1 /* i915_drv.c -- i830,i845,i855,i865,i915 driver -*- linux-c -*-
2  */
3 /*
4  *
5  * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
6  * All Rights Reserved.
7  *
8  * Permission is hereby granted, free of charge, to any person obtaining a
9  * copy of this software and associated documentation files (the
10  * "Software"), to deal in the Software without restriction, including
11  * without limitation the rights to use, copy, modify, merge, publish,
12  * distribute, sub license, and/or sell copies of the Software, and to
13  * permit persons to whom the Software is furnished to do so, subject to
14  * the following conditions:
15  *
16  * The above copyright notice and this permission notice (including the
17  * next paragraph) shall be included in all copies or substantial portions
18  * of the Software.
19  *
20  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
21  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
22  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
23  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
24  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
25  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
26  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
27  *
28  */
29 
30 #include <linux/device.h>
31 #include <linux/acpi.h>
32 #include <drm/drmP.h>
33 #include <drm/i915_drm.h>
34 #include "i915_drv.h"
35 #include "i915_trace.h"
36 #include "intel_drv.h"
37 
38 #include <linux/console.h>
39 #include <linux/module.h>
40 #include <linux/pm_runtime.h>
41 #include <drm/drm_crtc_helper.h>
42 
43 static struct drm_driver driver;
44 
45 #define GEN_DEFAULT_PIPEOFFSETS \
46 	.pipe_offsets = { PIPE_A_OFFSET, PIPE_B_OFFSET, \
47 			  PIPE_C_OFFSET, PIPE_EDP_OFFSET }, \
48 	.trans_offsets = { TRANSCODER_A_OFFSET, TRANSCODER_B_OFFSET, \
49 			   TRANSCODER_C_OFFSET, TRANSCODER_EDP_OFFSET }, \
50 	.palette_offsets = { PALETTE_A_OFFSET, PALETTE_B_OFFSET }
51 
52 #define GEN_CHV_PIPEOFFSETS \
53 	.pipe_offsets = { PIPE_A_OFFSET, PIPE_B_OFFSET, \
54 			  CHV_PIPE_C_OFFSET }, \
55 	.trans_offsets = { TRANSCODER_A_OFFSET, TRANSCODER_B_OFFSET, \
56 			   CHV_TRANSCODER_C_OFFSET, }, \
57 	.palette_offsets = { PALETTE_A_OFFSET, PALETTE_B_OFFSET, \
58 			     CHV_PALETTE_C_OFFSET }
59 
60 #define CURSOR_OFFSETS \
61 	.cursor_offsets = { CURSOR_A_OFFSET, CURSOR_B_OFFSET, CHV_CURSOR_C_OFFSET }
62 
63 #define IVB_CURSOR_OFFSETS \
64 	.cursor_offsets = { CURSOR_A_OFFSET, IVB_CURSOR_B_OFFSET, IVB_CURSOR_C_OFFSET }
65 
66 static const struct intel_device_info intel_i830_info = {
67 	.gen = 2, .is_mobile = 1, .cursor_needs_physical = 1, .num_pipes = 2,
68 	.has_overlay = 1, .overlay_needs_physical = 1,
69 	.ring_mask = RENDER_RING,
70 	GEN_DEFAULT_PIPEOFFSETS,
71 	CURSOR_OFFSETS,
72 };
73 
74 static const struct intel_device_info intel_845g_info = {
75 	.gen = 2, .num_pipes = 1,
76 	.has_overlay = 1, .overlay_needs_physical = 1,
77 	.ring_mask = RENDER_RING,
78 	GEN_DEFAULT_PIPEOFFSETS,
79 	CURSOR_OFFSETS,
80 };
81 
82 static const struct intel_device_info intel_i85x_info = {
83 	.gen = 2, .is_i85x = 1, .is_mobile = 1, .num_pipes = 2,
84 	.cursor_needs_physical = 1,
85 	.has_overlay = 1, .overlay_needs_physical = 1,
86 	.has_fbc = 1,
87 	.ring_mask = RENDER_RING,
88 	GEN_DEFAULT_PIPEOFFSETS,
89 	CURSOR_OFFSETS,
90 };
91 
92 static const struct intel_device_info intel_i865g_info = {
93 	.gen = 2, .num_pipes = 1,
94 	.has_overlay = 1, .overlay_needs_physical = 1,
95 	.ring_mask = RENDER_RING,
96 	GEN_DEFAULT_PIPEOFFSETS,
97 	CURSOR_OFFSETS,
98 };
99 
100 static const struct intel_device_info intel_i915g_info = {
101 	.gen = 3, .is_i915g = 1, .cursor_needs_physical = 1, .num_pipes = 2,
102 	.has_overlay = 1, .overlay_needs_physical = 1,
103 	.ring_mask = RENDER_RING,
104 	GEN_DEFAULT_PIPEOFFSETS,
105 	CURSOR_OFFSETS,
106 };
107 static const struct intel_device_info intel_i915gm_info = {
108 	.gen = 3, .is_mobile = 1, .num_pipes = 2,
109 	.cursor_needs_physical = 1,
110 	.has_overlay = 1, .overlay_needs_physical = 1,
111 	.supports_tv = 1,
112 	.has_fbc = 1,
113 	.ring_mask = RENDER_RING,
114 	GEN_DEFAULT_PIPEOFFSETS,
115 	CURSOR_OFFSETS,
116 };
117 static const struct intel_device_info intel_i945g_info = {
118 	.gen = 3, .has_hotplug = 1, .cursor_needs_physical = 1, .num_pipes = 2,
119 	.has_overlay = 1, .overlay_needs_physical = 1,
120 	.ring_mask = RENDER_RING,
121 	GEN_DEFAULT_PIPEOFFSETS,
122 	CURSOR_OFFSETS,
123 };
124 static const struct intel_device_info intel_i945gm_info = {
125 	.gen = 3, .is_i945gm = 1, .is_mobile = 1, .num_pipes = 2,
126 	.has_hotplug = 1, .cursor_needs_physical = 1,
127 	.has_overlay = 1, .overlay_needs_physical = 1,
128 	.supports_tv = 1,
129 	.has_fbc = 1,
130 	.ring_mask = RENDER_RING,
131 	GEN_DEFAULT_PIPEOFFSETS,
132 	CURSOR_OFFSETS,
133 };
134 
135 static const struct intel_device_info intel_i965g_info = {
136 	.gen = 4, .is_broadwater = 1, .num_pipes = 2,
137 	.has_hotplug = 1,
138 	.has_overlay = 1,
139 	.ring_mask = RENDER_RING,
140 	GEN_DEFAULT_PIPEOFFSETS,
141 	CURSOR_OFFSETS,
142 };
143 
144 static const struct intel_device_info intel_i965gm_info = {
145 	.gen = 4, .is_crestline = 1, .num_pipes = 2,
146 	.is_mobile = 1, .has_fbc = 1, .has_hotplug = 1,
147 	.has_overlay = 1,
148 	.supports_tv = 1,
149 	.ring_mask = RENDER_RING,
150 	GEN_DEFAULT_PIPEOFFSETS,
151 	CURSOR_OFFSETS,
152 };
153 
154 static const struct intel_device_info intel_g33_info = {
155 	.gen = 3, .is_g33 = 1, .num_pipes = 2,
156 	.need_gfx_hws = 1, .has_hotplug = 1,
157 	.has_overlay = 1,
158 	.ring_mask = RENDER_RING,
159 	GEN_DEFAULT_PIPEOFFSETS,
160 	CURSOR_OFFSETS,
161 };
162 
163 static const struct intel_device_info intel_g45_info = {
164 	.gen = 4, .is_g4x = 1, .need_gfx_hws = 1, .num_pipes = 2,
165 	.has_pipe_cxsr = 1, .has_hotplug = 1,
166 	.ring_mask = RENDER_RING | BSD_RING,
167 	GEN_DEFAULT_PIPEOFFSETS,
168 	CURSOR_OFFSETS,
169 };
170 
171 static const struct intel_device_info intel_gm45_info = {
172 	.gen = 4, .is_g4x = 1, .num_pipes = 2,
173 	.is_mobile = 1, .need_gfx_hws = 1, .has_fbc = 1,
174 	.has_pipe_cxsr = 1, .has_hotplug = 1,
175 	.supports_tv = 1,
176 	.ring_mask = RENDER_RING | BSD_RING,
177 	GEN_DEFAULT_PIPEOFFSETS,
178 	CURSOR_OFFSETS,
179 };
180 
181 static const struct intel_device_info intel_pineview_info = {
