rx->key = rcu_dereference(rx->sta->gtk[mmie_keyidx]);
1595 if (!rx->key)
1596 rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]);
1597 } else if (!ieee80211_has_protected(fc)) {
1598 /*
1599 * The frame was not protected, so skip decryption. However, we
1600 * need to set rx->key if there is a key that could have been
1601 * used so that the frame may be dropped if encryption would
1602 * have been expected.
1603 */
1604 struct ieee80211_key *key = NULL;
1605 struct ieee80211_sub_if_data *sdata = rx->sdata;
1606 int i;
1607
1608 if (ieee80211_is_mgmt(fc) &&
1609 is_multicast_ether_addr(hdr->addr1) &&
1610 (key = rcu_dereference(rx->sdata->default_mgmt_key)))
1611 rx->key = key;
1612 else {
1613 if (rx->sta) {
1614 for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
1615 key = rcu_dereference(rx->sta->gtk[i]);
1616 if (key)
1617 break;
1618 }
1619 }
1620 if (!key) {
1621 for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
1622 key = rcu_dereference(sdata->keys[i]);
1623 if (key)
1624 break;
1625 }
1626 }
1627 if (key)
1628 rx->key = key;
1629 }
1630 return RX_CONTINUE;
1631 } else {
1632 u8 keyid;
1633
1634 /*
1635 * The device doesn't give us the IV so we won't be
1636 * able to look up the key. That's ok though, we
1637 * don't need to decrypt the frame, we just won't
1638 * be able to keep statistics accurate.
1639 * Except for key threshold notifications, should
1640 * we somehow allow the driver to tell us which key
1641 * the hardware used if this flag is set?
1642 */
1643 if ((status->flag & RX_FLAG_DECRYPTED) &&
1644 (status->flag & RX_FLAG_IV_STRIPPED))
1645 return RX_CONTINUE;
1646
1647 hdrlen = ieee80211_hdrlen(fc);
1648
1649 if (cs) {
1650 keyidx = iwl80211_get_cs_keyid(cs, rx->skb);
1651
1652 if (unlikely(keyidx < 0))
1653 return RX_DROP_UNUSABLE;
1654 } else {
1655 if (rx->skb->len < 8 + hdrlen)
1656 return RX_DROP_UNUSABLE; /* TODO: count this? */
1657 /*
1658 * no need to call ieee80211_wep_get_keyidx,
1659 * it verifies a bunch of things we've done already
1660 */
1661 skb_copy_bits(rx->skb, hdrlen + 3, &keyid, 1);
1662 keyidx = keyid >> 6;
1663 }
1664
1665 /* check per-station GTK first, if multicast packet */
1666 if (is_multicast_ether_addr(hdr->addr1) && rx->sta)
1667 rx->key = rcu_dereference(rx->sta->gtk[keyidx]);
1668
1669 /* if not found, try default key */
1670 if (!rx->key) {
1671 rx->key = rcu_dereference(rx->sdata->keys[keyidx]);
1672
1673 /*
1674 * RSNA-protected unicast frames should always be
1675 * sent with pairwise or station-to-station keys,
1676 * but for WEP we allow using a key index as well.
1677 */
1678 if (rx->key &&
1679 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 &&
1680 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 &&
1681 !is_multicast_ether_addr(hdr->addr1))
1682 rx->key = NULL;
1683 }
1684 }
1685
1686 if (rx->key) {
1687 if (unlikely(rx->key->flags & KEY_FLAG_TAINTED))
1688 return RX_DROP_MONITOR;
1689
1690 /* TODO: add threshold stuff again */
1691 } else {
1692 return RX_DROP_MONITOR;
1693 }
1694
1695 switch (rx->key->conf.cipher) {
1696 case WLAN_CIPHER_SUITE_WEP40:
1697 case WLAN_CIPHER_SUITE_WEP104:
1698 result = ieee80211_crypto_wep_decrypt(rx);
1699 break;
1700 case WLAN_CIPHER_SUITE_TKIP:
1701 result = ieee80211_crypto_tkip_decrypt(rx);
1702 break;
1703 case WLAN_CIPHER_SUITE_CCMP:
1704 result = ieee80211_crypto_ccmp_decrypt(
1705 rx, IEEE80211_CCMP_MIC_LEN);
1706 break;
1707 case WLAN_CIPHER_SUITE_CCMP_256:
1708 result = ieee80211_crypto_ccmp_decrypt(
1709 rx, IEEE80211_CCMP_256_MIC_LEN);
1710 break;
1711 case WLAN_CIPHER_SUITE_AES_CMAC:
1712 result = ieee80211_crypto_aes_cmac_decrypt(rx);
1713 break;
1714 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
1715 result = ieee80211_crypto_aes_cmac_256_decrypt(rx);
1716 break;
1717 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
1718 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
1719 result = ieee80211_crypto_aes_gmac_decrypt(rx);
1720 break;
1721 case WLAN_CIPHER_SUITE_GCMP:
1722 case WLAN_CIPHER_SUITE_GCMP_256:
1723 result = ieee80211_crypto_gcmp_decrypt(rx);
1724 break;
1725 default:
1726 result = ieee80211_crypto_hw_decrypt(rx);
1727 }
1728
1729 /* the hdr variable is invalid after the decrypt handlers */
1730
1731 /* either the frame has been decrypted or will be dropped */
1732 status->flag |= RX_FLAG_DECRYPTED;
1733
1734 return result;
1735 }
1736
1737 static inline struct ieee80211_fragment_entry *
ieee80211_reassemble_add(struct ieee80211_sub_if_data * sdata,unsigned int frag,unsigned int seq,int rx_queue,struct sk_buff ** skb)1738 ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata,
1739 unsigned int frag, unsigned int seq, int rx_queue,
1740 struct sk_buff **skb)
1741 {
1742 struct ieee80211_fragment_entry *entry;
1743
1744 entry = &sdata->fragments[sdata->fragment_next++];
1745 if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX)
1746 sdata->fragment_next = 0;
1747
1748 if (!skb_queue_empty(&entry->skb_list))
1749 __skb_queue_purge(&entry->skb_list);
1750
1751 __skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */
1752 *skb = NULL;
1753 entry->first_frag_time = jiffies;
1754 entry->seq = seq;
1755 entry->rx_queue = rx_queue;
1756 entry->last_frag = frag;
1757 entry->check_sequential_pn = false;
1758 entry->extra_len = 0;
1759
1760 return entry;
1761 }
1762
1763 static inline struct ieee80211_fragment_entry *
ieee80211_reassemble_find(struct ieee80211_sub_if_data * sdata,unsigned int frag,unsigned int seq,int rx_queue,struct ieee80211_hdr * hdr)1764 ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata,
1765 unsigned int frag, unsigned int seq,
1766 int rx_queue, struct ieee80211_hdr *hdr)
1767 {
1768 struct ieee80211_fragment_entry *entry;
1769 int i, idx;
1770
1771 idx = sdata->fragment_next;
1772 for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) {
1773 struct ieee80211_hdr *f_hdr;
1774
1775 idx--;
1776 if (idx < 0)
1777 idx = IEEE80211_FRAGMENT_MAX - 1;
1778
1779 entry = &sdata->fragments[idx];
1780 if (skb_queue_empty(&entry->skb_list) || entry->seq != seq ||
1781 entry->rx_queue != rx_queue ||
1782 entry->last_frag + 1 != frag)
1783 continue;
1784
1785 f_hdr = (struct ieee80211_hdr *)entry->skb_list.next->data;
1786
1787 /*
1788 * Check ftype and addresses are equal, else check next fragment
1789 */
1790 if (((hdr->frame_control ^ f_hdr->frame_control) &
1791 cpu_to_le16(IEEE80211_FCTL_FTYPE)) ||
1792 !ether_addr_equal(hdr->addr1, f_hdr->addr1) ||
1793 !ether_addr_equal(hdr->addr2, f_hdr->addr2))
1794 continue;
1795
1796 if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) {
1797 __skb_queue_purge(&entry->skb_list);
1798 continue;
1799 }
1800 return entry;
1801 }
1802
1803 return NULL;
1804 }
1805
1806 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_defragment(struct ieee80211_rx_data * rx)1807 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx)
1808 {
1809 struct ieee80211_hdr *hdr;
1810 u16 sc;
1811 __le16 fc;
1812 unsigned int frag, seq;
1813 struct ieee80211_fragment_entry *entry;
1814 struct sk_buff *skb;
1815 struct ieee80211_rx_status *status;
1816
1817 hdr = (struct ieee80211_hdr *)rx->skb->data;
1818 fc = hdr->frame_control;
1819
1820 if (ieee80211_is_ctl(fc))
1821 return RX_CONTINUE;
1822
1823 sc = le16_to_cpu(hdr->seq_ctrl);
1824 frag = sc & IEEE80211_SCTL_FRAG;
1825
1826 if (is_multicast_ether_addr(hdr->addr1)) {
1827 I802_DEBUG_INC(rx->local->dot11MulticastReceivedFrameCount);
1828 goto out_no_led;
1829 }
1830
1831 if (likely(!ieee80211_has_morefrags(fc) && frag == 0))
1832 goto out;
1833
1834 I802_DEBUG_INC(rx->local->rx_handlers_fragments);
1835
1836 if (skb_linearize(rx->skb))
1837 return RX_DROP_UNUSABLE;
1838
1839 /*
1840 * skb_linearize() might change the skb->data and
1841 * previously cached variables (in this case, hdr) need to
1842 * be refreshed with the new data.
1843 */
1844 hdr = (struct ieee80211_hdr *)rx->skb->data;
1845 seq = (sc & IEEE80211_SCTL_SEQ) >> 4;
1846
1847 if (frag == 0) {
1848 /* This is the first fragment of a new frame. */
1849 entry = ieee80211_reassemble_add(rx->sdata, frag, seq,
1850 rx->seqno_idx, &(rx->skb));
1851 if (rx->key &&
1852 (rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP ||
1853 rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP_256 ||
1854 rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP ||
1855 rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP_256) &&
1856 ieee80211_has_protected(fc)) {
1857 int queue = rx->security_idx;
1858
1859 /* Store CCMP/GCMP PN so that we can verify that the
1860 * next fragment has a sequential PN value.
