1 /*
2 * Copyright © 2008-2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_vgpu.h"
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35 #include <linux/shmem_fs.h>
36 #include <linux/slab.h>
37 #include <linux/swap.h>
38 #include <linux/pci.h>
39 #include <linux/dma-buf.h>
40
41 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
42 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
43 static __must_check int
44 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
45 bool readonly);
46 static void
47 i915_gem_object_retire(struct drm_i915_gem_object *obj);
48
49 static void i915_gem_write_fence(struct drm_device *dev, int reg,
50 struct drm_i915_gem_object *obj);
51 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
52 struct drm_i915_fence_reg *fence,
53 bool enable);
54
cpu_cache_is_coherent(struct drm_device * dev,enum i915_cache_level level)55 static bool cpu_cache_is_coherent(struct drm_device *dev,
56 enum i915_cache_level level)
57 {
58 return HAS_LLC(dev) || level != I915_CACHE_NONE;
59 }
60
cpu_write_needs_clflush(struct drm_i915_gem_object * obj)61 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
62 {
63 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
64 return true;
65
66 return obj->pin_display;
67 }
68
i915_gem_object_fence_lost(struct drm_i915_gem_object * obj)69 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
70 {
71 if (obj->tiling_mode)
72 i915_gem_release_mmap(obj);
73
74 /* As we do not have an associated fence register, we will force
75 * a tiling change if we ever need to acquire one.
76 */
77 obj->fence_dirty = false;
78 obj->fence_reg = I915_FENCE_REG_NONE;
79 }
80
81 /* some bookkeeping */
i915_gem_info_add_obj(struct drm_i915_private * dev_priv,size_t size)82 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
83 size_t size)
84 {
85 spin_lock(&dev_priv->mm.object_stat_lock);
86 dev_priv->mm.object_count++;
87 dev_priv->mm.object_memory += size;
88 spin_unlock(&dev_priv->mm.object_stat_lock);
89 }
90
i915_gem_info_remove_obj(struct drm_i915_private * dev_priv,size_t size)91 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
92 size_t size)
93 {
94 spin_lock(&dev_priv->mm.object_stat_lock);
95 dev_priv->mm.object_count--;
96 dev_priv->mm.object_memory -= size;
97 spin_unlock(&dev_priv->mm.object_stat_lock);
98 }
99
100 static int
i915_gem_wait_for_error(struct i915_gpu_error * error)101 i915_gem_wait_for_error(struct i915_gpu_error *error)
102 {
103 int ret;
104
105 #define EXIT_COND (!i915_reset_in_progress(error) || \
106 i915_terminally_wedged(error))
107 if (EXIT_COND)
108 return 0;
109
110 /*
111 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
112 * userspace. If it takes that long something really bad is going on and
113 * we should simply try to bail out and fail as gracefully as possible.
114 */
115 ret = wait_event_interruptible_timeout(error->reset_queue,
116 EXIT_COND,
117 10*HZ);
118 if (ret == 0) {
119 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
120 return -EIO;
121 } else if (ret < 0) {
122 return ret;
123 }
124 #undef EXIT_COND
125
126 return 0;
127 }
128
i915_mutex_lock_interruptible(struct drm_device * dev)129 int i915_mutex_lock_interruptible(struct drm_device *dev)
130 {
131 struct drm_i915_private *dev_priv = dev->dev_private;
132 int ret;
133
134 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
135 if (ret)
136 return ret;
137
138 ret = mutex_lock_interruptible(&dev->struct_mutex);
139 if (ret)
140 return ret;
141
142 WARN_ON(i915_verify_lists(dev));
143 return 0;
144 }
145
146 int
i915_gem_get_aperture_ioctl(struct drm_device * dev,void * data,struct drm_file * file)147 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
148 struct drm_file *file)
149 {
150 struct drm_i915_private *dev_priv = dev->dev_private;
151 struct drm_i915_gem_get_aperture *args = data;
