1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2 */
3 /*
4 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/sysrq.h>
32 #include <linux/slab.h>
33 #include <linux/circ_buf.h>
34 #include <drm/drmP.h>
35 #include <drm/i915_drm.h>
36 #include "i915_drv.h"
37 #include "i915_trace.h"
38 #include "intel_drv.h"
39
40 /**
41 * DOC: interrupt handling
42 *
43 * These functions provide the basic support for enabling and disabling the
44 * interrupt handling support. There's a lot more functionality in i915_irq.c
45 * and related files, but that will be described in separate chapters.
46 */
47
48 static const u32 hpd_ibx[HPD_NUM_PINS] = {
49 [HPD_CRT] = SDE_CRT_HOTPLUG,
50 [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
51 [HPD_PORT_B] = SDE_PORTB_HOTPLUG,
52 [HPD_PORT_C] = SDE_PORTC_HOTPLUG,
53 [HPD_PORT_D] = SDE_PORTD_HOTPLUG
54 };
55
56 static const u32 hpd_cpt[HPD_NUM_PINS] = {
57 [HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
58 [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
59 [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
60 [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
61 [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
62 };
63
64 static const u32 hpd_mask_i915[HPD_NUM_PINS] = {
65 [HPD_CRT] = CRT_HOTPLUG_INT_EN,
66 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
67 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
68 [HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
69 [HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
70 [HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
71 };
72
73 static const u32 hpd_status_g4x[HPD_NUM_PINS] = {
74 [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
75 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
76 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
77 [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
78 [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
79 [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
80 };
81
82 static const u32 hpd_status_i915[HPD_NUM_PINS] = { /* i915 and valleyview are the same */
83 [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
84 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
85 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
86 [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
87 [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
88 [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
89 };
90
91 /* IIR can theoretically queue up two events. Be paranoid. */
92 #define GEN8_IRQ_RESET_NDX(type, which) do { \
93 I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
94 POSTING_READ(GEN8_##type##_IMR(which)); \
95 I915_WRITE(GEN8_##type##_IER(which), 0); \
96 I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
97 POSTING_READ(GEN8_##type##_IIR(which)); \
98 I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
99 POSTING_READ(GEN8_##type##_IIR(which)); \
100 } while (0)
101
102 #define GEN5_IRQ_RESET(type) do { \
103 I915_WRITE(type##IMR, 0xffffffff); \
104 POSTING_READ(type##IMR); \
105 I915_WRITE(type##IER, 0); \
106 I915_WRITE(type##IIR, 0xffffffff); \
107 POSTING_READ(type##IIR); \
108 I915_WRITE(type##IIR, 0xffffffff); \
109 POSTING_READ(type##IIR); \
110 } while (0)
111
112 /*
113 * We should clear IMR at preinstall/uninstall, and just check at postinstall.
114 */
115 #define GEN5_ASSERT_IIR_IS_ZERO(reg) do { \
116 u32 val = I915_READ(reg); \
117 if (val) { \
118 WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n", \
119 (reg), val); \
120 I915_WRITE((reg), 0xffffffff); \
121 POSTING_READ(reg); \
122 I915_WRITE((reg), 0xffffffff); \
123 POSTING_READ(reg); \
124 } \
125 } while (0)
126
127 #define GEN8_IRQ_INIT_NDX(type, which, imr_val, ier_val) do { \
128 GEN5_ASSERT_IIR_IS_ZERO(GEN8_##type##_IIR(which)); \
129 I915_WRITE(GEN8_##type##_IER(which), (ier_val)); \
130 I915_WRITE(GEN8_##type##_IMR(which), (imr_val)); \
131 POSTING_READ(GEN8_##type##_IMR(which)); \
132 } while (0)
133
134 #define GEN5_IRQ_INIT(type, imr_val, ier_val) do { \
135 GEN5_ASSERT_IIR_IS_ZERO(type##IIR); \
136 I915_WRITE(type##IER, (ier_val)); \
137 I915_WRITE(type##IMR, (imr_val)); \
138 POSTING_READ(type##IMR); \
139 } while (0)
140
141 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
142
143 /* For display hotplug interrupt */
144 void
ironlake_enable_display_irq(struct drm_i915_private * dev_priv,u32 mask)145 ironlake_enable_display_irq(struct drm_i915_private *dev_priv, u32 mask)
146 {
147 assert_spin_locked(&dev_priv->irq_lock);
148
149 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
150 return;
151
152 if ((dev_priv->irq_mask & mask) != 0) {
153 dev_priv->irq_mask &= ~mask;
154 I915_WRITE(DEIMR, dev_priv->irq_mask);
155 POSTING_READ(DEIMR);
156 }
157 }
158
159 void
ironlake_disable_display_irq(struct drm_i915_private * dev_priv,u32 mask)160 ironlake_disable_display_irq(struct drm_i915_private *dev_priv, u32 mask)
161 {
162 assert_spin_locked(&dev_priv->irq_lock);
163
164 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
165 return;
166
167 if ((dev_priv->irq_mask & mask) != mask) {
168 dev_priv->irq_mask |= mask;
169 I915_WRITE(DEIMR, dev_priv->irq_mask);
170 POSTING_READ(DEIMR);
171 }
172 }
173
174 /**
175 * ilk_update_gt_irq - update GTIMR
176 * @dev_priv: driver private
177 * @interrupt_mask: mask of interrupt bits to update
178 * @enabled_irq_mask: mask of interrupt bits to enable
179 */
ilk_update_gt_irq(struct drm_i915_private * dev_priv,uint32_t interrupt_mask,uint32_t enabled_irq_mask)180 static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
181 uint32_t interrupt_mask,
182 uint32_t enabled_irq_mask)
183 {
184 assert_spin_locked(&dev_priv->irq_lock);
185
186 WARN_ON(enabled_irq_mask & ~interrupt_mask);
187
188 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
189 return;
190
191 dev_priv->gt_irq_mask &= ~interrupt_mask;
192 dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
193 I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
194 POSTING_READ(GTIMR);
195 }
196
gen5_enable_gt_irq(struct drm_i915_private * dev_priv,uint32_t mask)197 void gen5_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
198 {
199 ilk_update_gt_irq(dev_priv, mask, mask);
200 }
201
gen5_disable_gt_irq(struct drm_i915_private * dev_priv,uint32_t mask)202 void gen5_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
203 {
204 ilk_update_gt_irq(dev_priv, mask, 0);
205 }
206
gen6_pm_iir(struct drm_i915_private * dev_priv)207 static u32 gen6_pm_iir(struct drm_i915_private *dev_priv)
208 {
209 return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IIR(2) : GEN6_PMIIR;
210 }
211
gen6_pm_imr(struct drm_i915_private * dev_priv)212 static u32 gen6_pm_imr(struct drm_i915_private *dev_priv)
213 {
214 return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IMR(2) : GEN6_PMIMR;
215 }
216
gen6_pm_ier(struct drm_i915_private * dev_priv)217 static u32 gen6_pm_ier(struct drm_i915_private *dev_priv)
218 {
219 return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IER(2) : GEN6_PMIER;
220 }
221
222 /**
223 * snb_update_pm_irq - update GEN6_PMIMR
224 * @dev_priv: driver private
225 * @interrupt_mask: mask of interrupt bits to update
226 * @enabled_irq_mask: mask of interrupt bits to enable
227 */
snb_update_pm_irq(struct drm_i915_private * dev_priv,uint32_t interrupt_mask,uint32_t enabled_irq_mask)228 static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
229 uint32_t interrupt_mask,
230 uint32_t enabled_irq_mask)
231 {
232 uint32_t new_val;
233
234 WARN_ON(enabled_irq_mask & ~interrupt_mask);
235
236 assert_spin_locked(&dev_priv->irq_lock);
237
238 new_val = dev_priv->pm_irq_mask;
239 new_val &= ~interrupt_mask;
240 new_val |= (~enabled_irq_mask & interrupt_mask);
241
242 if (new_val != dev_priv->pm_irq_mask) {
243 dev_priv->pm_irq_mask = new_val;
244 I915_WRITE(gen6_pm_imr(dev_priv), dev_priv->pm_irq_mask);
245 POSTING_READ(gen6_pm_imr(dev_priv));
246 }
247 }
248
gen6_enable_pm_irq(struct drm_i915_private * dev_priv,uint32_t mask)249 void gen6_enable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
250 {
251 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
252 return;
253
254 snb_update_pm_irq(dev_priv, mask, mask);
255 }
256
__gen6_disable_pm_irq(struct drm_i915_private * dev_priv,uint32_t mask)257 static void __gen6_disable_pm_irq(struct drm_i915_private *dev_priv,
258 uint32_t mask)
259 {
260 snb_update_pm_irq(dev_priv, mask, 0);
261 }
262
gen6_disable_pm_irq(struct drm_i915_private * dev_priv,uint32_t mask)263 void gen6_disable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
264 {
265 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
266 return;
267
268 __gen6_disable_pm_irq(dev_priv, mask);
269 }
270
gen6_reset_rps_interrupts(struct drm_device * dev)271 void gen6_reset_rps_interrupts(struct drm_device *dev)
272 {
273 struct drm_i915_private *dev_priv = dev->dev_private;
274 uint32_t reg = gen6_pm_iir(dev_priv);
275
276 spin_lock_irq(&dev_priv->irq_lock);
277 I915_WRITE(reg, dev_priv->pm_rps_events);
278 I915_WRITE(reg, dev_priv->pm_rps_events);
279 POSTING_READ(reg);
280 dev_priv->rps.pm_iir = 0;
281 spin_unlock_irq(&dev_priv->irq_lock);
282 }
283
gen6_enable_rps_interrupts(struct drm_device * dev)284 void gen6_enable_rps_interrupts(struct drm_device *dev)
285 {
286 struct drm_i915_private *dev_priv = dev->dev_private;
287
288 spin_lock_irq(&dev_priv->irq_lock);
289
290 WARN_ON(dev_priv->rps.pm_iir);
291 WARN_ON(I915_READ(gen6_pm_iir(dev_priv)) & dev_priv->pm_rps_events);
292 dev_priv->rps.interrupts_enabled = true;
293 I915_WRITE(gen6_pm_ier(dev_priv), I915_READ(gen6_pm_ier(dev_priv)) |
294 dev_priv->pm_rps_events);
295 gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
296
297 spin_unlock_irq(&dev_priv->irq_lock);
298 }
299
gen6_sanitize_rps_pm_mask(struct drm_i915_private * dev_priv,u32 mask)300 u32 gen6_sanitize_rps_pm_mask(struct drm_i915_private *dev_priv, u32 mask)
301 {
302 /*
303 * SNB,IVB can while VLV,CHV may hard hang on looping batchbuffer
304 * if GEN6_PM_UP_EI_EXPIRED is masked.
305 *
306 * TODO: verify if this can be reproduced on VLV,CHV.
307 */
308 if (INTEL_INFO(dev_priv)->gen <= 7 && !IS_HASWELL(dev_priv))
309 mask &= ~GEN6_PM_RP_UP_EI_EXPIRED;
310
311 if (INTEL_INFO(dev_priv)->gen >= 8)
312 mask &= ~GEN8_PMINTR_REDIRECT_TO_NON_DISP;
313
314 return mask;
315 }
316
gen6_disable_rps_interrupts(struct drm_device * dev)317 void gen6_disable_rps_interrupts(struct drm_device *dev)
318 {
319 struct drm_i915_private *dev_priv = dev->dev_private;
320
321 spin_lock_irq(&dev_priv->irq_lock);
322 dev_priv->rps.interrupts_enabled = false;
323 spin_unlock_irq(&dev_priv->irq_lock);
324
325 cancel_work_sync(&dev_priv->rps.work);
326
327 spin_lock_irq(&dev_priv->irq_lock);
328
329 I915_WRITE(GEN6_PMINTRMSK, gen6_sanitize_rps_pm_mask(dev_priv, ~0));
330
331 __gen6_disable_pm_irq(dev_priv, dev_priv->pm_rps_events);
332 I915_WRITE(gen6_pm_ier(dev_priv), I915_READ(gen6_pm_ier(dev_priv)) &
333 ~dev_priv->pm_rps_events);
334
335 spin_unlock_irq(&dev_priv->irq_lock);
336
337 synchronize_irq(dev->irq);
338 }
339
340 /**
341 * ibx_display_interrupt_update - update SDEIMR
342 * @dev_priv: driver private
343 * @interrupt_mask: mask of interrupt bits to update
344 * @enabled_irq_mask: mask of interrupt bits to enable
345 */
ibx_display_interrupt_update(struct drm_i915_private * dev_priv,uint32_t interrupt_mask,uint32_t enabled_irq_mask)346 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
347 uint32_t interrupt_mask,
348 uint32_t enabled_irq_mask)
349 {
350 uint32_t sdeimr = I915_READ(SDEIMR);
351 sdeimr &= ~interrupt_mask;
352 sdeimr |= (~enabled_irq_mask & interrupt_mask);
353
354 WARN_ON(enabled_irq_mask & ~interrupt_mask);
355
356 assert_spin_locked(&dev_priv->irq_lock);
357
358 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
359 return;
360
361 I915_WRITE(SDEIMR, sdeimr);
362 POSTING_READ(SDEIMR);
363 }
364
365 static void
__i915_enable_pipestat(struct drm_i915_private * dev_priv,enum pipe pipe,u32 enable_mask,u32 status_mask)366 __i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
367 u32 enable_mask, u32 status_mask)
368 {
369 u32 reg = PIPESTAT(pipe);
370 u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
371
372 assert_spin_locked(&dev_priv->irq_lock);
373 WARN_ON(!intel_irqs_enabled(dev_priv));
374
375 if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
376 status_mask & ~PIPESTAT_INT_STATUS_MASK,
377 "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
378 pipe_name(pipe), enable_mask, status_mask))
379 return;
380
381 if ((pipestat & enable_mask) == enable_mask)
382 return;
383
384 dev_priv->pipestat_irq_mask[pipe] |= status_mask;
385
386 /* Enable the interrupt, clear any pending status */
387 pipestat |= enable_mask | status_mask;
388 I915_WRITE(reg, pipestat);
389 POSTING_READ(reg);
390 }
391
392 static void
__i915_disable_pipestat(struct drm_i915_private * dev_priv,enum pipe pipe,u32 enable_mask,u32 status_mask)393 __i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
394 u32 enable_mask, u32 status_mask)
395 {
396 u32 reg = PIPESTAT(pipe);
397 u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
398
399 assert_spin_locked(&dev_priv->irq_lock);
400 WARN_ON(!intel_irqs_enabled(dev_priv));
401
402 if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
403 status_mask & ~PIPESTAT_INT_STATUS_MASK,
404 "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
405 pipe_name(pipe), enable_mask, status_mask))
406 return;
407
408 if ((pipestat & enable_mask) == 0)
409 return;
410
411 dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
412
413 pipestat &= ~enable_mask;
414 I915_WRITE(reg, pipestat);
415 POSTING_READ(reg);
416 }
417
vlv_get_pipestat_enable_mask(struct drm_device * dev,u32 status_mask)418 static u32 vlv_get_pipestat_enable_mask(struct drm_device *dev, u32 status_mask)
419 {
420 u32 enable_mask = status_mask << 16;
421
422 /*
423 * On pipe A we don't support the PSR interrupt yet,
424 * on pipe B and C the same bit MBZ.
425 */
426 if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV))
427 return 0;
428 /*
429 * On pipe B and C we don't support the PSR interrupt yet, on pipe
430 * A the same bit is for perf counters which we don't use either.
431 */
432 if (WARN_ON_ONCE(status_mask & PIPE_B_PSR_STATUS_VLV))
433 return 0;
434
435 enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
436 SPRITE0_FLIP_DONE_INT_EN_VLV |
437 SPRITE1_FLIP_DONE_INT_EN_VLV);
438 if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
439 enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
440 if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
441 enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
442
443 return enable_mask;
444 }
445
446 void
i915_enable_pipestat(struct drm_i915_private * dev_priv,enum pipe pipe,u32 status_mask)447 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
448 u32 status_mask)
449 {
450 u32 enable_mask;
451
452 if (IS_VALLEYVIEW(dev_priv->dev))
453 enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
454 status_mask);
455 else
456 enable_mask = status_mask << 16;
457 __i915_enable_pipestat(dev_priv, pipe, enable_mask, status_mask);
458 }
459
460 void
i915_disable_pipestat(struct drm_i915_private * dev_priv,enum pipe pipe,u32 status_mask)461 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
462 u32 status_mask)
463 {
464 u32 enable_mask;
465
466 if (IS_VALLEYVIEW(dev_priv->dev))
467 enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
468 status_mask);
469 else
470 enable_mask = status_mask << 16;
471 __i915_disable_pipestat(dev_priv, pipe, enable_mask, status_mask);
472 }
473
474 /**
475 * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
476 */
i915_enable_asle_pipestat(struct drm_device * dev)477 static void i915_enable_asle_pipestat(struct drm_device *dev)
478 {
479 struct drm_i915_private *dev_priv = dev->dev_private;
480
481 if (!dev_priv->opregion.asle || !IS_MOBILE(dev))
482 return;
483
484 spin_lock_irq(&dev_priv->irq_lock);
485
486 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
487 if (INTEL_INFO(dev)->gen >= 4)
488 i915_enable_pipestat(dev_priv, PIPE_A,
489 PIPE_LEGACY_BLC_EVENT_STATUS);
490
491 spin_unlock_irq(&dev_priv->irq_lock);
492 }
493
494 /*
495 * This timing diagram depicts the video signal in and
496 * around the vertical blanking period.
497 *
498 * Assumptions about the fictitious mode used in this example:
499 * vblank_start >= 3
500 * vsync_start = vblank_start + 1
501 * vsync_end = vblank_start + 2
502 * vtotal = vblank_start + 3
503 *
504 * start of vblank:
505 * latch double buffered registers
506 * increment frame counter (ctg+)
507 * generate start of vblank interrupt (gen4+)
508 * |
509 * | frame start:
510 * | generate frame start interrupt (aka. vblank interrupt) (gmch)
511 * | may be shifted forward 1-3 extra lines via PIPECONF
512 * | |
513 * | | start of vsync:
514 * | | generate vsync interrupt
515 * | | |
516 * ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx
517 * . \hs/ . \hs/ \hs/ \hs/ . \hs/
518 * ----va---> <-----------------vb--------------------> <--------va-------------
519 * | | <----vs-----> |
520 * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
521 * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
522 * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
523 * | | |
524 * last visible pixel first visible pixel
525 * | increment frame counter (gen3/4)
526 * pixel counter = vblank_start * htotal pixel counter = 0 (gen3/4)
527 *
528 * x = horizontal active
529 * _ = horizontal blanking
530 * hs = horizontal sync
531 * va = vertical active
532 * vb = vertical blanking
533 * vs = vertical sync
534 * vbs = vblank_start (number)
535 *
536 * Summary:
537 * - most events happen at the start of horizontal sync
538 * - frame start happens at the start of horizontal blank, 1-4 lines
539 * (depending on PIPECONF settings) after the start of vblank
540 * - gen3/4 pixel and frame counter are synchronized with the start
541 * of horizontal active on the first line of vertical active
542 */
543
i8xx_get_vblank_counter(struct drm_device * dev,int pipe)544 static u32 i8xx_get_vblank_counter(struct drm_device *dev, int pipe)
545 {
546 /* Gen2 doesn't have a hardware frame counter */
547 return 0;
548 }
549
550 /* Called from drm generic code, passed a 'crtc', which
551 * we use as a pipe index
552 */
i915_get_vblank_counter(struct drm_device * dev,int pipe)553 static u32 i915_get_vblank_counter(struct drm_device *dev, int pipe)
554 {
555 struct drm_i915_private *dev_priv = dev->dev_private;
556 unsigned long high_frame;
557 unsigned long low_frame;
558 u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
559 struct intel_crtc *intel_crtc =
560 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
561 const struct drm_display_mode *mode =
562 &intel_crtc->config->base.adjusted_mode;
563
564 htotal = mode->crtc_htotal;
565 hsync_start = mode->crtc_hsync_start;
566 vbl_start = mode->crtc_vblank_start;
567 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
568 vbl_start = DIV_ROUND_UP(vbl_start, 2);
569
570 /* Convert to pixel count */
571 vbl_start *= htotal;
572
573 /* Start of vblank event occurs at start of hsync */
574 vbl_start -= htotal - hsync_start;
575
576 high_frame = PIPEFRAME(pipe);
577 low_frame = PIPEFRAMEPIXEL(pipe);
578
579 /*
580 * High & low register fields aren't synchronized, so make sure
581 * we get a low value that's stable across two reads of the high
582 * register.
583 */
584 do {
585 high1 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
586 low = I915_READ(low_frame);
587 high2 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
588 } while (high1 != high2);
589
590 high1 >>= PIPE_FRAME_HIGH_SHIFT;
591 pixel = low & PIPE_PIXEL_MASK;
592 low >>= PIPE_FRAME_LOW_SHIFT;
593
594 /*
595 * The frame counter increments at beginning of active.
596 * Cook up a vblank counter by also checking the pixel
597 * counter against vblank start.
