1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2006-2007	Jiri Benc <jbenc@suse.cz>
5  * Copyright 2007-2010	Johannes Berg <johannes@sipsolutions.net>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12 
13 #include <linux/jiffies.h>
14 #include <linux/slab.h>
15 #include <linux/kernel.h>
16 #include <linux/skbuff.h>
17 #include <linux/netdevice.h>
18 #include <linux/etherdevice.h>
19 #include <linux/rcupdate.h>
20 #include <linux/export.h>
21 #include <net/mac80211.h>
22 #include <net/ieee80211_radiotap.h>
23 #include <asm/unaligned.h>
24 
25 #include "ieee80211_i.h"
26 #include "driver-ops.h"
27 #include "led.h"
28 #include "mesh.h"
29 #include "wep.h"
30 #include "wpa.h"
31 #include "tkip.h"
32 #include "wme.h"
33 #include "rate.h"
34 
ieee80211_rx_stats(struct net_device * dev,u32 len)35 static inline void ieee80211_rx_stats(struct net_device *dev, u32 len)
36 {
37 	struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
38 
39 	u64_stats_update_begin(&tstats->syncp);
40 	tstats->rx_packets++;
41 	tstats->rx_bytes += len;
42 	u64_stats_update_end(&tstats->syncp);
43 }
44 
ieee80211_get_bssid(struct ieee80211_hdr * hdr,size_t len,enum nl80211_iftype type)45 static u8 *ieee80211_get_bssid(struct ieee80211_hdr *hdr, size_t len,
46 			       enum nl80211_iftype type)
47 {
48 	__le16 fc = hdr->frame_control;
49 
50 	if (ieee80211_is_data(fc)) {
51 		if (len < 24) /* drop incorrect hdr len (data) */
52 			return NULL;
53 
54 		if (ieee80211_has_a4(fc))
55 			return NULL;
56 		if (ieee80211_has_tods(fc))
57 			return hdr->addr1;
58 		if (ieee80211_has_fromds(fc))
59 			return hdr->addr2;
60 
61 		return hdr->addr3;
62 	}
63 
64 	if (ieee80211_is_mgmt(fc)) {
65 		if (len < 24) /* drop incorrect hdr len (mgmt) */
66 			return NULL;
67 		return hdr->addr3;
68 	}
69 
70 	if (ieee80211_is_ctl(fc)) {
71 		if (ieee80211_is_pspoll(fc))
72 			return hdr->addr1;
73 
74 		if (ieee80211_is_back_req(fc)) {
75 			switch (type) {
76 			case NL80211_IFTYPE_STATION:
77 				return hdr->addr2;
78 			case NL80211_IFTYPE_AP:
79 			case NL80211_IFTYPE_AP_VLAN:
80 				return hdr->addr1;
81 			default:
82 				break; /* fall through to the return */
83 			}
84 		}
85 	}
86 
87 	return NULL;
88 }
89 
90 /*
91  * monitor mode reception
92  *
93  * This function cleans up the SKB, i.e. it removes all the stuff
94  * only useful for monitoring.
95  */
remove_monitor_info(struct ieee80211_local * local,struct sk_buff * skb,unsigned int rtap_vendor_space)96 static struct sk_buff *remove_monitor_info(struct ieee80211_local *local,
97 					   struct sk_buff *skb,
98 					   unsigned int rtap_vendor_space)
99 {
100 	if (ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)) {
101 		if (likely(skb->len > FCS_LEN))
102 			__pskb_trim(skb, skb->len - FCS_LEN);
103 		else {
104 			/* driver bug */
105 			WARN_ON(1);
106 			dev_kfree_skb(skb);
107 			return NULL;
108 		}
109 	}
110 
111 	__pskb_pull(skb, rtap_vendor_space);
112 
113 	return skb;
114 }
115 
should_drop_frame(struct sk_buff * skb,int present_fcs_len,unsigned int rtap_vendor_space)116 static inline bool should_drop_frame(struct sk_buff *skb, int present_fcs_len,
117 				     unsigned int rtap_vendor_space)
118 {
119 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
120 	struct ieee80211_hdr *hdr;
121 
122 	hdr = (void *)(skb->data + rtap_vendor_space);
123 
124 	if (status->flag & (RX_FLAG_FAILED_FCS_CRC |
125 			    RX_FLAG_FAILED_PLCP_CRC))
126 		return true;
127 
128 	if (unlikely(skb->len < 16 + present_fcs_len + rtap_vendor_space))
129 		return true;
130 
131 	if (ieee80211_is_ctl(hdr->frame_control) &&
132 	    !ieee80211_is_pspoll(hdr->frame_control) &&
133 	    !ieee80211_is_back_req(hdr->frame_control))
134 		return true;
135 
136 	return false;
137 }
138 
139 static int
ieee80211_rx_radiotap_hdrlen(struct ieee80211_local * local,struct ieee80211_rx_status * status,struct sk_buff * skb)140 ieee80211_rx_radiotap_hdrlen(struct ieee80211_local *local,
141 			     struct ieee80211_rx_status *status,
142 			     struct sk_buff *skb)
143 {
144 	int len;
145 
146 	/* always present fields */
147 	len = sizeof(struct ieee80211_radiotap_header) + 8;
148 
149 	/* allocate extra bitmaps */
150 	if (status->chains)
151 		len += 4 * hweight8(status->chains);
152 
153 	if (ieee80211_have_rx_timestamp(status)) {
154 		len = ALIGN(len, 8);
155 		len += 8;
156 	}
157 	if (ieee80211_hw_check(&local->hw, SIGNAL_DBM))
158 		len += 1;
159 
160 	/* antenna field, if we don't have per-chain info */
161 	if (!status->chains)
162 		len += 1;
163 
164 	/* padding for RX_FLAGS if necessary */
165 	len = ALIGN(len, 2);
166 
167 	if (status->flag & RX_FLAG_HT) /* HT info */
168 		len += 3;
169 
170 	if (status->flag & RX_FLAG_AMPDU_DETAILS) {
171 		len = ALIGN(len, 4);
172 		len += 8;
173 	}
174 
175 	if (status->flag & RX_FLAG_VHT) {
176 		len = ALIGN(len, 2);
177 		len += 12;
178 	}
179 
180 	if (status->chains) {
181 		/* antenna and antenna signal fields */
182 		len += 2 * hweight8(status->chains);
183 	}
184 
185 	if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
186 		struct ieee80211_vendor_radiotap *rtap = (void *)skb->data;
187 
188 		/* vendor presence bitmap */
189 		len += 4;
190 		/* alignment for fixed 6-byte vendor data header */
191 		len = ALIGN(len, 2);
192 		/* vendor data header */
193 		len += 6;
194 		if (WARN_ON(rtap->align == 0))
195 			rtap->align = 1;
196 		len = ALIGN(len, rtap->align);
197 		len += rtap->len + rtap->pad;
198 	}
199 
200 	return len;
201 }
202 
203 /*
204  * ieee80211_add_rx_radiotap_header - add radiotap header
205  *
206  * add a radiotap header containing all the fields which the hardware provided.
207  */
208 static void
ieee80211_add_rx_radiotap_header(struct ieee80211_local * local,struct sk_buff * skb,struct ieee80211_rate * rate,int rtap_len,bool has_fcs)209 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local,
210 				 struct sk_buff *skb,
211 				 struct ieee80211_rate *rate,
212 				 int rtap_len, bool has_fcs)
213 {
214 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
215 	struct ieee80211_radiotap_header *rthdr;
216 	unsigned char *pos;
217 	__le32 *it_present;
218 	u32 it_present_val;
219 	u16 rx_flags = 0;
220 	u16 channel_flags = 0;
221 	int mpdulen, chain;
222 	unsigned long chains = status->chains;
223 	struct ieee80211_vendor_radiotap rtap = {};
224 
225 	if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
226 		rtap = *(struct ieee80211_vendor_radiotap *)skb->data;
227 		/* rtap.len and rtap.pad are undone immediately */
228 		skb_pull(skb, sizeof(rtap) + rtap.len + rtap.pad);
229 	}
230 
231 	mpdulen = skb->len;
232 	if (!(has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)))
233 		mpdulen += FCS_LEN;
234 
235 	rthdr = (struct ieee80211_radiotap_header *)skb_push(skb, rtap_len);
236 	memset(rthdr, 0, rtap_len - rtap.len - rtap.pad);
237 	it_present = &rthdr->it_present;
238 
239 	/* radiotap header, set always present flags */
240 	rthdr->it_len = cpu_to_le16(rtap_len);
241 	it_present_val = BIT(IEEE80211_RADIOTAP_FLAGS) |
242 			 BIT(IEEE80211_RADIOTAP_CHANNEL) |
243 			 BIT(IEEE80211_RADIOTAP_RX_FLAGS);
244 
245 	if (!status->chains)
246 		it_present_val |= BIT(IEEE80211_RADIOTAP_ANTENNA);
247 
248 	for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) {
249 		it_present_val |=
250 			BIT(IEEE80211_RADIOTAP_EXT) |
251 			BIT(IEEE80211_RADIOTAP_RADIOTAP_NAMESPACE);
252 		put_unaligned_le32(it_present_val, it_present);
253 		it_present++;
254 		it_present_val = BIT(IEEE80211_RADIOTAP_ANTENNA) |
255 				 BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
256 	}
257 
258 	if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
259 		it_present_val |= BIT(IEEE80211_RADIOTAP_VENDOR_NAMESPACE) |
260 				  BIT(IEEE80211_RADIOTAP_EXT);
261 		put_unaligned_le32(it_present_val, it_present);
262 		it_present++;
263 		it_present_val = rtap.present;
264 	}
265 
266 	put_unaligned_le32(it_present_val, it_present);
267 
268 	pos = (void *)(it_present + 1);
269 
270 	/* the order of the following fields is important */
271 
272 	/* IEEE80211_RADIOTAP_TSFT */
273 	if (ieee80211_have_rx_timestamp(status)) {
274 		/* padding */
275 		while ((pos - (u8 *)rthdr) & 7)
276 			*pos++ = 0;
277 		put_unaligned_le64(
278 			ieee80211_calculate_rx_timestamp(local, status,
279 							 mpdulen, 0),
280 			pos);
281 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT);
282 		pos += 8;
283 	}
284 
285 	/* IEEE80211_RADIOTAP_FLAGS */
286 	if (has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS))
287 		*pos |= IEEE80211_RADIOTAP_F_FCS;
288 	if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
289 		*pos |= IEEE80211_RADIOTAP_F_BADFCS;
290 	if (status->flag & RX_FLAG_SHORTPRE)
291 		*pos |= IEEE80211_RADIOTAP_F_SHORTPRE;
292 	pos++;
293 
294 	/* IEEE80211_RADIOTAP_RATE */
295 	if (!rate || status->flag & (RX_FLAG_HT | RX_FLAG_VHT)) {
296 		/*
297 		 * Without rate information don't add it. If we have,
298 		 * MCS information is a separate field in radiotap,
299 		 * added below. The byte here is needed as padding
300 		 * for the channel though, so initialise it to 0.
301 		 */
302 		*pos = 0;
303 	} else {
304 		int shift = 0;
305 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE);
306 		if (status->flag & RX_FLAG_10MHZ)
307 			shift = 1;
308 		else if (status->flag & RX_FLAG_5MHZ)
309 			shift = 2;
310 		*pos = DIV_ROUND_UP(rate->bitrate, 5 * (1 << shift));
311 	}
312 	pos++;
313 
314 	/* IEEE80211_RADIOTAP_CHANNEL */
315 	put_unaligned_le16(status->freq, pos);
316 	pos += 2;
317 	if (status->flag & RX_FLAG_10MHZ)
318 		channel_flags |= IEEE80211_CHAN_HALF;
319 	else if (status->flag & RX_FLAG_5MHZ)
320 		channel_flags |= IEEE80211_CHAN_QUARTER;
321 
322 	if (status->band == IEEE80211_BAND_5GHZ)
323 		channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ;
324 	else if (status->flag & (RX_FLAG_HT | RX_FLAG_VHT))
325 		channel_flags |= IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
326 	else if (rate && rate->flags & IEEE80211_RATE_ERP_G)
327 		channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ;
328 	else if (rate)
329 		channel_flags |= IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ;
330 	else
331 		channel_flags |= IEEE80211_CHAN_2GHZ;
332 	put_unaligned_le16(channel_flags, pos);
333 	pos += 2;
334 
335 	/* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */
336 	if (ieee80211_hw_check(&local->hw, SIGNAL_DBM) &&
337 	    !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
338 		*pos = status->signal;
339 		rthdr->it_present |=
340 			cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
341 		pos++;
342 	}
343 
344 	/* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */
345 
346 	if (!status->chains) {
347 		/* IEEE80211_RADIOTAP_ANTENNA */
348 		*pos = status->antenna;
349 		pos++;
350 	}
351 
352 	/* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */
353 
354 	/* IEEE80211_RADIOTAP_RX_FLAGS */
355 	/* ensure 2 byte alignment for the 2 byte field as required */
356 	if ((pos - (u8 *)rthdr) & 1)
357 		*pos++ = 0;
358 	if (status->flag & RX_FLAG_FAILED_PLCP_CRC)
359 		rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP;
360 	put_unaligned_le16(rx_flags, pos);
361 	pos += 2;
362 
363 	if (status->flag & RX_FLAG_HT) {
364 		unsigned int stbc;
365 
366 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_MCS);
367 		*pos++ = local->hw.radiotap_mcs_details;
368 		*pos = 0;
369 		if (status->flag & RX_FLAG_SHORT_GI)
370 			*pos |= IEEE80211_RADIOTAP_MCS_SGI;
371 		if (status->flag & RX_FLAG_40MHZ)
372 			*pos |= IEEE80211_RADIOTAP_MCS_BW_40;
373 		if (status->flag & RX_FLAG_HT_GF)
374 			*pos |= IEEE80211_RADIOTAP_MCS_FMT_GF;
375 		if (status->flag & RX_FLAG_LDPC)
376 			*pos |= IEEE80211_RADIOTAP_MCS_FEC_LDPC;
377 		stbc = (status->flag & RX_FLAG_STBC_MASK) >> RX_FLAG_STBC_SHIFT;
378 		*pos |= stbc << IEEE80211_RADIOTAP_MCS_STBC_SHIFT;
379 		pos++;
380 		*pos++ = status->rate_idx;
381 	}
382 
383 	if (status->flag & RX_FLAG_AMPDU_DETAILS) {
384 		u16 flags = 0;
385 
386 		/* ensure 4 byte alignment */
387 		while ((pos - (u8 *)rthdr) & 3)
388 			pos++;
389 		rthdr->it_present |=
390 			cpu_to_le32(1 << IEEE80211_RADIOTAP_AMPDU_STATUS);
391 		put_unaligned_le32(status->ampdu_reference, pos);
392 		pos += 4;
393 		if (status->flag & RX_FLAG_AMPDU_LAST_KNOWN)
394 			flags |= IEEE80211_RADIOTAP_AMPDU_LAST_KNOWN;
395 		if (status->flag & RX_FLAG_AMPDU_IS_LAST)
396 			flags |= IEEE80211_RADIOTAP_AMPDU_IS_LAST;
397 		if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_ERROR)
398 			flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_ERR;
399 		if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
400 			flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_KNOWN;
401 		put_unaligned_le16(flags, pos);
402 		pos += 2;
403 		if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
404 			*pos++ = status->ampdu_delimiter_crc;
405 		else
406 			*pos++ = 0;
407 		*pos++ = 0;
408 	}
409 
410 	if (status->flag & RX_FLAG_VHT) {
411 		u16 known = local->hw.radiotap_vht_details;
412 
413 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_VHT);
414 		put_unaligned_le16(known, pos);
415 		pos += 2;
416 		/* flags */
417 		if (status->flag & RX_FLAG_SHORT_GI)
418 			*pos |= IEEE80211_RADIOTAP_VHT_FLAG_SGI;
419 		/* in VHT, STBC is binary */
420 		if (status->flag & RX_FLAG_STBC_MASK)
421 			*pos |= IEEE80211_RADIOTAP_VHT_FLAG_STBC;
422 		if (status->vht_flag & RX_VHT_FLAG_BF)
423 			*pos |= IEEE80211_RADIOTAP_VHT_FLAG_BEAMFORMED;
424 		pos++;
425 		/* bandwidth */
426 		if (status->vht_flag & RX_VHT_FLAG_80MHZ)
427 			*pos++ = 4;
428 		else if (status->vht_flag & RX_VHT_FLAG_160MHZ)
429 			*pos++ = 11;
430 		else if (status->flag & RX_FLAG_40MHZ)
431 			*pos++ = 1;
432 		else /* 20 MHz */
433 			*pos++ = 0;
434 		/* MCS/NSS */
435 		*pos = (status->rate_idx << 4) | status->vht_nss;
436 		pos += 4;
437 		/* coding field */
438 		if (status->flag & RX_FLAG_LDPC)
439 			*pos |= IEEE80211_RADIOTAP_CODING_LDPC_USER0;
440 		pos++;
441 		/* group ID */
442 		pos++;
443 		/* partial_aid */
444 		pos += 2;
445 	}
446 
447 	for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) {
448 		*pos++ = status->chain_signal[chain];
449 		*pos++ = chain;
450 	}
451 
452 	if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
453 		/* ensure 2 byte alignment for the vendor field as required */
454 		if ((pos - (u8 *)rthdr) & 1)
455 			*pos++ = 0;
456 		*pos++ = rtap.oui[0];
457 		*pos++ = rtap.oui[1];
458 		*pos++ = rtap.oui[2];
459 		*pos++ = rtap.subns;
460 		put_unaligned_le16(rtap.len, pos);
461 		pos += 2;
462 		/* align the actual payload as requested */
463 		while ((pos - (u8 *)rthdr) & (rtap.align - 1))
464 			*pos++ = 0;
465 		/* data (and possible padding) already follows */
466 	}
467 }
468 
469 /*
470  * This function copies a received frame to all monitor interfaces and
471  * returns a cleaned-up SKB that no longer includes the FCS nor the
472  * radiotap header the driver might have added.
