1 /*
2 * Copyright © 2008-2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_vgpu.h"
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35 #include <linux/shmem_fs.h>
36 #include <linux/slab.h>
37 #include <linux/swap.h>
38 #include <linux/pci.h>
39 #include <linux/dma-buf.h>
40
41 #define RQ_BUG_ON(expr)
42
43 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
44 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
45 static void
46 i915_gem_object_retire__write(struct drm_i915_gem_object *obj);
47 static void
48 i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring);
49
cpu_cache_is_coherent(struct drm_device * dev,enum i915_cache_level level)50 static bool cpu_cache_is_coherent(struct drm_device *dev,
51 enum i915_cache_level level)
52 {
53 return HAS_LLC(dev) || level != I915_CACHE_NONE;
54 }
55
cpu_write_needs_clflush(struct drm_i915_gem_object * obj)56 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
57 {
58 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
59 return true;
60
61 return obj->pin_display;
62 }
63
64 /* some bookkeeping */
i915_gem_info_add_obj(struct drm_i915_private * dev_priv,size_t size)65 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
66 size_t size)
67 {
68 spin_lock(&dev_priv->mm.object_stat_lock);
69 dev_priv->mm.object_count++;
70 dev_priv->mm.object_memory += size;
71 spin_unlock(&dev_priv->mm.object_stat_lock);
72 }
73
i915_gem_info_remove_obj(struct drm_i915_private * dev_priv,size_t size)74 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
75 size_t size)
76 {
77 spin_lock(&dev_priv->mm.object_stat_lock);
78 dev_priv->mm.object_count--;
79 dev_priv->mm.object_memory -= size;
80 spin_unlock(&dev_priv->mm.object_stat_lock);
81 }
82
83 static int
i915_gem_wait_for_error(struct i915_gpu_error * error)84 i915_gem_wait_for_error(struct i915_gpu_error *error)
85 {
86 int ret;
87
88 #define EXIT_COND (!i915_reset_in_progress(error) || \
89 i915_terminally_wedged(error))
90 if (EXIT_COND)
91 return 0;
92
93 /*
94 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
95 * userspace. If it takes that long something really bad is going on and
96 * we should simply try to bail out and fail as gracefully as possible.
97 */
98 ret = wait_event_interruptible_timeout(error->reset_queue,
99 EXIT_COND,
100 10*HZ);
101 if (ret == 0) {
102 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
103 return -EIO;
104 } else if (ret < 0) {
105 return ret;
106 }
107 #undef EXIT_COND
108
109 return 0;
110 }
111
i915_mutex_lock_interruptible(struct drm_device * dev)112 int i915_mutex_lock_interruptible(struct drm_device *dev)
113 {
114 struct drm_i915_private *dev_priv = dev->dev_private;
115 int ret;
116
117 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
118 if (ret)
119 return ret;
120
121 ret = mutex_lock_interruptible(&dev->struct_mutex);
122 if (ret)
123 return ret;
124
125 WARN_ON(i915_verify_lists(dev));
126 return 0;
127 }
128
129 int
i915_gem_get_aperture_ioctl(struct drm_device * dev,void * data,struct drm_file * file)130 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
131 struct drm_file *file)
132 {
133 struct drm_i915_private *dev_priv = dev->dev_private;
134 struct drm_i915_gem_get_aperture *args = data;
135 struct i915_gtt *ggtt = &dev_priv->gtt;
136 struct i915_vma *vma;
137 size_t pinned;
138
139 pinned = 0;
140 mutex_lock(&dev->struct_mutex);
141 list_for_each_entry(vma, &ggtt->base.active_list, mm_list)
142 if (vma->pin_count)
143 pinned += vma->node.size;
144 list_for_each_entry(vma, &ggtt->base.inactive_list, mm_list)
145 if (vma->pin_count)
146 pinned += vma->node.size;
147 mutex_unlock(&dev->struct_mutex);
148
149 args->aper_size = dev_priv->gtt.base.total;
150 args->aper_available_size = args->aper_size - pinned;
151
152 return 0;
153 }
154
155 static int
i915_gem_object_get_pages_phys(struct drm_i915_gem_object * obj)156 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
157 {
158 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
159 char *vaddr = obj->phys_handle->vaddr;
160 struct sg_table *st;
161 struct scatterlist *sg;
162 int i;
163
164 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
165 return -EINVAL;
166
167 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
168 struct page *page;
169 char *src;
170
171 page = shmem_read_mapping_page(mapping, i);
172 if (IS_ERR(page))
173 return PTR_ERR(page);
174
175 src = kmap_atomic(page);
176 memcpy(vaddr, src, PAGE_SIZE);
177 drm_clflush_virt_range(vaddr, PAGE_SIZE);
178 kunmap_atomic(src);
179
180 page_cache_release(page);
181 vaddr += PAGE_SIZE;
182 }
183
184 i915_gem_chipset_flush(obj->base.dev);
185
186 st = kmalloc(sizeof(*st), GFP_KERNEL);
187 if (st == NULL)
188 return -ENOMEM;
189
190 if (sg_alloc_table(st, 1, GFP_KERNEL)) {
191 kfree(st);
192 return -ENOMEM;
193 }
194
195 sg = st->sgl;
196 sg->offset = 0;
197 sg->length = obj->base.size;
198
199 sg_dma_address(sg) = obj->phys_handle->busaddr;
200 sg_dma_len(sg) = obj->base.size;
201
202 obj->pages = st;
203 return 0;
204 }
205
206 static void
i915_gem_object_put_pages_phys(struct drm_i915_gem_object * obj)207 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
208 {
209 int ret;
210
211 BUG_ON(obj->madv == __I915_MADV_PURGED);
212
213 ret = i915_gem_object_set_to_cpu_domain(obj, true);
214 if (ret) {
215 /* In the event of a disaster, abandon all caches and
216 * hope for the best.
217 */
218 WARN_ON(ret != -EIO);
219 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
220 }
221
222 if (obj->madv == I915_MADV_DONTNEED)
223 obj->dirty = 0;
224
225 if (obj->dirty) {
226 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
227 char *vaddr = obj->phys_handle->vaddr;
228 int i;
229
230 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
231 struct page *page;
232 char *dst;
233
234 page = shmem_read_mapping_page(mapping, i);
235 if (IS_ERR(page))
236 continue;
237
238 dst = kmap_atomic(page);
239 drm_clflush_virt_range(vaddr, PAGE_SIZE);
240 memcpy(dst, vaddr, PAGE_SIZE);
241 kunmap_atomic(dst);
242
243 set_page_dirty(page);
244 if (obj->madv == I915_MADV_WILLNEED)
245 mark_page_accessed(page);
246 page_cache_release(page);
247 vaddr += PAGE_SIZE;
248 }
249 obj->dirty = 0;
250 }
251
252 sg_free_table(obj->pages);
253 kfree(obj->pages);
254 }
255
256 static void
i915_gem_object_release_phys(struct drm_i915_gem_object * obj)257 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
258 {
259 drm_pci_free(obj->base.dev, obj->phys_handle);
260 }
261
262 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
263 .get_pages = i915_gem_object_get_pages_phys,
264 .put_pages = i915_gem_object_put_pages_phys,
265 .release = i915_gem_object_release_phys,
266 };
267
268 static int
drop_pages(struct drm_i915_gem_object * obj)269 drop_pages(struct drm_i915_gem_object *obj)
270 {
271 struct i915_vma *vma, *next;
272 int ret;
273
274 drm_gem_object_reference(&obj->base);
275 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link)
276 if (i915_vma_unbind(vma))
277 break;
278
279 ret = i915_gem_object_put_pages(obj);
280 drm_gem_object_unreference(&obj->base);
281
282 return ret;
283 }
284
285 int
i915_gem_object_attach_phys(struct drm_i915_gem_object * obj,int align)286 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
287 int align)
288 {
289 drm_dma_handle_t *phys;
290 int ret;
291
292 if (obj->phys_handle) {
293 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
294 return -EBUSY;
295
296 return 0;
297 }
298
299 if (obj->madv != I915_MADV_WILLNEED)
300 return -EFAULT;
301
302 if (obj->base.filp == NULL)
303 return -EINVAL;
304
305 ret = drop_pages(obj);
306 if (ret)
307 return ret;
308
309 /* create a new object */
310 phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
311 if (!phys)
312 return -ENOMEM;
313
314 obj->phys_handle = phys;
315 obj->ops = &i915_gem_phys_ops;
316
317 return i915_gem_object_get_pages(obj);
318 }
319
320 static int
i915_gem_phys_pwrite(struct drm_i915_gem_object * obj,struct drm_i915_gem_pwrite * args,struct drm_file * file_priv)321 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
322 struct drm_i915_gem_pwrite *args,
323 struct drm_file *file_priv)
324 {
325 struct drm_device *dev = obj->base.dev;
326 void *vaddr = obj->phys_handle->vaddr + args->offset;
327 char __user *user_data = to_user_ptr(args->data_ptr);
328 int ret = 0;
329
330 /* We manually control the domain here and pretend that it
331 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
332 */
333 ret = i915_gem_object_wait_rendering(obj, false);
334 if (ret)
335 return ret;
336
337 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
338 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
339 unsigned long unwritten;
340
341 /* The physical object once assigned is fixed for the lifetime
342 * of the obj, so we can safely drop the lock and continue
343 * to access vaddr.
344 */
345 mutex_unlock(&dev->struct_mutex);
346 unwritten = copy_from_user(vaddr, user_data, args->size);
347 mutex_lock(&dev->struct_mutex);
348 if (unwritten) {
349 ret = -EFAULT;
350 goto out;
351 }
352 }
353
354 drm_clflush_virt_range(vaddr, args->size);
355 i915_gem_chipset_flush(dev);
356
357 out:
358 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
359 return ret;
360 }
361
i915_gem_object_alloc(struct drm_device * dev)362 void *i915_gem_object_alloc(struct drm_device *dev)
363 {
364 struct drm_i915_private *dev_priv = dev->dev_private;
365 return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
366 }
367
i915_gem_object_free(struct drm_i915_gem_object * obj)368 void i915_gem_object_free(struct drm_i915_gem_object *obj)
369 {
370 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
371 kmem_cache_free(dev_priv->objects, obj);
372 }
373
374 static int
i915_gem_create(struct drm_file * file,struct drm_device * dev,uint64_t size,uint32_t * handle_p)375 i915_gem_create(struct drm_file *file,
376 struct drm_device *dev,
377 uint64_t size,
378 uint32_t *handle_p)
379 {
380 struct drm_i915_gem_object *obj;
381 int ret;
382 u32 handle;
383
384 size = roundup(size, PAGE_SIZE);
385 if (size == 0)
386 return -EINVAL;
387
388 /* Allocate the new object */
389 obj = i915_gem_alloc_object(dev, size);
390 if (obj == NULL)
391 return -ENOMEM;
392
393 ret = drm_gem_handle_create(file, &obj->base, &handle);
394 /* drop reference from allocate - handle holds it now */
395 drm_gem_object_unreference_unlocked(&obj->base);
396 if (ret)
397 return ret;
398
399 *handle_p = handle;
400 return 0;
401 }
402
403 int
i915_gem_dumb_create(struct drm_file * file,struct drm_device * dev,struct drm_mode_create_dumb * args)404 i915_gem_dumb_create(struct drm_file *file,
405 struct drm_device *dev,
406 struct drm_mode_create_dumb *args)
407 {
408 /* have to work out size/pitch and return them */
409 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
410 args->size = args->pitch * args->height;
411 return i915_gem_create(file, dev,
412 args->size, &args->handle);
413 }
414
415 /**
416 * Creates a new mm object and returns a handle to it.
417 */
418 int
i915_gem_create_ioctl(struct drm_device * dev,void * data,struct drm_file * file)419 i915_gem_create_ioctl(struct drm_device *dev, void *data,
420 struct drm_file *file)
421 {
422 struct drm_i915_gem_create *args = data;
423
424 return i915_gem_create(file, dev,
425 args->size, &args->handle);
426 }
427
428 static inline int
__copy_to_user_swizzled(char __user * cpu_vaddr,const char * gpu_vaddr,int gpu_offset,int length)429 __copy_to_user_swizzled(char __user *cpu_vaddr,
430 const char *gpu_vaddr, int gpu_offset,
431 int length)
432 {
433 int ret, cpu_offset = 0;
434
435 while (length > 0) {
436 int cacheline_end = ALIGN(gpu_offset + 1, 64);
437 int this_length = min(cacheline_end - gpu_offset, length);
438 int swizzled_gpu_offset = gpu_offset ^ 64;
439
440 ret = __copy_to_user(cpu_vaddr + cpu_offset,
441 gpu_vaddr + swizzled_gpu_offset,
442 this_length);
443 if (ret)
444 return ret + length;
445
446 cpu_offset += this_length;
447 gpu_offset += this_length;
448 length -= this_length;
449 }
450
451 return 0;
452 }
453
454 static inline int
__copy_from_user_swizzled(char * gpu_vaddr,int gpu_offset,const char __user * cpu_vaddr,int length)455 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
456 const char __user *cpu_vaddr,
457 int length)
458 {
459 int ret, cpu_offset = 0;
460
461 while (length > 0) {
462 int cacheline_end = ALIGN(gpu_offset + 1, 64);
463 int this_length = min(cacheline_end - gpu_offset, length);
464 int swizzled_gpu_offset = gpu_offset ^ 64;
465
466 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
467 cpu_vaddr + cpu_offset,
468 this_length);
469 if (ret)
470 return ret + length;
471
472 cpu_offset += this_length;
473 gpu_offset += this_length;
474 length -= this_length;
475 }
476
477 return 0;
478 }
479
480 /*
481 * Pins the specified object's pages and synchronizes the object with
482 * GPU accesses. Sets needs_clflush to non-zero if the caller should
483 * flush the object from the CPU cache.
484 */
i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object * obj,int * needs_clflush)485 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
486 int *needs_clflush)
487 {
488 int ret;
489
490 *needs_clflush = 0;
491
492 if (!obj->base.filp)
493 return -EINVAL;
494
495 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
496 /* If we're not in the cpu read domain, set ourself into the gtt
497 * read domain and manually flush cachelines (if required). This
498 * optimizes for the case when the gpu will dirty the data
499 * anyway again before the next pread happens. */
500 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
501 obj->cache_level);
502 ret = i915_gem_object_wait_rendering(obj, true);
503 if (ret)
504 return ret;
505 }
506
507 ret = i915_gem_object_get_pages(obj);
508 if (ret)
509 return ret;
510
511 i915_gem_object_pin_pages(obj);
512
513 return ret;
514 }
515
516 /* Per-page copy function for the shmem pread fastpath.
517 * Flushes invalid cachelines before reading the target if
518 * needs_clflush is set. */
519 static int
shmem_pread_fast(struct page * page,int shmem_page_offset,int page_length,char __user * user_data,bool page_do_bit17_swizzling,bool needs_clflush)520 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
521 char __user *user_data,
522 bool page_do_bit17_swizzling, bool needs_clflush)
523 {
524 char *vaddr;
525 int ret;
526
527 if (unlikely(page_do_bit17_swizzling))
528 return -EINVAL;
529
530 vaddr = kmap_atomic(page);
531 if (needs_clflush)
532 drm_clflush_virt_range(vaddr + shmem_page_offset,
533 page_length);
534 ret = __copy_to_user_inatomic(user_data,
535 vaddr + shmem_page_offset,
536 page_length);
537 kunmap_atomic(vaddr);
538
539 return ret ? -EFAULT : 0;
540 }
541
542 static void
shmem_clflush_swizzled_range(char * addr,unsigned long length,bool swizzled)543 shmem_clflush_swizzled_range(char *addr, unsigned long length,
544 bool swizzled)
545 {
546 if (unlikely(swizzled)) {
547 unsigned long start = (unsigned long) addr;
548 unsigned long end = (unsigned long) addr + length;
549
550 /* For swizzling simply ensure that we always flush both
551 * channels. Lame, but simple and it works. Swizzled
552 * pwrite/pread is far from a hotpath - current userspace
553 * doesn't use it at all. */
554 start = round_down(start, 128);
555 end = round_up(end, 128);
556
557 drm_clflush_virt_range((void *)start, end - start);
558 } else {
559 drm_clflush_virt_range(addr, length);
560 }
561
562 }
563
564 /* Only difference to the fast-path function is that this can handle bit17
565 * and uses non-atomic copy and kmap functions. */
566 static int
shmem_pread_slow(struct page * page,int shmem_page_offset,int page_length,char __user * user_data,bool page_do_bit17_swizzling,bool needs_clflush)567 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
568 char __user *user_data,
569 bool page_do_bit17_swizzling, bool needs_clflush)
570 {
571 char *vaddr;
572 int ret;
573
574 vaddr = kmap(page);
575 if (needs_clflush)
576 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
577 page_length,
578 page_do_bit17_swizzling);
579
580 if (page_do_bit17_swizzling)
581 ret = __copy_to_user_swizzled(user_data,
582 vaddr, shmem_page_offset,
583 page_length);
584 else
585 ret = __copy_to_user(user_data,
586 vaddr + shmem_page_offset,
587 page_length);
588 kunmap(page);
589
590 return ret ? - EFAULT : 0;
591 }
592
593 static int
i915_gem_shmem_pread(struct drm_device * dev,struct drm_i915_gem_object * obj,struct drm_i915_gem_pread * args,struct drm_file * file)594 i915_gem_shmem_pread(struct drm_device *dev,
595 struct drm_i915_gem_object *obj,
596 struct drm_i915_gem_pread *args,
597 struct drm_file *file)
598 {
599 char __user *user_data;
600 ssize_t remain;
601 loff_t offset;
602 int shmem_page_offset, page_length, ret = 0;
603 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
604 int prefaulted = 0;
605 int needs_clflush = 0;
606 struct sg_page_iter sg_iter;
607
608 user_data = to_user_ptr(args->data_ptr);
609 remain = args->size;
610
611 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
612
613 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
614 if (ret)
615 return ret;
616
617 offset = args->offset;
618
619 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
620 offset >> PAGE_SHIFT) {
621 struct page *page = sg_page_iter_page(&sg_iter);
622
623 if (remain <= 0)
624 break;
625
626 /* Operation in this page
627 *
628 * shmem_page_offset = offset within page in shmem file
629 * page_length = bytes to copy for this page
630 */
631 shmem_page_offset = offset_in_page(offset);
632 page_length = remain;
633 if ((shmem_page_offset + page_length) > PAGE_SIZE)
634 page_length = PAGE_SIZE - shmem_page_offset;
635
636 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
637 (page_to_phys(page) & (1 << 17)) != 0;
638
639 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
640 user_data, page_do_bit17_swizzling,
641 needs_clflush);
642 if (ret == 0)
643 goto next_page;
644
645 mutex_unlock(&dev->struct_mutex);
646
647 if (likely(!i915.prefault_disable) && !prefaulted) {
648 ret = fault_in_multipages_writeable(user_data, remain);
649 /* Userspace is tricking us, but we've already clobbered
650 * its pages with the prefault and promised to write the
651 * data up to the first fault. Hence ignore any errors
652 * and just continue. */
653 (void)ret;
654 prefaulted = 1;
655 }
656
657 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
658 user_data, page_do_bit17_swizzling,
659 needs_clflush);
660
661 mutex_lock(&dev->struct_mutex);
662
663 if (ret)
664 goto out;
665
666 next_page:
667 remain -= page_length;
668 user_data += page_length;
669 offset += page_length;
670 }
671
672 out:
673 i915_gem_object_unpin_pages(obj);
674
675 return ret;
676 }
677
678 /**
679 * Reads data from the object referenced by handle.
680 *
681 * On error, the contents of *data are undefined.
682 */
683 int
i915_gem_pread_ioctl(struct drm_device * dev,void * data,struct drm_file * file)684 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
685 struct drm_file *file)
686 {
687 struct drm_i915_gem_pread *args = data;
688 struct drm_i915_gem_object *obj;
689 int ret = 0;
690
691 if (args->size == 0)
692 return 0;
693
694 if (!access_ok(VERIFY_WRITE,
695 to_user_ptr(args->data_ptr),
696 args->size))
697 return -EFAULT;
698
699 ret = i915_mutex_lock_interruptible(dev);
700 if (ret)
701 return ret;
702
703 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
704 if (&obj->base == NULL) {
705 ret = -ENOENT;
706 goto unlock;
707 }
708
709 /* Bounds check source. */
710 if (args->offset > obj->base.size ||
711 args->size > obj->base.size - args->offset) {
712 ret = -EINVAL;
713 goto out;
714 }
715
716 /* prime objects have no backing filp to GEM pread/pwrite
717 * pages from.
718 */
719 if (!obj->base.filp) {
720 ret = -EINVAL;
721 goto out;
722 }
723
724 trace_i915_gem_object_pread(obj, args->offset, args->size);
725
726 ret = i915_gem_shmem_pread(dev, obj, args, file);
727
728 out:
729 drm_gem_object_unreference(&obj->base);
730 unlock:
731 mutex_unlock(&dev->struct_mutex);
732 return ret;
733 }
734
735 /* This is the fast write path which cannot handle
736 * page faults in the source data
737 */
738
739 static inline int
fast_user_write(struct io_mapping * mapping,loff_t page_base,int page_offset,char __user * user_data,int length)740 fast_user_write(struct io_mapping *mapping,
741 loff_t page_base, int page_offset,
742 char __user *user_data,
743 int length)
744 {
745 void __iomem *vaddr_atomic;
746 void *vaddr;
747 unsigned long unwritten;
748
749 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
750 /* We can use the cpu mem copy function because this is X86. */
751 vaddr = (void __force*)vaddr_atomic + page_offset;
752 unwritten = __copy_from_user_inatomic_nocache(vaddr,
753 user_data, length);
754 io_mapping_unmap_atomic(vaddr_atomic);
755 return unwritten;
756 }
757
758 /**
759 * This is the fast pwrite path, where we copy the data directly from the
760 * user into the GTT, uncached.