1861 */
1862 entry->check_sequential_pn = true;
1863 memcpy(entry->last_pn,
1864 rx->key->u.ccmp.rx_pn[queue],
1865 IEEE80211_CCMP_PN_LEN);
1866 BUILD_BUG_ON(offsetof(struct ieee80211_key,
1867 u.ccmp.rx_pn) !=
1868 offsetof(struct ieee80211_key,
1869 u.gcmp.rx_pn));
1870 BUILD_BUG_ON(sizeof(rx->key->u.ccmp.rx_pn[queue]) !=
1871 sizeof(rx->key->u.gcmp.rx_pn[queue]));
1872 BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN !=
1873 IEEE80211_GCMP_PN_LEN);
1874 }
1875 return RX_QUEUED;
1876 }
1877
1878 /* This is a fragment for a frame that should already be pending in
1879 * fragment cache. Add this fragment to the end of the pending entry.
1880 */
1881 entry = ieee80211_reassemble_find(rx->sdata, frag, seq,
1882 rx->seqno_idx, hdr);
1883 if (!entry) {
1884 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
1885 return RX_DROP_MONITOR;
1886 }
1887
1888 /* "The receiver shall discard MSDUs and MMPDUs whose constituent
1889 * MPDU PN values are not incrementing in steps of 1."
1890 * see IEEE P802.11-REVmc/D5.0, 12.5.3.4.4, item d (for CCMP)
1891 * and IEEE P802.11-REVmc/D5.0, 12.5.5.4.4, item d (for GCMP)
1892 */
1893 if (entry->check_sequential_pn) {
1894 int i;
1895 u8 pn[IEEE80211_CCMP_PN_LEN], *rpn;
1896 int queue;
1897
1898 if (!rx->key ||
1899 (rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP &&
1900 rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP_256 &&
1901 rx->key->conf.cipher != WLAN_CIPHER_SUITE_GCMP &&
1902 rx->key->conf.cipher != WLAN_CIPHER_SUITE_GCMP_256))
1903 return RX_DROP_UNUSABLE;
1904 memcpy(pn, entry->last_pn, IEEE80211_CCMP_PN_LEN);
1905 for (i = IEEE80211_CCMP_PN_LEN - 1; i >= 0; i--) {
1906 pn[i]++;
1907 if (pn[i])
1908 break;
1909 }
1910 queue = rx->security_idx;
1911 rpn = rx->key->u.ccmp.rx_pn[queue];
1912 if (memcmp(pn, rpn, IEEE80211_CCMP_PN_LEN))
1913 return RX_DROP_UNUSABLE;
1914 memcpy(entry->last_pn, pn, IEEE80211_CCMP_PN_LEN);
1915 }
1916
1917 skb_pull(rx->skb, ieee80211_hdrlen(fc));
1918 __skb_queue_tail(&entry->skb_list, rx->skb);
1919 entry->last_frag = frag;
1920 entry->extra_len += rx->skb->len;
1921 if (ieee80211_has_morefrags(fc)) {
1922 rx->skb = NULL;
1923 return RX_QUEUED;
1924 }
1925
1926 rx->skb = __skb_dequeue(&entry->skb_list);
1927 if (skb_tailroom(rx->skb) < entry->extra_len) {
1928 I802_DEBUG_INC(rx->local->rx_expand_skb_head_defrag);
1929 if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len,
1930 GFP_ATOMIC))) {
1931 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
1932 __skb_queue_purge(&entry->skb_list);
1933 return RX_DROP_UNUSABLE;
1934 }
1935 }
1936 while ((skb = __skb_dequeue(&entry->skb_list))) {
1937 memcpy(skb_put(rx->skb, skb->len), skb->data, skb->len);
1938 dev_kfree_skb(skb);
1939 }
1940
1941 /* Complete frame has been reassembled - process it now */
1942 status = IEEE80211_SKB_RXCB(rx->skb);
1943
1944 out:
1945 ieee80211_led_rx(rx->local);
1946 out_no_led:
1947 if (rx->sta)
1948 rx->sta->rx_stats.packets++;
1949 return RX_CONTINUE;
1950 }
1951
ieee80211_802_1x_port_control(struct ieee80211_rx_data * rx)1952 static int ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx)
1953 {
1954 if (unlikely(!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_AUTHORIZED)))
1955 return -EACCES;
1956
1957 return 0;
1958 }
1959
ieee80211_drop_unencrypted(struct ieee80211_rx_data * rx,__le16 fc)1960 static int ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc)
1961 {
1962 struct sk_buff *skb = rx->skb;
1963 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1964
1965 /*
1966 * Pass through unencrypted frames if the hardware has
1967 * decrypted them already.
1968 */
1969 if (status->flag & RX_FLAG_DECRYPTED)
1970 return 0;
1971
1972 /* Drop unencrypted frames if key is set. */
1973 if (unlikely(!ieee80211_has_protected(fc) &&
1974 !ieee80211_is_nullfunc(fc) &&
1975 ieee80211_is_data(fc) && rx->key))
1976 return -EACCES;
1977
1978 return 0;
1979 }
1980
ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data * rx)1981 static int ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx)
1982 {
1983 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1984 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1985 __le16 fc = hdr->frame_control;
1986
1987 /*
1988 * Pass through unencrypted frames if the hardware has
1989 * decrypted them already.
1990 */
1991 if (status->flag & RX_FLAG_DECRYPTED)
1992 return 0;
1993
1994 if (rx->sta && test_sta_flag(rx->sta, WLAN_STA_MFP)) {
1995 if (unlikely(!ieee80211_has_protected(fc) &&
1996 ieee80211_is_unicast_robust_mgmt_frame(rx->skb) &&
1997 rx->key)) {
1998 if (ieee80211_is_deauth(fc) ||
1999 ieee80211_is_disassoc(fc))
2000 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
2001 rx->skb->data,
2002 rx->skb->len);
2003 return -EACCES;
2004 }
2005 /* BIP does not use Protected field, so need to check MMIE */
2006 if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) &&
2007 ieee80211_get_mmie_keyidx(rx->skb) < 0)) {
2008 if (ieee80211_is_deauth(fc) ||
2009 ieee80211_is_disassoc(fc))
2010 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
2011 rx->skb->data,
2012 rx->skb->len);
2013 return -EACCES;
2014 }
2015 /*
2016 * When using MFP, Action frames are not allowed prior to
2017 * having configured keys.
2018 */
2019 if (unlikely(ieee80211_is_action(fc) && !rx->key &&
2020 ieee80211_is_robust_mgmt_frame(rx->skb)))
2021 return -EACCES;
2022 }
2023
2024 return 0;
2025 }
2026
2027 static int
__ieee80211_data_to_8023(struct ieee80211_rx_data * rx,bool * port_control)2028 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control)
2029 {
2030 struct ieee80211_sub_if_data *sdata = rx->sdata;
2031 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2032 bool check_port_control = false;
2033 struct ethhdr *ehdr;
2034 int ret;
2035
2036 *port_control = false;
2037 if (ieee80211_has_a4(hdr->frame_control) &&
2038 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta)
2039 return -1;
2040
2041 if (sdata->vif.type == NL80211_IFTYPE_STATION &&
2042 !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) {
2043
2044 if (!sdata->u.mgd.use_4addr)
2045 return -1;
2046 else
2047 check_port_control = true;
2048 }
2049
2050 if (is_multicast_ether_addr(hdr->addr1) &&
2051 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta)
2052 return -1;
2053
2054 ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type);
2055 if (ret < 0)
2056 return ret;
2057
2058 ehdr = (struct ethhdr *) rx->skb->data;
2059 if (ehdr->h_proto == rx->sdata->control_port_protocol)
2060 *port_control = true;
2061 else if (check_port_control)
2062 return -1;
2063
2064 return 0;
2065 }
2066
2067 /*
2068 * requires that rx->skb is a frame with ethernet header
2069 */
ieee80211_frame_allowed(struct ieee80211_rx_data * rx,__le16 fc)2070 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc)
2071 {
2072 static const u8 pae_group_addr[ETH_ALEN] __aligned(2)
2073 = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 };
2074 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
2075
2076 /*
2077 * Allow EAPOL frames to us/the PAE group address regardless
2078 * of whether the frame was encrypted or not.
2079 */
2080 if (ehdr->h_proto == rx->sdata->control_port_protocol &&
2081 (ether_addr_equal(ehdr->h_dest, rx->sdata->vif.addr) ||
2082 ether_addr_equal(ehdr->h_dest, pae_group_addr)))
2083 return true;
2084
2085 if (ieee80211_802_1x_port_control(rx) ||
2086 ieee80211_drop_unencrypted(rx, fc))
2087 return false;
2088
2089 return true;
2090 }
2091
2092 /*
2093 * requires that rx->skb is a frame with ethernet header
2094 */
2095 static void
ieee80211_deliver_skb(struct ieee80211_rx_data * rx)2096 ieee80211_deliver_skb(struct ieee80211_rx_data *rx)
2097 {
2098 struct ieee80211_sub_if_data *sdata = rx->sdata;
2099 struct net_device *dev = sdata->dev;
2100 struct sk_buff *skb, *xmit_skb;
2101 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
2102 struct sta_info *dsta;
2103
2104 skb = rx->skb;
2105 xmit_skb = NULL;
2106
2107 ieee80211_rx_stats(dev, skb->len);
2108
2109 if ((sdata->vif.type == NL80211_IFTYPE_AP ||
2110 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) &&
2111 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
2112 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) {
2113 if (is_multicast_ether_addr(ehdr->h_dest)) {
2114 /*
2115 * send multicast frames both to higher layers in
2116 * local net stack and back to the wireless medium
2117 */
2118 xmit_skb = skb_copy(skb, GFP_ATOMIC);
2119 if (!xmit_skb)
2120 net_info_ratelimited("%s: failed to clone multicast frame\n",
2121 dev->name);
2122 } else {
2123 dsta = sta_info_get(sdata, skb->data);
2124 if (dsta) {
2125 /*
2126 * The destination station is associated to
2127 * this AP (in this VLAN), so send the frame
2128 * directly to it and do not pass it to local
2129 * net stack.