598 */
599 return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
600 }
601
gm45_get_vblank_counter(struct drm_device * dev,int pipe)602 static u32 gm45_get_vblank_counter(struct drm_device *dev, int pipe)
603 {
604 struct drm_i915_private *dev_priv = dev->dev_private;
605 int reg = PIPE_FRMCOUNT_GM45(pipe);
606
607 return I915_READ(reg);
608 }
609
610 /* raw reads, only for fast reads of display block, no need for forcewake etc. */
611 #define __raw_i915_read32(dev_priv__, reg__) readl((dev_priv__)->regs + (reg__))
612
__intel_get_crtc_scanline(struct intel_crtc * crtc)613 static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
614 {
615 struct drm_device *dev = crtc->base.dev;
616 struct drm_i915_private *dev_priv = dev->dev_private;
617 const struct drm_display_mode *mode = &crtc->config->base.adjusted_mode;
618 enum pipe pipe = crtc->pipe;
619 int position, vtotal;
620
621 vtotal = mode->crtc_vtotal;
622 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
623 vtotal /= 2;
624
625 if (IS_GEN2(dev))
626 position = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
627 else
628 position = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
629
630 /*
631 * See update_scanline_offset() for the details on the
632 * scanline_offset adjustment.
633 */
634 return (position + crtc->scanline_offset) % vtotal;
635 }
636
i915_get_crtc_scanoutpos(struct drm_device * dev,int pipe,unsigned int flags,int * vpos,int * hpos,ktime_t * stime,ktime_t * etime)637 static int i915_get_crtc_scanoutpos(struct drm_device *dev, int pipe,
638 unsigned int flags, int *vpos, int *hpos,
639 ktime_t *stime, ktime_t *etime)
640 {
641 struct drm_i915_private *dev_priv = dev->dev_private;
642 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
643 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
644 const struct drm_display_mode *mode = &intel_crtc->config->base.adjusted_mode;
645 int position;
646 int vbl_start, vbl_end, hsync_start, htotal, vtotal;
647 bool in_vbl = true;
648 int ret = 0;
649 unsigned long irqflags;
650
651 if (!intel_crtc->active) {
652 DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
653 "pipe %c\n", pipe_name(pipe));
654 return 0;
655 }
656
657 htotal = mode->crtc_htotal;
658 hsync_start = mode->crtc_hsync_start;
659 vtotal = mode->crtc_vtotal;
660 vbl_start = mode->crtc_vblank_start;
661 vbl_end = mode->crtc_vblank_end;
662
663 if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
664 vbl_start = DIV_ROUND_UP(vbl_start, 2);
665 vbl_end /= 2;
666 vtotal /= 2;
667 }
668
669 ret |= DRM_SCANOUTPOS_VALID | DRM_SCANOUTPOS_ACCURATE;
670
671 /*
672 * Lock uncore.lock, as we will do multiple timing critical raw
673 * register reads, potentially with preemption disabled, so the
674 * following code must not block on uncore.lock.
675 */
676 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
677
678 /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
679
680 /* Get optional system timestamp before query. */
681 if (stime)
682 *stime = ktime_get();
683
684 if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
685 /* No obvious pixelcount register. Only query vertical
686 * scanout position from Display scan line register.
687 */
688 position = __intel_get_crtc_scanline(intel_crtc);
689 } else {
690 /* Have access to pixelcount since start of frame.
691 * We can split this into vertical and horizontal
692 * scanout position.
693 */
694 position = (__raw_i915_read32(dev_priv, PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
695
696 /* convert to pixel counts */
697 vbl_start *= htotal;
698 vbl_end *= htotal;
699 vtotal *= htotal;
700
701 /*
702 * In interlaced modes, the pixel counter counts all pixels,
703 * so one field will have htotal more pixels. In order to avoid
704 * the reported position from jumping backwards when the pixel
705 * counter is beyond the length of the shorter field, just
706 * clamp the position the length of the shorter field. This
707 * matches how the scanline counter based position works since
708 * the scanline counter doesn't count the two half lines.
709 */
710 if (position >= vtotal)
711 position = vtotal - 1;
712
713 /*
714 * Start of vblank interrupt is triggered at start of hsync,
715 * just prior to the first active line of vblank. However we
716 * consider lines to start at the leading edge of horizontal
717 * active. So, should we get here before we've crossed into
718 * the horizontal active of the first line in vblank, we would
719 * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
720 * always add htotal-hsync_start to the current pixel position.
721 */
722 position = (position + htotal - hsync_start) % vtotal;
723 }
724
725 /* Get optional system timestamp after query. */
726 if (etime)
727 *etime = ktime_get();
728
729 /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
730
731 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
732
733 in_vbl = position >= vbl_start && position < vbl_end;
734
735 /*
736 * While in vblank, position will be negative
737 * counting up towards 0 at vbl_end. And outside
738 * vblank, position will be positive counting
739 * up since vbl_end.
740 */
741 if (position >= vbl_start)
742 position -= vbl_end;
743 else
744 position += vtotal - vbl_end;
745
746 if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
747 *vpos = position;
748 *hpos = 0;
749 } else {
750 *vpos = position / htotal;
751 *hpos = position - (*vpos * htotal);
752 }
753
754 /* In vblank? */
755 if (in_vbl)
756 ret |= DRM_SCANOUTPOS_IN_VBLANK;
757
758 return ret;
759 }
760
intel_get_crtc_scanline(struct intel_crtc * crtc)761 int intel_get_crtc_scanline(struct intel_crtc *crtc)
762 {
763 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
764 unsigned long irqflags;
765 int position;
766
767 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
768 position = __intel_get_crtc_scanline(crtc);
769 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
770
771 return position;
772 }
773
i915_get_vblank_timestamp(struct drm_device * dev,int pipe,int * max_error,struct timeval * vblank_time,unsigned flags)774 static int i915_get_vblank_timestamp(struct drm_device *dev, int pipe,
775 int *max_error,
776 struct timeval *vblank_time,
777 unsigned flags)
778 {
779 struct drm_crtc *crtc;
780
781 if (pipe < 0 || pipe >= INTEL_INFO(dev)->num_pipes) {
782 DRM_ERROR("Invalid crtc %d\n", pipe);
783 return -EINVAL;
784 }
785
786 /* Get drm_crtc to timestamp: */
787 crtc = intel_get_crtc_for_pipe(dev, pipe);
788 if (crtc == NULL) {
789 DRM_ERROR("Invalid crtc %d\n", pipe);
790 return -EINVAL;
791 }
792
793 if (!crtc->state->enable) {
794 DRM_DEBUG_KMS("crtc %d is disabled\n", pipe);
795 return -EBUSY;
796 }
797
798 /* Helper routine in DRM core does all the work: */
799 return drm_calc_vbltimestamp_from_scanoutpos(dev, pipe, max_error,
800 vblank_time, flags,
801 crtc,
802 &to_intel_crtc(crtc)->config->base.adjusted_mode);
803 }
804
intel_hpd_irq_event(struct drm_device * dev,struct drm_connector * connector)805 static bool intel_hpd_irq_event(struct drm_device *dev,
806 struct drm_connector *connector)
807 {
808 enum drm_connector_status old_status;
809
810 WARN_ON(!mutex_is_locked(&dev->mode_config.mutex));
811 old_status = connector->status;
812
813 connector->status = connector->funcs->detect(connector, false);
814 if (old_status == connector->status)
815 return false;
816
817 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] status updated from %s to %s\n",
818 connector->base.id,
819 connector->name,
820 drm_get_connector_status_name(old_status),
821 drm_get_connector_status_name(connector->status));
822
823 return true;
824 }
825
i915_digport_work_func(struct work_struct * work)826 static void i915_digport_work_func(struct work_struct *work)
827 {
828 struct drm_i915_private *dev_priv =
829 container_of(work, struct drm_i915_private, dig_port_work);
830 u32 long_port_mask, short_port_mask;
831 struct intel_digital_port *intel_dig_port;
832 int i;
833 u32 old_bits = 0;
834
835 spin_lock_irq(&dev_priv->irq_lock);
836 long_port_mask = dev_priv->long_hpd_port_mask;
837 dev_priv->long_hpd_port_mask = 0;
838 short_port_mask = dev_priv->short_hpd_port_mask;
839 dev_priv->short_hpd_port_mask = 0;
840 spin_unlock_irq(&dev_priv->irq_lock);
841
842 for (i = 0; i < I915_MAX_PORTS; i++) {
843 bool valid = false;
844 bool long_hpd = false;
845 intel_dig_port = dev_priv->hpd_irq_port[i];
846 if (!intel_dig_port || !intel_dig_port->hpd_pulse)
847 continue;
848
849 if (long_port_mask & (1 << i)) {
850 valid = true;
851 long_hpd = true;
852 } else if (short_port_mask & (1 << i))
853 valid = true;
854
855 if (valid) {
856 enum irqreturn ret;
857
858 ret = intel_dig_port->hpd_pulse(intel_dig_port, long_hpd);
859 if (ret == IRQ_NONE) {
860 /* fall back to old school hpd */
861 old_bits |= (1 << intel_dig_port->base.hpd_pin);
862 }
863 }
864 }
865
866 if (old_bits) {
867 spin_lock_irq(&dev_priv->irq_lock);
868 dev_priv->hpd_event_bits |= old_bits;
869 spin_unlock_irq(&dev_priv->irq_lock);
870 schedule_work(&dev_priv->hotplug_work);
871 }
872 }
873
874 /*
875 * Handle hotplug events outside the interrupt handler proper.
876 */
877 #define I915_REENABLE_HOTPLUG_DELAY (2*60*1000)
878
i915_hotplug_work_func(struct work_struct * work)879 static void i915_hotplug_work_func(struct work_struct *work)
880 {
881 struct drm_i915_private *dev_priv =
882 container_of(work, struct drm_i915_private, hotplug_work);
883 struct drm_device *dev = dev_priv->dev;
884 struct drm_mode_config *mode_config = &dev->mode_config;
885 struct intel_connector *intel_connector;
886 struct intel_encoder *intel_encoder;
887 struct drm_connector *connector;
888 bool hpd_disabled = false;
889 bool changed = false;
890 u32 hpd_event_bits;
891
892 mutex_lock(&mode_config->mutex);
893 DRM_DEBUG_KMS("running encoder hotplug functions\n");
894
895 spin_lock_irq(&dev_priv->irq_lock);
896
897 hpd_event_bits = dev_priv->hpd_event_bits;
898 dev_priv->hpd_event_bits = 0;
899 list_for_each_entry(connector, &mode_config->connector_list, head) {
900 intel_connector = to_intel_connector(connector);
901 if (!intel_connector->encoder)
902 continue;
903 intel_encoder = intel_connector->encoder;
904 if (intel_encoder->hpd_pin > HPD_NONE &&
905 dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_MARK_DISABLED &&
906 connector->polled == DRM_CONNECTOR_POLL_HPD) {
907 DRM_INFO("HPD interrupt storm detected on connector %s: "
908 "switching from hotplug detection to polling\n",
909 connector->name);
910 dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark = HPD_DISABLED;
911 connector->polled = DRM_CONNECTOR_POLL_CONNECT
912 | DRM_CONNECTOR_POLL_DISCONNECT;
913 hpd_disabled = true;
914 }
915 if (hpd_event_bits & (1 << intel_encoder->hpd_pin)) {
916 DRM_DEBUG_KMS("Connector %s (pin %i) received hotplug event.\n",
917 connector->name, intel_encoder->hpd_pin);
918 }
919 }
920 /* if there were no outputs to poll, poll was disabled,
921 * therefore make sure it's enabled when disabling HPD on
922 * some connectors */
923 if (hpd_disabled) {
924 drm_kms_helper_poll_enable(dev);
925 mod_delayed_work(system_wq, &dev_priv->hotplug_reenable_work,
926 msecs_to_jiffies(I915_REENABLE_HOTPLUG_DELAY));
927 }
928
929 spin_unlock_irq(&dev_priv->irq_lock);
930
931 list_for_each_entry(connector, &mode_config->connector_list, head) {
932 intel_connector = to_intel_connector(connector);
933 if (!intel_connector->encoder)
934 continue;
935 intel_encoder = intel_connector->encoder;
936 if (hpd_event_bits & (1 << intel_encoder->hpd_pin)) {
937 if (intel_encoder->hot_plug)
938 intel_encoder->hot_plug(intel_encoder);
939 if (intel_hpd_irq_event(dev, connector))
940 changed = true;
941 }
942 }
943 mutex_unlock(&mode_config->mutex);
944
945 if (changed)
946 drm_kms_helper_hotplug_event(dev);
947 }
948
ironlake_rps_change_irq_handler(struct drm_device * dev)949 static void ironlake_rps_change_irq_handler(struct drm_device *dev)
950 {
951 struct drm_i915_private *dev_priv = dev->dev_private;
952 u32 busy_up, busy_down, max_avg, min_avg;
953 u8 new_delay;
954
955 spin_lock(&mchdev_lock);
956
957 I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
958
959 new_delay = dev_priv->ips.cur_delay;
960
961 I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
962 busy_up = I915_READ(RCPREVBSYTUPAVG);
963 busy_down = I915_READ(RCPREVBSYTDNAVG);
964 max_avg = I915_READ(RCBMAXAVG);
965 min_avg = I915_READ(RCBMINAVG);
966
967 /* Handle RCS change request from hw */
968 if (busy_up > max_avg) {
969 if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
970 new_delay = dev_priv->ips.cur_delay - 1;
971 if (new_delay < dev_priv->ips.max_delay)
972 new_delay = dev_priv->ips.max_delay;
973 } else if (busy_down < min_avg) {
974 if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
975 new_delay = dev_priv->ips.cur_delay + 1;
976 if (new_delay > dev_priv->ips.min_delay)
977 new_delay = dev_priv->ips.min_delay;
978 }
979
980 if (ironlake_set_drps(dev, new_delay))
981 dev_priv->ips.cur_delay = new_delay;
982
983 spin_unlock(&mchdev_lock);
984
985 return;
986 }
987
notify_ring(struct drm_device * dev,struct intel_engine_cs * ring)988 static void notify_ring(struct drm_device *dev,
989 struct intel_engine_cs *ring)
990 {
991 if (!intel_ring_initialized(ring))
992 return;
993
994 trace_i915_gem_request_notify(ring);
995
996 wake_up_all(&ring->irq_queue);
997 }
998
vlv_c0_read(struct drm_i915_private * dev_priv,struct intel_rps_ei * ei)999 static void vlv_c0_read(struct drm_i915_private *dev_priv,
1000 struct intel_rps_ei *ei)
1001 {
1002 ei->cz_clock = vlv_punit_read(dev_priv, PUNIT_REG_CZ_TIMESTAMP);
1003 ei->render_c0 = I915_READ(VLV_RENDER_C0_COUNT);
1004 ei->media_c0 = I915_READ(VLV_MEDIA_C0_COUNT);
1005 }
1006
vlv_c0_above(struct drm_i915_private * dev_priv,const struct intel_rps_ei * old,const struct intel_rps_ei * now,int threshold)1007 static bool vlv_c0_above(struct drm_i915_private *dev_priv,
1008 const struct intel_rps_ei *old,
1009 const struct intel_rps_ei *now,
1010 int threshold)
1011 {
1012 u64 time, c0;
1013
1014 if (old->cz_clock == 0)
1015 return false;
1016
1017 time = now->cz_clock - old->cz_clock;
1018 time *= threshold * dev_priv->mem_freq;
1019
1020 /* Workload can be split between render + media, e.g. SwapBuffers
1021 * being blitted in X after being rendered in mesa. To account for
1022 * this we need to combine both engines into our activity counter.
1023 */
1024 c0 = now->render_c0 - old->render_c0;
1025 c0 += now->media_c0 - old->media_c0;
1026 c0 *= 100 * VLV_CZ_CLOCK_TO_MILLI_SEC * 4 / 1000;
1027
1028 return c0 >= time;
1029 }
1030
gen6_rps_reset_ei(struct drm_i915_private * dev_priv)1031 void gen6_rps_reset_ei(struct drm_i915_private *dev_priv)
1032 {
1033 vlv_c0_read(dev_priv, &dev_priv->rps.down_ei);
1034 dev_priv->rps.up_ei = dev_priv->rps.down_ei;
1035 }
1036
vlv_wa_c0_ei(struct drm_i915_private * dev_priv,u32 pm_iir)1037 static u32 vlv_wa_c0_ei(struct drm_i915_private *dev_priv, u32 pm_iir)
1038 {
1039 struct intel_rps_ei now;
1040 u32 events = 0;
1041
1042 if ((pm_iir & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED)) == 0)
1043 return 0;
1044
1045 vlv_c0_read(dev_priv, &now);
1046 if (now.cz_clock == 0)
1047 return 0;
1048
1049 if (pm_iir & GEN6_PM_RP_DOWN_EI_EXPIRED) {
1050 if (!vlv_c0_above(dev_priv,
1051 &dev_priv->rps.down_ei, &now,
1052 VLV_RP_DOWN_EI_THRESHOLD))
1053 events |= GEN6_PM_RP_DOWN_THRESHOLD;
1054 dev_priv->rps.down_ei = now;
1055 }
1056
1057 if (pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) {
1058 if (vlv_c0_above(dev_priv,
1059 &dev_priv->rps.up_ei, &now,
1060 VLV_RP_UP_EI_THRESHOLD))
1061 events |= GEN6_PM_RP_UP_THRESHOLD;
1062 dev_priv->rps.up_ei = now;
1063 }
1064
1065 return events;
1066 }
1067
gen6_pm_rps_work(struct work_struct * work)1068 static void gen6_pm_rps_work(struct work_struct *work)
1069 {
1070 struct drm_i915_private *dev_priv =
1071 container_of(work, struct drm_i915_private, rps.work);
1072 u32 pm_iir;
1073 int new_delay, adj;
1074
1075 spin_lock_irq(&dev_priv->irq_lock);
1076 /* Speed up work cancelation during disabling rps interrupts. */
1077 if (!dev_priv->rps.interrupts_enabled) {
1078 spin_unlock_irq(&dev_priv->irq_lock);
1079 return;
1080 }
1081 pm_iir = dev_priv->rps.pm_iir;
1082 dev_priv->rps.pm_iir = 0;
1083 /* Make sure not to corrupt PMIMR state used by ringbuffer on GEN6 */
1084 gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
1085 spin_unlock_irq(&dev_priv->irq_lock);
1086
1087 /* Make sure we didn't queue anything we're not going to process. */
1088 WARN_ON(pm_iir & ~dev_priv->pm_rps_events);
1089
1090 if ((pm_iir & dev_priv->pm_rps_events) == 0)
1091 return;
1092
1093 mutex_lock(&dev_priv->rps.hw_lock);
1094
1095 pm_iir |= vlv_wa_c0_ei(dev_priv, pm_iir);
1096
1097 adj = dev_priv->rps.last_adj;
1098 if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1099 if (adj > 0)
1100 adj *= 2;
1101 else {
1102 /* CHV needs even encode values */
1103 adj = IS_CHERRYVIEW(dev_priv->dev) ? 2 : 1;
1104 }
1105 new_delay = dev_priv->rps.cur_freq + adj;
1106
1107 /*
1108 * For better performance, jump directly
1109 * to RPe if we're below it.
1110 */
1111 if (new_delay < dev_priv->rps.efficient_freq)
1112 new_delay = dev_priv->rps.efficient_freq;
1113 } else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1114 if (dev_priv->rps.cur_freq > dev_priv->rps.efficient_freq)
1115 new_delay = dev_priv->rps.efficient_freq;
1116 else
1117 new_delay = dev_priv->rps.min_freq_softlimit;
1118 adj = 0;
1119 } else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1120 if (adj < 0)
1121 adj *= 2;
1122 else {
1123 /* CHV needs even encode values */
1124 adj = IS_CHERRYVIEW(dev_priv->dev) ? -2 : -1;
1125 }
1126 new_delay = dev_priv->rps.cur_freq + adj;
1127 } else { /* unknown event */
1128 new_delay = dev_priv->rps.cur_freq;
1129 }
1130
1131 /* sysfs frequency interfaces may have snuck in while servicing the
1132 * interrupt
1133 */
1134 new_delay = clamp_t(int, new_delay,
1135 dev_priv->rps.min_freq_softlimit,
1136 dev_priv->rps.max_freq_softlimit);
1137
1138 dev_priv->rps.last_adj = new_delay - dev_priv->rps.cur_freq;
1139
1140 intel_set_rps(dev_priv->dev, new_delay);
1141
1142 mutex_unlock(&dev_priv->rps.hw_lock);
1143 }
1144
1145
1146 /**
1147 * ivybridge_parity_work - Workqueue called when a parity error interrupt
1148 * occurred.
1149 * @work: workqueue struct
1150 *
1151 * Doesn't actually do anything except notify userspace. As a consequence of
1152 * this event, userspace should try to remap the bad rows since statistically
1153 * it is likely the same row is more likely to go bad again.
1154 */
ivybridge_parity_work(struct work_struct * work)1155 static void ivybridge_parity_work(struct work_struct *work)
1156 {
1157 struct drm_i915_private *dev_priv =
1158 container_of(work, struct drm_i915_private, l3_parity.error_work);
1159 u32 error_status, row, bank, subbank;
1160 char *parity_event[6];
1161 uint32_t misccpctl;
1162 uint8_t slice = 0;
1163
1164 /* We must turn off DOP level clock gating to access the L3 registers.
1165 * In order to prevent a get/put style interface, acquire struct mutex
1166 * any time we access those registers.
