1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27 
28 #include <linux/string.h>
29 #include <linux/bitops.h>
30 #include <drm/drmP.h>
31 #include <drm/i915_drm.h>
32 #include "i915_drv.h"
33 
34 /** @file i915_gem_tiling.c
35  *
36  * Support for managing tiling state of buffer objects.
37  *
38  * The idea behind tiling is to increase cache hit rates by rearranging
39  * pixel data so that a group of pixel accesses are in the same cacheline.
40  * Performance improvement from doing this on the back/depth buffer are on
41  * the order of 30%.
42  *
43  * Intel architectures make this somewhat more complicated, though, by
44  * adjustments made to addressing of data when the memory is in interleaved
45  * mode (matched pairs of DIMMS) to improve memory bandwidth.
46  * For interleaved memory, the CPU sends every sequential 64 bytes
47  * to an alternate memory channel so it can get the bandwidth from both.
48  *
49  * The GPU also rearranges its accesses for increased bandwidth to interleaved
50  * memory, and it matches what the CPU does for non-tiled.  However, when tiled
51  * it does it a little differently, since one walks addresses not just in the
52  * X direction but also Y.  So, along with alternating channels when bit
53  * 6 of the address flips, it also alternates when other bits flip --  Bits 9
54  * (every 512 bytes, an X tile scanline) and 10 (every two X tile scanlines)
55  * are common to both the 915 and 965-class hardware.
56  *
57  * The CPU also sometimes XORs in higher bits as well, to improve
58  * bandwidth doing strided access like we do so frequently in graphics.  This
59  * is called "Channel XOR Randomization" in the MCH documentation.  The result
60  * is that the CPU is XORing in either bit 11 or bit 17 to bit 6 of its address
61  * decode.
62  *
63  * All of this bit 6 XORing has an effect on our memory management,
64  * as we need to make sure that the 3d driver can correctly address object
65  * contents.
66  *
67  * If we don't have interleaved memory, all tiling is safe and no swizzling is
68  * required.
69  *
70  * When bit 17 is XORed in, we simply refuse to tile at all.  Bit
71  * 17 is not just a page offset, so as we page an objet out and back in,
72  * individual pages in it will have different bit 17 addresses, resulting in
73  * each 64 bytes being swapped with its neighbor!
74  *
75  * Otherwise, if interleaved, we have to tell the 3d driver what the address
76  * swizzling it needs to do is, since it's writing with the CPU to the pages
77  * (bit 6 and potentially bit 11 XORed in), and the GPU is reading from the
78  * pages (bit 6, 9, and 10 XORed in), resulting in a cumulative bit swizzling
79  * required by the CPU of XORing in bit 6, 9, 10, and potentially 11, in order
80  * to match what the GPU expects.
81  */
82 
83 /**
84  * Detects bit 6 swizzling of address lookup between IGD access and CPU
85  * access through main memory.
86  */
87 void
i915_gem_detect_bit_6_swizzle(struct drm_device * dev)88 i915_gem_detect_bit_6_swizzle(struct drm_device *dev)
89 {
90 	struct drm_i915_private *dev_priv = dev->dev_private;
91 	uint32_t swizzle_x = I915_BIT_6_SWIZZLE_UNKNOWN;
92 	uint32_t swizzle_y = I915_BIT_6_SWIZZLE_UNKNOWN;
93 
94 	if (INTEL_INFO(dev)->gen >= 8 || IS_VALLEYVIEW(dev)) {
95 		/*
96 		 * On BDW+, swizzling is not used. We leave the CPU memory
97 		 * controller in charge of optimizing memory accesses without
98 		 * the extra address manipulation GPU side.
99 		 *
100 		 * VLV and CHV don't have GPU swizzling.