761 */
762 static int
i915_gem_gtt_pwrite_fast(struct drm_device * dev,struct drm_i915_gem_object * obj,struct drm_i915_gem_pwrite * args,struct drm_file * file)763 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
764 struct drm_i915_gem_object *obj,
765 struct drm_i915_gem_pwrite *args,
766 struct drm_file *file)
767 {
768 struct drm_i915_private *dev_priv = dev->dev_private;
769 ssize_t remain;
770 loff_t offset, page_base;
771 char __user *user_data;
772 int page_offset, page_length, ret;
773
774 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
775 if (ret)
776 goto out;
777
778 ret = i915_gem_object_set_to_gtt_domain(obj, true);
779 if (ret)
780 goto out_unpin;
781
782 ret = i915_gem_object_put_fence(obj);
783 if (ret)
784 goto out_unpin;
785
786 user_data = to_user_ptr(args->data_ptr);
787 remain = args->size;
788
789 offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
790
791 intel_fb_obj_invalidate(obj, ORIGIN_GTT);
792
793 while (remain > 0) {
794 /* Operation in this page
795 *
796 * page_base = page offset within aperture
797 * page_offset = offset within page
798 * page_length = bytes to copy for this page
799 */
800 page_base = offset & PAGE_MASK;
801 page_offset = offset_in_page(offset);
802 page_length = remain;
803 if ((page_offset + remain) > PAGE_SIZE)
804 page_length = PAGE_SIZE - page_offset;
805
806 /* If we get a fault while copying data, then (presumably) our
807 * source page isn't available. Return the error and we'll
808 * retry in the slow path.
809 */
810 if (fast_user_write(dev_priv->gtt.mappable, page_base,
811 page_offset, user_data, page_length)) {
812 ret = -EFAULT;
813 goto out_flush;
814 }
815
816 remain -= page_length;
817 user_data += page_length;
818 offset += page_length;
819 }
820
821 out_flush:
822 intel_fb_obj_flush(obj, false, ORIGIN_GTT);
823 out_unpin:
824 i915_gem_object_ggtt_unpin(obj);
825 out:
826 return ret;
827 }
828
829 /* Per-page copy function for the shmem pwrite fastpath.
830 * Flushes invalid cachelines before writing to the target if
831 * needs_clflush_before is set and flushes out any written cachelines after
832 * writing if needs_clflush is set. */
833 static int
shmem_pwrite_fast(struct page * page,int shmem_page_offset,int page_length,char __user * user_data,bool page_do_bit17_swizzling,bool needs_clflush_before,bool needs_clflush_after)834 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
835 char __user *user_data,
836 bool page_do_bit17_swizzling,
837 bool needs_clflush_before,
838 bool needs_clflush_after)
839 {
840 char *vaddr;
841 int ret;
842
843 if (unlikely(page_do_bit17_swizzling))
844 return -EINVAL;
845
846 vaddr = kmap_atomic(page);
847 if (needs_clflush_before)
848 drm_clflush_virt_range(vaddr + shmem_page_offset,
849 page_length);
850 ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
851 user_data, page_length);
852 if (needs_clflush_after)
853 drm_clflush_virt_range(vaddr + shmem_page_offset,
854 page_length);
855 kunmap_atomic(vaddr);
856
857 return ret ? -EFAULT : 0;
858 }
859
860 /* Only difference to the fast-path function is that this can handle bit17
861 * and uses non-atomic copy and kmap functions. */
862 static int
shmem_pwrite_slow(struct page * page,int shmem_page_offset,int page_length,char __user * user_data,bool page_do_bit17_swizzling,bool needs_clflush_before,bool needs_clflush_after)863 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
864 char __user *user_data,
865 bool page_do_bit17_swizzling,
866 bool needs_clflush_before,
867 bool needs_clflush_after)
868 {
869 char *vaddr;
870 int ret;
871
872 vaddr = kmap(page);
873 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
874 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
875 page_length,
876 page_do_bit17_swizzling);
877 if (page_do_bit17_swizzling)
878 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
879 user_data,
880 page_length);
881 else
882 ret = __copy_from_user(vaddr + shmem_page_offset,
883 user_data,
884 page_length);
885 if (needs_clflush_after)
886 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
887 page_length,
888 page_do_bit17_swizzling);
889 kunmap(page);
890
891 return ret ? -EFAULT : 0;
892 }
893
894 static int
i915_gem_shmem_pwrite(struct drm_device * dev,struct drm_i915_gem_object * obj,struct drm_i915_gem_pwrite * args,struct drm_file * file)895 i915_gem_shmem_pwrite(struct drm_device *dev,
896 struct drm_i915_gem_object *obj,
897 struct drm_i915_gem_pwrite *args,
898 struct drm_file *file)
899 {
900 ssize_t remain;
901 loff_t offset;
902 char __user *user_data;
903 int shmem_page_offset, page_length, ret = 0;
904 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
905 int hit_slowpath = 0;
906 int needs_clflush_after = 0;
907 int needs_clflush_before = 0;
908 struct sg_page_iter sg_iter;
909
910 user_data = to_user_ptr(args->data_ptr);
911 remain = args->size;
912
913 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
914
915 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
916 /* If we're not in the cpu write domain, set ourself into the gtt
917 * write domain and manually flush cachelines (if required). This
918 * optimizes for the case when the gpu will use the data
919 * right away and we therefore have to clflush anyway. */
920 needs_clflush_after = cpu_write_needs_clflush(obj);
921 ret = i915_gem_object_wait_rendering(obj, false);
922 if (ret)
923 return ret;
924 }
925 /* Same trick applies to invalidate partially written cachelines read
926 * before writing. */
927 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
928 needs_clflush_before =
929 !cpu_cache_is_coherent(dev, obj->cache_level);
930
931 ret = i915_gem_object_get_pages(obj);
932 if (ret)
933 return ret;
934
935 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
936
937 i915_gem_object_pin_pages(obj);
938
939 offset = args->offset;
940 obj->dirty = 1;
941
942 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
943 offset >> PAGE_SHIFT) {
944 struct page *page = sg_page_iter_page(&sg_iter);
945 int partial_cacheline_write;
946
947 if (remain <= 0)
948 break;
949
950 /* Operation in this page
951 *
952 * shmem_page_offset = offset within page in shmem file
953 * page_length = bytes to copy for this page
954 */
955 shmem_page_offset = offset_in_page(offset);
956
957 page_length = remain;
958 if ((shmem_page_offset + page_length) > PAGE_SIZE)
959 page_length = PAGE_SIZE - shmem_page_offset;
960
961 /* If we don't overwrite a cacheline completely we need to be
962 * careful to have up-to-date data by first clflushing. Don't
963 * overcomplicate things and flush the entire patch. */
964 partial_cacheline_write = needs_clflush_before &&
965 ((shmem_page_offset | page_length)
966 & (boot_cpu_data.x86_clflush_size - 1));
967
968 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
969 (page_to_phys(page) & (1 << 17)) != 0;
970
971 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
972 user_data, page_do_bit17_swizzling,
973 partial_cacheline_write,
974 needs_clflush_after);
975 if (ret == 0)
976 goto next_page;
977
978 hit_slowpath = 1;
979 mutex_unlock(&dev->struct_mutex);
980 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
981 user_data, page_do_bit17_swizzling,
982 partial_cacheline_write,
983 needs_clflush_after);
984
985 mutex_lock(&dev->struct_mutex);
986
987 if (ret)
988 goto out;
989
990 next_page:
991 remain -= page_length;
992 user_data += page_length;
993 offset += page_length;
994 }
995
996 out:
997 i915_gem_object_unpin_pages(obj);
998
999 if (hit_slowpath) {
1000 /*
1001 * Fixup: Flush cpu caches in case we didn't flush the dirty
1002 * cachelines in-line while writing and the object moved
1003 * out of the cpu write domain while we've dropped the lock.
1004 */
1005 if (!needs_clflush_after &&
1006 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1007 if (i915_gem_clflush_object(obj, obj->pin_display))
1008 needs_clflush_after = true;
1009 }
1010 }
1011
1012 if (needs_clflush_after)
1013 i915_gem_chipset_flush(dev);
1014 else
1015 obj->cache_dirty = true;
1016
1017 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1018 return ret;
1019 }
1020
1021 /**
1022 * Writes data to the object referenced by handle.
1023 *
1024 * On error, the contents of the buffer that were to be modified are undefined.
1025 */
1026 int
i915_gem_pwrite_ioctl(struct drm_device * dev,void * data,struct drm_file * file)1027 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1028 struct drm_file *file)
1029 {
1030 struct drm_i915_private *dev_priv = dev->dev_private;
1031 struct drm_i915_gem_pwrite *args = data;
1032 struct drm_i915_gem_object *obj;
1033 int ret;
1034
1035 if (args->size == 0)
1036 return 0;
1037
1038 if (!access_ok(VERIFY_READ,
1039 to_user_ptr(args->data_ptr),
1040 args->size))
1041 return -EFAULT;
1042
1043 if (likely(!i915.prefault_disable)) {
1044 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1045 args->size);
1046 if (ret)
1047 return -EFAULT;
1048 }
1049
1050 intel_runtime_pm_get(dev_priv);
1051
1052 ret = i915_mutex_lock_interruptible(dev);
1053 if (ret)
1054 goto put_rpm;
1055
1056 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1057 if (&obj->base == NULL) {
1058 ret = -ENOENT;
1059 goto unlock;
1060 }
1061
1062 /* Bounds check destination. */
1063 if (args->offset > obj->base.size ||
1064 args->size > obj->base.size - args->offset) {
1065 ret = -EINVAL;
1066 goto out;
1067 }
1068
1069 /* prime objects have no backing filp to GEM pread/pwrite
1070 * pages from.
1071 */
1072 if (!obj->base.filp) {
1073 ret = -EINVAL;
1074 goto out;
1075 }
1076
1077 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1078
1079 ret = -EFAULT;
1080 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1081 * it would end up going through the fenced access, and we'll get
1082 * different detiling behavior between reading and writing.
1083 * pread/pwrite currently are reading and writing from the CPU
1084 * perspective, requiring manual detiling by the client.
1085 */
1086 if (obj->tiling_mode == I915_TILING_NONE &&
1087 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1088 cpu_write_needs_clflush(obj)) {
1089 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1090 /* Note that the gtt paths might fail with non-page-backed user
1091 * pointers (e.g. gtt mappings when moving data between
1092 * textures). Fallback to the shmem path in that case. */
1093 }
1094
1095 if (ret == -EFAULT || ret == -ENOSPC) {
1096 if (obj->phys_handle)
1097 ret = i915_gem_phys_pwrite(obj, args, file);
1098 else
1099 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1100 }
1101
1102 out:
1103 drm_gem_object_unreference(&obj->base);
1104 unlock:
1105 mutex_unlock(&dev->struct_mutex);
1106 put_rpm:
1107 intel_runtime_pm_put(dev_priv);
1108
1109 return ret;
1110 }
1111
1112 int
i915_gem_check_wedge(struct i915_gpu_error * error,bool interruptible)1113 i915_gem_check_wedge(struct i915_gpu_error *error,
1114 bool interruptible)
1115 {
1116 if (i915_reset_in_progress(error)) {
1117 /* Non-interruptible callers can't handle -EAGAIN, hence return
1118 * -EIO unconditionally for these. */
1119 if (!interruptible)
1120 return -EIO;
1121
1122 /* Recovery complete, but the reset failed ... */
1123 if (i915_terminally_wedged(error))
1124 return -EIO;
1125
1126 /*
1127 * Check if GPU Reset is in progress - we need intel_ring_begin
1128 * to work properly to reinit the hw state while the gpu is
1129 * still marked as reset-in-progress. Handle this with a flag.
1130 */
1131 if (!error->reload_in_reset)
1132 return -EAGAIN;
1133 }
1134
1135 return 0;
1136 }
1137
fake_irq(unsigned long data)1138 static void fake_irq(unsigned long data)
1139 {
1140 wake_up_process((struct task_struct *)data);
1141 }
1142
missed_irq(struct drm_i915_private * dev_priv,struct intel_engine_cs * ring)1143 static bool missed_irq(struct drm_i915_private *dev_priv,
1144 struct intel_engine_cs *ring)
1145 {
1146 return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
1147 }
1148
local_clock_us(unsigned * cpu)1149 static unsigned long local_clock_us(unsigned *cpu)
1150 {
1151 unsigned long t;
1152
1153 /* Cheaply and approximately convert from nanoseconds to microseconds.
1154 * The result and subsequent calculations are also defined in the same
1155 * approximate microseconds units. The principal source of timing
1156 * error here is from the simple truncation.
1157 *
1158 * Note that local_clock() is only defined wrt to the current CPU;
1159 * the comparisons are no longer valid if we switch CPUs. Instead of
1160 * blocking preemption for the entire busywait, we can detect the CPU
1161 * switch and use that as indicator of system load and a reason to
1162 * stop busywaiting, see busywait_stop().
1163 */
1164 *cpu = get_cpu();
1165 t = local_clock() >> 10;
1166 put_cpu();
1167
1168 return t;
1169 }
1170
busywait_stop(unsigned long timeout,unsigned cpu)1171 static bool busywait_stop(unsigned long timeout, unsigned cpu)
1172 {
1173 unsigned this_cpu;
1174
1175 if (time_after(local_clock_us(&this_cpu), timeout))
1176 return true;
1177
1178 return this_cpu != cpu;
1179 }
1180
__i915_spin_request(struct drm_i915_gem_request * req,int state)1181 static int __i915_spin_request(struct drm_i915_gem_request *req, int state)
1182 {
1183 unsigned long timeout;
1184 unsigned cpu;
1185
1186 /* When waiting for high frequency requests, e.g. during synchronous
1187 * rendering split between the CPU and GPU, the finite amount of time
1188 * required to set up the irq and wait upon it limits the response
1189 * rate. By busywaiting on the request completion for a short while we
1190 * can service the high frequency waits as quick as possible. However,
1191 * if it is a slow request, we want to sleep as quickly as possible.
1192 * The tradeoff between waiting and sleeping is roughly the time it
1193 * takes to sleep on a request, on the order of a microsecond.
1194 */
1195
1196 if (req->ring->irq_refcount)
1197 return -EBUSY;
1198
1199 /* Only spin if we know the GPU is processing this request */
1200 if (!i915_gem_request_started(req, true))
1201 return -EAGAIN;
1202
1203 timeout = local_clock_us(&cpu) + 5;
1204 while (!need_resched()) {
1205 if (i915_gem_request_completed(req, true))
1206 return 0;
1207
1208 if (signal_pending_state(state, current))
1209 break;
1210
1211 if (busywait_stop(timeout, cpu))
1212 break;
1213
1214 cpu_relax_lowlatency();
1215 }
1216
1217 if (i915_gem_request_completed(req, false))
1218 return 0;
1219
1220 return -EAGAIN;
1221 }
1222
1223 /**
1224 * __i915_wait_request - wait until execution of request has finished
1225 * @req: duh!
1226 * @reset_counter: reset sequence associated with the given request
1227 * @interruptible: do an interruptible wait (normally yes)
1228 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1229 *
1230 * Note: It is of utmost importance that the passed in seqno and reset_counter
1231 * values have been read by the caller in an smp safe manner. Where read-side
1232 * locks are involved, it is sufficient to read the reset_counter before
1233 * unlocking the lock that protects the seqno. For lockless tricks, the
1234 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1235 * inserted.
1236 *
1237 * Returns 0 if the request was found within the alloted time. Else returns the
1238 * errno with remaining time filled in timeout argument.
1239 */
__i915_wait_request(struct drm_i915_gem_request * req,unsigned reset_counter,bool interruptible,s64 * timeout,struct intel_rps_client * rps)1240 int __i915_wait_request(struct drm_i915_gem_request *req,
1241 unsigned reset_counter,
1242 bool interruptible,
1243 s64 *timeout,
1244 struct intel_rps_client *rps)
1245 {
1246 struct intel_engine_cs *ring = i915_gem_request_get_ring(req);
1247 struct drm_device *dev = ring->dev;
1248 struct drm_i915_private *dev_priv = dev->dev_private;
1249 const bool irq_test_in_progress =
1250 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1251 int state = interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1252 DEFINE_WAIT(wait);
1253 unsigned long timeout_expire;
1254 s64 before, now;
1255 int ret;
1256
1257 WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1258
1259 if (list_empty(&req->list))
1260 return 0;
1261
1262 if (i915_gem_request_completed(req, true))
1263 return 0;
1264
1265 timeout_expire = 0;
1266 if (timeout) {
1267 if (WARN_ON(*timeout < 0))
1268 return -EINVAL;
1269
1270 if (*timeout == 0)
1271 return -ETIME;
1272
1273 timeout_expire = jiffies + nsecs_to_jiffies_timeout(*timeout);
1274 }
1275
1276 if (INTEL_INFO(dev_priv)->gen >= 6)
1277 gen6_rps_boost(dev_priv, rps, req->emitted_jiffies);
1278
1279 /* Record current time in case interrupted by signal, or wedged */
1280 trace_i915_gem_request_wait_begin(req);
1281 before = ktime_get_raw_ns();
1282
1283 /* Optimistic spin for the next jiffie before touching IRQs */
1284 ret = __i915_spin_request(req, state);
1285 if (ret == 0)
1286 goto out;
1287
1288 if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring))) {
1289 ret = -ENODEV;
1290 goto out;
1291 }
1292
1293 for (;;) {
1294 struct timer_list timer;
1295
1296 prepare_to_wait(&ring->irq_queue, &wait, state);
1297
1298 /* We need to check whether any gpu reset happened in between
1299 * the caller grabbing the seqno and now ... */
1300 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1301 /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1302 * is truely gone. */
1303 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1304 if (ret == 0)
1305 ret = -EAGAIN;
1306 break;
1307 }
1308
1309 if (i915_gem_request_completed(req, false)) {
1310 ret = 0;
1311 break;
1312 }
1313
1314 if (signal_pending_state(state, current)) {
1315 ret = -ERESTARTSYS;
1316 break;
1317 }
1318
1319 if (timeout && time_after_eq(jiffies, timeout_expire)) {
1320 ret = -ETIME;
1321 break;
1322 }
1323
1324 timer.function = NULL;
1325 if (timeout || missed_irq(dev_priv, ring)) {
1326 unsigned long expire;
1327
1328 setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1329 expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
1330 mod_timer(&timer, expire);
1331 }
1332
1333 io_schedule();
1334
1335 if (timer.function) {
1336 del_singleshot_timer_sync(&timer);
1337 destroy_timer_on_stack(&timer);
1338 }
1339 }
1340 if (!irq_test_in_progress)
1341 ring->irq_put(ring);
1342
1343 finish_wait(&ring->irq_queue, &wait);
1344
1345 out:
1346 now = ktime_get_raw_ns();
1347 trace_i915_gem_request_wait_end(req);
1348
1349 if (timeout) {
1350 s64 tres = *timeout - (now - before);
1351
1352 *timeout = tres < 0 ? 0 : tres;
1353
1354 /*
1355 * Apparently ktime isn't accurate enough and occasionally has a
1356 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
1357 * things up to make the test happy. We allow up to 1 jiffy.
1358 *
1359 * This is a regrssion from the timespec->ktime conversion.
1360 */
1361 if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
1362 *timeout = 0;
1363 }
1364
1365 return ret;
1366 }
1367
i915_gem_request_add_to_client(struct drm_i915_gem_request * req,struct drm_file * file)1368 int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
1369 struct drm_file *file)
1370 {
1371 struct drm_i915_private *dev_private;
1372 struct drm_i915_file_private *file_priv;
1373
1374 WARN_ON(!req || !file || req->file_priv);
1375
1376 if (!req || !file)
1377 return -EINVAL;
1378
1379 if (req->file_priv)
1380 return -EINVAL;
1381
1382 dev_private = req->ring->dev->dev_private;
1383 file_priv = file->driver_priv;
1384
1385 spin_lock(&file_priv->mm.lock);
1386 req->file_priv = file_priv;
1387 list_add_tail(&req->client_list, &file_priv->mm.request_list);
1388 spin_unlock(&file_priv->mm.lock);
1389
1390 req->pid = get_pid(task_pid(current));
1391
1392 return 0;
1393 }
1394
1395 static inline void
i915_gem_request_remove_from_client(struct drm_i915_gem_request * request)1396 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1397 {
1398 struct drm_i915_file_private *file_priv = request->file_priv;
1399
1400 if (!file_priv)
1401 return;
1402
1403 spin_lock(&file_priv->mm.lock);
1404 list_del(&request->client_list);
1405 request->file_priv = NULL;
1406 spin_unlock(&file_priv->mm.lock);
1407
1408 put_pid(request->pid);
1409 request->pid = NULL;
1410 }
1411
i915_gem_request_retire(struct drm_i915_gem_request * request)1412 static void i915_gem_request_retire(struct drm_i915_gem_request *request)
1413 {
1414 trace_i915_gem_request_retire(request);
1415
1416 /* We know the GPU must have read the request to have
1417 * sent us the seqno + interrupt, so use the position
1418 * of tail of the request to update the last known position
1419 * of the GPU head.