2130 */
2131 xmit_skb = skb;
2132 skb = NULL;
2133 }
2134 }
2135 }
2136
2137 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2138 if (skb) {
2139 /* 'align' will only take the values 0 or 2 here since all
2140 * frames are required to be aligned to 2-byte boundaries
2141 * when being passed to mac80211; the code here works just
2142 * as well if that isn't true, but mac80211 assumes it can
2143 * access fields as 2-byte aligned (e.g. for ether_addr_equal)
2144 */
2145 int align;
2146
2147 align = (unsigned long)(skb->data + sizeof(struct ethhdr)) & 3;
2148 if (align) {
2149 if (WARN_ON(skb_headroom(skb) < 3)) {
2150 dev_kfree_skb(skb);
2151 skb = NULL;
2152 } else {
2153 u8 *data = skb->data;
2154 size_t len = skb_headlen(skb);
2155 skb->data -= align;
2156 memmove(skb->data, data, len);
2157 skb_set_tail_pointer(skb, len);
2158 }
2159 }
2160 }
2161 #endif
2162
2163 if (skb) {
2164 /* deliver to local stack */
2165 skb->protocol = eth_type_trans(skb, dev);
2166 memset(skb->cb, 0, sizeof(skb->cb));
2167 if (rx->napi)
2168 napi_gro_receive(rx->napi, skb);
2169 else
2170 netif_receive_skb(skb);
2171 }
2172
2173 if (xmit_skb) {
2174 /*
2175 * Send to wireless media and increase priority by 256 to
2176 * keep the received priority instead of reclassifying
2177 * the frame (see cfg80211_classify8021d).
2178 */
2179 xmit_skb->priority += 256;
2180 xmit_skb->protocol = htons(ETH_P_802_3);
2181 skb_reset_network_header(xmit_skb);
2182 skb_reset_mac_header(xmit_skb);
2183 dev_queue_xmit(xmit_skb);
2184 }
2185 }
2186
2187 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_amsdu(struct ieee80211_rx_data * rx)2188 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx)
2189 {
2190 struct net_device *dev = rx->sdata->dev;
2191 struct sk_buff *skb = rx->skb;
2192 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2193 __le16 fc = hdr->frame_control;
2194 struct sk_buff_head frame_list;
2195 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2196
2197 if (unlikely(!ieee80211_is_data(fc)))
2198 return RX_CONTINUE;
2199
2200 if (unlikely(!ieee80211_is_data_present(fc)))
2201 return RX_DROP_MONITOR;
2202
2203 if (!(status->rx_flags & IEEE80211_RX_AMSDU))
2204 return RX_CONTINUE;
2205
2206 if (ieee80211_has_a4(hdr->frame_control) &&
2207 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
2208 !rx->sdata->u.vlan.sta)
2209 return RX_DROP_UNUSABLE;
2210
2211 if (is_multicast_ether_addr(hdr->addr1) &&
2212 ((rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
2213 rx->sdata->u.vlan.sta) ||
2214 (rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
2215 rx->sdata->u.mgd.use_4addr)))
2216 return RX_DROP_UNUSABLE;
2217
2218 skb->dev = dev;
2219 __skb_queue_head_init(&frame_list);
2220
2221 if (skb_linearize(skb))
2222 return RX_DROP_UNUSABLE;
2223
2224 ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr,
2225 rx->sdata->vif.type,
2226 rx->local->hw.extra_tx_headroom, true);
2227
2228 while (!skb_queue_empty(&frame_list)) {
2229 rx->skb = __skb_dequeue(&frame_list);
2230
2231 if (!ieee80211_frame_allowed(rx, fc)) {
2232 dev_kfree_skb(rx->skb);
2233 continue;
2234 }
2235
2236 ieee80211_deliver_skb(rx);
2237 }
2238
2239 return RX_QUEUED;
2240 }
2241
2242 #ifdef CONFIG_MAC80211_MESH
2243 static ieee80211_rx_result
ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data * rx)2244 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx)
2245 {
2246 struct ieee80211_hdr *fwd_hdr, *hdr;
2247 struct ieee80211_tx_info *info;
2248 struct ieee80211s_hdr *mesh_hdr;
2249 struct sk_buff *skb = rx->skb, *fwd_skb;
2250 struct ieee80211_local *local = rx->local;
2251 struct ieee80211_sub_if_data *sdata = rx->sdata;
2252 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh;
2253 u16 ac, q, hdrlen;
2254
2255 hdr = (struct ieee80211_hdr *) skb->data;
2256 hdrlen = ieee80211_hdrlen(hdr->frame_control);
2257
2258 /* make sure fixed part of mesh header is there, also checks skb len */
2259 if (!pskb_may_pull(rx->skb, hdrlen + 6))
2260 return RX_DROP_MONITOR;
2261
2262 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
2263
2264 /* make sure full mesh header is there, also checks skb len */
2265 if (!pskb_may_pull(rx->skb,
2266 hdrlen + ieee80211_get_mesh_hdrlen(mesh_hdr)))
2267 return RX_DROP_MONITOR;
2268
2269 /* reload pointers */
2270 hdr = (struct ieee80211_hdr *) skb->data;
2271 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
2272
2273 if (ieee80211_drop_unencrypted(rx, hdr->frame_control))
2274 return RX_DROP_MONITOR;
2275
2276 /* frame is in RMC, don't forward */
2277 if (ieee80211_is_data(hdr->frame_control) &&
2278 is_multicast_ether_addr(hdr->addr1) &&
2279 mesh_rmc_check(rx->sdata, hdr->addr3, mesh_hdr))
2280 return RX_DROP_MONITOR;
2281
2282 if (!ieee80211_is_data(hdr->frame_control))
2283 return RX_CONTINUE;
2284
2285 if (!mesh_hdr->ttl)
2286 return RX_DROP_MONITOR;
2287
2288 if (mesh_hdr->flags & MESH_FLAGS_AE) {
2289 struct mesh_path *mppath;
2290 char *proxied_addr;
2291 char *mpp_addr;
2292
2293 if (is_multicast_ether_addr(hdr->addr1)) {
2294 mpp_addr = hdr->addr3;
2295 proxied_addr = mesh_hdr->eaddr1;
2296 } else if (mesh_hdr->flags & MESH_FLAGS_AE_A5_A6) {
2297 /* has_a4 already checked in ieee80211_rx_mesh_check */
2298 mpp_addr = hdr->addr4;
2299 proxied_addr = mesh_hdr->eaddr2;
2300 } else {
2301 return RX_DROP_MONITOR;
2302 }
2303
2304 rcu_read_lock();
2305 mppath = mpp_path_lookup(sdata, proxied_addr);
2306 if (!mppath) {
2307 mpp_path_add(sdata, proxied_addr, mpp_addr);
2308 } else {
2309 spin_lock_bh(&mppath->state_lock);
2310 if (!ether_addr_equal(mppath->mpp, mpp_addr))
2311 memcpy(mppath->mpp, mpp_addr, ETH_ALEN);
2312 spin_unlock_bh(&mppath->state_lock);
2313 }
2314 rcu_read_unlock();
2315 }
2316
2317 /* Frame has reached destination. Don't forward */
2318 if (!is_multicast_ether_addr(hdr->addr1) &&
2319 ether_addr_equal(sdata->vif.addr, hdr->addr3))
2320 return RX_CONTINUE;
2321
2322 ac = ieee80211_select_queue_80211(sdata, skb, hdr);
2323 q = sdata->vif.hw_queue[ac];
2324 if (ieee80211_queue_stopped(&local->hw, q)) {
2325 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_congestion);
2326 return RX_DROP_MONITOR;
2327 }
2328 skb_set_queue_mapping(skb, q);
2329
2330 if (!--mesh_hdr->ttl) {
2331 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_ttl);
2332 goto out;
2333 }
2334
2335 if (!ifmsh->mshcfg.dot11MeshForwarding)
2336 goto out;
2337
2338 fwd_skb = skb_copy(skb, GFP_ATOMIC);
2339 if (!fwd_skb) {
2340 net_info_ratelimited("%s: failed to clone mesh frame\n",
2341 sdata->name);
2342 goto out;
2343 }
2344
2345 fwd_hdr = (struct ieee80211_hdr *) fwd_skb->data;
2346 fwd_hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_RETRY);
2347 info = IEEE80211_SKB_CB(fwd_skb);
2348 memset(info, 0, sizeof(*info));
2349 info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING;
2350 info->control.vif = &rx->sdata->vif;
2351 info->control.jiffies = jiffies;
2352 if (is_multicast_ether_addr(fwd_hdr->addr1)) {
2353 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_mcast);
2354 memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN);
2355 /* update power mode indication when forwarding */
2356 ieee80211_mps_set_frame_flags(sdata, NULL, fwd_hdr);
2357 } else if (!mesh_nexthop_lookup(sdata, fwd_skb)) {
2358 /* mesh power mode flags updated in mesh_nexthop_lookup */
2359 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_unicast);
2360 } else {
2361 /* unable to resolve next hop */
2362 mesh_path_error_tx(sdata, ifmsh->mshcfg.element_ttl,
2363 fwd_hdr->addr3, 0,
2364 WLAN_REASON_MESH_PATH_NOFORWARD,
2365 fwd_hdr->addr2);
2366 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_no_route);
2367 kfree_skb(fwd_skb);
2368 return RX_DROP_MONITOR;
2369 }
2370
2371 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_frames);
2372 ieee80211_add_pending_skb(local, fwd_skb);
2373 out:
2374 if (is_multicast_ether_addr(hdr->addr1))
2375 return RX_CONTINUE;
2376 return RX_DROP_MONITOR;
2377 }
2378 #endif
2379
2380 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_data(struct ieee80211_rx_data * rx)2381 ieee80211_rx_h_data(struct ieee80211_rx_data *rx)
2382 {
2383 struct ieee80211_sub_if_data *sdata = rx->sdata;
2384 struct ieee80211_local *local = rx->local;
2385 struct net_device *dev = sdata->dev;
2386 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2387 __le16 fc = hdr->frame_control;
2388 bool port_control;
2389 int err;
2390
2391 if (unlikely(!ieee80211_is_data(hdr->frame_control)))
2392 return RX_CONTINUE;
2393
2394 if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
2395 return RX_DROP_MONITOR;
2396
2397 if (rx->sta) {
2398 /* The seqno index has the same property as needed
2399 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS
2400 * for non-QoS-data frames. Here we know it's a data
2401 * frame, so count MSDUs.