152 struct drm_i915_gem_object *obj;
153 size_t pinned;
154
155 pinned = 0;
156 mutex_lock(&dev->struct_mutex);
157 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
158 if (i915_gem_obj_is_pinned(obj))
159 pinned += i915_gem_obj_ggtt_size(obj);
160 mutex_unlock(&dev->struct_mutex);
161
162 args->aper_size = dev_priv->gtt.base.total;
163 args->aper_available_size = args->aper_size - pinned;
164
165 return 0;
166 }
167
168 static int
i915_gem_object_get_pages_phys(struct drm_i915_gem_object * obj)169 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
170 {
171 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
172 char *vaddr = obj->phys_handle->vaddr;
173 struct sg_table *st;
174 struct scatterlist *sg;
175 int i;
176
177 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
178 return -EINVAL;
179
180 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
181 struct page *page;
182 char *src;
183
184 page = shmem_read_mapping_page(mapping, i);
185 if (IS_ERR(page))
186 return PTR_ERR(page);
187
188 src = kmap_atomic(page);
189 memcpy(vaddr, src, PAGE_SIZE);
190 drm_clflush_virt_range(vaddr, PAGE_SIZE);
191 kunmap_atomic(src);
192
193 page_cache_release(page);
194 vaddr += PAGE_SIZE;
195 }
196
197 i915_gem_chipset_flush(obj->base.dev);
198
199 st = kmalloc(sizeof(*st), GFP_KERNEL);
200 if (st == NULL)
201 return -ENOMEM;
202
203 if (sg_alloc_table(st, 1, GFP_KERNEL)) {
204 kfree(st);
205 return -ENOMEM;
206 }
207
208 sg = st->sgl;
209 sg->offset = 0;
210 sg->length = obj->base.size;
211
212 sg_dma_address(sg) = obj->phys_handle->busaddr;
213 sg_dma_len(sg) = obj->base.size;
214
215 obj->pages = st;
216 obj->has_dma_mapping = true;
217 return 0;
218 }
219
220 static void
i915_gem_object_put_pages_phys(struct drm_i915_gem_object * obj)221 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
222 {
223 int ret;
224
225 BUG_ON(obj->madv == __I915_MADV_PURGED);
226
227 ret = i915_gem_object_set_to_cpu_domain(obj, true);
228 if (ret) {
229 /* In the event of a disaster, abandon all caches and
230 * hope for the best.
231 */
232 WARN_ON(ret != -EIO);
233 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
234 }
235
236 if (obj->madv == I915_MADV_DONTNEED)
237 obj->dirty = 0;
238
239 if (obj->dirty) {
240 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
241 char *vaddr = obj->phys_handle->vaddr;
242 int i;
243
244 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
245 struct page *page;
246 char *dst;
247
248 page = shmem_read_mapping_page(mapping, i);
249 if (IS_ERR(page))
250 continue;
251
252 dst = kmap_atomic(page);
253 drm_clflush_virt_range(vaddr, PAGE_SIZE);
254 memcpy(dst, vaddr, PAGE_SIZE);
255 kunmap_atomic(dst);
256
257 set_page_dirty(page);
258 if (obj->madv == I915_MADV_WILLNEED)
259 mark_page_accessed(page);
260 page_cache_release(page);
261 vaddr += PAGE_SIZE;
262 }
263 obj->dirty = 0;
264 }
265
266 sg_free_table(obj->pages);
267 kfree(obj->pages);
268
269 obj->has_dma_mapping = false;
270 }
271
272 static void
i915_gem_object_release_phys(struct drm_i915_gem_object * obj)273 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
274 {
275 drm_pci_free(obj->base.dev, obj->phys_handle);
276 }
277
278 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
279 .get_pages = i915_gem_object_get_pages_phys,
280 .put_pages = i915_gem_object_put_pages_phys,
281 .release = i915_gem_object_release_phys,
282 };
283
284 static int
drop_pages(struct drm_i915_gem_object * obj)285 drop_pages(struct drm_i915_gem_object *obj)
286 {
287 struct i915_vma *vma, *next;
288 int ret;
289
290 drm_gem_object_reference(&obj->base);
291 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link)
292 if (i915_vma_unbind(vma))
293 break;
294
295 ret = i915_gem_object_put_pages(obj);
296 drm_gem_object_unreference(&obj->base);
297
298 return ret;
299 }
300
301 int