182 	.gen = 3, .is_g33 = 1, .is_pineview = 1, .is_mobile = 1, .num_pipes = 2,
183 	.need_gfx_hws = 1, .has_hotplug = 1,
184 	.has_overlay = 1,
185 	GEN_DEFAULT_PIPEOFFSETS,
186 	CURSOR_OFFSETS,
187 };
188 
189 static const struct intel_device_info intel_ironlake_d_info = {
190 	.gen = 5, .num_pipes = 2,
191 	.need_gfx_hws = 1, .has_hotplug = 1,
192 	.ring_mask = RENDER_RING | BSD_RING,
193 	GEN_DEFAULT_PIPEOFFSETS,
194 	CURSOR_OFFSETS,
195 };
196 
197 static const struct intel_device_info intel_ironlake_m_info = {
198 	.gen = 5, .is_mobile = 1, .num_pipes = 2,
199 	.need_gfx_hws = 1, .has_hotplug = 1,
200 	.has_fbc = 1,
201 	.ring_mask = RENDER_RING | BSD_RING,
202 	GEN_DEFAULT_PIPEOFFSETS,
203 	CURSOR_OFFSETS,
204 };
205 
206 static const struct intel_device_info intel_sandybridge_d_info = {
207 	.gen = 6, .num_pipes = 2,
208 	.need_gfx_hws = 1, .has_hotplug = 1,
209 	.has_fbc = 1,
210 	.ring_mask = RENDER_RING | BSD_RING | BLT_RING,
211 	.has_llc = 1,
212 	GEN_DEFAULT_PIPEOFFSETS,
213 	CURSOR_OFFSETS,
214 };
215 
216 static const struct intel_device_info intel_sandybridge_m_info = {
217 	.gen = 6, .is_mobile = 1, .num_pipes = 2,
218 	.need_gfx_hws = 1, .has_hotplug = 1,
219 	.has_fbc = 1,
220 	.ring_mask = RENDER_RING | BSD_RING | BLT_RING,
221 	.has_llc = 1,
222 	GEN_DEFAULT_PIPEOFFSETS,
223 	CURSOR_OFFSETS,
224 };
225 
226 #define GEN7_FEATURES  \
227 	.gen = 7, .num_pipes = 3, \
228 	.need_gfx_hws = 1, .has_hotplug = 1, \
229 	.has_fbc = 1, \
230 	.ring_mask = RENDER_RING | BSD_RING | BLT_RING, \
231 	.has_llc = 1
232 
233 static const struct intel_device_info intel_ivybridge_d_info = {
234 	GEN7_FEATURES,
235 	.is_ivybridge = 1,
236 	GEN_DEFAULT_PIPEOFFSETS,
237 	IVB_CURSOR_OFFSETS,
238 };
239 
240 static const struct intel_device_info intel_ivybridge_m_info = {
241 	GEN7_FEATURES,
242 	.is_ivybridge = 1,
243 	.is_mobile = 1,
244 	GEN_DEFAULT_PIPEOFFSETS,
245 	IVB_CURSOR_OFFSETS,
246 };
247 
248 static const struct intel_device_info intel_ivybridge_q_info = {
249 	GEN7_FEATURES,
250 	.is_ivybridge = 1,
251 	.num_pipes = 0, /* legal, last one wins */
252 	GEN_DEFAULT_PIPEOFFSETS,
253 	IVB_CURSOR_OFFSETS,
254 };
255 
256 static const struct intel_device_info intel_valleyview_m_info = {
257 	GEN7_FEATURES,
258 	.is_mobile = 1,
259 	.num_pipes = 2,
260 	.is_valleyview = 1,
261 	.display_mmio_offset = VLV_DISPLAY_BASE,
262 	.has_fbc = 0, /* legal, last one wins */
263 	.has_llc = 0, /* legal, last one wins */
264 	GEN_DEFAULT_PIPEOFFSETS,
265 	CURSOR_OFFSETS,
266 };
267 
268 static const struct intel_device_info intel_valleyview_d_info = {
269 	GEN7_FEATURES,
270 	.num_pipes = 2,
271 	.is_valleyview = 1,
272 	.display_mmio_offset = VLV_DISPLAY_BASE,
273 	.has_fbc = 0, /* legal, last one wins */
274 	.has_llc = 0, /* legal, last one wins */
275 	GEN_DEFAULT_PIPEOFFSETS,
276 	CURSOR_OFFSETS,
277 };
278 
279 static const struct intel_device_info intel_haswell_d_info = {
280 	GEN7_FEATURES,
281 	.is_haswell = 1,
282 	.has_ddi = 1,
283 	.has_fpga_dbg = 1,
284 	.ring_mask = RENDER_RING | BSD_RING | BLT_RING | VEBOX_RING,
285 	GEN_DEFAULT_PIPEOFFSETS,
286 	IVB_CURSOR_OFFSETS,
287 };
288 
289 static const struct intel_device_info intel_haswell_m_info = {
290 	GEN7_FEATURES,
291 	.is_haswell = 1,
292 	.is_mobile = 1,
293 	.has_ddi = 1,
294 	.has_fpga_dbg = 1,
295 	.ring_mask = RENDER_RING | BSD_RING | BLT_RING | VEBOX_RING,
296 	GEN_DEFAULT_PIPEOFFSETS,
297 	IVB_CURSOR_OFFSETS,
298 };
299 
300 static const struct intel_device_info intel_broadwell_d_info = {
301 	.gen = 8, .num_pipes = 3,
302 	.need_gfx_hws = 1, .has_hotplug = 1,
303 	.ring_mask = RENDER_RING | BSD_RING | BLT_RING | VEBOX_RING,
304 	.has_llc = 1,
305 	.has_ddi = 1,
306 	.has_fpga_dbg = 1,
307 	.has_fbc = 1,
308 	GEN_DEFAULT_PIPEOFFSETS,
309 	IVB_CURSOR_OFFSETS,
310 };
311 
312 static const struct intel_device_info intel_broadwell_m_info = {
313 	.gen = 8, .is_mobile = 1, .num_pipes = 3,
314 	.need_gfx_hws = 1, .has_hotplug = 1,
315 	.ring_mask = RENDER_RING | BSD_RING | BLT_RING | VEBOX_RING,
316 	.has_llc = 1,
317 	.has_ddi = 1,
318 	.has_fpga_dbg = 1,
319 	.has_fbc = 1,
320 	GEN_DEFAULT_PIPEOFFSETS,
321 	IVB_CURSOR_OFFSETS,
322 };
323 
324 static const struct intel_device_info intel_broadwell_gt3d_info = {
325 	.gen = 8, .num_pipes = 3,
326 	.need_gfx_hws = 1, .has_hotplug = 1,
327 	.ring_mask = RENDER_RING | BSD_RING | BLT_RING | VEBOX_RING | BSD2_RING,
328 	.has_llc = 1,
329 	.has_ddi = 1,
330 	.has_fpga_dbg = 1,
331 	.has_fbc = 1,
332 	GEN_DEFAULT_PIPEOFFSETS,
333 	IVB_CURSOR_OFFSETS,
334 };
335 
336 static const struct intel_device_info intel_broadwell_gt3m_info = {
337 	.gen = 8, .is_mobile = 1, .num_pipes = 3,
338 	.need_gfx_hws = 1, .has_hotplug = 1,
339 	.ring_mask = RENDER_RING | BSD_RING | BLT_RING | VEBOX_RING | BSD2_RING,
340 	.has_llc = 1,
341 	.has_ddi = 1,
342 	.has_fpga_dbg = 1,
343 	.has_fbc = 1,
344 	GEN_DEFAULT_PIPEOFFSETS,
345 	IVB_CURSOR_OFFSETS,
346 };
347 
348 static const struct intel_device_info intel_cherryview_info = {
349 	.gen = 8, .num_pipes = 3,
350 	.need_gfx_hws = 1, .has_hotplug = 1,
351 	.ring_mask = RENDER_RING | BSD_RING | BLT_RING | VEBOX_RING,
352 	.is_valleyview = 1,
353 	.display_mmio_offset = VLV_DISPLAY_BASE,
354 	GEN_CHV_PIPEOFFSETS,
355 	CURSOR_OFFSETS,
356 };
357 
358 static const struct intel_device_info intel_skylake_info = {
359 	.is_preliminary = 1,
360 	.is_skylake = 1,
361 	.gen = 9, .num_pipes = 3,
362 	.need_gfx_hws = 1, .has_hotplug = 1,
363 	.ring_mask = RENDER_RING | BSD_RING | BLT_RING | VEBOX_RING,
364 	.has_llc = 1,
365 	.has_ddi = 1,
366 	.has_fbc = 1,
367 	GEN_DEFAULT_PIPEOFFSETS,
368 	IVB_CURSOR_OFFSETS,
369 };
370 
371 static const struct intel_device_info intel_skylake_gt3_info = {
372 	.is_preliminary = 1,
373 	.is_skylake = 1,
374 	.gen = 9, .num_pipes = 3,
375 	.need_gfx_hws = 1, .has_hotplug = 1,
376 	.ring_mask = RENDER_RING | BSD_RING | BLT_RING | VEBOX_RING | BSD2_RING,
377 	.has_llc = 1,
378 	.has_ddi = 1,
379 	.has_fbc = 1,
380 	GEN_DEFAULT_PIPEOFFSETS,
381 	IVB_CURSOR_OFFSETS,
382 };
383 
384 /*
385  * Make sure any device matches here are from most specific to most
386  * general.  For example, since the Quanta match is based on the subsystem
387  * and subvendor IDs, we need it to come before the more general IVB
388  * PCI ID matches, otherwise we'll use the wrong info struct above.