2402 */
2403 rx->sta->rx_stats.msdu[rx->seqno_idx]++;
2404 }
2405
2406 /*
2407 * Send unexpected-4addr-frame event to hostapd. For older versions,
2408 * also drop the frame to cooked monitor interfaces.
2409 */
2410 if (ieee80211_has_a4(hdr->frame_control) &&
2411 sdata->vif.type == NL80211_IFTYPE_AP) {
2412 if (rx->sta &&
2413 !test_and_set_sta_flag(rx->sta, WLAN_STA_4ADDR_EVENT))
2414 cfg80211_rx_unexpected_4addr_frame(
2415 rx->sdata->dev, rx->sta->sta.addr, GFP_ATOMIC);
2416 return RX_DROP_MONITOR;
2417 }
2418
2419 err = __ieee80211_data_to_8023(rx, &port_control);
2420 if (unlikely(err))
2421 return RX_DROP_UNUSABLE;
2422
2423 if (!ieee80211_frame_allowed(rx, fc))
2424 return RX_DROP_MONITOR;
2425
2426 /* directly handle TDLS channel switch requests/responses */
2427 if (unlikely(((struct ethhdr *)rx->skb->data)->h_proto ==
2428 cpu_to_be16(ETH_P_TDLS))) {
2429 struct ieee80211_tdls_data *tf = (void *)rx->skb->data;
2430
2431 if (pskb_may_pull(rx->skb,
2432 offsetof(struct ieee80211_tdls_data, u)) &&
2433 tf->payload_type == WLAN_TDLS_SNAP_RFTYPE &&
2434 tf->category == WLAN_CATEGORY_TDLS &&
2435 (tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_REQUEST ||
2436 tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_RESPONSE)) {
2437 skb_queue_tail(&local->skb_queue_tdls_chsw, rx->skb);
2438 schedule_work(&local->tdls_chsw_work);
2439 if (rx->sta)
2440 rx->sta->rx_stats.packets++;
2441
2442 return RX_QUEUED;
2443 }
2444 }
2445
2446 if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
2447 unlikely(port_control) && sdata->bss) {
2448 sdata = container_of(sdata->bss, struct ieee80211_sub_if_data,
2449 u.ap);
2450 dev = sdata->dev;
2451 rx->sdata = sdata;
2452 }
2453
2454 rx->skb->dev = dev;
2455
2456 if (local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 &&
2457 !is_multicast_ether_addr(
2458 ((struct ethhdr *)rx->skb->data)->h_dest) &&
2459 (!local->scanning &&
2460 !test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state))) {
2461 mod_timer(&local->dynamic_ps_timer, jiffies +
2462 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout));
2463 }
2464
2465 ieee80211_deliver_skb(rx);
2466
2467 return RX_QUEUED;
2468 }
2469
2470 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_ctrl(struct ieee80211_rx_data * rx,struct sk_buff_head * frames)2471 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx, struct sk_buff_head *frames)
2472 {
2473 struct sk_buff *skb = rx->skb;
2474 struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data;
2475 struct tid_ampdu_rx *tid_agg_rx;
2476 u16 start_seq_num;
2477 u16 tid;
2478
2479 if (likely(!ieee80211_is_ctl(bar->frame_control)))
2480 return RX_CONTINUE;
2481
2482 if (ieee80211_is_back_req(bar->frame_control)) {
2483 struct {
2484 __le16 control, start_seq_num;
2485 } __packed bar_data;
2486 struct ieee80211_event event = {
2487 .type = BAR_RX_EVENT,
2488 };
2489
2490 if (!rx->sta)
2491 return RX_DROP_MONITOR;
2492
2493 if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control),
2494 &bar_data, sizeof(bar_data)))
2495 return RX_DROP_MONITOR;
2496
2497 tid = le16_to_cpu(bar_data.control) >> 12;
2498
2499 tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]);
2500 if (!tid_agg_rx)
2501 return RX_DROP_MONITOR;
2502
2503 start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4;
2504 event.u.ba.tid = tid;
2505 event.u.ba.ssn = start_seq_num;
2506 event.u.ba.sta = &rx->sta->sta;
2507
2508 /* reset session timer */
2509 if (tid_agg_rx->timeout)
2510 mod_timer(&tid_agg_rx->session_timer,
2511 TU_TO_EXP_TIME(tid_agg_rx->timeout));
2512
2513 spin_lock(&tid_agg_rx->reorder_lock);
2514 /* release stored frames up to start of BAR */
2515 ieee80211_release_reorder_frames(rx->sdata, tid_agg_rx,
2516 start_seq_num, frames);
2517 spin_unlock(&tid_agg_rx->reorder_lock);
2518
2519 drv_event_callback(rx->local, rx->sdata, &event);
2520
2521 kfree_skb(skb);
2522 return RX_QUEUED;
2523 }
2524
2525 /*
2526 * After this point, we only want management frames,
2527 * so we can drop all remaining control frames to
2528 * cooked monitor interfaces.
2529 */
2530 return RX_DROP_MONITOR;
2531 }
2532
ieee80211_process_sa_query_req(struct ieee80211_sub_if_data * sdata,struct ieee80211_mgmt * mgmt,size_t len)2533 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata,
2534 struct ieee80211_mgmt *mgmt,
2535 size_t len)
2536 {
2537 struct ieee80211_local *local = sdata->local;
2538 struct sk_buff *skb;
2539 struct ieee80211_mgmt *resp;
2540
2541 if (!ether_addr_equal(mgmt->da, sdata->vif.addr)) {
2542 /* Not to own unicast address */
2543 return;
2544 }
2545
2546 if (!ether_addr_equal(mgmt->sa, sdata->u.mgd.bssid) ||
2547 !ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) {
2548 /* Not from the current AP or not associated yet. */
2549 return;
2550 }
2551
2552 if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) {
2553 /* Too short SA Query request frame */
2554 return;
2555 }
2556
2557 skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom);
2558 if (skb == NULL)
2559 return;
2560
2561 skb_reserve(skb, local->hw.extra_tx_headroom);
2562 resp = (struct ieee80211_mgmt *) skb_put(skb, 24);
2563 memset(resp, 0, 24);
2564 memcpy(resp->da, mgmt->sa, ETH_ALEN);
2565 memcpy(resp->sa, sdata->vif.addr, ETH_ALEN);
2566 memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN);
2567 resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
2568 IEEE80211_STYPE_ACTION);
2569 skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query));
2570 resp->u.action.category = WLAN_CATEGORY_SA_QUERY;
2571 resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE;
2572 memcpy(resp->u.action.u.sa_query.trans_id,
2573 mgmt->u.action.u.sa_query.trans_id,
2574 WLAN_SA_QUERY_TR_ID_LEN);
2575
2576 ieee80211_tx_skb(sdata, skb);
2577 }
2578
2579 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data * rx)2580 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx)
2581 {
2582 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2583 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2584
2585 /*
2586 * From here on, look only at management frames.
2587 * Data and control frames are already handled,
2588 * and unknown (reserved) frames are useless.