473  */
474 static struct sk_buff *
ieee80211_rx_monitor(struct ieee80211_local * local,struct sk_buff * origskb,struct ieee80211_rate * rate)475 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb,
476 		     struct ieee80211_rate *rate)
477 {
478 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb);
479 	struct ieee80211_sub_if_data *sdata;
480 	int rt_hdrlen, needed_headroom;
481 	struct sk_buff *skb, *skb2;
482 	struct net_device *prev_dev = NULL;
483 	int present_fcs_len = 0;
484 	unsigned int rtap_vendor_space = 0;
485 
486 	if (unlikely(status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA)) {
487 		struct ieee80211_vendor_radiotap *rtap = (void *)origskb->data;
488 
489 		rtap_vendor_space = sizeof(*rtap) + rtap->len + rtap->pad;
490 	}
491 
492 	/*
493 	 * First, we may need to make a copy of the skb because
494 	 *  (1) we need to modify it for radiotap (if not present), and
495 	 *  (2) the other RX handlers will modify the skb we got.
496 	 *
497 	 * We don't need to, of course, if we aren't going to return
498 	 * the SKB because it has a bad FCS/PLCP checksum.
499 	 */
500 
501 	if (ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS))
502 		present_fcs_len = FCS_LEN;
503 
504 	/* ensure hdr->frame_control and vendor radiotap data are in skb head */
505 	if (!pskb_may_pull(origskb, 2 + rtap_vendor_space)) {
506 		dev_kfree_skb(origskb);
507 		return NULL;
508 	}
509 
510 	if (!local->monitors) {
511 		if (should_drop_frame(origskb, present_fcs_len,
512 				      rtap_vendor_space)) {
513 			dev_kfree_skb(origskb);
514 			return NULL;
515 		}
516 
517 		return remove_monitor_info(local, origskb, rtap_vendor_space);
518 	}
519 
520 	/* room for the radiotap header based on driver features */
521 	rt_hdrlen = ieee80211_rx_radiotap_hdrlen(local, status, origskb);
522 	needed_headroom = rt_hdrlen - rtap_vendor_space;
523 
524 	if (should_drop_frame(origskb, present_fcs_len, rtap_vendor_space)) {
525 		/* only need to expand headroom if necessary */
526 		skb = origskb;
527 		origskb = NULL;
528 
529 		/*
530 		 * This shouldn't trigger often because most devices have an
531 		 * RX header they pull before we get here, and that should
532 		 * be big enough for our radiotap information. We should
533 		 * probably export the length to drivers so that we can have
534 		 * them allocate enough headroom to start with.
535 		 */
536 		if (skb_headroom(skb) < needed_headroom &&
537 		    pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) {
538 			dev_kfree_skb(skb);
539 			return NULL;
540 		}
541 	} else {
542 		/*
543 		 * Need to make a copy and possibly remove radiotap header
544 		 * and FCS from the original.
545 		 */
546 		skb = skb_copy_expand(origskb, needed_headroom, 0, GFP_ATOMIC);
547 
548 		origskb = remove_monitor_info(local, origskb,
549 					      rtap_vendor_space);
550 
551 		if (!skb)
552 			return origskb;
553 	}
554 
555 	/* prepend radiotap information */
556 	ieee80211_add_rx_radiotap_header(local, skb, rate, rt_hdrlen, true);
557 
558 	skb_reset_mac_header(skb);
559 	skb->ip_summed = CHECKSUM_UNNECESSARY;
560 	skb->pkt_type = PACKET_OTHERHOST;
561 	skb->protocol = htons(ETH_P_802_2);
562 
563 	list_for_each_entry_rcu(sdata, &local->interfaces, list) {
564 		if (sdata->vif.type != NL80211_IFTYPE_MONITOR)
565 			continue;
566 
567 		if (sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES)
568 			continue;
569 
570 		if (!ieee80211_sdata_running(sdata))
571 			continue;
572 
573 		if (prev_dev) {
574 			skb2 = skb_clone(skb, GFP_ATOMIC);
575 			if (skb2) {
576 				skb2->dev = prev_dev;
577 				netif_receive_skb(skb2);
578 			}
579 		}
580 
581 		prev_dev = sdata->dev;
582 		ieee80211_rx_stats(sdata->dev, skb->len);
583 	}
584 
585 	if (prev_dev) {
586 		skb->dev = prev_dev;
587 		netif_receive_skb(skb);
588 	} else
589 		dev_kfree_skb(skb);
590 
591 	return origskb;
592 }
593 
ieee80211_parse_qos(struct ieee80211_rx_data * rx)594 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx)
595 {
596 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
597 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
598 	int tid, seqno_idx, security_idx;
599 
600 	/* does the frame have a qos control field? */
601 	if (ieee80211_is_data_qos(hdr->frame_control)) {
602 		u8 *qc = ieee80211_get_qos_ctl(hdr);
603 		/* frame has qos control */
604 		tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
605 		if (*qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT)
606 			status->rx_flags |= IEEE80211_RX_AMSDU;
607 
608 		seqno_idx = tid;
609 		security_idx = tid;
610 	} else {
611 		/*
612 		 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"):
613 		 *
614 		 *	Sequence numbers for management frames, QoS data
615 		 *	frames with a broadcast/multicast address in the
616 		 *	Address 1 field, and all non-QoS data frames sent
617 		 *	by QoS STAs are assigned using an additional single
618 		 *	modulo-4096 counter, [...]
619 		 *
620 		 * We also use that counter for non-QoS STAs.
621 		 */
622 		seqno_idx = IEEE80211_NUM_TIDS;
623 		security_idx = 0;
624 		if (ieee80211_is_mgmt(hdr->frame_control))
625 			security_idx = IEEE80211_NUM_TIDS;
626 		tid = 0;
627 	}
628 
629 	rx->seqno_idx = seqno_idx;
630 	rx->security_idx = security_idx;
631 	/* Set skb->priority to 1d tag if highest order bit of TID is not set.
632 	 * For now, set skb->priority to 0 for other cases. */
633 	rx->skb->priority = (tid > 7) ? 0 : tid;
634 }
635 
636 /**
637  * DOC: Packet alignment
638  *
639  * Drivers always need to pass packets that are aligned to two-byte boundaries
640  * to the stack.
641  *
642  * Additionally, should, if possible, align the payload data in a way that
643  * guarantees that the contained IP header is aligned to a four-byte
644  * boundary. In the case of regular frames, this simply means aligning the
645  * payload to a four-byte boundary (because either the IP header is directly
646  * contained, or IV/RFC1042 headers that have a length divisible by four are
647  * in front of it).  If the payload data is not properly aligned and the
648  * architecture doesn't support efficient unaligned operations, mac80211
649  * will align the data.
650  *
651  * With A-MSDU frames, however, the payload data address must yield two modulo
652  * four because there are 14-byte 802.3 headers within the A-MSDU frames that
653  * push the IP header further back to a multiple of four again. Thankfully, the
654  * specs were sane enough this time around to require padding each A-MSDU
655  * subframe to a length that is a multiple of four.
656  *
657  * Padding like Atheros hardware adds which is between the 802.11 header and
658  * the payload is not supported, the driver is required to move the 802.11
659  * header to be directly in front of the payload in that case.
660  */
ieee80211_verify_alignment(struct ieee80211_rx_data * rx)661 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx)
662 {
663 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
664 	WARN_ONCE((unsigned long)rx->skb->data & 1,
665 		  "unaligned packet at 0x%p\n", rx->skb->data);
666 #endif
667 }
668 
669 
670 /* rx handlers */
671 
ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff * skb)672 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb)
673 {
674 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
675 
676 	if (is_multicast_ether_addr(hdr->addr1))
677 		return 0;
678 
679 	return ieee80211_is_robust_mgmt_frame(skb);
680 }
681 
682 
ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff * skb)683 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb)
684 {
685 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
686 
687 	if (!is_multicast_ether_addr(hdr->addr1))
688 		return 0;
689 
690 	return ieee80211_is_robust_mgmt_frame(skb);
691 }
692 
693 
694 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */
ieee80211_get_mmie_keyidx(struct sk_buff * skb)695 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb)
696 {
697 	struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data;
698 	struct ieee80211_mmie *mmie;
699 	struct ieee80211_mmie_16 *mmie16;
700 
701 	if (skb->len < 24 + sizeof(*mmie) || !is_multicast_ether_addr(hdr->da))
702 		return -1;
703 
704 	if (!ieee80211_is_robust_mgmt_frame(skb))
705 		return -1; /* not a robust management frame */
706 
707 	mmie = (struct ieee80211_mmie *)
708 		(skb->data + skb->len - sizeof(*mmie));
709 	if (mmie->element_id == WLAN_EID_MMIE &&
710 	    mmie->length == sizeof(*mmie) - 2)
711 		return le16_to_cpu(mmie->key_id);
712 
713 	mmie16 = (struct ieee80211_mmie_16 *)
714 		(skb->data + skb->len - sizeof(*mmie16));
715 	if (skb->len >= 24 + sizeof(*mmie16) &&
716 	    mmie16->element_id == WLAN_EID_MMIE &&
717 	    mmie16->length == sizeof(*mmie16) - 2)
718 		return le16_to_cpu(mmie16->key_id);
719 
720 	return -1;
721 }
722 
iwl80211_get_cs_keyid(const struct ieee80211_cipher_scheme * cs,struct sk_buff * skb)723 static int iwl80211_get_cs_keyid(const struct ieee80211_cipher_scheme *cs,
724 				 struct sk_buff *skb)
725 {
726 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
727 	__le16 fc;
728 	int hdrlen;
729 	u8 keyid;
730 
731 	fc = hdr->frame_control;
732 	hdrlen = ieee80211_hdrlen(fc);
733 
734 	if (skb->len < hdrlen + cs->hdr_len)
735 		return -EINVAL;
736 
737 	skb_copy_bits(skb, hdrlen + cs->key_idx_off, &keyid, 1);
738 	keyid &= cs->key_idx_mask;
739 	keyid >>= cs->key_idx_shift;
740 
741 	return keyid;
742 }
743 
ieee80211_rx_mesh_check(struct ieee80211_rx_data * rx)744 static ieee80211_rx_result ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx)
745 {
746 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
747 	char *dev_addr = rx->sdata->vif.addr;
748 
749 	if (ieee80211_is_data(hdr->frame_control)) {
750 		if (is_multicast_ether_addr(hdr->addr1)) {
751 			if (ieee80211_has_tods(hdr->frame_control) ||
752 			    !ieee80211_has_fromds(hdr->frame_control))
753 				return RX_DROP_MONITOR;
754 			if (ether_addr_equal(hdr->addr3, dev_addr))
755 				return RX_DROP_MONITOR;
756 		} else {
757 			if (!ieee80211_has_a4(hdr->frame_control))
758 				return RX_DROP_MONITOR;
759 			if (ether_addr_equal(hdr->addr4, dev_addr))
760 				return RX_DROP_MONITOR;
761 		}
762 	}
763 
764 	/* If there is not an established peer link and this is not a peer link
765 	 * establisment frame, beacon or probe, drop the frame.
766 	 */
767 
768 	if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) {
769 		struct ieee80211_mgmt *mgmt;
770 
771 		if (!ieee80211_is_mgmt(hdr->frame_control))
772 			return RX_DROP_MONITOR;
773 
774 		if (ieee80211_is_action(hdr->frame_control)) {
775 			u8 category;
776 
777 			/* make sure category field is present */
778 			if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE)
779 				return RX_DROP_MONITOR;
780 
781 			mgmt = (struct ieee80211_mgmt *)hdr;
782 			category = mgmt->u.action.category;
783 			if (category != WLAN_CATEGORY_MESH_ACTION &&
784 			    category != WLAN_CATEGORY_SELF_PROTECTED)
785 				return RX_DROP_MONITOR;
786 			return RX_CONTINUE;
787 		}
788 
789 		if (ieee80211_is_probe_req(hdr->frame_control) ||
790 		    ieee80211_is_probe_resp(hdr->frame_control) ||
791 		    ieee80211_is_beacon(hdr->frame_control) ||
792 		    ieee80211_is_auth(hdr->frame_control))
793 			return RX_CONTINUE;
794 
795 		return RX_DROP_MONITOR;
796 	}
797 
798 	return RX_CONTINUE;
799 }
800 
ieee80211_release_reorder_frame(struct ieee80211_sub_if_data * sdata,struct tid_ampdu_rx * tid_agg_rx,int index,struct sk_buff_head * frames)801 static void ieee80211_release_reorder_frame(struct ieee80211_sub_if_data *sdata,
802 					    struct tid_ampdu_rx *tid_agg_rx,
803 					    int index,
804 					    struct sk_buff_head *frames)
805 {
806 	struct sk_buff_head *skb_list = &tid_agg_rx->reorder_buf[index];
807 	struct sk_buff *skb;
808 	struct ieee80211_rx_status *status;
809 
810 	lockdep_assert_held(&tid_agg_rx->reorder_lock);
811 
812 	if (skb_queue_empty(skb_list))
813 		goto no_frame;
814 
815 	if (!ieee80211_rx_reorder_ready(skb_list)) {
816 		__skb_queue_purge(skb_list);
817 		goto no_frame;
818 	}
819 
820 	/* release frames from the reorder ring buffer */
821 	tid_agg_rx->stored_mpdu_num--;
822 	while ((skb = __skb_dequeue(skb_list))) {
823 		status = IEEE80211_SKB_RXCB(skb);
824 		status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE;
825 		__skb_queue_tail(frames, skb);
826 	}
827 
828 no_frame:
829 	tid_agg_rx->head_seq_num = ieee80211_sn_inc(tid_agg_rx->head_seq_num);
830 }
831 
ieee80211_release_reorder_frames(struct ieee80211_sub_if_data * sdata,struct tid_ampdu_rx * tid_agg_rx,u16 head_seq_num,struct sk_buff_head * frames)832 static void ieee80211_release_reorder_frames(struct ieee80211_sub_if_data *sdata,
833 					     struct tid_ampdu_rx *tid_agg_rx,
834 					     u16 head_seq_num,
835 					     struct sk_buff_head *frames)
836 {
837 	int index;
838 
839 	lockdep_assert_held(&tid_agg_rx->reorder_lock);
840 
841 	while (ieee80211_sn_less(tid_agg_rx->head_seq_num, head_seq_num)) {
842 		index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
843 		ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
844 						frames);
845 	}
846 }
847 
848 /*
849  * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If
850  * the skb was added to the buffer longer than this time ago, the earlier
851  * frames that have not yet been received are assumed to be lost and the skb
852  * can be released for processing. This may also release other skb's from the
853  * reorder buffer if there are no additional gaps between the frames.
854  *
855  * Callers must hold tid_agg_rx->reorder_lock.
856  */
857 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10)
858 
ieee80211_sta_reorder_release(struct ieee80211_sub_if_data * sdata,struct tid_ampdu_rx * tid_agg_rx,struct sk_buff_head * frames)859 static void ieee80211_sta_reorder_release(struct ieee80211_sub_if_data *sdata,
860 					  struct tid_ampdu_rx *tid_agg_rx,
861 					  struct sk_buff_head *frames)
862 {
863 	int index, i, j;
864 
865 	lockdep_assert_held(&tid_agg_rx->reorder_lock);
866 
867 	/* release the buffer until next missing frame */
868 	index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
869 	if (!ieee80211_rx_reorder_ready(&tid_agg_rx->reorder_buf[index]) &&
870 	    tid_agg_rx->stored_mpdu_num) {
871 		/*
872 		 * No buffers ready to be released, but check whether any
873 		 * frames in the reorder buffer have timed out.
874 		 */
875 		int skipped = 1;
876 		for (j = (index + 1) % tid_agg_rx->buf_size; j != index;
877 		     j = (j + 1) % tid_agg_rx->buf_size) {
878 			if (!ieee80211_rx_reorder_ready(
879 					&tid_agg_rx->reorder_buf[j])) {
880 				skipped++;
881 				continue;
882 			}
883 			if (skipped &&
884 			    !time_after(jiffies, tid_agg_rx->reorder_time[j] +
885 					HT_RX_REORDER_BUF_TIMEOUT))
886 				goto set_release_timer;
887 
888 			/* don't leave incomplete A-MSDUs around */
889 			for (i = (index + 1) % tid_agg_rx->buf_size; i != j;
890 			     i = (i + 1) % tid_agg_rx->buf_size)
891 				__skb_queue_purge(&tid_agg_rx->reorder_buf[i]);
892 
893 			ht_dbg_ratelimited(sdata,
894 					   "release an RX reorder frame due to timeout on earlier frames\n");
895 			ieee80211_release_reorder_frame(sdata, tid_agg_rx, j,
896 							frames);
897 
898 			/*
899 			 * Increment the head seq# also for the skipped slots.
900 			 */
901 			tid_agg_rx->head_seq_num =
902 				(tid_agg_rx->head_seq_num +
903 				 skipped) & IEEE80211_SN_MASK;
904 			skipped = 0;
905 		}
906 	} else while (ieee80211_rx_reorder_ready(
907 				&tid_agg_rx->reorder_buf[index])) {
908 		ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
909 						frames);
910 		index =	tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
911 	}
912 
913 	if (tid_agg_rx->stored_mpdu_num) {
914 		j = index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
915 
916 		for (; j != (index - 1) % tid_agg_rx->buf_size;
917 		     j = (j + 1) % tid_agg_rx->buf_size) {
918 			if (ieee80211_rx_reorder_ready(
919 					&tid_agg_rx->reorder_buf[j]))
920 				break;
921 		}
922 
923  set_release_timer:
924 
925 		if (!tid_agg_rx->removed)
926 			mod_timer(&tid_agg_rx->reorder_timer,
927 				  tid_agg_rx->reorder_time[j] + 1 +
928 				  HT_RX_REORDER_BUF_TIMEOUT);
929 	} else {
930 		del_timer(&tid_agg_rx->reorder_timer);
931 	}
932 }
933 
934 /*
935  * As this function belongs to the RX path it must be under
936  * rcu_read_lock protection. It returns false if the frame
937  * can be processed immediately, true if it was consumed.
938  */
ieee80211_sta_manage_reorder_buf(struct ieee80211_sub_if_data * sdata,struct tid_ampdu_rx * tid_agg_rx,struct sk_buff * skb,struct sk_buff_head * frames)939 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_sub_if_data *sdata,
940 					     struct tid_ampdu_rx *tid_agg_rx,
941 					     struct sk_buff *skb,
942 					     struct sk_buff_head *frames)
943 {
944 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
945 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
946 	u16 sc = le16_to_cpu(hdr->seq_ctrl);
947 	u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4;
948 	u16 head_seq_num, buf_size;
949 	int index;
950 	bool ret = true;
951 
952 	spin_lock(&tid_agg_rx->reorder_lock);
953 
954 	/*
955 	 * Offloaded BA sessions have no known starting sequence number so pick
956 	 * one from first Rxed frame for this tid after BA was started.