389  */
390 #define INTEL_PCI_IDS \
391 	INTEL_I830_IDS(&intel_i830_info),	\
392 	INTEL_I845G_IDS(&intel_845g_info),	\
393 	INTEL_I85X_IDS(&intel_i85x_info),	\
394 	INTEL_I865G_IDS(&intel_i865g_info),	\
395 	INTEL_I915G_IDS(&intel_i915g_info),	\
396 	INTEL_I915GM_IDS(&intel_i915gm_info),	\
397 	INTEL_I945G_IDS(&intel_i945g_info),	\
398 	INTEL_I945GM_IDS(&intel_i945gm_info),	\
399 	INTEL_I965G_IDS(&intel_i965g_info),	\
400 	INTEL_G33_IDS(&intel_g33_info),		\
401 	INTEL_I965GM_IDS(&intel_i965gm_info),	\
402 	INTEL_GM45_IDS(&intel_gm45_info), 	\
403 	INTEL_G45_IDS(&intel_g45_info), 	\
404 	INTEL_PINEVIEW_IDS(&intel_pineview_info),	\
405 	INTEL_IRONLAKE_D_IDS(&intel_ironlake_d_info),	\
406 	INTEL_IRONLAKE_M_IDS(&intel_ironlake_m_info),	\
407 	INTEL_SNB_D_IDS(&intel_sandybridge_d_info),	\
408 	INTEL_SNB_M_IDS(&intel_sandybridge_m_info),	\
409 	INTEL_IVB_Q_IDS(&intel_ivybridge_q_info), /* must be first IVB */ \
410 	INTEL_IVB_M_IDS(&intel_ivybridge_m_info),	\
411 	INTEL_IVB_D_IDS(&intel_ivybridge_d_info),	\
412 	INTEL_HSW_D_IDS(&intel_haswell_d_info), \
413 	INTEL_HSW_M_IDS(&intel_haswell_m_info), \
414 	INTEL_VLV_M_IDS(&intel_valleyview_m_info),	\
415 	INTEL_VLV_D_IDS(&intel_valleyview_d_info),	\
416 	INTEL_BDW_GT12M_IDS(&intel_broadwell_m_info),	\
417 	INTEL_BDW_GT12D_IDS(&intel_broadwell_d_info),	\
418 	INTEL_BDW_GT3M_IDS(&intel_broadwell_gt3m_info),	\
419 	INTEL_BDW_GT3D_IDS(&intel_broadwell_gt3d_info), \
420 	INTEL_CHV_IDS(&intel_cherryview_info),	\
421 	INTEL_SKL_GT1_IDS(&intel_skylake_info),	\
422 	INTEL_SKL_GT2_IDS(&intel_skylake_info),	\
423 	INTEL_SKL_GT3_IDS(&intel_skylake_gt3_info)	\
424 
425 static const struct pci_device_id pciidlist[] = {		/* aka */
426 	INTEL_PCI_IDS,
427 	{0, 0, 0}
428 };
429 
430 #if defined(CONFIG_DRM_I915_KMS)
431 MODULE_DEVICE_TABLE(pci, pciidlist);
432 #endif
433 
intel_detect_pch(struct drm_device * dev)434 void intel_detect_pch(struct drm_device *dev)
435 {
436 	struct drm_i915_private *dev_priv = dev->dev_private;
437 	struct pci_dev *pch = NULL;
438 
439 	/* In all current cases, num_pipes is equivalent to the PCH_NOP setting
440 	 * (which really amounts to a PCH but no South Display).
441 	 */
442 	if (INTEL_INFO(dev)->num_pipes == 0) {
443 		dev_priv->pch_type = PCH_NOP;
444 		return;
445 	}
446 
447 	/*
448 	 * The reason to probe ISA bridge instead of Dev31:Fun0 is to
449 	 * make graphics device passthrough work easy for VMM, that only
450 	 * need to expose ISA bridge to let driver know the real hardware
451 	 * underneath. This is a requirement from virtualization team.
452 	 *
453 	 * In some virtualized environments (e.g. XEN), there is irrelevant
454 	 * ISA bridge in the system. To work reliably, we should scan trhough
455 	 * all the ISA bridge devices and check for the first match, instead
456 	 * of only checking the first one.
457 	 */
458 	while ((pch = pci_get_class(PCI_CLASS_BRIDGE_ISA << 8, pch))) {
459 		if (pch->vendor == PCI_VENDOR_ID_INTEL) {
460 			unsigned short id = pch->device & INTEL_PCH_DEVICE_ID_MASK;
461 			dev_priv->pch_id = id;
462 
463 			if (id == INTEL_PCH_IBX_DEVICE_ID_TYPE) {
464 				dev_priv->pch_type = PCH_IBX;
465 				DRM_DEBUG_KMS("Found Ibex Peak PCH\n");
466 				WARN_ON(!IS_GEN5(dev));
467 			} else if (id == INTEL_PCH_CPT_DEVICE_ID_TYPE) {
468 				dev_priv->pch_type = PCH_CPT;
469 				DRM_DEBUG_KMS("Found CougarPoint PCH\n");
470 				WARN_ON(!(IS_GEN6(dev) || IS_IVYBRIDGE(dev)));
471 			} else if (id == INTEL_PCH_PPT_DEVICE_ID_TYPE) {
472 				/* PantherPoint is CPT compatible */
473 				dev_priv->pch_type = PCH_CPT;
474 				DRM_DEBUG_KMS("Found PantherPoint PCH\n");
475 				WARN_ON(!(IS_GEN6(dev) || IS_IVYBRIDGE(dev)));
476 			} else if (id == INTEL_PCH_LPT_DEVICE_ID_TYPE) {
477 				dev_priv->pch_type = PCH_LPT;
478 				DRM_DEBUG_KMS("Found LynxPoint PCH\n");
479 				WARN_ON(!IS_HASWELL(dev) && !IS_BROADWELL(dev));
480 				WARN_ON(IS_HSW_ULT(dev) || IS_BDW_ULT(dev));
481 			} else if (id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
482 				dev_priv->pch_type = PCH_LPT;
483 				DRM_DEBUG_KMS("Found LynxPoint LP PCH\n");
484 				WARN_ON(!IS_HASWELL(dev) && !IS_BROADWELL(dev));
485 				WARN_ON(!IS_HSW_ULT(dev) && !IS_BDW_ULT(dev));
486 			} else if (id == INTEL_PCH_SPT_DEVICE_ID_TYPE) {
487 				dev_priv->pch_type = PCH_SPT;
488 				DRM_DEBUG_KMS("Found SunrisePoint PCH\n");
489 				WARN_ON(!IS_SKYLAKE(dev));
490 			} else if (id == INTEL_PCH_SPT_LP_DEVICE_ID_TYPE) {
491 				dev_priv->pch_type = PCH_SPT;
492 				DRM_DEBUG_KMS("Found SunrisePoint LP PCH\n");
493 				WARN_ON(!IS_SKYLAKE(dev));
494 			} else
495 				continue;
496 
497 			break;
498 		}
499 	}
500 	if (!pch)
501 		DRM_DEBUG_KMS("No PCH found.\n");
502 
503 	pci_dev_put(pch);
504 }
505 
i915_semaphore_is_enabled(struct drm_device * dev)506 bool i915_semaphore_is_enabled(struct drm_device *dev)
507 {
508 	if (INTEL_INFO(dev)->gen < 6)
509 		return false;
510 
511 	if (i915.semaphores >= 0)
512 		return i915.semaphores;
513 
514 	/* TODO: make semaphores and Execlists play nicely together */
515 	if (i915.enable_execlists)
516 		return false;
517 
518 	/* Until we get further testing... */
519 	if (IS_GEN8(dev))
520 		return false;
521 
522 #ifdef CONFIG_INTEL_IOMMU
523 	/* Enable semaphores on SNB when IO remapping is off */
524 	if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped)
525 		return false;
526 #endif
527 
528 	return true;
529 }
530 
intel_hpd_cancel_work(struct drm_i915_private * dev_priv)531 void intel_hpd_cancel_work(struct drm_i915_private *dev_priv)
532 {
533 	spin_lock_irq(&dev_priv->irq_lock);
534 
535 	dev_priv->long_hpd_port_mask = 0;
536 	dev_priv->short_hpd_port_mask = 0;
537 	dev_priv->hpd_event_bits = 0;
538 
539 	spin_unlock_irq(&dev_priv->irq_lock);
540 
541 	cancel_work_sync(&dev_priv->dig_port_work);
542 	cancel_work_sync(&dev_priv->hotplug_work);
543 	cancel_delayed_work_sync(&dev_priv->hotplug_reenable_work);
544 }
545 
intel_suspend_encoders(struct drm_i915_private * dev_priv)546 static void intel_suspend_encoders(struct drm_i915_private *dev_priv)
547 {
548 	struct drm_device *dev = dev_priv->dev;
549 	struct drm_encoder *encoder;
550 
551 	drm_modeset_lock_all(dev);
552 	list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
553 		struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
554 
555 		if (intel_encoder->suspend)
556 			intel_encoder->suspend(intel_encoder);
557 	}
558 	drm_modeset_unlock_all(dev);
559 }
560 
561 static int intel_suspend_complete(struct drm_i915_private *dev_priv);
562 static int vlv_resume_prepare(struct drm_i915_private *dev_priv,
563 			      bool rpm_resume);
564 
i915_drm_suspend(struct drm_device * dev)565 static int i915_drm_suspend(struct drm_device *dev)
566 {
567 	struct drm_i915_private *dev_priv = dev->dev_private;
568 	struct drm_crtc *crtc;
569 	pci_power_t opregion_target_state;
570 	int error;
571 
572 	/* ignore lid events during suspend */
573 	mutex_lock(&dev_priv->modeset_restore_lock);
574 	dev_priv->modeset_restore = MODESET_SUSPENDED;
575 	mutex_unlock(&dev_priv->modeset_restore_lock);
576 
577 	/* We do a lot of poking in a lot of registers, make sure they work
578 	 * properly. */
579 	intel_display_set_init_power(dev_priv, true);
580 
581 	drm_kms_helper_poll_disable(dev);
582 
583 	pci_save_state(dev->pdev);
584 
585 	error = i915_gem_suspend(dev);
586 	if (error) {
587 		dev_err(&dev->pdev->dev,
588 			"GEM idle failed, resume might fail\n");
589 		return error;
590 	}
591 
592 	intel_suspend_gt_powersave(dev);
593 
594 	/*
595 	 * Disable CRTCs directly since we want to preserve sw state
596 	 * for _thaw. Also, power gate the CRTC power wells.