2589 */
2590 if (rx->skb->len < 24)
2591 return RX_DROP_MONITOR;
2592
2593 if (!ieee80211_is_mgmt(mgmt->frame_control))
2594 return RX_DROP_MONITOR;
2595
2596 if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
2597 ieee80211_is_beacon(mgmt->frame_control) &&
2598 !(rx->flags & IEEE80211_RX_BEACON_REPORTED)) {
2599 int sig = 0;
2600
2601 if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM))
2602 sig = status->signal;
2603
2604 cfg80211_report_obss_beacon(rx->local->hw.wiphy,
2605 rx->skb->data, rx->skb->len,
2606 status->freq, sig);
2607 rx->flags |= IEEE80211_RX_BEACON_REPORTED;
2608 }
2609
2610 if (ieee80211_drop_unencrypted_mgmt(rx))
2611 return RX_DROP_UNUSABLE;
2612
2613 return RX_CONTINUE;
2614 }
2615
2616 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_action(struct ieee80211_rx_data * rx)2617 ieee80211_rx_h_action(struct ieee80211_rx_data *rx)
2618 {
2619 struct ieee80211_local *local = rx->local;
2620 struct ieee80211_sub_if_data *sdata = rx->sdata;
2621 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2622 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2623 int len = rx->skb->len;
2624
2625 if (!ieee80211_is_action(mgmt->frame_control))
2626 return RX_CONTINUE;
2627
2628 /* drop too small frames */
2629 if (len < IEEE80211_MIN_ACTION_SIZE)
2630 return RX_DROP_UNUSABLE;
2631
2632 if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC &&
2633 mgmt->u.action.category != WLAN_CATEGORY_SELF_PROTECTED &&
2634 mgmt->u.action.category != WLAN_CATEGORY_SPECTRUM_MGMT)
2635 return RX_DROP_UNUSABLE;
2636
2637 switch (mgmt->u.action.category) {
2638 case WLAN_CATEGORY_HT:
2639 /* reject HT action frames from stations not supporting HT */
2640 if (!rx->sta->sta.ht_cap.ht_supported)
2641 goto invalid;
2642
2643 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2644 sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2645 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2646 sdata->vif.type != NL80211_IFTYPE_AP &&
2647 sdata->vif.type != NL80211_IFTYPE_ADHOC)
2648 break;
2649
2650 /* verify action & smps_control/chanwidth are present */
2651 if (len < IEEE80211_MIN_ACTION_SIZE + 2)
2652 goto invalid;
2653
2654 switch (mgmt->u.action.u.ht_smps.action) {
2655 case WLAN_HT_ACTION_SMPS: {
2656 struct ieee80211_supported_band *sband;
2657 enum ieee80211_smps_mode smps_mode;
2658
2659 /* convert to HT capability */
2660 switch (mgmt->u.action.u.ht_smps.smps_control) {
2661 case WLAN_HT_SMPS_CONTROL_DISABLED:
2662 smps_mode = IEEE80211_SMPS_OFF;
2663 break;
2664 case WLAN_HT_SMPS_CONTROL_STATIC:
2665 smps_mode = IEEE80211_SMPS_STATIC;
2666 break;
2667 case WLAN_HT_SMPS_CONTROL_DYNAMIC:
2668 smps_mode = IEEE80211_SMPS_DYNAMIC;
2669 break;
2670 default:
2671 goto invalid;
2672 }
2673
2674 /* if no change do nothing */
2675 if (rx->sta->sta.smps_mode == smps_mode)
2676 goto handled;
2677 rx->sta->sta.smps_mode = smps_mode;
2678
2679 sband = rx->local->hw.wiphy->bands[status->band];
2680
2681 rate_control_rate_update(local, sband, rx->sta,
2682 IEEE80211_RC_SMPS_CHANGED);
2683 goto handled;
2684 }
2685 case WLAN_HT_ACTION_NOTIFY_CHANWIDTH: {
2686 struct ieee80211_supported_band *sband;
2687 u8 chanwidth = mgmt->u.action.u.ht_notify_cw.chanwidth;
2688 enum ieee80211_sta_rx_bandwidth max_bw, new_bw;
2689
2690 /* If it doesn't support 40 MHz it can't change ... */
2691 if (!(rx->sta->sta.ht_cap.cap &
2692 IEEE80211_HT_CAP_SUP_WIDTH_20_40))
2693 goto handled;
2694
2695 if (chanwidth == IEEE80211_HT_CHANWIDTH_20MHZ)
2696 max_bw = IEEE80211_STA_RX_BW_20;
2697 else
2698 max_bw = ieee80211_sta_cap_rx_bw(rx->sta);
2699
2700 /* set cur_max_bandwidth and recalc sta bw */
2701 rx->sta->cur_max_bandwidth = max_bw;
2702 new_bw = ieee80211_sta_cur_vht_bw(rx->sta);
2703
2704 if (rx->sta->sta.bandwidth == new_bw)
2705 goto handled;
2706
2707 rx->sta->sta.bandwidth = new_bw;
2708 sband = rx->local->hw.wiphy->bands[status->band];
2709
2710 rate_control_rate_update(local, sband, rx->sta,
2711 IEEE80211_RC_BW_CHANGED);
2712 goto handled;
2713 }
2714 default:
2715 goto invalid;
2716 }
2717
2718 break;
2719 case WLAN_CATEGORY_PUBLIC:
2720 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2721 goto invalid;
2722 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2723 break;
2724 if (!rx->sta)
2725 break;
2726 if (!ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid))
2727 break;
2728 if (mgmt->u.action.u.ext_chan_switch.action_code !=
2729 WLAN_PUB_ACTION_EXT_CHANSW_ANN)
2730 break;
2731 if (len < offsetof(struct ieee80211_mgmt,
2732 u.action.u.ext_chan_switch.variable))
2733 goto invalid;
2734 goto queue;
2735 case WLAN_CATEGORY_VHT:
2736 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2737 sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2738 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2739 sdata->vif.type != NL80211_IFTYPE_AP &&
2740 sdata->vif.type != NL80211_IFTYPE_ADHOC)
2741 break;
2742
2743 /* verify action code is present */
2744 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2745 goto invalid;
2746
2747 switch (mgmt->u.action.u.vht_opmode_notif.action_code) {
2748 case WLAN_VHT_ACTION_OPMODE_NOTIF: {
2749 u8 opmode;
2750
2751 /* verify opmode is present */
2752 if (len < IEEE80211_MIN_ACTION_SIZE + 2)
2753 goto invalid;
2754
2755 opmode = mgmt->u.action.u.vht_opmode_notif.operating_mode;
2756
2757 ieee80211_vht_handle_opmode(rx->sdata, rx->sta,
2758 opmode, status->band);
2759 goto handled;
2760 }
2761 default:
2762 break;
2763 }
2764 break;
2765 case WLAN_CATEGORY_BACK:
2766 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2767 sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2768 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2769 sdata->vif.type != NL80211_IFTYPE_AP &&
2770 sdata->vif.type != NL80211_IFTYPE_ADHOC)
2771 break;
2772
2773 /* verify action_code is present */
2774 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2775 break;
2776
2777 switch (mgmt->u.action.u.addba_req.action_code) {
2778 case WLAN_ACTION_ADDBA_REQ:
2779 if (len < (IEEE80211_MIN_ACTION_SIZE +
2780 sizeof(mgmt->u.action.u.addba_req)))
2781 goto invalid;
2782 break;
2783 case WLAN_ACTION_ADDBA_RESP:
2784 if (len < (IEEE80211_MIN_ACTION_SIZE +
2785 sizeof(mgmt->u.action.u.addba_resp)))
2786 goto invalid;
2787 break;
2788 case WLAN_ACTION_DELBA:
2789 if (len < (IEEE80211_MIN_ACTION_SIZE +
2790 sizeof(mgmt->u.action.u.delba)))
2791 goto invalid;
2792 break;
2793 default:
2794 goto invalid;
2795 }
2796
2797 goto queue;
2798 case WLAN_CATEGORY_SPECTRUM_MGMT:
2799 /* verify action_code is present */
2800 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2801 break;
2802
2803 switch (mgmt->u.action.u.measurement.action_code) {
2804 case WLAN_ACTION_SPCT_MSR_REQ:
2805 if (status->band != IEEE80211_BAND_5GHZ)
2806 break;
2807
2808 if (len < (IEEE80211_MIN_ACTION_SIZE +
2809 sizeof(mgmt->u.action.u.measurement)))
2810 break;
2811
2812 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2813 break;
2814
2815 ieee80211_process_measurement_req(sdata, mgmt, len);
2816 goto handled;
2817 case WLAN_ACTION_SPCT_CHL_SWITCH: {
2818 u8 *bssid;
2819 if (len < (IEEE80211_MIN_ACTION_SIZE +
2820 sizeof(mgmt->u.action.u.chan_switch)))
2821 break;
2822
2823 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2824 sdata->vif.type != NL80211_IFTYPE_ADHOC &&
2825 sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
2826 break;
2827
2828 if (sdata->vif.type == NL80211_IFTYPE_STATION)
2829 bssid = sdata->u.mgd.bssid;
2830 else if (sdata->vif.type == NL80211_IFTYPE_ADHOC)
2831 bssid = sdata->u.ibss.bssid;
2832 else if (sdata->vif.type == NL80211_IFTYPE_MESH_POINT)
2833 bssid = mgmt->sa;
2834 else
2835 break;
2836
2837 if (!ether_addr_equal(mgmt->bssid, bssid))
2838 break;
2839
2840 goto queue;
2841 }
2842 }
2843 break;
2844 case WLAN_CATEGORY_SA_QUERY:
2845 if (len < (IEEE80211_MIN_ACTION_SIZE +
2846 sizeof(mgmt->u.action.u.sa_query)))
2847 break;
2848
2849 switch (mgmt->u.action.u.sa_query.action) {
2850 case WLAN_ACTION_SA_QUERY_REQUEST:
2851 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2852 break;
2853 ieee80211_process_sa_query_req(sdata, mgmt, len);
2854 goto handled;
2855 }
2856 break;
2857 case WLAN_CATEGORY_SELF_PROTECTED:
2858 if (len < (IEEE80211_MIN_ACTION_SIZE +
2859 sizeof(mgmt->u.action.u.self_prot.action_code)))
2860 break;
2861
2862 switch (mgmt->u.action.u.self_prot.action_code) {
2863 case WLAN_SP_MESH_PEERING_OPEN:
2864 case WLAN_SP_MESH_PEERING_CLOSE:
2865 case WLAN_SP_MESH_PEERING_CONFIRM:
2866 if (!ieee80211_vif_is_mesh(&sdata->vif))
2867 goto invalid;
2868 if (sdata->u.mesh.user_mpm)
2869 /* userspace handles this frame */
2870 break;
2871 goto queue;
2872 case WLAN_SP_MGK_INFORM:
2873 case WLAN_SP_MGK_ACK:
2874 if (!ieee80211_vif_is_mesh(&sdata->vif))
2875 goto invalid;
2876 break;
2877 }
2878 break;
2879 case WLAN_CATEGORY_MESH_ACTION:
2880 if (len < (IEEE80211_MIN_ACTION_SIZE +
2881 sizeof(mgmt->u.action.u.mesh_action.action_code)))
2882 break;
2883
2884 if (!ieee80211_vif_is_mesh(&sdata->vif))
2885 break;
2886 if (mesh_action_is_path_sel(mgmt) &&
2887 !mesh_path_sel_is_hwmp(sdata))
2888 break;
2889 goto queue;
2890 }
2891
2892 return RX_CONTINUE;
2893
2894 invalid:
2895 status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM;
2896 /* will return in the next handlers */
2897 return RX_CONTINUE;
2898
2899 handled:
2900 if (rx->sta)
2901 rx->sta->rx_stats.packets++;
2902 dev_kfree_skb(rx->skb);
2903 return RX_QUEUED;
2904
2905 queue:
2906 rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
2907 skb_queue_tail(&sdata->skb_queue, rx->skb);
2908 ieee80211_queue_work(&local->hw, &sdata->work);
2909 if (rx->sta)
2910 rx->sta->rx_stats.packets++;
2911 return RX_QUEUED;
2912 }
2913
2914 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data * rx)2915 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx)
2916 {
2917 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2918 int sig = 0;
2919
2920 /* skip known-bad action frames and return them in the next handler */
2921 if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM)
2922 return RX_CONTINUE;
2923
2924 /*
2925 * Getting here means the kernel doesn't know how to handle
2926 * it, but maybe userspace does ... include returned frames
2927 * so userspace can register for those to know whether ones
2928 * it transmitted were processed or returned.