1167 */
1168 mutex_lock(&dev_priv->dev->struct_mutex);
1169
1170 /* If we've screwed up tracking, just let the interrupt fire again */
1171 if (WARN_ON(!dev_priv->l3_parity.which_slice))
1172 goto out;
1173
1174 misccpctl = I915_READ(GEN7_MISCCPCTL);
1175 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
1176 POSTING_READ(GEN7_MISCCPCTL);
1177
1178 while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
1179 u32 reg;
1180
1181 slice--;
1182 if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv->dev)))
1183 break;
1184
1185 dev_priv->l3_parity.which_slice &= ~(1<<slice);
1186
1187 reg = GEN7_L3CDERRST1 + (slice * 0x200);
1188
1189 error_status = I915_READ(reg);
1190 row = GEN7_PARITY_ERROR_ROW(error_status);
1191 bank = GEN7_PARITY_ERROR_BANK(error_status);
1192 subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1193
1194 I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1195 POSTING_READ(reg);
1196
1197 parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1198 parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
1199 parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
1200 parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1201 parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
1202 parity_event[5] = NULL;
1203
1204 kobject_uevent_env(&dev_priv->dev->primary->kdev->kobj,
1205 KOBJ_CHANGE, parity_event);
1206
1207 DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1208 slice, row, bank, subbank);
1209
1210 kfree(parity_event[4]);
1211 kfree(parity_event[3]);
1212 kfree(parity_event[2]);
1213 kfree(parity_event[1]);
1214 }
1215
1216 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1217
1218 out:
1219 WARN_ON(dev_priv->l3_parity.which_slice);
1220 spin_lock_irq(&dev_priv->irq_lock);
1221 gen5_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv->dev));
1222 spin_unlock_irq(&dev_priv->irq_lock);
1223
1224 mutex_unlock(&dev_priv->dev->struct_mutex);
1225 }
1226
ivybridge_parity_error_irq_handler(struct drm_device * dev,u32 iir)1227 static void ivybridge_parity_error_irq_handler(struct drm_device *dev, u32 iir)
1228 {
1229 struct drm_i915_private *dev_priv = dev->dev_private;
1230
1231 if (!HAS_L3_DPF(dev))
1232 return;
1233
1234 spin_lock(&dev_priv->irq_lock);
1235 gen5_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev));
1236 spin_unlock(&dev_priv->irq_lock);
1237
1238 iir &= GT_PARITY_ERROR(dev);
1239 if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
1240 dev_priv->l3_parity.which_slice |= 1 << 1;
1241
1242 if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
1243 dev_priv->l3_parity.which_slice |= 1 << 0;
1244
1245 queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
1246 }
1247
ilk_gt_irq_handler(struct drm_device * dev,struct drm_i915_private * dev_priv,u32 gt_iir)1248 static void ilk_gt_irq_handler(struct drm_device *dev,
1249 struct drm_i915_private *dev_priv,
1250 u32 gt_iir)
1251 {
1252 if (gt_iir &
1253 (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1254 notify_ring(dev, &dev_priv->ring[RCS]);
1255 if (gt_iir & ILK_BSD_USER_INTERRUPT)
1256 notify_ring(dev, &dev_priv->ring[VCS]);
1257 }
1258
snb_gt_irq_handler(struct drm_device * dev,struct drm_i915_private * dev_priv,u32 gt_iir)1259 static void snb_gt_irq_handler(struct drm_device *dev,
1260 struct drm_i915_private *dev_priv,
1261 u32 gt_iir)
1262 {
1263
1264 if (gt_iir &
1265 (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1266 notify_ring(dev, &dev_priv->ring[RCS]);
1267 if (gt_iir & GT_BSD_USER_INTERRUPT)
1268 notify_ring(dev, &dev_priv->ring[VCS]);
1269 if (gt_iir & GT_BLT_USER_INTERRUPT)
1270 notify_ring(dev, &dev_priv->ring[BCS]);
1271
1272 if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
1273 GT_BSD_CS_ERROR_INTERRUPT |
1274 GT_RENDER_CS_MASTER_ERROR_INTERRUPT))
1275 DRM_DEBUG("Command parser error, gt_iir 0x%08x\n", gt_iir);
1276
1277 if (gt_iir & GT_PARITY_ERROR(dev))
1278 ivybridge_parity_error_irq_handler(dev, gt_iir);
1279 }
1280
gen8_gt_irq_handler(struct drm_device * dev,struct drm_i915_private * dev_priv,u32 master_ctl)1281 static irqreturn_t gen8_gt_irq_handler(struct drm_device *dev,
1282 struct drm_i915_private *dev_priv,
1283 u32 master_ctl)
1284 {
1285 struct intel_engine_cs *ring;
1286 u32 rcs, bcs, vcs;
1287 uint32_t tmp = 0;
1288 irqreturn_t ret = IRQ_NONE;
1289
1290 if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
1291 tmp = I915_READ(GEN8_GT_IIR(0));
1292 if (tmp) {
1293 I915_WRITE(GEN8_GT_IIR(0), tmp);
1294 ret = IRQ_HANDLED;
1295
1296 rcs = tmp >> GEN8_RCS_IRQ_SHIFT;
1297 ring = &dev_priv->ring[RCS];
1298 if (rcs & GT_RENDER_USER_INTERRUPT)
1299 notify_ring(dev, ring);
1300 if (rcs & GT_CONTEXT_SWITCH_INTERRUPT)
1301 intel_lrc_irq_handler(ring);
1302
1303 bcs = tmp >> GEN8_BCS_IRQ_SHIFT;
1304 ring = &dev_priv->ring[BCS];
1305 if (bcs & GT_RENDER_USER_INTERRUPT)
1306 notify_ring(dev, ring);
1307 if (bcs & GT_CONTEXT_SWITCH_INTERRUPT)
1308 intel_lrc_irq_handler(ring);
1309 } else
1310 DRM_ERROR("The master control interrupt lied (GT0)!\n");
1311 }
1312
1313 if (master_ctl & (GEN8_GT_VCS1_IRQ | GEN8_GT_VCS2_IRQ)) {
1314 tmp = I915_READ(GEN8_GT_IIR(1));
1315 if (tmp) {
1316 I915_WRITE(GEN8_GT_IIR(1), tmp);
1317 ret = IRQ_HANDLED;
1318
1319 vcs = tmp >> GEN8_VCS1_IRQ_SHIFT;
1320 ring = &dev_priv->ring[VCS];
1321 if (vcs & GT_RENDER_USER_INTERRUPT)
1322 notify_ring(dev, ring);
1323 if (vcs & GT_CONTEXT_SWITCH_INTERRUPT)
1324 intel_lrc_irq_handler(ring);
1325
1326 vcs = tmp >> GEN8_VCS2_IRQ_SHIFT;
1327 ring = &dev_priv->ring[VCS2];
1328 if (vcs & GT_RENDER_USER_INTERRUPT)
1329 notify_ring(dev, ring);
1330 if (vcs & GT_CONTEXT_SWITCH_INTERRUPT)
1331 intel_lrc_irq_handler(ring);
1332 } else
1333 DRM_ERROR("The master control interrupt lied (GT1)!\n");
1334 }
1335
1336 if (master_ctl & GEN8_GT_PM_IRQ) {
1337 tmp = I915_READ(GEN8_GT_IIR(2));
1338 if (tmp & dev_priv->pm_rps_events) {
1339 I915_WRITE(GEN8_GT_IIR(2),
1340 tmp & dev_priv->pm_rps_events);
1341 ret = IRQ_HANDLED;
1342 gen6_rps_irq_handler(dev_priv, tmp);
1343 } else
1344 DRM_ERROR("The master control interrupt lied (PM)!\n");
1345 }
1346
1347 if (master_ctl & GEN8_GT_VECS_IRQ) {
1348 tmp = I915_READ(GEN8_GT_IIR(3));
1349 if (tmp) {
1350 I915_WRITE(GEN8_GT_IIR(3), tmp);
1351 ret = IRQ_HANDLED;
1352
1353 vcs = tmp >> GEN8_VECS_IRQ_SHIFT;
1354 ring = &dev_priv->ring[VECS];
1355 if (vcs & GT_RENDER_USER_INTERRUPT)
1356 notify_ring(dev, ring);
1357 if (vcs & GT_CONTEXT_SWITCH_INTERRUPT)
1358 intel_lrc_irq_handler(ring);
1359 } else
1360 DRM_ERROR("The master control interrupt lied (GT3)!\n");
1361 }
1362
1363 return ret;
1364 }
1365
1366 #define HPD_STORM_DETECT_PERIOD 1000
1367 #define HPD_STORM_THRESHOLD 5
1368
pch_port_to_hotplug_shift(enum port port)1369 static int pch_port_to_hotplug_shift(enum port port)
1370 {
1371 switch (port) {
1372 case PORT_A:
1373 case PORT_E:
1374 default:
1375 return -1;
1376 case PORT_B:
1377 return 0;
1378 case PORT_C:
1379 return 8;
1380 case PORT_D:
1381 return 16;
1382 }
1383 }
1384
i915_port_to_hotplug_shift(enum port port)1385 static int i915_port_to_hotplug_shift(enum port port)
1386 {
1387 switch (port) {
1388 case PORT_A:
1389 case PORT_E:
1390 default:
1391 return -1;
1392 case PORT_B:
1393 return 17;
1394 case PORT_C:
1395 return 19;
1396 case PORT_D:
1397 return 21;
1398 }
1399 }
1400
get_port_from_pin(enum hpd_pin pin)1401 static inline enum port get_port_from_pin(enum hpd_pin pin)
1402 {
1403 switch (pin) {
1404 case HPD_PORT_B:
1405 return PORT_B;
1406 case HPD_PORT_C:
1407 return PORT_C;
1408 case HPD_PORT_D:
1409 return PORT_D;
1410 default:
1411 return PORT_A; /* no hpd */
1412 }
1413 }
1414
intel_hpd_irq_handler(struct drm_device * dev,u32 hotplug_trigger,u32 dig_hotplug_reg,const u32 hpd[HPD_NUM_PINS])1415 static inline void intel_hpd_irq_handler(struct drm_device *dev,
1416 u32 hotplug_trigger,
1417 u32 dig_hotplug_reg,
1418 const u32 hpd[HPD_NUM_PINS])
1419 {
1420 struct drm_i915_private *dev_priv = dev->dev_private;
1421 int i;
1422 enum port port;
1423 bool storm_detected = false;
1424 bool queue_dig = false, queue_hp = false;
1425 u32 dig_shift;
1426 u32 dig_port_mask = 0;
1427
1428 if (!hotplug_trigger)
1429 return;
1430
1431 DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x, dig 0x%08x\n",
1432 hotplug_trigger, dig_hotplug_reg);
1433
1434 spin_lock(&dev_priv->irq_lock);
1435 for (i = 1; i < HPD_NUM_PINS; i++) {
1436 if (!(hpd[i] & hotplug_trigger))
1437 continue;
1438
1439 port = get_port_from_pin(i);
1440 if (port && dev_priv->hpd_irq_port[port]) {
1441 bool long_hpd;
1442
1443 if (HAS_PCH_SPLIT(dev)) {
1444 dig_shift = pch_port_to_hotplug_shift(port);
1445 long_hpd = (dig_hotplug_reg >> dig_shift) & PORTB_HOTPLUG_LONG_DETECT;
1446 } else {
1447 dig_shift = i915_port_to_hotplug_shift(port);
1448 long_hpd = (hotplug_trigger >> dig_shift) & PORTB_HOTPLUG_LONG_DETECT;
1449 }
1450
1451 DRM_DEBUG_DRIVER("digital hpd port %c - %s\n",
1452 port_name(port),
1453 long_hpd ? "long" : "short");
1454 /* for long HPD pulses we want to have the digital queue happen,
1455 but we still want HPD storm detection to function. */
1456 if (long_hpd) {
1457 dev_priv->long_hpd_port_mask |= (1 << port);
1458 dig_port_mask |= hpd[i];
1459 } else {
1460 /* for short HPD just trigger the digital queue */
1461 dev_priv->short_hpd_port_mask |= (1 << port);
1462 hotplug_trigger &= ~hpd[i];
1463 }
1464 queue_dig = true;
1465 }
1466 }
1467
1468 for (i = 1; i < HPD_NUM_PINS; i++) {
1469 if (hpd[i] & hotplug_trigger &&
1470 dev_priv->hpd_stats[i].hpd_mark == HPD_DISABLED) {
1471 /*
1472 * On GMCH platforms the interrupt mask bits only
1473 * prevent irq generation, not the setting of the
1474 * hotplug bits itself. So only WARN about unexpected
1475 * interrupts on saner platforms.
1476 */
1477 WARN_ONCE(INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev),
1478 "Received HPD interrupt (0x%08x) on pin %d (0x%08x) although disabled\n",
1479 hotplug_trigger, i, hpd[i]);
1480
1481 continue;
1482 }
1483
1484 if (!(hpd[i] & hotplug_trigger) ||
1485 dev_priv->hpd_stats[i].hpd_mark != HPD_ENABLED)
1486 continue;
1487
1488 if (!(dig_port_mask & hpd[i])) {
1489 dev_priv->hpd_event_bits |= (1 << i);
1490 queue_hp = true;
1491 }
1492
1493 if (!time_in_range(jiffies, dev_priv->hpd_stats[i].hpd_last_jiffies,
1494 dev_priv->hpd_stats[i].hpd_last_jiffies
1495 + msecs_to_jiffies(HPD_STORM_DETECT_PERIOD))) {
1496 dev_priv->hpd_stats[i].hpd_last_jiffies = jiffies;
1497 dev_priv->hpd_stats[i].hpd_cnt = 0;
1498 DRM_DEBUG_KMS("Received HPD interrupt on PIN %d - cnt: 0\n", i);
1499 } else if (dev_priv->hpd_stats[i].hpd_cnt > HPD_STORM_THRESHOLD) {
1500 dev_priv->hpd_stats[i].hpd_mark = HPD_MARK_DISABLED;
1501 dev_priv->hpd_event_bits &= ~(1 << i);
1502 DRM_DEBUG_KMS("HPD interrupt storm detected on PIN %d\n", i);
1503 storm_detected = true;
1504 } else {
1505 dev_priv->hpd_stats[i].hpd_cnt++;
1506 DRM_DEBUG_KMS("Received HPD interrupt on PIN %d - cnt: %d\n", i,
1507 dev_priv->hpd_stats[i].hpd_cnt);
1508 }
1509 }
1510
1511 if (storm_detected)
1512 dev_priv->display.hpd_irq_setup(dev);
1513 spin_unlock(&dev_priv->irq_lock);
1514
1515 /*
1516 * Our hotplug handler can grab modeset locks (by calling down into the
1517 * fb helpers). Hence it must not be run on our own dev-priv->wq work
1518 * queue for otherwise the flush_work in the pageflip code will
1519 * deadlock.
1520 */
1521 if (queue_dig)
1522 queue_work(dev_priv->dp_wq, &dev_priv->dig_port_work);
1523 if (queue_hp)
1524 schedule_work(&dev_priv->hotplug_work);
1525 }
1526
gmbus_irq_handler(struct drm_device * dev)1527 static void gmbus_irq_handler(struct drm_device *dev)
1528 {
1529 struct drm_i915_private *dev_priv = dev->dev_private;
1530
1531 wake_up_all(&dev_priv->gmbus_wait_queue);
1532 }
1533
dp_aux_irq_handler(struct drm_device * dev)1534 static void dp_aux_irq_handler(struct drm_device *dev)
1535 {
1536 struct drm_i915_private *dev_priv = dev->dev_private;
1537
1538 wake_up_all(&dev_priv->gmbus_wait_queue);
1539 }
1540
1541 #if defined(CONFIG_DEBUG_FS)
display_pipe_crc_irq_handler(struct drm_device * dev,enum pipe pipe,uint32_t crc0,uint32_t crc1,uint32_t crc2,uint32_t crc3,uint32_t crc4)1542 static void display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1543 uint32_t crc0, uint32_t crc1,
1544 uint32_t crc2, uint32_t crc3,
1545 uint32_t crc4)
1546 {
1547 struct drm_i915_private *dev_priv = dev->dev_private;
1548 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
1549 struct intel_pipe_crc_entry *entry;
1550 int head, tail;
1551
1552 spin_lock(&pipe_crc->lock);
1553
1554 if (!pipe_crc->entries) {
1555 spin_unlock(&pipe_crc->lock);
1556 DRM_DEBUG_KMS("spurious interrupt\n");
1557 return;
1558 }
1559
1560 head = pipe_crc->head;
1561 tail = pipe_crc->tail;
1562
1563 if (CIRC_SPACE(head, tail, INTEL_PIPE_CRC_ENTRIES_NR) < 1) {
1564 spin_unlock(&pipe_crc->lock);
1565 DRM_ERROR("CRC buffer overflowing\n");
1566 return;
1567 }
1568
1569 entry = &pipe_crc->entries[head];
1570
1571 entry->frame = dev->driver->get_vblank_counter(dev, pipe);
1572 entry->crc[0] = crc0;
1573 entry->crc[1] = crc1;
1574 entry->crc[2] = crc2;
1575 entry->crc[3] = crc3;
1576 entry->crc[4] = crc4;
1577
1578 head = (head + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
1579 pipe_crc->head = head;
1580
1581 spin_unlock(&pipe_crc->lock);
1582
1583 wake_up_interruptible(&pipe_crc->wq);
1584 }
1585 #else
1586 static inline void
display_pipe_crc_irq_handler(struct drm_device * dev,enum pipe pipe,uint32_t crc0,uint32_t crc1,uint32_t crc2,uint32_t crc3,uint32_t crc4)1587 display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1588 uint32_t crc0, uint32_t crc1,
1589 uint32_t crc2, uint32_t crc3,
1590 uint32_t crc4) {}
1591 #endif
1592
1593
hsw_pipe_crc_irq_handler(struct drm_device * dev,enum pipe pipe)1594 static void hsw_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1595 {
1596 struct drm_i915_private *dev_priv = dev->dev_private;
1597
1598 display_pipe_crc_irq_handler(dev, pipe,
1599 I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1600 0, 0, 0, 0);
1601 }
1602
ivb_pipe_crc_irq_handler(struct drm_device * dev,enum pipe pipe)1603 static void ivb_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1604 {
1605 struct drm_i915_private *dev_priv = dev->dev_private;
1606
1607 display_pipe_crc_irq_handler(dev, pipe,
1608 I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1609 I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1610 I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1611 I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1612 I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1613 }
1614
i9xx_pipe_crc_irq_handler(struct drm_device * dev,enum pipe pipe)1615 static void i9xx_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1616 {
1617 struct drm_i915_private *dev_priv = dev->dev_private;
1618 uint32_t res1, res2;
1619
1620 if (INTEL_INFO(dev)->gen >= 3)
1621 res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1622 else
1623 res1 = 0;
1624
1625 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
1626 res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1627 else
1628 res2 = 0;
1629
1630 display_pipe_crc_irq_handler(dev, pipe,
1631 I915_READ(PIPE_CRC_RES_RED(pipe)),
1632 I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1633 I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1634 res1, res2);
1635 }
1636
1637 /* The RPS events need forcewake, so we add them to a work queue and mask their
1638 * IMR bits until the work is done. Other interrupts can be processed without
1639 * the work queue. */
gen6_rps_irq_handler(struct drm_i915_private * dev_priv,u32 pm_iir)1640 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1641 {
1642 if (pm_iir & dev_priv->pm_rps_events) {
1643 spin_lock(&dev_priv->irq_lock);
1644 gen6_disable_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
1645 if (dev_priv->rps.interrupts_enabled) {
1646 dev_priv->rps.pm_iir |= pm_iir & dev_priv->pm_rps_events;
1647 queue_work(dev_priv->wq, &dev_priv->rps.work);
1648 }
1649 spin_unlock(&dev_priv->irq_lock);
1650 }
1651
1652 if (INTEL_INFO(dev_priv)->gen >= 8)
1653 return;
1654
1655 if (HAS_VEBOX(dev_priv->dev)) {
1656 if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1657 notify_ring(dev_priv->dev, &dev_priv->ring[VECS]);
1658
1659 if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT)
1660 DRM_DEBUG("Command parser error, pm_iir 0x%08x\n", pm_iir);
1661 }
1662 }
1663
intel_pipe_handle_vblank(struct drm_device * dev,enum pipe pipe)1664 static bool intel_pipe_handle_vblank(struct drm_device *dev, enum pipe pipe)
1665 {
1666 if (!drm_handle_vblank(dev, pipe))
1667 return false;
1668
1669 return true;
1670 }
1671
valleyview_pipestat_irq_handler(struct drm_device * dev,u32 iir)1672 static void valleyview_pipestat_irq_handler(struct drm_device *dev, u32 iir)
1673 {
1674 struct drm_i915_private *dev_priv = dev->dev_private;
1675 u32 pipe_stats[I915_MAX_PIPES] = { };
1676 int pipe;
1677
1678 spin_lock(&dev_priv->irq_lock);
1679 for_each_pipe(dev_priv, pipe) {
1680 int reg;
1681 u32 mask, iir_bit = 0;
1682
1683 /*
1684 * PIPESTAT bits get signalled even when the interrupt is
1685 * disabled with the mask bits, and some of the status bits do
1686 * not generate interrupts at all (like the underrun bit). Hence
1687 * we need to be careful that we only handle what we want to
1688 * handle.