1420 *
1421 * Note this requires that we are always called in request
1422 * completion order.
1423 */
1424 request->ringbuf->last_retired_head = request->postfix;
1425
1426 list_del_init(&request->list);
1427 i915_gem_request_remove_from_client(request);
1428
1429 i915_gem_request_unreference(request);
1430 }
1431
1432 static void
__i915_gem_request_retire__upto(struct drm_i915_gem_request * req)1433 __i915_gem_request_retire__upto(struct drm_i915_gem_request *req)
1434 {
1435 struct intel_engine_cs *engine = req->ring;
1436 struct drm_i915_gem_request *tmp;
1437
1438 lockdep_assert_held(&engine->dev->struct_mutex);
1439
1440 if (list_empty(&req->list))
1441 return;
1442
1443 do {
1444 tmp = list_first_entry(&engine->request_list,
1445 typeof(*tmp), list);
1446
1447 i915_gem_request_retire(tmp);
1448 } while (tmp != req);
1449
1450 WARN_ON(i915_verify_lists(engine->dev));
1451 }
1452
1453 /**
1454 * Waits for a request to be signaled, and cleans up the
1455 * request and object lists appropriately for that event.
1456 */
1457 int
i915_wait_request(struct drm_i915_gem_request * req)1458 i915_wait_request(struct drm_i915_gem_request *req)
1459 {
1460 struct drm_device *dev;
1461 struct drm_i915_private *dev_priv;
1462 bool interruptible;
1463 int ret;
1464
1465 BUG_ON(req == NULL);
1466
1467 dev = req->ring->dev;
1468 dev_priv = dev->dev_private;
1469 interruptible = dev_priv->mm.interruptible;
1470
1471 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1472
1473 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1474 if (ret)
1475 return ret;
1476
1477 ret = __i915_wait_request(req,
1478 atomic_read(&dev_priv->gpu_error.reset_counter),
1479 interruptible, NULL, NULL);
1480 if (ret)
1481 return ret;
1482
1483 __i915_gem_request_retire__upto(req);
1484 return 0;
1485 }
1486
1487 /**
1488 * Ensures that all rendering to the object has completed and the object is
1489 * safe to unbind from the GTT or access from the CPU.
1490 */
1491 int
i915_gem_object_wait_rendering(struct drm_i915_gem_object * obj,bool readonly)1492 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1493 bool readonly)
1494 {
1495 int ret, i;
1496
1497 if (!obj->active)
1498 return 0;
1499
1500 if (readonly) {
1501 if (obj->last_write_req != NULL) {
1502 ret = i915_wait_request(obj->last_write_req);
1503 if (ret)
1504 return ret;
1505
1506 i = obj->last_write_req->ring->id;
1507 if (obj->last_read_req[i] == obj->last_write_req)
1508 i915_gem_object_retire__read(obj, i);
1509 else
1510 i915_gem_object_retire__write(obj);
1511 }
1512 } else {
1513 for (i = 0; i < I915_NUM_RINGS; i++) {
1514 if (obj->last_read_req[i] == NULL)
1515 continue;
1516
1517 ret = i915_wait_request(obj->last_read_req[i]);
1518 if (ret)
1519 return ret;
1520
1521 i915_gem_object_retire__read(obj, i);
1522 }
1523 RQ_BUG_ON(obj->active);
1524 }
1525
1526 return 0;
1527 }
1528
1529 static void
i915_gem_object_retire_request(struct drm_i915_gem_object * obj,struct drm_i915_gem_request * req)1530 i915_gem_object_retire_request(struct drm_i915_gem_object *obj,
1531 struct drm_i915_gem_request *req)
1532 {
1533 int ring = req->ring->id;
1534
1535 if (obj->last_read_req[ring] == req)
1536 i915_gem_object_retire__read(obj, ring);
1537 else if (obj->last_write_req == req)
1538 i915_gem_object_retire__write(obj);
1539
1540 __i915_gem_request_retire__upto(req);
1541 }
1542
1543 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1544 * as the object state may change during this call.
1545 */
1546 static __must_check int
i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object * obj,struct intel_rps_client * rps,bool readonly)1547 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1548 struct intel_rps_client *rps,
1549 bool readonly)
1550 {
1551 struct drm_device *dev = obj->base.dev;
1552 struct drm_i915_private *dev_priv = dev->dev_private;
1553 struct drm_i915_gem_request *requests[I915_NUM_RINGS];
1554 unsigned reset_counter;
1555 int ret, i, n = 0;
1556
1557 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1558 BUG_ON(!dev_priv->mm.interruptible);
1559
1560 if (!obj->active)
1561 return 0;
1562
1563 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1564 if (ret)
1565 return ret;
1566
1567 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1568
1569 if (readonly) {
1570 struct drm_i915_gem_request *req;
1571
1572 req = obj->last_write_req;
1573 if (req == NULL)
1574 return 0;
1575
1576 requests[n++] = i915_gem_request_reference(req);
1577 } else {
1578 for (i = 0; i < I915_NUM_RINGS; i++) {
1579 struct drm_i915_gem_request *req;
1580
1581 req = obj->last_read_req[i];
1582 if (req == NULL)
1583 continue;
1584
1585 requests[n++] = i915_gem_request_reference(req);
1586 }
1587 }
1588
1589 mutex_unlock(&dev->struct_mutex);
1590 for (i = 0; ret == 0 && i < n; i++)
1591 ret = __i915_wait_request(requests[i], reset_counter, true,
1592 NULL, rps);
1593 mutex_lock(&dev->struct_mutex);
1594
1595 for (i = 0; i < n; i++) {
1596 if (ret == 0)
1597 i915_gem_object_retire_request(obj, requests[i]);
1598 i915_gem_request_unreference(requests[i]);
1599 }
1600
1601 return ret;
1602 }
1603
to_rps_client(struct drm_file * file)1604 static struct intel_rps_client *to_rps_client(struct drm_file *file)
1605 {
1606 struct drm_i915_file_private *fpriv = file->driver_priv;
1607 return &fpriv->rps;
1608 }
1609
1610 /**
1611 * Called when user space prepares to use an object with the CPU, either
1612 * through the mmap ioctl's mapping or a GTT mapping.
1613 */
1614 int
i915_gem_set_domain_ioctl(struct drm_device * dev,void * data,struct drm_file * file)1615 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1616 struct drm_file *file)
1617 {
1618 struct drm_i915_gem_set_domain *args = data;
1619 struct drm_i915_gem_object *obj;
1620 uint32_t read_domains = args->read_domains;
1621 uint32_t write_domain = args->write_domain;
1622 int ret;
1623
1624 /* Only handle setting domains to types used by the CPU. */
1625 if (write_domain & I915_GEM_GPU_DOMAINS)
1626 return -EINVAL;
1627
1628 if (read_domains & I915_GEM_GPU_DOMAINS)
1629 return -EINVAL;
1630
1631 /* Having something in the write domain implies it's in the read
1632 * domain, and only that read domain. Enforce that in the request.
1633 */
1634 if (write_domain != 0 && read_domains != write_domain)
1635 return -EINVAL;
1636
1637 ret = i915_mutex_lock_interruptible(dev);
1638 if (ret)
1639 return ret;
1640
1641 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1642 if (&obj->base == NULL) {
1643 ret = -ENOENT;
1644 goto unlock;
1645 }
1646
1647 /* Try to flush the object off the GPU without holding the lock.
1648 * We will repeat the flush holding the lock in the normal manner
1649 * to catch cases where we are gazumped.
1650 */
1651 ret = i915_gem_object_wait_rendering__nonblocking(obj,
1652 to_rps_client(file),
1653 !write_domain);
1654 if (ret)
1655 goto unref;
1656
1657 if (read_domains & I915_GEM_DOMAIN_GTT)
1658 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1659 else
1660 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1661
1662 if (write_domain != 0)
1663 intel_fb_obj_invalidate(obj,
1664 write_domain == I915_GEM_DOMAIN_GTT ?
1665 ORIGIN_GTT : ORIGIN_CPU);
1666
1667 unref:
1668 drm_gem_object_unreference(&obj->base);
1669 unlock:
1670 mutex_unlock(&dev->struct_mutex);
1671 return ret;
1672 }
1673
1674 /**
1675 * Called when user space has done writes to this buffer
1676 */
1677 int
i915_gem_sw_finish_ioctl(struct drm_device * dev,void * data,struct drm_file * file)1678 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1679 struct drm_file *file)
1680 {
1681 struct drm_i915_gem_sw_finish *args = data;
1682 struct drm_i915_gem_object *obj;
1683 int ret = 0;
1684
1685 ret = i915_mutex_lock_interruptible(dev);
1686 if (ret)
1687 return ret;
1688
1689 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1690 if (&obj->base == NULL) {
1691 ret = -ENOENT;
1692 goto unlock;
1693 }
1694
1695 /* Pinned buffers may be scanout, so flush the cache */
1696 if (obj->pin_display)
1697 i915_gem_object_flush_cpu_write_domain(obj);
1698
1699 drm_gem_object_unreference(&obj->base);
1700 unlock:
1701 mutex_unlock(&dev->struct_mutex);
1702 return ret;
1703 }
1704
1705 /**
1706 * Maps the contents of an object, returning the address it is mapped
1707 * into.
1708 *
1709 * While the mapping holds a reference on the contents of the object, it doesn't
1710 * imply a ref on the object itself.
1711 *
1712 * IMPORTANT:
1713 *
1714 * DRM driver writers who look a this function as an example for how to do GEM
1715 * mmap support, please don't implement mmap support like here. The modern way
1716 * to implement DRM mmap support is with an mmap offset ioctl (like
1717 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1718 * That way debug tooling like valgrind will understand what's going on, hiding
1719 * the mmap call in a driver private ioctl will break that. The i915 driver only
1720 * does cpu mmaps this way because we didn't know better.
1721 */
1722 int
i915_gem_mmap_ioctl(struct drm_device * dev,void * data,struct drm_file * file)1723 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1724 struct drm_file *file)
1725 {
1726 struct drm_i915_gem_mmap *args = data;
1727 struct drm_gem_object *obj;
1728 unsigned long addr;
1729
1730 if (args->flags & ~(I915_MMAP_WC))
1731 return -EINVAL;
1732
1733 if (args->flags & I915_MMAP_WC && !cpu_has_pat)
1734 return -ENODEV;
1735
1736 obj = drm_gem_object_lookup(dev, file, args->handle);
1737 if (obj == NULL)
1738 return -ENOENT;
1739
1740 /* prime objects have no backing filp to GEM mmap
1741 * pages from.
1742 */
1743 if (!obj->filp) {
1744 drm_gem_object_unreference_unlocked(obj);
1745 return -EINVAL;
1746 }
1747
1748 addr = vm_mmap(obj->filp, 0, args->size,
1749 PROT_READ | PROT_WRITE, MAP_SHARED,
1750 args->offset);
1751 if (args->flags & I915_MMAP_WC) {
1752 struct mm_struct *mm = current->mm;
1753 struct vm_area_struct *vma;
1754
1755 down_write(&mm->mmap_sem);
1756 vma = find_vma(mm, addr);
1757 if (vma)
1758 vma->vm_page_prot =
1759 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1760 else
1761 addr = -ENOMEM;
1762 up_write(&mm->mmap_sem);
1763 }
1764 drm_gem_object_unreference_unlocked(obj);
1765 if (IS_ERR((void *)addr))
1766 return addr;
1767
1768 args->addr_ptr = (uint64_t) addr;
1769
1770 return 0;
1771 }
1772
1773 /**
1774 * i915_gem_fault - fault a page into the GTT
1775 * @vma: VMA in question
1776 * @vmf: fault info
1777 *
1778 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1779 * from userspace. The fault handler takes care of binding the object to
1780 * the GTT (if needed), allocating and programming a fence register (again,
1781 * only if needed based on whether the old reg is still valid or the object
1782 * is tiled) and inserting a new PTE into the faulting process.
1783 *
1784 * Note that the faulting process may involve evicting existing objects
1785 * from the GTT and/or fence registers to make room. So performance may
1786 * suffer if the GTT working set is large or there are few fence registers
1787 * left.
1788 */
i915_gem_fault(struct vm_area_struct * vma,struct vm_fault * vmf)1789 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1790 {
1791 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1792 struct drm_device *dev = obj->base.dev;
1793 struct drm_i915_private *dev_priv = dev->dev_private;
1794 struct i915_ggtt_view view = i915_ggtt_view_normal;
1795 pgoff_t page_offset;
1796 unsigned long pfn;
1797 int ret = 0;
1798 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1799
1800 intel_runtime_pm_get(dev_priv);
1801
1802 /* We don't use vmf->pgoff since that has the fake offset */
1803 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1804 PAGE_SHIFT;
1805
1806 ret = i915_mutex_lock_interruptible(dev);
1807 if (ret)
1808 goto out;
1809
1810 trace_i915_gem_object_fault(obj, page_offset, true, write);
1811
1812 /* Try to flush the object off the GPU first without holding the lock.
1813 * Upon reacquiring the lock, we will perform our sanity checks and then
1814 * repeat the flush holding the lock in the normal manner to catch cases
1815 * where we are gazumped.
1816 */
1817 ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1818 if (ret)
1819 goto unlock;
1820
1821 /* Access to snoopable pages through the GTT is incoherent. */
1822 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1823 ret = -EFAULT;
1824 goto unlock;
1825 }
1826
1827 /* Use a partial view if the object is bigger than the aperture. */
1828 if (obj->base.size >= dev_priv->gtt.mappable_end &&
1829 obj->tiling_mode == I915_TILING_NONE) {
1830 static const unsigned int chunk_size = 256; // 1 MiB
1831
1832 memset(&view, 0, sizeof(view));
1833 view.type = I915_GGTT_VIEW_PARTIAL;
1834 view.params.partial.offset = rounddown(page_offset, chunk_size);
1835 view.params.partial.size =
1836 min_t(unsigned int,
1837 chunk_size,
1838 (vma->vm_end - vma->vm_start)/PAGE_SIZE -
1839 view.params.partial.offset);
1840 }
1841
1842 /* Now pin it into the GTT if needed */
1843 ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE);
1844 if (ret)
1845 goto unlock;
1846
1847 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1848 if (ret)
1849 goto unpin;
1850
1851 ret = i915_gem_object_get_fence(obj);
1852 if (ret)
1853 goto unpin;
1854
1855 /* Finally, remap it using the new GTT offset */
1856 pfn = dev_priv->gtt.mappable_base +
1857 i915_gem_obj_ggtt_offset_view(obj, &view);
1858 pfn >>= PAGE_SHIFT;
1859
1860 if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
1861 /* Overriding existing pages in partial view does not cause
1862 * us any trouble as TLBs are still valid because the fault
1863 * is due to userspace losing part of the mapping or never
1864 * having accessed it before (at this partials' range).
1865 */
1866 unsigned long base = vma->vm_start +
1867 (view.params.partial.offset << PAGE_SHIFT);
1868 unsigned int i;
1869
1870 for (i = 0; i < view.params.partial.size; i++) {
1871 ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
1872 if (ret)
1873 break;
1874 }
1875
1876 obj->fault_mappable = true;
1877 } else {
1878 if (!obj->fault_mappable) {
1879 unsigned long size = min_t(unsigned long,
1880 vma->vm_end - vma->vm_start,
1881 obj->base.size);
1882 int i;
1883
1884 for (i = 0; i < size >> PAGE_SHIFT; i++) {
1885 ret = vm_insert_pfn(vma,
1886 (unsigned long)vma->vm_start + i * PAGE_SIZE,
1887 pfn + i);
1888 if (ret)
1889 break;
1890 }
1891
1892 obj->fault_mappable = true;
1893 } else
1894 ret = vm_insert_pfn(vma,
1895 (unsigned long)vmf->virtual_address,
1896 pfn + page_offset);
1897 }
1898 unpin:
1899 i915_gem_object_ggtt_unpin_view(obj, &view);
1900 unlock:
1901 mutex_unlock(&dev->struct_mutex);
1902 out:
1903 switch (ret) {
1904 case -EIO:
1905 /*
1906 * We eat errors when the gpu is terminally wedged to avoid
1907 * userspace unduly crashing (gl has no provisions for mmaps to
1908 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1909 * and so needs to be reported.
1910 */
1911 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1912 ret = VM_FAULT_SIGBUS;
1913 break;
1914 }
1915 case -EAGAIN:
1916 /*
1917 * EAGAIN means the gpu is hung and we'll wait for the error
1918 * handler to reset everything when re-faulting in
1919 * i915_mutex_lock_interruptible.
1920 */
1921 case 0:
1922 case -ERESTARTSYS:
1923 case -EINTR:
1924 case -EBUSY:
1925 /*
1926 * EBUSY is ok: this just means that another thread
1927 * already did the job.
1928 */
1929 ret = VM_FAULT_NOPAGE;
1930 break;
1931 case -ENOMEM:
1932 ret = VM_FAULT_OOM;
1933 break;
1934 case -ENOSPC:
1935 case -EFAULT:
1936 ret = VM_FAULT_SIGBUS;
1937 break;
1938 default:
1939 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1940 ret = VM_FAULT_SIGBUS;
1941 break;
1942 }
1943
1944 intel_runtime_pm_put(dev_priv);
1945 return ret;
1946 }
1947
1948 /**
1949 * i915_gem_release_mmap - remove physical page mappings
1950 * @obj: obj in question
1951 *
1952 * Preserve the reservation of the mmapping with the DRM core code, but
1953 * relinquish ownership of the pages back to the system.
1954 *
1955 * It is vital that we remove the page mapping if we have mapped a tiled
1956 * object through the GTT and then lose the fence register due to
1957 * resource pressure. Similarly if the object has been moved out of the
1958 * aperture, than pages mapped into userspace must be revoked. Removing the
1959 * mapping will then trigger a page fault on the next user access, allowing
1960 * fixup by i915_gem_fault().
1961 */
1962 void
i915_gem_release_mmap(struct drm_i915_gem_object * obj)1963 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1964 {
1965 if (!obj->fault_mappable)
1966 return;
1967
1968 drm_vma_node_unmap(&obj->base.vma_node,
1969 obj->base.dev->anon_inode->i_mapping);
1970 obj->fault_mappable = false;
1971 }
1972
1973 void
i915_gem_release_all_mmaps(struct drm_i915_private * dev_priv)1974 i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1975 {
1976 struct drm_i915_gem_object *obj;
1977
1978 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1979 i915_gem_release_mmap(obj);
1980 }
1981
1982 uint32_t
i915_gem_get_gtt_size(struct drm_device * dev,uint32_t size,int tiling_mode)1983 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1984 {
1985 uint32_t gtt_size;
1986
1987 if (INTEL_INFO(dev)->gen >= 4 ||
1988 tiling_mode == I915_TILING_NONE)
1989 return size;
1990
1991 /* Previous chips need a power-of-two fence region when tiling */
1992 if (INTEL_INFO(dev)->gen == 3)
1993 gtt_size = 1024*1024;
1994 else
1995 gtt_size = 512*1024;
1996
1997 while (gtt_size < size)
1998 gtt_size <<= 1;
1999
2000 return gtt_size;
2001 }
2002
2003 /**
2004 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
2005 * @obj: object to check
2006 *
2007 * Return the required GTT alignment for an object, taking into account
2008 * potential fence register mapping.
2009 */
2010 uint32_t
i915_gem_get_gtt_alignment(struct drm_device * dev,uint32_t size,int tiling_mode,bool fenced)2011 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
2012 int tiling_mode, bool fenced)
2013 {
2014 /*
2015 * Minimum alignment is 4k (GTT page size), but might be greater
2016 * if a fence register is needed for the object.
2017 */
2018 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
2019 tiling_mode == I915_TILING_NONE)
2020 return 4096;
2021
2022 /*
2023 * Previous chips need to be aligned to the size of the smallest
2024 * fence register that can contain the object.
2025 */
2026 return i915_gem_get_gtt_size(dev, size, tiling_mode);
2027 }
2028
i915_gem_object_create_mmap_offset(struct drm_i915_gem_object * obj)2029 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2030 {
2031 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2032 int ret;
2033
2034 if (drm_vma_node_has_offset(&obj->base.vma_node))
2035 return 0;
2036
2037 dev_priv->mm.shrinker_no_lock_stealing = true;
2038
2039 ret = drm_gem_create_mmap_offset(&obj->base);
2040 if (ret != -ENOSPC)
2041 goto out;
2042
2043 /* Badly fragmented mmap space? The only way we can recover
2044 * space is by destroying unwanted objects. We can't randomly release
2045 * mmap_offsets as userspace expects them to be persistent for the
2046 * lifetime of the objects. The closest we can is to release the
2047 * offsets on purgeable objects by truncating it and marking it purged,
2048 * which prevents userspace from ever using that object again.