2929 */
2930
2931 if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM))
2932 sig = status->signal;
2933
2934 if (cfg80211_rx_mgmt(&rx->sdata->wdev, status->freq, sig,
2935 rx->skb->data, rx->skb->len, 0)) {
2936 if (rx->sta)
2937 rx->sta->rx_stats.packets++;
2938 dev_kfree_skb(rx->skb);
2939 return RX_QUEUED;
2940 }
2941
2942 return RX_CONTINUE;
2943 }
2944
2945 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_action_return(struct ieee80211_rx_data * rx)2946 ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx)
2947 {
2948 struct ieee80211_local *local = rx->local;
2949 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2950 struct sk_buff *nskb;
2951 struct ieee80211_sub_if_data *sdata = rx->sdata;
2952 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2953
2954 if (!ieee80211_is_action(mgmt->frame_control))
2955 return RX_CONTINUE;
2956
2957 /*
2958 * For AP mode, hostapd is responsible for handling any action
2959 * frames that we didn't handle, including returning unknown
2960 * ones. For all other modes we will return them to the sender,
2961 * setting the 0x80 bit in the action category, as required by
2962 * 802.11-2012 9.24.4.
2963 * Newer versions of hostapd shall also use the management frame
2964 * registration mechanisms, but older ones still use cooked
2965 * monitor interfaces so push all frames there.
2966 */
2967 if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) &&
2968 (sdata->vif.type == NL80211_IFTYPE_AP ||
2969 sdata->vif.type == NL80211_IFTYPE_AP_VLAN))
2970 return RX_DROP_MONITOR;
2971
2972 if (is_multicast_ether_addr(mgmt->da))
2973 return RX_DROP_MONITOR;
2974
2975 /* do not return rejected action frames */
2976 if (mgmt->u.action.category & 0x80)
2977 return RX_DROP_UNUSABLE;
2978
2979 nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0,
2980 GFP_ATOMIC);
2981 if (nskb) {
2982 struct ieee80211_mgmt *nmgmt = (void *)nskb->data;
2983
2984 nmgmt->u.action.category |= 0x80;
2985 memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN);
2986 memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN);
2987
2988 memset(nskb->cb, 0, sizeof(nskb->cb));
2989
2990 if (rx->sdata->vif.type == NL80211_IFTYPE_P2P_DEVICE) {
2991 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(nskb);
2992
2993 info->flags = IEEE80211_TX_CTL_TX_OFFCHAN |
2994 IEEE80211_TX_INTFL_OFFCHAN_TX_OK |
2995 IEEE80211_TX_CTL_NO_CCK_RATE;
2996 if (ieee80211_hw_check(&local->hw, QUEUE_CONTROL))
2997 info->hw_queue =
2998 local->hw.offchannel_tx_hw_queue;
2999 }
3000
3001 __ieee80211_tx_skb_tid_band(rx->sdata, nskb, 7,
3002 status->band);
3003 }
3004 dev_kfree_skb(rx->skb);
3005 return RX_QUEUED;
3006 }
3007
3008 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_mgmt(struct ieee80211_rx_data * rx)3009 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx)
3010 {
3011 struct ieee80211_sub_if_data *sdata = rx->sdata;
3012 struct ieee80211_mgmt *mgmt = (void *)rx->skb->data;
3013 __le16 stype;
3014
3015 stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE);
3016
3017 if (!ieee80211_vif_is_mesh(&sdata->vif) &&
3018 sdata->vif.type != NL80211_IFTYPE_ADHOC &&
3019 sdata->vif.type != NL80211_IFTYPE_OCB &&
3020 sdata->vif.type != NL80211_IFTYPE_STATION)
3021 return RX_DROP_MONITOR;
3022
3023 switch (stype) {
3024 case cpu_to_le16(IEEE80211_STYPE_AUTH):
3025 case cpu_to_le16(IEEE80211_STYPE_BEACON):
3026 case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP):
3027 /* process for all: mesh, mlme, ibss */
3028 break;
3029 case cpu_to_le16(IEEE80211_STYPE_ASSOC_RESP):
3030 case cpu_to_le16(IEEE80211_STYPE_REASSOC_RESP):
3031 case cpu_to_le16(IEEE80211_STYPE_DEAUTH):
3032 case cpu_to_le16(IEEE80211_STYPE_DISASSOC):
3033 if (is_multicast_ether_addr(mgmt->da) &&
3034 !is_broadcast_ether_addr(mgmt->da))
3035 return RX_DROP_MONITOR;
3036
3037 /* process only for station */
3038 if (sdata->vif.type != NL80211_IFTYPE_STATION)
3039 return RX_DROP_MONITOR;
3040 break;
3041 case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ):
3042 /* process only for ibss and mesh */
3043 if (sdata->vif.type != NL80211_IFTYPE_ADHOC &&
3044 sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
3045 return RX_DROP_MONITOR;
3046 break;
3047 default:
3048 return RX_DROP_MONITOR;
3049 }
3050
3051 /* queue up frame and kick off work to process it */
3052 rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
3053 skb_queue_tail(&sdata->skb_queue, rx->skb);
3054 ieee80211_queue_work(&rx->local->hw, &sdata->work);
3055 if (rx->sta)
3056 rx->sta->rx_stats.packets++;
3057
3058 return RX_QUEUED;
3059 }
3060
ieee80211_rx_cooked_monitor(struct ieee80211_rx_data * rx,struct ieee80211_rate * rate)3061 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx,
3062 struct ieee80211_rate *rate)
3063 {
3064 struct ieee80211_sub_if_data *sdata;
3065 struct ieee80211_local *local = rx->local;
3066 struct sk_buff *skb = rx->skb, *skb2;
3067 struct net_device *prev_dev = NULL;
3068 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3069 int needed_headroom;
3070
3071 /*
3072 * If cooked monitor has been processed already, then
3073 * don't do it again. If not, set the flag.
3074 */
3075 if (rx->flags & IEEE80211_RX_CMNTR)
3076 goto out_free_skb;
3077 rx->flags |= IEEE80211_RX_CMNTR;
3078
3079 /* If there are no cooked monitor interfaces, just free the SKB */
3080 if (!local->cooked_mntrs)
3081 goto out_free_skb;
3082
3083 /* vendor data is long removed here */
3084 status->flag &= ~RX_FLAG_RADIOTAP_VENDOR_DATA;
3085 /* room for the radiotap header based on driver features */
3086 needed_headroom = ieee80211_rx_radiotap_hdrlen(local, status, skb);
3087
3088 if (skb_headroom(skb) < needed_headroom &&
3089 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC))
3090 goto out_free_skb;
3091
3092 /* prepend radiotap information */
3093 ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom,
3094 false);
3095
3096 skb_set_mac_header(skb, 0);
3097 skb->ip_summed = CHECKSUM_UNNECESSARY;
3098 skb->pkt_type = PACKET_OTHERHOST;
3099 skb->protocol = htons(ETH_P_802_2);
3100
3101 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
3102 if (!ieee80211_sdata_running(sdata))
3103 continue;
3104
3105 if (sdata->vif.type != NL80211_IFTYPE_MONITOR ||
3106 !(sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES))
3107 continue;
3108
3109 if (prev_dev) {
3110 skb2 = skb_clone(skb, GFP_ATOMIC);
3111 if (skb2) {
3112 skb2->dev = prev_dev;
3113 netif_receive_skb(skb2);
3114 }
3115 }
3116
3117 prev_dev = sdata->dev;
3118 ieee80211_rx_stats(sdata->dev, skb->len);
3119 }
3120
3121 if (prev_dev) {
3122 skb->dev = prev_dev;
3123 netif_receive_skb(skb);
3124 return;
3125 }
3126
3127 out_free_skb:
3128 dev_kfree_skb(skb);
3129 }
3130
ieee80211_rx_handlers_result(struct ieee80211_rx_data * rx,ieee80211_rx_result res)3131 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx,
3132 ieee80211_rx_result res)
3133 {
3134 switch (res) {
3135 case RX_DROP_MONITOR:
3136 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
3137 if (rx->sta)
3138 rx->sta->rx_stats.dropped++;
3139 /* fall through */
3140 case RX_CONTINUE: {
3141 struct ieee80211_rate *rate = NULL;
3142 struct ieee80211_supported_band *sband;
3143 struct ieee80211_rx_status *status;
3144
3145 status = IEEE80211_SKB_RXCB((rx->skb));
3146
3147 sband = rx->local->hw.wiphy->bands[status->band];
3148 if (!(status->flag & RX_FLAG_HT) &&
3149 !(status->flag & RX_FLAG_VHT))
3150 rate = &sband->bitrates[status->rate_idx];
3151
3152 ieee80211_rx_cooked_monitor(rx, rate);
3153 break;
3154 }
3155 case RX_DROP_UNUSABLE:
3156 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
3157 if (rx->sta)
3158 rx->sta->rx_stats.dropped++;
3159 dev_kfree_skb(rx->skb);
3160 break;
3161 case RX_QUEUED:
3162 I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued);
3163 break;
3164 }
3165 }
3166
ieee80211_rx_handlers(struct ieee80211_rx_data * rx,struct sk_buff_head * frames)3167 static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx,
3168 struct sk_buff_head *frames)
3169 {
3170 ieee80211_rx_result res = RX_DROP_MONITOR;
3171 struct sk_buff *skb;
3172
3173 #define CALL_RXH(rxh) \
3174 do { \
3175 res = rxh(rx); \
3176 if (res != RX_CONTINUE) \
3177 goto rxh_next; \
3178 } while (0);
3179
3180 /* Lock here to avoid hitting all of the data used in the RX
3181 * path (e.g. key data, station data, ...) concurrently when
3182 * a frame is released from the reorder buffer due to timeout
3183 * from the timer, potentially concurrently with RX from the
3184 * driver.