957 	 */
958 	if (unlikely(tid_agg_rx->auto_seq)) {
959 		tid_agg_rx->auto_seq = false;
960 		tid_agg_rx->ssn = mpdu_seq_num;
961 		tid_agg_rx->head_seq_num = mpdu_seq_num;
962 	}
963 
964 	buf_size = tid_agg_rx->buf_size;
965 	head_seq_num = tid_agg_rx->head_seq_num;
966 
967 	/* frame with out of date sequence number */
968 	if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) {
969 		dev_kfree_skb(skb);
970 		goto out;
971 	}
972 
973 	/*
974 	 * If frame the sequence number exceeds our buffering window
975 	 * size release some previous frames to make room for this one.
976 	 */
977 	if (!ieee80211_sn_less(mpdu_seq_num, head_seq_num + buf_size)) {
978 		head_seq_num = ieee80211_sn_inc(
979 				ieee80211_sn_sub(mpdu_seq_num, buf_size));
980 		/* release stored frames up to new head to stack */
981 		ieee80211_release_reorder_frames(sdata, tid_agg_rx,
982 						 head_seq_num, frames);
983 	}
984 
985 	/* Now the new frame is always in the range of the reordering buffer */
986 
987 	index = mpdu_seq_num % tid_agg_rx->buf_size;
988 
989 	/* check if we already stored this frame */
990 	if (ieee80211_rx_reorder_ready(&tid_agg_rx->reorder_buf[index])) {
991 		dev_kfree_skb(skb);
992 		goto out;
993 	}
994 
995 	/*
996 	 * If the current MPDU is in the right order and nothing else
997 	 * is stored we can process it directly, no need to buffer it.
998 	 * If it is first but there's something stored, we may be able
999 	 * to release frames after this one.
1000 	 */
1001 	if (mpdu_seq_num == tid_agg_rx->head_seq_num &&
1002 	    tid_agg_rx->stored_mpdu_num == 0) {
1003 		if (!(status->flag & RX_FLAG_AMSDU_MORE))
1004 			tid_agg_rx->head_seq_num =
1005 				ieee80211_sn_inc(tid_agg_rx->head_seq_num);
1006 		ret = false;
1007 		goto out;
1008 	}
1009 
1010 	/* put the frame in the reordering buffer */
1011 	__skb_queue_tail(&tid_agg_rx->reorder_buf[index], skb);
1012 	if (!(status->flag & RX_FLAG_AMSDU_MORE)) {
1013 		tid_agg_rx->reorder_time[index] = jiffies;
1014 		tid_agg_rx->stored_mpdu_num++;
1015 		ieee80211_sta_reorder_release(sdata, tid_agg_rx, frames);
1016 	}
1017 
1018  out:
1019 	spin_unlock(&tid_agg_rx->reorder_lock);
1020 	return ret;
1021 }
1022 
1023 /*
1024  * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns
1025  * true if the MPDU was buffered, false if it should be processed.
1026  */
ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data * rx,struct sk_buff_head * frames)1027 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx,
1028 				       struct sk_buff_head *frames)
1029 {
1030 	struct sk_buff *skb = rx->skb;
1031 	struct ieee80211_local *local = rx->local;
1032 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1033 	struct sta_info *sta = rx->sta;
1034 	struct tid_ampdu_rx *tid_agg_rx;
1035 	u16 sc;
1036 	u8 tid, ack_policy;
1037 
1038 	if (!ieee80211_is_data_qos(hdr->frame_control) ||
1039 	    is_multicast_ether_addr(hdr->addr1))
1040 		goto dont_reorder;
1041 
1042 	/*
1043 	 * filter the QoS data rx stream according to
1044 	 * STA/TID and check if this STA/TID is on aggregation
1045 	 */
1046 
1047 	if (!sta)
1048 		goto dont_reorder;
1049 
1050 	ack_policy = *ieee80211_get_qos_ctl(hdr) &
1051 		     IEEE80211_QOS_CTL_ACK_POLICY_MASK;
1052 	tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
1053 
1054 	tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
1055 	if (!tid_agg_rx)
1056 		goto dont_reorder;
1057 
1058 	/* qos null data frames are excluded */
1059 	if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC)))
1060 		goto dont_reorder;
1061 
1062 	/* not part of a BA session */
1063 	if (ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK &&
1064 	    ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_NORMAL)
1065 		goto dont_reorder;
1066 
1067 	/* new, potentially un-ordered, ampdu frame - process it */
1068 
1069 	/* reset session timer */
1070 	if (tid_agg_rx->timeout)
1071 		tid_agg_rx->last_rx = jiffies;
1072 
1073 	/* if this mpdu is fragmented - terminate rx aggregation session */
1074 	sc = le16_to_cpu(hdr->seq_ctrl);
1075 	if (sc & IEEE80211_SCTL_FRAG) {
1076 		skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
1077 		skb_queue_tail(&rx->sdata->skb_queue, skb);
1078 		ieee80211_queue_work(&local->hw, &rx->sdata->work);
1079 		return;
1080 	}
1081 
1082 	/*
1083 	 * No locking needed -- we will only ever process one
1084 	 * RX packet at a time, and thus own tid_agg_rx. All
1085 	 * other code manipulating it needs to (and does) make
1086 	 * sure that we cannot get to it any more before doing
1087 	 * anything with it.
1088 	 */
1089 	if (ieee80211_sta_manage_reorder_buf(rx->sdata, tid_agg_rx, skb,
1090 					     frames))
1091 		return;
1092 
1093  dont_reorder:
1094 	__skb_queue_tail(frames, skb);
1095 }
1096 
1097 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_check_dup(struct ieee80211_rx_data * rx)1098 ieee80211_rx_h_check_dup(struct ieee80211_rx_data *rx)
1099 {
1100 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1101 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1102 
1103 	/*
1104 	 * Drop duplicate 802.11 retransmissions
1105 	 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery")
1106 	 */
1107 
1108 	if (rx->skb->len < 24)
1109 		return RX_CONTINUE;
1110 
1111 	if (ieee80211_is_ctl(hdr->frame_control) ||
1112 	    ieee80211_is_qos_nullfunc(hdr->frame_control) ||
1113 	    is_multicast_ether_addr(hdr->addr1))
1114 		return RX_CONTINUE;
1115 
1116 	if (!rx->sta)
1117 		return RX_CONTINUE;
1118 
1119 	if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
1120 		     rx->sta->last_seq_ctrl[rx->seqno_idx] == hdr->seq_ctrl)) {
1121 		I802_DEBUG_INC(rx->local->dot11FrameDuplicateCount);
1122 		rx->sta->rx_stats.num_duplicates++;
1123 		return RX_DROP_UNUSABLE;
1124 	} else if (!(status->flag & RX_FLAG_AMSDU_MORE)) {
1125 		rx->sta->last_seq_ctrl[rx->seqno_idx] = hdr->seq_ctrl;
1126 	}
1127 
1128 	return RX_CONTINUE;
1129 }
1130 
1131 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_check(struct ieee80211_rx_data * rx)1132 ieee80211_rx_h_check(struct ieee80211_rx_data *rx)
1133 {
1134 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1135 
1136 	/* Drop disallowed frame classes based on STA auth/assoc state;
1137 	 * IEEE 802.11, Chap 5.5.
1138 	 *
1139 	 * mac80211 filters only based on association state, i.e. it drops
1140 	 * Class 3 frames from not associated stations. hostapd sends
1141 	 * deauth/disassoc frames when needed. In addition, hostapd is
1142 	 * responsible for filtering on both auth and assoc states.
1143 	 */
1144 
1145 	if (ieee80211_vif_is_mesh(&rx->sdata->vif))
1146 		return ieee80211_rx_mesh_check(rx);
1147 
1148 	if (unlikely((ieee80211_is_data(hdr->frame_control) ||
1149 		      ieee80211_is_pspoll(hdr->frame_control)) &&
1150 		     rx->sdata->vif.type != NL80211_IFTYPE_ADHOC &&
1151 		     rx->sdata->vif.type != NL80211_IFTYPE_WDS &&
1152 		     rx->sdata->vif.type != NL80211_IFTYPE_OCB &&
1153 		     (!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_ASSOC)))) {
1154 		/*
1155 		 * accept port control frames from the AP even when it's not
1156 		 * yet marked ASSOC to prevent a race where we don't set the
1157 		 * assoc bit quickly enough before it sends the first frame
1158 		 */
1159 		if (rx->sta && rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
1160 		    ieee80211_is_data_present(hdr->frame_control)) {
1161 			unsigned int hdrlen;
1162 			__be16 ethertype;
1163 
1164 			hdrlen = ieee80211_hdrlen(hdr->frame_control);
1165 
1166 			if (rx->skb->len < hdrlen + 8)
1167 				return RX_DROP_MONITOR;
1168 
1169 			skb_copy_bits(rx->skb, hdrlen + 6, &ethertype, 2);
1170 			if (ethertype == rx->sdata->control_port_protocol)
1171 				return RX_CONTINUE;
1172 		}
1173 
1174 		if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
1175 		    cfg80211_rx_spurious_frame(rx->sdata->dev,
1176 					       hdr->addr2,
1177 					       GFP_ATOMIC))
1178 			return RX_DROP_UNUSABLE;
1179 
1180 		return RX_DROP_MONITOR;
1181 	}
1182 
1183 	return RX_CONTINUE;
1184 }
1185 
1186 
1187 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_check_more_data(struct ieee80211_rx_data * rx)1188 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx)
1189 {
1190 	struct ieee80211_local *local;
1191 	struct ieee80211_hdr *hdr;
1192 	struct sk_buff *skb;
1193 
1194 	local = rx->local;
1195 	skb = rx->skb;
1196 	hdr = (struct ieee80211_hdr *) skb->data;
1197 
1198 	if (!local->pspolling)
1199 		return RX_CONTINUE;
1200 
1201 	if (!ieee80211_has_fromds(hdr->frame_control))
1202 		/* this is not from AP */
1203 		return RX_CONTINUE;
1204 
1205 	if (!ieee80211_is_data(hdr->frame_control))
1206 		return RX_CONTINUE;
1207 
1208 	if (!ieee80211_has_moredata(hdr->frame_control)) {
1209 		/* AP has no more frames buffered for us */
1210 		local->pspolling = false;
1211 		return RX_CONTINUE;
1212 	}
1213 
1214 	/* more data bit is set, let's request a new frame from the AP */
1215 	ieee80211_send_pspoll(local, rx->sdata);
1216 
1217 	return RX_CONTINUE;
1218 }
1219 
sta_ps_start(struct sta_info * sta)1220 static void sta_ps_start(struct sta_info *sta)
1221 {
1222 	struct ieee80211_sub_if_data *sdata = sta->sdata;
1223 	struct ieee80211_local *local = sdata->local;
1224 	struct ps_data *ps;
1225 	int tid;
1226 
1227 	if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
1228 	    sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
1229 		ps = &sdata->bss->ps;
1230 	else
1231 		return;
1232 
1233 	atomic_inc(&ps->num_sta_ps);
1234 	set_sta_flag(sta, WLAN_STA_PS_STA);
1235 	if (!ieee80211_hw_check(&local->hw, AP_LINK_PS))
1236 		drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta);
1237 	ps_dbg(sdata, "STA %pM aid %d enters power save mode\n",
1238 	       sta->sta.addr, sta->sta.aid);
1239 
1240 	ieee80211_clear_fast_xmit(sta);
1241 
1242 	if (!sta->sta.txq[0])
1243 		return;
1244 
1245 	for (tid = 0; tid < ARRAY_SIZE(sta->sta.txq); tid++) {
1246 		struct txq_info *txqi = to_txq_info(sta->sta.txq[tid]);
1247 
1248 		if (!skb_queue_len(&txqi->queue))
1249 			set_bit(tid, &sta->txq_buffered_tids);
1250 		else
1251 			clear_bit(tid, &sta->txq_buffered_tids);
1252 	}
1253 }
1254 
sta_ps_end(struct sta_info * sta)1255 static void sta_ps_end(struct sta_info *sta)
1256 {
1257 	ps_dbg(sta->sdata, "STA %pM aid %d exits power save mode\n",
1258 	       sta->sta.addr, sta->sta.aid);
1259 
1260 	if (test_sta_flag(sta, WLAN_STA_PS_DRIVER)) {
1261 		/*
1262 		 * Clear the flag only if the other one is still set
1263 		 * so that the TX path won't start TX'ing new frames
1264 		 * directly ... In the case that the driver flag isn't
1265 		 * set ieee80211_sta_ps_deliver_wakeup() will clear it.
1266 		 */
1267 		clear_sta_flag(sta, WLAN_STA_PS_STA);
1268 		ps_dbg(sta->sdata, "STA %pM aid %d driver-ps-blocked\n",
1269 		       sta->sta.addr, sta->sta.aid);
1270 		return;
1271 	}
1272 
1273 	set_sta_flag(sta, WLAN_STA_PS_DELIVER);
1274 	clear_sta_flag(sta, WLAN_STA_PS_STA);
1275 	ieee80211_sta_ps_deliver_wakeup(sta);
1276 }
1277 
ieee80211_sta_ps_transition(struct ieee80211_sta * pubsta,bool start)1278 int ieee80211_sta_ps_transition(struct ieee80211_sta *pubsta, bool start)
1279 {
1280 	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1281 	bool in_ps;
1282 
1283 	WARN_ON(!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS));
1284 
1285 	/* Don't let the same PS state be set twice */
1286 	in_ps = test_sta_flag(sta, WLAN_STA_PS_STA);
1287 	if ((start && in_ps) || (!start && !in_ps))
1288 		return -EINVAL;
1289 
1290 	if (start)
1291 		sta_ps_start(sta);
1292 	else
1293 		sta_ps_end(sta);
1294 
1295 	return 0;
1296 }
1297 EXPORT_SYMBOL(ieee80211_sta_ps_transition);
1298 
1299 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data * rx)1300 ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data *rx)
1301 {
1302 	struct ieee80211_sub_if_data *sdata = rx->sdata;
1303 	struct ieee80211_hdr *hdr = (void *)rx->skb->data;
1304 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1305 	int tid, ac;
1306 
1307 	if (!rx->sta)
1308 		return RX_CONTINUE;
1309 
1310 	if (sdata->vif.type != NL80211_IFTYPE_AP &&
1311 	    sdata->vif.type != NL80211_IFTYPE_AP_VLAN)
1312 		return RX_CONTINUE;
1313 
1314 	/*
1315 	 * The device handles station powersave, so don't do anything about
1316 	 * uAPSD and PS-Poll frames (the latter shouldn't even come up from
1317 	 * it to mac80211 since they're handled.)
1318 	 */
1319 	if (ieee80211_hw_check(&sdata->local->hw, AP_LINK_PS))
1320 		return RX_CONTINUE;
1321 
1322 	/*
1323 	 * Don't do anything if the station isn't already asleep. In
1324 	 * the uAPSD case, the station will probably be marked asleep,
1325 	 * in the PS-Poll case the station must be confused ...
1326 	 */
1327 	if (!test_sta_flag(rx->sta, WLAN_STA_PS_STA))
1328 		return RX_CONTINUE;
1329 
1330 	if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) {
1331 		if (!test_sta_flag(rx->sta, WLAN_STA_SP)) {
1332 			if (!test_sta_flag(rx->sta, WLAN_STA_PS_DRIVER))
1333 				ieee80211_sta_ps_deliver_poll_response(rx->sta);
1334 			else
1335 				set_sta_flag(rx->sta, WLAN_STA_PSPOLL);
1336 		}
1337 
1338 		/* Free PS Poll skb here instead of returning RX_DROP that would
1339 		 * count as an dropped frame. */
1340 		dev_kfree_skb(rx->skb);
1341 
1342 		return RX_QUEUED;
1343 	} else if (!ieee80211_has_morefrags(hdr->frame_control) &&
1344 		   !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1345 		   ieee80211_has_pm(hdr->frame_control) &&
1346 		   (ieee80211_is_data_qos(hdr->frame_control) ||
1347 		    ieee80211_is_qos_nullfunc(hdr->frame_control))) {
1348 		tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
1349 		ac = ieee802_1d_to_ac[tid & 7];
1350 
1351 		/*
1352 		 * If this AC is not trigger-enabled do nothing.
1353 		 *
1354 		 * NB: This could/should check a separate bitmap of trigger-
1355 		 * enabled queues, but for now we only implement uAPSD w/o
1356 		 * TSPEC changes to the ACs, so they're always the same.
1357 		 */
1358 		if (!(rx->sta->sta.uapsd_queues & BIT(ac)))
1359 			return RX_CONTINUE;
1360 
1361 		/* if we are in a service period, do nothing */
1362 		if (test_sta_flag(rx->sta, WLAN_STA_SP))
1363 			return RX_CONTINUE;
1364 
1365 		if (!test_sta_flag(rx->sta, WLAN_STA_PS_DRIVER))
1366 			ieee80211_sta_ps_deliver_uapsd(rx->sta);
1367 		else
1368 			set_sta_flag(rx->sta, WLAN_STA_UAPSD);
1369 	}
1370 
1371 	return RX_CONTINUE;
1372 }
1373 
1374 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_sta_process(struct ieee80211_rx_data * rx)1375 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx)
1376 {
1377 	struct sta_info *sta = rx->sta;
1378 	struct sk_buff *skb = rx->skb;
1379 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1380 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1381 	int i;
1382 
1383 	if (!sta)
1384 		return RX_CONTINUE;
1385 
1386 	/*
1387 	 * Update last_rx only for IBSS packets which are for the current
1388 	 * BSSID and for station already AUTHORIZED to avoid keeping the
1389 	 * current IBSS network alive in cases where other STAs start
1390 	 * using different BSSID. This will also give the station another
1391 	 * chance to restart the authentication/authorization in case
1392 	 * something went wrong the first time.