1689 */
1690
1691 /* fifo underruns are filterered in the underrun handler. */
1692 mask = PIPE_FIFO_UNDERRUN_STATUS;
1693
1694 switch (pipe) {
1695 case PIPE_A:
1696 iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
1697 break;
1698 case PIPE_B:
1699 iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
1700 break;
1701 case PIPE_C:
1702 iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
1703 break;
1704 }
1705 if (iir & iir_bit)
1706 mask |= dev_priv->pipestat_irq_mask[pipe];
1707
1708 if (!mask)
1709 continue;
1710
1711 reg = PIPESTAT(pipe);
1712 mask |= PIPESTAT_INT_ENABLE_MASK;
1713 pipe_stats[pipe] = I915_READ(reg) & mask;
1714
1715 /*
1716 * Clear the PIPE*STAT regs before the IIR
1717 */
1718 if (pipe_stats[pipe] & (PIPE_FIFO_UNDERRUN_STATUS |
1719 PIPESTAT_INT_STATUS_MASK))
1720 I915_WRITE(reg, pipe_stats[pipe]);
1721 }
1722 spin_unlock(&dev_priv->irq_lock);
1723
1724 for_each_pipe(dev_priv, pipe) {
1725 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
1726 intel_pipe_handle_vblank(dev, pipe))
1727 intel_check_page_flip(dev, pipe);
1728
1729 if (pipe_stats[pipe] & PLANE_FLIP_DONE_INT_STATUS_VLV) {
1730 intel_prepare_page_flip(dev, pipe);
1731 intel_finish_page_flip(dev, pipe);
1732 }
1733
1734 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1735 i9xx_pipe_crc_irq_handler(dev, pipe);
1736
1737 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1738 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1739 }
1740
1741 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1742 gmbus_irq_handler(dev);
1743 }
1744
i9xx_hpd_irq_handler(struct drm_device * dev)1745 static void i9xx_hpd_irq_handler(struct drm_device *dev)
1746 {
1747 struct drm_i915_private *dev_priv = dev->dev_private;
1748 u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
1749
1750 if (hotplug_status) {
1751 I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
1752 /*
1753 * Make sure hotplug status is cleared before we clear IIR, or else we
1754 * may miss hotplug events.
1755 */
1756 POSTING_READ(PORT_HOTPLUG_STAT);
1757
1758 if (IS_G4X(dev)) {
1759 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
1760
1761 intel_hpd_irq_handler(dev, hotplug_trigger, 0, hpd_status_g4x);
1762 } else {
1763 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
1764
1765 intel_hpd_irq_handler(dev, hotplug_trigger, 0, hpd_status_i915);
1766 }
1767
1768 if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) &&
1769 hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
1770 dp_aux_irq_handler(dev);
1771 }
1772 }
1773
valleyview_irq_handler(int irq,void * arg)1774 static irqreturn_t valleyview_irq_handler(int irq, void *arg)
1775 {
1776 struct drm_device *dev = arg;
1777 struct drm_i915_private *dev_priv = dev->dev_private;
1778 u32 iir, gt_iir, pm_iir;
1779 irqreturn_t ret = IRQ_NONE;
1780
1781 if (!intel_irqs_enabled(dev_priv))
1782 return IRQ_NONE;
1783
1784 while (true) {
1785 /* Find, clear, then process each source of interrupt */
1786
1787 gt_iir = I915_READ(GTIIR);
1788 if (gt_iir)
1789 I915_WRITE(GTIIR, gt_iir);
1790
1791 pm_iir = I915_READ(GEN6_PMIIR);
1792 if (pm_iir)
1793 I915_WRITE(GEN6_PMIIR, pm_iir);
1794
1795 iir = I915_READ(VLV_IIR);
1796 if (iir) {
1797 /* Consume port before clearing IIR or we'll miss events */
1798 if (iir & I915_DISPLAY_PORT_INTERRUPT)
1799 i9xx_hpd_irq_handler(dev);
1800 I915_WRITE(VLV_IIR, iir);
1801 }
1802
1803 if (gt_iir == 0 && pm_iir == 0 && iir == 0)
1804 goto out;
1805
1806 ret = IRQ_HANDLED;
1807
1808 if (gt_iir)
1809 snb_gt_irq_handler(dev, dev_priv, gt_iir);
1810 if (pm_iir)
1811 gen6_rps_irq_handler(dev_priv, pm_iir);
1812 /* Call regardless, as some status bits might not be
1813 * signalled in iir */
1814 valleyview_pipestat_irq_handler(dev, iir);
1815 }
1816
1817 out:
1818 return ret;
1819 }
1820
cherryview_irq_handler(int irq,void * arg)1821 static irqreturn_t cherryview_irq_handler(int irq, void *arg)
1822 {
1823 struct drm_device *dev = arg;
1824 struct drm_i915_private *dev_priv = dev->dev_private;
1825 u32 master_ctl, iir;
1826 irqreturn_t ret = IRQ_NONE;
1827
1828 if (!intel_irqs_enabled(dev_priv))
1829 return IRQ_NONE;
1830
1831 for (;;) {
1832 master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
1833 iir = I915_READ(VLV_IIR);
1834
1835 if (master_ctl == 0 && iir == 0)
1836 break;
1837
1838 ret = IRQ_HANDLED;
1839
1840 I915_WRITE(GEN8_MASTER_IRQ, 0);
1841
1842 /* Find, clear, then process each source of interrupt */
1843
1844 if (iir) {
1845 /* Consume port before clearing IIR or we'll miss events */
1846 if (iir & I915_DISPLAY_PORT_INTERRUPT)
1847 i9xx_hpd_irq_handler(dev);
1848 I915_WRITE(VLV_IIR, iir);
1849 }
1850
1851 gen8_gt_irq_handler(dev, dev_priv, master_ctl);
1852
1853 /* Call regardless, as some status bits might not be
1854 * signalled in iir */
1855 valleyview_pipestat_irq_handler(dev, iir);
1856
1857 I915_WRITE(GEN8_MASTER_IRQ, DE_MASTER_IRQ_CONTROL);
1858 POSTING_READ(GEN8_MASTER_IRQ);
1859 }
1860
1861 return ret;
1862 }
1863
ibx_irq_handler(struct drm_device * dev,u32 pch_iir)1864 static void ibx_irq_handler(struct drm_device *dev, u32 pch_iir)
1865 {
1866 struct drm_i915_private *dev_priv = dev->dev_private;
1867 int pipe;
1868 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
1869 u32 dig_hotplug_reg;
1870
1871 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
1872 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
1873
1874 intel_hpd_irq_handler(dev, hotplug_trigger, dig_hotplug_reg, hpd_ibx);
1875
1876 if (pch_iir & SDE_AUDIO_POWER_MASK) {
1877 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
1878 SDE_AUDIO_POWER_SHIFT);
1879 DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
1880 port_name(port));
1881 }
1882
1883 if (pch_iir & SDE_AUX_MASK)
1884 dp_aux_irq_handler(dev);
1885
1886 if (pch_iir & SDE_GMBUS)
1887 gmbus_irq_handler(dev);
1888
1889 if (pch_iir & SDE_AUDIO_HDCP_MASK)
1890 DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
1891
1892 if (pch_iir & SDE_AUDIO_TRANS_MASK)
1893 DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
1894
1895 if (pch_iir & SDE_POISON)
1896 DRM_ERROR("PCH poison interrupt\n");
1897
1898 if (pch_iir & SDE_FDI_MASK)
1899 for_each_pipe(dev_priv, pipe)
1900 DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
1901 pipe_name(pipe),
1902 I915_READ(FDI_RX_IIR(pipe)));
1903
1904 if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
1905 DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
1906
1907 if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
1908 DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
1909
1910 if (pch_iir & SDE_TRANSA_FIFO_UNDER)
1911 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
1912
1913 if (pch_iir & SDE_TRANSB_FIFO_UNDER)
1914 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
1915 }
1916
ivb_err_int_handler(struct drm_device * dev)1917 static void ivb_err_int_handler(struct drm_device *dev)
1918 {
1919 struct drm_i915_private *dev_priv = dev->dev_private;
1920 u32 err_int = I915_READ(GEN7_ERR_INT);
1921 enum pipe pipe;
1922
1923 if (err_int & ERR_INT_POISON)
1924 DRM_ERROR("Poison interrupt\n");
1925
1926 for_each_pipe(dev_priv, pipe) {
1927 if (err_int & ERR_INT_FIFO_UNDERRUN(pipe))
1928 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1929
1930 if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
1931 if (IS_IVYBRIDGE(dev))
1932 ivb_pipe_crc_irq_handler(dev, pipe);
1933 else
1934 hsw_pipe_crc_irq_handler(dev, pipe);
1935 }
1936 }
1937
1938 I915_WRITE(GEN7_ERR_INT, err_int);
1939 }
1940
cpt_serr_int_handler(struct drm_device * dev)1941 static void cpt_serr_int_handler(struct drm_device *dev)
1942 {
1943 struct drm_i915_private *dev_priv = dev->dev_private;
1944 u32 serr_int = I915_READ(SERR_INT);
1945
1946 if (serr_int & SERR_INT_POISON)
1947 DRM_ERROR("PCH poison interrupt\n");
1948
1949 if (serr_int & SERR_INT_TRANS_A_FIFO_UNDERRUN)
1950 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
1951
1952 if (serr_int & SERR_INT_TRANS_B_FIFO_UNDERRUN)
1953 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
1954
1955 if (serr_int & SERR_INT_TRANS_C_FIFO_UNDERRUN)
1956 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_C);
1957
1958 I915_WRITE(SERR_INT, serr_int);
1959 }
1960
cpt_irq_handler(struct drm_device * dev,u32 pch_iir)1961 static void cpt_irq_handler(struct drm_device *dev, u32 pch_iir)
1962 {
1963 struct drm_i915_private *dev_priv = dev->dev_private;
1964 int pipe;
1965 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
1966 u32 dig_hotplug_reg;
1967
1968 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
1969 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
1970
1971 intel_hpd_irq_handler(dev, hotplug_trigger, dig_hotplug_reg, hpd_cpt);
1972
1973 if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
1974 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
1975 SDE_AUDIO_POWER_SHIFT_CPT);
1976 DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
1977 port_name(port));
1978 }
1979
1980 if (pch_iir & SDE_AUX_MASK_CPT)
1981 dp_aux_irq_handler(dev);
1982
1983 if (pch_iir & SDE_GMBUS_CPT)
1984 gmbus_irq_handler(dev);
1985
1986 if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
1987 DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
1988
1989 if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
1990 DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
1991
1992 if (pch_iir & SDE_FDI_MASK_CPT)
1993 for_each_pipe(dev_priv, pipe)
1994 DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
1995 pipe_name(pipe),
1996 I915_READ(FDI_RX_IIR(pipe)));
1997
1998 if (pch_iir & SDE_ERROR_CPT)
1999 cpt_serr_int_handler(dev);
2000 }
2001
ilk_display_irq_handler(struct drm_device * dev,u32 de_iir)2002 static void ilk_display_irq_handler(struct drm_device *dev, u32 de_iir)
2003 {
2004 struct drm_i915_private *dev_priv = dev->dev_private;
2005 enum pipe pipe;
2006
2007 if (de_iir & DE_AUX_CHANNEL_A)
2008 dp_aux_irq_handler(dev);
2009
2010 if (de_iir & DE_GSE)
2011 intel_opregion_asle_intr(dev);
2012
2013 if (de_iir & DE_POISON)
2014 DRM_ERROR("Poison interrupt\n");
2015
2016 for_each_pipe(dev_priv, pipe) {
2017 if (de_iir & DE_PIPE_VBLANK(pipe) &&
2018 intel_pipe_handle_vblank(dev, pipe))
2019 intel_check_page_flip(dev, pipe);
2020
2021 if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
2022 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2023
2024 if (de_iir & DE_PIPE_CRC_DONE(pipe))
2025 i9xx_pipe_crc_irq_handler(dev, pipe);
2026
2027 /* plane/pipes map 1:1 on ilk+ */
2028 if (de_iir & DE_PLANE_FLIP_DONE(pipe)) {
2029 intel_prepare_page_flip(dev, pipe);
2030 intel_finish_page_flip_plane(dev, pipe);
2031 }
2032 }
2033
2034 /* check event from PCH */
2035 if (de_iir & DE_PCH_EVENT) {
2036 u32 pch_iir = I915_READ(SDEIIR);
2037
2038 if (HAS_PCH_CPT(dev))
2039 cpt_irq_handler(dev, pch_iir);
2040 else
2041 ibx_irq_handler(dev, pch_iir);
2042
2043 /* should clear PCH hotplug event before clear CPU irq */
2044 I915_WRITE(SDEIIR, pch_iir);
2045 }
2046
2047 if (IS_GEN5(dev) && de_iir & DE_PCU_EVENT)
2048 ironlake_rps_change_irq_handler(dev);
2049 }
2050
ivb_display_irq_handler(struct drm_device * dev,u32 de_iir)2051 static void ivb_display_irq_handler(struct drm_device *dev, u32 de_iir)
2052 {
2053 struct drm_i915_private *dev_priv = dev->dev_private;
2054 enum pipe pipe;
2055
2056 if (de_iir & DE_ERR_INT_IVB)
2057 ivb_err_int_handler(dev);
2058
2059 if (de_iir & DE_AUX_CHANNEL_A_IVB)
2060 dp_aux_irq_handler(dev);
2061
2062 if (de_iir & DE_GSE_IVB)
2063 intel_opregion_asle_intr(dev);
2064
2065 for_each_pipe(dev_priv, pipe) {
2066 if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)) &&
2067 intel_pipe_handle_vblank(dev, pipe))
2068 intel_check_page_flip(dev, pipe);
2069
2070 /* plane/pipes map 1:1 on ilk+ */
2071 if (de_iir & DE_PLANE_FLIP_DONE_IVB(pipe)) {
2072 intel_prepare_page_flip(dev, pipe);
2073 intel_finish_page_flip_plane(dev, pipe);
2074 }
2075 }
2076
2077 /* check event from PCH */
2078 if (!HAS_PCH_NOP(dev) && (de_iir & DE_PCH_EVENT_IVB)) {
2079 u32 pch_iir = I915_READ(SDEIIR);
2080
2081 cpt_irq_handler(dev, pch_iir);
2082
2083 /* clear PCH hotplug event before clear CPU irq */
2084 I915_WRITE(SDEIIR, pch_iir);
2085 }
2086 }
2087
2088 /*
2089 * To handle irqs with the minimum potential races with fresh interrupts, we:
2090 * 1 - Disable Master Interrupt Control.
2091 * 2 - Find the source(s) of the interrupt.
2092 * 3 - Clear the Interrupt Identity bits (IIR).
2093 * 4 - Process the interrupt(s) that had bits set in the IIRs.
2094 * 5 - Re-enable Master Interrupt Control.
2095 */
ironlake_irq_handler(int irq,void * arg)2096 static irqreturn_t ironlake_irq_handler(int irq, void *arg)
2097 {
2098 struct drm_device *dev = arg;
2099 struct drm_i915_private *dev_priv = dev->dev_private;
2100 u32 de_iir, gt_iir, de_ier, sde_ier = 0;
2101 irqreturn_t ret = IRQ_NONE;
2102
2103 if (!intel_irqs_enabled(dev_priv))
2104 return IRQ_NONE;
2105
2106 /* We get interrupts on unclaimed registers, so check for this before we
2107 * do any I915_{READ,WRITE}. */
2108 intel_uncore_check_errors(dev);
2109
2110 /* disable master interrupt before clearing iir */
2111 de_ier = I915_READ(DEIER);
2112 I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
2113 POSTING_READ(DEIER);
2114
2115 /* Disable south interrupts. We'll only write to SDEIIR once, so further
2116 * interrupts will will be stored on its back queue, and then we'll be
2117 * able to process them after we restore SDEIER (as soon as we restore
2118 * it, we'll get an interrupt if SDEIIR still has something to process
2119 * due to its back queue). */
2120 if (!HAS_PCH_NOP(dev)) {
2121 sde_ier = I915_READ(SDEIER);
2122 I915_WRITE(SDEIER, 0);
2123 POSTING_READ(SDEIER);
2124 }
2125
2126 /* Find, clear, then process each source of interrupt */
2127
2128 gt_iir = I915_READ(GTIIR);
2129 if (gt_iir) {
2130 I915_WRITE(GTIIR, gt_iir);
2131 ret = IRQ_HANDLED;
2132 if (INTEL_INFO(dev)->gen >= 6)
2133 snb_gt_irq_handler(dev, dev_priv, gt_iir);
2134 else
2135 ilk_gt_irq_handler(dev, dev_priv, gt_iir);
2136 }
2137
2138 de_iir = I915_READ(DEIIR);
2139 if (de_iir) {
2140 I915_WRITE(DEIIR, de_iir);
2141 ret = IRQ_HANDLED;
2142 if (INTEL_INFO(dev)->gen >= 7)
2143 ivb_display_irq_handler(dev, de_iir);
2144 else
2145 ilk_display_irq_handler(dev, de_iir);
2146 }
2147
2148 if (INTEL_INFO(dev)->gen >= 6) {
2149 u32 pm_iir = I915_READ(GEN6_PMIIR);
2150 if (pm_iir) {
2151 I915_WRITE(GEN6_PMIIR, pm_iir);
2152 ret = IRQ_HANDLED;
2153 gen6_rps_irq_handler(dev_priv, pm_iir);
2154 }
2155 }
2156
2157 I915_WRITE(DEIER, de_ier);
2158 POSTING_READ(DEIER);
2159 if (!HAS_PCH_NOP(dev)) {
2160 I915_WRITE(SDEIER, sde_ier);
2161 POSTING_READ(SDEIER);
2162 }
2163
2164 return ret;
2165 }
2166
gen8_irq_handler(int irq,void * arg)2167 static irqreturn_t gen8_irq_handler(int irq, void *arg)
2168 {
2169 struct drm_device *dev = arg;
2170 struct drm_i915_private *dev_priv = dev->dev_private;
2171 u32 master_ctl;
2172 irqreturn_t ret = IRQ_NONE;
2173 uint32_t tmp = 0;
2174 enum pipe pipe;
2175 u32 aux_mask = GEN8_AUX_CHANNEL_A;
2176
2177 if (!intel_irqs_enabled(dev_priv))
2178 return IRQ_NONE;
2179
2180 if (IS_GEN9(dev))
2181 aux_mask |= GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
2182 GEN9_AUX_CHANNEL_D;
2183
2184 master_ctl = I915_READ(GEN8_MASTER_IRQ);
2185 master_ctl &= ~GEN8_MASTER_IRQ_CONTROL;
2186 if (!master_ctl)
2187 return IRQ_NONE;
2188
2189 I915_WRITE(GEN8_MASTER_IRQ, 0);
2190 POSTING_READ(GEN8_MASTER_IRQ);
2191
2192 /* Find, clear, then process each source of interrupt */
2193
2194 ret = gen8_gt_irq_handler(dev, dev_priv, master_ctl);
2195
2196 if (master_ctl & GEN8_DE_MISC_IRQ) {
2197 tmp = I915_READ(GEN8_DE_MISC_IIR);
2198 if (tmp) {
2199 I915_WRITE(GEN8_DE_MISC_IIR, tmp);
2200 ret = IRQ_HANDLED;
2201 if (tmp & GEN8_DE_MISC_GSE)
2202 intel_opregion_asle_intr(dev);
2203 else
2204 DRM_ERROR("Unexpected DE Misc interrupt\n");
2205 }
2206 else
2207 DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
2208 }
2209
2210 if (master_ctl & GEN8_DE_PORT_IRQ) {
2211 tmp = I915_READ(GEN8_DE_PORT_IIR);
2212 if (tmp) {
2213 I915_WRITE(GEN8_DE_PORT_IIR, tmp);
2214 ret = IRQ_HANDLED;
2215
2216 if (tmp & aux_mask)
2217 dp_aux_irq_handler(dev);
2218 else
2219 DRM_ERROR("Unexpected DE Port interrupt\n");
2220 }
2221 else
2222 DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
2223 }
2224
2225 for_each_pipe(dev_priv, pipe) {
2226 uint32_t pipe_iir, flip_done = 0, fault_errors = 0;
2227
2228 if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2229 continue;
2230
2231 pipe_iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2232 if (pipe_iir) {
2233 ret = IRQ_HANDLED;
2234 I915_WRITE(GEN8_DE_PIPE_IIR(pipe), pipe_iir);
2235
2236 if (pipe_iir & GEN8_PIPE_VBLANK &&
2237 intel_pipe_handle_vblank(dev, pipe))
2238 intel_check_page_flip(dev, pipe);
2239
2240 if (IS_GEN9(dev))
2241 flip_done = pipe_iir & GEN9_PIPE_PLANE1_FLIP_DONE;
2242 else
2243 flip_done = pipe_iir & GEN8_PIPE_PRIMARY_FLIP_DONE;
2244
2245 if (flip_done) {
2246 intel_prepare_page_flip(dev, pipe);
2247 intel_finish_page_flip_plane(dev, pipe);
2248 }
2249
2250 if (pipe_iir & GEN8_PIPE_CDCLK_CRC_DONE)
2251 hsw_pipe_crc_irq_handler(dev, pipe);
2252
2253 if (pipe_iir & GEN8_PIPE_FIFO_UNDERRUN)
2254 intel_cpu_fifo_underrun_irq_handler(dev_priv,
2255 pipe);
2256
2257
2258 if (IS_GEN9(dev))
2259 fault_errors = pipe_iir & GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
2260 else
2261 fault_errors = pipe_iir & GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
2262
2263 if (fault_errors)
2264 DRM_ERROR("Fault errors on pipe %c\n: 0x%08x",
2265 pipe_name(pipe),
2266 pipe_iir & GEN8_DE_PIPE_IRQ_FAULT_ERRORS);
2267 } else
2268 DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
2269 }
2270
2271 if (!HAS_PCH_NOP(dev) && master_ctl & GEN8_DE_PCH_IRQ) {
2272 /*
2273 * FIXME(BDW): Assume for now that the new interrupt handling
2274 * scheme also closed the SDE interrupt handling race we've seen
2275 * on older pch-split platforms. But this needs testing.