597 	 */
598 	drm_modeset_lock_all(dev);
599 	for_each_crtc(dev, crtc)
600 		intel_crtc_control(crtc, false);
601 	drm_modeset_unlock_all(dev);
602 
603 	intel_dp_mst_suspend(dev);
604 
605 	intel_runtime_pm_disable_interrupts(dev_priv);
606 	intel_hpd_cancel_work(dev_priv);
607 
608 	intel_suspend_encoders(dev_priv);
609 
610 	intel_suspend_hw(dev);
611 
612 	i915_gem_suspend_gtt_mappings(dev);
613 
614 	i915_save_state(dev);
615 
616 	opregion_target_state = PCI_D3cold;
617 #if IS_ENABLED(CONFIG_ACPI_SLEEP)
618 	if (acpi_target_system_state() < ACPI_STATE_S3)
619 		opregion_target_state = PCI_D1;
620 #endif
621 	intel_opregion_notify_adapter(dev, opregion_target_state);
622 
623 	intel_uncore_forcewake_reset(dev, false);
624 	intel_opregion_fini(dev);
625 
626 	intel_fbdev_set_suspend(dev, FBINFO_STATE_SUSPENDED, true);
627 
628 	dev_priv->suspend_count++;
629 
630 	intel_display_set_init_power(dev_priv, false);
631 
632 	return 0;
633 }
634 
i915_drm_suspend_late(struct drm_device * drm_dev,bool hibernation)635 static int i915_drm_suspend_late(struct drm_device *drm_dev, bool hibernation)
636 {
637 	struct drm_i915_private *dev_priv = drm_dev->dev_private;
638 	int ret;
639 
640 	ret = intel_suspend_complete(dev_priv);
641 
642 	if (ret) {
643 		DRM_ERROR("Suspend complete failed: %d\n", ret);
644 
645 		return ret;
646 	}
647 
648 	pci_disable_device(drm_dev->pdev);
649 	/*
650 	 * During hibernation on some platforms the BIOS may try to access
651 	 * the device even though it's already in D3 and hang the machine. So
652 	 * leave the device in D0 on those platforms and hope the BIOS will
653 	 * power down the device properly. The issue was seen on multiple old
654 	 * GENs with different BIOS vendors, so having an explicit blacklist
655 	 * is inpractical; apply the workaround on everything pre GEN6. The
656 	 * platforms where the issue was seen:
657 	 * Lenovo Thinkpad X301, X61s, X60, T60, X41
658 	 * Fujitsu FSC S7110
659 	 * Acer Aspire 1830T
660 	 */
661 	if (!(hibernation && INTEL_INFO(dev_priv)->gen < 6))
662 		pci_set_power_state(drm_dev->pdev, PCI_D3hot);
663 
664 	return 0;
665 }
666 
i915_suspend_legacy(struct drm_device * dev,pm_message_t state)667 int i915_suspend_legacy(struct drm_device *dev, pm_message_t state)
668 {
669 	int error;
670 
671 	if (!dev || !dev->dev_private) {
672 		DRM_ERROR("dev: %p\n", dev);
673 		DRM_ERROR("DRM not initialized, aborting suspend.\n");
674 		return -ENODEV;
675 	}
676 
677 	if (WARN_ON_ONCE(state.event != PM_EVENT_SUSPEND &&
678 			 state.event != PM_EVENT_FREEZE))
679 		return -EINVAL;
680 
681 	if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
682 		return 0;
683 
684 	error = i915_drm_suspend(dev);
685 	if (error)
686 		return error;
687 
688 	return i915_drm_suspend_late(dev, false);
689 }
690 
i915_drm_resume(struct drm_device * dev)691 static int i915_drm_resume(struct drm_device *dev)
692 {
693 	struct drm_i915_private *dev_priv = dev->dev_private;
694 
695 	mutex_lock(&dev->struct_mutex);
696 	i915_gem_restore_gtt_mappings(dev);
697 	mutex_unlock(&dev->struct_mutex);
698 
699 	i915_restore_state(dev);
700 	intel_opregion_setup(dev);
701 
702 	intel_init_pch_refclk(dev);
703 	drm_mode_config_reset(dev);
704 
705 	/*
706 	 * Interrupts have to be enabled before any batches are run. If not the
707 	 * GPU will hang. i915_gem_init_hw() will initiate batches to
708 	 * update/restore the context.
709 	 *
710 	 * Modeset enabling in intel_modeset_init_hw() also needs working
711 	 * interrupts.
712 	 */
713 	intel_runtime_pm_enable_interrupts(dev_priv);
714 
715 	mutex_lock(&dev->struct_mutex);
716 	if (i915_gem_init_hw(dev)) {
717 		DRM_ERROR("failed to re-initialize GPU, declaring wedged!\n");
718 		atomic_set_mask(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
719 	}
720 	mutex_unlock(&dev->struct_mutex);
721 
722 	intel_modeset_init_hw(dev);
723 
724 	spin_lock_irq(&dev_priv->irq_lock);
725 	if (dev_priv->display.hpd_irq_setup)
726 		dev_priv->display.hpd_irq_setup(dev);
727 	spin_unlock_irq(&dev_priv->irq_lock);
728 
729 	drm_modeset_lock_all(dev);
730 	intel_modeset_setup_hw_state(dev, true);
731 	drm_modeset_unlock_all(dev);
732 
733 	intel_dp_mst_resume(dev);
734 
735 	/*
736 	 * ... but also need to make sure that hotplug processing
737 	 * doesn't cause havoc. Like in the driver load code we don't
738 	 * bother with the tiny race here where we might loose hotplug
739 	 * notifications.
740 	 * */
741 	intel_hpd_init(dev_priv);
742 	/* Config may have changed between suspend and resume */
743 	drm_helper_hpd_irq_event(dev);
744 
745 	intel_opregion_init(dev);
746 
747 	intel_fbdev_set_suspend(dev, FBINFO_STATE_RUNNING, false);
748 
749 	mutex_lock(&dev_priv->modeset_restore_lock);
750 	dev_priv->modeset_restore = MODESET_DONE;
751 	mutex_unlock(&dev_priv->modeset_restore_lock);
752 
753 	intel_opregion_notify_adapter(dev, PCI_D0);
754 
755 	drm_kms_helper_poll_enable(dev);
756 
757 	return 0;
758 }
759 
i915_drm_resume_early(struct drm_device * dev)760 static int i915_drm_resume_early(struct drm_device *dev)
761 {
762 	struct drm_i915_private *dev_priv = dev->dev_private;
763 	int ret = 0;
764 
765 	/*
766 	 * We have a resume ordering issue with the snd-hda driver also
767 	 * requiring our device to be power up. Due to the lack of a
768 	 * parent/child relationship we currently solve this with an early
769 	 * resume hook.
770 	 *
771 	 * FIXME: This should be solved with a special hdmi sink device or
772 	 * similar so that power domains can be employed.
773 	 */
774 	if (pci_enable_device(dev->pdev))
775 		return -EIO;
776 
777 	pci_set_master(dev->pdev);
778 
779 	if (IS_VALLEYVIEW(dev_priv))
780 		ret = vlv_resume_prepare(dev_priv, false);
781 	if (ret)
782 		DRM_ERROR("Resume prepare failed: %d,Continuing resume\n", ret);
783 
784 	intel_uncore_early_sanitize(dev, true);
785 
786 	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
787 		hsw_disable_pc8(dev_priv);
788 
789 	intel_uncore_sanitize(dev);
790 	intel_power_domains_init_hw(dev_priv);
791 
792 	return ret;
793 }
794 
i915_resume_legacy(struct drm_device * dev)795 int i915_resume_legacy(struct drm_device *dev)
796 {
797 	int ret;
798 
799 	if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
800 		return 0;
801 
802 	ret = i915_drm_resume_early(dev);
803 	if (ret)
804 		return ret;
805 
806 	return i915_drm_resume(dev);
807 }
808 
809 /**
810  * i915_reset - reset chip after a hang
811  * @dev: drm device to reset
812  *
813  * Reset the chip.  Useful if a hang is detected. Returns zero on successful
814  * reset or otherwise an error code.
815  *
816  * Procedure is fairly simple:
817  *   - reset the chip using the reset reg
818  *   - re-init context state
819  *   - re-init hardware status page
820  *   - re-init ring buffer
821  *   - re-init interrupt state
822  *   - re-init display
823  */
i915_reset(struct drm_device * dev)824 int i915_reset(struct drm_device *dev)
825 {
826 	struct drm_i915_private *dev_priv = dev->dev_private;
827 	bool simulated;
828 	int ret;
829 
830 	if (!i915.reset)
831 		return 0;
832 
833 	intel_reset_gt_powersave(dev);
834 
835 	mutex_lock(&dev->struct_mutex);
836 
837 	i915_gem_reset(dev);
838 
839 	simulated = dev_priv->gpu_error.stop_rings != 0;
840 
841 	ret = intel_gpu_reset(dev);
842 
843 	/* Also reset the gpu hangman. */
844 	if (simulated) {
845 		DRM_INFO("Simulated gpu hang, resetting stop_rings\n");
846 		dev_priv->gpu_error.stop_rings = 0;
847 		if (ret == -ENODEV) {
848 			DRM_INFO("Reset not implemented, but ignoring "
849 				 "error for simulated gpu hangs\n");
850 			ret = 0;
851 		}
852 	}
853 
854 	if (i915_stop_ring_allow_warn(dev_priv))
855 		pr_notice("drm/i915: Resetting chip after gpu hang\n");
856 
857 	if (ret) {
858 		DRM_ERROR("Failed to reset chip: %i\n", ret);
859 		mutex_unlock(&dev->struct_mutex);
860 		return ret;
861 	}
862 
863 	intel_overlay_reset(dev_priv);
864 
865 	/* Ok, now get things going again... */
866 
867 	/*
868 	 * Everything depends on having the GTT running, so we need to start
869 	 * there.  Fortunately we don't need to do this unless we reset the
870 	 * chip at a PCI level.
871 	 *
872 	 * Next we need to restore the context, but we don't use those
873 	 * yet either...
874 	 *
875 	 * Ring buffer needs to be re-initialized in the KMS case, or if X
876 	 * was running at the time of the reset (i.e. we weren't VT
877 	 * switched away).