2049 */
2050 i915_gem_shrink(dev_priv,
2051 obj->base.size >> PAGE_SHIFT,
2052 I915_SHRINK_BOUND |
2053 I915_SHRINK_UNBOUND |
2054 I915_SHRINK_PURGEABLE);
2055 ret = drm_gem_create_mmap_offset(&obj->base);
2056 if (ret != -ENOSPC)
2057 goto out;
2058
2059 i915_gem_shrink_all(dev_priv);
2060 ret = drm_gem_create_mmap_offset(&obj->base);
2061 out:
2062 dev_priv->mm.shrinker_no_lock_stealing = false;
2063
2064 return ret;
2065 }
2066
i915_gem_object_free_mmap_offset(struct drm_i915_gem_object * obj)2067 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2068 {
2069 drm_gem_free_mmap_offset(&obj->base);
2070 }
2071
2072 int
i915_gem_mmap_gtt(struct drm_file * file,struct drm_device * dev,uint32_t handle,uint64_t * offset)2073 i915_gem_mmap_gtt(struct drm_file *file,
2074 struct drm_device *dev,
2075 uint32_t handle,
2076 uint64_t *offset)
2077 {
2078 struct drm_i915_gem_object *obj;
2079 int ret;
2080
2081 ret = i915_mutex_lock_interruptible(dev);
2082 if (ret)
2083 return ret;
2084
2085 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
2086 if (&obj->base == NULL) {
2087 ret = -ENOENT;
2088 goto unlock;
2089 }
2090
2091 if (obj->madv != I915_MADV_WILLNEED) {
2092 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
2093 ret = -EFAULT;
2094 goto out;
2095 }
2096
2097 ret = i915_gem_object_create_mmap_offset(obj);
2098 if (ret)
2099 goto out;
2100
2101 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2102
2103 out:
2104 drm_gem_object_unreference(&obj->base);
2105 unlock:
2106 mutex_unlock(&dev->struct_mutex);
2107 return ret;
2108 }
2109
2110 /**
2111 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2112 * @dev: DRM device
2113 * @data: GTT mapping ioctl data
2114 * @file: GEM object info
2115 *
2116 * Simply returns the fake offset to userspace so it can mmap it.
2117 * The mmap call will end up in drm_gem_mmap(), which will set things
2118 * up so we can get faults in the handler above.
2119 *
2120 * The fault handler will take care of binding the object into the GTT
2121 * (since it may have been evicted to make room for something), allocating
2122 * a fence register, and mapping the appropriate aperture address into
2123 * userspace.
2124 */
2125 int
i915_gem_mmap_gtt_ioctl(struct drm_device * dev,void * data,struct drm_file * file)2126 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2127 struct drm_file *file)
2128 {
2129 struct drm_i915_gem_mmap_gtt *args = data;
2130
2131 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2132 }
2133
2134 /* Immediately discard the backing storage */
2135 static void
i915_gem_object_truncate(struct drm_i915_gem_object * obj)2136 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2137 {
2138 i915_gem_object_free_mmap_offset(obj);
2139
2140 if (obj->base.filp == NULL)
2141 return;
2142
2143 /* Our goal here is to return as much of the memory as
2144 * is possible back to the system as we are called from OOM.
2145 * To do this we must instruct the shmfs to drop all of its
2146 * backing pages, *now*.
2147 */
2148 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
2149 obj->madv = __I915_MADV_PURGED;
2150 }
2151
2152 /* Try to discard unwanted pages */
2153 static void
i915_gem_object_invalidate(struct drm_i915_gem_object * obj)2154 i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2155 {
2156 struct address_space *mapping;
2157
2158 switch (obj->madv) {
2159 case I915_MADV_DONTNEED:
2160 i915_gem_object_truncate(obj);
2161 case __I915_MADV_PURGED:
2162 return;
2163 }
2164
2165 if (obj->base.filp == NULL)
2166 return;
2167
2168 mapping = file_inode(obj->base.filp)->i_mapping,
2169 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2170 }
2171
2172 static void
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object * obj)2173 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2174 {
2175 struct sg_page_iter sg_iter;
2176 int ret;
2177
2178 BUG_ON(obj->madv == __I915_MADV_PURGED);
2179
2180 ret = i915_gem_object_set_to_cpu_domain(obj, true);
2181 if (ret) {
2182 /* In the event of a disaster, abandon all caches and
2183 * hope for the best.
2184 */
2185 WARN_ON(ret != -EIO);
2186 i915_gem_clflush_object(obj, true);
2187 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2188 }
2189
2190 i915_gem_gtt_finish_object(obj);
2191
2192 if (i915_gem_object_needs_bit17_swizzle(obj))
2193 i915_gem_object_save_bit_17_swizzle(obj);
2194
2195 if (obj->madv == I915_MADV_DONTNEED)
2196 obj->dirty = 0;
2197
2198 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2199 struct page *page = sg_page_iter_page(&sg_iter);
2200
2201 if (obj->dirty)
2202 set_page_dirty(page);
2203
2204 if (obj->madv == I915_MADV_WILLNEED)
2205 mark_page_accessed(page);
2206
2207 page_cache_release(page);
2208 }
2209 obj->dirty = 0;
2210
2211 sg_free_table(obj->pages);
2212 kfree(obj->pages);
2213 }
2214
2215 int
i915_gem_object_put_pages(struct drm_i915_gem_object * obj)2216 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2217 {
2218 const struct drm_i915_gem_object_ops *ops = obj->ops;
2219
2220 if (obj->pages == NULL)
2221 return 0;
2222
2223 if (obj->pages_pin_count)
2224 return -EBUSY;
2225
2226 BUG_ON(i915_gem_obj_bound_any(obj));
2227
2228 /* ->put_pages might need to allocate memory for the bit17 swizzle
2229 * array, hence protect them from being reaped by removing them from gtt
2230 * lists early. */
2231 list_del(&obj->global_list);
2232
2233 ops->put_pages(obj);
2234 obj->pages = NULL;
2235
2236 i915_gem_object_invalidate(obj);
2237
2238 return 0;
2239 }
2240
2241 static int
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object * obj)2242 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2243 {
2244 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2245 int page_count, i;
2246 struct address_space *mapping;
2247 struct sg_table *st;
2248 struct scatterlist *sg;
2249 struct sg_page_iter sg_iter;
2250 struct page *page;
2251 unsigned long last_pfn = 0; /* suppress gcc warning */
2252 int ret;
2253 gfp_t gfp;
2254
2255 /* Assert that the object is not currently in any GPU domain. As it
2256 * wasn't in the GTT, there shouldn't be any way it could have been in
2257 * a GPU cache
2258 */
2259 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2260 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2261
2262 st = kmalloc(sizeof(*st), GFP_KERNEL);
2263 if (st == NULL)
2264 return -ENOMEM;
2265
2266 page_count = obj->base.size / PAGE_SIZE;
2267 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2268 kfree(st);
2269 return -ENOMEM;
2270 }
2271
2272 /* Get the list of pages out of our struct file. They'll be pinned
2273 * at this point until we release them.
2274 *
2275 * Fail silently without starting the shrinker
2276 */
2277 mapping = file_inode(obj->base.filp)->i_mapping;
2278 gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2279 gfp |= __GFP_NORETRY | __GFP_NOWARN;
2280 sg = st->sgl;
2281 st->nents = 0;
2282 for (i = 0; i < page_count; i++) {
2283 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2284 if (IS_ERR(page)) {
2285 i915_gem_shrink(dev_priv,
2286 page_count,
2287 I915_SHRINK_BOUND |
2288 I915_SHRINK_UNBOUND |
2289 I915_SHRINK_PURGEABLE);
2290 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2291 }
2292 if (IS_ERR(page)) {
2293 /* We've tried hard to allocate the memory by reaping
2294 * our own buffer, now let the real VM do its job and
2295 * go down in flames if truly OOM.
2296 */
2297 i915_gem_shrink_all(dev_priv);
2298 page = shmem_read_mapping_page(mapping, i);
2299 if (IS_ERR(page)) {
2300 ret = PTR_ERR(page);
2301 goto err_pages;
2302 }
2303 }
2304 #ifdef CONFIG_SWIOTLB
2305 if (swiotlb_nr_tbl()) {
2306 st->nents++;
2307 sg_set_page(sg, page, PAGE_SIZE, 0);
2308 sg = sg_next(sg);
2309 continue;
2310 }
2311 #endif
2312 if (!i || page_to_pfn(page) != last_pfn + 1) {
2313 if (i)
2314 sg = sg_next(sg);
2315 st->nents++;
2316 sg_set_page(sg, page, PAGE_SIZE, 0);
2317 } else {
2318 sg->length += PAGE_SIZE;
2319 }
2320 last_pfn = page_to_pfn(page);
2321
2322 /* Check that the i965g/gm workaround works. */
2323 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2324 }
2325 #ifdef CONFIG_SWIOTLB
2326 if (!swiotlb_nr_tbl())
2327 #endif
2328 sg_mark_end(sg);
2329 obj->pages = st;
2330
2331 ret = i915_gem_gtt_prepare_object(obj);
2332 if (ret)
2333 goto err_pages;
2334
2335 if (i915_gem_object_needs_bit17_swizzle(obj))
2336 i915_gem_object_do_bit_17_swizzle(obj);
2337
2338 if (obj->tiling_mode != I915_TILING_NONE &&
2339 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2340 i915_gem_object_pin_pages(obj);
2341
2342 return 0;
2343
2344 err_pages:
2345 sg_mark_end(sg);
2346 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2347 page_cache_release(sg_page_iter_page(&sg_iter));
2348 sg_free_table(st);
2349 kfree(st);
2350
2351 /* shmemfs first checks if there is enough memory to allocate the page
2352 * and reports ENOSPC should there be insufficient, along with the usual
2353 * ENOMEM for a genuine allocation failure.
2354 *
2355 * We use ENOSPC in our driver to mean that we have run out of aperture
2356 * space and so want to translate the error from shmemfs back to our
2357 * usual understanding of ENOMEM.
2358 */
2359 if (ret == -ENOSPC)
2360 ret = -ENOMEM;
2361
2362 return ret;
2363 }
2364
2365 /* Ensure that the associated pages are gathered from the backing storage
2366 * and pinned into our object. i915_gem_object_get_pages() may be called
2367 * multiple times before they are released by a single call to
2368 * i915_gem_object_put_pages() - once the pages are no longer referenced
2369 * either as a result of memory pressure (reaping pages under the shrinker)
2370 * or as the object is itself released.
2371 */
2372 int
i915_gem_object_get_pages(struct drm_i915_gem_object * obj)2373 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2374 {
2375 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2376 const struct drm_i915_gem_object_ops *ops = obj->ops;
2377 int ret;
2378
2379 if (obj->pages)
2380 return 0;
2381
2382 if (obj->madv != I915_MADV_WILLNEED) {
2383 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2384 return -EFAULT;
2385 }
2386
2387 BUG_ON(obj->pages_pin_count);
2388
2389 ret = ops->get_pages(obj);
2390 if (ret)
2391 return ret;
2392
2393 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2394
2395 obj->get_page.sg = obj->pages->sgl;
2396 obj->get_page.last = 0;
2397
2398 return 0;
2399 }
2400
i915_vma_move_to_active(struct i915_vma * vma,struct drm_i915_gem_request * req)2401 void i915_vma_move_to_active(struct i915_vma *vma,
2402 struct drm_i915_gem_request *req)
2403 {
2404 struct drm_i915_gem_object *obj = vma->obj;
2405 struct intel_engine_cs *ring;
2406
2407 ring = i915_gem_request_get_ring(req);
2408
2409 /* Add a reference if we're newly entering the active list. */
2410 if (obj->active == 0)
2411 drm_gem_object_reference(&obj->base);
2412 obj->active |= intel_ring_flag(ring);
2413
2414 list_move_tail(&obj->ring_list[ring->id], &ring->active_list);
2415 i915_gem_request_assign(&obj->last_read_req[ring->id], req);
2416
2417 list_move_tail(&vma->mm_list, &vma->vm->active_list);
2418 }
2419
2420 static void
i915_gem_object_retire__write(struct drm_i915_gem_object * obj)2421 i915_gem_object_retire__write(struct drm_i915_gem_object *obj)
2422 {
2423 RQ_BUG_ON(obj->last_write_req == NULL);
2424 RQ_BUG_ON(!(obj->active & intel_ring_flag(obj->last_write_req->ring)));
2425
2426 i915_gem_request_assign(&obj->last_write_req, NULL);
2427 intel_fb_obj_flush(obj, true, ORIGIN_CS);
2428 }
2429
2430 static void
i915_gem_object_retire__read(struct drm_i915_gem_object * obj,int ring)2431 i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring)
2432 {
2433 struct i915_vma *vma;
2434
2435 RQ_BUG_ON(obj->last_read_req[ring] == NULL);
2436 RQ_BUG_ON(!(obj->active & (1 << ring)));
2437
2438 list_del_init(&obj->ring_list[ring]);
2439 i915_gem_request_assign(&obj->last_read_req[ring], NULL);
2440
2441 if (obj->last_write_req && obj->last_write_req->ring->id == ring)
2442 i915_gem_object_retire__write(obj);
2443
2444 obj->active &= ~(1 << ring);
2445 if (obj->active)
2446 return;
2447
2448 /* Bump our place on the bound list to keep it roughly in LRU order
2449 * so that we don't steal from recently used but inactive objects
2450 * (unless we are forced to ofc!)
2451 */
2452 list_move_tail(&obj->global_list,
2453 &to_i915(obj->base.dev)->mm.bound_list);
2454
2455 list_for_each_entry(vma, &obj->vma_list, vma_link) {
2456 if (!list_empty(&vma->mm_list))
2457 list_move_tail(&vma->mm_list, &vma->vm->inactive_list);
2458 }
2459
2460 i915_gem_request_assign(&obj->last_fenced_req, NULL);
2461 drm_gem_object_unreference(&obj->base);
2462 }
2463
2464 static int
i915_gem_init_seqno(struct drm_device * dev,u32 seqno)2465 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2466 {
2467 struct drm_i915_private *dev_priv = dev->dev_private;
2468 struct intel_engine_cs *ring;
2469 int ret, i, j;
2470
2471 /* Carefully retire all requests without writing to the rings */
2472 for_each_ring(ring, dev_priv, i) {
2473 ret = intel_ring_idle(ring);
2474 if (ret)
2475 return ret;
2476 }
2477 i915_gem_retire_requests(dev);
2478
2479 /* Finally reset hw state */
2480 for_each_ring(ring, dev_priv, i) {
2481 intel_ring_init_seqno(ring, seqno);
2482
2483 for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
2484 ring->semaphore.sync_seqno[j] = 0;
2485 }
2486
2487 return 0;
2488 }
2489
i915_gem_set_seqno(struct drm_device * dev,u32 seqno)2490 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2491 {
2492 struct drm_i915_private *dev_priv = dev->dev_private;
2493 int ret;
2494
2495 if (seqno == 0)
2496 return -EINVAL;
2497
2498 /* HWS page needs to be set less than what we
2499 * will inject to ring
2500 */
2501 ret = i915_gem_init_seqno(dev, seqno - 1);
2502 if (ret)
2503 return ret;
2504
2505 /* Carefully set the last_seqno value so that wrap
2506 * detection still works
2507 */
2508 dev_priv->next_seqno = seqno;
2509 dev_priv->last_seqno = seqno - 1;
2510 if (dev_priv->last_seqno == 0)
2511 dev_priv->last_seqno--;
2512
2513 return 0;
2514 }
2515
2516 int
i915_gem_get_seqno(struct drm_device * dev,u32 * seqno)2517 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2518 {
2519 struct drm_i915_private *dev_priv = dev->dev_private;
2520
2521 /* reserve 0 for non-seqno */
2522 if (dev_priv->next_seqno == 0) {
2523 int ret = i915_gem_init_seqno(dev, 0);
2524 if (ret)
2525 return ret;
2526
2527 dev_priv->next_seqno = 1;
2528 }
2529
2530 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2531 return 0;
2532 }
2533
2534 /*
2535 * NB: This function is not allowed to fail. Doing so would mean the the
2536 * request is not being tracked for completion but the work itself is
2537 * going to happen on the hardware. This would be a Bad Thing(tm).
2538 */
__i915_add_request(struct drm_i915_gem_request * request,struct drm_i915_gem_object * obj,bool flush_caches)2539 void __i915_add_request(struct drm_i915_gem_request *request,
2540 struct drm_i915_gem_object *obj,
2541 bool flush_caches)
2542 {
2543 struct intel_engine_cs *ring;
2544 struct drm_i915_private *dev_priv;
2545 struct intel_ringbuffer *ringbuf;
2546 u32 request_start;
2547 int ret;
2548
2549 if (WARN_ON(request == NULL))
2550 return;
2551
2552 ring = request->ring;
2553 dev_priv = ring->dev->dev_private;
2554 ringbuf = request->ringbuf;
2555
2556 /*
2557 * To ensure that this call will not fail, space for its emissions
2558 * should already have been reserved in the ring buffer. Let the ring
2559 * know that it is time to use that space up.
2560 */
2561 intel_ring_reserved_space_use(ringbuf);
2562
2563 request_start = intel_ring_get_tail(ringbuf);
2564 /*
2565 * Emit any outstanding flushes - execbuf can fail to emit the flush
2566 * after having emitted the batchbuffer command. Hence we need to fix
2567 * things up similar to emitting the lazy request. The difference here
2568 * is that the flush _must_ happen before the next request, no matter
2569 * what.
2570 */
2571 if (flush_caches) {
2572 if (i915.enable_execlists)
2573 ret = logical_ring_flush_all_caches(request);
2574 else
2575 ret = intel_ring_flush_all_caches(request);
2576 /* Not allowed to fail! */
2577 WARN(ret, "*_ring_flush_all_caches failed: %d!\n", ret);
2578 }
2579
2580 /* Record the position of the start of the request so that
2581 * should we detect the updated seqno part-way through the
2582 * GPU processing the request, we never over-estimate the
2583 * position of the head.
2584 */
2585 request->postfix = intel_ring_get_tail(ringbuf);
2586
2587 if (i915.enable_execlists)
2588 ret = ring->emit_request(request);
2589 else {
2590 ret = ring->add_request(request);
2591
2592 request->tail = intel_ring_get_tail(ringbuf);
2593 }
2594 /* Not allowed to fail! */
2595 WARN(ret, "emit|add_request failed: %d!\n", ret);
2596
2597 request->head = request_start;
2598
2599 /* Whilst this request exists, batch_obj will be on the
2600 * active_list, and so will hold the active reference. Only when this
2601 * request is retired will the the batch_obj be moved onto the
2602 * inactive_list and lose its active reference. Hence we do not need
2603 * to explicitly hold another reference here.
2604 */
2605 request->batch_obj = obj;
2606
2607 request->emitted_jiffies = jiffies;
2608 request->previous_seqno = ring->last_submitted_seqno;
2609 ring->last_submitted_seqno = request->seqno;
2610 list_add_tail(&request->list, &ring->request_list);
2611
2612 trace_i915_gem_request_add(request);
2613
2614 i915_queue_hangcheck(ring->dev);
2615
2616 queue_delayed_work(dev_priv->wq,
2617 &dev_priv->mm.retire_work,
2618 round_jiffies_up_relative(HZ));
2619 intel_mark_busy(dev_priv->dev);
2620
2621 /* Sanity check that the reserved size was large enough. */
2622 intel_ring_reserved_space_end(ringbuf);
2623 }
2624
i915_context_is_banned(struct drm_i915_private * dev_priv,const struct intel_context * ctx)2625 static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2626 const struct intel_context *ctx)
2627 {
2628 unsigned long elapsed;
2629
2630 elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2631
2632 if (ctx->hang_stats.banned)
2633 return true;
2634
2635 if (ctx->hang_stats.ban_period_seconds &&
2636 elapsed <= ctx->hang_stats.ban_period_seconds) {
2637 if (!i915_gem_context_is_default(ctx)) {
2638 DRM_DEBUG("context hanging too fast, banning!\n");
2639 return true;
2640 } else if (i915_stop_ring_allow_ban(dev_priv)) {
2641 if (i915_stop_ring_allow_warn(dev_priv))
2642 DRM_ERROR("gpu hanging too fast, banning!\n");
2643 return true;
2644 }
2645 }
2646
2647 return false;
2648 }
2649
i915_set_reset_status(struct drm_i915_private * dev_priv,struct intel_context * ctx,const bool guilty)2650 static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2651 struct intel_context *ctx,
2652 const bool guilty)
2653 {
2654 struct i915_ctx_hang_stats *hs;
2655
2656 if (WARN_ON(!ctx))
2657 return;
2658
2659 hs = &ctx->hang_stats;
2660
2661 if (guilty) {
2662 hs->banned = i915_context_is_banned(dev_priv, ctx);
2663 hs->batch_active++;
2664 hs->guilty_ts = get_seconds();
2665 } else {
2666 hs->batch_pending++;
2667 }
2668 }
2669
i915_gem_request_free(struct kref * req_ref)2670 void i915_gem_request_free(struct kref *req_ref)
2671 {
2672 struct drm_i915_gem_request *req = container_of(req_ref,
2673 typeof(*req), ref);
2674 struct intel_context *ctx = req->ctx;
2675
2676 if (req->file_priv)
2677 i915_gem_request_remove_from_client(req);
2678
2679 if (ctx) {
2680 if (i915.enable_execlists) {
2681 if (ctx != req->ring->default_context)
2682 intel_lr_context_unpin(req);
2683 }
2684
2685 i915_gem_context_unreference(ctx);
2686 }
2687
2688 kmem_cache_free(req->i915->requests, req);
2689 }
2690
i915_gem_request_alloc(struct intel_engine_cs * ring,struct intel_context * ctx,struct drm_i915_gem_request ** req_out)2691 int i915_gem_request_alloc(struct intel_engine_cs *ring,
2692 struct intel_context *ctx,
2693 struct drm_i915_gem_request **req_out)
2694 {
2695 struct drm_i915_private *dev_priv = to_i915(ring->dev);
2696 struct drm_i915_gem_request *req;
2697 int ret;
2698
2699 if (!req_out)
2700 return -EINVAL;
2701
2702 *req_out = NULL;
2703
2704 req = kmem_cache_zalloc(dev_priv->requests, GFP_KERNEL);
2705 if (req == NULL)
2706 return -ENOMEM;
2707
2708 ret = i915_gem_get_seqno(ring->dev, &req->seqno);
2709 if (ret)
2710 goto err;
2711
2712 kref_init(&req->ref);
2713 req->i915 = dev_priv;
2714 req->ring = ring;
2715 req->ctx = ctx;
2716 i915_gem_context_reference(req->ctx);
2717
2718 if (i915.enable_execlists)
2719 ret = intel_logical_ring_alloc_request_extras(req);
2720 else
2721 ret = intel_ring_alloc_request_extras(req);
2722 if (ret) {
2723 i915_gem_context_unreference(req->ctx);
2724 goto err;
2725 }
2726
2727 /*
2728 * Reserve space in the ring buffer for all the commands required to
2729 * eventually emit this request. This is to guarantee that the
2730 * i915_add_request() call can't fail. Note that the reserve may need
2731 * to be redone if the request is not actually submitted straight
2732 * away, e.g. because a GPU scheduler has deferred it.