2276 */
2277 u32 pch_iir = I915_READ(SDEIIR);
2278 if (pch_iir) {
2279 I915_WRITE(SDEIIR, pch_iir);
2280 ret = IRQ_HANDLED;
2281 cpt_irq_handler(dev, pch_iir);
2282 } else
2283 DRM_ERROR("The master control interrupt lied (SDE)!\n");
2284
2285 }
2286
2287 I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2288 POSTING_READ(GEN8_MASTER_IRQ);
2289
2290 return ret;
2291 }
2292
i915_error_wake_up(struct drm_i915_private * dev_priv,bool reset_completed)2293 static void i915_error_wake_up(struct drm_i915_private *dev_priv,
2294 bool reset_completed)
2295 {
2296 struct intel_engine_cs *ring;
2297 int i;
2298
2299 /*
2300 * Notify all waiters for GPU completion events that reset state has
2301 * been changed, and that they need to restart their wait after
2302 * checking for potential errors (and bail out to drop locks if there is
2303 * a gpu reset pending so that i915_error_work_func can acquire them).
2304 */
2305
2306 /* Wake up __wait_seqno, potentially holding dev->struct_mutex. */
2307 for_each_ring(ring, dev_priv, i)
2308 wake_up_all(&ring->irq_queue);
2309
2310 /* Wake up intel_crtc_wait_for_pending_flips, holding crtc->mutex. */
2311 wake_up_all(&dev_priv->pending_flip_queue);
2312
2313 /*
2314 * Signal tasks blocked in i915_gem_wait_for_error that the pending
2315 * reset state is cleared.
2316 */
2317 if (reset_completed)
2318 wake_up_all(&dev_priv->gpu_error.reset_queue);
2319 }
2320
2321 /**
2322 * i915_reset_and_wakeup - do process context error handling work
2323 *
2324 * Fire an error uevent so userspace can see that a hang or error
2325 * was detected.
2326 */
i915_reset_and_wakeup(struct drm_device * dev)2327 static void i915_reset_and_wakeup(struct drm_device *dev)
2328 {
2329 struct drm_i915_private *dev_priv = to_i915(dev);
2330 struct i915_gpu_error *error = &dev_priv->gpu_error;
2331 char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
2332 char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
2333 char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
2334 int ret;
2335
2336 kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE, error_event);
2337
2338 /*
2339 * Note that there's only one work item which does gpu resets, so we
2340 * need not worry about concurrent gpu resets potentially incrementing
2341 * error->reset_counter twice. We only need to take care of another
2342 * racing irq/hangcheck declaring the gpu dead for a second time. A
2343 * quick check for that is good enough: schedule_work ensures the
2344 * correct ordering between hang detection and this work item, and since
2345 * the reset in-progress bit is only ever set by code outside of this
2346 * work we don't need to worry about any other races.
2347 */
2348 if (i915_reset_in_progress(error) && !i915_terminally_wedged(error)) {
2349 DRM_DEBUG_DRIVER("resetting chip\n");
2350 kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE,
2351 reset_event);
2352
2353 /*
2354 * In most cases it's guaranteed that we get here with an RPM
2355 * reference held, for example because there is a pending GPU
2356 * request that won't finish until the reset is done. This
2357 * isn't the case at least when we get here by doing a
2358 * simulated reset via debugs, so get an RPM reference.
2359 */
2360 intel_runtime_pm_get(dev_priv);
2361
2362 intel_prepare_reset(dev);
2363
2364 /*
2365 * All state reset _must_ be completed before we update the
2366 * reset counter, for otherwise waiters might miss the reset
2367 * pending state and not properly drop locks, resulting in
2368 * deadlocks with the reset work.
2369 */
2370 ret = i915_reset(dev);
2371
2372 intel_finish_reset(dev);
2373
2374 intel_runtime_pm_put(dev_priv);
2375
2376 if (ret == 0) {
2377 /*
2378 * After all the gem state is reset, increment the reset
2379 * counter and wake up everyone waiting for the reset to
2380 * complete.
2381 *
2382 * Since unlock operations are a one-sided barrier only,
2383 * we need to insert a barrier here to order any seqno
2384 * updates before
2385 * the counter increment.
2386 */
2387 smp_mb__before_atomic();
2388 atomic_inc(&dev_priv->gpu_error.reset_counter);
2389
2390 kobject_uevent_env(&dev->primary->kdev->kobj,
2391 KOBJ_CHANGE, reset_done_event);
2392 } else {
2393 atomic_set_mask(I915_WEDGED, &error->reset_counter);
2394 }
2395
2396 /*
2397 * Note: The wake_up also serves as a memory barrier so that
2398 * waiters see the update value of the reset counter atomic_t.
2399 */
2400 i915_error_wake_up(dev_priv, true);
2401 }
2402 }
2403
i915_report_and_clear_eir(struct drm_device * dev)2404 static void i915_report_and_clear_eir(struct drm_device *dev)
2405 {
2406 struct drm_i915_private *dev_priv = dev->dev_private;
2407 uint32_t instdone[I915_NUM_INSTDONE_REG];
2408 u32 eir = I915_READ(EIR);
2409 int pipe, i;
2410
2411 if (!eir)
2412 return;
2413
2414 pr_err("render error detected, EIR: 0x%08x\n", eir);
2415
2416 i915_get_extra_instdone(dev, instdone);
2417
2418 if (IS_G4X(dev)) {
2419 if (eir & (GM45_ERROR_MEM_PRIV | GM45_ERROR_CP_PRIV)) {
2420 u32 ipeir = I915_READ(IPEIR_I965);
2421
2422 pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2423 pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2424 for (i = 0; i < ARRAY_SIZE(instdone); i++)
2425 pr_err(" INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2426 pr_err(" INSTPS: 0x%08x\n", I915_READ(INSTPS));
2427 pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2428 I915_WRITE(IPEIR_I965, ipeir);
2429 POSTING_READ(IPEIR_I965);
2430 }
2431 if (eir & GM45_ERROR_PAGE_TABLE) {
2432 u32 pgtbl_err = I915_READ(PGTBL_ER);
2433 pr_err("page table error\n");
2434 pr_err(" PGTBL_ER: 0x%08x\n", pgtbl_err);
2435 I915_WRITE(PGTBL_ER, pgtbl_err);
2436 POSTING_READ(PGTBL_ER);
2437 }
2438 }
2439
2440 if (!IS_GEN2(dev)) {
2441 if (eir & I915_ERROR_PAGE_TABLE) {
2442 u32 pgtbl_err = I915_READ(PGTBL_ER);
2443 pr_err("page table error\n");
2444 pr_err(" PGTBL_ER: 0x%08x\n", pgtbl_err);
2445 I915_WRITE(PGTBL_ER, pgtbl_err);
2446 POSTING_READ(PGTBL_ER);
2447 }
2448 }
2449
2450 if (eir & I915_ERROR_MEMORY_REFRESH) {
2451 pr_err("memory refresh error:\n");
2452 for_each_pipe(dev_priv, pipe)
2453 pr_err("pipe %c stat: 0x%08x\n",
2454 pipe_name(pipe), I915_READ(PIPESTAT(pipe)));
2455 /* pipestat has already been acked */
2456 }
2457 if (eir & I915_ERROR_INSTRUCTION) {
2458 pr_err("instruction error\n");
2459 pr_err(" INSTPM: 0x%08x\n", I915_READ(INSTPM));
2460 for (i = 0; i < ARRAY_SIZE(instdone); i++)
2461 pr_err(" INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2462 if (INTEL_INFO(dev)->gen < 4) {
2463 u32 ipeir = I915_READ(IPEIR);
2464
2465 pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR));
2466 pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR));
2467 pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD));
2468 I915_WRITE(IPEIR, ipeir);
2469 POSTING_READ(IPEIR);
2470 } else {
2471 u32 ipeir = I915_READ(IPEIR_I965);
2472
2473 pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2474 pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2475 pr_err(" INSTPS: 0x%08x\n", I915_READ(INSTPS));
2476 pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2477 I915_WRITE(IPEIR_I965, ipeir);
2478 POSTING_READ(IPEIR_I965);
2479 }
2480 }
2481
2482 I915_WRITE(EIR, eir);
2483 POSTING_READ(EIR);
2484 eir = I915_READ(EIR);
2485 if (eir) {
2486 /*
2487 * some errors might have become stuck,
2488 * mask them.
2489 */
2490 DRM_ERROR("EIR stuck: 0x%08x, masking\n", eir);
2491 I915_WRITE(EMR, I915_READ(EMR) | eir);
2492 I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2493 }
2494 }
2495
2496 /**
2497 * i915_handle_error - handle a gpu error
2498 * @dev: drm device
2499 *
2500 * Do some basic checking of regsiter state at error time and
2501 * dump it to the syslog. Also call i915_capture_error_state() to make
2502 * sure we get a record and make it available in debugfs. Fire a uevent
2503 * so userspace knows something bad happened (should trigger collection
2504 * of a ring dump etc.).
2505 */
i915_handle_error(struct drm_device * dev,bool wedged,const char * fmt,...)2506 void i915_handle_error(struct drm_device *dev, bool wedged,
2507 const char *fmt, ...)
2508 {
2509 struct drm_i915_private *dev_priv = dev->dev_private;
2510 va_list args;
2511 char error_msg[80];
2512
2513 va_start(args, fmt);
2514 vscnprintf(error_msg, sizeof(error_msg), fmt, args);
2515 va_end(args);
2516
2517 i915_capture_error_state(dev, wedged, error_msg);
2518 i915_report_and_clear_eir(dev);
2519
2520 if (wedged) {
2521 atomic_set_mask(I915_RESET_IN_PROGRESS_FLAG,
2522 &dev_priv->gpu_error.reset_counter);
2523
2524 /*
2525 * Wakeup waiting processes so that the reset function
2526 * i915_reset_and_wakeup doesn't deadlock trying to grab
2527 * various locks. By bumping the reset counter first, the woken
2528 * processes will see a reset in progress and back off,
2529 * releasing their locks and then wait for the reset completion.
2530 * We must do this for _all_ gpu waiters that might hold locks
2531 * that the reset work needs to acquire.
2532 *
2533 * Note: The wake_up serves as the required memory barrier to
2534 * ensure that the waiters see the updated value of the reset
2535 * counter atomic_t.
2536 */
2537 i915_error_wake_up(dev_priv, false);
2538 }
2539
2540 i915_reset_and_wakeup(dev);
2541 }
2542
2543 /* Called from drm generic code, passed 'crtc' which
2544 * we use as a pipe index
2545 */
i915_enable_vblank(struct drm_device * dev,int pipe)2546 static int i915_enable_vblank(struct drm_device *dev, int pipe)
2547 {
2548 struct drm_i915_private *dev_priv = dev->dev_private;
2549 unsigned long irqflags;
2550
2551 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2552 if (INTEL_INFO(dev)->gen >= 4)
2553 i915_enable_pipestat(dev_priv, pipe,
2554 PIPE_START_VBLANK_INTERRUPT_STATUS);
2555 else
2556 i915_enable_pipestat(dev_priv, pipe,
2557 PIPE_VBLANK_INTERRUPT_STATUS);
2558 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2559
2560 return 0;
2561 }
2562
ironlake_enable_vblank(struct drm_device * dev,int pipe)2563 static int ironlake_enable_vblank(struct drm_device *dev, int pipe)
2564 {
2565 struct drm_i915_private *dev_priv = dev->dev_private;
2566 unsigned long irqflags;
2567 uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2568 DE_PIPE_VBLANK(pipe);
2569
2570 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2571 ironlake_enable_display_irq(dev_priv, bit);
2572 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2573
2574 return 0;
2575 }
2576
valleyview_enable_vblank(struct drm_device * dev,int pipe)2577 static int valleyview_enable_vblank(struct drm_device *dev, int pipe)
2578 {
2579 struct drm_i915_private *dev_priv = dev->dev_private;
2580 unsigned long irqflags;
2581
2582 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2583 i915_enable_pipestat(dev_priv, pipe,
2584 PIPE_START_VBLANK_INTERRUPT_STATUS);
2585 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2586
2587 return 0;
2588 }
2589
gen8_enable_vblank(struct drm_device * dev,int pipe)2590 static int gen8_enable_vblank(struct drm_device *dev, int pipe)
2591 {
2592 struct drm_i915_private *dev_priv = dev->dev_private;
2593 unsigned long irqflags;
2594
2595 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2596 dev_priv->de_irq_mask[pipe] &= ~GEN8_PIPE_VBLANK;
2597 I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
2598 POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
2599 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2600 return 0;
2601 }
2602
2603 /* Called from drm generic code, passed 'crtc' which
2604 * we use as a pipe index
2605 */
i915_disable_vblank(struct drm_device * dev,int pipe)2606 static void i915_disable_vblank(struct drm_device *dev, int pipe)
2607 {
2608 struct drm_i915_private *dev_priv = dev->dev_private;
2609 unsigned long irqflags;
2610
2611 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2612 i915_disable_pipestat(dev_priv, pipe,
2613 PIPE_VBLANK_INTERRUPT_STATUS |
2614 PIPE_START_VBLANK_INTERRUPT_STATUS);
2615 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2616 }
2617
ironlake_disable_vblank(struct drm_device * dev,int pipe)2618 static void ironlake_disable_vblank(struct drm_device *dev, int pipe)
2619 {
2620 struct drm_i915_private *dev_priv = dev->dev_private;
2621 unsigned long irqflags;
2622 uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2623 DE_PIPE_VBLANK(pipe);
2624
2625 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2626 ironlake_disable_display_irq(dev_priv, bit);
2627 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2628 }
2629
valleyview_disable_vblank(struct drm_device * dev,int pipe)2630 static void valleyview_disable_vblank(struct drm_device *dev, int pipe)
2631 {
2632 struct drm_i915_private *dev_priv = dev->dev_private;
2633 unsigned long irqflags;
2634
2635 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2636 i915_disable_pipestat(dev_priv, pipe,
2637 PIPE_START_VBLANK_INTERRUPT_STATUS);
2638 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2639 }
2640
gen8_disable_vblank(struct drm_device * dev,int pipe)2641 static void gen8_disable_vblank(struct drm_device *dev, int pipe)
2642 {
2643 struct drm_i915_private *dev_priv = dev->dev_private;
2644 unsigned long irqflags;
2645
2646 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2647 dev_priv->de_irq_mask[pipe] |= GEN8_PIPE_VBLANK;
2648 I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
2649 POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
2650 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2651 }
2652
2653 static bool
ring_idle(struct intel_engine_cs * ring,u32 seqno)2654 ring_idle(struct intel_engine_cs *ring, u32 seqno)
2655 {
2656 return (list_empty(&ring->request_list) ||
2657 i915_seqno_passed(seqno, ring->last_submitted_seqno));
2658 }
2659
2660 static bool
ipehr_is_semaphore_wait(struct drm_device * dev,u32 ipehr)2661 ipehr_is_semaphore_wait(struct drm_device *dev, u32 ipehr)
2662 {
2663 if (INTEL_INFO(dev)->gen >= 8) {
2664 return (ipehr >> 23) == 0x1c;
2665 } else {
2666 ipehr &= ~MI_SEMAPHORE_SYNC_MASK;
2667 return ipehr == (MI_SEMAPHORE_MBOX | MI_SEMAPHORE_COMPARE |
2668 MI_SEMAPHORE_REGISTER);
2669 }
2670 }
2671
2672 static struct intel_engine_cs *
semaphore_wait_to_signaller_ring(struct intel_engine_cs * ring,u32 ipehr,u64 offset)2673 semaphore_wait_to_signaller_ring(struct intel_engine_cs *ring, u32 ipehr, u64 offset)
2674 {
2675 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2676 struct intel_engine_cs *signaller;
2677 int i;
2678
2679 if (INTEL_INFO(dev_priv->dev)->gen >= 8) {
2680 for_each_ring(signaller, dev_priv, i) {
2681 if (ring == signaller)
2682 continue;
2683
2684 if (offset == signaller->semaphore.signal_ggtt[ring->id])
2685 return signaller;
2686 }
2687 } else {
2688 u32 sync_bits = ipehr & MI_SEMAPHORE_SYNC_MASK;
2689
2690 for_each_ring(signaller, dev_priv, i) {
2691 if(ring == signaller)
2692 continue;
2693
2694 if (sync_bits == signaller->semaphore.mbox.wait[ring->id])
2695 return signaller;
2696 }
2697 }
2698
2699 DRM_ERROR("No signaller ring found for ring %i, ipehr 0x%08x, offset 0x%016llx\n",
2700 ring->id, ipehr, offset);
2701
2702 return NULL;
2703 }
2704
2705 static struct intel_engine_cs *
semaphore_waits_for(struct intel_engine_cs * ring,u32 * seqno)2706 semaphore_waits_for(struct intel_engine_cs *ring, u32 *seqno)
2707 {
2708 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2709 u32 cmd, ipehr, head;
2710 u64 offset = 0;
2711 int i, backwards;
2712
2713 ipehr = I915_READ(RING_IPEHR(ring->mmio_base));
2714 if (!ipehr_is_semaphore_wait(ring->dev, ipehr))
2715 return NULL;
2716
2717 /*
2718 * HEAD is likely pointing to the dword after the actual command,
2719 * so scan backwards until we find the MBOX. But limit it to just 3
2720 * or 4 dwords depending on the semaphore wait command size.
2721 * Note that we don't care about ACTHD here since that might
2722 * point at at batch, and semaphores are always emitted into the
2723 * ringbuffer itself.
2724 */
2725 head = I915_READ_HEAD(ring) & HEAD_ADDR;
2726 backwards = (INTEL_INFO(ring->dev)->gen >= 8) ? 5 : 4;
2727
2728 for (i = backwards; i; --i) {
2729 /*
2730 * Be paranoid and presume the hw has gone off into the wild -
2731 * our ring is smaller than what the hardware (and hence
2732 * HEAD_ADDR) allows. Also handles wrap-around.
2733 */
2734 head &= ring->buffer->size - 1;
2735
2736 /* This here seems to blow up */
2737 cmd = ioread32(ring->buffer->virtual_start + head);
2738 if (cmd == ipehr)
2739 break;
2740
2741 head -= 4;
2742 }
2743
2744 if (!i)
2745 return NULL;
2746
2747 *seqno = ioread32(ring->buffer->virtual_start + head + 4) + 1;
2748 if (INTEL_INFO(ring->dev)->gen >= 8) {
2749 offset = ioread32(ring->buffer->virtual_start + head + 12);
2750 offset <<= 32;
2751 offset = ioread32(ring->buffer->virtual_start + head + 8);
2752 }
2753 return semaphore_wait_to_signaller_ring(ring, ipehr, offset);
2754 }
2755
semaphore_passed(struct intel_engine_cs * ring)2756 static int semaphore_passed(struct intel_engine_cs *ring)
2757 {
2758 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2759 struct intel_engine_cs *signaller;
2760 u32 seqno;
2761
2762 ring->hangcheck.deadlock++;
2763
2764 signaller = semaphore_waits_for(ring, &seqno);
2765 if (signaller == NULL)
2766 return -1;
2767
2768 /* Prevent pathological recursion due to driver bugs */
2769 if (signaller->hangcheck.deadlock >= I915_NUM_RINGS)
2770 return -1;
2771
2772 if (i915_seqno_passed(signaller->get_seqno(signaller, false), seqno))
2773 return 1;
2774
2775 /* cursory check for an unkickable deadlock */
2776 if (I915_READ_CTL(signaller) & RING_WAIT_SEMAPHORE &&
2777 semaphore_passed(signaller) < 0)
2778 return -1;
2779
2780 return 0;
2781 }
2782
semaphore_clear_deadlocks(struct drm_i915_private * dev_priv)2783 static void semaphore_clear_deadlocks(struct drm_i915_private *dev_priv)
2784 {
2785 struct intel_engine_cs *ring;
2786 int i;
2787
2788 for_each_ring(ring, dev_priv, i)
2789 ring->hangcheck.deadlock = 0;
2790 }
2791
2792 static enum intel_ring_hangcheck_action
ring_stuck(struct intel_engine_cs * ring,u64 acthd)2793 ring_stuck(struct intel_engine_cs *ring, u64 acthd)
2794 {
2795 struct drm_device *dev = ring->dev;
2796 struct drm_i915_private *dev_priv = dev->dev_private;
2797 u32 tmp;
2798
2799 if (acthd != ring->hangcheck.acthd) {
2800 if (acthd > ring->hangcheck.max_acthd) {
2801 ring->hangcheck.max_acthd = acthd;
2802 return HANGCHECK_ACTIVE;
2803 }
2804
2805 return HANGCHECK_ACTIVE_LOOP;
2806 }
2807
2808 if (IS_GEN2(dev))
2809 return HANGCHECK_HUNG;
2810
2811 /* Is the chip hanging on a WAIT_FOR_EVENT?
2812 * If so we can simply poke the RB_WAIT bit
2813 * and break the hang. This should work on
2814 * all but the second generation chipsets.