878 	 */
879 
880 	/* Used to prevent gem_check_wedged returning -EAGAIN during gpu reset */
881 	dev_priv->gpu_error.reload_in_reset = true;
882 
883 	ret = i915_gem_init_hw(dev);
884 
885 	dev_priv->gpu_error.reload_in_reset = false;
886 
887 	mutex_unlock(&dev->struct_mutex);
888 	if (ret) {
889 		DRM_ERROR("Failed hw init on reset %d\n", ret);
890 		return ret;
891 	}
892 
893 	/*
894 	 * rps/rc6 re-init is necessary to restore state lost after the
895 	 * reset and the re-install of gt irqs. Skip for ironlake per
896 	 * previous concerns that it doesn't respond well to some forms
897 	 * of re-init after reset.
898 	 */
899 	if (INTEL_INFO(dev)->gen > 5)
900 		intel_enable_gt_powersave(dev);
901 
902 	return 0;
903 }
904 
i915_pci_probe(struct pci_dev * pdev,const struct pci_device_id * ent)905 static int i915_pci_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
906 {
907 	struct intel_device_info *intel_info =
908 		(struct intel_device_info *) ent->driver_data;
909 
910 	if (IS_PRELIMINARY_HW(intel_info) && !i915.preliminary_hw_support) {
911 		DRM_INFO("This hardware requires preliminary hardware support.\n"
912 			 "See CONFIG_DRM_I915_PRELIMINARY_HW_SUPPORT, and/or modparam preliminary_hw_support\n");
913 		return -ENODEV;
914 	}
915 
916 	/* Only bind to function 0 of the device. Early generations
917 	 * used function 1 as a placeholder for multi-head. This causes
918 	 * us confusion instead, especially on the systems where both
919 	 * functions have the same PCI-ID!
920 	 */
921 	if (PCI_FUNC(pdev->devfn))
922 		return -ENODEV;
923 
924 	driver.driver_features &= ~(DRIVER_USE_AGP);
925 
926 	return drm_get_pci_dev(pdev, ent, &driver);
927 }
928 
929 static void
i915_pci_remove(struct pci_dev * pdev)930 i915_pci_remove(struct pci_dev *pdev)
931 {
932 	struct drm_device *dev = pci_get_drvdata(pdev);
933 
934 	drm_put_dev(dev);
935 }
936 
i915_pm_suspend(struct device * dev)937 static int i915_pm_suspend(struct device *dev)
938 {
939 	struct pci_dev *pdev = to_pci_dev(dev);
940 	struct drm_device *drm_dev = pci_get_drvdata(pdev);
941 
942 	if (!drm_dev || !drm_dev->dev_private) {
943 		dev_err(dev, "DRM not initialized, aborting suspend.\n");
944 		return -ENODEV;
945 	}
946 
947 	if (drm_dev->switch_power_state == DRM_SWITCH_POWER_OFF)
948 		return 0;
949 
950 	return i915_drm_suspend(drm_dev);
951 }
952 
i915_pm_suspend_late(struct device * dev)953 static int i915_pm_suspend_late(struct device *dev)
954 {
955 	struct drm_device *drm_dev = dev_to_i915(dev)->dev;
956 
957 	/*
958 	 * We have a suspedn ordering issue with the snd-hda driver also
959 	 * requiring our device to be power up. Due to the lack of a
960 	 * parent/child relationship we currently solve this with an late
961 	 * suspend hook.
962 	 *
963 	 * FIXME: This should be solved with a special hdmi sink device or
964 	 * similar so that power domains can be employed.
965 	 */
966 	if (drm_dev->switch_power_state == DRM_SWITCH_POWER_OFF)
967 		return 0;
968 
969 	return i915_drm_suspend_late(drm_dev, false);
970 }
971 
i915_pm_poweroff_late(struct device * dev)972 static int i915_pm_poweroff_late(struct device *dev)
973 {
974 	struct drm_device *drm_dev = dev_to_i915(dev)->dev;
975 
976 	if (drm_dev->switch_power_state == DRM_SWITCH_POWER_OFF)
977 		return 0;
978 
979 	return i915_drm_suspend_late(drm_dev, true);
980 }
981 
i915_pm_resume_early(struct device * dev)982 static int i915_pm_resume_early(struct device *dev)
983 {
984 	struct drm_device *drm_dev = dev_to_i915(dev)->dev;
985 
986 	if (drm_dev->switch_power_state == DRM_SWITCH_POWER_OFF)
987 		return 0;
988 
989 	return i915_drm_resume_early(drm_dev);
990 }
991 
i915_pm_resume(struct device * dev)992 static int i915_pm_resume(struct device *dev)
993 {
994 	struct drm_device *drm_dev = dev_to_i915(dev)->dev;
995 
996 	if (drm_dev->switch_power_state == DRM_SWITCH_POWER_OFF)
997 		return 0;
998 
999 	return i915_drm_resume(drm_dev);
1000 }
1001 
hsw_suspend_complete(struct drm_i915_private * dev_priv)1002 static int hsw_suspend_complete(struct drm_i915_private *dev_priv)
1003 {
1004 	hsw_enable_pc8(dev_priv);
1005 
1006 	return 0;
1007 }
1008 
1009 /*
1010  * Save all Gunit registers that may be lost after a D3 and a subsequent
1011  * S0i[R123] transition. The list of registers needing a save/restore is
1012  * defined in the VLV2_S0IXRegs document. This documents marks all Gunit
1013  * registers in the following way:
1014  * - Driver: saved/restored by the driver
1015  * - Punit : saved/restored by the Punit firmware
1016  * - No, w/o marking: no need to save/restore, since the register is R/O or
1017  *                    used internally by the HW in a way that doesn't depend
1018  *                    keeping the content across a suspend/resume.
1019  * - Debug : used for debugging
1020  *
1021  * We save/restore all registers marked with 'Driver', with the following
1022  * exceptions:
1023  * - Registers out of use, including also registers marked with 'Debug'.
1024  *   These have no effect on the driver's operation, so we don't save/restore
1025  *   them to reduce the overhead.
1026  * - Registers that are fully setup by an initialization function called from
1027  *   the resume path. For example many clock gating and RPS/RC6 registers.
1028  * - Registers that provide the right functionality with their reset defaults.
1029  *
1030  * TODO: Except for registers that based on the above 3 criteria can be safely
1031  * ignored, we save/restore all others, practically treating the HW context as
1032  * a black-box for the driver. Further investigation is needed to reduce the
1033  * saved/restored registers even further, by following the same 3 criteria.
1034  */
vlv_save_gunit_s0ix_state(struct drm_i915_private * dev_priv)1035 static void vlv_save_gunit_s0ix_state(struct drm_i915_private *dev_priv)
1036 {
1037 	struct vlv_s0ix_state *s = &dev_priv->vlv_s0ix_state;
1038 	int i;
1039 
1040 	/* GAM 0x4000-0x4770 */
1041 	s->wr_watermark		= I915_READ(GEN7_WR_WATERMARK);
1042 	s->gfx_prio_ctrl	= I915_READ(GEN7_GFX_PRIO_CTRL);
1043 	s->arb_mode		= I915_READ(ARB_MODE);
1044 	s->gfx_pend_tlb0	= I915_READ(GEN7_GFX_PEND_TLB0);
1045 	s->gfx_pend_tlb1	= I915_READ(GEN7_GFX_PEND_TLB1);
1046 
1047 	for (i = 0; i < ARRAY_SIZE(s->lra_limits); i++)
1048 		s->lra_limits[i] = I915_READ(GEN7_LRA_LIMITS_BASE + i * 4);
1049 
1050 	s->media_max_req_count	= I915_READ(GEN7_MEDIA_MAX_REQ_COUNT);
1051 	s->gfx_max_req_count	= I915_READ(GEN7_GFX_MAX_REQ_COUNT);
1052 
1053 	s->render_hwsp		= I915_READ(RENDER_HWS_PGA_GEN7);
1054 	s->ecochk		= I915_READ(GAM_ECOCHK);
1055 	s->bsd_hwsp		= I915_READ(BSD_HWS_PGA_GEN7);
1056 	s->blt_hwsp		= I915_READ(BLT_HWS_PGA_GEN7);
1057 
1058 	s->tlb_rd_addr		= I915_READ(GEN7_TLB_RD_ADDR);
1059 
1060 	/* MBC 0x9024-0x91D0, 0x8500 */
1061 	s->g3dctl		= I915_READ(VLV_G3DCTL);
1062 	s->gsckgctl		= I915_READ(VLV_GSCKGCTL);
1063 	s->mbctl		= I915_READ(GEN6_MBCTL);
1064 
1065 	/* GCP 0x9400-0x9424, 0x8100-0x810C */
1066 	s->ucgctl1		= I915_READ(GEN6_UCGCTL1);
1067 	s->ucgctl3		= I915_READ(GEN6_UCGCTL3);
1068 	s->rcgctl1		= I915_READ(GEN6_RCGCTL1);
1069 	s->rcgctl2		= I915_READ(GEN6_RCGCTL2);
1070 	s->rstctl		= I915_READ(GEN6_RSTCTL);
1071 	s->misccpctl		= I915_READ(GEN7_MISCCPCTL);