101 		 */
102 		swizzle_x = I915_BIT_6_SWIZZLE_NONE;
103 		swizzle_y = I915_BIT_6_SWIZZLE_NONE;
104 	} else if (INTEL_INFO(dev)->gen >= 6) {
105 		if (dev_priv->preserve_bios_swizzle) {
106 			if (I915_READ(DISP_ARB_CTL) &
107 			    DISP_TILE_SURFACE_SWIZZLING) {
108 				swizzle_x = I915_BIT_6_SWIZZLE_9_10;
109 				swizzle_y = I915_BIT_6_SWIZZLE_9;
110 			} else {
111 				swizzle_x = I915_BIT_6_SWIZZLE_NONE;
112 				swizzle_y = I915_BIT_6_SWIZZLE_NONE;
113 			}
114 		} else {
115 			uint32_t dimm_c0, dimm_c1;
116 			dimm_c0 = I915_READ(MAD_DIMM_C0);
117 			dimm_c1 = I915_READ(MAD_DIMM_C1);
118 			dimm_c0 &= MAD_DIMM_A_SIZE_MASK | MAD_DIMM_B_SIZE_MASK;
119 			dimm_c1 &= MAD_DIMM_A_SIZE_MASK | MAD_DIMM_B_SIZE_MASK;
120 			/* Enable swizzling when the channels are populated
121 			 * with identically sized dimms. We don't need to check
122 			 * the 3rd channel because no cpu with gpu attached
123 			 * ships in that configuration. Also, swizzling only
124 			 * makes sense for 2 channels anyway. */
125 			if (dimm_c0 == dimm_c1) {
126 				swizzle_x = I915_BIT_6_SWIZZLE_9_10;
127 				swizzle_y = I915_BIT_6_SWIZZLE_9;
128 			} else {
129 				swizzle_x = I915_BIT_6_SWIZZLE_NONE;
130 				swizzle_y = I915_BIT_6_SWIZZLE_NONE;
131 			}
132 		}
133 	} else if (IS_GEN5(dev)) {
134 		/* On Ironlake whatever DRAM config, GPU always do
135 		 * same swizzling setup.
136 		 */
137 		swizzle_x = I915_BIT_6_SWIZZLE_9_10;
138 		swizzle_y = I915_BIT_6_SWIZZLE_9;
139 	} else if (IS_GEN2(dev)) {
140 		/* As far as we know, the 865 doesn't have these bit 6
141 		 * swizzling issues.
142 		 */
143 		swizzle_x = I915_BIT_6_SWIZZLE_NONE;
144 		swizzle_y = I915_BIT_6_SWIZZLE_NONE;
145 	} else if (IS_MOBILE(dev) || (IS_GEN3(dev) && !IS_G33(dev))) {
146 		uint32_t dcc;
147 
148 		/* On 9xx chipsets, channel interleave by the CPU is
149 		 * determined by DCC.  For single-channel, neither the CPU
150 		 * nor the GPU do swizzling.  For dual channel interleaved,
151 		 * the GPU's interleave is bit 9 and 10 for X tiled, and bit
152 		 * 9 for Y tiled.  The CPU's interleave is independent, and
153 		 * can be based on either bit 11 (haven't seen this yet) or
154 		 * bit 17 (common).
155 		 */
156 		dcc = I915_READ(DCC);
157 		switch (dcc & DCC_ADDRESSING_MODE_MASK) {
158 		case DCC_ADDRESSING_MODE_SINGLE_CHANNEL:
159 		case DCC_ADDRESSING_MODE_DUAL_CHANNEL_ASYMMETRIC:
160 			swizzle_x = I915_BIT_6_SWIZZLE_NONE;
161 			swizzle_y = I915_BIT_6_SWIZZLE_NONE;
162 			break;
163 		case DCC_ADDRESSING_MODE_DUAL_CHANNEL_INTERLEAVED:
164 			if (dcc & DCC_CHANNEL_XOR_DISABLE) {
165 				/* This is the base swizzling by the GPU for
166 				 * tiled buffers.