i915_gem_object_attach_phys(struct drm_i915_gem_object * obj,int align)302 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
303 int align)
304 {
305 drm_dma_handle_t *phys;
306 int ret;
307
308 if (obj->phys_handle) {
309 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
310 return -EBUSY;
311
312 return 0;
313 }
314
315 if (obj->madv != I915_MADV_WILLNEED)
316 return -EFAULT;
317
318 if (obj->base.filp == NULL)
319 return -EINVAL;
320
321 ret = drop_pages(obj);
322 if (ret)
323 return ret;
324
325 /* create a new object */
326 phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
327 if (!phys)
328 return -ENOMEM;
329
330 obj->phys_handle = phys;
331 obj->ops = &i915_gem_phys_ops;
332
333 return i915_gem_object_get_pages(obj);
334 }
335
336 static int
i915_gem_phys_pwrite(struct drm_i915_gem_object * obj,struct drm_i915_gem_pwrite * args,struct drm_file * file_priv)337 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
338 struct drm_i915_gem_pwrite *args,
339 struct drm_file *file_priv)
340 {
341 struct drm_device *dev = obj->base.dev;
342 void *vaddr = obj->phys_handle->vaddr + args->offset;
343 char __user *user_data = to_user_ptr(args->data_ptr);
344 int ret = 0;
345
346 /* We manually control the domain here and pretend that it
347 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
348 */
349 ret = i915_gem_object_wait_rendering(obj, false);
350 if (ret)
351 return ret;
352
353 intel_fb_obj_invalidate(obj, NULL, ORIGIN_CPU);
354 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
355 unsigned long unwritten;
356
357 /* The physical object once assigned is fixed for the lifetime
358 * of the obj, so we can safely drop the lock and continue
359 * to access vaddr.
360 */
361 mutex_unlock(&dev->struct_mutex);
362 unwritten = copy_from_user(vaddr, user_data, args->size);
363 mutex_lock(&dev->struct_mutex);
364 if (unwritten) {
365 ret = -EFAULT;
366 goto out;
367 }
368 }
369
370 drm_clflush_virt_range(vaddr, args->size);
371 i915_gem_chipset_flush(dev);
372
373 out:
374 intel_fb_obj_flush(obj, false);
375 return ret;
376 }
377
i915_gem_object_alloc(struct drm_device * dev)378 void *i915_gem_object_alloc(struct drm_device *dev)
379 {
380 struct drm_i915_private *dev_priv = dev->dev_private;
381 return kmem_cache_zalloc(dev_priv->slab, GFP_KERNEL);
382 }
383
i915_gem_object_free(struct drm_i915_gem_object * obj)384 void i915_gem_object_free(struct drm_i915_gem_object *obj)
385 {
386 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
387 kmem_cache_free(dev_priv->slab, obj);
388 }
389
390 static int
i915_gem_create(struct drm_file * file,struct drm_device * dev,uint64_t size,uint32_t * handle_p)391 i915_gem_create(struct drm_file *file,
392 struct drm_device *dev,
393 uint64_t size,
394 uint32_t *handle_p)
395 {
396 struct drm_i915_gem_object *obj;
397 int ret;
398 u32 handle;
399
400 size = roundup(size, PAGE_SIZE);
401 if (size == 0)
402 return -EINVAL;
403
404 /* Allocate the new object */
405 obj = i915_gem_alloc_object(dev, size);
406 if (obj == NULL)
407 return -ENOMEM;
408
409 ret = drm_gem_handle_create(file, &obj->base, &handle);
410 /* drop reference from allocate - handle holds it now */
411 drm_gem_object_unreference_unlocked(&obj->base);
412 if (ret)
413 return ret;
414
415 *handle_p = handle;
416 return 0;
417 }
418
419 int
i915_gem_dumb_create(struct drm_file * file,struct drm_device * dev,struct drm_mode_create_dumb * args)420 i915_gem_dumb_create(struct drm_file *file,
421 struct drm_device *dev,
422 struct drm_mode_create_dumb *args)
423 {
424 /* have to work out size/pitch and return them */
425 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
426 args->size = args->pitch * args->height;
427 return i915_gem_create(file, dev,
428 args->size, &args->handle);
429 }
430
431 /**
432 * Creates a new mm object and returns a handle to it.