1393 	 */
1394 	if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) {
1395 		u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len,
1396 						NL80211_IFTYPE_ADHOC);
1397 		if (ether_addr_equal(bssid, rx->sdata->u.ibss.bssid) &&
1398 		    test_sta_flag(sta, WLAN_STA_AUTHORIZED)) {
1399 			sta->rx_stats.last_rx = jiffies;
1400 			if (ieee80211_is_data(hdr->frame_control) &&
1401 			    !is_multicast_ether_addr(hdr->addr1)) {
1402 				sta->rx_stats.last_rate_idx =
1403 					status->rate_idx;
1404 				sta->rx_stats.last_rate_flag =
1405 					status->flag;
1406 				sta->rx_stats.last_rate_vht_flag =
1407 					status->vht_flag;
1408 				sta->rx_stats.last_rate_vht_nss =
1409 					status->vht_nss;
1410 			}
1411 		}
1412 	} else if (rx->sdata->vif.type == NL80211_IFTYPE_OCB) {
1413 		sta->rx_stats.last_rx = jiffies;
1414 	} else if (!is_multicast_ether_addr(hdr->addr1)) {
1415 		/*
1416 		 * Mesh beacons will update last_rx when if they are found to
1417 		 * match the current local configuration when processed.
1418 		 */
1419 		sta->rx_stats.last_rx = jiffies;
1420 		if (ieee80211_is_data(hdr->frame_control)) {
1421 			sta->rx_stats.last_rate_idx = status->rate_idx;
1422 			sta->rx_stats.last_rate_flag = status->flag;
1423 			sta->rx_stats.last_rate_vht_flag = status->vht_flag;
1424 			sta->rx_stats.last_rate_vht_nss = status->vht_nss;
1425 		}
1426 	}
1427 
1428 	if (rx->sdata->vif.type == NL80211_IFTYPE_STATION)
1429 		ieee80211_sta_rx_notify(rx->sdata, hdr);
1430 
1431 	sta->rx_stats.fragments++;
1432 	sta->rx_stats.bytes += rx->skb->len;
1433 	if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
1434 		sta->rx_stats.last_signal = status->signal;
1435 		ewma_signal_add(&sta->rx_stats.avg_signal, -status->signal);
1436 	}
1437 
1438 	if (status->chains) {
1439 		sta->rx_stats.chains = status->chains;
1440 		for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) {
1441 			int signal = status->chain_signal[i];
1442 
1443 			if (!(status->chains & BIT(i)))
1444 				continue;
1445 
1446 			sta->rx_stats.chain_signal_last[i] = signal;
1447 			ewma_signal_add(&sta->rx_stats.chain_signal_avg[i],
1448 					-signal);
1449 		}
1450 	}
1451 
1452 	/*
1453 	 * Change STA power saving mode only at the end of a frame
1454 	 * exchange sequence.
1455 	 */
1456 	if (!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS) &&
1457 	    !ieee80211_has_morefrags(hdr->frame_control) &&
1458 	    !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1459 	    (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1460 	     rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) &&
1461 	    /* PM bit is only checked in frames where it isn't reserved,
1462 	     * in AP mode it's reserved in non-bufferable management frames
1463 	     * (cf. IEEE 802.11-2012 8.2.4.1.7 Power Management field)
1464 	     */
1465 	    (!ieee80211_is_mgmt(hdr->frame_control) ||
1466 	     ieee80211_is_bufferable_mmpdu(hdr->frame_control))) {
1467 		if (test_sta_flag(sta, WLAN_STA_PS_STA)) {
1468 			if (!ieee80211_has_pm(hdr->frame_control))
1469 				sta_ps_end(sta);
1470 		} else {
1471 			if (ieee80211_has_pm(hdr->frame_control))
1472 				sta_ps_start(sta);
1473 		}
1474 	}
1475 
1476 	/* mesh power save support */
1477 	if (ieee80211_vif_is_mesh(&rx->sdata->vif))
1478 		ieee80211_mps_rx_h_sta_process(sta, hdr);
1479 
1480 	/*
1481 	 * Drop (qos-)data::nullfunc frames silently, since they
1482 	 * are used only to control station power saving mode.
1483 	 */
1484 	if (ieee80211_is_nullfunc(hdr->frame_control) ||
1485 	    ieee80211_is_qos_nullfunc(hdr->frame_control)) {
1486 		I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc);
1487 
1488 		/*
1489 		 * If we receive a 4-addr nullfunc frame from a STA
1490 		 * that was not moved to a 4-addr STA vlan yet send
1491 		 * the event to userspace and for older hostapd drop
1492 		 * the frame to the monitor interface.
1493 		 */
1494 		if (ieee80211_has_a4(hdr->frame_control) &&
1495 		    (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1496 		     (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1497 		      !rx->sdata->u.vlan.sta))) {
1498 			if (!test_and_set_sta_flag(sta, WLAN_STA_4ADDR_EVENT))
1499 				cfg80211_rx_unexpected_4addr_frame(
1500 					rx->sdata->dev, sta->sta.addr,
1501 					GFP_ATOMIC);
1502 			return RX_DROP_MONITOR;
1503 		}
1504 		/*
1505 		 * Update counter and free packet here to avoid
1506 		 * counting this as a dropped packed.
1507 		 */
1508 		sta->rx_stats.packets++;
1509 		dev_kfree_skb(rx->skb);
1510 		return RX_QUEUED;
1511 	}
1512 
1513 	return RX_CONTINUE;
1514 } /* ieee80211_rx_h_sta_process */
1515 
1516 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_decrypt(struct ieee80211_rx_data * rx)1517 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx)
1518 {
1519 	struct sk_buff *skb = rx->skb;
1520 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1521 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1522 	int keyidx;
1523 	int hdrlen;
1524 	ieee80211_rx_result result = RX_DROP_UNUSABLE;
1525 	struct ieee80211_key *sta_ptk = NULL;
1526 	int mmie_keyidx = -1;
1527 	__le16 fc;
1528 	const struct ieee80211_cipher_scheme *cs = NULL;
1529 
1530 	/*
1531 	 * Key selection 101
1532 	 *
1533 	 * There are four types of keys:
1534 	 *  - GTK (group keys)
1535 	 *  - IGTK (group keys for management frames)
1536 	 *  - PTK (pairwise keys)
1537 	 *  - STK (station-to-station pairwise keys)
1538 	 *
1539 	 * When selecting a key, we have to distinguish between multicast
1540 	 * (including broadcast) and unicast frames, the latter can only
1541 	 * use PTKs and STKs while the former always use GTKs and IGTKs.
1542 	 * Unless, of course, actual WEP keys ("pre-RSNA") are used, then
1543 	 * unicast frames can also use key indices like GTKs. Hence, if we
1544 	 * don't have a PTK/STK we check the key index for a WEP key.
1545 	 *
1546 	 * Note that in a regular BSS, multicast frames are sent by the
1547 	 * AP only, associated stations unicast the frame to the AP first
1548 	 * which then multicasts it on their behalf.
1549 	 *
1550 	 * There is also a slight problem in IBSS mode: GTKs are negotiated
1551 	 * with each station, that is something we don't currently handle.
1552 	 * The spec seems to expect that one negotiates the same key with
1553 	 * every station but there's no such requirement; VLANs could be
1554 	 * possible.
1555 	 */
1556 
1557 	/* start without a key */
1558 	rx->key = NULL;
1559 	fc = hdr->frame_control;
1560 
1561 	if (rx->sta) {
1562 		int keyid = rx->sta->ptk_idx;
1563 
1564 		if (ieee80211_has_protected(fc) && rx->sta->cipher_scheme) {
1565 			cs = rx->sta->cipher_scheme;
1566 			keyid = iwl80211_get_cs_keyid(cs, rx->skb);
1567 			if (unlikely(keyid < 0))
1568 				return RX_DROP_UNUSABLE;
1569 		}
1570 		sta_ptk = rcu_dereference(rx->sta->ptk[keyid]);
1571 	}
1572 
1573 	if (!ieee80211_has_protected(fc))
1574 		mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb);
1575 
1576 	if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) {
1577 		rx->key = sta_ptk;
1578 		if ((status->flag & RX_FLAG_DECRYPTED) &&
1579 		    (status->flag & RX_FLAG_IV_STRIPPED))
1580 			return RX_CONTINUE;
1581 		/* Skip decryption if the frame is not protected. */
1582 		if (!ieee80211_has_protected(fc))
1583 			return RX_CONTINUE;
1584 	} else if (mmie_keyidx >= 0) {
1585 		/* Broadcast/multicast robust management frame / BIP */
1586 		if ((status->flag & RX_FLAG_DECRYPTED) &&
1587 		    (status->flag & RX_FLAG_IV_STRIPPED))
1588 			return RX_CONTINUE;
1589 
1590 		if (mmie_keyidx < NUM_DEFAULT_KEYS ||
1591 		    mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
1592 			return RX_DROP_MONITOR; /* unexpected BIP keyidx */
1593 		if (rx->sta)
1594 			rx->key = rcu_dereference(rx->sta->gtk[mmie_keyidx]);
1595 		if (!rx->key)
1596 			rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]);
1597 	} else if (!ieee80211_has_protected(fc)) {
1598 		/*
1599 		 * The frame was not protected, so skip decryption. However, we
1600 		 * need to set rx->key if there is a key that could have been
1601 		 * used so that the frame may be dropped if encryption would
1602 		 * have been expected.
1603 		 */
1604 		struct ieee80211_key *key = NULL;
1605 		struct ieee80211_sub_if_data *sdata = rx->sdata;
1606 		int i;
1607 
1608 		if (ieee80211_is_mgmt(fc) &&
1609 		    is_multicast_ether_addr(hdr->addr1) &&
1610 		    (key = rcu_dereference(rx->sdata->default_mgmt_key)))
1611 			rx->key = key;
1612 		else {
1613 			if (rx->sta) {
1614 				for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
1615 					key = rcu_dereference(rx->sta->gtk[i]);
1616 					if (key)
1617 						break;
1618 				}
1619 			}
1620 			if (!key) {
1621 				for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
1622 					key = rcu_dereference(sdata->keys[i]);
1623 					if (key)
1624 						break;
1625 				}
1626 			}
1627 			if (key)
1628 				rx->key = key;
1629 		}
1630 		return RX_CONTINUE;
1631 	} else {
1632 		u8 keyid;
1633 
1634 		/*
1635 		 * The device doesn't give us the IV so we won't be
1636 		 * able to look up the key. That's ok though, we
1637 		 * don't need to decrypt the frame, we just won't
1638 		 * be able to keep statistics accurate.
1639 		 * Except for key threshold notifications, should
1640 		 * we somehow allow the driver to tell us which key
1641 		 * the hardware used if this flag is set?
1642 		 */
1643 		if ((status->flag & RX_FLAG_DECRYPTED) &&
1644 		    (status->flag & RX_FLAG_IV_STRIPPED))
1645 			return RX_CONTINUE;
1646 
1647 		hdrlen = ieee80211_hdrlen(fc);
1648 
1649 		if (cs) {
1650 			keyidx = iwl80211_get_cs_keyid(cs, rx->skb);
1651 
1652 			if (unlikely(keyidx < 0))
1653 				return RX_DROP_UNUSABLE;
1654 		} else {
1655 			if (rx->skb->len < 8 + hdrlen)
1656 				return RX_DROP_UNUSABLE; /* TODO: count this? */
1657 			/*
1658 			 * no need to call ieee80211_wep_get_keyidx,
1659 			 * it verifies a bunch of things we've done already
1660 			 */
1661 			skb_copy_bits(rx->skb, hdrlen + 3, &keyid, 1);
1662 			keyidx = keyid >> 6;
1663 		}
1664 
1665 		/* check per-station GTK first, if multicast packet */
1666 		if (is_multicast_ether_addr(hdr->addr1) && rx->sta)
1667 			rx->key = rcu_dereference(rx->sta->gtk[keyidx]);
1668 
1669 		/* if not found, try default key */
1670 		if (!rx->key) {
1671 			rx->key = rcu_dereference(rx->sdata->keys[keyidx]);
1672 
1673 			/*
1674 			 * RSNA-protected unicast frames should always be
1675 			 * sent with pairwise or station-to-station keys,
1676 			 * but for WEP we allow using a key index as well.
1677 			 */
1678 			if (rx->key &&
1679 			    rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 &&
1680 			    rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 &&
1681 			    !is_multicast_ether_addr(hdr->addr1))
1682 				rx->key = NULL;
1683 		}
1684 	}
1685 
1686 	if (rx->key) {
1687 		if (unlikely(rx->key->flags & KEY_FLAG_TAINTED))
1688 			return RX_DROP_MONITOR;
1689 
1690 		/* TODO: add threshold stuff again */
1691 	} else {
1692 		return RX_DROP_MONITOR;
1693 	}
1694 
1695 	switch (rx->key->conf.cipher) {
1696 	case WLAN_CIPHER_SUITE_WEP40:
1697 	case WLAN_CIPHER_SUITE_WEP104:
1698 		result = ieee80211_crypto_wep_decrypt(rx);
1699 		break;
1700 	case WLAN_CIPHER_SUITE_TKIP:
1701 		result = ieee80211_crypto_tkip_decrypt(rx);
1702 		break;
1703 	case WLAN_CIPHER_SUITE_CCMP:
1704 		result = ieee80211_crypto_ccmp_decrypt(
1705 			rx, IEEE80211_CCMP_MIC_LEN);
1706 		break;
1707 	case WLAN_CIPHER_SUITE_CCMP_256:
1708 		result = ieee80211_crypto_ccmp_decrypt(
1709 			rx, IEEE80211_CCMP_256_MIC_LEN);
1710 		break;
1711 	case WLAN_CIPHER_SUITE_AES_CMAC:
1712 		result = ieee80211_crypto_aes_cmac_decrypt(rx);
1713 		break;
1714 	case WLAN_CIPHER_SUITE_BIP_CMAC_256:
1715 		result = ieee80211_crypto_aes_cmac_256_decrypt(rx);
1716 		break;
1717 	case WLAN_CIPHER_SUITE_BIP_GMAC_128:
1718 	case WLAN_CIPHER_SUITE_BIP_GMAC_256:
1719 		result = ieee80211_crypto_aes_gmac_decrypt(rx);
1720 		break;
1721 	case WLAN_CIPHER_SUITE_GCMP:
1722 	case WLAN_CIPHER_SUITE_GCMP_256:
1723 		result = ieee80211_crypto_gcmp_decrypt(rx);
1724 		break;
1725 	default:
1726 		result = ieee80211_crypto_hw_decrypt(rx);
1727 	}
1728 
1729 	/* the hdr variable is invalid after the decrypt handlers */
1730 
1731 	/* either the frame has been decrypted or will be dropped */
1732 	status->flag |= RX_FLAG_DECRYPTED;
1733 
1734 	return result;
1735 }
1736 
1737 static inline struct ieee80211_fragment_entry *
ieee80211_reassemble_add(struct ieee80211_sub_if_data * sdata,unsigned int frag,unsigned int seq,int rx_queue,struct sk_buff ** skb)1738 ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata,
1739 			 unsigned int frag, unsigned int seq, int rx_queue,
1740 			 struct sk_buff **skb)
1741 {
1742 	struct ieee80211_fragment_entry *entry;
1743 
1744 	entry = &sdata->fragments[sdata->fragment_next++];
1745 	if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX)
1746 		sdata->fragment_next = 0;
1747 
1748 	if (!skb_queue_empty(&entry->skb_list))
1749 		__skb_queue_purge(&entry->skb_list);
1750 
1751 	__skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */
1752 	*skb = NULL;
1753 	entry->first_frag_time = jiffies;
1754 	entry->seq = seq;
1755 	entry->rx_queue = rx_queue;
1756 	entry->last_frag = frag;
1757 	entry->check_sequential_pn = false;
1758 	entry->extra_len = 0;
1759 
1760 	return entry;
1761 }
1762 
1763 static inline struct ieee80211_fragment_entry *
ieee80211_reassemble_find(struct ieee80211_sub_if_data * sdata,unsigned int frag,unsigned int seq,int rx_queue,struct ieee80211_hdr * hdr)1764 ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata,
1765 			  unsigned int frag, unsigned int seq,
1766 			  int rx_queue, struct ieee80211_hdr *hdr)
1767 {
1768 	struct ieee80211_fragment_entry *entry;
1769 	int i, idx;
1770 
1771 	idx = sdata->fragment_next;
1772 	for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) {
1773 		struct ieee80211_hdr *f_hdr;
1774 
1775 		idx--;
1776 		if (idx < 0)
1777 			idx = IEEE80211_FRAGMENT_MAX - 1;
1778 
1779 		entry = &sdata->fragments[idx];
1780 		if (skb_queue_empty(&entry->skb_list) || entry->seq != seq ||
1781 		    entry->rx_queue != rx_queue ||
1782 		    entry->last_frag + 1 != frag)
1783 			continue;
1784 
1785 		f_hdr = (struct ieee80211_hdr *)entry->skb_list.next->data;
1786 
1787 		/*
1788 		 * Check ftype and addresses are equal, else check next fragment
1789 		 */
1790 		if (((hdr->frame_control ^ f_hdr->frame_control) &
1791 		     cpu_to_le16(IEEE80211_FCTL_FTYPE)) ||
1792 		    !ether_addr_equal(hdr->addr1, f_hdr->addr1) ||
1793 		    !ether_addr_equal(hdr->addr2, f_hdr->addr2))
1794 			continue;
1795 
1796 		if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) {
1797 			__skb_queue_purge(&entry->skb_list);
1798 			continue;
1799 		}
1800 		return entry;
1801 	}
1802 
1803 	return NULL;
1804 }
1805 
1806 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_defragment(struct ieee80211_rx_data * rx)1807 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx)
1808 {
1809 	struct ieee80211_hdr *hdr;
1810 	u16 sc;
1811 	__le16 fc;
1812 	unsigned int frag, seq;
1813 	struct ieee80211_fragment_entry *entry;
1814 	struct sk_buff *skb;
1815 	struct ieee80211_rx_status *status;
1816 
1817 	hdr = (struct ieee80211_hdr *)rx->skb->data;
1818 	fc = hdr->frame_control;
1819 
1820 	if (ieee80211_is_ctl(fc))
1821 		return RX_CONTINUE;
1822 
1823 	sc = le16_to_cpu(hdr->seq_ctrl);
1824 	frag = sc & IEEE80211_SCTL_FRAG;
1825 
1826 	if (is_multicast_ether_addr(hdr->addr1)) {
1827 		I802_DEBUG_INC(rx->local->dot11MulticastReceivedFrameCount);
1828 		goto out_no_led;
1829 	}
1830 
1831 	if (likely(!ieee80211_has_morefrags(fc) && frag == 0))
1832 		goto out;
1833 
1834 	I802_DEBUG_INC(rx->local->rx_handlers_fragments);
1835 
1836 	if (skb_linearize(rx->skb))
1837 		return RX_DROP_UNUSABLE;
1838 
1839 	/*
1840 	 *  skb_linearize() might change the skb->data and
1841 	 *  previously cached variables (in this case, hdr) need to
1842 	 *  be refreshed with the new data.