1072 
1073 	/* GPM 0xA000-0xAA84, 0x8000-0x80FC */
1074 	s->gfxpause		= I915_READ(GEN6_GFXPAUSE);
1075 	s->rpdeuhwtc		= I915_READ(GEN6_RPDEUHWTC);
1076 	s->rpdeuc		= I915_READ(GEN6_RPDEUC);
1077 	s->ecobus		= I915_READ(ECOBUS);
1078 	s->pwrdwnupctl		= I915_READ(VLV_PWRDWNUPCTL);
1079 	s->rp_down_timeout	= I915_READ(GEN6_RP_DOWN_TIMEOUT);
1080 	s->rp_deucsw		= I915_READ(GEN6_RPDEUCSW);
1081 	s->rcubmabdtmr		= I915_READ(GEN6_RCUBMABDTMR);
1082 	s->rcedata		= I915_READ(VLV_RCEDATA);
1083 	s->spare2gh		= I915_READ(VLV_SPAREG2H);
1084 
1085 	/* Display CZ domain, 0x4400C-0x4402C, 0x4F000-0x4F11F */
1086 	s->gt_imr		= I915_READ(GTIMR);
1087 	s->gt_ier		= I915_READ(GTIER);
1088 	s->pm_imr		= I915_READ(GEN6_PMIMR);
1089 	s->pm_ier		= I915_READ(GEN6_PMIER);
1090 
1091 	for (i = 0; i < ARRAY_SIZE(s->gt_scratch); i++)
1092 		s->gt_scratch[i] = I915_READ(GEN7_GT_SCRATCH_BASE + i * 4);
1093 
1094 	/* GT SA CZ domain, 0x100000-0x138124 */
1095 	s->tilectl		= I915_READ(TILECTL);
1096 	s->gt_fifoctl		= I915_READ(GTFIFOCTL);
1097 	s->gtlc_wake_ctrl	= I915_READ(VLV_GTLC_WAKE_CTRL);
1098 	s->gtlc_survive		= I915_READ(VLV_GTLC_SURVIVABILITY_REG);
1099 	s->pmwgicz		= I915_READ(VLV_PMWGICZ);
1100 
1101 	/* Gunit-Display CZ domain, 0x182028-0x1821CF */
1102 	s->gu_ctl0		= I915_READ(VLV_GU_CTL0);
1103 	s->gu_ctl1		= I915_READ(VLV_GU_CTL1);
1104 	s->pcbr			= I915_READ(VLV_PCBR);
1105 	s->clock_gate_dis2	= I915_READ(VLV_GUNIT_CLOCK_GATE2);
1106 
1107 	/*
1108 	 * Not saving any of:
1109 	 * DFT,		0x9800-0x9EC0
1110 	 * SARB,	0xB000-0xB1FC
1111 	 * GAC,		0x5208-0x524C, 0x14000-0x14C000
1112 	 * PCI CFG
1113 	 */
1114 }
1115 
vlv_restore_gunit_s0ix_state(struct drm_i915_private * dev_priv)1116 static void vlv_restore_gunit_s0ix_state(struct drm_i915_private *dev_priv)
1117 {
1118 	struct vlv_s0ix_state *s = &dev_priv->vlv_s0ix_state;
1119 	u32 val;
1120 	int i;
1121 
1122 	/* GAM 0x4000-0x4770 */
1123 	I915_WRITE(GEN7_WR_WATERMARK,	s->wr_watermark);
1124 	I915_WRITE(GEN7_GFX_PRIO_CTRL,	s->gfx_prio_ctrl);
1125 	I915_WRITE(ARB_MODE,		s->arb_mode | (0xffff << 16));
1126 	I915_WRITE(GEN7_GFX_PEND_TLB0,	s->gfx_pend_tlb0);
1127 	I915_WRITE(GEN7_GFX_PEND_TLB1,	s->gfx_pend_tlb1);
1128 
1129 	for (i = 0; i < ARRAY_SIZE(s->lra_limits); i++)
1130 		I915_WRITE(GEN7_LRA_LIMITS_BASE + i * 4, s->lra_limits[i]);
1131 
1132 	I915_WRITE(GEN7_MEDIA_MAX_REQ_COUNT, s->media_max_req_count);
1133 	I915_WRITE(GEN7_GFX_MAX_REQ_COUNT, s->gfx_max_req_count);
1134 
1135 	I915_WRITE(RENDER_HWS_PGA_GEN7,	s->render_hwsp);
1136 	I915_WRITE(GAM_ECOCHK,		s->ecochk);
1137 	I915_WRITE(BSD_HWS_PGA_GEN7,	s->bsd_hwsp);
1138 	I915_WRITE(BLT_HWS_PGA_GEN7,	s->blt_hwsp);
1139 
1140 	I915_WRITE(GEN7_TLB_RD_ADDR,	s->tlb_rd_addr);
1141 
1142 	/* MBC 0x9024-0x91D0, 0x8500 */
1143 	I915_WRITE(VLV_G3DCTL,		s->g3dctl);
1144 	I915_WRITE(VLV_GSCKGCTL,	s->gsckgctl);
1145 	I915_WRITE(GEN6_MBCTL,		s->mbctl);
1146 
1147 	/* GCP 0x9400-0x9424, 0x8100-0x810C */
1148 	I915_WRITE(GEN6_UCGCTL1,	s->ucgctl1);
1149 	I915_WRITE(GEN6_UCGCTL3,	s->ucgctl3);
1150 	I915_WRITE(GEN6_RCGCTL1,	s->rcgctl1);
1151 	I915_WRITE(GEN6_RCGCTL2,	s->rcgctl2);
1152 	I915_WRITE(GEN6_RSTCTL,		s->rstctl);
1153 	I915_WRITE(GEN7_MISCCPCTL,	s->misccpctl);
1154 
1155 	/* GPM 0xA000-0xAA84, 0x8000-0x80FC */
1156 	I915_WRITE(GEN6_GFXPAUSE,	s->gfxpause);
1157 	I915_WRITE(GEN6_RPDEUHWTC,	s->rpdeuhwtc);
1158 	I915_WRITE(GEN6_RPDEUC,		s->rpdeuc);
1159 	I915_WRITE(ECOBUS,		s->ecobus);
1160 	I915_WRITE(VLV_PWRDWNUPCTL,	s->pwrdwnupctl);
1161 	I915_WRITE(GEN6_RP_DOWN_TIMEOUT,s->rp_down_timeout);
1162 	I915_WRITE(GEN6_RPDEUCSW,	s->rp_deucsw);
1163 	I915_WRITE(GEN6_RCUBMABDTMR,	s->rcubmabdtmr);
1164 	I915_WRITE(VLV_RCEDATA,		s->rcedata);
1165 	I915_WRITE(VLV_SPAREG2H,	s->spare2gh);
1166 
1167 	/* Display CZ domain, 0x4400C-0x4402C, 0x4F000-0x4F11F */
1168 	I915_WRITE(GTIMR,		s->gt_imr);
1169 	I915_WRITE(GTIER,		s->gt_ier);
1170 	I915_WRITE(GEN6_PMIMR,		s->pm_imr);
1171 	I915_WRITE(GEN6_PMIER,		s->pm_ier);
1172 
1173 	for (i = 0; i < ARRAY_SIZE(s->gt_scratch); i++)
1174 		I915_WRITE(GEN7_GT_SCRATCH_BASE + i * 4, s->gt_scratch[i]);
1175 
1176 	/* GT SA CZ domain, 0x100000-0x138124 */
1177 	I915_WRITE(TILECTL,			s->tilectl);
1178 	I915_WRITE(GTFIFOCTL,			s->gt_fifoctl);
1179 	/*
1180 	 * Preserve the GT allow wake and GFX force clock bit, they are not
1181 	 * be restored, as they are used to control the s0ix suspend/resume
1182 	 * sequence by the caller.
1183 	 */
1184 	val = I915_READ(VLV_GTLC_WAKE_CTRL);
1185 	val &= VLV_GTLC_ALLOWWAKEREQ;
1186 	val |= s->gtlc_wake_ctrl & ~VLV_GTLC_ALLOWWAKEREQ;
1187 	I915_WRITE(VLV_GTLC_WAKE_CTRL, val);
1188 
1189 	val = I915_READ(VLV_GTLC_SURVIVABILITY_REG);
1190 	val &= VLV_GFX_CLK_FORCE_ON_BIT;
1191 	val |= s->gtlc_survive & ~VLV_GFX_CLK_FORCE_ON_BIT;
1192 	I915_WRITE(VLV_GTLC_SURVIVABILITY_REG, val);
1193 
1194 	I915_WRITE(VLV_PMWGICZ,			s->pmwgicz);
1195 
1196 	/* Gunit-Display CZ domain, 0x182028-0x1821CF */
1197 	I915_WRITE(VLV_GU_CTL0,			s->gu_ctl0);
1198 	I915_WRITE(VLV_GU_CTL1,			s->gu_ctl1);
1199 	I915_WRITE(VLV_PCBR,			s->pcbr);
1200 	I915_WRITE(VLV_GUNIT_CLOCK_GATE2,	s->clock_gate_dis2);
1201 }
1202 
vlv_force_gfx_clock(struct drm_i915_private * dev_priv,bool force_on)1203 int vlv_force_gfx_clock(struct drm_i915_private *dev_priv, bool force_on)
1204 {
1205 	u32 val;
1206 	int err;
1207 
1208 #define COND (I915_READ(VLV_GTLC_SURVIVABILITY_REG) & VLV_GFX_CLK_STATUS_BIT)
1209 
1210 	val = I915_READ(VLV_GTLC_SURVIVABILITY_REG);
1211 	val &= ~VLV_GFX_CLK_FORCE_ON_BIT;
1212 	if (force_on)
1213 		val |= VLV_GFX_CLK_FORCE_ON_BIT;
1214 	I915_WRITE(VLV_GTLC_SURVIVABILITY_REG, val);
1215 
1216 	if (!force_on)
1217 		return 0;
1218 
1219 	err = wait_for(COND, 20);
1220 	if (err)
1221 		DRM_ERROR("timeout waiting for GFX clock force-on (%08x)\n",
1222 			  I915_READ(VLV_GTLC_SURVIVABILITY_REG));
1223 
1224 	return err;
1225 #undef COND
1226 }
1227 
vlv_allow_gt_wake(struct drm_i915_private * dev_priv,bool allow)1228 static int vlv_allow_gt_wake(struct drm_i915_private *dev_priv, bool allow)
1229 {
1230 	u32 val;
1231 	int err = 0;
1232 
1233 	val = I915_READ(VLV_GTLC_WAKE_CTRL);
1234 	val &= ~VLV_GTLC_ALLOWWAKEREQ;
1235 	if (allow)
1236 		val |= VLV_GTLC_ALLOWWAKEREQ;
1237 	I915_WRITE(VLV_GTLC_WAKE_CTRL, val);
1238 	POSTING_READ(VLV_GTLC_WAKE_CTRL);
1239 
1240 #define COND (!!(I915_READ(VLV_GTLC_PW_STATUS) & VLV_GTLC_ALLOWWAKEACK) == \
1241 	      allow)
1242 	err = wait_for(COND, 1);
1243 	if (err)
1244 		DRM_ERROR("timeout disabling GT waking\n");
1245 	return err;
1246 #undef COND
1247 }
1248 
vlv_wait_for_gt_wells(struct drm_i915_private * dev_priv,bool wait_for_on)1249 static int vlv_wait_for_gt_wells(struct drm_i915_private *dev_priv,
1250 				 bool wait_for_on)
1251 {
1252 	u32 mask;
1253 	u32 val;
1254 	int err;
1255 
1256 	mask = VLV_GTLC_PW_MEDIA_STATUS_MASK | VLV_GTLC_PW_RENDER_STATUS_MASK;
1257 	val = wait_for_on ? mask : 0;
1258 #define COND ((I915_READ(VLV_GTLC_PW_STATUS) & mask) == val)
1259 	if (COND)
1260 		return 0;
1261 
1262 	DRM_DEBUG_KMS("waiting for GT wells to go %s (%08x)\n",
1263 			wait_for_on ? "on" : "off",
1264 			I915_READ(VLV_GTLC_PW_STATUS));
1265 
1266 	/*
1267 	 * RC6 transitioning can be delayed up to 2 msec (see
1268 	 * valleyview_enable_rps), use 3 msec for safety.