433 */
434 int
i915_gem_create_ioctl(struct drm_device * dev,void * data,struct drm_file * file)435 i915_gem_create_ioctl(struct drm_device *dev, void *data,
436 struct drm_file *file)
437 {
438 struct drm_i915_gem_create *args = data;
439
440 return i915_gem_create(file, dev,
441 args->size, &args->handle);
442 }
443
444 static inline int
__copy_to_user_swizzled(char __user * cpu_vaddr,const char * gpu_vaddr,int gpu_offset,int length)445 __copy_to_user_swizzled(char __user *cpu_vaddr,
446 const char *gpu_vaddr, int gpu_offset,
447 int length)
448 {
449 int ret, cpu_offset = 0;
450
451 while (length > 0) {
452 int cacheline_end = ALIGN(gpu_offset + 1, 64);
453 int this_length = min(cacheline_end - gpu_offset, length);
454 int swizzled_gpu_offset = gpu_offset ^ 64;
455
456 ret = __copy_to_user(cpu_vaddr + cpu_offset,
457 gpu_vaddr + swizzled_gpu_offset,
458 this_length);
459 if (ret)
460 return ret + length;
461
462 cpu_offset += this_length;
463 gpu_offset += this_length;
464 length -= this_length;
465 }
466
467 return 0;
468 }
469
470 static inline int
__copy_from_user_swizzled(char * gpu_vaddr,int gpu_offset,const char __user * cpu_vaddr,int length)471 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
472 const char __user *cpu_vaddr,
473 int length)
474 {
475 int ret, cpu_offset = 0;
476
477 while (length > 0) {
478 int cacheline_end = ALIGN(gpu_offset + 1, 64);
479 int this_length = min(cacheline_end - gpu_offset, length);
480 int swizzled_gpu_offset = gpu_offset ^ 64;
481
482 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
483 cpu_vaddr + cpu_offset,
484 this_length);
485 if (ret)
486 return ret + length;
487
488 cpu_offset += this_length;
489 gpu_offset += this_length;
490 length -= this_length;
491 }
492
493 return 0;
494 }
495
496 /*
497 * Pins the specified object's pages and synchronizes the object with
498 * GPU accesses. Sets needs_clflush to non-zero if the caller should
499 * flush the object from the CPU cache.
500 */
i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object * obj,int * needs_clflush)501 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
502 int *needs_clflush)
503 {
504 int ret;
505
506 *needs_clflush = 0;
507
508 if (!obj->base.filp)
509 return -EINVAL;
510
511 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
512 /* If we're not in the cpu read domain, set ourself into the gtt
513 * read domain and manually flush cachelines (if required). This
514 * optimizes for the case when the gpu will dirty the data
515 * anyway again before the next pread happens. */
516 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
517 obj->cache_level);
518 ret = i915_gem_object_wait_rendering(obj, true);
519 if (ret)
520 return ret;
521
522 i915_gem_object_retire(obj);
523 }
524
525 ret = i915_gem_object_get_pages(obj);
526 if (ret)
527 return ret;
528
529 i915_gem_object_pin_pages(obj);
530
531 return ret;
532 }
533
534 /* Per-page copy function for the shmem pread fastpath.
535 * Flushes invalid cachelines before reading the target if
536 * needs_clflush is set. */
537 static int
shmem_pread_fast(struct page * page,int shmem_page_offset,int page_length,char __user * user_data,bool page_do_bit17_swizzling,bool needs_clflush)538 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
539 char __user *user_data,
540 bool page_do_bit17_swizzling, bool needs_clflush)
541 {
542 char *vaddr;
543 int ret;
544
545 if (unlikely(page_do_bit17_swizzling))
546 return -EINVAL;
547
548 vaddr = kmap_atomic(page);
549 if (needs_clflush)
550 drm_clflush_virt_range(vaddr + shmem_page_offset,
551 page_length);
552 ret = __copy_to_user_inatomic(user_data,
553 vaddr + shmem_page_offset,
554 page_length);
555 kunmap_atomic(vaddr);
556
557 return ret ? -EFAULT : 0;
558 }
559
560 static void
shmem_clflush_swizzled_range(char * addr,unsigned long length,bool swizzled)561 shmem_clflush_swizzled_range(char *addr, unsigned long length,
562 bool swizzled)
563 {
564 if (unlikely(swizzled)) {
565 unsigned long start = (unsigned long) addr;
566 unsigned long end = (unsigned long) addr + length;
567
568 /* For swizzling simply ensure that we always flush both
569 * channels. Lame, but simple and it works. Swizzled
570 * pwrite/pread is far from a hotpath - current userspace
571 * doesn't use it at all. */
572 start = round_down(start, 128);
573 end = round_up(end, 128);
574
575 drm_clflush_virt_range((void *)start, end - start);