167 				 */
168 				swizzle_x = I915_BIT_6_SWIZZLE_9_10;
169 				swizzle_y = I915_BIT_6_SWIZZLE_9;
170 			} else if ((dcc & DCC_CHANNEL_XOR_BIT_17) == 0) {
171 				/* Bit 11 swizzling by the CPU in addition. */
172 				swizzle_x = I915_BIT_6_SWIZZLE_9_10_11;
173 				swizzle_y = I915_BIT_6_SWIZZLE_9_11;
174 			} else {
175 				/* Bit 17 swizzling by the CPU in addition. */
176 				swizzle_x = I915_BIT_6_SWIZZLE_9_10_17;
177 				swizzle_y = I915_BIT_6_SWIZZLE_9_17;
178 			}
179 			break;
180 		}
181 
182 		/* check for L-shaped memory aka modified enhanced addressing */
183 		if (IS_GEN4(dev)) {
184 			uint32_t ddc2 = I915_READ(DCC2);
185 
186 			if (!(ddc2 & DCC2_MODIFIED_ENHANCED_DISABLE))
187 				dev_priv->quirks |= QUIRK_PIN_SWIZZLED_PAGES;
188 		}
189 
190 		if (dcc == 0xffffffff) {
191 			DRM_ERROR("Couldn't read from MCHBAR.  "
192 				  "Disabling tiling.\n");
193 			swizzle_x = I915_BIT_6_SWIZZLE_UNKNOWN;
194 			swizzle_y = I915_BIT_6_SWIZZLE_UNKNOWN;
195 		}
196 	} else {
197 		/* The 965, G33, and newer, have a very flexible memory
198 		 * configuration.  It will enable dual-channel mode
199 		 * (interleaving) on as much memory as it can, and the GPU
200 		 * will additionally sometimes enable different bit 6
201 		 * swizzling for tiled objects from the CPU.
202 		 *
203 		 * Here's what I found on the G965:
204 		 *    slot fill         memory size  swizzling
205 		 * 0A   0B   1A   1B    1-ch   2-ch
206 		 * 512  0    0    0     512    0     O
207 		 * 512  0    512  0     16     1008  X
208 		 * 512  0    0    512   16     1008  X
209 		 * 0    512  0    512   16     1008  X
210 		 * 1024 1024 1024 0     2048   1024  O
211 		 *
212 		 * We could probably detect this based on either the DRB
213 		 * matching, which was the case for the swizzling required in
214 		 * the table above, or from the 1-ch value being less than
215 		 * the minimum size of a rank.
216 		 */
217 		if (I915_READ16(C0DRB3) != I915_READ16(C1DRB3)) {
218 			swizzle_x = I915_BIT_6_SWIZZLE_NONE;
219 			swizzle_y = I915_BIT_6_SWIZZLE_NONE;
220 		} else {
221 			swizzle_x = I915_BIT_6_SWIZZLE_9_10;
222 			swizzle_y = I915_BIT_6_SWIZZLE_9;
223 		}
224 	}
225 
226 	dev_priv->mm.bit_6_swizzle_x = swizzle_x;
227 	dev_priv->mm.bit_6_swizzle_y = swizzle_y;
228 }
229 
230 /* Check pitch constriants for all chips & tiling formats */
231 static bool
i915_tiling_ok(struct drm_device * dev,int stride,int size,int tiling_mode)232 i915_tiling_ok(struct drm_device *dev, int stride, int size, int tiling_mode)
233 {
234 	int tile_width;
235 
236 	/* Linear is always fine */
237 	if (tiling_mode == I915_TILING_NONE)
238 		return true;
239 
240 	if (IS_GEN2(dev) ||
241 	    (tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev)))
242 		tile_width = 128;
243 	else
244 		tile_width = 512;
245 
246 	/* check maximum stride & object size */
247 	/* i965+ stores the end address of the gtt mapping in the fence
248 	 * reg, so dont bother to check the size */
249 	if (INTEL_INFO(dev)->gen >= 7) {
250 		if (stride / 128 > GEN7_FENCE_MAX_PITCH_VAL)
251 			return false;
252 	} else if (INTEL_INFO(dev)->gen >= 4) {
253 		if (stride / 128 > I965_FENCE_MAX_PITCH_VAL)
254 			return false;