2733 */
2734 if (i915.enable_execlists)
2735 ret = intel_logical_ring_reserve_space(req);
2736 else
2737 ret = intel_ring_reserve_space(req);
2738 if (ret) {
2739 /*
2740 * At this point, the request is fully allocated even if not
2741 * fully prepared. Thus it can be cleaned up using the proper
2742 * free code.
2743 */
2744 i915_gem_request_cancel(req);
2745 return ret;
2746 }
2747
2748 *req_out = req;
2749 return 0;
2750
2751 err:
2752 kmem_cache_free(dev_priv->requests, req);
2753 return ret;
2754 }
2755
i915_gem_request_cancel(struct drm_i915_gem_request * req)2756 void i915_gem_request_cancel(struct drm_i915_gem_request *req)
2757 {
2758 intel_ring_reserved_space_cancel(req->ringbuf);
2759
2760 i915_gem_request_unreference(req);
2761 }
2762
2763 struct drm_i915_gem_request *
i915_gem_find_active_request(struct intel_engine_cs * ring)2764 i915_gem_find_active_request(struct intel_engine_cs *ring)
2765 {
2766 struct drm_i915_gem_request *request;
2767
2768 list_for_each_entry(request, &ring->request_list, list) {
2769 if (i915_gem_request_completed(request, false))
2770 continue;
2771
2772 return request;
2773 }
2774
2775 return NULL;
2776 }
2777
i915_gem_reset_ring_status(struct drm_i915_private * dev_priv,struct intel_engine_cs * ring)2778 static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2779 struct intel_engine_cs *ring)
2780 {
2781 struct drm_i915_gem_request *request;
2782 bool ring_hung;
2783
2784 request = i915_gem_find_active_request(ring);
2785
2786 if (request == NULL)
2787 return;
2788
2789 ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2790
2791 i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2792
2793 list_for_each_entry_continue(request, &ring->request_list, list)
2794 i915_set_reset_status(dev_priv, request->ctx, false);
2795 }
2796
i915_gem_reset_ring_cleanup(struct drm_i915_private * dev_priv,struct intel_engine_cs * ring)2797 static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2798 struct intel_engine_cs *ring)
2799 {
2800 while (!list_empty(&ring->active_list)) {
2801 struct drm_i915_gem_object *obj;
2802
2803 obj = list_first_entry(&ring->active_list,
2804 struct drm_i915_gem_object,
2805 ring_list[ring->id]);
2806
2807 i915_gem_object_retire__read(obj, ring->id);
2808 }
2809
2810 /*
2811 * Clear the execlists queue up before freeing the requests, as those
2812 * are the ones that keep the context and ringbuffer backing objects
2813 * pinned in place.
2814 */
2815 while (!list_empty(&ring->execlist_queue)) {
2816 struct drm_i915_gem_request *submit_req;
2817
2818 submit_req = list_first_entry(&ring->execlist_queue,
2819 struct drm_i915_gem_request,
2820 execlist_link);
2821 list_del(&submit_req->execlist_link);
2822
2823 if (submit_req->ctx != ring->default_context)
2824 intel_lr_context_unpin(submit_req);
2825
2826 i915_gem_request_unreference(submit_req);
2827 }
2828
2829 /*
2830 * We must free the requests after all the corresponding objects have
2831 * been moved off active lists. Which is the same order as the normal
2832 * retire_requests function does. This is important if object hold
2833 * implicit references on things like e.g. ppgtt address spaces through
2834 * the request.
2835 */
2836 while (!list_empty(&ring->request_list)) {
2837 struct drm_i915_gem_request *request;
2838
2839 request = list_first_entry(&ring->request_list,
2840 struct drm_i915_gem_request,
2841 list);
2842
2843 i915_gem_request_retire(request);
2844 }
2845 }
2846
i915_gem_reset(struct drm_device * dev)2847 void i915_gem_reset(struct drm_device *dev)
2848 {
2849 struct drm_i915_private *dev_priv = dev->dev_private;
2850 struct intel_engine_cs *ring;
2851 int i;
2852
2853 /*
2854 * Before we free the objects from the requests, we need to inspect
2855 * them for finding the guilty party. As the requests only borrow
2856 * their reference to the objects, the inspection must be done first.
2857 */
2858 for_each_ring(ring, dev_priv, i)
2859 i915_gem_reset_ring_status(dev_priv, ring);
2860
2861 for_each_ring(ring, dev_priv, i)
2862 i915_gem_reset_ring_cleanup(dev_priv, ring);
2863
2864 i915_gem_context_reset(dev);
2865
2866 i915_gem_restore_fences(dev);
2867
2868 WARN_ON(i915_verify_lists(dev));
2869 }
2870
2871 /**
2872 * This function clears the request list as sequence numbers are passed.
2873 */
2874 void
i915_gem_retire_requests_ring(struct intel_engine_cs * ring)2875 i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
2876 {
2877 WARN_ON(i915_verify_lists(ring->dev));
2878
2879 /* Retire requests first as we use it above for the early return.
2880 * If we retire requests last, we may use a later seqno and so clear
2881 * the requests lists without clearing the active list, leading to
2882 * confusion.
2883 */
2884 while (!list_empty(&ring->request_list)) {
2885 struct drm_i915_gem_request *request;
2886
2887 request = list_first_entry(&ring->request_list,
2888 struct drm_i915_gem_request,
2889 list);
2890
2891 if (!i915_gem_request_completed(request, true))
2892 break;
2893
2894 i915_gem_request_retire(request);
2895 }
2896
2897 /* Move any buffers on the active list that are no longer referenced
2898 * by the ringbuffer to the flushing/inactive lists as appropriate,
2899 * before we free the context associated with the requests.
2900 */
2901 while (!list_empty(&ring->active_list)) {
2902 struct drm_i915_gem_object *obj;
2903
2904 obj = list_first_entry(&ring->active_list,
2905 struct drm_i915_gem_object,
2906 ring_list[ring->id]);
2907
2908 if (!list_empty(&obj->last_read_req[ring->id]->list))
2909 break;
2910
2911 i915_gem_object_retire__read(obj, ring->id);
2912 }
2913
2914 if (unlikely(ring->trace_irq_req &&
2915 i915_gem_request_completed(ring->trace_irq_req, true))) {
2916 ring->irq_put(ring);
2917 i915_gem_request_assign(&ring->trace_irq_req, NULL);
2918 }
2919
2920 WARN_ON(i915_verify_lists(ring->dev));
2921 }
2922
2923 bool
i915_gem_retire_requests(struct drm_device * dev)2924 i915_gem_retire_requests(struct drm_device *dev)
2925 {
2926 struct drm_i915_private *dev_priv = dev->dev_private;
2927 struct intel_engine_cs *ring;
2928 bool idle = true;
2929 int i;
2930
2931 for_each_ring(ring, dev_priv, i) {
2932 i915_gem_retire_requests_ring(ring);
2933 idle &= list_empty(&ring->request_list);
2934 if (i915.enable_execlists) {
2935 unsigned long flags;
2936
2937 spin_lock_irqsave(&ring->execlist_lock, flags);
2938 idle &= list_empty(&ring->execlist_queue);
2939 spin_unlock_irqrestore(&ring->execlist_lock, flags);
2940
2941 intel_execlists_retire_requests(ring);
2942 }
2943 }
2944
2945 if (idle)
2946 mod_delayed_work(dev_priv->wq,
2947 &dev_priv->mm.idle_work,
2948 msecs_to_jiffies(100));
2949
2950 return idle;
2951 }
2952
2953 static void
i915_gem_retire_work_handler(struct work_struct * work)2954 i915_gem_retire_work_handler(struct work_struct *work)
2955 {
2956 struct drm_i915_private *dev_priv =
2957 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2958 struct drm_device *dev = dev_priv->dev;
2959 bool idle;
2960
2961 /* Come back later if the device is busy... */
2962 idle = false;
2963 if (mutex_trylock(&dev->struct_mutex)) {
2964 idle = i915_gem_retire_requests(dev);
2965 mutex_unlock(&dev->struct_mutex);
2966 }
2967 if (!idle)
2968 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2969 round_jiffies_up_relative(HZ));
2970 }
2971
2972 static void
i915_gem_idle_work_handler(struct work_struct * work)2973 i915_gem_idle_work_handler(struct work_struct *work)
2974 {
2975 struct drm_i915_private *dev_priv =
2976 container_of(work, typeof(*dev_priv), mm.idle_work.work);
2977 struct drm_device *dev = dev_priv->dev;
2978 struct intel_engine_cs *ring;
2979 int i;
2980
2981 for_each_ring(ring, dev_priv, i)
2982 if (!list_empty(&ring->request_list))
2983 return;
2984
2985 intel_mark_idle(dev);
2986
2987 if (mutex_trylock(&dev->struct_mutex)) {
2988 struct intel_engine_cs *ring;
2989 int i;
2990
2991 for_each_ring(ring, dev_priv, i)
2992 i915_gem_batch_pool_fini(&ring->batch_pool);
2993
2994 mutex_unlock(&dev->struct_mutex);
2995 }
2996 }
2997
2998 /**
2999 * Ensures that an object will eventually get non-busy by flushing any required
3000 * write domains, emitting any outstanding lazy request and retiring and
3001 * completed requests.
3002 */
3003 static int
i915_gem_object_flush_active(struct drm_i915_gem_object * obj)3004 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
3005 {
3006 int i;
3007
3008 if (!obj->active)
3009 return 0;
3010
3011 for (i = 0; i < I915_NUM_RINGS; i++) {
3012 struct drm_i915_gem_request *req;
3013
3014 req = obj->last_read_req[i];
3015 if (req == NULL)
3016 continue;
3017
3018 if (list_empty(&req->list))
3019 goto retire;
3020
3021 if (i915_gem_request_completed(req, true)) {
3022 __i915_gem_request_retire__upto(req);
3023 retire:
3024 i915_gem_object_retire__read(obj, i);
3025 }
3026 }
3027
3028 return 0;
3029 }
3030
3031 /**
3032 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3033 * @DRM_IOCTL_ARGS: standard ioctl arguments
3034 *
3035 * Returns 0 if successful, else an error is returned with the remaining time in
3036 * the timeout parameter.
3037 * -ETIME: object is still busy after timeout
3038 * -ERESTARTSYS: signal interrupted the wait
3039 * -ENONENT: object doesn't exist
3040 * Also possible, but rare:
3041 * -EAGAIN: GPU wedged
3042 * -ENOMEM: damn
3043 * -ENODEV: Internal IRQ fail
3044 * -E?: The add request failed
3045 *
3046 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3047 * non-zero timeout parameter the wait ioctl will wait for the given number of
3048 * nanoseconds on an object becoming unbusy. Since the wait itself does so
3049 * without holding struct_mutex the object may become re-busied before this
3050 * function completes. A similar but shorter * race condition exists in the busy
3051 * ioctl
3052 */
3053 int
i915_gem_wait_ioctl(struct drm_device * dev,void * data,struct drm_file * file)3054 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3055 {
3056 struct drm_i915_private *dev_priv = dev->dev_private;
3057 struct drm_i915_gem_wait *args = data;
3058 struct drm_i915_gem_object *obj;
3059 struct drm_i915_gem_request *req[I915_NUM_RINGS];
3060 unsigned reset_counter;
3061 int i, n = 0;
3062 int ret;
3063
3064 if (args->flags != 0)
3065 return -EINVAL;
3066
3067 ret = i915_mutex_lock_interruptible(dev);
3068 if (ret)
3069 return ret;
3070
3071 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
3072 if (&obj->base == NULL) {
3073 mutex_unlock(&dev->struct_mutex);
3074 return -ENOENT;
3075 }
3076
3077 /* Need to make sure the object gets inactive eventually. */
3078 ret = i915_gem_object_flush_active(obj);
3079 if (ret)
3080 goto out;
3081
3082 if (!obj->active)
3083 goto out;
3084
3085 /* Do this after OLR check to make sure we make forward progress polling
3086 * on this IOCTL with a timeout == 0 (like busy ioctl)
3087 */
3088 if (args->timeout_ns == 0) {
3089 ret = -ETIME;
3090 goto out;
3091 }
3092
3093 drm_gem_object_unreference(&obj->base);
3094 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3095
3096 for (i = 0; i < I915_NUM_RINGS; i++) {
3097 if (obj->last_read_req[i] == NULL)
3098 continue;
3099
3100 req[n++] = i915_gem_request_reference(obj->last_read_req[i]);
3101 }
3102
3103 mutex_unlock(&dev->struct_mutex);
3104
3105 for (i = 0; i < n; i++) {
3106 if (ret == 0)
3107 ret = __i915_wait_request(req[i], reset_counter, true,
3108 args->timeout_ns > 0 ? &args->timeout_ns : NULL,
3109 file->driver_priv);
3110 i915_gem_request_unreference__unlocked(req[i]);
3111 }
3112 return ret;
3113
3114 out:
3115 drm_gem_object_unreference(&obj->base);
3116 mutex_unlock(&dev->struct_mutex);
3117 return ret;
3118 }
3119
3120 static int
__i915_gem_object_sync(struct drm_i915_gem_object * obj,struct intel_engine_cs * to,struct drm_i915_gem_request * from_req,struct drm_i915_gem_request ** to_req)3121 __i915_gem_object_sync(struct drm_i915_gem_object *obj,
3122 struct intel_engine_cs *to,
3123 struct drm_i915_gem_request *from_req,
3124 struct drm_i915_gem_request **to_req)
3125 {
3126 struct intel_engine_cs *from;
3127 int ret;
3128
3129 from = i915_gem_request_get_ring(from_req);
3130 if (to == from)
3131 return 0;
3132
3133 if (i915_gem_request_completed(from_req, true))
3134 return 0;
3135
3136 if (!i915_semaphore_is_enabled(obj->base.dev)) {
3137 struct drm_i915_private *i915 = to_i915(obj->base.dev);
3138 ret = __i915_wait_request(from_req,
3139 atomic_read(&i915->gpu_error.reset_counter),
3140 i915->mm.interruptible,
3141 NULL,
3142 &i915->rps.semaphores);
3143 if (ret)
3144 return ret;
3145
3146 i915_gem_object_retire_request(obj, from_req);
3147 } else {
3148 int idx = intel_ring_sync_index(from, to);
3149 u32 seqno = i915_gem_request_get_seqno(from_req);
3150
3151 WARN_ON(!to_req);
3152
3153 if (seqno <= from->semaphore.sync_seqno[idx])
3154 return 0;
3155
3156 if (*to_req == NULL) {
3157 ret = i915_gem_request_alloc(to, to->default_context, to_req);
3158 if (ret)
3159 return ret;
3160 }
3161
3162 trace_i915_gem_ring_sync_to(*to_req, from, from_req);
3163 ret = to->semaphore.sync_to(*to_req, from, seqno);
3164 if (ret)
3165 return ret;
3166
3167 /* We use last_read_req because sync_to()
3168 * might have just caused seqno wrap under
3169 * the radar.
3170 */
3171 from->semaphore.sync_seqno[idx] =
3172 i915_gem_request_get_seqno(obj->last_read_req[from->id]);
3173 }
3174
3175 return 0;
3176 }
3177
3178 /**
3179 * i915_gem_object_sync - sync an object to a ring.
3180 *
3181 * @obj: object which may be in use on another ring.
3182 * @to: ring we wish to use the object on. May be NULL.
3183 * @to_req: request we wish to use the object for. See below.
3184 * This will be allocated and returned if a request is
3185 * required but not passed in.
3186 *
3187 * This code is meant to abstract object synchronization with the GPU.
3188 * Calling with NULL implies synchronizing the object with the CPU
3189 * rather than a particular GPU ring. Conceptually we serialise writes
3190 * between engines inside the GPU. We only allow one engine to write
3191 * into a buffer at any time, but multiple readers. To ensure each has
3192 * a coherent view of memory, we must:
3193 *
3194 * - If there is an outstanding write request to the object, the new
3195 * request must wait for it to complete (either CPU or in hw, requests
3196 * on the same ring will be naturally ordered).
3197 *
3198 * - If we are a write request (pending_write_domain is set), the new
3199 * request must wait for outstanding read requests to complete.
3200 *
3201 * For CPU synchronisation (NULL to) no request is required. For syncing with
3202 * rings to_req must be non-NULL. However, a request does not have to be
3203 * pre-allocated. If *to_req is NULL and sync commands will be emitted then a
3204 * request will be allocated automatically and returned through *to_req. Note
3205 * that it is not guaranteed that commands will be emitted (because the system
3206 * might already be idle). Hence there is no need to create a request that
3207 * might never have any work submitted. Note further that if a request is
3208 * returned in *to_req, it is the responsibility of the caller to submit
3209 * that request (after potentially adding more work to it).
3210 *
3211 * Returns 0 if successful, else propagates up the lower layer error.
3212 */
3213 int
i915_gem_object_sync(struct drm_i915_gem_object * obj,struct intel_engine_cs * to,struct drm_i915_gem_request ** to_req)3214 i915_gem_object_sync(struct drm_i915_gem_object *obj,
3215 struct intel_engine_cs *to,
3216 struct drm_i915_gem_request **to_req)
3217 {
3218 const bool readonly = obj->base.pending_write_domain == 0;
3219 struct drm_i915_gem_request *req[I915_NUM_RINGS];
3220 int ret, i, n;
3221
3222 if (!obj->active)
3223 return 0;
3224
3225 if (to == NULL)
3226 return i915_gem_object_wait_rendering(obj, readonly);
3227
3228 n = 0;
3229 if (readonly) {
3230 if (obj->last_write_req)
3231 req[n++] = obj->last_write_req;
3232 } else {
3233 for (i = 0; i < I915_NUM_RINGS; i++)
3234 if (obj->last_read_req[i])
3235 req[n++] = obj->last_read_req[i];
3236 }
3237 for (i = 0; i < n; i++) {
3238 ret = __i915_gem_object_sync(obj, to, req[i], to_req);
3239 if (ret)
3240 return ret;
3241 }
3242
3243 return 0;
3244 }
3245
i915_gem_object_finish_gtt(struct drm_i915_gem_object * obj)3246 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
3247 {
3248 u32 old_write_domain, old_read_domains;
3249
3250 /* Force a pagefault for domain tracking on next user access */
3251 i915_gem_release_mmap(obj);
3252
3253 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3254 return;
3255
3256 /* Wait for any direct GTT access to complete */
3257 mb();
3258
3259 old_read_domains = obj->base.read_domains;
3260 old_write_domain = obj->base.write_domain;
3261
3262 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
3263 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
3264
3265 trace_i915_gem_object_change_domain(obj,
3266 old_read_domains,
3267 old_write_domain);
3268 }
3269
__i915_vma_unbind(struct i915_vma * vma,bool wait)3270 static int __i915_vma_unbind(struct i915_vma *vma, bool wait)
3271 {
3272 struct drm_i915_gem_object *obj = vma->obj;
3273 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3274 int ret;
3275
3276 if (list_empty(&vma->vma_link))
3277 return 0;
3278
3279 if (!drm_mm_node_allocated(&vma->node)) {
3280 i915_gem_vma_destroy(vma);
3281 return 0;
3282 }
3283
3284 if (vma->pin_count)
3285 return -EBUSY;
3286
3287 BUG_ON(obj->pages == NULL);
3288
3289 if (wait) {
3290 ret = i915_gem_object_wait_rendering(obj, false);
3291 if (ret)
3292 return ret;
3293 }
3294
3295 if (i915_is_ggtt(vma->vm) &&
3296 vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3297 i915_gem_object_finish_gtt(obj);
3298
3299 /* release the fence reg _after_ flushing */
3300 ret = i915_gem_object_put_fence(obj);
3301 if (ret)
3302 return ret;
3303 }
3304
3305 trace_i915_vma_unbind(vma);
3306
3307 vma->vm->unbind_vma(vma);
3308 vma->bound = 0;
3309
3310 list_del_init(&vma->mm_list);
3311 if (i915_is_ggtt(vma->vm)) {
3312 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3313 obj->map_and_fenceable = false;
3314 } else if (vma->ggtt_view.pages) {
3315 sg_free_table(vma->ggtt_view.pages);
3316 kfree(vma->ggtt_view.pages);
3317 }
3318 vma->ggtt_view.pages = NULL;
3319 }
3320
3321 drm_mm_remove_node(&vma->node);
3322 i915_gem_vma_destroy(vma);
3323
3324 /* Since the unbound list is global, only move to that list if
3325 * no more VMAs exist. */
3326 if (list_empty(&obj->vma_list))
3327 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3328
3329 /* And finally now the object is completely decoupled from this vma,
3330 * we can drop its hold on the backing storage and allow it to be
3331 * reaped by the shrinker.