2815 */
2816 tmp = I915_READ_CTL(ring);
2817 if (tmp & RING_WAIT) {
2818 i915_handle_error(dev, false,
2819 "Kicking stuck wait on %s",
2820 ring->name);
2821 I915_WRITE_CTL(ring, tmp);
2822 return HANGCHECK_KICK;
2823 }
2824
2825 if (INTEL_INFO(dev)->gen >= 6 && tmp & RING_WAIT_SEMAPHORE) {
2826 switch (semaphore_passed(ring)) {
2827 default:
2828 return HANGCHECK_HUNG;
2829 case 1:
2830 i915_handle_error(dev, false,
2831 "Kicking stuck semaphore on %s",
2832 ring->name);
2833 I915_WRITE_CTL(ring, tmp);
2834 return HANGCHECK_KICK;
2835 case 0:
2836 return HANGCHECK_WAIT;
2837 }
2838 }
2839
2840 return HANGCHECK_HUNG;
2841 }
2842
2843 /*
2844 * This is called when the chip hasn't reported back with completed
2845 * batchbuffers in a long time. We keep track per ring seqno progress and
2846 * if there are no progress, hangcheck score for that ring is increased.
2847 * Further, acthd is inspected to see if the ring is stuck. On stuck case
2848 * we kick the ring. If we see no progress on three subsequent calls
2849 * we assume chip is wedged and try to fix it by resetting the chip.
2850 */
i915_hangcheck_elapsed(struct work_struct * work)2851 static void i915_hangcheck_elapsed(struct work_struct *work)
2852 {
2853 struct drm_i915_private *dev_priv =
2854 container_of(work, typeof(*dev_priv),
2855 gpu_error.hangcheck_work.work);
2856 struct drm_device *dev = dev_priv->dev;
2857 struct intel_engine_cs *ring;
2858 int i;
2859 int busy_count = 0, rings_hung = 0;
2860 bool stuck[I915_NUM_RINGS] = { 0 };
2861 #define BUSY 1
2862 #define KICK 5
2863 #define HUNG 20
2864
2865 if (!i915.enable_hangcheck)
2866 return;
2867
2868 for_each_ring(ring, dev_priv, i) {
2869 u64 acthd;
2870 u32 seqno;
2871 bool busy = true;
2872
2873 semaphore_clear_deadlocks(dev_priv);
2874
2875 seqno = ring->get_seqno(ring, false);
2876 acthd = intel_ring_get_active_head(ring);
2877
2878 if (ring->hangcheck.seqno == seqno) {
2879 if (ring_idle(ring, seqno)) {
2880 ring->hangcheck.action = HANGCHECK_IDLE;
2881
2882 if (waitqueue_active(&ring->irq_queue)) {
2883 /* Issue a wake-up to catch stuck h/w. */
2884 if (!test_and_set_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings)) {
2885 if (!(dev_priv->gpu_error.test_irq_rings & intel_ring_flag(ring)))
2886 DRM_ERROR("Hangcheck timer elapsed... %s idle\n",
2887 ring->name);
2888 else
2889 DRM_INFO("Fake missed irq on %s\n",
2890 ring->name);
2891 wake_up_all(&ring->irq_queue);
2892 }
2893 /* Safeguard against driver failure */
2894 ring->hangcheck.score += BUSY;
2895 } else
2896 busy = false;
2897 } else {
2898 /* We always increment the hangcheck score
2899 * if the ring is busy and still processing
2900 * the same request, so that no single request
2901 * can run indefinitely (such as a chain of
2902 * batches). The only time we do not increment
2903 * the hangcheck score on this ring, if this
2904 * ring is in a legitimate wait for another
2905 * ring. In that case the waiting ring is a
2906 * victim and we want to be sure we catch the
2907 * right culprit. Then every time we do kick
2908 * the ring, add a small increment to the
2909 * score so that we can catch a batch that is
2910 * being repeatedly kicked and so responsible
2911 * for stalling the machine.
2912 */
2913 ring->hangcheck.action = ring_stuck(ring,
2914 acthd);
2915
2916 switch (ring->hangcheck.action) {
2917 case HANGCHECK_IDLE:
2918 case HANGCHECK_WAIT:
2919 case HANGCHECK_ACTIVE:
2920 break;
2921 case HANGCHECK_ACTIVE_LOOP:
2922 ring->hangcheck.score += BUSY;
2923 break;
2924 case HANGCHECK_KICK:
2925 ring->hangcheck.score += KICK;
2926 break;
2927 case HANGCHECK_HUNG:
2928 ring->hangcheck.score += HUNG;
2929 stuck[i] = true;
2930 break;
2931 }
2932 }
2933 } else {
2934 ring->hangcheck.action = HANGCHECK_ACTIVE;
2935
2936 /* Gradually reduce the count so that we catch DoS
2937 * attempts across multiple batches.
2938 */
2939 if (ring->hangcheck.score > 0)
2940 ring->hangcheck.score--;
2941
2942 ring->hangcheck.acthd = ring->hangcheck.max_acthd = 0;
2943 }
2944
2945 ring->hangcheck.seqno = seqno;
2946 ring->hangcheck.acthd = acthd;
2947 busy_count += busy;
2948 }
2949
2950 for_each_ring(ring, dev_priv, i) {
2951 if (ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG) {
2952 DRM_INFO("%s on %s\n",
2953 stuck[i] ? "stuck" : "no progress",
2954 ring->name);
2955 rings_hung++;
2956 }
2957 }
2958
2959 if (rings_hung)
2960 return i915_handle_error(dev, true, "Ring hung");
2961
2962 if (busy_count)
2963 /* Reset timer case chip hangs without another request
2964 * being added */
2965 i915_queue_hangcheck(dev);
2966 }
2967
i915_queue_hangcheck(struct drm_device * dev)2968 void i915_queue_hangcheck(struct drm_device *dev)
2969 {
2970 struct i915_gpu_error *e = &to_i915(dev)->gpu_error;
2971
2972 if (!i915.enable_hangcheck)
2973 return;
2974
2975 /* Don't continually defer the hangcheck so that it is always run at
2976 * least once after work has been scheduled on any ring. Otherwise,
2977 * we will ignore a hung ring if a second ring is kept busy.
2978 */
2979
2980 queue_delayed_work(e->hangcheck_wq, &e->hangcheck_work,
2981 round_jiffies_up_relative(DRM_I915_HANGCHECK_JIFFIES));
2982 }
2983
ibx_irq_reset(struct drm_device * dev)2984 static void ibx_irq_reset(struct drm_device *dev)
2985 {
2986 struct drm_i915_private *dev_priv = dev->dev_private;
2987
2988 if (HAS_PCH_NOP(dev))
2989 return;
2990
2991 GEN5_IRQ_RESET(SDE);
2992
2993 if (HAS_PCH_CPT(dev) || HAS_PCH_LPT(dev))
2994 I915_WRITE(SERR_INT, 0xffffffff);
2995 }
2996
2997 /*
2998 * SDEIER is also touched by the interrupt handler to work around missed PCH
2999 * interrupts. Hence we can't update it after the interrupt handler is enabled -
3000 * instead we unconditionally enable all PCH interrupt sources here, but then
3001 * only unmask them as needed with SDEIMR.
3002 *
3003 * This function needs to be called before interrupts are enabled.
3004 */
ibx_irq_pre_postinstall(struct drm_device * dev)3005 static void ibx_irq_pre_postinstall(struct drm_device *dev)
3006 {
3007 struct drm_i915_private *dev_priv = dev->dev_private;
3008
3009 if (HAS_PCH_NOP(dev))
3010 return;
3011
3012 WARN_ON(I915_READ(SDEIER) != 0);
3013 I915_WRITE(SDEIER, 0xffffffff);
3014 POSTING_READ(SDEIER);
3015 }
3016
gen5_gt_irq_reset(struct drm_device * dev)3017 static void gen5_gt_irq_reset(struct drm_device *dev)
3018 {
3019 struct drm_i915_private *dev_priv = dev->dev_private;
3020
3021 GEN5_IRQ_RESET(GT);
3022 if (INTEL_INFO(dev)->gen >= 6)
3023 GEN5_IRQ_RESET(GEN6_PM);
3024 }
3025
3026 /* drm_dma.h hooks
3027 */
ironlake_irq_reset(struct drm_device * dev)3028 static void ironlake_irq_reset(struct drm_device *dev)
3029 {
3030 struct drm_i915_private *dev_priv = dev->dev_private;
3031
3032 I915_WRITE(HWSTAM, 0xffffffff);
3033
3034 GEN5_IRQ_RESET(DE);
3035 if (IS_GEN7(dev))
3036 I915_WRITE(GEN7_ERR_INT, 0xffffffff);
3037
3038 gen5_gt_irq_reset(dev);
3039
3040 ibx_irq_reset(dev);
3041 }
3042
vlv_display_irq_reset(struct drm_i915_private * dev_priv)3043 static void vlv_display_irq_reset(struct drm_i915_private *dev_priv)
3044 {
3045 enum pipe pipe;
3046
3047 I915_WRITE(PORT_HOTPLUG_EN, 0);
3048 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3049
3050 for_each_pipe(dev_priv, pipe)
3051 I915_WRITE(PIPESTAT(pipe), 0xffff);
3052
3053 GEN5_IRQ_RESET(VLV_);
3054 }
3055
valleyview_irq_preinstall(struct drm_device * dev)3056 static void valleyview_irq_preinstall(struct drm_device *dev)
3057 {
3058 struct drm_i915_private *dev_priv = dev->dev_private;
3059
3060 /* VLV magic */
3061 I915_WRITE(VLV_IMR, 0);
3062 I915_WRITE(RING_IMR(RENDER_RING_BASE), 0);
3063 I915_WRITE(RING_IMR(GEN6_BSD_RING_BASE), 0);
3064 I915_WRITE(RING_IMR(BLT_RING_BASE), 0);
3065
3066 gen5_gt_irq_reset(dev);
3067
3068 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
3069
3070 vlv_display_irq_reset(dev_priv);
3071 }
3072
gen8_gt_irq_reset(struct drm_i915_private * dev_priv)3073 static void gen8_gt_irq_reset(struct drm_i915_private *dev_priv)
3074 {
3075 GEN8_IRQ_RESET_NDX(GT, 0);
3076 GEN8_IRQ_RESET_NDX(GT, 1);
3077 GEN8_IRQ_RESET_NDX(GT, 2);
3078 GEN8_IRQ_RESET_NDX(GT, 3);
3079 }
3080
gen8_irq_reset(struct drm_device * dev)3081 static void gen8_irq_reset(struct drm_device *dev)
3082 {
3083 struct drm_i915_private *dev_priv = dev->dev_private;
3084 int pipe;
3085
3086 I915_WRITE(GEN8_MASTER_IRQ, 0);
3087 POSTING_READ(GEN8_MASTER_IRQ);
3088
3089 gen8_gt_irq_reset(dev_priv);
3090
3091 for_each_pipe(dev_priv, pipe)
3092 if (intel_display_power_is_enabled(dev_priv,
3093 POWER_DOMAIN_PIPE(pipe)))
3094 GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3095
3096 GEN5_IRQ_RESET(GEN8_DE_PORT_);
3097 GEN5_IRQ_RESET(GEN8_DE_MISC_);
3098 GEN5_IRQ_RESET(GEN8_PCU_);
3099
3100 ibx_irq_reset(dev);
3101 }
3102
gen8_irq_power_well_post_enable(struct drm_i915_private * dev_priv,unsigned int pipe_mask)3103 void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv,
3104 unsigned int pipe_mask)
3105 {
3106 uint32_t extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN;
3107
3108 spin_lock_irq(&dev_priv->irq_lock);
3109 if (pipe_mask & 1 << PIPE_A)
3110 GEN8_IRQ_INIT_NDX(DE_PIPE, PIPE_A,
3111 dev_priv->de_irq_mask[PIPE_A],
3112 ~dev_priv->de_irq_mask[PIPE_A] | extra_ier);
3113 if (pipe_mask & 1 << PIPE_B)
3114 GEN8_IRQ_INIT_NDX(DE_PIPE, PIPE_B,
3115 dev_priv->de_irq_mask[PIPE_B],
3116 ~dev_priv->de_irq_mask[PIPE_B] | extra_ier);
3117 if (pipe_mask & 1 << PIPE_C)
3118 GEN8_IRQ_INIT_NDX(DE_PIPE, PIPE_C,
3119 dev_priv->de_irq_mask[PIPE_C],
3120 ~dev_priv->de_irq_mask[PIPE_C] | extra_ier);
3121 spin_unlock_irq(&dev_priv->irq_lock);
3122 }
3123
cherryview_irq_preinstall(struct drm_device * dev)3124 static void cherryview_irq_preinstall(struct drm_device *dev)
3125 {
3126 struct drm_i915_private *dev_priv = dev->dev_private;
3127
3128 I915_WRITE(GEN8_MASTER_IRQ, 0);
3129 POSTING_READ(GEN8_MASTER_IRQ);
3130
3131 gen8_gt_irq_reset(dev_priv);
3132
3133 GEN5_IRQ_RESET(GEN8_PCU_);
3134
3135 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
3136
3137 vlv_display_irq_reset(dev_priv);
3138 }
3139
ibx_hpd_irq_setup(struct drm_device * dev)3140 static void ibx_hpd_irq_setup(struct drm_device *dev)
3141 {
3142 struct drm_i915_private *dev_priv = dev->dev_private;
3143 struct intel_encoder *intel_encoder;
3144 u32 hotplug_irqs, hotplug, enabled_irqs = 0;
3145
3146 if (HAS_PCH_IBX(dev)) {
3147 hotplug_irqs = SDE_HOTPLUG_MASK;
3148 for_each_intel_encoder(dev, intel_encoder)
3149 if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
3150 enabled_irqs |= hpd_ibx[intel_encoder->hpd_pin];
3151 } else {
3152 hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
3153 for_each_intel_encoder(dev, intel_encoder)
3154 if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
3155 enabled_irqs |= hpd_cpt[intel_encoder->hpd_pin];
3156 }
3157
3158 ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3159
3160 /*
3161 * Enable digital hotplug on the PCH, and configure the DP short pulse
3162 * duration to 2ms (which is the minimum in the Display Port spec)
3163 *
3164 * This register is the same on all known PCH chips.
3165 */
3166 hotplug = I915_READ(PCH_PORT_HOTPLUG);
3167 hotplug &= ~(PORTD_PULSE_DURATION_MASK|PORTC_PULSE_DURATION_MASK|PORTB_PULSE_DURATION_MASK);
3168 hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
3169 hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
3170 hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
3171 I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3172 }
3173
ibx_irq_postinstall(struct drm_device * dev)3174 static void ibx_irq_postinstall(struct drm_device *dev)
3175 {
3176 struct drm_i915_private *dev_priv = dev->dev_private;
3177 u32 mask;
3178
3179 if (HAS_PCH_NOP(dev))
3180 return;
3181
3182 if (HAS_PCH_IBX(dev))
3183 mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
3184 else
3185 mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
3186
3187 GEN5_ASSERT_IIR_IS_ZERO(SDEIIR);
3188 I915_WRITE(SDEIMR, ~mask);
3189 }
3190
gen5_gt_irq_postinstall(struct drm_device * dev)3191 static void gen5_gt_irq_postinstall(struct drm_device *dev)
3192 {
3193 struct drm_i915_private *dev_priv = dev->dev_private;
3194 u32 pm_irqs, gt_irqs;
3195
3196 pm_irqs = gt_irqs = 0;
3197
3198 dev_priv->gt_irq_mask = ~0;
3199 if (HAS_L3_DPF(dev)) {
3200 /* L3 parity interrupt is always unmasked. */
3201 dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev);
3202 gt_irqs |= GT_PARITY_ERROR(dev);
3203 }
3204
3205 gt_irqs |= GT_RENDER_USER_INTERRUPT;
3206 if (IS_GEN5(dev)) {
3207 gt_irqs |= GT_RENDER_PIPECTL_NOTIFY_INTERRUPT |
3208 ILK_BSD_USER_INTERRUPT;
3209 } else {
3210 gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
3211 }
3212
3213 GEN5_IRQ_INIT(GT, dev_priv->gt_irq_mask, gt_irqs);
3214
3215 if (INTEL_INFO(dev)->gen >= 6) {
3216 /*
3217 * RPS interrupts will get enabled/disabled on demand when RPS
3218 * itself is enabled/disabled.
3219 */
3220 if (HAS_VEBOX(dev))
3221 pm_irqs |= PM_VEBOX_USER_INTERRUPT;
3222
3223 dev_priv->pm_irq_mask = 0xffffffff;
3224 GEN5_IRQ_INIT(GEN6_PM, dev_priv->pm_irq_mask, pm_irqs);
3225 }
3226 }
3227
ironlake_irq_postinstall(struct drm_device * dev)3228 static int ironlake_irq_postinstall(struct drm_device *dev)
3229 {
3230 struct drm_i915_private *dev_priv = dev->dev_private;
3231 u32 display_mask, extra_mask;
3232
3233 if (INTEL_INFO(dev)->gen >= 7) {
3234 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
3235 DE_PCH_EVENT_IVB | DE_PLANEC_FLIP_DONE_IVB |
3236 DE_PLANEB_FLIP_DONE_IVB |
3237 DE_PLANEA_FLIP_DONE_IVB | DE_AUX_CHANNEL_A_IVB);
3238 extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
3239 DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB);
3240 } else {
3241 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
3242 DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE |
3243 DE_AUX_CHANNEL_A |
3244 DE_PIPEB_CRC_DONE | DE_PIPEA_CRC_DONE |
3245 DE_POISON);
3246 extra_mask = DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
3247 DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN;
3248 }
3249
3250 dev_priv->irq_mask = ~display_mask;
3251
3252 I915_WRITE(HWSTAM, 0xeffe);
3253
3254 ibx_irq_pre_postinstall(dev);
3255
3256 GEN5_IRQ_INIT(DE, dev_priv->irq_mask, display_mask | extra_mask);
3257
3258 gen5_gt_irq_postinstall(dev);
3259
3260 ibx_irq_postinstall(dev);
3261
3262 if (IS_IRONLAKE_M(dev)) {
3263 /* Enable PCU event interrupts
3264 *
3265 * spinlocking not required here for correctness since interrupt
3266 * setup is guaranteed to run in single-threaded context. But we
3267 * need it to make the assert_spin_locked happy. */
3268 spin_lock_irq(&dev_priv->irq_lock);
3269 ironlake_enable_display_irq(dev_priv, DE_PCU_EVENT);
3270 spin_unlock_irq(&dev_priv->irq_lock);
3271 }
3272
3273 return 0;
3274 }
3275
valleyview_display_irqs_install(struct drm_i915_private * dev_priv)3276 static void valleyview_display_irqs_install(struct drm_i915_private *dev_priv)
3277 {
3278 u32 pipestat_mask;
3279 u32 iir_mask;
3280 enum pipe pipe;
3281
3282 pipestat_mask = PIPESTAT_INT_STATUS_MASK |
3283 PIPE_FIFO_UNDERRUN_STATUS;
3284
3285 for_each_pipe(dev_priv, pipe)
3286 I915_WRITE(PIPESTAT(pipe), pipestat_mask);
3287 POSTING_READ(PIPESTAT(PIPE_A));
3288
3289 pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3290 PIPE_CRC_DONE_INTERRUPT_STATUS;
3291
3292 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3293 for_each_pipe(dev_priv, pipe)
3294 i915_enable_pipestat(dev_priv, pipe, pipestat_mask);
3295
3296 iir_mask = I915_DISPLAY_PORT_INTERRUPT |
3297 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3298 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3299 if (IS_CHERRYVIEW(dev_priv))
3300 iir_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
3301 dev_priv->irq_mask &= ~iir_mask;
3302
3303 I915_WRITE(VLV_IIR, iir_mask);
3304 I915_WRITE(VLV_IIR, iir_mask);
3305 I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3306 I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3307 POSTING_READ(VLV_IMR);
3308 }
3309
valleyview_display_irqs_uninstall(struct drm_i915_private * dev_priv)3310 static void valleyview_display_irqs_uninstall(struct drm_i915_private *dev_priv)
3311 {
3312 u32 pipestat_mask;
3313 u32 iir_mask;
3314 enum pipe pipe;
3315
3316 iir_mask = I915_DISPLAY_PORT_INTERRUPT |
3317 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3318 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3319 if (IS_CHERRYVIEW(dev_priv))
3320 iir_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
3321
3322 dev_priv->irq_mask |= iir_mask;
3323 I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3324 I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3325 I915_WRITE(VLV_IIR, iir_mask);
3326 I915_WRITE(VLV_IIR, iir_mask);
3327 POSTING_READ(VLV_IIR);
3328
3329 pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3330 PIPE_CRC_DONE_INTERRUPT_STATUS;
3331
3332 i915_disable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3333 for_each_pipe(dev_priv, pipe)
3334 i915_disable_pipestat(dev_priv, pipe, pipestat_mask);
3335
3336 pipestat_mask = PIPESTAT_INT_STATUS_MASK |
3337 PIPE_FIFO_UNDERRUN_STATUS;
3338
3339 for_each_pipe(dev_priv, pipe)
3340 I915_WRITE(PIPESTAT(pipe), pipestat_mask);
3341 POSTING_READ(PIPESTAT(PIPE_A));
3342 }
3343
valleyview_enable_display_irqs(struct drm_i915_private * dev_priv)3344 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
3345 {
3346 assert_spin_locked(&dev_priv->irq_lock);
3347
3348 if (dev_priv->display_irqs_enabled)
3349 return;
3350
3351 dev_priv->display_irqs_enabled = true;
3352
3353 if (intel_irqs_enabled(dev_priv))
3354 valleyview_display_irqs_install(dev_priv);
3355 }
3356
valleyview_disable_display_irqs(struct drm_i915_private * dev_priv)3357 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
3358 {
3359 assert_spin_locked(&dev_priv->irq_lock);
3360
3361 if (!dev_priv->display_irqs_enabled)
3362 return;
3363
3364 dev_priv->display_irqs_enabled = false;
3365
3366 if (intel_irqs_enabled(dev_priv))
3367 valleyview_display_irqs_uninstall(dev_priv);
3368 }
3369
vlv_display_irq_postinstall(struct drm_i915_private * dev_priv)3370 static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv)
3371 {
3372 dev_priv->irq_mask = ~0;
3373
3374 I915_WRITE(PORT_HOTPLUG_EN, 0);
3375 POSTING_READ(PORT_HOTPLUG_EN);
3376
3377 I915_WRITE(VLV_IIR, 0xffffffff);
3378 I915_WRITE(VLV_IIR, 0xffffffff);
3379 I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3380 I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3381 POSTING_READ(VLV_IMR);
3382
3383 /* Interrupt setup is already guaranteed to be single-threaded, this is
3384 * just to make the assert_spin_locked check happy. */
3385 spin_lock_irq(&dev_priv->irq_lock);
3386 if (dev_priv->display_irqs_enabled)
3387 valleyview_display_irqs_install(dev_priv);
3388 spin_unlock_irq(&dev_priv->irq_lock);
3389 }
3390
valleyview_irq_postinstall(struct drm_device * dev)3391 static int valleyview_irq_postinstall(struct drm_device *dev)
3392 {
3393 struct drm_i915_private *dev_priv = dev->dev_private;
3394
3395 vlv_display_irq_postinstall(dev_priv);
3396
3397 gen5_gt_irq_postinstall(dev);
3398
3399 /* ack & enable invalid PTE error interrupts */
3400 #if 0 /* FIXME: add support to irq handler for checking these bits */
3401 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
3402 I915_WRITE(DPINVGTT, DPINVGTT_EN_MASK);
3403 #endif
3404
3405 I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
3406
3407 return 0;
3408 }
3409
gen8_gt_irq_postinstall(struct drm_i915_private * dev_priv)3410 static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv)
3411 {
3412 /* These are interrupts we'll toggle with the ring mask register */
3413 uint32_t gt_interrupts[] = {
3414 GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3415 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3416 GT_RENDER_L3_PARITY_ERROR_INTERRUPT |
3417 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT |
3418 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT,
3419 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3420 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3421 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT |
3422 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT,
3423 0,
3424 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT |
3425 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT
3426 };
3427
3428 dev_priv->pm_irq_mask = 0xffffffff;
3429 GEN8_IRQ_INIT_NDX(GT, 0, ~gt_interrupts[0], gt_interrupts[0]);
3430 GEN8_IRQ_INIT_NDX(GT, 1, ~gt_interrupts[1], gt_interrupts[1]);
3431 /*
3432 * RPS interrupts will get enabled/disabled on demand when RPS itself
3433 * is enabled/disabled.