1843 	 */
1844 	hdr = (struct ieee80211_hdr *)rx->skb->data;
1845 	seq = (sc & IEEE80211_SCTL_SEQ) >> 4;
1846 
1847 	if (frag == 0) {
1848 		/* This is the first fragment of a new frame. */
1849 		entry = ieee80211_reassemble_add(rx->sdata, frag, seq,
1850 						 rx->seqno_idx, &(rx->skb));
1851 		if (rx->key &&
1852 		    (rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP ||
1853 		     rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP_256 ||
1854 		     rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP ||
1855 		     rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP_256) &&
1856 		    ieee80211_has_protected(fc)) {
1857 			int queue = rx->security_idx;
1858 
1859 			/* Store CCMP/GCMP PN so that we can verify that the
1860 			 * next fragment has a sequential PN value.
1861 			 */
1862 			entry->check_sequential_pn = true;
1863 			memcpy(entry->last_pn,
1864 			       rx->key->u.ccmp.rx_pn[queue],
1865 			       IEEE80211_CCMP_PN_LEN);
1866 			BUILD_BUG_ON(offsetof(struct ieee80211_key,
1867 					      u.ccmp.rx_pn) !=
1868 				     offsetof(struct ieee80211_key,
1869 					      u.gcmp.rx_pn));
1870 			BUILD_BUG_ON(sizeof(rx->key->u.ccmp.rx_pn[queue]) !=
1871 				     sizeof(rx->key->u.gcmp.rx_pn[queue]));
1872 			BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN !=
1873 				     IEEE80211_GCMP_PN_LEN);
1874 		}
1875 		return RX_QUEUED;
1876 	}
1877 
1878 	/* This is a fragment for a frame that should already be pending in
1879 	 * fragment cache. Add this fragment to the end of the pending entry.
1880 	 */
1881 	entry = ieee80211_reassemble_find(rx->sdata, frag, seq,
1882 					  rx->seqno_idx, hdr);
1883 	if (!entry) {
1884 		I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
1885 		return RX_DROP_MONITOR;
1886 	}
1887 
1888 	/* "The receiver shall discard MSDUs and MMPDUs whose constituent
1889 	 *  MPDU PN values are not incrementing in steps of 1."
1890 	 * see IEEE P802.11-REVmc/D5.0, 12.5.3.4.4, item d (for CCMP)
1891 	 * and IEEE P802.11-REVmc/D5.0, 12.5.5.4.4, item d (for GCMP)
1892 	 */
1893 	if (entry->check_sequential_pn) {
1894 		int i;
1895 		u8 pn[IEEE80211_CCMP_PN_LEN], *rpn;
1896 		int queue;
1897 
1898 		if (!rx->key ||
1899 		    (rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP &&
1900 		     rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP_256 &&
1901 		     rx->key->conf.cipher != WLAN_CIPHER_SUITE_GCMP &&
1902 		     rx->key->conf.cipher != WLAN_CIPHER_SUITE_GCMP_256))
1903 			return RX_DROP_UNUSABLE;
1904 		memcpy(pn, entry->last_pn, IEEE80211_CCMP_PN_LEN);
1905 		for (i = IEEE80211_CCMP_PN_LEN - 1; i >= 0; i--) {
1906 			pn[i]++;
1907 			if (pn[i])
1908 				break;
1909 		}
1910 		queue = rx->security_idx;
1911 		rpn = rx->key->u.ccmp.rx_pn[queue];
1912 		if (memcmp(pn, rpn, IEEE80211_CCMP_PN_LEN))
1913 			return RX_DROP_UNUSABLE;
1914 		memcpy(entry->last_pn, pn, IEEE80211_CCMP_PN_LEN);
1915 	}
1916 
1917 	skb_pull(rx->skb, ieee80211_hdrlen(fc));
1918 	__skb_queue_tail(&entry->skb_list, rx->skb);
1919 	entry->last_frag = frag;
1920 	entry->extra_len += rx->skb->len;
1921 	if (ieee80211_has_morefrags(fc)) {
1922 		rx->skb = NULL;
1923 		return RX_QUEUED;
1924 	}
1925 
1926 	rx->skb = __skb_dequeue(&entry->skb_list);
1927 	if (skb_tailroom(rx->skb) < entry->extra_len) {
1928 		I802_DEBUG_INC(rx->local->rx_expand_skb_head_defrag);
1929 		if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len,
1930 					      GFP_ATOMIC))) {
1931 			I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
1932 			__skb_queue_purge(&entry->skb_list);
1933 			return RX_DROP_UNUSABLE;
1934 		}
1935 	}
1936 	while ((skb = __skb_dequeue(&entry->skb_list))) {
1937 		memcpy(skb_put(rx->skb, skb->len), skb->data, skb->len);
1938 		dev_kfree_skb(skb);
1939 	}
1940 
1941 	/* Complete frame has been reassembled - process it now */
1942 	status = IEEE80211_SKB_RXCB(rx->skb);
1943 
1944  out:
1945 	ieee80211_led_rx(rx->local);
1946  out_no_led:
1947 	if (rx->sta)
1948 		rx->sta->rx_stats.packets++;
1949 	return RX_CONTINUE;
1950 }
1951 
ieee80211_802_1x_port_control(struct ieee80211_rx_data * rx)1952 static int ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx)
1953 {
1954 	if (unlikely(!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_AUTHORIZED)))
1955 		return -EACCES;
1956 
1957 	return 0;
1958 }
1959 
ieee80211_drop_unencrypted(struct ieee80211_rx_data * rx,__le16 fc)1960 static int ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc)
1961 {
1962 	struct sk_buff *skb = rx->skb;
1963 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1964 
1965 	/*
1966 	 * Pass through unencrypted frames if the hardware has
1967 	 * decrypted them already.
1968 	 */
1969 	if (status->flag & RX_FLAG_DECRYPTED)
1970 		return 0;
1971 
1972 	/* Drop unencrypted frames if key is set. */
1973 	if (unlikely(!ieee80211_has_protected(fc) &&
1974 		     !ieee80211_is_nullfunc(fc) &&
1975 		     ieee80211_is_data(fc) && rx->key))
1976 		return -EACCES;
1977 
1978 	return 0;
1979 }
1980 
ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data * rx)1981 static int ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx)
1982 {
1983 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1984 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1985 	__le16 fc = hdr->frame_control;
1986 
1987 	/*
1988 	 * Pass through unencrypted frames if the hardware has
1989 	 * decrypted them already.
1990 	 */
1991 	if (status->flag & RX_FLAG_DECRYPTED)
1992 		return 0;
1993 
1994 	if (rx->sta && test_sta_flag(rx->sta, WLAN_STA_MFP)) {
1995 		if (unlikely(!ieee80211_has_protected(fc) &&
1996 			     ieee80211_is_unicast_robust_mgmt_frame(rx->skb) &&
1997 			     rx->key)) {
1998 			if (ieee80211_is_deauth(fc) ||
1999 			    ieee80211_is_disassoc(fc))
2000 				cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
2001 							     rx->skb->data,
2002 							     rx->skb->len);
2003 			return -EACCES;
2004 		}
2005 		/* BIP does not use Protected field, so need to check MMIE */
2006 		if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) &&
2007 			     ieee80211_get_mmie_keyidx(rx->skb) < 0)) {
2008 			if (ieee80211_is_deauth(fc) ||
2009 			    ieee80211_is_disassoc(fc))
2010 				cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
2011 							     rx->skb->data,
2012 							     rx->skb->len);
2013 			return -EACCES;
2014 		}
2015 		/*
2016 		 * When using MFP, Action frames are not allowed prior to
2017 		 * having configured keys.
2018 		 */
2019 		if (unlikely(ieee80211_is_action(fc) && !rx->key &&
2020 			     ieee80211_is_robust_mgmt_frame(rx->skb)))
2021 			return -EACCES;
2022 	}
2023 
2024 	return 0;
2025 }
2026 
2027 static int
__ieee80211_data_to_8023(struct ieee80211_rx_data * rx,bool * port_control)2028 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control)
2029 {
2030 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2031 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2032 	bool check_port_control = false;
2033 	struct ethhdr *ehdr;
2034 	int ret;
2035 
2036 	*port_control = false;
2037 	if (ieee80211_has_a4(hdr->frame_control) &&
2038 	    sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta)
2039 		return -1;
2040 
2041 	if (sdata->vif.type == NL80211_IFTYPE_STATION &&
2042 	    !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) {
2043 
2044 		if (!sdata->u.mgd.use_4addr)
2045 			return -1;
2046 		else
2047 			check_port_control = true;
2048 	}
2049 
2050 	if (is_multicast_ether_addr(hdr->addr1) &&
2051 	    sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta)
2052 		return -1;
2053 
2054 	ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type);
2055 	if (ret < 0)
2056 		return ret;
2057 
2058 	ehdr = (struct ethhdr *) rx->skb->data;
2059 	if (ehdr->h_proto == rx->sdata->control_port_protocol)
2060 		*port_control = true;
2061 	else if (check_port_control)
2062 		return -1;
2063 
2064 	return 0;
2065 }
2066 
2067 /*
2068  * requires that rx->skb is a frame with ethernet header
2069  */
ieee80211_frame_allowed(struct ieee80211_rx_data * rx,__le16 fc)2070 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc)
2071 {
2072 	static const u8 pae_group_addr[ETH_ALEN] __aligned(2)
2073 		= { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 };
2074 	struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
2075 
2076 	/*
2077 	 * Allow EAPOL frames to us/the PAE group address regardless
2078 	 * of whether the frame was encrypted or not.
2079 	 */
2080 	if (ehdr->h_proto == rx->sdata->control_port_protocol &&
2081 	    (ether_addr_equal(ehdr->h_dest, rx->sdata->vif.addr) ||
2082 	     ether_addr_equal(ehdr->h_dest, pae_group_addr)))
2083 		return true;
2084 
2085 	if (ieee80211_802_1x_port_control(rx) ||
2086 	    ieee80211_drop_unencrypted(rx, fc))
2087 		return false;
2088 
2089 	return true;
2090 }
2091 
2092 /*
2093  * requires that rx->skb is a frame with ethernet header
2094  */
2095 static void
ieee80211_deliver_skb(struct ieee80211_rx_data * rx)2096 ieee80211_deliver_skb(struct ieee80211_rx_data *rx)
2097 {
2098 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2099 	struct net_device *dev = sdata->dev;
2100 	struct sk_buff *skb, *xmit_skb;
2101 	struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
2102 	struct sta_info *dsta;
2103 
2104 	skb = rx->skb;
2105 	xmit_skb = NULL;
2106 
2107 	ieee80211_rx_stats(dev, skb->len);
2108 
2109 	if ((sdata->vif.type == NL80211_IFTYPE_AP ||
2110 	     sdata->vif.type == NL80211_IFTYPE_AP_VLAN) &&
2111 	    !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
2112 	    (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) {
2113 		if (is_multicast_ether_addr(ehdr->h_dest)) {
2114 			/*
2115 			 * send multicast frames both to higher layers in
2116 			 * local net stack and back to the wireless medium
2117 			 */
2118 			xmit_skb = skb_copy(skb, GFP_ATOMIC);
2119 			if (!xmit_skb)
2120 				net_info_ratelimited("%s: failed to clone multicast frame\n",
2121 						    dev->name);
2122 		} else {
2123 			dsta = sta_info_get(sdata, skb->data);
2124 			if (dsta) {
2125 				/*
2126 				 * The destination station is associated to
2127 				 * this AP (in this VLAN), so send the frame
2128 				 * directly to it and do not pass it to local
2129 				 * net stack.
2130 				 */
2131 				xmit_skb = skb;
2132 				skb = NULL;
2133 			}
2134 		}
2135 	}
2136 
2137 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2138 	if (skb) {
2139 		/* 'align' will only take the values 0 or 2 here since all
2140 		 * frames are required to be aligned to 2-byte boundaries
2141 		 * when being passed to mac80211; the code here works just
2142 		 * as well if that isn't true, but mac80211 assumes it can
2143 		 * access fields as 2-byte aligned (e.g. for ether_addr_equal)
2144 		 */
2145 		int align;
2146 
2147 		align = (unsigned long)(skb->data + sizeof(struct ethhdr)) & 3;
2148 		if (align) {
2149 			if (WARN_ON(skb_headroom(skb) < 3)) {
2150 				dev_kfree_skb(skb);
2151 				skb = NULL;
2152 			} else {
2153 				u8 *data = skb->data;
2154 				size_t len = skb_headlen(skb);
2155 				skb->data -= align;
2156 				memmove(skb->data, data, len);
2157 				skb_set_tail_pointer(skb, len);
2158 			}
2159 		}
2160 	}
2161 #endif
2162 
2163 	if (skb) {
2164 		/* deliver to local stack */
2165 		skb->protocol = eth_type_trans(skb, dev);
2166 		memset(skb->cb, 0, sizeof(skb->cb));
2167 		if (rx->napi)
2168 			napi_gro_receive(rx->napi, skb);
2169 		else
2170 			netif_receive_skb(skb);
2171 	}
2172 
2173 	if (xmit_skb) {
2174 		/*
2175 		 * Send to wireless media and increase priority by 256 to
2176 		 * keep the received priority instead of reclassifying
2177 		 * the frame (see cfg80211_classify8021d).
2178 		 */
2179 		xmit_skb->priority += 256;
2180 		xmit_skb->protocol = htons(ETH_P_802_3);
2181 		skb_reset_network_header(xmit_skb);
2182 		skb_reset_mac_header(xmit_skb);
2183 		dev_queue_xmit(xmit_skb);
2184 	}
2185 }
2186 
2187 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_amsdu(struct ieee80211_rx_data * rx)2188 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx)
2189 {
2190 	struct net_device *dev = rx->sdata->dev;
2191 	struct sk_buff *skb = rx->skb;
2192 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2193 	__le16 fc = hdr->frame_control;
2194 	struct sk_buff_head frame_list;
2195 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2196 
2197 	if (unlikely(!ieee80211_is_data(fc)))
2198 		return RX_CONTINUE;
2199 
2200 	if (unlikely(!ieee80211_is_data_present(fc)))
2201 		return RX_DROP_MONITOR;
2202 
2203 	if (!(status->rx_flags & IEEE80211_RX_AMSDU))
2204 		return RX_CONTINUE;
2205 
2206 	if (ieee80211_has_a4(hdr->frame_control) &&
2207 	    rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
2208 	    !rx->sdata->u.vlan.sta)
2209 		return RX_DROP_UNUSABLE;
2210 
2211 	if (is_multicast_ether_addr(hdr->addr1) &&
2212 	    ((rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
2213 	      rx->sdata->u.vlan.sta) ||
2214 	     (rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
2215 	      rx->sdata->u.mgd.use_4addr)))
2216 		return RX_DROP_UNUSABLE;
2217 
2218 	skb->dev = dev;
2219 	__skb_queue_head_init(&frame_list);
2220 
2221 	if (skb_linearize(skb))
2222 		return RX_DROP_UNUSABLE;
2223 
2224 	ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr,
2225 				 rx->sdata->vif.type,
2226 				 rx->local->hw.extra_tx_headroom, true);
2227 
2228 	while (!skb_queue_empty(&frame_list)) {
2229 		rx->skb = __skb_dequeue(&frame_list);
2230 
2231 		if (!ieee80211_frame_allowed(rx, fc)) {
2232 			dev_kfree_skb(rx->skb);
2233 			continue;
2234 		}
2235 
2236 		ieee80211_deliver_skb(rx);
2237 	}
2238 
2239 	return RX_QUEUED;
2240 }
2241 
2242 #ifdef CONFIG_MAC80211_MESH
2243 static ieee80211_rx_result
ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data * rx)2244 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx)
2245 {
2246 	struct ieee80211_hdr *fwd_hdr, *hdr;
2247 	struct ieee80211_tx_info *info;
2248 	struct ieee80211s_hdr *mesh_hdr;
2249 	struct sk_buff *skb = rx->skb, *fwd_skb;
2250 	struct ieee80211_local *local = rx->local;
2251 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2252 	struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh;
2253 	u16 ac, q, hdrlen;
2254 
2255 	hdr = (struct ieee80211_hdr *) skb->data;
2256 	hdrlen = ieee80211_hdrlen(hdr->frame_control);
2257 
2258 	/* make sure fixed part of mesh header is there, also checks skb len */
2259 	if (!pskb_may_pull(rx->skb, hdrlen + 6))
2260 		return RX_DROP_MONITOR;
2261 
2262 	mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
2263 
2264 	/* make sure full mesh header is there, also checks skb len */
2265 	if (!pskb_may_pull(rx->skb,
2266 			   hdrlen + ieee80211_get_mesh_hdrlen(mesh_hdr)))
2267 		return RX_DROP_MONITOR;
2268 
2269 	/* reload pointers */
2270 	hdr = (struct ieee80211_hdr *) skb->data;
2271 	mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
2272 
2273 	if (ieee80211_drop_unencrypted(rx, hdr->frame_control))
2274 		return RX_DROP_MONITOR;
2275 
2276 	/* frame is in RMC, don't forward */
2277 	if (ieee80211_is_data(hdr->frame_control) &&
2278 	    is_multicast_ether_addr(hdr->addr1) &&
2279 	    mesh_rmc_check(rx->sdata, hdr->addr3, mesh_hdr))
2280 		return RX_DROP_MONITOR;
2281 
2282 	if (!ieee80211_is_data(hdr->frame_control))
2283 		return RX_CONTINUE;
2284 
2285 	if (!mesh_hdr->ttl)
2286 		return RX_DROP_MONITOR;
2287 
2288 	if (mesh_hdr->flags & MESH_FLAGS_AE) {
2289 		struct mesh_path *mppath;
2290 		char *proxied_addr;
2291 		char *mpp_addr;
2292 
2293 		if (is_multicast_ether_addr(hdr->addr1)) {
2294 			mpp_addr = hdr->addr3;
2295 			proxied_addr = mesh_hdr->eaddr1;
2296 		} else if (mesh_hdr->flags & MESH_FLAGS_AE_A5_A6) {
2297 			/* has_a4 already checked in ieee80211_rx_mesh_check */
2298 			mpp_addr = hdr->addr4;
2299 			proxied_addr = mesh_hdr->eaddr2;
2300 		} else {
2301 			return RX_DROP_MONITOR;
2302 		}
2303 
2304 		rcu_read_lock();
2305 		mppath = mpp_path_lookup(sdata, proxied_addr);
2306 		if (!mppath) {
2307 			mpp_path_add(sdata, proxied_addr, mpp_addr);
2308 		} else {
2309 			spin_lock_bh(&mppath->state_lock);
2310 			if (!ether_addr_equal(mppath->mpp, mpp_addr))
2311 				memcpy(mppath->mpp, mpp_addr, ETH_ALEN);
2312 			spin_unlock_bh(&mppath->state_lock);
2313 		}
2314 		rcu_read_unlock();
2315 	}
2316 
2317 	/* Frame has reached destination.  Don't forward */
2318 	if (!is_multicast_ether_addr(hdr->addr1) &&
2319 	    ether_addr_equal(sdata->vif.addr, hdr->addr3))
2320 		return RX_CONTINUE;
2321 
2322 	ac = ieee80211_select_queue_80211(sdata, skb, hdr);
2323 	q = sdata->vif.hw_queue[ac];
2324 	if (ieee80211_queue_stopped(&local->hw, q)) {
2325 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_congestion);
2326 		return RX_DROP_MONITOR;
2327 	}
2328 	skb_set_queue_mapping(skb, q);
2329 
2330 	if (!--mesh_hdr->ttl) {
2331 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_ttl);
2332 		goto out;
2333 	}
2334 
2335 	if (!ifmsh->mshcfg.dot11MeshForwarding)
2336 		goto out;
2337 
2338 	fwd_skb = skb_copy(skb, GFP_ATOMIC);
2339 	if (!fwd_skb) {
2340 		net_info_ratelimited("%s: failed to clone mesh frame\n",
2341 				    sdata->name);
2342 		goto out;
2343 	}
2344 
2345 	fwd_hdr =  (struct ieee80211_hdr *) fwd_skb->data;
2346 	fwd_hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_RETRY);
2347 	info = IEEE80211_SKB_CB(fwd_skb);
2348 	memset(info, 0, sizeof(*info));
2349 	info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING;
2350 	info->control.vif = &rx->sdata->vif;
2351 	info->control.jiffies = jiffies;
2352 	if (is_multicast_ether_addr(fwd_hdr->addr1)) {
2353 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_mcast);
2354 		memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN);
2355 		/* update power mode indication when forwarding */
2356 		ieee80211_mps_set_frame_flags(sdata, NULL, fwd_hdr);
2357 	} else if (!mesh_nexthop_lookup(sdata, fwd_skb)) {
2358 		/* mesh power mode flags updated in mesh_nexthop_lookup */
2359 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_unicast);
2360 	} else {
2361 		/* unable to resolve next hop */
2362 		mesh_path_error_tx(sdata, ifmsh->mshcfg.element_ttl,
2363 				   fwd_hdr->addr3, 0,
2364 				   WLAN_REASON_MESH_PATH_NOFORWARD,
2365 				   fwd_hdr->addr2);
2366 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_no_route);
2367 		kfree_skb(fwd_skb);
2368 		return RX_DROP_MONITOR;
2369 	}
2370 
2371 	IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_frames);
2372 	ieee80211_add_pending_skb(local, fwd_skb);
2373  out:
2374 	if (is_multicast_ether_addr(hdr->addr1))
2375 		return RX_CONTINUE;
2376 	return RX_DROP_MONITOR;
2377 }
2378 #endif
2379 
2380 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_data(struct ieee80211_rx_data * rx)2381 ieee80211_rx_h_data(struct ieee80211_rx_data *rx)
2382 {
2383 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2384 	struct ieee80211_local *local = rx->local;
2385 	struct net_device *dev = sdata->dev;
2386 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2387 	__le16 fc = hdr->frame_control;
2388 	bool port_control;
2389 	int err;
2390 
2391 	if (unlikely(!ieee80211_is_data(hdr->frame_control)))
2392 		return RX_CONTINUE;
2393 
2394 	if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
2395 		return RX_DROP_MONITOR;
2396 
2397 	if (rx->sta) {
2398 		/* The seqno index has the same property as needed
2399 		 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS
2400 		 * for non-QoS-data frames. Here we know it's a data
2401 		 * frame, so count MSDUs.