3332 */
3333 i915_gem_object_unpin_pages(obj);
3334
3335 return 0;
3336 }
3337
i915_vma_unbind(struct i915_vma * vma)3338 int i915_vma_unbind(struct i915_vma *vma)
3339 {
3340 return __i915_vma_unbind(vma, true);
3341 }
3342
__i915_vma_unbind_no_wait(struct i915_vma * vma)3343 int __i915_vma_unbind_no_wait(struct i915_vma *vma)
3344 {
3345 return __i915_vma_unbind(vma, false);
3346 }
3347
i915_gpu_idle(struct drm_device * dev)3348 int i915_gpu_idle(struct drm_device *dev)
3349 {
3350 struct drm_i915_private *dev_priv = dev->dev_private;
3351 struct intel_engine_cs *ring;
3352 int ret, i;
3353
3354 /* Flush everything onto the inactive list. */
3355 for_each_ring(ring, dev_priv, i) {
3356 if (!i915.enable_execlists) {
3357 struct drm_i915_gem_request *req;
3358
3359 ret = i915_gem_request_alloc(ring, ring->default_context, &req);
3360 if (ret)
3361 return ret;
3362
3363 ret = i915_switch_context(req);
3364 if (ret) {
3365 i915_gem_request_cancel(req);
3366 return ret;
3367 }
3368
3369 i915_add_request_no_flush(req);
3370 }
3371
3372 ret = intel_ring_idle(ring);
3373 if (ret)
3374 return ret;
3375 }
3376
3377 WARN_ON(i915_verify_lists(dev));
3378 return 0;
3379 }
3380
i915_gem_valid_gtt_space(struct i915_vma * vma,unsigned long cache_level)3381 static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3382 unsigned long cache_level)
3383 {
3384 struct drm_mm_node *gtt_space = &vma->node;
3385 struct drm_mm_node *other;
3386
3387 /*
3388 * On some machines we have to be careful when putting differing types
3389 * of snoopable memory together to avoid the prefetcher crossing memory
3390 * domains and dying. During vm initialisation, we decide whether or not
3391 * these constraints apply and set the drm_mm.color_adjust
3392 * appropriately.
3393 */
3394 if (vma->vm->mm.color_adjust == NULL)
3395 return true;
3396
3397 if (!drm_mm_node_allocated(gtt_space))
3398 return true;
3399
3400 if (list_empty(>t_space->node_list))
3401 return true;
3402
3403 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3404 if (other->allocated && !other->hole_follows && other->color != cache_level)
3405 return false;
3406
3407 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3408 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3409 return false;
3410
3411 return true;
3412 }
3413
3414 /**
3415 * Finds free space in the GTT aperture and binds the object or a view of it
3416 * there.
3417 */
3418 static struct i915_vma *
i915_gem_object_bind_to_vm(struct drm_i915_gem_object * obj,struct i915_address_space * vm,const struct i915_ggtt_view * ggtt_view,unsigned alignment,uint64_t flags)3419 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3420 struct i915_address_space *vm,
3421 const struct i915_ggtt_view *ggtt_view,
3422 unsigned alignment,
3423 uint64_t flags)
3424 {
3425 struct drm_device *dev = obj->base.dev;
3426 struct drm_i915_private *dev_priv = dev->dev_private;
3427 u32 fence_alignment, unfenced_alignment;
3428 u32 search_flag, alloc_flag;
3429 u64 start, end;
3430 u64 size, fence_size;
3431 struct i915_vma *vma;
3432 int ret;
3433
3434 if (i915_is_ggtt(vm)) {
3435 u32 view_size;
3436
3437 if (WARN_ON(!ggtt_view))
3438 return ERR_PTR(-EINVAL);
3439
3440 view_size = i915_ggtt_view_size(obj, ggtt_view);
3441
3442 fence_size = i915_gem_get_gtt_size(dev,
3443 view_size,
3444 obj->tiling_mode);
3445 fence_alignment = i915_gem_get_gtt_alignment(dev,
3446 view_size,
3447 obj->tiling_mode,
3448 true);
3449 unfenced_alignment = i915_gem_get_gtt_alignment(dev,
3450 view_size,
3451 obj->tiling_mode,
3452 false);
3453 size = flags & PIN_MAPPABLE ? fence_size : view_size;
3454 } else {
3455 fence_size = i915_gem_get_gtt_size(dev,
3456 obj->base.size,
3457 obj->tiling_mode);
3458 fence_alignment = i915_gem_get_gtt_alignment(dev,
3459 obj->base.size,
3460 obj->tiling_mode,
3461 true);
3462 unfenced_alignment =
3463 i915_gem_get_gtt_alignment(dev,
3464 obj->base.size,
3465 obj->tiling_mode,
3466 false);
3467 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3468 }
3469
3470 start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3471 end = vm->total;
3472 if (flags & PIN_MAPPABLE)
3473 end = min_t(u64, end, dev_priv->gtt.mappable_end);
3474 if (flags & PIN_ZONE_4G)
3475 end = min_t(u64, end, (1ULL << 32));
3476
3477 if (alignment == 0)
3478 alignment = flags & PIN_MAPPABLE ? fence_alignment :
3479 unfenced_alignment;
3480 if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3481 DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n",
3482 ggtt_view ? ggtt_view->type : 0,
3483 alignment);
3484 return ERR_PTR(-EINVAL);
3485 }
3486
3487 /* If binding the object/GGTT view requires more space than the entire
3488 * aperture has, reject it early before evicting everything in a vain
3489 * attempt to find space.
3490 */
3491 if (size > end) {
3492 DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%llu > %s aperture=%llu\n",
3493 ggtt_view ? ggtt_view->type : 0,
3494 size,
3495 flags & PIN_MAPPABLE ? "mappable" : "total",
3496 end);
3497 return ERR_PTR(-E2BIG);
3498 }
3499
3500 ret = i915_gem_object_get_pages(obj);
3501 if (ret)
3502 return ERR_PTR(ret);
3503
3504 i915_gem_object_pin_pages(obj);
3505
3506 vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
3507 i915_gem_obj_lookup_or_create_vma(obj, vm);
3508
3509 if (IS_ERR(vma))
3510 goto err_unpin;
3511
3512 if (flags & PIN_HIGH) {
3513 search_flag = DRM_MM_SEARCH_BELOW;
3514 alloc_flag = DRM_MM_CREATE_TOP;
3515 } else {
3516 search_flag = DRM_MM_SEARCH_DEFAULT;
3517 alloc_flag = DRM_MM_CREATE_DEFAULT;
3518 }
3519
3520 search_free:
3521 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3522 size, alignment,
3523 obj->cache_level,
3524 start, end,
3525 search_flag,
3526 alloc_flag);
3527 if (ret) {
3528 ret = i915_gem_evict_something(dev, vm, size, alignment,
3529 obj->cache_level,
3530 start, end,
3531 flags);
3532 if (ret == 0)
3533 goto search_free;
3534
3535 goto err_free_vma;
3536 }
3537 if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
3538 ret = -EINVAL;
3539 goto err_remove_node;
3540 }
3541
3542 trace_i915_vma_bind(vma, flags);
3543 ret = i915_vma_bind(vma, obj->cache_level, flags);
3544 if (ret)
3545 goto err_remove_node;
3546
3547 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3548 list_add_tail(&vma->mm_list, &vm->inactive_list);
3549
3550 return vma;
3551
3552 err_remove_node:
3553 drm_mm_remove_node(&vma->node);
3554 err_free_vma:
3555 i915_gem_vma_destroy(vma);
3556 vma = ERR_PTR(ret);
3557 err_unpin:
3558 i915_gem_object_unpin_pages(obj);
3559 return vma;
3560 }
3561
3562 bool
i915_gem_clflush_object(struct drm_i915_gem_object * obj,bool force)3563 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3564 bool force)
3565 {
3566 /* If we don't have a page list set up, then we're not pinned
3567 * to GPU, and we can ignore the cache flush because it'll happen
3568 * again at bind time.
3569 */
3570 if (obj->pages == NULL)
3571 return false;
3572
3573 /*
3574 * Stolen memory is always coherent with the GPU as it is explicitly
3575 * marked as wc by the system, or the system is cache-coherent.
3576 */
3577 if (obj->stolen || obj->phys_handle)
3578 return false;
3579
3580 /* If the GPU is snooping the contents of the CPU cache,
3581 * we do not need to manually clear the CPU cache lines. However,
3582 * the caches are only snooped when the render cache is
3583 * flushed/invalidated. As we always have to emit invalidations
3584 * and flushes when moving into and out of the RENDER domain, correct
3585 * snooping behaviour occurs naturally as the result of our domain
3586 * tracking.
3587 */
3588 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3589 obj->cache_dirty = true;
3590 return false;
3591 }
3592
3593 trace_i915_gem_object_clflush(obj);
3594 drm_clflush_sg(obj->pages);
3595 obj->cache_dirty = false;
3596
3597 return true;
3598 }
3599
3600 /** Flushes the GTT write domain for the object if it's dirty. */
3601 static void
i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object * obj)3602 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3603 {
3604 uint32_t old_write_domain;
3605
3606 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3607 return;
3608
3609 /* No actual flushing is required for the GTT write domain. Writes
3610 * to it immediately go to main memory as far as we know, so there's
3611 * no chipset flush. It also doesn't land in render cache.
3612 *
3613 * However, we do have to enforce the order so that all writes through
3614 * the GTT land before any writes to the device, such as updates to
3615 * the GATT itself.
3616 */
3617 wmb();
3618
3619 old_write_domain = obj->base.write_domain;
3620 obj->base.write_domain = 0;
3621
3622 intel_fb_obj_flush(obj, false, ORIGIN_GTT);
3623
3624 trace_i915_gem_object_change_domain(obj,
3625 obj->base.read_domains,
3626 old_write_domain);
3627 }
3628
3629 /** Flushes the CPU write domain for the object if it's dirty. */
3630 static void
i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object * obj)3631 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3632 {
3633 uint32_t old_write_domain;
3634
3635 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3636 return;
3637
3638 if (i915_gem_clflush_object(obj, obj->pin_display))
3639 i915_gem_chipset_flush(obj->base.dev);
3640
3641 old_write_domain = obj->base.write_domain;
3642 obj->base.write_domain = 0;
3643
3644 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
3645
3646 trace_i915_gem_object_change_domain(obj,
3647 obj->base.read_domains,
3648 old_write_domain);
3649 }
3650
3651 /**
3652 * Moves a single object to the GTT read, and possibly write domain.
3653 *
3654 * This function returns when the move is complete, including waiting on
3655 * flushes to occur.
3656 */
3657 int
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object * obj,bool write)3658 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3659 {
3660 uint32_t old_write_domain, old_read_domains;
3661 struct i915_vma *vma;
3662 int ret;
3663
3664 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3665 return 0;
3666
3667 ret = i915_gem_object_wait_rendering(obj, !write);
3668 if (ret)
3669 return ret;
3670
3671 /* Flush and acquire obj->pages so that we are coherent through
3672 * direct access in memory with previous cached writes through
3673 * shmemfs and that our cache domain tracking remains valid.
3674 * For example, if the obj->filp was moved to swap without us
3675 * being notified and releasing the pages, we would mistakenly
3676 * continue to assume that the obj remained out of the CPU cached
3677 * domain.
3678 */
3679 ret = i915_gem_object_get_pages(obj);
3680 if (ret)
3681 return ret;
3682
3683 i915_gem_object_flush_cpu_write_domain(obj);
3684
3685 /* Serialise direct access to this object with the barriers for
3686 * coherent writes from the GPU, by effectively invalidating the
3687 * GTT domain upon first access.
3688 */
3689 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3690 mb();
3691
3692 old_write_domain = obj->base.write_domain;
3693 old_read_domains = obj->base.read_domains;
3694
3695 /* It should now be out of any other write domains, and we can update
3696 * the domain values for our changes.
3697 */
3698 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3699 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3700 if (write) {
3701 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3702 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3703 obj->dirty = 1;
3704 }
3705
3706 trace_i915_gem_object_change_domain(obj,
3707 old_read_domains,
3708 old_write_domain);
3709
3710 /* And bump the LRU for this access */
3711 vma = i915_gem_obj_to_ggtt(obj);
3712 if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
3713 list_move_tail(&vma->mm_list,
3714 &to_i915(obj->base.dev)->gtt.base.inactive_list);
3715
3716 return 0;
3717 }
3718
3719 /**
3720 * Changes the cache-level of an object across all VMA.
3721 *
3722 * After this function returns, the object will be in the new cache-level
3723 * across all GTT and the contents of the backing storage will be coherent,
3724 * with respect to the new cache-level. In order to keep the backing storage
3725 * coherent for all users, we only allow a single cache level to be set
3726 * globally on the object and prevent it from being changed whilst the
3727 * hardware is reading from the object. That is if the object is currently
3728 * on the scanout it will be set to uncached (or equivalent display
3729 * cache coherency) and all non-MOCS GPU access will also be uncached so
3730 * that all direct access to the scanout remains coherent.
3731 */
i915_gem_object_set_cache_level(struct drm_i915_gem_object * obj,enum i915_cache_level cache_level)3732 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3733 enum i915_cache_level cache_level)
3734 {
3735 struct drm_device *dev = obj->base.dev;
3736 struct i915_vma *vma, *next;
3737 bool bound = false;
3738 int ret = 0;
3739
3740 if (obj->cache_level == cache_level)
3741 goto out;
3742
3743 /* Inspect the list of currently bound VMA and unbind any that would
3744 * be invalid given the new cache-level. This is principally to
3745 * catch the issue of the CS prefetch crossing page boundaries and
3746 * reading an invalid PTE on older architectures.
3747 */
3748 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
3749 if (!drm_mm_node_allocated(&vma->node))
3750 continue;
3751
3752 if (vma->pin_count) {
3753 DRM_DEBUG("can not change the cache level of pinned objects\n");
3754 return -EBUSY;
3755 }
3756
3757 if (!i915_gem_valid_gtt_space(vma, cache_level)) {
3758 ret = i915_vma_unbind(vma);
3759 if (ret)
3760 return ret;
3761 } else
3762 bound = true;
3763 }
3764
3765 /* We can reuse the existing drm_mm nodes but need to change the
3766 * cache-level on the PTE. We could simply unbind them all and
3767 * rebind with the correct cache-level on next use. However since
3768 * we already have a valid slot, dma mapping, pages etc, we may as
3769 * rewrite the PTE in the belief that doing so tramples upon less
3770 * state and so involves less work.
3771 */
3772 if (bound) {
3773 /* Before we change the PTE, the GPU must not be accessing it.
3774 * If we wait upon the object, we know that all the bound
3775 * VMA are no longer active.
3776 */
3777 ret = i915_gem_object_wait_rendering(obj, false);
3778 if (ret)
3779 return ret;
3780
3781 if (!HAS_LLC(dev) && cache_level != I915_CACHE_NONE) {
3782 /* Access to snoopable pages through the GTT is
3783 * incoherent and on some machines causes a hard
3784 * lockup. Relinquish the CPU mmaping to force
3785 * userspace to refault in the pages and we can
3786 * then double check if the GTT mapping is still
3787 * valid for that pointer access.
3788 */
3789 i915_gem_release_mmap(obj);
3790
3791 /* As we no longer need a fence for GTT access,
3792 * we can relinquish it now (and so prevent having
3793 * to steal a fence from someone else on the next
3794 * fence request). Note GPU activity would have
3795 * dropped the fence as all snoopable access is
3796 * supposed to be linear.
3797 */
3798 ret = i915_gem_object_put_fence(obj);
3799 if (ret)
3800 return ret;
3801 } else {
3802 /* We either have incoherent backing store and
3803 * so no GTT access or the architecture is fully
3804 * coherent. In such cases, existing GTT mmaps
3805 * ignore the cache bit in the PTE and we can
3806 * rewrite it without confusing the GPU or having
3807 * to force userspace to fault back in its mmaps.
3808 */
3809 }
3810
3811 list_for_each_entry(vma, &obj->vma_list, vma_link) {
3812 if (!drm_mm_node_allocated(&vma->node))
3813 continue;
3814
3815 ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
3816 if (ret)
3817 return ret;
3818 }
3819 }
3820
3821 list_for_each_entry(vma, &obj->vma_list, vma_link)
3822 vma->node.color = cache_level;
3823 obj->cache_level = cache_level;
3824
3825 out:
3826 /* Flush the dirty CPU caches to the backing storage so that the
3827 * object is now coherent at its new cache level (with respect
3828 * to the access domain).
3829 */
3830 if (obj->cache_dirty &&
3831 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
3832 cpu_write_needs_clflush(obj)) {
3833 if (i915_gem_clflush_object(obj, true))
3834 i915_gem_chipset_flush(obj->base.dev);
3835 }
3836
3837 return 0;
3838 }
3839
i915_gem_get_caching_ioctl(struct drm_device * dev,void * data,struct drm_file * file)3840 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3841 struct drm_file *file)
3842 {
3843 struct drm_i915_gem_caching *args = data;
3844 struct drm_i915_gem_object *obj;
3845
3846 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3847 if (&obj->base == NULL)
3848 return -ENOENT;
3849
3850 switch (obj->cache_level) {
3851 case I915_CACHE_LLC:
3852 case I915_CACHE_L3_LLC:
3853 args->caching = I915_CACHING_CACHED;
3854 break;
3855
3856 case I915_CACHE_WT:
3857 args->caching = I915_CACHING_DISPLAY;
3858 break;
3859
3860 default:
3861 args->caching = I915_CACHING_NONE;
3862 break;
3863 }
3864
3865 drm_gem_object_unreference_unlocked(&obj->base);
3866 return 0;
3867 }
3868
i915_gem_set_caching_ioctl(struct drm_device * dev,void * data,struct drm_file * file)3869 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3870 struct drm_file *file)
3871 {
3872 struct drm_i915_private *dev_priv = dev->dev_private;
3873 struct drm_i915_gem_caching *args = data;
3874 struct drm_i915_gem_object *obj;
3875 enum i915_cache_level level;
3876 int ret;
3877
3878 switch (args->caching) {
3879 case I915_CACHING_NONE:
3880 level = I915_CACHE_NONE;
3881 break;
3882 case I915_CACHING_CACHED:
3883 /*
3884 * Due to a HW issue on BXT A stepping, GPU stores via a
3885 * snooped mapping may leave stale data in a corresponding CPU
3886 * cacheline, whereas normally such cachelines would get
3887 * invalidated.
3888 */
3889 if (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0)
3890 return -ENODEV;
3891
3892 level = I915_CACHE_LLC;
3893 break;
3894 case I915_CACHING_DISPLAY:
3895 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3896 break;
3897 default:
3898 return -EINVAL;
3899 }
3900
3901 intel_runtime_pm_get(dev_priv);
3902
3903 ret = i915_mutex_lock_interruptible(dev);
3904 if (ret)
3905 goto rpm_put;
3906
3907 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3908 if (&obj->base == NULL) {
3909 ret = -ENOENT;
3910 goto unlock;
3911 }
3912
3913 ret = i915_gem_object_set_cache_level(obj, level);
3914
3915 drm_gem_object_unreference(&obj->base);
3916 unlock:
3917 mutex_unlock(&dev->struct_mutex);
3918 rpm_put:
3919 intel_runtime_pm_put(dev_priv);
3920
3921 return ret;
3922 }
3923
3924 /*
3925 * Prepare buffer for display plane (scanout, cursors, etc).
3926 * Can be called from an uninterruptible phase (modesetting) and allows
3927 * any flushes to be pipelined (for pageflips).
3928 */
3929 int
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object * obj,u32 alignment,struct intel_engine_cs * pipelined,struct drm_i915_gem_request ** pipelined_request,const struct i915_ggtt_view * view)3930 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3931 u32 alignment,
3932 struct intel_engine_cs *pipelined,
3933 struct drm_i915_gem_request **pipelined_request,
3934 const struct i915_ggtt_view *view)
3935 {
3936 u32 old_read_domains, old_write_domain;
3937 int ret;
3938
3939 ret = i915_gem_object_sync(obj, pipelined, pipelined_request);
3940 if (ret)
3941 return ret;
3942
3943 /* Mark the pin_display early so that we account for the
3944 * display coherency whilst setting up the cache domains.
3945 */
3946 obj->pin_display++;
3947
3948 /* The display engine is not coherent with the LLC cache on gen6. As
3949 * a result, we make sure that the pinning that is about to occur is
3950 * done with uncached PTEs. This is lowest common denominator for all
3951 * chipsets.
3952 *
3953 * However for gen6+, we could do better by using the GFDT bit instead
3954 * of uncaching, which would allow us to flush all the LLC-cached data
3955 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3956 */
3957 ret = i915_gem_object_set_cache_level(obj,
3958 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
3959 if (ret)
3960 goto err_unpin_display;
3961
3962 /* As the user may map the buffer once pinned in the display plane
3963 * (e.g. libkms for the bootup splash), we have to ensure that we
3964 * always use map_and_fenceable for all scanout buffers.