255 	} else {
256 		if (stride > 8192)
257 			return false;
258 
259 		if (IS_GEN3(dev)) {
260 			if (size > I830_FENCE_MAX_SIZE_VAL << 20)
261 				return false;
262 		} else {
263 			if (size > I830_FENCE_MAX_SIZE_VAL << 19)
264 				return false;
265 		}
266 	}
267 
268 	if (stride < tile_width)
269 		return false;
270 
271 	/* 965+ just needs multiples of tile width */
272 	if (INTEL_INFO(dev)->gen >= 4) {
273 		if (stride & (tile_width - 1))
274 			return false;
275 		return true;
276 	}
277 
278 	/* Pre-965 needs power of two tile widths */
279 	if (stride & (stride - 1))
280 		return false;
281 
282 	return true;
283 }
284 
285 /* Is the current GTT allocation valid for the change in tiling? */
286 static bool
i915_gem_object_fence_ok(struct drm_i915_gem_object * obj,int tiling_mode)287 i915_gem_object_fence_ok(struct drm_i915_gem_object *obj, int tiling_mode)
288 {
289 	u32 size;
290 
291 	if (tiling_mode == I915_TILING_NONE)
292 		return true;
293 
294 	if (INTEL_INFO(obj->base.dev)->gen >= 4)
295 		return true;
296 
297 	if (INTEL_INFO(obj->base.dev)->gen == 3) {
298 		if (i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK)
299 			return false;
300 	} else {
301 		if (i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK)
302 			return false;
303 	}
304 
305 	size = i915_gem_get_gtt_size(obj->base.dev, obj->base.size, tiling_mode);
306 	if (i915_gem_obj_ggtt_size(obj) != size)
307 		return false;
308 
309 	if (i915_gem_obj_ggtt_offset(obj) & (size - 1))
310 		return false;
311 
312 	return true;
313 }
314 
315 /**
316  * Sets the tiling mode of an object, returning the required swizzling of
317  * bit 6 of addresses in the object.
318  */
319 int
i915_gem_set_tiling(struct drm_device * dev,void * data,struct drm_file * file)320 i915_gem_set_tiling(struct drm_device *dev, void *data,
321 		   struct drm_file *file)
322 {
323 	struct drm_i915_gem_set_tiling *args = data;
324 	struct drm_i915_private *dev_priv = dev->dev_private;
325 	struct drm_i915_gem_object *obj;
326 	int ret = 0;
327 
328 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
329 	if (&obj->base == NULL)
330 		return -ENOENT;
331 
332 	if (!i915_tiling_ok(dev,
333 			    args->stride, obj->base.size, args->tiling_mode)) {
334 		drm_gem_object_unreference_unlocked(&obj->base);
335 		return -EINVAL;
336 	}
337 
338 	mutex_lock(&dev->struct_mutex);
339 	if (i915_gem_obj_is_pinned(obj) || obj->framebuffer_references) {
340 		ret = -EBUSY;
341 		goto err;
342 	}
343 
344 	if (args->tiling_mode == I915_TILING_NONE) {
345 		args->swizzle_mode = I915_BIT_6_SWIZZLE_NONE;
346 		args->stride = 0;
347 	} else {
348 		if (args->tiling_mode == I915_TILING_X)
349 			args->swizzle_mode = dev_priv->mm.bit_6_swizzle_x;
350 		else
351 			args->swizzle_mode = dev_priv->mm.bit_6_swizzle_y;
352 
353 		/* Hide bit 17 swizzling from the user.  This prevents old Mesa
354 		 * from aborting the application on sw fallbacks to bit 17,
355 		 * and we use the pread/pwrite bit17 paths to swizzle for it.
356 		 * If there was a user that was relying on the swizzle
357 		 * information for drm_intel_bo_map()ed reads/writes this would
358 		 * break it, but we don't have any of those.