3185 */
3186 spin_lock_bh(&rx->local->rx_path_lock);
3187
3188 while ((skb = __skb_dequeue(frames))) {
3189 /*
3190 * all the other fields are valid across frames
3191 * that belong to an aMPDU since they are on the
3192 * same TID from the same station
3193 */
3194 rx->skb = skb;
3195
3196 CALL_RXH(ieee80211_rx_h_check_more_data)
3197 CALL_RXH(ieee80211_rx_h_uapsd_and_pspoll)
3198 CALL_RXH(ieee80211_rx_h_sta_process)
3199 CALL_RXH(ieee80211_rx_h_decrypt)
3200 CALL_RXH(ieee80211_rx_h_defragment)
3201 CALL_RXH(ieee80211_rx_h_michael_mic_verify)
3202 /* must be after MMIC verify so header is counted in MPDU mic */
3203 #ifdef CONFIG_MAC80211_MESH
3204 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
3205 CALL_RXH(ieee80211_rx_h_mesh_fwding);
3206 #endif
3207 CALL_RXH(ieee80211_rx_h_amsdu)
3208 CALL_RXH(ieee80211_rx_h_data)
3209
3210 /* special treatment -- needs the queue */
3211 res = ieee80211_rx_h_ctrl(rx, frames);
3212 if (res != RX_CONTINUE)
3213 goto rxh_next;
3214
3215 CALL_RXH(ieee80211_rx_h_mgmt_check)
3216 CALL_RXH(ieee80211_rx_h_action)
3217 CALL_RXH(ieee80211_rx_h_userspace_mgmt)
3218 CALL_RXH(ieee80211_rx_h_action_return)
3219 CALL_RXH(ieee80211_rx_h_mgmt)
3220
3221 rxh_next:
3222 ieee80211_rx_handlers_result(rx, res);
3223
3224 #undef CALL_RXH
3225 }
3226
3227 spin_unlock_bh(&rx->local->rx_path_lock);
3228 }
3229
ieee80211_invoke_rx_handlers(struct ieee80211_rx_data * rx)3230 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx)
3231 {
3232 struct sk_buff_head reorder_release;
3233 ieee80211_rx_result res = RX_DROP_MONITOR;
3234
3235 __skb_queue_head_init(&reorder_release);
3236
3237 #define CALL_RXH(rxh) \
3238 do { \
3239 res = rxh(rx); \
3240 if (res != RX_CONTINUE) \
3241 goto rxh_next; \
3242 } while (0);
3243
3244 CALL_RXH(ieee80211_rx_h_check_dup)
3245 CALL_RXH(ieee80211_rx_h_check)
3246
3247 ieee80211_rx_reorder_ampdu(rx, &reorder_release);
3248
3249 ieee80211_rx_handlers(rx, &reorder_release);
3250 return;
3251
3252 rxh_next:
3253 ieee80211_rx_handlers_result(rx, res);
3254
3255 #undef CALL_RXH
3256 }
3257
3258 /*
3259 * This function makes calls into the RX path, therefore
3260 * it has to be invoked under RCU read lock.
3261 */
ieee80211_release_reorder_timeout(struct sta_info * sta,int tid)3262 void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid)
3263 {
3264 struct sk_buff_head frames;
3265 struct ieee80211_rx_data rx = {
3266 .sta = sta,
3267 .sdata = sta->sdata,
3268 .local = sta->local,
3269 /* This is OK -- must be QoS data frame */
3270 .security_idx = tid,
3271 .seqno_idx = tid,
3272 .napi = NULL, /* must be NULL to not have races */
3273 };
3274 struct tid_ampdu_rx *tid_agg_rx;
3275
3276 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
3277 if (!tid_agg_rx)
3278 return;
3279
3280 __skb_queue_head_init(&frames);
3281
3282 spin_lock(&tid_agg_rx->reorder_lock);
3283 ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames);
3284 spin_unlock(&tid_agg_rx->reorder_lock);
3285
3286 if (!skb_queue_empty(&frames)) {
3287 struct ieee80211_event event = {
3288 .type = BA_FRAME_TIMEOUT,
3289 .u.ba.tid = tid,
3290 .u.ba.sta = &sta->sta,
3291 };
3292 drv_event_callback(rx.local, rx.sdata, &event);
3293 }
3294
3295 ieee80211_rx_handlers(&rx, &frames);
3296 }
3297
3298 /* main receive path */
3299
ieee80211_accept_frame(struct ieee80211_rx_data * rx)3300 static bool ieee80211_accept_frame(struct ieee80211_rx_data *rx)
3301 {
3302 struct ieee80211_sub_if_data *sdata = rx->sdata;
3303 struct sk_buff *skb = rx->skb;
3304 struct ieee80211_hdr *hdr = (void *)skb->data;
3305 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3306 u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type);
3307 int multicast = is_multicast_ether_addr(hdr->addr1);
3308
3309 switch (sdata->vif.type) {
3310 case NL80211_IFTYPE_STATION:
3311 if (!bssid && !sdata->u.mgd.use_4addr)
3312 return false;
3313 if (multicast)
3314 return true;
3315 return ether_addr_equal(sdata->vif.addr, hdr->addr1);
3316 case NL80211_IFTYPE_ADHOC:
3317 if (!bssid)
3318 return false;
3319 if (ether_addr_equal(sdata->vif.addr, hdr->addr2) ||
3320 ether_addr_equal(sdata->u.ibss.bssid, hdr->addr2))
3321 return false;
3322 if (ieee80211_is_beacon(hdr->frame_control))
3323 return true;
3324 if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid))
3325 return false;
3326 if (!multicast &&
3327 !ether_addr_equal(sdata->vif.addr, hdr->addr1))
3328 return false;
3329 if (!rx->sta) {
3330 int rate_idx;
3331 if (status->flag & (RX_FLAG_HT | RX_FLAG_VHT))
3332 rate_idx = 0; /* TODO: HT/VHT rates */
3333 else
3334 rate_idx = status->rate_idx;
3335 ieee80211_ibss_rx_no_sta(sdata, bssid, hdr->addr2,
3336 BIT(rate_idx));
3337 }
3338 return true;
3339 case NL80211_IFTYPE_OCB:
3340 if (!bssid)
3341 return false;
3342 if (!ieee80211_is_data_present(hdr->frame_control))
3343 return false;
3344 if (!is_broadcast_ether_addr(bssid))
3345 return false;
3346 if (!multicast &&
3347 !ether_addr_equal(sdata->dev->dev_addr, hdr->addr1))
3348 return false;
3349 if (!rx->sta) {
3350 int rate_idx;
3351 if (status->flag & RX_FLAG_HT)
3352 rate_idx = 0; /* TODO: HT rates */
3353 else
3354 rate_idx = status->rate_idx;
3355 ieee80211_ocb_rx_no_sta(sdata, bssid, hdr->addr2,
3356 BIT(rate_idx));
3357 }
3358 return true;
3359 case NL80211_IFTYPE_MESH_POINT:
3360 if (multicast)
3361 return true;
3362 return ether_addr_equal(sdata->vif.addr, hdr->addr1);
3363 case NL80211_IFTYPE_AP_VLAN:
3364 case NL80211_IFTYPE_AP:
3365 if (!bssid)
3366 return ether_addr_equal(sdata->vif.addr, hdr->addr1);
3367
3368 if (!ieee80211_bssid_match(bssid, sdata->vif.addr)) {
3369 /*
3370 * Accept public action frames even when the
3371 * BSSID doesn't match, this is used for P2P
3372 * and location updates. Note that mac80211
3373 * itself never looks at these frames.
3374 */
3375 if (!multicast &&
3376 !ether_addr_equal(sdata->vif.addr, hdr->addr1))
3377 return false;
3378 if (ieee80211_is_public_action(hdr, skb->len))
3379 return true;
3380 return ieee80211_is_beacon(hdr->frame_control);
3381 }
3382
3383 if (!ieee80211_has_tods(hdr->frame_control)) {
3384 /* ignore data frames to TDLS-peers */
3385 if (ieee80211_is_data(hdr->frame_control))
3386 return false;
3387 /* ignore action frames to TDLS-peers */
3388 if (ieee80211_is_action(hdr->frame_control) &&
3389 !is_broadcast_ether_addr(bssid) &&
3390 !ether_addr_equal(bssid, hdr->addr1))
3391 return false;
3392 }
3393 return true;
3394 case NL80211_IFTYPE_WDS:
3395 if (bssid || !ieee80211_is_data(hdr->frame_control))
3396 return false;
3397 return ether_addr_equal(sdata->u.wds.remote_addr, hdr->addr2);
3398 case NL80211_IFTYPE_P2P_DEVICE:
3399 return ieee80211_is_public_action(hdr, skb->len) ||
3400 ieee80211_is_probe_req(hdr->frame_control) ||
3401 ieee80211_is_probe_resp(hdr->frame_control) ||
3402 ieee80211_is_beacon(hdr->frame_control);
3403 default:
3404 break;
3405 }
3406
3407 WARN_ON_ONCE(1);
3408 return false;
3409 }
3410
3411 /*
3412 * This function returns whether or not the SKB
3413 * was destined for RX processing or not, which,
3414 * if consume is true, is equivalent to whether
3415 * or not the skb was consumed.