3965 */
3966 ret = i915_gem_object_ggtt_pin(obj, view, alignment,
3967 view->type == I915_GGTT_VIEW_NORMAL ?
3968 PIN_MAPPABLE : 0);
3969 if (ret)
3970 goto err_unpin_display;
3971
3972 i915_gem_object_flush_cpu_write_domain(obj);
3973
3974 old_write_domain = obj->base.write_domain;
3975 old_read_domains = obj->base.read_domains;
3976
3977 /* It should now be out of any other write domains, and we can update
3978 * the domain values for our changes.
3979 */
3980 obj->base.write_domain = 0;
3981 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3982
3983 trace_i915_gem_object_change_domain(obj,
3984 old_read_domains,
3985 old_write_domain);
3986
3987 return 0;
3988
3989 err_unpin_display:
3990 obj->pin_display--;
3991 return ret;
3992 }
3993
3994 void
i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object * obj,const struct i915_ggtt_view * view)3995 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
3996 const struct i915_ggtt_view *view)
3997 {
3998 if (WARN_ON(obj->pin_display == 0))
3999 return;
4000
4001 i915_gem_object_ggtt_unpin_view(obj, view);
4002
4003 obj->pin_display--;
4004 }
4005
4006 /**
4007 * Moves a single object to the CPU read, and possibly write domain.
4008 *
4009 * This function returns when the move is complete, including waiting on
4010 * flushes to occur.
4011 */
4012 int
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object * obj,bool write)4013 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4014 {
4015 uint32_t old_write_domain, old_read_domains;
4016 int ret;
4017
4018 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
4019 return 0;
4020
4021 ret = i915_gem_object_wait_rendering(obj, !write);
4022 if (ret)
4023 return ret;
4024
4025 i915_gem_object_flush_gtt_write_domain(obj);
4026
4027 old_write_domain = obj->base.write_domain;
4028 old_read_domains = obj->base.read_domains;
4029
4030 /* Flush the CPU cache if it's still invalid. */
4031 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4032 i915_gem_clflush_object(obj, false);
4033
4034 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4035 }
4036
4037 /* It should now be out of any other write domains, and we can update
4038 * the domain values for our changes.
4039 */
4040 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
4041
4042 /* If we're writing through the CPU, then the GPU read domains will
4043 * need to be invalidated at next use.
4044 */
4045 if (write) {
4046 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4047 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4048 }
4049
4050 trace_i915_gem_object_change_domain(obj,
4051 old_read_domains,
4052 old_write_domain);
4053
4054 return 0;
4055 }
4056
4057 /* Throttle our rendering by waiting until the ring has completed our requests
4058 * emitted over 20 msec ago.
4059 *
4060 * Note that if we were to use the current jiffies each time around the loop,
4061 * we wouldn't escape the function with any frames outstanding if the time to
4062 * render a frame was over 20ms.
4063 *
4064 * This should get us reasonable parallelism between CPU and GPU but also
4065 * relatively low latency when blocking on a particular request to finish.
4066 */
4067 static int
i915_gem_ring_throttle(struct drm_device * dev,struct drm_file * file)4068 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4069 {
4070 struct drm_i915_private *dev_priv = dev->dev_private;
4071 struct drm_i915_file_private *file_priv = file->driver_priv;
4072 unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
4073 struct drm_i915_gem_request *request, *target = NULL;
4074 unsigned reset_counter;
4075 int ret;
4076
4077 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
4078 if (ret)
4079 return ret;
4080
4081 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
4082 if (ret)
4083 return ret;
4084
4085 spin_lock(&file_priv->mm.lock);
4086 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4087 if (time_after_eq(request->emitted_jiffies, recent_enough))
4088 break;
4089
4090 /*
4091 * Note that the request might not have been submitted yet.
4092 * In which case emitted_jiffies will be zero.
4093 */
4094 if (!request->emitted_jiffies)
4095 continue;
4096
4097 target = request;
4098 }
4099 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
4100 if (target)
4101 i915_gem_request_reference(target);
4102 spin_unlock(&file_priv->mm.lock);
4103
4104 if (target == NULL)
4105 return 0;
4106
4107 ret = __i915_wait_request(target, reset_counter, true, NULL, NULL);
4108 if (ret == 0)
4109 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4110
4111 i915_gem_request_unreference__unlocked(target);
4112
4113 return ret;
4114 }
4115
4116 static bool
i915_vma_misplaced(struct i915_vma * vma,uint32_t alignment,uint64_t flags)4117 i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4118 {
4119 struct drm_i915_gem_object *obj = vma->obj;
4120
4121 if (alignment &&
4122 vma->node.start & (alignment - 1))
4123 return true;
4124
4125 if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4126 return true;
4127
4128 if (flags & PIN_OFFSET_BIAS &&
4129 vma->node.start < (flags & PIN_OFFSET_MASK))
4130 return true;
4131
4132 return false;
4133 }
4134
__i915_vma_set_map_and_fenceable(struct i915_vma * vma)4135 void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
4136 {
4137 struct drm_i915_gem_object *obj = vma->obj;
4138 bool mappable, fenceable;
4139 u32 fence_size, fence_alignment;
4140
4141 fence_size = i915_gem_get_gtt_size(obj->base.dev,
4142 obj->base.size,
4143 obj->tiling_mode);
4144 fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
4145 obj->base.size,
4146 obj->tiling_mode,
4147 true);
4148
4149 fenceable = (vma->node.size == fence_size &&
4150 (vma->node.start & (fence_alignment - 1)) == 0);
4151
4152 mappable = (vma->node.start + fence_size <=
4153 to_i915(obj->base.dev)->gtt.mappable_end);
4154
4155 obj->map_and_fenceable = mappable && fenceable;
4156 }
4157
4158 static int
i915_gem_object_do_pin(struct drm_i915_gem_object * obj,struct i915_address_space * vm,const struct i915_ggtt_view * ggtt_view,uint32_t alignment,uint64_t flags)4159 i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
4160 struct i915_address_space *vm,
4161 const struct i915_ggtt_view *ggtt_view,
4162 uint32_t alignment,
4163 uint64_t flags)
4164 {
4165 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4166 struct i915_vma *vma;
4167 unsigned bound;
4168 int ret;
4169
4170 if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4171 return -ENODEV;
4172
4173 if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4174 return -EINVAL;
4175
4176 if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
4177 return -EINVAL;
4178
4179 if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
4180 return -EINVAL;
4181
4182 vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
4183 i915_gem_obj_to_vma(obj, vm);
4184
4185 if (IS_ERR(vma))
4186 return PTR_ERR(vma);
4187
4188 if (vma) {
4189 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4190 return -EBUSY;
4191
4192 if (i915_vma_misplaced(vma, alignment, flags)) {
4193 WARN(vma->pin_count,
4194 "bo is already pinned in %s with incorrect alignment:"
4195 " offset=%08x %08x, req.alignment=%x, req.map_and_fenceable=%d,"
4196 " obj->map_and_fenceable=%d\n",
4197 ggtt_view ? "ggtt" : "ppgtt",
4198 upper_32_bits(vma->node.start),
4199 lower_32_bits(vma->node.start),
4200 alignment,
4201 !!(flags & PIN_MAPPABLE),
4202 obj->map_and_fenceable);
4203 ret = i915_vma_unbind(vma);
4204 if (ret)
4205 return ret;
4206
4207 vma = NULL;
4208 }
4209 }
4210
4211 bound = vma ? vma->bound : 0;
4212 if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4213 vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
4214 flags);
4215 if (IS_ERR(vma))
4216 return PTR_ERR(vma);
4217 } else {
4218 ret = i915_vma_bind(vma, obj->cache_level, flags);
4219 if (ret)
4220 return ret;
4221 }
4222
4223 if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL &&
4224 (bound ^ vma->bound) & GLOBAL_BIND) {
4225 __i915_vma_set_map_and_fenceable(vma);
4226 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
4227 }
4228
4229 vma->pin_count++;
4230 return 0;
4231 }
4232
4233 int
i915_gem_object_pin(struct drm_i915_gem_object * obj,struct i915_address_space * vm,uint32_t alignment,uint64_t flags)4234 i915_gem_object_pin(struct drm_i915_gem_object *obj,
4235 struct i915_address_space *vm,
4236 uint32_t alignment,
4237 uint64_t flags)
4238 {
4239 return i915_gem_object_do_pin(obj, vm,
4240 i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
4241 alignment, flags);
4242 }
4243
4244 int
i915_gem_object_ggtt_pin(struct drm_i915_gem_object * obj,const struct i915_ggtt_view * view,uint32_t alignment,uint64_t flags)4245 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4246 const struct i915_ggtt_view *view,
4247 uint32_t alignment,
4248 uint64_t flags)
4249 {
4250 if (WARN_ONCE(!view, "no view specified"))
4251 return -EINVAL;
4252
4253 return i915_gem_object_do_pin(obj, i915_obj_to_ggtt(obj), view,
4254 alignment, flags | PIN_GLOBAL);
4255 }
4256
4257 void
i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object * obj,const struct i915_ggtt_view * view)4258 i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
4259 const struct i915_ggtt_view *view)
4260 {
4261 struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
4262
4263 BUG_ON(!vma);
4264 WARN_ON(vma->pin_count == 0);
4265 WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
4266
4267 --vma->pin_count;
4268 }
4269
4270 int
i915_gem_busy_ioctl(struct drm_device * dev,void * data,struct drm_file * file)4271 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4272 struct drm_file *file)
4273 {
4274 struct drm_i915_gem_busy *args = data;
4275 struct drm_i915_gem_object *obj;
4276 int ret;
4277
4278 ret = i915_mutex_lock_interruptible(dev);
4279 if (ret)
4280 return ret;
4281
4282 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4283 if (&obj->base == NULL) {
4284 ret = -ENOENT;
4285 goto unlock;
4286 }
4287
4288 /* Count all active objects as busy, even if they are currently not used
4289 * by the gpu. Users of this interface expect objects to eventually
4290 * become non-busy without any further actions, therefore emit any
4291 * necessary flushes here.
4292 */
4293 ret = i915_gem_object_flush_active(obj);
4294 if (ret)
4295 goto unref;
4296
4297 BUILD_BUG_ON(I915_NUM_RINGS > 16);
4298 args->busy = obj->active << 16;
4299 if (obj->last_write_req)
4300 args->busy |= obj->last_write_req->ring->id;
4301
4302 unref:
4303 drm_gem_object_unreference(&obj->base);
4304 unlock:
4305 mutex_unlock(&dev->struct_mutex);
4306 return ret;
4307 }
4308
4309 int
i915_gem_throttle_ioctl(struct drm_device * dev,void * data,struct drm_file * file_priv)4310 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4311 struct drm_file *file_priv)
4312 {
4313 return i915_gem_ring_throttle(dev, file_priv);
4314 }
4315
4316 int
i915_gem_madvise_ioctl(struct drm_device * dev,void * data,struct drm_file * file_priv)4317 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4318 struct drm_file *file_priv)
4319 {
4320 struct drm_i915_private *dev_priv = dev->dev_private;
4321 struct drm_i915_gem_madvise *args = data;
4322 struct drm_i915_gem_object *obj;
4323 int ret;
4324
4325 switch (args->madv) {
4326 case I915_MADV_DONTNEED:
4327 case I915_MADV_WILLNEED:
4328 break;
4329 default:
4330 return -EINVAL;
4331 }
4332
4333 ret = i915_mutex_lock_interruptible(dev);
4334 if (ret)
4335 return ret;
4336
4337 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4338 if (&obj->base == NULL) {
4339 ret = -ENOENT;
4340 goto unlock;
4341 }
4342
4343 if (i915_gem_obj_is_pinned(obj)) {
4344 ret = -EINVAL;
4345 goto out;
4346 }
4347
4348 if (obj->pages &&
4349 obj->tiling_mode != I915_TILING_NONE &&
4350 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4351 if (obj->madv == I915_MADV_WILLNEED)
4352 i915_gem_object_unpin_pages(obj);
4353 if (args->madv == I915_MADV_WILLNEED)
4354 i915_gem_object_pin_pages(obj);
4355 }
4356
4357 if (obj->madv != __I915_MADV_PURGED)
4358 obj->madv = args->madv;
4359
4360 /* if the object is no longer attached, discard its backing storage */
4361 if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
4362 i915_gem_object_truncate(obj);
4363
4364 args->retained = obj->madv != __I915_MADV_PURGED;
4365
4366 out:
4367 drm_gem_object_unreference(&obj->base);
4368 unlock:
4369 mutex_unlock(&dev->struct_mutex);
4370 return ret;
4371 }
4372
i915_gem_object_init(struct drm_i915_gem_object * obj,const struct drm_i915_gem_object_ops * ops)4373 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4374 const struct drm_i915_gem_object_ops *ops)
4375 {
4376 int i;
4377
4378 INIT_LIST_HEAD(&obj->global_list);
4379 for (i = 0; i < I915_NUM_RINGS; i++)
4380 INIT_LIST_HEAD(&obj->ring_list[i]);
4381 INIT_LIST_HEAD(&obj->obj_exec_link);
4382 INIT_LIST_HEAD(&obj->vma_list);
4383 INIT_LIST_HEAD(&obj->batch_pool_link);
4384
4385 obj->ops = ops;
4386
4387 obj->fence_reg = I915_FENCE_REG_NONE;
4388 obj->madv = I915_MADV_WILLNEED;
4389
4390 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4391 }
4392
4393 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4394 .get_pages = i915_gem_object_get_pages_gtt,
4395 .put_pages = i915_gem_object_put_pages_gtt,
4396 };
4397
i915_gem_alloc_object(struct drm_device * dev,size_t size)4398 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4399 size_t size)
4400 {
4401 struct drm_i915_gem_object *obj;
4402 struct address_space *mapping;
4403 gfp_t mask;
4404
4405 obj = i915_gem_object_alloc(dev);
4406 if (obj == NULL)
4407 return NULL;
4408
4409 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4410 i915_gem_object_free(obj);
4411 return NULL;
4412 }
4413
4414 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4415 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4416 /* 965gm cannot relocate objects above 4GiB. */
4417 mask &= ~__GFP_HIGHMEM;
4418 mask |= __GFP_DMA32;
4419 }
4420
4421 mapping = file_inode(obj->base.filp)->i_mapping;
4422 mapping_set_gfp_mask(mapping, mask);
4423
4424 i915_gem_object_init(obj, &i915_gem_object_ops);
4425
4426 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4427 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4428
4429 if (HAS_LLC(dev)) {
4430 /* On some devices, we can have the GPU use the LLC (the CPU
4431 * cache) for about a 10% performance improvement
4432 * compared to uncached. Graphics requests other than
4433 * display scanout are coherent with the CPU in
4434 * accessing this cache. This means in this mode we
4435 * don't need to clflush on the CPU side, and on the
4436 * GPU side we only need to flush internal caches to
4437 * get data visible to the CPU.
4438 *
4439 * However, we maintain the display planes as UC, and so
4440 * need to rebind when first used as such.
4441 */
4442 obj->cache_level = I915_CACHE_LLC;
4443 } else
4444 obj->cache_level = I915_CACHE_NONE;
4445
4446 trace_i915_gem_object_create(obj);
4447
4448 return obj;
4449 }
4450
discard_backing_storage(struct drm_i915_gem_object * obj)4451 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4452 {
4453 /* If we are the last user of the backing storage (be it shmemfs
4454 * pages or stolen etc), we know that the pages are going to be
4455 * immediately released. In this case, we can then skip copying
4456 * back the contents from the GPU.
4457 */
4458
4459 if (obj->madv != I915_MADV_WILLNEED)
4460 return false;
4461
4462 if (obj->base.filp == NULL)
4463 return true;
4464
4465 /* At first glance, this looks racy, but then again so would be
4466 * userspace racing mmap against close. However, the first external
4467 * reference to the filp can only be obtained through the
4468 * i915_gem_mmap_ioctl() which safeguards us against the user
4469 * acquiring such a reference whilst we are in the middle of
4470 * freeing the object.
4471 */
4472 return atomic_long_read(&obj->base.filp->f_count) == 1;
4473 }
4474
i915_gem_free_object(struct drm_gem_object * gem_obj)4475 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4476 {
4477 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4478 struct drm_device *dev = obj->base.dev;
4479 struct drm_i915_private *dev_priv = dev->dev_private;
4480 struct i915_vma *vma, *next;
4481
4482 intel_runtime_pm_get(dev_priv);
4483
4484 trace_i915_gem_object_destroy(obj);
4485
4486 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4487 int ret;
4488
4489 vma->pin_count = 0;
4490 ret = i915_vma_unbind(vma);
4491 if (WARN_ON(ret == -ERESTARTSYS)) {
4492 bool was_interruptible;
4493
4494 was_interruptible = dev_priv->mm.interruptible;
4495 dev_priv->mm.interruptible = false;
4496
4497 WARN_ON(i915_vma_unbind(vma));
4498
4499 dev_priv->mm.interruptible = was_interruptible;
4500 }
4501 }
4502
4503 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4504 * before progressing. */
4505 if (obj->stolen)
4506 i915_gem_object_unpin_pages(obj);
4507
4508 WARN_ON(obj->frontbuffer_bits);
4509
4510 if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4511 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4512 obj->tiling_mode != I915_TILING_NONE)
4513 i915_gem_object_unpin_pages(obj);
4514
4515 if (WARN_ON(obj->pages_pin_count))
4516 obj->pages_pin_count = 0;
4517 if (discard_backing_storage(obj))
4518 obj->madv = I915_MADV_DONTNEED;
4519 i915_gem_object_put_pages(obj);
4520 i915_gem_object_free_mmap_offset(obj);
4521
4522 BUG_ON(obj->pages);
4523
4524 if (obj->base.import_attach)
4525 drm_prime_gem_destroy(&obj->base, NULL);
4526
4527 if (obj->ops->release)
4528 obj->ops->release(obj);
4529
4530 drm_gem_object_release(&obj->base);
4531 i915_gem_info_remove_obj(dev_priv, obj->base.size);
4532
4533 kfree(obj->bit_17);
4534 i915_gem_object_free(obj);
4535
4536 intel_runtime_pm_put(dev_priv);
4537 }
4538
i915_gem_obj_to_vma(struct drm_i915_gem_object * obj,struct i915_address_space * vm)4539 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4540 struct i915_address_space *vm)
4541 {
4542 struct i915_vma *vma;
4543 list_for_each_entry(vma, &obj->vma_list, vma_link) {
4544 if (i915_is_ggtt(vma->vm) &&
4545 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
4546 continue;
4547 if (vma->vm == vm)
4548 return vma;
4549 }
4550 return NULL;
4551 }
4552
i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object * obj,const struct i915_ggtt_view * view)4553 struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
4554 const struct i915_ggtt_view *view)
4555 {
4556 struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
4557 struct i915_vma *vma;
4558
4559 if (WARN_ONCE(!view, "no view specified"))
4560 return ERR_PTR(-EINVAL);
4561
4562 list_for_each_entry(vma, &obj->vma_list, vma_link)
4563 if (vma->vm == ggtt &&
4564 i915_ggtt_view_equal(&vma->ggtt_view, view))
4565 return vma;
4566 return NULL;
4567 }
4568
i915_gem_vma_destroy(struct i915_vma * vma)4569 void i915_gem_vma_destroy(struct i915_vma *vma)
4570 {
4571 struct i915_address_space *vm = NULL;
4572 WARN_ON(vma->node.allocated);
4573
4574 /* Keep the vma as a placeholder in the execbuffer reservation lists */
4575 if (!list_empty(&vma->exec_list))
4576 return;
4577
4578 vm = vma->vm;
4579
4580 if (!i915_is_ggtt(vm))
4581 i915_ppgtt_put(i915_vm_to_ppgtt(vm));
4582
4583 list_del(&vma->vma_link);
4584
4585 kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
4586 }
4587
4588 static void
i915_gem_stop_ringbuffers(struct drm_device * dev)4589 i915_gem_stop_ringbuffers(struct drm_device *dev)
4590 {
4591 struct drm_i915_private *dev_priv = dev->dev_private;
4592 struct intel_engine_cs *ring;
4593 int i;
4594
4595 for_each_ring(ring, dev_priv, i)
4596 dev_priv->gt.stop_ring(ring);
4597 }
4598
4599 int
i915_gem_suspend(struct drm_device * dev)4600 i915_gem_suspend(struct drm_device *dev)
4601 {
4602 struct drm_i915_private *dev_priv = dev->dev_private;
4603 int ret = 0;
4604
4605 mutex_lock(&dev->struct_mutex);
4606 ret = i915_gpu_idle(dev);
4607 if (ret)
4608 goto err;
4609
4610 i915_gem_retire_requests(dev);
4611
4612 i915_gem_stop_ringbuffers(dev);
4613 mutex_unlock(&dev->struct_mutex);
4614
4615 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4616 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4617 flush_delayed_work(&dev_priv->mm.idle_work);
4618
4619 /* Assert that we sucessfully flushed all the work and
4620 * reset the GPU back to its idle, low power state.