2402 		 */
2403 		rx->sta->rx_stats.msdu[rx->seqno_idx]++;
2404 	}
2405 
2406 	/*
2407 	 * Send unexpected-4addr-frame event to hostapd. For older versions,
2408 	 * also drop the frame to cooked monitor interfaces.
2409 	 */
2410 	if (ieee80211_has_a4(hdr->frame_control) &&
2411 	    sdata->vif.type == NL80211_IFTYPE_AP) {
2412 		if (rx->sta &&
2413 		    !test_and_set_sta_flag(rx->sta, WLAN_STA_4ADDR_EVENT))
2414 			cfg80211_rx_unexpected_4addr_frame(
2415 				rx->sdata->dev, rx->sta->sta.addr, GFP_ATOMIC);
2416 		return RX_DROP_MONITOR;
2417 	}
2418 
2419 	err = __ieee80211_data_to_8023(rx, &port_control);
2420 	if (unlikely(err))
2421 		return RX_DROP_UNUSABLE;
2422 
2423 	if (!ieee80211_frame_allowed(rx, fc))
2424 		return RX_DROP_MONITOR;
2425 
2426 	/* directly handle TDLS channel switch requests/responses */
2427 	if (unlikely(((struct ethhdr *)rx->skb->data)->h_proto ==
2428 						cpu_to_be16(ETH_P_TDLS))) {
2429 		struct ieee80211_tdls_data *tf = (void *)rx->skb->data;
2430 
2431 		if (pskb_may_pull(rx->skb,
2432 				  offsetof(struct ieee80211_tdls_data, u)) &&
2433 		    tf->payload_type == WLAN_TDLS_SNAP_RFTYPE &&
2434 		    tf->category == WLAN_CATEGORY_TDLS &&
2435 		    (tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_REQUEST ||
2436 		     tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_RESPONSE)) {
2437 			skb_queue_tail(&local->skb_queue_tdls_chsw, rx->skb);
2438 			schedule_work(&local->tdls_chsw_work);
2439 			if (rx->sta)
2440 				rx->sta->rx_stats.packets++;
2441 
2442 			return RX_QUEUED;
2443 		}
2444 	}
2445 
2446 	if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
2447 	    unlikely(port_control) && sdata->bss) {
2448 		sdata = container_of(sdata->bss, struct ieee80211_sub_if_data,
2449 				     u.ap);
2450 		dev = sdata->dev;
2451 		rx->sdata = sdata;
2452 	}
2453 
2454 	rx->skb->dev = dev;
2455 
2456 	if (local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 &&
2457 	    !is_multicast_ether_addr(
2458 		    ((struct ethhdr *)rx->skb->data)->h_dest) &&
2459 	    (!local->scanning &&
2460 	     !test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state))) {
2461 			mod_timer(&local->dynamic_ps_timer, jiffies +
2462 			 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout));
2463 	}
2464 
2465 	ieee80211_deliver_skb(rx);
2466 
2467 	return RX_QUEUED;
2468 }
2469 
2470 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_ctrl(struct ieee80211_rx_data * rx,struct sk_buff_head * frames)2471 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx, struct sk_buff_head *frames)
2472 {
2473 	struct sk_buff *skb = rx->skb;
2474 	struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data;
2475 	struct tid_ampdu_rx *tid_agg_rx;
2476 	u16 start_seq_num;
2477 	u16 tid;
2478 
2479 	if (likely(!ieee80211_is_ctl(bar->frame_control)))
2480 		return RX_CONTINUE;
2481 
2482 	if (ieee80211_is_back_req(bar->frame_control)) {
2483 		struct {
2484 			__le16 control, start_seq_num;
2485 		} __packed bar_data;
2486 		struct ieee80211_event event = {
2487 			.type = BAR_RX_EVENT,
2488 		};
2489 
2490 		if (!rx->sta)
2491 			return RX_DROP_MONITOR;
2492 
2493 		if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control),
2494 				  &bar_data, sizeof(bar_data)))
2495 			return RX_DROP_MONITOR;
2496 
2497 		tid = le16_to_cpu(bar_data.control) >> 12;
2498 
2499 		tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]);
2500 		if (!tid_agg_rx)
2501 			return RX_DROP_MONITOR;
2502 
2503 		start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4;
2504 		event.u.ba.tid = tid;
2505 		event.u.ba.ssn = start_seq_num;
2506 		event.u.ba.sta = &rx->sta->sta;
2507 
2508 		/* reset session timer */
2509 		if (tid_agg_rx->timeout)
2510 			mod_timer(&tid_agg_rx->session_timer,
2511 				  TU_TO_EXP_TIME(tid_agg_rx->timeout));
2512 
2513 		spin_lock(&tid_agg_rx->reorder_lock);
2514 		/* release stored frames up to start of BAR */
2515 		ieee80211_release_reorder_frames(rx->sdata, tid_agg_rx,
2516 						 start_seq_num, frames);
2517 		spin_unlock(&tid_agg_rx->reorder_lock);
2518 
2519 		drv_event_callback(rx->local, rx->sdata, &event);
2520 
2521 		kfree_skb(skb);
2522 		return RX_QUEUED;
2523 	}
2524 
2525 	/*
2526 	 * After this point, we only want management frames,
2527 	 * so we can drop all remaining control frames to
2528 	 * cooked monitor interfaces.
2529 	 */
2530 	return RX_DROP_MONITOR;
2531 }
2532 
ieee80211_process_sa_query_req(struct ieee80211_sub_if_data * sdata,struct ieee80211_mgmt * mgmt,size_t len)2533 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata,
2534 					   struct ieee80211_mgmt *mgmt,
2535 					   size_t len)
2536 {
2537 	struct ieee80211_local *local = sdata->local;
2538 	struct sk_buff *skb;
2539 	struct ieee80211_mgmt *resp;
2540 
2541 	if (!ether_addr_equal(mgmt->da, sdata->vif.addr)) {
2542 		/* Not to own unicast address */
2543 		return;
2544 	}
2545 
2546 	if (!ether_addr_equal(mgmt->sa, sdata->u.mgd.bssid) ||
2547 	    !ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) {
2548 		/* Not from the current AP or not associated yet. */
2549 		return;
2550 	}
2551 
2552 	if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) {
2553 		/* Too short SA Query request frame */
2554 		return;
2555 	}
2556 
2557 	skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom);
2558 	if (skb == NULL)
2559 		return;
2560 
2561 	skb_reserve(skb, local->hw.extra_tx_headroom);
2562 	resp = (struct ieee80211_mgmt *) skb_put(skb, 24);
2563 	memset(resp, 0, 24);
2564 	memcpy(resp->da, mgmt->sa, ETH_ALEN);
2565 	memcpy(resp->sa, sdata->vif.addr, ETH_ALEN);
2566 	memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN);
2567 	resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
2568 					  IEEE80211_STYPE_ACTION);
2569 	skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query));
2570 	resp->u.action.category = WLAN_CATEGORY_SA_QUERY;
2571 	resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE;
2572 	memcpy(resp->u.action.u.sa_query.trans_id,
2573 	       mgmt->u.action.u.sa_query.trans_id,
2574 	       WLAN_SA_QUERY_TR_ID_LEN);
2575 
2576 	ieee80211_tx_skb(sdata, skb);
2577 }
2578 
2579 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data * rx)2580 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx)
2581 {
2582 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2583 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2584 
2585 	/*
2586 	 * From here on, look only at management frames.
2587 	 * Data and control frames are already handled,
2588 	 * and unknown (reserved) frames are useless.
2589 	 */
2590 	if (rx->skb->len < 24)
2591 		return RX_DROP_MONITOR;
2592 
2593 	if (!ieee80211_is_mgmt(mgmt->frame_control))
2594 		return RX_DROP_MONITOR;
2595 
2596 	if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
2597 	    ieee80211_is_beacon(mgmt->frame_control) &&
2598 	    !(rx->flags & IEEE80211_RX_BEACON_REPORTED)) {
2599 		int sig = 0;
2600 
2601 		if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM))
2602 			sig = status->signal;
2603 
2604 		cfg80211_report_obss_beacon(rx->local->hw.wiphy,
2605 					    rx->skb->data, rx->skb->len,
2606 					    status->freq, sig);
2607 		rx->flags |= IEEE80211_RX_BEACON_REPORTED;
2608 	}
2609 
2610 	if (ieee80211_drop_unencrypted_mgmt(rx))
2611 		return RX_DROP_UNUSABLE;
2612 
2613 	return RX_CONTINUE;
2614 }
2615 
2616 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_action(struct ieee80211_rx_data * rx)2617 ieee80211_rx_h_action(struct ieee80211_rx_data *rx)
2618 {
2619 	struct ieee80211_local *local = rx->local;
2620 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2621 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2622 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2623 	int len = rx->skb->len;
2624 
2625 	if (!ieee80211_is_action(mgmt->frame_control))
2626 		return RX_CONTINUE;
2627 
2628 	/* drop too small frames */
2629 	if (len < IEEE80211_MIN_ACTION_SIZE)
2630 		return RX_DROP_UNUSABLE;
2631 
2632 	if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC &&
2633 	    mgmt->u.action.category != WLAN_CATEGORY_SELF_PROTECTED &&
2634 	    mgmt->u.action.category != WLAN_CATEGORY_SPECTRUM_MGMT)
2635 		return RX_DROP_UNUSABLE;
2636 
2637 	switch (mgmt->u.action.category) {
2638 	case WLAN_CATEGORY_HT:
2639 		/* reject HT action frames from stations not supporting HT */
2640 		if (!rx->sta->sta.ht_cap.ht_supported)
2641 			goto invalid;
2642 
2643 		if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2644 		    sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2645 		    sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2646 		    sdata->vif.type != NL80211_IFTYPE_AP &&
2647 		    sdata->vif.type != NL80211_IFTYPE_ADHOC)
2648 			break;
2649 
2650 		/* verify action & smps_control/chanwidth are present */
2651 		if (len < IEEE80211_MIN_ACTION_SIZE + 2)
2652 			goto invalid;
2653 
2654 		switch (mgmt->u.action.u.ht_smps.action) {
2655 		case WLAN_HT_ACTION_SMPS: {
2656 			struct ieee80211_supported_band *sband;
2657 			enum ieee80211_smps_mode smps_mode;
2658 
2659 			/* convert to HT capability */
2660 			switch (mgmt->u.action.u.ht_smps.smps_control) {
2661 			case WLAN_HT_SMPS_CONTROL_DISABLED:
2662 				smps_mode = IEEE80211_SMPS_OFF;
2663 				break;
2664 			case WLAN_HT_SMPS_CONTROL_STATIC:
2665 				smps_mode = IEEE80211_SMPS_STATIC;
2666 				break;
2667 			case WLAN_HT_SMPS_CONTROL_DYNAMIC:
2668 				smps_mode = IEEE80211_SMPS_DYNAMIC;
2669 				break;
2670 			default:
2671 				goto invalid;
2672 			}
2673 
2674 			/* if no change do nothing */
2675 			if (rx->sta->sta.smps_mode == smps_mode)
2676 				goto handled;
2677 			rx->sta->sta.smps_mode = smps_mode;
2678 
2679 			sband = rx->local->hw.wiphy->bands[status->band];
2680 
2681 			rate_control_rate_update(local, sband, rx->sta,
2682 						 IEEE80211_RC_SMPS_CHANGED);
2683 			goto handled;
2684 		}
2685 		case WLAN_HT_ACTION_NOTIFY_CHANWIDTH: {
2686 			struct ieee80211_supported_band *sband;
2687 			u8 chanwidth = mgmt->u.action.u.ht_notify_cw.chanwidth;
2688 			enum ieee80211_sta_rx_bandwidth max_bw, new_bw;
2689 
2690 			/* If it doesn't support 40 MHz it can't change ... */
2691 			if (!(rx->sta->sta.ht_cap.cap &
2692 					IEEE80211_HT_CAP_SUP_WIDTH_20_40))
2693 				goto handled;
2694 
2695 			if (chanwidth == IEEE80211_HT_CHANWIDTH_20MHZ)
2696 				max_bw = IEEE80211_STA_RX_BW_20;
2697 			else
2698 				max_bw = ieee80211_sta_cap_rx_bw(rx->sta);
2699 
2700 			/* set cur_max_bandwidth and recalc sta bw */
2701 			rx->sta->cur_max_bandwidth = max_bw;
2702 			new_bw = ieee80211_sta_cur_vht_bw(rx->sta);
2703 
2704 			if (rx->sta->sta.bandwidth == new_bw)
2705 				goto handled;
2706 
2707 			rx->sta->sta.bandwidth = new_bw;
2708 			sband = rx->local->hw.wiphy->bands[status->band];
2709 
2710 			rate_control_rate_update(local, sband, rx->sta,
2711 						 IEEE80211_RC_BW_CHANGED);
2712 			goto handled;
2713 		}
2714 		default:
2715 			goto invalid;
2716 		}
2717 
2718 		break;
2719 	case WLAN_CATEGORY_PUBLIC:
2720 		if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2721 			goto invalid;
2722 		if (sdata->vif.type != NL80211_IFTYPE_STATION)
2723 			break;
2724 		if (!rx->sta)
2725 			break;
2726 		if (!ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid))
2727 			break;
2728 		if (mgmt->u.action.u.ext_chan_switch.action_code !=
2729 				WLAN_PUB_ACTION_EXT_CHANSW_ANN)
2730 			break;
2731 		if (len < offsetof(struct ieee80211_mgmt,
2732 				   u.action.u.ext_chan_switch.variable))
2733 			goto invalid;
2734 		goto queue;
2735 	case WLAN_CATEGORY_VHT:
2736 		if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2737 		    sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2738 		    sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2739 		    sdata->vif.type != NL80211_IFTYPE_AP &&
2740 		    sdata->vif.type != NL80211_IFTYPE_ADHOC)
2741 			break;
2742 
2743 		/* verify action code is present */
2744 		if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2745 			goto invalid;
2746 
2747 		switch (mgmt->u.action.u.vht_opmode_notif.action_code) {
2748 		case WLAN_VHT_ACTION_OPMODE_NOTIF: {
2749 			u8 opmode;
2750 
2751 			/* verify opmode is present */
2752 			if (len < IEEE80211_MIN_ACTION_SIZE + 2)
2753 				goto invalid;
2754 
2755 			opmode = mgmt->u.action.u.vht_opmode_notif.operating_mode;
2756 
2757 			ieee80211_vht_handle_opmode(rx->sdata, rx->sta,
2758 						    opmode, status->band);
2759 			goto handled;
2760 		}
2761 		default:
2762 			break;
2763 		}
2764 		break;
2765 	case WLAN_CATEGORY_BACK:
2766 		if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2767 		    sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2768 		    sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2769 		    sdata->vif.type != NL80211_IFTYPE_AP &&
2770 		    sdata->vif.type != NL80211_IFTYPE_ADHOC)
2771 			break;
2772 
2773 		/* verify action_code is present */
2774 		if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2775 			break;
2776 
2777 		switch (mgmt->u.action.u.addba_req.action_code) {
2778 		case WLAN_ACTION_ADDBA_REQ:
2779 			if (len < (IEEE80211_MIN_ACTION_SIZE +
2780 				   sizeof(mgmt->u.action.u.addba_req)))
2781 				goto invalid;
2782 			break;
2783 		case WLAN_ACTION_ADDBA_RESP:
2784 			if (len < (IEEE80211_MIN_ACTION_SIZE +
2785 				   sizeof(mgmt->u.action.u.addba_resp)))
2786 				goto invalid;
2787 			break;