576 } else {
577 drm_clflush_virt_range(addr, length);
578 }
579
580 }
581
582 /* Only difference to the fast-path function is that this can handle bit17
583 * and uses non-atomic copy and kmap functions. */
584 static int
shmem_pread_slow(struct page * page,int shmem_page_offset,int page_length,char __user * user_data,bool page_do_bit17_swizzling,bool needs_clflush)585 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
586 char __user *user_data,
587 bool page_do_bit17_swizzling, bool needs_clflush)
588 {
589 char *vaddr;
590 int ret;
591
592 vaddr = kmap(page);
593 if (needs_clflush)
594 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
595 page_length,
596 page_do_bit17_swizzling);
597
598 if (page_do_bit17_swizzling)
599 ret = __copy_to_user_swizzled(user_data,
600 vaddr, shmem_page_offset,
601 page_length);
602 else
603 ret = __copy_to_user(user_data,
604 vaddr + shmem_page_offset,
605 page_length);
606 kunmap(page);
607
608 return ret ? - EFAULT : 0;
609 }
610
611 static int
i915_gem_shmem_pread(struct drm_device * dev,struct drm_i915_gem_object * obj,struct drm_i915_gem_pread * args,struct drm_file * file)612 i915_gem_shmem_pread(struct drm_device *dev,
613 struct drm_i915_gem_object *obj,
614 struct drm_i915_gem_pread *args,
615 struct drm_file *file)
616 {
617 char __user *user_data;
618 ssize_t remain;
619 loff_t offset;
620 int shmem_page_offset, page_length, ret = 0;
621 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
622 int prefaulted = 0;
623 int needs_clflush = 0;
624 struct sg_page_iter sg_iter;
625
626 user_data = to_user_ptr(args->data_ptr);
627 remain = args->size;
628
629 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
630
631 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
632 if (ret)
633 return ret;
634
635 offset = args->offset;
636
637 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
638 offset >> PAGE_SHIFT) {
639 struct page *page = sg_page_iter_page(&sg_iter);
640
641 if (remain <= 0)
642 break;
643
644 /* Operation in this page
645 *
646 * shmem_page_offset = offset within page in shmem file
647 * page_length = bytes to copy for this page
648 */
649 shmem_page_offset = offset_in_page(offset);
650 page_length = remain;
651 if ((shmem_page_offset + page_length) > PAGE_SIZE)
652 page_length = PAGE_SIZE - shmem_page_offset;
653
654 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
655 (page_to_phys(page) & (1 << 17)) != 0;
656
657 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
658 user_data, page_do_bit17_swizzling,
659 needs_clflush);
660 if (ret == 0)
661 goto next_page;
662
663 mutex_unlock(&dev->struct_mutex);
664
665 if (likely(!i915.prefault_disable) && !prefaulted) {
666 ret = fault_in_multipages_writeable(user_data, remain);
667 /* Userspace is tricking us, but we've already clobbered
668 * its pages with the prefault and promised to write the
669 * data up to the first fault. Hence ignore any errors
670 * and just continue. */
671 (void)ret;
672 prefaulted = 1;
673 }
674
675 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
676 user_data, page_do_bit17_swizzling,
677 needs_clflush);
678
679 mutex_lock(&dev->struct_mutex);
680
681 if (ret)
682 goto out;
683
684 next_page:
685 remain -= page_length;
686 user_data += page_length;
687 offset += page_length;
688 }
689
690 out:
691 i915_gem_object_unpin_pages(obj);
692
693 return ret;
694 }
695
696 /**
697 * Reads data from the object referenced by handle.
698 *
699 * On error, the contents of *data are undefined.
700 */
701 int
i915_gem_pread_ioctl(struct drm_device * dev,void * data,struct drm_file * file)702 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
703 struct drm_file *file)
704 {
705 struct drm_i915_gem_pread *args = data;
706 struct drm_i915_gem_object *obj;
707 int ret = 0;
708
709 if (args->size == 0)
710 return 0;
711
712 if (!access_ok(VERIFY_WRITE,
713 to_user_ptr(args->data_ptr),
714 args->size))
715 return -EFAULT;
716
717 ret = i915_mutex_lock_interruptible(dev);
718 if (ret)
719 return ret;
720
721 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
722 if (&obj->base == NULL) {
723 ret = -ENOENT;
724 goto unlock;
725 }
726
727 /* Bounds check source. */
728 if (args->offset > obj->base.size ||
729 args->size > obj->base.size - args->offset) {
730 ret = -EINVAL;
731 goto out;
732 }
733
734 /* prime objects have no backing filp to GEM pread/pwrite
735 * pages from.