359 		 */
360 		if (args->swizzle_mode == I915_BIT_6_SWIZZLE_9_17)
361 			args->swizzle_mode = I915_BIT_6_SWIZZLE_9;
362 		if (args->swizzle_mode == I915_BIT_6_SWIZZLE_9_10_17)
363 			args->swizzle_mode = I915_BIT_6_SWIZZLE_9_10;
364 
365 		/* If we can't handle the swizzling, make it untiled. */
366 		if (args->swizzle_mode == I915_BIT_6_SWIZZLE_UNKNOWN) {
367 			args->tiling_mode = I915_TILING_NONE;
368 			args->swizzle_mode = I915_BIT_6_SWIZZLE_NONE;
369 			args->stride = 0;
370 		}
371 	}
372 
373 	if (args->tiling_mode != obj->tiling_mode ||
374 	    args->stride != obj->stride) {
375 		/* We need to rebind the object if its current allocation
376 		 * no longer meets the alignment restrictions for its new
377 		 * tiling mode. Otherwise we can just leave it alone, but
378 		 * need to ensure that any fence register is updated before
379 		 * the next fenced (either through the GTT or by the BLT unit
380 		 * on older GPUs) access.
381 		 *
382 		 * After updating the tiling parameters, we then flag whether
383 		 * we need to update an associated fence register. Note this
384 		 * has to also include the unfenced register the GPU uses
385 		 * whilst executing a fenced command for an untiled object.
386 		 */
387 		if (obj->map_and_fenceable &&
388 		    !i915_gem_object_fence_ok(obj, args->tiling_mode))
389 			ret = i915_gem_object_ggtt_unbind(obj);
390 
391 		if (ret == 0) {
392 			if (obj->pages &&
393 			    obj->madv == I915_MADV_WILLNEED &&
394 			    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
395 				if (args->tiling_mode == I915_TILING_NONE)
396 					i915_gem_object_unpin_pages(obj);
397 				if (obj->tiling_mode == I915_TILING_NONE)
398 					i915_gem_object_pin_pages(obj);
399 			}
400 
401 			obj->fence_dirty =
402 				obj->last_fenced_req ||
403 				obj->fence_reg != I915_FENCE_REG_NONE;
404 
405 			obj->tiling_mode = args->tiling_mode;
406 			obj->stride = args->stride;
407 
408 			/* Force the fence to be reacquired for GTT access */
409 			i915_gem_release_mmap(obj);
410 		}
411 	}
412 	/* we have to maintain this existing ABI... */
413 	args->stride = obj->stride;
414 	args->tiling_mode = obj->tiling_mode;
415 
416 	/* Try to preallocate memory required to save swizzling on put-pages */
417 	if (i915_gem_object_needs_bit17_swizzle(obj)) {
418 		if (obj->bit_17 == NULL) {
419 			obj->bit_17 = kcalloc(BITS_TO_LONGS(obj->base.size >> PAGE_SHIFT),
420 					      sizeof(long), GFP_KERNEL);
421 		}
422 	} else {
423 		kfree(obj->bit_17);
424 		obj->bit_17 = NULL;
425 	}
426 
427 err:
428 	drm_gem_object_unreference(&obj->base);
429 	mutex_unlock(&dev->struct_mutex);
430 
431 	return ret;
432 }
433 
434 /**
435  * Returns the current tiling mode and required bit 6 swizzling for the object.