4621 */
4622 WARN_ON(dev_priv->mm.busy);
4623
4624 return 0;
4625
4626 err:
4627 mutex_unlock(&dev->struct_mutex);
4628 return ret;
4629 }
4630
i915_gem_l3_remap(struct drm_i915_gem_request * req,int slice)4631 int i915_gem_l3_remap(struct drm_i915_gem_request *req, int slice)
4632 {
4633 struct intel_engine_cs *ring = req->ring;
4634 struct drm_device *dev = ring->dev;
4635 struct drm_i915_private *dev_priv = dev->dev_private;
4636 u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4637 u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4638 int i, ret;
4639
4640 if (!HAS_L3_DPF(dev) || !remap_info)
4641 return 0;
4642
4643 ret = intel_ring_begin(req, GEN7_L3LOG_SIZE / 4 * 3);
4644 if (ret)
4645 return ret;
4646
4647 /*
4648 * Note: We do not worry about the concurrent register cacheline hang
4649 * here because no other code should access these registers other than
4650 * at initialization time.
4651 */
4652 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4653 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4654 intel_ring_emit(ring, reg_base + i);
4655 intel_ring_emit(ring, remap_info[i/4]);
4656 }
4657
4658 intel_ring_advance(ring);
4659
4660 return ret;
4661 }
4662
i915_gem_init_swizzling(struct drm_device * dev)4663 void i915_gem_init_swizzling(struct drm_device *dev)
4664 {
4665 struct drm_i915_private *dev_priv = dev->dev_private;
4666
4667 if (INTEL_INFO(dev)->gen < 5 ||
4668 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4669 return;
4670
4671 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4672 DISP_TILE_SURFACE_SWIZZLING);
4673
4674 if (IS_GEN5(dev))
4675 return;
4676
4677 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4678 if (IS_GEN6(dev))
4679 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4680 else if (IS_GEN7(dev))
4681 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4682 else if (IS_GEN8(dev))
4683 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4684 else
4685 BUG();
4686 }
4687
init_unused_ring(struct drm_device * dev,u32 base)4688 static void init_unused_ring(struct drm_device *dev, u32 base)
4689 {
4690 struct drm_i915_private *dev_priv = dev->dev_private;
4691
4692 I915_WRITE(RING_CTL(base), 0);
4693 I915_WRITE(RING_HEAD(base), 0);
4694 I915_WRITE(RING_TAIL(base), 0);
4695 I915_WRITE(RING_START(base), 0);
4696 }
4697
init_unused_rings(struct drm_device * dev)4698 static void init_unused_rings(struct drm_device *dev)
4699 {
4700 if (IS_I830(dev)) {
4701 init_unused_ring(dev, PRB1_BASE);
4702 init_unused_ring(dev, SRB0_BASE);
4703 init_unused_ring(dev, SRB1_BASE);
4704 init_unused_ring(dev, SRB2_BASE);
4705 init_unused_ring(dev, SRB3_BASE);
4706 } else if (IS_GEN2(dev)) {
4707 init_unused_ring(dev, SRB0_BASE);
4708 init_unused_ring(dev, SRB1_BASE);
4709 } else if (IS_GEN3(dev)) {
4710 init_unused_ring(dev, PRB1_BASE);
4711 init_unused_ring(dev, PRB2_BASE);
4712 }
4713 }
4714
i915_gem_init_rings(struct drm_device * dev)4715 int i915_gem_init_rings(struct drm_device *dev)
4716 {
4717 struct drm_i915_private *dev_priv = dev->dev_private;
4718 int ret;
4719
4720 ret = intel_init_render_ring_buffer(dev);
4721 if (ret)
4722 return ret;
4723
4724 if (HAS_BSD(dev)) {
4725 ret = intel_init_bsd_ring_buffer(dev);
4726 if (ret)
4727 goto cleanup_render_ring;
4728 }
4729
4730 if (HAS_BLT(dev)) {
4731 ret = intel_init_blt_ring_buffer(dev);
4732 if (ret)
4733 goto cleanup_bsd_ring;
4734 }
4735
4736 if (HAS_VEBOX(dev)) {
4737 ret = intel_init_vebox_ring_buffer(dev);
4738 if (ret)
4739 goto cleanup_blt_ring;
4740 }
4741
4742 if (HAS_BSD2(dev)) {
4743 ret = intel_init_bsd2_ring_buffer(dev);
4744 if (ret)
4745 goto cleanup_vebox_ring;
4746 }
4747
4748 return 0;
4749
4750 cleanup_vebox_ring:
4751 intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4752 cleanup_blt_ring:
4753 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4754 cleanup_bsd_ring:
4755 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4756 cleanup_render_ring:
4757 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4758
4759 return ret;
4760 }
4761
4762 int
i915_gem_init_hw(struct drm_device * dev)4763 i915_gem_init_hw(struct drm_device *dev)
4764 {
4765 struct drm_i915_private *dev_priv = dev->dev_private;
4766 struct intel_engine_cs *ring;
4767 int ret, i, j;
4768
4769 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4770 return -EIO;
4771
4772 /* Double layer security blanket, see i915_gem_init() */
4773 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4774
4775 if (dev_priv->ellc_size)
4776 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4777
4778 if (IS_HASWELL(dev))
4779 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4780 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4781
4782 if (HAS_PCH_NOP(dev)) {
4783 if (IS_IVYBRIDGE(dev)) {
4784 u32 temp = I915_READ(GEN7_MSG_CTL);
4785 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4786 I915_WRITE(GEN7_MSG_CTL, temp);
4787 } else if (INTEL_INFO(dev)->gen >= 7) {
4788 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4789 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4790 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4791 }
4792 }
4793
4794 i915_gem_init_swizzling(dev);
4795
4796 /*
4797 * At least 830 can leave some of the unused rings
4798 * "active" (ie. head != tail) after resume which
4799 * will prevent c3 entry. Makes sure all unused rings
4800 * are totally idle.
4801 */
4802 init_unused_rings(dev);
4803
4804 BUG_ON(!dev_priv->ring[RCS].default_context);
4805
4806 ret = i915_ppgtt_init_hw(dev);
4807 if (ret) {
4808 DRM_ERROR("PPGTT enable HW failed %d\n", ret);
4809 goto out;
4810 }
4811
4812 /* Need to do basic initialisation of all rings first: */
4813 for_each_ring(ring, dev_priv, i) {
4814 ret = ring->init_hw(ring);
4815 if (ret)
4816 goto out;
4817 }
4818
4819 /* We can't enable contexts until all firmware is loaded */
4820 if (HAS_GUC_UCODE(dev)) {
4821 ret = intel_guc_ucode_load(dev);
4822 if (ret) {
4823 /*
4824 * If we got an error and GuC submission is enabled, map
4825 * the error to -EIO so the GPU will be declared wedged.
4826 * OTOH, if we didn't intend to use the GuC anyway, just
4827 * discard the error and carry on.
4828 */
4829 DRM_ERROR("Failed to initialize GuC, error %d%s\n", ret,
4830 i915.enable_guc_submission ? "" :
4831 " (ignored)");
4832 ret = i915.enable_guc_submission ? -EIO : 0;
4833 if (ret)
4834 goto out;
4835 }
4836 }
4837
4838 /*
4839 * Increment the next seqno by 0x100 so we have a visible break
4840 * on re-initialisation
4841 */
4842 ret = i915_gem_set_seqno(dev, dev_priv->next_seqno+0x100);
4843 if (ret)
4844 goto out;
4845
4846 /* Now it is safe to go back round and do everything else: */
4847 for_each_ring(ring, dev_priv, i) {
4848 struct drm_i915_gem_request *req;
4849
4850 WARN_ON(!ring->default_context);
4851
4852 ret = i915_gem_request_alloc(ring, ring->default_context, &req);
4853 if (ret) {
4854 i915_gem_cleanup_ringbuffer(dev);
4855 goto out;
4856 }
4857
4858 if (ring->id == RCS) {
4859 for (j = 0; j < NUM_L3_SLICES(dev); j++)
4860 i915_gem_l3_remap(req, j);
4861 }
4862
4863 ret = i915_ppgtt_init_ring(req);
4864 if (ret && ret != -EIO) {
4865 DRM_ERROR("PPGTT enable ring #%d failed %d\n", i, ret);
4866 i915_gem_request_cancel(req);
4867 i915_gem_cleanup_ringbuffer(dev);
4868 goto out;
4869 }
4870
4871 ret = i915_gem_context_enable(req);
4872 if (ret && ret != -EIO) {
4873 DRM_ERROR("Context enable ring #%d failed %d\n", i, ret);
4874 i915_gem_request_cancel(req);
4875 i915_gem_cleanup_ringbuffer(dev);
4876 goto out;
4877 }
4878
4879 i915_add_request_no_flush(req);
4880 }
4881
4882 out:
4883 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4884 return ret;
4885 }
4886
i915_gem_init(struct drm_device * dev)4887 int i915_gem_init(struct drm_device *dev)
4888 {
4889 struct drm_i915_private *dev_priv = dev->dev_private;
4890 int ret;
4891
4892 i915.enable_execlists = intel_sanitize_enable_execlists(dev,
4893 i915.enable_execlists);
4894
4895 mutex_lock(&dev->struct_mutex);
4896
4897 if (IS_VALLEYVIEW(dev)) {
4898 /* VLVA0 (potential hack), BIOS isn't actually waking us */
4899 I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
4900 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
4901 VLV_GTLC_ALLOWWAKEACK), 10))
4902 DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4903 }
4904
4905 if (!i915.enable_execlists) {
4906 dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
4907 dev_priv->gt.init_rings = i915_gem_init_rings;
4908 dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
4909 dev_priv->gt.stop_ring = intel_stop_ring_buffer;
4910 } else {
4911 dev_priv->gt.execbuf_submit = intel_execlists_submission;
4912 dev_priv->gt.init_rings = intel_logical_rings_init;
4913 dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
4914 dev_priv->gt.stop_ring = intel_logical_ring_stop;
4915 }
4916
4917 /* This is just a security blanket to placate dragons.
4918 * On some systems, we very sporadically observe that the first TLBs
4919 * used by the CS may be stale, despite us poking the TLB reset. If
4920 * we hold the forcewake during initialisation these problems
4921 * just magically go away.
4922 */
4923 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4924
4925 ret = i915_gem_init_userptr(dev);
4926 if (ret)
4927 goto out_unlock;
4928
4929 i915_gem_init_global_gtt(dev);
4930
4931 ret = i915_gem_context_init(dev);
4932 if (ret)
4933 goto out_unlock;
4934
4935 ret = dev_priv->gt.init_rings(dev);
4936 if (ret)
4937 goto out_unlock;
4938
4939 ret = i915_gem_init_hw(dev);
4940 if (ret == -EIO) {
4941 /* Allow ring initialisation to fail by marking the GPU as
4942 * wedged. But we only want to do this where the GPU is angry,
4943 * for all other failure, such as an allocation failure, bail.
4944 */
4945 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4946 atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
4947 ret = 0;
4948 }
4949
4950 out_unlock:
4951 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4952 mutex_unlock(&dev->struct_mutex);
4953
4954 return ret;
4955 }
4956
4957 void
i915_gem_cleanup_ringbuffer(struct drm_device * dev)4958 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4959 {
4960 struct drm_i915_private *dev_priv = dev->dev_private;
4961 struct intel_engine_cs *ring;
4962 int i;
4963
4964 for_each_ring(ring, dev_priv, i)
4965 dev_priv->gt.cleanup_ring(ring);
4966
4967 if (i915.enable_execlists)
4968 /*
4969 * Neither the BIOS, ourselves or any other kernel
4970 * expects the system to be in execlists mode on startup,
4971 * so we need to reset the GPU back to legacy mode.
4972 */
4973 intel_gpu_reset(dev);
4974 }
4975
4976 static void
init_ring_lists(struct intel_engine_cs * ring)4977 init_ring_lists(struct intel_engine_cs *ring)
4978 {
4979 INIT_LIST_HEAD(&ring->active_list);
4980 INIT_LIST_HEAD(&ring->request_list);
4981 }
4982
4983 void
i915_gem_load(struct drm_device * dev)4984 i915_gem_load(struct drm_device *dev)
4985 {
4986 struct drm_i915_private *dev_priv = dev->dev_private;
4987 int i;
4988
4989 dev_priv->objects =
4990 kmem_cache_create("i915_gem_object",
4991 sizeof(struct drm_i915_gem_object), 0,
4992 SLAB_HWCACHE_ALIGN,
4993 NULL);
4994 dev_priv->vmas =
4995 kmem_cache_create("i915_gem_vma",
4996 sizeof(struct i915_vma), 0,
4997 SLAB_HWCACHE_ALIGN,
4998 NULL);
4999 dev_priv->requests =
5000 kmem_cache_create("i915_gem_request",
5001 sizeof(struct drm_i915_gem_request), 0,
5002 SLAB_HWCACHE_ALIGN,
5003 NULL);
5004
5005 INIT_LIST_HEAD(&dev_priv->vm_list);
5006 INIT_LIST_HEAD(&dev_priv->context_list);
5007 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
5008 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
5009 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5010 for (i = 0; i < I915_NUM_RINGS; i++)
5011 init_ring_lists(&dev_priv->ring[i]);
5012 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
5013 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
5014 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
5015 i915_gem_retire_work_handler);
5016 INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
5017 i915_gem_idle_work_handler);
5018 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5019
5020 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
5021
5022 if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
5023 dev_priv->num_fence_regs = 32;
5024 else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
5025 dev_priv->num_fence_regs = 16;
5026 else
5027 dev_priv->num_fence_regs = 8;
5028
5029 if (intel_vgpu_active(dev))
5030 dev_priv->num_fence_regs =
5031 I915_READ(vgtif_reg(avail_rs.fence_num));
5032
5033 /*
5034 * Set initial sequence number for requests.
5035 * Using this number allows the wraparound to happen early,
5036 * catching any obvious problems.
5037 */
5038 dev_priv->next_seqno = ((u32)~0 - 0x1100);
5039 dev_priv->last_seqno = ((u32)~0 - 0x1101);
5040
5041 /* Initialize fence registers to zero */
5042 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5043 i915_gem_restore_fences(dev);
5044
5045 i915_gem_detect_bit_6_swizzle(dev);
5046 init_waitqueue_head(&dev_priv->pending_flip_queue);
5047
5048 dev_priv->mm.interruptible = true;
5049
5050 i915_gem_shrinker_init(dev_priv);
5051
5052 mutex_init(&dev_priv->fb_tracking.lock);
5053 }
5054
i915_gem_release(struct drm_device * dev,struct drm_file * file)5055 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5056 {
5057 struct drm_i915_file_private *file_priv = file->driver_priv;
5058
5059 /* Clean up our request list when the client is going away, so that
5060 * later retire_requests won't dereference our soon-to-be-gone
5061 * file_priv.
5062 */
5063 spin_lock(&file_priv->mm.lock);
5064 while (!list_empty(&file_priv->mm.request_list)) {
5065 struct drm_i915_gem_request *request;
5066
5067 request = list_first_entry(&file_priv->mm.request_list,
5068 struct drm_i915_gem_request,
5069 client_list);
5070 list_del(&request->client_list);
5071 request->file_priv = NULL;
5072 }
5073 spin_unlock(&file_priv->mm.lock);
5074
5075 if (!list_empty(&file_priv->rps.link)) {
5076 spin_lock(&to_i915(dev)->rps.client_lock);
5077 list_del(&file_priv->rps.link);
5078 spin_unlock(&to_i915(dev)->rps.client_lock);
5079 }
5080 }
5081
i915_gem_open(struct drm_device * dev,struct drm_file * file)5082 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5083 {
5084 struct drm_i915_file_private *file_priv;
5085 int ret;
5086
5087 DRM_DEBUG_DRIVER("\n");
5088
5089 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5090 if (!file_priv)
5091 return -ENOMEM;
5092
5093 file->driver_priv = file_priv;
5094 file_priv->dev_priv = dev->dev_private;
5095 file_priv->file = file;
5096 INIT_LIST_HEAD(&file_priv->rps.link);
5097
5098 spin_lock_init(&file_priv->mm.lock);
5099 INIT_LIST_HEAD(&file_priv->mm.request_list);
5100
5101 ret = i915_gem_context_open(dev, file);
5102 if (ret)
5103 kfree(file_priv);
5104
5105 return ret;
5106 }
5107
5108 /**
5109 * i915_gem_track_fb - update frontbuffer tracking
5110 * @old: current GEM buffer for the frontbuffer slots
5111 * @new: new GEM buffer for the frontbuffer slots
5112 * @frontbuffer_bits: bitmask of frontbuffer slots
5113 *
5114 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5115 * from @old and setting them in @new. Both @old and @new can be NULL.
5116 */
i915_gem_track_fb(struct drm_i915_gem_object * old,struct drm_i915_gem_object * new,unsigned frontbuffer_bits)5117 void i915_gem_track_fb(struct drm_i915_gem_object *old,
5118 struct drm_i915_gem_object *new,
5119 unsigned frontbuffer_bits)
5120 {
5121 if (old) {
5122 WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5123 WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5124 old->frontbuffer_bits &= ~frontbuffer_bits;
5125 }
5126
5127 if (new) {
5128 WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5129 WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5130 new->frontbuffer_bits |= frontbuffer_bits;
5131 }
5132 }
5133
5134 /* All the new VM stuff */
i915_gem_obj_offset(struct drm_i915_gem_object * o,struct i915_address_space * vm)5135 u64 i915_gem_obj_offset(struct drm_i915_gem_object *o,
5136 struct i915_address_space *vm)
5137 {
5138 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5139 struct i915_vma *vma;
5140
5141 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5142
5143 list_for_each_entry(vma, &o->vma_list, vma_link) {
5144 if (i915_is_ggtt(vma->vm) &&
5145 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5146 continue;
5147 if (vma->vm == vm)
5148 return vma->node.start;
5149 }
5150
5151 WARN(1, "%s vma for this object not found.\n",
5152 i915_is_ggtt(vm) ? "global" : "ppgtt");
5153 return -1;
5154 }
5155
i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object * o,const struct i915_ggtt_view * view)5156 u64 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
5157 const struct i915_ggtt_view *view)
5158 {
5159 struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5160 struct i915_vma *vma;
5161
5162 list_for_each_entry(vma, &o->vma_list, vma_link)
5163 if (vma->vm == ggtt &&
5164 i915_ggtt_view_equal(&vma->ggtt_view, view))
5165 return vma->node.start;
5166
5167 WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
5168 return -1;
5169 }
5170
i915_gem_obj_bound(struct drm_i915_gem_object * o,struct i915_address_space * vm)5171 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5172 struct i915_address_space *vm)
5173 {
5174 struct i915_vma *vma;
5175
5176 list_for_each_entry(vma, &o->vma_list, vma_link) {
5177 if (i915_is_ggtt(vma->vm) &&
5178 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5179 continue;
5180 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5181 return true;
5182 }
5183
5184 return false;
5185 }
5186
i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object * o,const struct i915_ggtt_view * view)5187 bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
5188 const struct i915_ggtt_view *view)
5189 {
5190 struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5191 struct i915_vma *vma;
5192
5193 list_for_each_entry(vma, &o->vma_list, vma_link)
5194 if (vma->vm == ggtt &&
5195 i915_ggtt_view_equal(&vma->ggtt_view, view) &&
5196 drm_mm_node_allocated(&vma->node))
5197 return true;
5198
5199 return false;
5200 }
5201
i915_gem_obj_bound_any(struct drm_i915_gem_object * o)5202 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5203 {
5204 struct i915_vma *vma;
5205
5206 list_for_each_entry(vma, &o->vma_list, vma_link)
5207 if (drm_mm_node_allocated(&vma->node))
5208 return true;
5209
5210 return false;
5211 }
5212
i915_gem_obj_size(struct drm_i915_gem_object * o,struct i915_address_space * vm)5213 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5214 struct i915_address_space *vm)
5215 {
5216 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5217 struct i915_vma *vma;
5218
5219 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5220
5221 BUG_ON(list_empty(&o->vma_list));
5222
5223 list_for_each_entry(vma, &o->vma_list, vma_link) {
5224 if (i915_is_ggtt(vma->vm) &&
5225 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5226 continue;
5227 if (vma->vm == vm)
5228 return vma->node.size;
5229 }
5230 return 0;
5231 }
5232
i915_gem_obj_is_pinned(struct drm_i915_gem_object * obj)5233 bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5234 {
5235 struct i915_vma *vma;
5236 list_for_each_entry(vma, &obj->vma_list, vma_link)
5237 if (vma->pin_count > 0)
5238 return true;
5239
5240 return false;
5241 }
5242
5243 /* Allocate a new GEM object and fill it with the supplied data */
5244 struct drm_i915_gem_object *
i915_gem_object_create_from_data(struct drm_device * dev,const void * data,size_t size)5245 i915_gem_object_create_from_data(struct drm_device *dev,
5246 const void *data, size_t size)
5247 {
5248 struct drm_i915_gem_object *obj;
5249 struct sg_table *sg;
5250 size_t bytes;
5251 int ret;
5252
5253 obj = i915_gem_alloc_object(dev, round_up(size, PAGE_SIZE));
5254 if (IS_ERR_OR_NULL(obj))
5255 return obj;
5256
5257 ret = i915_gem_object_set_to_cpu_domain(obj, true);
5258 if (ret)
5259 goto fail;
5260
5261 ret = i915_gem_object_get_pages(obj);
5262 if (ret)
5263 goto fail;
5264
5265 i915_gem_object_pin_pages(obj);
5266 sg = obj->pages;
5267 bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
5268 i915_gem_object_unpin_pages(obj);
5269
5270 if (WARN_ON(bytes != size)) {
5271 DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
5272 ret = -EFAULT;
5273 goto fail;
5274 }
5275
5276 return obj;
5277
5278 fail:
5279 drm_gem_object_unreference(&obj->base);
5280 return ERR_PTR(ret);
5281 }
5282