2788 		case WLAN_ACTION_DELBA:
2789 			if (len < (IEEE80211_MIN_ACTION_SIZE +
2790 				   sizeof(mgmt->u.action.u.delba)))
2791 				goto invalid;
2792 			break;
2793 		default:
2794 			goto invalid;
2795 		}
2796 
2797 		goto queue;
2798 	case WLAN_CATEGORY_SPECTRUM_MGMT:
2799 		/* verify action_code is present */
2800 		if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2801 			break;
2802 
2803 		switch (mgmt->u.action.u.measurement.action_code) {
2804 		case WLAN_ACTION_SPCT_MSR_REQ:
2805 			if (status->band != IEEE80211_BAND_5GHZ)
2806 				break;
2807 
2808 			if (len < (IEEE80211_MIN_ACTION_SIZE +
2809 				   sizeof(mgmt->u.action.u.measurement)))
2810 				break;
2811 
2812 			if (sdata->vif.type != NL80211_IFTYPE_STATION)
2813 				break;
2814 
2815 			ieee80211_process_measurement_req(sdata, mgmt, len);
2816 			goto handled;
2817 		case WLAN_ACTION_SPCT_CHL_SWITCH: {
2818 			u8 *bssid;
2819 			if (len < (IEEE80211_MIN_ACTION_SIZE +
2820 				   sizeof(mgmt->u.action.u.chan_switch)))
2821 				break;
2822 
2823 			if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2824 			    sdata->vif.type != NL80211_IFTYPE_ADHOC &&
2825 			    sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
2826 				break;
2827 
2828 			if (sdata->vif.type == NL80211_IFTYPE_STATION)
2829 				bssid = sdata->u.mgd.bssid;
2830 			else if (sdata->vif.type == NL80211_IFTYPE_ADHOC)
2831 				bssid = sdata->u.ibss.bssid;
2832 			else if (sdata->vif.type == NL80211_IFTYPE_MESH_POINT)
2833 				bssid = mgmt->sa;
2834 			else
2835 				break;
2836 
2837 			if (!ether_addr_equal(mgmt->bssid, bssid))
2838 				break;
2839 
2840 			goto queue;
2841 			}
2842 		}
2843 		break;
2844 	case WLAN_CATEGORY_SA_QUERY:
2845 		if (len < (IEEE80211_MIN_ACTION_SIZE +
2846 			   sizeof(mgmt->u.action.u.sa_query)))
2847 			break;
2848 
2849 		switch (mgmt->u.action.u.sa_query.action) {
2850 		case WLAN_ACTION_SA_QUERY_REQUEST:
2851 			if (sdata->vif.type != NL80211_IFTYPE_STATION)
2852 				break;
2853 			ieee80211_process_sa_query_req(sdata, mgmt, len);
2854 			goto handled;
2855 		}
2856 		break;
2857 	case WLAN_CATEGORY_SELF_PROTECTED:
2858 		if (len < (IEEE80211_MIN_ACTION_SIZE +
2859 			   sizeof(mgmt->u.action.u.self_prot.action_code)))
2860 			break;
2861 
2862 		switch (mgmt->u.action.u.self_prot.action_code) {
2863 		case WLAN_SP_MESH_PEERING_OPEN:
2864 		case WLAN_SP_MESH_PEERING_CLOSE:
2865 		case WLAN_SP_MESH_PEERING_CONFIRM:
2866 			if (!ieee80211_vif_is_mesh(&sdata->vif))
2867 				goto invalid;
2868 			if (sdata->u.mesh.user_mpm)
2869 				/* userspace handles this frame */
2870 				break;
2871 			goto queue;
2872 		case WLAN_SP_MGK_INFORM:
2873 		case WLAN_SP_MGK_ACK:
2874 			if (!ieee80211_vif_is_mesh(&sdata->vif))
2875 				goto invalid;
2876 			break;
2877 		}
2878 		break;
2879 	case WLAN_CATEGORY_MESH_ACTION:
2880 		if (len < (IEEE80211_MIN_ACTION_SIZE +
2881 			   sizeof(mgmt->u.action.u.mesh_action.action_code)))
2882 			break;
2883 
2884 		if (!ieee80211_vif_is_mesh(&sdata->vif))
2885 			break;
2886 		if (mesh_action_is_path_sel(mgmt) &&
2887 		    !mesh_path_sel_is_hwmp(sdata))
2888 			break;
2889 		goto queue;
2890 	}
2891 
2892 	return RX_CONTINUE;
2893 
2894  invalid:
2895 	status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM;
2896 	/* will return in the next handlers */
2897 	return RX_CONTINUE;
2898 
2899  handled:
2900 	if (rx->sta)
2901 		rx->sta->rx_stats.packets++;
2902 	dev_kfree_skb(rx->skb);
2903 	return RX_QUEUED;
2904 
2905  queue:
2906 	rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
2907 	skb_queue_tail(&sdata->skb_queue, rx->skb);
2908 	ieee80211_queue_work(&local->hw, &sdata->work);
2909 	if (rx->sta)
2910 		rx->sta->rx_stats.packets++;
2911 	return RX_QUEUED;
2912 }
2913 
2914 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data * rx)2915 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx)
2916 {
2917 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2918 	int sig = 0;
2919 
2920 	/* skip known-bad action frames and return them in the next handler */
2921 	if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM)
2922 		return RX_CONTINUE;
2923 
2924 	/*
2925 	 * Getting here means the kernel doesn't know how to handle
2926 	 * it, but maybe userspace does ... include returned frames
2927 	 * so userspace can register for those to know whether ones
2928 	 * it transmitted were processed or returned.
2929 	 */
2930 
2931 	if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM))
2932 		sig = status->signal;
2933 
2934 	if (cfg80211_rx_mgmt(&rx->sdata->wdev, status->freq, sig,
2935 			     rx->skb->data, rx->skb->len, 0)) {
2936 		if (rx->sta)
2937 			rx->sta->rx_stats.packets++;
2938 		dev_kfree_skb(rx->skb);
2939 		return RX_QUEUED;
2940 	}
2941 
2942 	return RX_CONTINUE;
2943 }
2944 
2945 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_action_return(struct ieee80211_rx_data * rx)2946 ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx)
2947 {
2948 	struct ieee80211_local *local = rx->local;
2949 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2950 	struct sk_buff *nskb;
2951 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2952 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2953 
2954 	if (!ieee80211_is_action(mgmt->frame_control))
2955 		return RX_CONTINUE;
2956 
2957 	/*
2958 	 * For AP mode, hostapd is responsible for handling any action
2959 	 * frames that we didn't handle, including returning unknown
2960 	 * ones. For all other modes we will return them to the sender,
2961 	 * setting the 0x80 bit in the action category, as required by
2962 	 * 802.11-2012 9.24.4.
2963 	 * Newer versions of hostapd shall also use the management frame
2964 	 * registration mechanisms, but older ones still use cooked
2965 	 * monitor interfaces so push all frames there.
2966 	 */
2967 	if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) &&
2968 	    (sdata->vif.type == NL80211_IFTYPE_AP ||
2969 	     sdata->vif.type == NL80211_IFTYPE_AP_VLAN))
2970 		return RX_DROP_MONITOR;
2971 
2972 	if (is_multicast_ether_addr(mgmt->da))
2973 		return RX_DROP_MONITOR;
2974 
2975 	/* do not return rejected action frames */
2976 	if (mgmt->u.action.category & 0x80)
2977 		return RX_DROP_UNUSABLE;
2978 
2979 	nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0,
2980 			       GFP_ATOMIC);
2981 	if (nskb) {
2982 		struct ieee80211_mgmt *nmgmt = (void *)nskb->data;
2983 
2984 		nmgmt->u.action.category |= 0x80;
2985 		memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN);
2986 		memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN);
2987 
2988 		memset(nskb->cb, 0, sizeof(nskb->cb));
2989 
2990 		if (rx->sdata->vif.type == NL80211_IFTYPE_P2P_DEVICE) {
2991 			struct ieee80211_tx_info *info = IEEE80211_SKB_CB(nskb);
2992 
2993 			info->flags = IEEE80211_TX_CTL_TX_OFFCHAN |
2994 				      IEEE80211_TX_INTFL_OFFCHAN_TX_OK |
2995 				      IEEE80211_TX_CTL_NO_CCK_RATE;
2996 			if (ieee80211_hw_check(&local->hw, QUEUE_CONTROL))
2997 				info->hw_queue =
2998 					local->hw.offchannel_tx_hw_queue;
2999 		}
3000 
3001 		__ieee80211_tx_skb_tid_band(rx->sdata, nskb, 7,
3002 					    status->band);
3003 	}
3004 	dev_kfree_skb(rx->skb);
3005 	return RX_QUEUED;
3006 }
3007 
3008 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_mgmt(struct ieee80211_rx_data * rx)3009 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx)
3010 {
3011 	struct ieee80211_sub_if_data *sdata = rx->sdata;
3012 	struct ieee80211_mgmt *mgmt = (void *)rx->skb->data;
3013 	__le16 stype;
3014 
3015 	stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE);
3016 
3017 	if (!ieee80211_vif_is_mesh(&sdata->vif) &&
3018 	    sdata->vif.type != NL80211_IFTYPE_ADHOC &&
3019 	    sdata->vif.type != NL80211_IFTYPE_OCB &&
3020 	    sdata->vif.type != NL80211_IFTYPE_STATION)
3021 		return RX_DROP_MONITOR;
3022 
3023 	switch (stype) {
3024 	case cpu_to_le16(IEEE80211_STYPE_AUTH):
3025 	case cpu_to_le16(IEEE80211_STYPE_BEACON):
3026 	case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP):
3027 		/* process for all: mesh, mlme, ibss */
3028 		break;
3029 	case cpu_to_le16(IEEE80211_STYPE_ASSOC_RESP):
3030 	case cpu_to_le16(IEEE80211_STYPE_REASSOC_RESP):
3031 	case cpu_to_le16(IEEE80211_STYPE_DEAUTH):
3032 	case cpu_to_le16(IEEE80211_STYPE_DISASSOC):
3033 		if (is_multicast_ether_addr(mgmt->da) &&
3034 		    !is_broadcast_ether_addr(mgmt->da))
3035 			return RX_DROP_MONITOR;
3036 
3037 		/* process only for station */
3038 		if (sdata->vif.type != NL80211_IFTYPE_STATION)
3039 			return RX_DROP_MONITOR;
3040 		break;
3041 	case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ):
3042 		/* process only for ibss and mesh */
3043 		if (sdata->vif.type != NL80211_IFTYPE_ADHOC &&
3044 		    sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
3045 			return RX_DROP_MONITOR;
3046 		break;
3047 	default:
3048 		return RX_DROP_MONITOR;
3049 	}
3050 
3051 	/* queue up frame and kick off work to process it */
3052 	rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
3053 	skb_queue_tail(&sdata->skb_queue, rx->skb);
3054 	ieee80211_queue_work(&rx->local->hw, &sdata->work);
3055 	if (rx->sta)
3056 		rx->sta->rx_stats.packets++;
3057 
3058 	return RX_QUEUED;
3059 }
3060 
ieee80211_rx_cooked_monitor(struct ieee80211_rx_data * rx,struct ieee80211_rate * rate)3061 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx,
3062 					struct ieee80211_rate *rate)
3063 {
3064 	struct ieee80211_sub_if_data *sdata;
3065 	struct ieee80211_local *local = rx->local;
3066 	struct sk_buff *skb = rx->skb, *skb2;
3067 	struct net_device *prev_dev = NULL;
3068 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3069 	int needed_headroom;
3070 
3071 	/*
3072 	 * If cooked monitor has been processed already, then
3073 	 * don't do it again. If not, set the flag.
3074 	 */
3075 	if (rx->flags & IEEE80211_RX_CMNTR)
3076 		goto out_free_skb;
3077 	rx->flags |= IEEE80211_RX_CMNTR;
3078 
3079 	/* If there are no cooked monitor interfaces, just free the SKB */
3080 	if (!local->cooked_mntrs)
3081 		goto out_free_skb;
3082 
3083 	/* vendor data is long removed here */
3084 	status->flag &= ~RX_FLAG_RADIOTAP_VENDOR_DATA;
3085 	/* room for the radiotap header based on driver features */
3086 	needed_headroom = ieee80211_rx_radiotap_hdrlen(local, status, skb);
3087 
3088 	if (skb_headroom(skb) < needed_headroom &&
3089 	    pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC))
3090 		goto out_free_skb;
3091 
3092 	/* prepend radiotap information */
3093 	ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom,
3094 					 false);
3095 
3096 	skb_set_mac_header(skb, 0);
3097 	skb->ip_summed = CHECKSUM_UNNECESSARY;
3098 	skb->pkt_type = PACKET_OTHERHOST;
3099 	skb->protocol = htons(ETH_P_802_2);
3100 
3101 	list_for_each_entry_rcu(sdata, &local->interfaces, list) {
3102 		if (!ieee80211_sdata_running(sdata))
3103 			continue;
3104 
3105 		if (sdata->vif.type != NL80211_IFTYPE_MONITOR ||
3106 		    !(sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES))
3107 			continue;
3108 
3109 		if (prev_dev) {
3110 			skb2 = skb_clone(skb, GFP_ATOMIC);
3111 			if (skb2) {
3112 				skb2->dev = prev_dev;
3113 				netif_receive_skb(skb2);
3114 			}
3115 		}
3116 
3117 		prev_dev = sdata->dev;
3118 		ieee80211_rx_stats(sdata->dev, skb->len);
3119 	}
3120 
3121 	if (prev_dev) {
3122 		skb->dev = prev_dev;
3123 		netif_receive_skb(skb);
3124 		return;
3125 	}
3126 
3127  out_free_skb:
3128 	dev_kfree_skb(skb);
3129 }
3130 
ieee80211_rx_handlers_result(struct ieee80211_rx_data * rx,ieee80211_rx_result res)3131 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx,
3132 					 ieee80211_rx_result res)
3133 {
3134 	switch (res) {
3135 	case RX_DROP_MONITOR:
3136 		I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
3137 		if (rx->sta)
3138 			rx->sta->rx_stats.dropped++;
3139 		/* fall through */
3140 	case RX_CONTINUE: {
3141 		struct ieee80211_rate *rate = NULL;
3142 		struct ieee80211_supported_band *sband;
3143 		struct ieee80211_rx_status *status;
3144 
3145 		status = IEEE80211_SKB_RXCB((rx->skb));
3146 
3147 		sband = rx->local->hw.wiphy->bands[status->band];
3148 		if (!(status->flag & RX_FLAG_HT) &&
3149 		    !(status->flag & RX_FLAG_VHT))
3150 			rate = &sband->bitrates[status->rate_idx];
3151 
3152 		ieee80211_rx_cooked_monitor(rx, rate);
3153 		break;
3154 		}
3155 	case RX_DROP_UNUSABLE:
3156 		I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
3157 		if (rx->sta)
3158 			rx->sta->rx_stats.dropped++;
3159 		dev_kfree_skb(rx->skb);
3160 		break;
3161 	case RX_QUEUED:
3162 		I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued);
3163 		break;
3164 	}
3165 }
3166 
ieee80211_rx_handlers(struct ieee80211_rx_data * rx,struct sk_buff_head * frames)3167 static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx,
3168 				  struct sk_buff_head *frames)
3169 {
3170 	ieee80211_rx_result res = RX_DROP_MONITOR;
3171 	struct sk_buff *skb;
3172 
3173 #define CALL_RXH(rxh)			\
3174 	do {				\
3175 		res = rxh(rx);		\
3176 		if (res != RX_CONTINUE)	\
3177 			goto rxh_next;  \
3178 	} while (0);
3179 
3180 	/* Lock here to avoid hitting all of the data used in the RX
3181 	 * path (e.g. key data, station data, ...) concurrently when
3182 	 * a frame is released from the reorder buffer due to timeout
3183 	 * from the timer, potentially concurrently with RX from the
3184 	 * driver.