3416 */
ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data * rx,struct sk_buff * skb,bool consume)3417 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx,
3418 struct sk_buff *skb, bool consume)
3419 {
3420 struct ieee80211_local *local = rx->local;
3421 struct ieee80211_sub_if_data *sdata = rx->sdata;
3422
3423 rx->skb = skb;
3424
3425 if (!ieee80211_accept_frame(rx))
3426 return false;
3427
3428 if (!consume) {
3429 skb = skb_copy(skb, GFP_ATOMIC);
3430 if (!skb) {
3431 if (net_ratelimit())
3432 wiphy_debug(local->hw.wiphy,
3433 "failed to copy skb for %s\n",
3434 sdata->name);
3435 return true;
3436 }
3437
3438 rx->skb = skb;
3439 }
3440
3441 ieee80211_invoke_rx_handlers(rx);
3442 return true;
3443 }
3444
3445 /*
3446 * This is the actual Rx frames handler. as it belongs to Rx path it must
3447 * be called with rcu_read_lock protection.
3448 */
__ieee80211_rx_handle_packet(struct ieee80211_hw * hw,struct sk_buff * skb,struct napi_struct * napi)3449 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw,
3450 struct sk_buff *skb,
3451 struct napi_struct *napi)
3452 {
3453 struct ieee80211_local *local = hw_to_local(hw);
3454 struct ieee80211_sub_if_data *sdata;
3455 struct ieee80211_hdr *hdr;
3456 __le16 fc;
3457 struct ieee80211_rx_data rx;
3458 struct ieee80211_sub_if_data *prev;
3459 struct sta_info *sta, *prev_sta;
3460 struct rhash_head *tmp;
3461 int err = 0;
3462
3463 fc = ((struct ieee80211_hdr *)skb->data)->frame_control;
3464 memset(&rx, 0, sizeof(rx));
3465 rx.skb = skb;
3466 rx.local = local;
3467 rx.napi = napi;
3468
3469 if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc))
3470 I802_DEBUG_INC(local->dot11ReceivedFragmentCount);
3471
3472 if (ieee80211_is_mgmt(fc)) {
3473 /* drop frame if too short for header */
3474 if (skb->len < ieee80211_hdrlen(fc))
3475 err = -ENOBUFS;
3476 else
3477 err = skb_linearize(skb);
3478 } else {
3479 err = !pskb_may_pull(skb, ieee80211_hdrlen(fc));
3480 }
3481
3482 if (err) {
3483 dev_kfree_skb(skb);
3484 return;
3485 }
3486
3487 hdr = (struct ieee80211_hdr *)skb->data;
3488 ieee80211_parse_qos(&rx);
3489 ieee80211_verify_alignment(&rx);
3490
3491 if (unlikely(ieee80211_is_probe_resp(hdr->frame_control) ||
3492 ieee80211_is_beacon(hdr->frame_control)))
3493 ieee80211_scan_rx(local, skb);
3494
3495 if (ieee80211_is_data(fc)) {
3496 const struct bucket_table *tbl;
3497
3498 prev_sta = NULL;
3499
3500 tbl = rht_dereference_rcu(local->sta_hash.tbl, &local->sta_hash);
3501
3502 for_each_sta_info(local, tbl, hdr->addr2, sta, tmp) {
3503 if (!prev_sta) {
3504 prev_sta = sta;
3505 continue;
3506 }
3507
3508 rx.sta = prev_sta;
3509 rx.sdata = prev_sta->sdata;
3510 ieee80211_prepare_and_rx_handle(&rx, skb, false);
3511
3512 prev_sta = sta;
3513 }
3514
3515 if (prev_sta) {
3516 rx.sta = prev_sta;
3517 rx.sdata = prev_sta->sdata;
3518
3519 if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
3520 return;
3521 goto out;
3522 }
3523 }
3524
3525 prev = NULL;
3526
3527 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
3528 if (!ieee80211_sdata_running(sdata))
3529 continue;
3530
3531 if (sdata->vif.type == NL80211_IFTYPE_MONITOR ||
3532 sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
3533 continue;
3534
3535 /*
3536 * frame is destined for this interface, but if it's
3537 * not also for the previous one we handle that after
3538 * the loop to avoid copying the SKB once too much
3539 */
3540
3541 if (!prev) {
3542 prev = sdata;
3543 continue;
3544 }
3545
3546 rx.sta = sta_info_get_bss(prev, hdr->addr2);
3547 rx.sdata = prev;
3548 ieee80211_prepare_and_rx_handle(&rx, skb, false);
3549
3550 prev = sdata;
3551 }
3552
3553 if (prev) {
3554 rx.sta = sta_info_get_bss(prev, hdr->addr2);
3555 rx.sdata = prev;
3556
3557 if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
3558 return;
3559 }
3560
3561 out:
3562 dev_kfree_skb(skb);
3563 }
3564
3565 /*
3566 * This is the receive path handler. It is called by a low level driver when an
3567 * 802.11 MPDU is received from the hardware.
3568 */
ieee80211_rx_napi(struct ieee80211_hw * hw,struct sk_buff * skb,struct napi_struct * napi)3569 void ieee80211_rx_napi(struct ieee80211_hw *hw, struct sk_buff *skb,
3570 struct napi_struct *napi)
3571 {
3572 struct ieee80211_local *local = hw_to_local(hw);
3573 struct ieee80211_rate *rate = NULL;
3574 struct ieee80211_supported_band *sband;
3575 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3576
3577 WARN_ON_ONCE(softirq_count() == 0);
3578
3579 if (WARN_ON(status->band >= IEEE80211_NUM_BANDS))
3580 goto drop;
3581
3582 sband = local->hw.wiphy->bands[status->band];
3583 if (WARN_ON(!sband))
3584 goto drop;
3585
3586 /*
3587 * If we're suspending, it is possible although not too likely
3588 * that we'd be receiving frames after having already partially
3589 * quiesced the stack. We can't process such frames then since
3590 * that might, for example, cause stations to be added or other
3591 * driver callbacks be invoked.
3592 */
3593 if (unlikely(local->quiescing || local->suspended))
3594 goto drop;
3595
3596 /* We might be during a HW reconfig, prevent Rx for the same reason */
3597 if (unlikely(local->in_reconfig))
3598 goto drop;
3599
3600 /*
3601 * The same happens when we're not even started,
3602 * but that's worth a warning.
3603 */
3604 if (WARN_ON(!local->started))
3605 goto drop;
3606
3607 if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) {
3608 /*
3609 * Validate the rate, unless a PLCP error means that
3610 * we probably can't have a valid rate here anyway.
3611 */
3612
3613 if (status->flag & RX_FLAG_HT) {
3614 /*
3615 * rate_idx is MCS index, which can be [0-76]
3616 * as documented on:
3617 *
3618 * http://wireless.kernel.org/en/developers/Documentation/ieee80211/802.11n
3619 *
3620 * Anything else would be some sort of driver or
3621 * hardware error. The driver should catch hardware
3622 * errors.
3623 */
3624 if (WARN(status->rate_idx > 76,
3625 "Rate marked as an HT rate but passed "
3626 "status->rate_idx is not "
3627 "an MCS index [0-76]: %d (0x%02x)\n",
3628 status->rate_idx,
3629 status->rate_idx))
3630 goto drop;
3631 } else if (status->flag & RX_FLAG_VHT) {
3632 if (WARN_ONCE(status->rate_idx > 9 ||
3633 !status->vht_nss ||
3634 status->vht_nss > 8,
3635 "Rate marked as a VHT rate but data is invalid: MCS: %d, NSS: %d\n",
3636 status->rate_idx, status->vht_nss))
3637 goto drop;
3638 } else {
3639 if (WARN_ON(status->rate_idx >= sband->n_bitrates))
3640 goto drop;
3641 rate = &sband->bitrates[status->rate_idx];
3642 }
3643 }
3644
3645 status->rx_flags = 0;
3646
3647 /*
3648 * key references and virtual interfaces are protected using RCU
3649 * and this requires that we are in a read-side RCU section during
3650 * receive processing
3651 */
3652 rcu_read_lock();
3653
3654 /*
3655 * Frames with failed FCS/PLCP checksum are not returned,
3656 * all other frames are returned without radiotap header
3657 * if it was previously present.
3658 * Also, frames with less than 16 bytes are dropped.
3659 */
3660 skb = ieee80211_rx_monitor(local, skb, rate);
3661 if (!skb) {
3662 rcu_read_unlock();
3663 return;
3664 }
3665
3666 ieee80211_tpt_led_trig_rx(local,
3667 ((struct ieee80211_hdr *)skb->data)->frame_control,
3668 skb->len);
3669 __ieee80211_rx_handle_packet(hw, skb, napi);
3670
3671 rcu_read_unlock();
3672
3673 return;
3674 drop:
3675 kfree_skb(skb);
3676 }
3677 EXPORT_SYMBOL(ieee80211_rx_napi);
3678
3679 /* This is a version of the rx handler that can be called from hard irq
3680 * context. Post the skb on the queue and schedule the tasklet */
ieee80211_rx_irqsafe(struct ieee80211_hw * hw,struct sk_buff * skb)3681 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb)
3682 {
3683 struct ieee80211_local *local = hw_to_local(hw);
3684
3685 BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb));
3686
3687 skb->pkt_type = IEEE80211_RX_MSG;
3688 skb_queue_tail(&local->skb_queue, skb);
3689 tasklet_schedule(&local->tasklet);
3690 }
3691 EXPORT_SYMBOL(ieee80211_rx_irqsafe);
3692