1269 	 */
1270 	err = wait_for(COND, 3);
1271 	if (err)
1272 		DRM_ERROR("timeout waiting for GT wells to go %s\n",
1273 			  wait_for_on ? "on" : "off");
1274 
1275 	return err;
1276 #undef COND
1277 }
1278 
vlv_check_no_gt_access(struct drm_i915_private * dev_priv)1279 static void vlv_check_no_gt_access(struct drm_i915_private *dev_priv)
1280 {
1281 	if (!(I915_READ(VLV_GTLC_PW_STATUS) & VLV_GTLC_ALLOWWAKEERR))
1282 		return;
1283 
1284 	DRM_ERROR("GT register access while GT waking disabled\n");
1285 	I915_WRITE(VLV_GTLC_PW_STATUS, VLV_GTLC_ALLOWWAKEERR);
1286 }
1287 
vlv_suspend_complete(struct drm_i915_private * dev_priv)1288 static int vlv_suspend_complete(struct drm_i915_private *dev_priv)
1289 {
1290 	u32 mask;
1291 	int err;
1292 
1293 	/*
1294 	 * Bspec defines the following GT well on flags as debug only, so
1295 	 * don't treat them as hard failures.
1296 	 */
1297 	(void)vlv_wait_for_gt_wells(dev_priv, false);
1298 
1299 	mask = VLV_GTLC_RENDER_CTX_EXISTS | VLV_GTLC_MEDIA_CTX_EXISTS;
1300 	WARN_ON((I915_READ(VLV_GTLC_WAKE_CTRL) & mask) != mask);
1301 
1302 	vlv_check_no_gt_access(dev_priv);
1303 
1304 	err = vlv_force_gfx_clock(dev_priv, true);
1305 	if (err)
1306 		goto err1;
1307 
1308 	err = vlv_allow_gt_wake(dev_priv, false);
1309 	if (err)
1310 		goto err2;
1311 
1312 	if (!IS_CHERRYVIEW(dev_priv->dev))
1313 		vlv_save_gunit_s0ix_state(dev_priv);
1314 
1315 	err = vlv_force_gfx_clock(dev_priv, false);
1316 	if (err)
1317 		goto err2;
1318 
1319 	return 0;
1320 
1321 err2:
1322 	/* For safety always re-enable waking and disable gfx clock forcing */
1323 	vlv_allow_gt_wake(dev_priv, true);
1324 err1:
1325 	vlv_force_gfx_clock(dev_priv, false);
1326 
1327 	return err;
1328 }
1329 
vlv_resume_prepare(struct drm_i915_private * dev_priv,bool rpm_resume)1330 static int vlv_resume_prepare(struct drm_i915_private *dev_priv,
1331 				bool rpm_resume)
1332 {
1333 	struct drm_device *dev = dev_priv->dev;
1334 	int err;
1335 	int ret;
1336 
1337 	/*
1338 	 * If any of the steps fail just try to continue, that's the best we
1339 	 * can do at this point. Return the first error code (which will also
1340 	 * leave RPM permanently disabled).
1341 	 */
1342 	ret = vlv_force_gfx_clock(dev_priv, true);
1343 
1344 	if (!IS_CHERRYVIEW(dev_priv->dev))
1345 		vlv_restore_gunit_s0ix_state(dev_priv);
1346 
1347 	err = vlv_allow_gt_wake(dev_priv, true);
1348 	if (!ret)
1349 		ret = err;
1350 
1351 	err = vlv_force_gfx_clock(dev_priv, false);
1352 	if (!ret)
1353 		ret = err;
1354 
1355 	vlv_check_no_gt_access(dev_priv);
1356 
1357 	if (rpm_resume) {
1358 		intel_init_clock_gating(dev);
1359 		i915_gem_restore_fences(dev);
1360 	}
1361 
1362 	return ret;
1363 }
1364 
intel_runtime_suspend(struct device * device)1365 static int intel_runtime_suspend(struct device *device)
1366 {
1367 	struct pci_dev *pdev = to_pci_dev(device);
1368 	struct drm_device *dev = pci_get_drvdata(pdev);
1369 	struct drm_i915_private *dev_priv = dev->dev_private;
1370 	int ret;
1371 
1372 	if (WARN_ON_ONCE(!(dev_priv->rps.enabled && intel_enable_rc6(dev))))
1373 		return -ENODEV;
1374 
1375 	if (WARN_ON_ONCE(!HAS_RUNTIME_PM(dev)))
1376 		return -ENODEV;
1377 
1378 	DRM_DEBUG_KMS("Suspending device\n");
1379 
1380 	/*
1381 	 * We could deadlock here in case another thread holding struct_mutex
1382 	 * calls RPM suspend concurrently, since the RPM suspend will wait
1383 	 * first for this RPM suspend to finish. In this case the concurrent
1384 	 * RPM resume will be followed by its RPM suspend counterpart. Still
1385 	 * for consistency return -EAGAIN, which will reschedule this suspend.
1386 	 */
1387 	if (!mutex_trylock(&dev->struct_mutex)) {
1388 		DRM_DEBUG_KMS("device lock contention, deffering suspend\n");
1389 		/*
1390 		 * Bump the expiration timestamp, otherwise the suspend won't
1391 		 * be rescheduled.
1392 		 */
1393 		pm_runtime_mark_last_busy(device);
1394 
1395 		return -EAGAIN;
1396 	}
1397 	/*
1398 	 * We are safe here against re-faults, since the fault handler takes
1399 	 * an RPM reference.
1400 	 */
1401 	i915_gem_release_all_mmaps(dev_priv);
1402 	mutex_unlock(&dev->struct_mutex);
1403 
1404 	intel_suspend_gt_powersave(dev);
1405 	intel_runtime_pm_disable_interrupts(dev_priv);
1406 
1407 	ret = intel_suspend_complete(dev_priv);
1408 	if (ret) {
1409 		DRM_ERROR("Runtime suspend failed, disabling it (%d)\n", ret);
1410 		intel_runtime_pm_enable_interrupts(dev_priv);
1411 
1412 		return ret;
1413 	}
1414 
1415 	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
1416 	intel_uncore_forcewake_reset(dev, false);
1417 	dev_priv->pm.suspended = true;
1418 
1419 	/*
1420 	 * FIXME: We really should find a document that references the arguments
1421 	 * used below!
1422 	 */
1423 	if (IS_HASWELL(dev)) {
1424 		/*
1425 		 * current versions of firmware which depend on this opregion
1426 		 * notification have repurposed the D1 definition to mean
1427 		 * "runtime suspended" vs. what you would normally expect (D3)
1428 		 * to distinguish it from notifications that might be sent via
1429 		 * the suspend path.
1430 		 */
1431 		intel_opregion_notify_adapter(dev, PCI_D1);
1432 	} else {
1433 		/*
1434 		 * On Broadwell, if we use PCI_D1 the PCH DDI ports will stop
1435 		 * being detected, and the call we do at intel_runtime_resume()
1436 		 * won't be able to restore them. Since PCI_D3hot matches the
1437 		 * actual specification and appears to be working, use it. Let's
1438 		 * assume the other non-Haswell platforms will stay the same as
1439 		 * Broadwell.