3185 	 */
3186 	spin_lock_bh(&rx->local->rx_path_lock);
3187 
3188 	while ((skb = __skb_dequeue(frames))) {
3189 		/*
3190 		 * all the other fields are valid across frames
3191 		 * that belong to an aMPDU since they are on the
3192 		 * same TID from the same station
3193 		 */
3194 		rx->skb = skb;
3195 
3196 		CALL_RXH(ieee80211_rx_h_check_more_data)
3197 		CALL_RXH(ieee80211_rx_h_uapsd_and_pspoll)
3198 		CALL_RXH(ieee80211_rx_h_sta_process)
3199 		CALL_RXH(ieee80211_rx_h_decrypt)
3200 		CALL_RXH(ieee80211_rx_h_defragment)
3201 		CALL_RXH(ieee80211_rx_h_michael_mic_verify)
3202 		/* must be after MMIC verify so header is counted in MPDU mic */
3203 #ifdef CONFIG_MAC80211_MESH
3204 		if (ieee80211_vif_is_mesh(&rx->sdata->vif))
3205 			CALL_RXH(ieee80211_rx_h_mesh_fwding);
3206 #endif
3207 		CALL_RXH(ieee80211_rx_h_amsdu)
3208 		CALL_RXH(ieee80211_rx_h_data)
3209 
3210 		/* special treatment -- needs the queue */
3211 		res = ieee80211_rx_h_ctrl(rx, frames);
3212 		if (res != RX_CONTINUE)
3213 			goto rxh_next;
3214 
3215 		CALL_RXH(ieee80211_rx_h_mgmt_check)
3216 		CALL_RXH(ieee80211_rx_h_action)
3217 		CALL_RXH(ieee80211_rx_h_userspace_mgmt)
3218 		CALL_RXH(ieee80211_rx_h_action_return)
3219 		CALL_RXH(ieee80211_rx_h_mgmt)
3220 
3221  rxh_next:
3222 		ieee80211_rx_handlers_result(rx, res);
3223 
3224 #undef CALL_RXH
3225 	}
3226 
3227 	spin_unlock_bh(&rx->local->rx_path_lock);
3228 }
3229 
ieee80211_invoke_rx_handlers(struct ieee80211_rx_data * rx)3230 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx)
3231 {
3232 	struct sk_buff_head reorder_release;
3233 	ieee80211_rx_result res = RX_DROP_MONITOR;
3234 
3235 	__skb_queue_head_init(&reorder_release);
3236 
3237 #define CALL_RXH(rxh)			\
3238 	do {				\
3239 		res = rxh(rx);		\
3240 		if (res != RX_CONTINUE)	\
3241 			goto rxh_next;  \
3242 	} while (0);
3243 
3244 	CALL_RXH(ieee80211_rx_h_check_dup)
3245 	CALL_RXH(ieee80211_rx_h_check)
3246 
3247 	ieee80211_rx_reorder_ampdu(rx, &reorder_release);
3248 
3249 	ieee80211_rx_handlers(rx, &reorder_release);
3250 	return;
3251 
3252  rxh_next:
3253 	ieee80211_rx_handlers_result(rx, res);
3254 
3255 #undef CALL_RXH
3256 }
3257 
3258 /*
3259  * This function makes calls into the RX path, therefore
3260  * it has to be invoked under RCU read lock.
3261  */
ieee80211_release_reorder_timeout(struct sta_info * sta,int tid)3262 void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid)
3263 {
3264 	struct sk_buff_head frames;
3265 	struct ieee80211_rx_data rx = {
3266 		.sta = sta,
3267 		.sdata = sta->sdata,
3268 		.local = sta->local,
3269 		/* This is OK -- must be QoS data frame */
3270 		.security_idx = tid,
3271 		.seqno_idx = tid,
3272 		.napi = NULL, /* must be NULL to not have races */
3273 	};
3274 	struct tid_ampdu_rx *tid_agg_rx;
3275 
3276 	tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
3277 	if (!tid_agg_rx)
3278 		return;
3279 
3280 	__skb_queue_head_init(&frames);
3281 
3282 	spin_lock(&tid_agg_rx->reorder_lock);
3283 	ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames);
3284 	spin_unlock(&tid_agg_rx->reorder_lock);
3285 
3286 	if (!skb_queue_empty(&frames)) {
3287 		struct ieee80211_event event = {
3288 			.type = BA_FRAME_TIMEOUT,
3289 			.u.ba.tid = tid,
3290 			.u.ba.sta = &sta->sta,
3291 		};
3292 		drv_event_callback(rx.local, rx.sdata, &event);
3293 	}
3294 
3295 	ieee80211_rx_handlers(&rx, &frames);
3296 }
3297 
3298 /* main receive path */
3299 
ieee80211_accept_frame(struct ieee80211_rx_data * rx)3300 static bool ieee80211_accept_frame(struct ieee80211_rx_data *rx)
3301 {
3302 	struct ieee80211_sub_if_data *sdata = rx->sdata;
3303 	struct sk_buff *skb = rx->skb;
3304 	struct ieee80211_hdr *hdr = (void *)skb->data;
3305 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3306 	u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type);
3307 	int multicast = is_multicast_ether_addr(hdr->addr1);
3308 
3309 	switch (sdata->vif.type) {
3310 	case NL80211_IFTYPE_STATION:
3311 		if (!bssid && !sdata->u.mgd.use_4addr)
3312 			return false;
3313 		if (multicast)
3314 			return true;
3315 		return ether_addr_equal(sdata->vif.addr, hdr->addr1);
3316 	case NL80211_IFTYPE_ADHOC:
3317 		if (!bssid)
3318 			return false;
3319 		if (ether_addr_equal(sdata->vif.addr, hdr->addr2) ||
3320 		    ether_addr_equal(sdata->u.ibss.bssid, hdr->addr2))
3321 			return false;
3322 		if (ieee80211_is_beacon(hdr->frame_control))
3323 			return true;
3324 		if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid))
3325 			return false;
3326 		if (!multicast &&
3327 		    !ether_addr_equal(sdata->vif.addr, hdr->addr1))
3328 			return false;
3329 		if (!rx->sta) {
3330 			int rate_idx;
3331 			if (status->flag & (RX_FLAG_HT | RX_FLAG_VHT))
3332 				rate_idx = 0; /* TODO: HT/VHT rates */
3333 			else
3334 				rate_idx = status->rate_idx;
3335 			ieee80211_ibss_rx_no_sta(sdata, bssid, hdr->addr2,
3336 						 BIT(rate_idx));
3337 		}
3338 		return true;
3339 	case NL80211_IFTYPE_OCB:
3340 		if (!bssid)
3341 			return false;
3342 		if (!ieee80211_is_data_present(hdr->frame_control))
3343 			return false;
3344 		if (!is_broadcast_ether_addr(bssid))
3345 			return false;
3346 		if (!multicast &&
3347 		    !ether_addr_equal(sdata->dev->dev_addr, hdr->addr1))
3348 			return false;
3349 		if (!rx->sta) {
3350 			int rate_idx;
3351 			if (status->flag & RX_FLAG_HT)
3352 				rate_idx = 0; /* TODO: HT rates */
3353 			else
3354 				rate_idx = status->rate_idx;
3355 			ieee80211_ocb_rx_no_sta(sdata, bssid, hdr->addr2,
3356 						BIT(rate_idx));
3357 		}
3358 		return true;
3359 	case NL80211_IFTYPE_MESH_POINT:
3360 		if (multicast)
3361 			return true;
3362 		return ether_addr_equal(sdata->vif.addr, hdr->addr1);
3363 	case NL80211_IFTYPE_AP_VLAN:
3364 	case NL80211_IFTYPE_AP:
3365 		if (!bssid)
3366 			return ether_addr_equal(sdata->vif.addr, hdr->addr1);
3367 
3368 		if (!ieee80211_bssid_match(bssid, sdata->vif.addr)) {
3369 			/*
3370 			 * Accept public action frames even when the
3371 			 * BSSID doesn't match, this is used for P2P
3372 			 * and location updates. Note that mac80211
3373 			 * itself never looks at these frames.
3374 			 */
3375 			if (!multicast &&
3376 			    !ether_addr_equal(sdata->vif.addr, hdr->addr1))
3377 				return false;
3378 			if (ieee80211_is_public_action(hdr, skb->len))
3379 				return true;
3380 			return ieee80211_is_beacon(hdr->frame_control);
3381 		}
3382 
3383 		if (!ieee80211_has_tods(hdr->frame_control)) {
3384 			/* ignore data frames to TDLS-peers */
3385 			if (ieee80211_is_data(hdr->frame_control))
3386 				return false;
3387 			/* ignore action frames to TDLS-peers */
3388 			if (ieee80211_is_action(hdr->frame_control) &&
3389 			    !is_broadcast_ether_addr(bssid) &&
3390 			    !ether_addr_equal(bssid, hdr->addr1))
3391 				return false;
3392 		}
3393 		return true;
3394 	case NL80211_IFTYPE_WDS:
3395 		if (bssid || !ieee80211_is_data(hdr->frame_control))
3396 			return false;
3397 		return ether_addr_equal(sdata->u.wds.remote_addr, hdr->addr2);
3398 	case NL80211_IFTYPE_P2P_DEVICE:
3399 		return ieee80211_is_public_action(hdr, skb->len) ||
3400 		       ieee80211_is_probe_req(hdr->frame_control) ||
3401 		       ieee80211_is_probe_resp(hdr->frame_control) ||
3402 		       ieee80211_is_beacon(hdr->frame_control);
3403 	default:
3404 		break;
3405 	}
3406 
3407 	WARN_ON_ONCE(1);
3408 	return false;
3409 }
3410 
3411 /*
3412  * This function returns whether or not the SKB
3413  * was destined for RX processing or not, which,
3414  * if consume is true, is equivalent to whether
3415  * or not the skb was consumed.
3416  */
ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data * rx,struct sk_buff * skb,bool consume)3417 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx,
3418 					    struct sk_buff *skb, bool consume)
3419 {
3420 	struct ieee80211_local *local = rx->local;
3421 	struct ieee80211_sub_if_data *sdata = rx->sdata;
3422 
3423 	rx->skb = skb;
3424 
3425 	if (!ieee80211_accept_frame(rx))
3426 		return false;
3427 
3428 	if (!consume) {
3429 		skb = skb_copy(skb, GFP_ATOMIC);
3430 		if (!skb) {
3431 			if (net_ratelimit())
3432 				wiphy_debug(local->hw.wiphy,
3433 					"failed to copy skb for %s\n",
3434 					sdata->name);
3435 			return true;
3436 		}
3437 
3438 		rx->skb = skb;
3439 	}
3440 
3441 	ieee80211_invoke_rx_handlers(rx);
3442 	return true;
3443 }
3444 
3445 /*
3446  * This is the actual Rx frames handler. as it belongs to Rx path it must
3447  * be called with rcu_read_lock protection.
3448  */
__ieee80211_rx_handle_packet(struct ieee80211_hw * hw,struct sk_buff * skb,struct napi_struct * napi)3449 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw,
3450 					 struct sk_buff *skb,
3451 					 struct napi_struct *napi)
3452 {
3453 	struct ieee80211_local *local = hw_to_local(hw);
3454 	struct ieee80211_sub_if_data *sdata;
3455 	struct ieee80211_hdr *hdr;
3456 	__le16 fc;
3457 	struct ieee80211_rx_data rx;
3458 	struct ieee80211_sub_if_data *prev;
3459 	struct sta_info *sta, *prev_sta;
3460 	struct rhash_head *tmp;
3461 	int err = 0;
3462 
3463 	fc = ((struct ieee80211_hdr *)skb->data)->frame_control;
3464 	memset(&rx, 0, sizeof(rx));
3465 	rx.skb = skb;
3466 	rx.local = local;
3467 	rx.napi = napi;
3468 
3469 	if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc))
3470 		I802_DEBUG_INC(local->dot11ReceivedFragmentCount);
3471 
3472 	if (ieee80211_is_mgmt(fc)) {
3473 		/* drop frame if too short for header */
3474 		if (skb->len < ieee80211_hdrlen(fc))
3475 			err = -ENOBUFS;
3476 		else
3477 			err = skb_linearize(skb);
3478 	} else {
3479 		err = !pskb_may_pull(skb, ieee80211_hdrlen(fc));
3480 	}
3481 
3482 	if (err) {
3483 		dev_kfree_skb(skb);
3484 		return;
3485 	}
3486 
3487 	hdr = (struct ieee80211_hdr *)skb->data;
3488 	ieee80211_parse_qos(&rx);
3489 	ieee80211_verify_alignment(&rx);
3490 
3491 	if (unlikely(ieee80211_is_probe_resp(hdr->frame_control) ||
3492 		     ieee80211_is_beacon(hdr->frame_control)))
3493 		ieee80211_scan_rx(local, skb);
3494 
3495 	if (ieee80211_is_data(fc)) {
3496 		const struct bucket_table *tbl;
3497 
3498 		prev_sta = NULL;
3499 
3500 		tbl = rht_dereference_rcu(local->sta_hash.tbl, &local->sta_hash);
3501 
3502 		for_each_sta_info(local, tbl, hdr->addr2, sta, tmp) {
3503 			if (!prev_sta) {
3504 				prev_sta = sta;
3505 				continue;
3506 			}
3507 
3508 			rx.sta = prev_sta;
3509 			rx.sdata = prev_sta->sdata;
3510 			ieee80211_prepare_and_rx_handle(&rx, skb, false);
3511 
3512 			prev_sta = sta;
3513 		}
3514 
3515 		if (prev_sta) {
3516 			rx.sta = prev_sta;
3517 			rx.sdata = prev_sta->sdata;
3518 
3519 			if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
3520 				return;
3521 			goto out;
3522 		}
3523 	}
3524 
3525 	prev = NULL;
3526 
3527 	list_for_each_entry_rcu(sdata, &local->interfaces, list) {
3528 		if (!ieee80211_sdata_running(sdata))
3529 			continue;
3530 
3531 		if (sdata->vif.type == NL80211_IFTYPE_MONITOR ||
3532 		    sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
3533 			continue;
3534 
3535 		/*
3536 		 * frame is destined for this interface, but if it's
3537 		 * not also for the previous one we handle that after
3538 		 * the loop to avoid copying the SKB once too much
3539 		 */
3540 
3541 		if (!prev) {
3542 			prev = sdata;
3543 			continue;
3544 		}
3545 
3546 		rx.sta = sta_info_get_bss(prev, hdr->addr2);
3547 		rx.sdata = prev;
3548 		ieee80211_prepare_and_rx_handle(&rx, skb, false);
3549 
3550 		prev = sdata;
3551 	}
3552 
3553 	if (prev) {
3554 		rx.sta = sta_info_get_bss(prev, hdr->addr2);
3555 		rx.sdata = prev;
3556 
3557 		if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
3558 			return;
3559 	}
3560 
3561  out:
3562 	dev_kfree_skb(skb);
3563 }
3564 
3565 /*
3566  * This is the receive path handler. It is called by a low level driver when an
3567  * 802.11 MPDU is received from the hardware.
3568  */
ieee80211_rx_napi(struct ieee80211_hw * hw,struct sk_buff * skb,struct napi_struct * napi)3569 void ieee80211_rx_napi(struct ieee80211_hw *hw, struct sk_buff *skb,
3570 		       struct napi_struct *napi)
3571 {
3572 	struct ieee80211_local *local = hw_to_local(hw);
3573 	struct ieee80211_rate *rate = NULL;
3574 	struct ieee80211_supported_band *sband;
3575 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3576 
3577 	WARN_ON_ONCE(softirq_count() == 0);
3578 
3579 	if (WARN_ON(status->band >= IEEE80211_NUM_BANDS))
3580 		goto drop;
3581 
3582 	sband = local->hw.wiphy->bands[status->band];
3583 	if (WARN_ON(!sband))
3584 		goto drop;
3585 
3586 	/*
3587 	 * If we're suspending, it is possible although not too likely
3588 	 * that we'd be receiving frames after having already partially
3589 	 * quiesced the stack. We can't process such frames then since
3590 	 * that might, for example, cause stations to be added or other
3591 	 * driver callbacks be invoked.
3592 	 */
3593 	if (unlikely(local->quiescing || local->suspended))
3594 		goto drop;
3595 
3596 	/* We might be during a HW reconfig, prevent Rx for the same reason */
3597 	if (unlikely(local->in_reconfig))
3598 		goto drop;
3599 
3600 	/*
3601 	 * The same happens when we're not even started,
3602 	 * but that's worth a warning.
3603 	 */
3604 	if (WARN_ON(!local->started))
3605 		goto drop;
3606 
3607 	if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) {
3608 		/*
3609 		 * Validate the rate, unless a PLCP error means that
3610 		 * we probably can't have a valid rate here anyway.
3611 		 */
3612 
3613 		if (status->flag & RX_FLAG_HT) {
3614 			/*
3615 			 * rate_idx is MCS index, which can be [0-76]
3616 			 * as documented on:
3617 			 *
3618 			 * http://wireless.kernel.org/en/developers/Documentation/ieee80211/802.11n
3619 			 *
3620 			 * Anything else would be some sort of driver or
3621 			 * hardware error. The driver should catch hardware
3622 			 * errors.
3623 			 */
3624 			if (WARN(status->rate_idx > 76,
3625 				 "Rate marked as an HT rate but passed "
3626 				 "status->rate_idx is not "
3627 				 "an MCS index [0-76]: %d (0x%02x)\n",
3628 				 status->rate_idx,
3629 				 status->rate_idx))
3630 				goto drop;
3631 		} else if (status->flag & RX_FLAG_VHT) {
3632 			if (WARN_ONCE(status->rate_idx > 9 ||
3633 				      !status->vht_nss ||
3634 				      status->vht_nss > 8,
3635 				      "Rate marked as a VHT rate but data is invalid: MCS: %d, NSS: %d\n",
3636 				      status->rate_idx, status->vht_nss))
3637 				goto drop;
3638 		} else {
3639 			if (WARN_ON(status->rate_idx >= sband->n_bitrates))
3640 				goto drop;
3641 			rate = &sband->bitrates[status->rate_idx];
3642 		}
3643 	}
3644 
3645 	status->rx_flags = 0;
3646 
3647 	/*
3648 	 * key references and virtual interfaces are protected using RCU
3649 	 * and this requires that we are in a read-side RCU section during
3650 	 * receive processing
3651 	 */
3652 	rcu_read_lock();
3653 
3654 	/*
3655 	 * Frames with failed FCS/PLCP checksum are not returned,
3656 	 * all other frames are returned without radiotap header
3657 	 * if it was previously present.
3658 	 * Also, frames with less than 16 bytes are dropped.
3659 	 */
3660 	skb = ieee80211_rx_monitor(local, skb, rate);
3661 	if (!skb) {
3662 		rcu_read_unlock();
3663 		return;
3664 	}
3665 
3666 	ieee80211_tpt_led_trig_rx(local,
3667 			((struct ieee80211_hdr *)skb->data)->frame_control,
3668 			skb->len);
3669 	__ieee80211_rx_handle_packet(hw, skb, napi);
3670 
3671 	rcu_read_unlock();
3672 
3673 	return;
3674  drop:
3675 	kfree_skb(skb);
3676 }
3677 EXPORT_SYMBOL(ieee80211_rx_napi);
3678 
3679 /* This is a version of the rx handler that can be called from hard irq
3680  * context. Post the skb on the queue and schedule the tasklet */
ieee80211_rx_irqsafe(struct ieee80211_hw * hw,struct sk_buff * skb)3681 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb)
3682 {
3683 	struct ieee80211_local *local = hw_to_local(hw);
3684 
3685 	BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb));
3686 
3687 	skb->pkt_type = IEEE80211_RX_MSG;
3688 	skb_queue_tail(&local->skb_queue, skb);
3689 	tasklet_schedule(&local->tasklet);
3690 }
3691 EXPORT_SYMBOL(ieee80211_rx_irqsafe);
3692