436  */
437 int
i915_gem_get_tiling(struct drm_device * dev,void * data,struct drm_file * file)438 i915_gem_get_tiling(struct drm_device *dev, void *data,
439 		   struct drm_file *file)
440 {
441 	struct drm_i915_gem_get_tiling *args = data;
442 	struct drm_i915_private *dev_priv = dev->dev_private;
443 	struct drm_i915_gem_object *obj;
444 
445 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
446 	if (&obj->base == NULL)
447 		return -ENOENT;
448 
449 	mutex_lock(&dev->struct_mutex);
450 
451 	args->tiling_mode = obj->tiling_mode;
452 	switch (obj->tiling_mode) {
453 	case I915_TILING_X:
454 		args->swizzle_mode = dev_priv->mm.bit_6_swizzle_x;
455 		break;
456 	case I915_TILING_Y:
457 		args->swizzle_mode = dev_priv->mm.bit_6_swizzle_y;
458 		break;
459 	case I915_TILING_NONE:
460 		args->swizzle_mode = I915_BIT_6_SWIZZLE_NONE;
461 		break;
462 	default:
463 		DRM_ERROR("unknown tiling mode\n");
464 	}
465 
466 	/* Hide bit 17 from the user -- see comment in i915_gem_set_tiling */
467 	if (dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
468 		args->phys_swizzle_mode = I915_BIT_6_SWIZZLE_UNKNOWN;
469 	else
470 		args->phys_swizzle_mode = args->swizzle_mode;
471 	if (args->swizzle_mode == I915_BIT_6_SWIZZLE_9_17)
472 		args->swizzle_mode = I915_BIT_6_SWIZZLE_9;
473 	if (args->swizzle_mode == I915_BIT_6_SWIZZLE_9_10_17)
474 		args->swizzle_mode = I915_BIT_6_SWIZZLE_9_10;
475 
476 	drm_gem_object_unreference(&obj->base);
477 	mutex_unlock(&dev->struct_mutex);
478 
479 	return 0;
480 }
481 
482 /**
483  * Swap every 64 bytes of this page around, to account for it having a new
484  * bit 17 of its physical address and therefore being interpreted differently
485  * by the GPU.
486  */
487 static void
i915_gem_swizzle_page(struct page * page)488 i915_gem_swizzle_page(struct page *page)
489 {
490 	char temp[64];
491 	char *vaddr;
492 	int i;
493 
494 	vaddr = kmap(page);
495 
496 	for (i = 0; i < PAGE_SIZE; i += 128) {
497 		memcpy(temp, &vaddr[i], 64);
498 		memcpy(&vaddr[i], &vaddr[i + 64], 64);
499 		memcpy(&vaddr[i + 64], temp, 64);
500 	}
501 
502 	kunmap(page);
503 }
504 
505 void
i915_gem_object_do_bit_17_swizzle(struct drm_i915_gem_object * obj)506 i915_gem_object_do_bit_17_swizzle(struct drm_i915_gem_object *obj)
507 {
508 	struct sg_page_iter sg_iter;
509 	int i;
510 
511 	if (obj->bit_17 == NULL)
512 		return;
513 
514 	i = 0;
515 	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
516 		struct page *page = sg_page_iter_page(&sg_iter);
517 		char new_bit_17 = page_to_phys(page) >> 17;
518 		if ((new_bit_17 & 0x1) !=
519 		    (test_bit(i, obj->bit_17) != 0)) {
520 			i915_gem_swizzle_page(page);
521 			set_page_dirty(page);
522 		}
523 		i++;
524 	}
525 }
526 
527 void
i915_gem_object_save_bit_17_swizzle(struct drm_i915_gem_object * obj)528 i915_gem_object_save_bit_17_swizzle(struct drm_i915_gem_object *obj)
529 {
530 	struct sg_page_iter sg_iter;
531 	int page_count = obj->base.size >> PAGE_SHIFT;
532 	int i;
533 
534 	if (obj->bit_17 == NULL) {
535 		obj->bit_17 = kcalloc(BITS_TO_LONGS(page_count),
536 				      sizeof(long), GFP_KERNEL);
537 		if (obj->bit_17 == NULL) {
538 			DRM_ERROR("Failed to allocate memory for bit 17 "
539 				  "record\n");
540 			return;
541 		}
542 	}
543 
544 	i = 0;
545 	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
546 		if (page_to_phys(sg_page_iter_page(&sg_iter)) & (1 << 17))
547 			__set_bit(i, obj->bit_17);
548 		else
549 			__clear_bit(i, obj->bit_17);
550 		i++;
551 	}
552 }
553