3434 */
3435 GEN8_IRQ_INIT_NDX(GT, 2, dev_priv->pm_irq_mask, 0);
3436 GEN8_IRQ_INIT_NDX(GT, 3, ~gt_interrupts[3], gt_interrupts[3]);
3437 }
3438
gen8_de_irq_postinstall(struct drm_i915_private * dev_priv)3439 static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
3440 {
3441 uint32_t de_pipe_masked = GEN8_PIPE_CDCLK_CRC_DONE;
3442 uint32_t de_pipe_enables;
3443 int pipe;
3444 u32 aux_en = GEN8_AUX_CHANNEL_A;
3445
3446 if (IS_GEN9(dev_priv)) {
3447 de_pipe_masked |= GEN9_PIPE_PLANE1_FLIP_DONE |
3448 GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
3449 aux_en |= GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
3450 GEN9_AUX_CHANNEL_D;
3451 } else
3452 de_pipe_masked |= GEN8_PIPE_PRIMARY_FLIP_DONE |
3453 GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
3454
3455 de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
3456 GEN8_PIPE_FIFO_UNDERRUN;
3457
3458 dev_priv->de_irq_mask[PIPE_A] = ~de_pipe_masked;
3459 dev_priv->de_irq_mask[PIPE_B] = ~de_pipe_masked;
3460 dev_priv->de_irq_mask[PIPE_C] = ~de_pipe_masked;
3461
3462 for_each_pipe(dev_priv, pipe)
3463 if (intel_display_power_is_enabled(dev_priv,
3464 POWER_DOMAIN_PIPE(pipe)))
3465 GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3466 dev_priv->de_irq_mask[pipe],
3467 de_pipe_enables);
3468
3469 GEN5_IRQ_INIT(GEN8_DE_PORT_, ~aux_en, aux_en);
3470 }
3471
gen8_irq_postinstall(struct drm_device * dev)3472 static int gen8_irq_postinstall(struct drm_device *dev)
3473 {
3474 struct drm_i915_private *dev_priv = dev->dev_private;
3475
3476 ibx_irq_pre_postinstall(dev);
3477
3478 gen8_gt_irq_postinstall(dev_priv);
3479 gen8_de_irq_postinstall(dev_priv);
3480
3481 ibx_irq_postinstall(dev);
3482
3483 I915_WRITE(GEN8_MASTER_IRQ, DE_MASTER_IRQ_CONTROL);
3484 POSTING_READ(GEN8_MASTER_IRQ);
3485
3486 return 0;
3487 }
3488
cherryview_irq_postinstall(struct drm_device * dev)3489 static int cherryview_irq_postinstall(struct drm_device *dev)
3490 {
3491 struct drm_i915_private *dev_priv = dev->dev_private;
3492
3493 vlv_display_irq_postinstall(dev_priv);
3494
3495 gen8_gt_irq_postinstall(dev_priv);
3496
3497 I915_WRITE(GEN8_MASTER_IRQ, MASTER_INTERRUPT_ENABLE);
3498 POSTING_READ(GEN8_MASTER_IRQ);
3499
3500 return 0;
3501 }
3502
gen8_irq_uninstall(struct drm_device * dev)3503 static void gen8_irq_uninstall(struct drm_device *dev)
3504 {
3505 struct drm_i915_private *dev_priv = dev->dev_private;
3506
3507 if (!dev_priv)
3508 return;
3509
3510 gen8_irq_reset(dev);
3511 }
3512
vlv_display_irq_uninstall(struct drm_i915_private * dev_priv)3513 static void vlv_display_irq_uninstall(struct drm_i915_private *dev_priv)
3514 {
3515 /* Interrupt setup is already guaranteed to be single-threaded, this is
3516 * just to make the assert_spin_locked check happy. */
3517 spin_lock_irq(&dev_priv->irq_lock);
3518 if (dev_priv->display_irqs_enabled)
3519 valleyview_display_irqs_uninstall(dev_priv);
3520 spin_unlock_irq(&dev_priv->irq_lock);
3521
3522 vlv_display_irq_reset(dev_priv);
3523
3524 dev_priv->irq_mask = ~0;
3525 }
3526
valleyview_irq_uninstall(struct drm_device * dev)3527 static void valleyview_irq_uninstall(struct drm_device *dev)
3528 {
3529 struct drm_i915_private *dev_priv = dev->dev_private;
3530
3531 if (!dev_priv)
3532 return;
3533
3534 I915_WRITE(VLV_MASTER_IER, 0);
3535
3536 gen5_gt_irq_reset(dev);
3537
3538 I915_WRITE(HWSTAM, 0xffffffff);
3539
3540 vlv_display_irq_uninstall(dev_priv);
3541 }
3542
cherryview_irq_uninstall(struct drm_device * dev)3543 static void cherryview_irq_uninstall(struct drm_device *dev)
3544 {
3545 struct drm_i915_private *dev_priv = dev->dev_private;
3546
3547 if (!dev_priv)
3548 return;
3549
3550 I915_WRITE(GEN8_MASTER_IRQ, 0);
3551 POSTING_READ(GEN8_MASTER_IRQ);
3552
3553 gen8_gt_irq_reset(dev_priv);
3554
3555 GEN5_IRQ_RESET(GEN8_PCU_);
3556
3557 vlv_display_irq_uninstall(dev_priv);
3558 }
3559
ironlake_irq_uninstall(struct drm_device * dev)3560 static void ironlake_irq_uninstall(struct drm_device *dev)
3561 {
3562 struct drm_i915_private *dev_priv = dev->dev_private;
3563
3564 if (!dev_priv)
3565 return;
3566
3567 ironlake_irq_reset(dev);
3568 }
3569
i8xx_irq_preinstall(struct drm_device * dev)3570 static void i8xx_irq_preinstall(struct drm_device * dev)
3571 {
3572 struct drm_i915_private *dev_priv = dev->dev_private;
3573 int pipe;
3574
3575 for_each_pipe(dev_priv, pipe)
3576 I915_WRITE(PIPESTAT(pipe), 0);
3577 I915_WRITE16(IMR, 0xffff);
3578 I915_WRITE16(IER, 0x0);
3579 POSTING_READ16(IER);
3580 }
3581
i8xx_irq_postinstall(struct drm_device * dev)3582 static int i8xx_irq_postinstall(struct drm_device *dev)
3583 {
3584 struct drm_i915_private *dev_priv = dev->dev_private;
3585
3586 I915_WRITE16(EMR,
3587 ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3588
3589 /* Unmask the interrupts that we always want on. */
3590 dev_priv->irq_mask =
3591 ~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3592 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3593 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3594 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3595 I915_WRITE16(IMR, dev_priv->irq_mask);
3596
3597 I915_WRITE16(IER,
3598 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3599 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3600 I915_USER_INTERRUPT);
3601 POSTING_READ16(IER);
3602
3603 /* Interrupt setup is already guaranteed to be single-threaded, this is
3604 * just to make the assert_spin_locked check happy. */
3605 spin_lock_irq(&dev_priv->irq_lock);
3606 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3607 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3608 spin_unlock_irq(&dev_priv->irq_lock);
3609
3610 return 0;
3611 }
3612
3613 /*
3614 * Returns true when a page flip has completed.
3615 */
i8xx_handle_vblank(struct drm_device * dev,int plane,int pipe,u32 iir)3616 static bool i8xx_handle_vblank(struct drm_device *dev,
3617 int plane, int pipe, u32 iir)
3618 {
3619 struct drm_i915_private *dev_priv = dev->dev_private;
3620 u16 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3621
3622 if (!intel_pipe_handle_vblank(dev, pipe))
3623 return false;
3624
3625 if ((iir & flip_pending) == 0)
3626 goto check_page_flip;
3627
3628 /* We detect FlipDone by looking for the change in PendingFlip from '1'
3629 * to '0' on the following vblank, i.e. IIR has the Pendingflip
3630 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3631 * the flip is completed (no longer pending). Since this doesn't raise
3632 * an interrupt per se, we watch for the change at vblank.
3633 */
3634 if (I915_READ16(ISR) & flip_pending)
3635 goto check_page_flip;
3636
3637 intel_prepare_page_flip(dev, plane);
3638 intel_finish_page_flip(dev, pipe);
3639 return true;
3640
3641 check_page_flip:
3642 intel_check_page_flip(dev, pipe);
3643 return false;
3644 }
3645
i8xx_irq_handler(int irq,void * arg)3646 static irqreturn_t i8xx_irq_handler(int irq, void *arg)
3647 {
3648 struct drm_device *dev = arg;
3649 struct drm_i915_private *dev_priv = dev->dev_private;
3650 u16 iir, new_iir;
3651 u32 pipe_stats[2];
3652 int pipe;
3653 u16 flip_mask =
3654 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3655 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3656
3657 if (!intel_irqs_enabled(dev_priv))
3658 return IRQ_NONE;
3659
3660 iir = I915_READ16(IIR);
3661 if (iir == 0)
3662 return IRQ_NONE;
3663
3664 while (iir & ~flip_mask) {
3665 /* Can't rely on pipestat interrupt bit in iir as it might
3666 * have been cleared after the pipestat interrupt was received.
3667 * It doesn't set the bit in iir again, but it still produces
3668 * interrupts (for non-MSI).
3669 */
3670 spin_lock(&dev_priv->irq_lock);
3671 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3672 DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
3673
3674 for_each_pipe(dev_priv, pipe) {
3675 int reg = PIPESTAT(pipe);
3676 pipe_stats[pipe] = I915_READ(reg);
3677
3678 /*
3679 * Clear the PIPE*STAT regs before the IIR
3680 */
3681 if (pipe_stats[pipe] & 0x8000ffff)
3682 I915_WRITE(reg, pipe_stats[pipe]);
3683 }
3684 spin_unlock(&dev_priv->irq_lock);
3685
3686 I915_WRITE16(IIR, iir & ~flip_mask);
3687 new_iir = I915_READ16(IIR); /* Flush posted writes */
3688
3689 if (iir & I915_USER_INTERRUPT)
3690 notify_ring(dev, &dev_priv->ring[RCS]);
3691
3692 for_each_pipe(dev_priv, pipe) {
3693 int plane = pipe;
3694 if (HAS_FBC(dev))
3695 plane = !plane;
3696
3697 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
3698 i8xx_handle_vblank(dev, plane, pipe, iir))
3699 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
3700
3701 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3702 i9xx_pipe_crc_irq_handler(dev, pipe);
3703
3704 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
3705 intel_cpu_fifo_underrun_irq_handler(dev_priv,
3706 pipe);
3707 }
3708
3709 iir = new_iir;
3710 }
3711
3712 return IRQ_HANDLED;
3713 }
3714
i8xx_irq_uninstall(struct drm_device * dev)3715 static void i8xx_irq_uninstall(struct drm_device * dev)
3716 {
3717 struct drm_i915_private *dev_priv = dev->dev_private;
3718 int pipe;
3719
3720 for_each_pipe(dev_priv, pipe) {
3721 /* Clear enable bits; then clear status bits */
3722 I915_WRITE(PIPESTAT(pipe), 0);
3723 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
3724 }
3725 I915_WRITE16(IMR, 0xffff);
3726 I915_WRITE16(IER, 0x0);
3727 I915_WRITE16(IIR, I915_READ16(IIR));
3728 }
3729
i915_irq_preinstall(struct drm_device * dev)3730 static void i915_irq_preinstall(struct drm_device * dev)
3731 {
3732 struct drm_i915_private *dev_priv = dev->dev_private;
3733 int pipe;
3734
3735 if (I915_HAS_HOTPLUG(dev)) {
3736 I915_WRITE(PORT_HOTPLUG_EN, 0);
3737 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3738 }
3739
3740 I915_WRITE16(HWSTAM, 0xeffe);
3741 for_each_pipe(dev_priv, pipe)
3742 I915_WRITE(PIPESTAT(pipe), 0);
3743 I915_WRITE(IMR, 0xffffffff);
3744 I915_WRITE(IER, 0x0);
3745 POSTING_READ(IER);
3746 }
3747
i915_irq_postinstall(struct drm_device * dev)3748 static int i915_irq_postinstall(struct drm_device *dev)
3749 {
3750 struct drm_i915_private *dev_priv = dev->dev_private;
3751 u32 enable_mask;
3752
3753 I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3754
3755 /* Unmask the interrupts that we always want on. */
3756 dev_priv->irq_mask =
3757 ~(I915_ASLE_INTERRUPT |
3758 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3759 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3760 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3761 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3762
3763 enable_mask =
3764 I915_ASLE_INTERRUPT |
3765 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3766 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3767 I915_USER_INTERRUPT;
3768
3769 if (I915_HAS_HOTPLUG(dev)) {
3770 I915_WRITE(PORT_HOTPLUG_EN, 0);
3771 POSTING_READ(PORT_HOTPLUG_EN);
3772
3773 /* Enable in IER... */
3774 enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
3775 /* and unmask in IMR */
3776 dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
3777 }
3778
3779 I915_WRITE(IMR, dev_priv->irq_mask);
3780 I915_WRITE(IER, enable_mask);
3781 POSTING_READ(IER);
3782
3783 i915_enable_asle_pipestat(dev);
3784
3785 /* Interrupt setup is already guaranteed to be single-threaded, this is
3786 * just to make the assert_spin_locked check happy. */
3787 spin_lock_irq(&dev_priv->irq_lock);
3788 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3789 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3790 spin_unlock_irq(&dev_priv->irq_lock);
3791
3792 return 0;
3793 }
3794
3795 /*
3796 * Returns true when a page flip has completed.
3797 */
i915_handle_vblank(struct drm_device * dev,int plane,int pipe,u32 iir)3798 static bool i915_handle_vblank(struct drm_device *dev,
3799 int plane, int pipe, u32 iir)
3800 {
3801 struct drm_i915_private *dev_priv = dev->dev_private;
3802 u32 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3803
3804 if (!intel_pipe_handle_vblank(dev, pipe))
3805 return false;
3806
3807 if ((iir & flip_pending) == 0)
3808 goto check_page_flip;
3809
3810 /* We detect FlipDone by looking for the change in PendingFlip from '1'
3811 * to '0' on the following vblank, i.e. IIR has the Pendingflip
3812 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3813 * the flip is completed (no longer pending). Since this doesn't raise
3814 * an interrupt per se, we watch for the change at vblank.
3815 */
3816 if (I915_READ(ISR) & flip_pending)
3817 goto check_page_flip;
3818
3819 intel_prepare_page_flip(dev, plane);
3820 intel_finish_page_flip(dev, pipe);
3821 return true;
3822
3823 check_page_flip:
3824 intel_check_page_flip(dev, pipe);
3825 return false;
3826 }
3827
i915_irq_handler(int irq,void * arg)3828 static irqreturn_t i915_irq_handler(int irq, void *arg)
3829 {
3830 struct drm_device *dev = arg;
3831 struct drm_i915_private *dev_priv = dev->dev_private;
3832 u32 iir, new_iir, pipe_stats[I915_MAX_PIPES];
3833 u32 flip_mask =
3834 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3835 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3836 int pipe, ret = IRQ_NONE;
3837
3838 if (!intel_irqs_enabled(dev_priv))
3839 return IRQ_NONE;
3840
3841 iir = I915_READ(IIR);
3842 do {
3843 bool irq_received = (iir & ~flip_mask) != 0;
3844 bool blc_event = false;
3845
3846 /* Can't rely on pipestat interrupt bit in iir as it might
3847 * have been cleared after the pipestat interrupt was received.
3848 * It doesn't set the bit in iir again, but it still produces
3849 * interrupts (for non-MSI).
3850 */
3851 spin_lock(&dev_priv->irq_lock);
3852 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3853 DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
3854
3855 for_each_pipe(dev_priv, pipe) {
3856 int reg = PIPESTAT(pipe);
3857 pipe_stats[pipe] = I915_READ(reg);
3858
3859 /* Clear the PIPE*STAT regs before the IIR */
3860 if (pipe_stats[pipe] & 0x8000ffff) {
3861 I915_WRITE(reg, pipe_stats[pipe]);
3862 irq_received = true;
3863 }
3864 }
3865 spin_unlock(&dev_priv->irq_lock);
3866
3867 if (!irq_received)
3868 break;
3869
3870 /* Consume port. Then clear IIR or we'll miss events */
3871 if (I915_HAS_HOTPLUG(dev) &&
3872 iir & I915_DISPLAY_PORT_INTERRUPT)
3873 i9xx_hpd_irq_handler(dev);
3874
3875 I915_WRITE(IIR, iir & ~flip_mask);
3876 new_iir = I915_READ(IIR); /* Flush posted writes */
3877
3878 if (iir & I915_USER_INTERRUPT)
3879 notify_ring(dev, &dev_priv->ring[RCS]);
3880
3881 for_each_pipe(dev_priv, pipe) {
3882 int plane = pipe;
3883 if (HAS_FBC(dev))
3884 plane = !plane;
3885
3886 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
3887 i915_handle_vblank(dev, plane, pipe, iir))
3888 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
3889
3890 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
3891 blc_event = true;
3892
3893 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3894 i9xx_pipe_crc_irq_handler(dev, pipe);
3895
3896 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
3897 intel_cpu_fifo_underrun_irq_handler(dev_priv,
3898 pipe);
3899 }
3900
3901 if (blc_event || (iir & I915_ASLE_INTERRUPT))
3902 intel_opregion_asle_intr(dev);
3903
3904 /* With MSI, interrupts are only generated when iir
3905 * transitions from zero to nonzero. If another bit got
3906 * set while we were handling the existing iir bits, then
3907 * we would never get another interrupt.
3908 *
3909 * This is fine on non-MSI as well, as if we hit this path
3910 * we avoid exiting the interrupt handler only to generate
3911 * another one.
3912 *
3913 * Note that for MSI this could cause a stray interrupt report
3914 * if an interrupt landed in the time between writing IIR and
3915 * the posting read. This should be rare enough to never
3916 * trigger the 99% of 100,000 interrupts test for disabling
3917 * stray interrupts.