1440 		 */
1441 		intel_opregion_notify_adapter(dev, PCI_D3hot);
1442 	}
1443 
1444 	assert_forcewakes_inactive(dev_priv);
1445 
1446 	DRM_DEBUG_KMS("Device suspended\n");
1447 	return 0;
1448 }
1449 
intel_runtime_resume(struct device * device)1450 static int intel_runtime_resume(struct device *device)
1451 {
1452 	struct pci_dev *pdev = to_pci_dev(device);
1453 	struct drm_device *dev = pci_get_drvdata(pdev);
1454 	struct drm_i915_private *dev_priv = dev->dev_private;
1455 	int ret = 0;
1456 
1457 	if (WARN_ON_ONCE(!HAS_RUNTIME_PM(dev)))
1458 		return -ENODEV;
1459 
1460 	DRM_DEBUG_KMS("Resuming device\n");
1461 
1462 	intel_opregion_notify_adapter(dev, PCI_D0);
1463 	dev_priv->pm.suspended = false;
1464 
1465 	if (IS_GEN6(dev_priv))
1466 		intel_init_pch_refclk(dev);
1467 	else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
1468 		hsw_disable_pc8(dev_priv);
1469 	else if (IS_VALLEYVIEW(dev_priv))
1470 		ret = vlv_resume_prepare(dev_priv, true);
1471 
1472 	/*
1473 	 * No point of rolling back things in case of an error, as the best
1474 	 * we can do is to hope that things will still work (and disable RPM).
1475 	 */
1476 	i915_gem_init_swizzling(dev);
1477 	gen6_update_ring_freq(dev);
1478 
1479 	intel_runtime_pm_enable_interrupts(dev_priv);
1480 	intel_enable_gt_powersave(dev);
1481 
1482 	if (ret)
1483 		DRM_ERROR("Runtime resume failed, disabling it (%d)\n", ret);
1484 	else
1485 		DRM_DEBUG_KMS("Device resumed\n");
1486 
1487 	return ret;
1488 }
1489 
1490 /*
1491  * This function implements common functionality of runtime and system
1492  * suspend sequence.
1493  */
intel_suspend_complete(struct drm_i915_private * dev_priv)1494 static int intel_suspend_complete(struct drm_i915_private *dev_priv)
1495 {
1496 	struct drm_device *dev = dev_priv->dev;
1497 	int ret;
1498 
1499 	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1500 		ret = hsw_suspend_complete(dev_priv);
1501 	else if (IS_VALLEYVIEW(dev))
1502 		ret = vlv_suspend_complete(dev_priv);
1503 	else
1504 		ret = 0;
1505 
1506 	return ret;
1507 }
1508 
1509 static const struct dev_pm_ops i915_pm_ops = {
1510 	/*
1511 	 * S0ix (via system suspend) and S3 event handlers [PMSG_SUSPEND,
1512 	 * PMSG_RESUME]
1513 	 */
1514 	.suspend = i915_pm_suspend,
1515 	.suspend_late = i915_pm_suspend_late,
1516 	.resume_early = i915_pm_resume_early,
1517 	.resume = i915_pm_resume,
1518 
1519 	/*
1520 	 * S4 event handlers
1521 	 * @freeze, @freeze_late    : called (1) before creating the
1522 	 *                            hibernation image [PMSG_FREEZE] and
1523 	 *                            (2) after rebooting, before restoring
1524 	 *                            the image [PMSG_QUIESCE]
1525 	 * @thaw, @thaw_early       : called (1) after creating the hibernation
1526 	 *                            image, before writing it [PMSG_THAW]
1527 	 *                            and (2) after failing to create or
1528 	 *                            restore the image [PMSG_RECOVER]
1529 	 * @poweroff, @poweroff_late: called after writing the hibernation
1530 	 *                            image, before rebooting [PMSG_HIBERNATE]
1531 	 * @restore, @restore_early : called after rebooting and restoring the
1532 	 *                            hibernation image [PMSG_RESTORE]
1533 	 */
1534 	.freeze = i915_pm_suspend,
1535 	.freeze_late = i915_pm_suspend_late,
1536 	.thaw_early = i915_pm_resume_early,
1537 	.thaw = i915_pm_resume,
1538 	.poweroff = i915_pm_suspend,
1539 	.poweroff_late = i915_pm_poweroff_late,
1540 	.restore_early = i915_pm_resume_early,
1541 	.restore = i915_pm_resume,
1542 
1543 	/* S0ix (via runtime suspend) event handlers */
1544 	.runtime_suspend = intel_runtime_suspend,
1545 	.runtime_resume = intel_runtime_resume,
1546 };
1547 
1548 static const struct vm_operations_struct i915_gem_vm_ops = {
1549 	.fault = i915_gem_fault,
1550 	.open = drm_gem_vm_open,
1551 	.close = drm_gem_vm_close,
1552 };
1553 
1554 static const struct file_operations i915_driver_fops = {
1555 	.owner = THIS_MODULE,
1556 	.open = drm_open,
1557 	.release = drm_release,
1558 	.unlocked_ioctl = drm_ioctl,
1559 	.mmap = drm_gem_mmap,
1560 	.poll = drm_poll,
1561 	.read = drm_read,
1562 #ifdef CONFIG_COMPAT
1563 	.compat_ioctl = i915_compat_ioctl,
1564 #endif
1565 	.llseek = noop_llseek,
1566 };
1567 
1568 static struct drm_driver driver = {
1569 	/* Don't use MTRRs here; the Xserver or userspace app should
1570 	 * deal with them for Intel hardware.
1571 	 */
1572 	.driver_features =
1573 	    DRIVER_USE_AGP |
1574 	    DRIVER_HAVE_IRQ | DRIVER_IRQ_SHARED | DRIVER_GEM | DRIVER_PRIME |
1575 	    DRIVER_RENDER,
1576 	.load = i915_driver_load,
1577 	.unload = i915_driver_unload,
1578 	.open = i915_driver_open,
1579 	.lastclose = i915_driver_lastclose,
1580 	.preclose = i915_driver_preclose,
1581 	.postclose = i915_driver_postclose,
1582 	.set_busid = drm_pci_set_busid,
1583 
1584 	/* Used in place of i915_pm_ops for non-DRIVER_MODESET */
1585 	.suspend = i915_suspend_legacy,
1586 	.resume = i915_resume_legacy,
1587 
1588 	.device_is_agp = i915_driver_device_is_agp,
1589 #if defined(CONFIG_DEBUG_FS)
1590 	.debugfs_init = i915_debugfs_init,
1591 	.debugfs_cleanup = i915_debugfs_cleanup,
1592 #endif
1593 	.gem_free_object = i915_gem_free_object,
1594 	.gem_vm_ops = &i915_gem_vm_ops,
1595 
1596 	.prime_handle_to_fd = drm_gem_prime_handle_to_fd,
1597 	.prime_fd_to_handle = drm_gem_prime_fd_to_handle,
1598 	.gem_prime_export = i915_gem_prime_export,
1599 	.gem_prime_import = i915_gem_prime_import,
1600 
1601 	.dumb_create = i915_gem_dumb_create,
1602 	.dumb_map_offset = i915_gem_mmap_gtt,
1603 	.dumb_destroy = drm_gem_dumb_destroy,
1604 	.ioctls = i915_ioctls,
1605 	.fops = &i915_driver_fops,
1606 	.name = DRIVER_NAME,
1607 	.desc = DRIVER_DESC,
1608 	.date = DRIVER_DATE,
1609 	.major = DRIVER_MAJOR,
1610 	.minor = DRIVER_MINOR,
1611 	.patchlevel = DRIVER_PATCHLEVEL,
1612 };
1613 
1614 static struct pci_driver i915_pci_driver = {
1615 	.name = DRIVER_NAME,
1616 	.id_table = pciidlist,
1617 	.probe = i915_pci_probe,
1618 	.remove = i915_pci_remove,
1619 	.driver.pm = &i915_pm_ops,
1620 };
1621 
i915_init(void)1622 static int __init i915_init(void)
1623 {
1624 	driver.num_ioctls = i915_max_ioctl;
1625 
1626 	/*
1627 	 * If CONFIG_DRM_I915_KMS is set, default to KMS unless
1628 	 * explicitly disabled with the module pararmeter.
1629 	 *
1630 	 * Otherwise, just follow the parameter (defaulting to off).
1631 	 *
1632 	 * Allow optional vga_text_mode_force boot option to override
1633 	 * the default behavior.
1634 	 */
1635 #if defined(CONFIG_DRM_I915_KMS)
1636 	if (i915.modeset != 0)
1637 		driver.driver_features |= DRIVER_MODESET;
1638 #endif
1639 	if (i915.modeset == 1)
1640 		driver.driver_features |= DRIVER_MODESET;
1641 
1642 #ifdef CONFIG_VGA_CONSOLE
1643 	if (vgacon_text_force() && i915.modeset == -1)
1644 		driver.driver_features &= ~DRIVER_MODESET;
1645 #endif
1646 
1647 	if (!(driver.driver_features & DRIVER_MODESET)) {
1648 		driver.get_vblank_timestamp = NULL;
1649 		/* Silently fail loading to not upset userspace. */
1650 		DRM_DEBUG_DRIVER("KMS and UMS disabled.\n");
1651 		return 0;
1652 	}
1653 
1654 	/*
1655 	 * FIXME: Note that we're lying to the DRM core here so that we can get access
1656 	 * to the atomic ioctl and the atomic properties.  Only plane operations on
1657 	 * a single CRTC will actually work.
1658 	 */
1659 	if (i915.nuclear_pageflip)
1660 		driver.driver_features |= DRIVER_ATOMIC;
1661 
1662 	return drm_pci_init(&driver, &i915_pci_driver);
1663 }
1664 
i915_exit(void)1665 static void __exit i915_exit(void)
1666 {
1667 	if (!(driver.driver_features & DRIVER_MODESET))
1668 		return; /* Never loaded a driver. */
1669 
1670 	drm_pci_exit(&driver, &i915_pci_driver);
1671 }
1672 
1673 module_init(i915_init);
1674 module_exit(i915_exit);
1675 
1676 MODULE_AUTHOR("Tungsten Graphics, Inc.");
1677 MODULE_AUTHOR("Intel Corporation");
1678 
1679 MODULE_DESCRIPTION(DRIVER_DESC);
1680 MODULE_LICENSE("GPL and additional rights");
1681