3918 */
3919 ret = IRQ_HANDLED;
3920 iir = new_iir;
3921 } while (iir & ~flip_mask);
3922
3923 return ret;
3924 }
3925
i915_irq_uninstall(struct drm_device * dev)3926 static void i915_irq_uninstall(struct drm_device * dev)
3927 {
3928 struct drm_i915_private *dev_priv = dev->dev_private;
3929 int pipe;
3930
3931 if (I915_HAS_HOTPLUG(dev)) {
3932 I915_WRITE(PORT_HOTPLUG_EN, 0);
3933 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3934 }
3935
3936 I915_WRITE16(HWSTAM, 0xffff);
3937 for_each_pipe(dev_priv, pipe) {
3938 /* Clear enable bits; then clear status bits */
3939 I915_WRITE(PIPESTAT(pipe), 0);
3940 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
3941 }
3942 I915_WRITE(IMR, 0xffffffff);
3943 I915_WRITE(IER, 0x0);
3944
3945 I915_WRITE(IIR, I915_READ(IIR));
3946 }
3947
i965_irq_preinstall(struct drm_device * dev)3948 static void i965_irq_preinstall(struct drm_device * dev)
3949 {
3950 struct drm_i915_private *dev_priv = dev->dev_private;
3951 int pipe;
3952
3953 I915_WRITE(PORT_HOTPLUG_EN, 0);
3954 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3955
3956 I915_WRITE(HWSTAM, 0xeffe);
3957 for_each_pipe(dev_priv, pipe)
3958 I915_WRITE(PIPESTAT(pipe), 0);
3959 I915_WRITE(IMR, 0xffffffff);
3960 I915_WRITE(IER, 0x0);
3961 POSTING_READ(IER);
3962 }
3963
i965_irq_postinstall(struct drm_device * dev)3964 static int i965_irq_postinstall(struct drm_device *dev)
3965 {
3966 struct drm_i915_private *dev_priv = dev->dev_private;
3967 u32 enable_mask;
3968 u32 error_mask;
3969
3970 /* Unmask the interrupts that we always want on. */
3971 dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT |
3972 I915_DISPLAY_PORT_INTERRUPT |
3973 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3974 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3975 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3976 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
3977 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
3978
3979 enable_mask = ~dev_priv->irq_mask;
3980 enable_mask &= ~(I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3981 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3982 enable_mask |= I915_USER_INTERRUPT;
3983
3984 if (IS_G4X(dev))
3985 enable_mask |= I915_BSD_USER_INTERRUPT;
3986
3987 /* Interrupt setup is already guaranteed to be single-threaded, this is
3988 * just to make the assert_spin_locked check happy. */
3989 spin_lock_irq(&dev_priv->irq_lock);
3990 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3991 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3992 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3993 spin_unlock_irq(&dev_priv->irq_lock);
3994
3995 /*
3996 * Enable some error detection, note the instruction error mask
3997 * bit is reserved, so we leave it masked.
3998 */
3999 if (IS_G4X(dev)) {
4000 error_mask = ~(GM45_ERROR_PAGE_TABLE |
4001 GM45_ERROR_MEM_PRIV |
4002 GM45_ERROR_CP_PRIV |
4003 I915_ERROR_MEMORY_REFRESH);
4004 } else {
4005 error_mask = ~(I915_ERROR_PAGE_TABLE |
4006 I915_ERROR_MEMORY_REFRESH);
4007 }
4008 I915_WRITE(EMR, error_mask);
4009
4010 I915_WRITE(IMR, dev_priv->irq_mask);
4011 I915_WRITE(IER, enable_mask);
4012 POSTING_READ(IER);
4013
4014 I915_WRITE(PORT_HOTPLUG_EN, 0);
4015 POSTING_READ(PORT_HOTPLUG_EN);
4016
4017 i915_enable_asle_pipestat(dev);
4018
4019 return 0;
4020 }
4021
i915_hpd_irq_setup(struct drm_device * dev)4022 static void i915_hpd_irq_setup(struct drm_device *dev)
4023 {
4024 struct drm_i915_private *dev_priv = dev->dev_private;
4025 struct intel_encoder *intel_encoder;
4026 u32 hotplug_en;
4027
4028 assert_spin_locked(&dev_priv->irq_lock);
4029
4030 hotplug_en = I915_READ(PORT_HOTPLUG_EN);
4031 hotplug_en &= ~HOTPLUG_INT_EN_MASK;
4032 /* Note HDMI and DP share hotplug bits */
4033 /* enable bits are the same for all generations */
4034 for_each_intel_encoder(dev, intel_encoder)
4035 if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
4036 hotplug_en |= hpd_mask_i915[intel_encoder->hpd_pin];
4037 /* Programming the CRT detection parameters tends
4038 to generate a spurious hotplug event about three
4039 seconds later. So just do it once.
4040 */
4041 if (IS_G4X(dev))
4042 hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
4043 hotplug_en &= ~CRT_HOTPLUG_VOLTAGE_COMPARE_MASK;
4044 hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
4045
4046 /* Ignore TV since it's buggy */
4047 I915_WRITE(PORT_HOTPLUG_EN, hotplug_en);
4048 }
4049
i965_irq_handler(int irq,void * arg)4050 static irqreturn_t i965_irq_handler(int irq, void *arg)
4051 {
4052 struct drm_device *dev = arg;
4053 struct drm_i915_private *dev_priv = dev->dev_private;
4054 u32 iir, new_iir;
4055 u32 pipe_stats[I915_MAX_PIPES];
4056 int ret = IRQ_NONE, pipe;
4057 u32 flip_mask =
4058 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4059 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4060
4061 if (!intel_irqs_enabled(dev_priv))
4062 return IRQ_NONE;
4063
4064 iir = I915_READ(IIR);
4065
4066 for (;;) {
4067 bool irq_received = (iir & ~flip_mask) != 0;
4068 bool blc_event = false;
4069
4070 /* Can't rely on pipestat interrupt bit in iir as it might
4071 * have been cleared after the pipestat interrupt was received.
4072 * It doesn't set the bit in iir again, but it still produces
4073 * interrupts (for non-MSI).
4074 */
4075 spin_lock(&dev_priv->irq_lock);
4076 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4077 DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
4078
4079 for_each_pipe(dev_priv, pipe) {
4080 int reg = PIPESTAT(pipe);
4081 pipe_stats[pipe] = I915_READ(reg);
4082
4083 /*
4084 * Clear the PIPE*STAT regs before the IIR
4085 */
4086 if (pipe_stats[pipe] & 0x8000ffff) {
4087 I915_WRITE(reg, pipe_stats[pipe]);
4088 irq_received = true;
4089 }
4090 }
4091 spin_unlock(&dev_priv->irq_lock);
4092
4093 if (!irq_received)
4094 break;
4095
4096 ret = IRQ_HANDLED;
4097
4098 /* Consume port. Then clear IIR or we'll miss events */
4099 if (iir & I915_DISPLAY_PORT_INTERRUPT)
4100 i9xx_hpd_irq_handler(dev);
4101
4102 I915_WRITE(IIR, iir & ~flip_mask);
4103 new_iir = I915_READ(IIR); /* Flush posted writes */
4104
4105 if (iir & I915_USER_INTERRUPT)
4106 notify_ring(dev, &dev_priv->ring[RCS]);
4107 if (iir & I915_BSD_USER_INTERRUPT)
4108 notify_ring(dev, &dev_priv->ring[VCS]);
4109
4110 for_each_pipe(dev_priv, pipe) {
4111 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
4112 i915_handle_vblank(dev, pipe, pipe, iir))
4113 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(pipe);
4114
4115 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
4116 blc_event = true;
4117
4118 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4119 i9xx_pipe_crc_irq_handler(dev, pipe);
4120
4121 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
4122 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
4123 }
4124
4125 if (blc_event || (iir & I915_ASLE_INTERRUPT))
4126 intel_opregion_asle_intr(dev);
4127
4128 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
4129 gmbus_irq_handler(dev);
4130
4131 /* With MSI, interrupts are only generated when iir
4132 * transitions from zero to nonzero. If another bit got
4133 * set while we were handling the existing iir bits, then
4134 * we would never get another interrupt.
4135 *
4136 * This is fine on non-MSI as well, as if we hit this path
4137 * we avoid exiting the interrupt handler only to generate
4138 * another one.
4139 *
4140 * Note that for MSI this could cause a stray interrupt report
4141 * if an interrupt landed in the time between writing IIR and
4142 * the posting read. This should be rare enough to never
4143 * trigger the 99% of 100,000 interrupts test for disabling
4144 * stray interrupts.
4145 */
4146 iir = new_iir;
4147 }
4148
4149 return ret;
4150 }
4151
i965_irq_uninstall(struct drm_device * dev)4152 static void i965_irq_uninstall(struct drm_device * dev)
4153 {
4154 struct drm_i915_private *dev_priv = dev->dev_private;
4155 int pipe;
4156
4157 if (!dev_priv)
4158 return;
4159
4160 I915_WRITE(PORT_HOTPLUG_EN, 0);
4161 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4162
4163 I915_WRITE(HWSTAM, 0xffffffff);
4164 for_each_pipe(dev_priv, pipe)
4165 I915_WRITE(PIPESTAT(pipe), 0);
4166 I915_WRITE(IMR, 0xffffffff);
4167 I915_WRITE(IER, 0x0);
4168
4169 for_each_pipe(dev_priv, pipe)
4170 I915_WRITE(PIPESTAT(pipe),
4171 I915_READ(PIPESTAT(pipe)) & 0x8000ffff);
4172 I915_WRITE(IIR, I915_READ(IIR));
4173 }
4174
intel_hpd_irq_reenable_work(struct work_struct * work)4175 static void intel_hpd_irq_reenable_work(struct work_struct *work)
4176 {
4177 struct drm_i915_private *dev_priv =
4178 container_of(work, typeof(*dev_priv),
4179 hotplug_reenable_work.work);
4180 struct drm_device *dev = dev_priv->dev;
4181 struct drm_mode_config *mode_config = &dev->mode_config;
4182 int i;
4183
4184 intel_runtime_pm_get(dev_priv);
4185
4186 spin_lock_irq(&dev_priv->irq_lock);
4187 for (i = (HPD_NONE + 1); i < HPD_NUM_PINS; i++) {
4188 struct drm_connector *connector;
4189
4190 if (dev_priv->hpd_stats[i].hpd_mark != HPD_DISABLED)
4191 continue;
4192
4193 dev_priv->hpd_stats[i].hpd_mark = HPD_ENABLED;
4194
4195 list_for_each_entry(connector, &mode_config->connector_list, head) {
4196 struct intel_connector *intel_connector = to_intel_connector(connector);
4197
4198 if (intel_connector->encoder->hpd_pin == i) {
4199 if (connector->polled != intel_connector->polled)
4200 DRM_DEBUG_DRIVER("Reenabling HPD on connector %s\n",
4201 connector->name);
4202 connector->polled = intel_connector->polled;
4203 if (!connector->polled)
4204 connector->polled = DRM_CONNECTOR_POLL_HPD;
4205 }
4206 }
4207 }
4208 if (dev_priv->display.hpd_irq_setup)
4209 dev_priv->display.hpd_irq_setup(dev);
4210 spin_unlock_irq(&dev_priv->irq_lock);
4211
4212 intel_runtime_pm_put(dev_priv);
4213 }
4214
4215 /**
4216 * intel_irq_init - initializes irq support
4217 * @dev_priv: i915 device instance
4218 *
4219 * This function initializes all the irq support including work items, timers
4220 * and all the vtables. It does not setup the interrupt itself though.
4221 */
intel_irq_init(struct drm_i915_private * dev_priv)4222 void intel_irq_init(struct drm_i915_private *dev_priv)
4223 {
4224 struct drm_device *dev = dev_priv->dev;
4225
4226 INIT_WORK(&dev_priv->hotplug_work, i915_hotplug_work_func);
4227 INIT_WORK(&dev_priv->dig_port_work, i915_digport_work_func);
4228 INIT_WORK(&dev_priv->rps.work, gen6_pm_rps_work);
4229 INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
4230
4231 /* Let's track the enabled rps events */
4232 if (IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv))
4233 /* WaGsvRC0ResidencyMethod:vlv */
4234 dev_priv->pm_rps_events = GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED;
4235 else
4236 dev_priv->pm_rps_events = GEN6_PM_RPS_EVENTS;
4237
4238 INIT_DELAYED_WORK(&dev_priv->gpu_error.hangcheck_work,
4239 i915_hangcheck_elapsed);
4240 INIT_DELAYED_WORK(&dev_priv->hotplug_reenable_work,
4241 intel_hpd_irq_reenable_work);
4242
4243 pm_qos_add_request(&dev_priv->pm_qos, PM_QOS_CPU_DMA_LATENCY, PM_QOS_DEFAULT_VALUE);
4244
4245 if (IS_GEN2(dev_priv)) {
4246 dev->max_vblank_count = 0;
4247 dev->driver->get_vblank_counter = i8xx_get_vblank_counter;
4248 } else if (IS_G4X(dev_priv) || INTEL_INFO(dev_priv)->gen >= 5) {
4249 dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
4250 dev->driver->get_vblank_counter = gm45_get_vblank_counter;
4251 } else {
4252 dev->driver->get_vblank_counter = i915_get_vblank_counter;
4253 dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
4254 }
4255
4256 /*
4257 * Opt out of the vblank disable timer on everything except gen2.
4258 * Gen2 doesn't have a hardware frame counter and so depends on
4259 * vblank interrupts to produce sane vblank seuquence numbers.
4260 */
4261 if (!IS_GEN2(dev_priv))
4262 dev->vblank_disable_immediate = true;
4263
4264 dev->driver->get_vblank_timestamp = i915_get_vblank_timestamp;
4265 dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
4266
4267 if (IS_CHERRYVIEW(dev_priv)) {
4268 dev->driver->irq_handler = cherryview_irq_handler;
4269 dev->driver->irq_preinstall = cherryview_irq_preinstall;
4270 dev->driver->irq_postinstall = cherryview_irq_postinstall;
4271 dev->driver->irq_uninstall = cherryview_irq_uninstall;
4272 dev->driver->enable_vblank = valleyview_enable_vblank;
4273 dev->driver->disable_vblank = valleyview_disable_vblank;
4274 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4275 } else if (IS_VALLEYVIEW(dev_priv)) {
4276 dev->driver->irq_handler = valleyview_irq_handler;
4277 dev->driver->irq_preinstall = valleyview_irq_preinstall;
4278 dev->driver->irq_postinstall = valleyview_irq_postinstall;
4279 dev->driver->irq_uninstall = valleyview_irq_uninstall;
4280 dev->driver->enable_vblank = valleyview_enable_vblank;
4281 dev->driver->disable_vblank = valleyview_disable_vblank;
4282 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4283 } else if (INTEL_INFO(dev_priv)->gen >= 8) {
4284 dev->driver->irq_handler = gen8_irq_handler;
4285 dev->driver->irq_preinstall = gen8_irq_reset;
4286 dev->driver->irq_postinstall = gen8_irq_postinstall;
4287 dev->driver->irq_uninstall = gen8_irq_uninstall;
4288 dev->driver->enable_vblank = gen8_enable_vblank;
4289 dev->driver->disable_vblank = gen8_disable_vblank;
4290 dev_priv->display.hpd_irq_setup = ibx_hpd_irq_setup;
4291 } else if (HAS_PCH_SPLIT(dev)) {
4292 dev->driver->irq_handler = ironlake_irq_handler;
4293 dev->driver->irq_preinstall = ironlake_irq_reset;
4294 dev->driver->irq_postinstall = ironlake_irq_postinstall;
4295 dev->driver->irq_uninstall = ironlake_irq_uninstall;
4296 dev->driver->enable_vblank = ironlake_enable_vblank;
4297 dev->driver->disable_vblank = ironlake_disable_vblank;
4298 dev_priv->display.hpd_irq_setup = ibx_hpd_irq_setup;
4299 } else {
4300 if (INTEL_INFO(dev_priv)->gen == 2) {
4301 dev->driver->irq_preinstall = i8xx_irq_preinstall;
4302 dev->driver->irq_postinstall = i8xx_irq_postinstall;
4303 dev->driver->irq_handler = i8xx_irq_handler;
4304 dev->driver->irq_uninstall = i8xx_irq_uninstall;
4305 } else if (INTEL_INFO(dev_priv)->gen == 3) {
4306 dev->driver->irq_preinstall = i915_irq_preinstall;
4307 dev->driver->irq_postinstall = i915_irq_postinstall;
4308 dev->driver->irq_uninstall = i915_irq_uninstall;
4309 dev->driver->irq_handler = i915_irq_handler;
4310 } else {
4311 dev->driver->irq_preinstall = i965_irq_preinstall;
4312 dev->driver->irq_postinstall = i965_irq_postinstall;
4313 dev->driver->irq_uninstall = i965_irq_uninstall;
4314 dev->driver->irq_handler = i965_irq_handler;
4315 }
4316 if (I915_HAS_HOTPLUG(dev_priv))
4317 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4318 dev->driver->enable_vblank = i915_enable_vblank;
4319 dev->driver->disable_vblank = i915_disable_vblank;
4320 }
4321 }
4322
4323 /**
4324 * intel_hpd_init - initializes and enables hpd support
4325 * @dev_priv: i915 device instance
4326 *
4327 * This function enables the hotplug support. It requires that interrupts have
4328 * already been enabled with intel_irq_init_hw(). From this point on hotplug and
4329 * poll request can run concurrently to other code, so locking rules must be
4330 * obeyed.
4331 *
4332 * This is a separate step from interrupt enabling to simplify the locking rules
4333 * in the driver load and resume code.
4334 */
intel_hpd_init(struct drm_i915_private * dev_priv)4335 void intel_hpd_init(struct drm_i915_private *dev_priv)
4336 {
4337 struct drm_device *dev = dev_priv->dev;
4338 struct drm_mode_config *mode_config = &dev->mode_config;
4339 struct drm_connector *connector;
4340 int i;
4341
4342 for (i = 1; i < HPD_NUM_PINS; i++) {
4343 dev_priv->hpd_stats[i].hpd_cnt = 0;
4344 dev_priv->hpd_stats[i].hpd_mark = HPD_ENABLED;
4345 }
4346 list_for_each_entry(connector, &mode_config->connector_list, head) {
4347 struct intel_connector *intel_connector = to_intel_connector(connector);
4348 connector->polled = intel_connector->polled;
4349 if (connector->encoder && !connector->polled && I915_HAS_HOTPLUG(dev) && intel_connector->encoder->hpd_pin > HPD_NONE)
4350 connector->polled = DRM_CONNECTOR_POLL_HPD;
4351 if (intel_connector->mst_port)
4352 connector->polled = DRM_CONNECTOR_POLL_HPD;
4353 }
4354
4355 /* Interrupt setup is already guaranteed to be single-threaded, this is
4356 * just to make the assert_spin_locked checks happy. */
4357 spin_lock_irq(&dev_priv->irq_lock);
4358 if (dev_priv->display.hpd_irq_setup)
4359 dev_priv->display.hpd_irq_setup(dev);
4360 spin_unlock_irq(&dev_priv->irq_lock);
4361 }
4362
4363 /**
4364 * intel_irq_install - enables the hardware interrupt
4365 * @dev_priv: i915 device instance
4366 *
4367 * This function enables the hardware interrupt handling, but leaves the hotplug
4368 * handling still disabled. It is called after intel_irq_init().
4369 *
4370 * In the driver load and resume code we need working interrupts in a few places
4371 * but don't want to deal with the hassle of concurrent probe and hotplug
4372 * workers. Hence the split into this two-stage approach.
4373 */
intel_irq_install(struct drm_i915_private * dev_priv)4374 int intel_irq_install(struct drm_i915_private *dev_priv)
4375 {
4376 /*
4377 * We enable some interrupt sources in our postinstall hooks, so mark
4378 * interrupts as enabled _before_ actually enabling them to avoid
4379 * special cases in our ordering checks.
4380 */
4381 dev_priv->pm.irqs_enabled = true;
4382
4383 return drm_irq_install(dev_priv->dev, dev_priv->dev->pdev->irq);
4384 }
4385
4386 /**
4387 * intel_irq_uninstall - finilizes all irq handling
4388 * @dev_priv: i915 device instance
4389 *
4390 * This stops interrupt and hotplug handling and unregisters and frees all
4391 * resources acquired in the init functions.
4392 */
intel_irq_uninstall(struct drm_i915_private * dev_priv)4393 void intel_irq_uninstall(struct drm_i915_private *dev_priv)
4394 {
4395 drm_irq_uninstall(dev_priv->dev);
4396 intel_hpd_cancel_work(dev_priv);
4397 dev_priv->pm.irqs_enabled = false;
4398 }
4399
4400 /**
4401 * intel_runtime_pm_disable_interrupts - runtime interrupt disabling
4402 * @dev_priv: i915 device instance
4403 *
4404 * This function is used to disable interrupts at runtime, both in the runtime
4405 * pm and the system suspend/resume code.
4406 */
intel_runtime_pm_disable_interrupts(struct drm_i915_private * dev_priv)4407 void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv)
4408 {
4409 dev_priv->dev->driver->irq_uninstall(dev_priv->dev);
4410 dev_priv->pm.irqs_enabled = false;
4411 synchronize_irq(dev_priv->dev->irq);
4412 }
4413
4414 /**
4415 * intel_runtime_pm_enable_interrupts - runtime interrupt enabling
4416 * @dev_priv: i915 device instance
4417 *
4418 * This function is used to enable interrupts at runtime, both in the runtime
4419 * pm and the system suspend/resume code.
4420 */
intel_runtime_pm_enable_interrupts(struct drm_i915_private * dev_priv)4421 void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv)
4422 {
4423 dev_priv->pm.irqs_enabled = true;
4424 dev_priv->dev->driver->irq_preinstall(dev_priv->dev);
4425 dev_priv->dev->driver->irq_postinstall(dev_priv->dev);
4426 }
4427