736 */
737 if (!obj->base.filp) {
738 ret = -EINVAL;
739 goto out;
740 }
741
742 trace_i915_gem_object_pread(obj, args->offset, args->size);
743
744 ret = i915_gem_shmem_pread(dev, obj, args, file);
745
746 out:
747 drm_gem_object_unreference(&obj->base);
748 unlock:
749 mutex_unlock(&dev->struct_mutex);
750 return ret;
751 }
752
753 /* This is the fast write path which cannot handle
754 * page faults in the source data
755 */
756
757 static inline int
fast_user_write(struct io_mapping * mapping,loff_t page_base,int page_offset,char __user * user_data,int length)758 fast_user_write(struct io_mapping *mapping,
759 loff_t page_base, int page_offset,
760 char __user *user_data,
761 int length)
762 {
763 void __iomem *vaddr_atomic;
764 void *vaddr;
765 unsigned long unwritten;
766
767 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
768 /* We can use the cpu mem copy function because this is X86. */
769 vaddr = (void __force*)vaddr_atomic + page_offset;
770 unwritten = __copy_from_user_inatomic_nocache(vaddr,
771 user_data, length);
772 io_mapping_unmap_atomic(vaddr_atomic);
773 return unwritten;
774 }
775
776 /**
777 * This is the fast pwrite path, where we copy the data directly from the
778 * user into the GTT, uncached.
779 */
780 static int
i915_gem_gtt_pwrite_fast(struct drm_device * dev,struct drm_i915_gem_object * obj,struct drm_i915_gem_pwrite * args,struct drm_file * file)781 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
782 struct drm_i915_gem_object *obj,
783 struct drm_i915_gem_pwrite *args,
784 struct drm_file *file)
785 {
786 struct drm_i915_private *dev_priv = dev->dev_private;
787 ssize_t remain;
788 loff_t offset, page_base;
789 char __user *user_data;
790 int page_offset, page_length, ret;
791
792 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
793 if (ret)
794 goto out;
795
796 ret = i915_gem_object_set_to_gtt_domain(obj, true);
797 if (ret)
798 goto out_unpin;
799
800 ret = i915_gem_object_put_fence(obj);
801 if (ret)
802 goto out_unpin;
803
804 user_data = to_user_ptr(args->data_ptr);
805 remain = args->size;
806
807 offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
808
809 intel_fb_obj_invalidate(obj, NULL, ORIGIN_GTT);
810
811 while (remain > 0) {
812 /* Operation in this page
813 *
814 * page_base = page offset within aperture
815 * page_offset = offset within page
816 * page_length = bytes to copy for this page
817 */
818 page_base = offset & PAGE_MASK;
819 page_offset = offset_in_page(offset);
820 page_length = remain;
821 if ((page_offset + remain) > PAGE_SIZE)
822 page_length = PAGE_SIZE - page_offset;
823
824 /* If we get a fault while copying data, then (presumably) our
825 * source page isn't available. Return the error and we'll
826 * retry in the slow path.
827 */
828 if (fast_user_write(dev_priv->gtt.mappable, page_base,
829 page_offset, user_data, page_length)) {
830 ret = -EFAULT;
831 goto out_flush;
832 }
833
834 remain -= page_length;
835 user_data += page_length;
836 offset += page_length;
837 }
838
839 out_flush:
840 intel_fb_obj_flush(obj, false);
841 out_unpin:
842 i915_gem_object_ggtt_unpin(obj);
843 out:
844 return ret;
845 }
846
847 /* Per-page copy function for the shmem pwrite fastpath.
848 * Flushes invalid cachelines before writing to the target if
849 * needs_clflush_before is set and flushes out any written cachelines after
850 * writing if needs_clflush is set. */
851 static int
shmem_pwrite_fast(struct page * page,int shmem_page_offset,int page_length,char __user * user_data,bool page_do_bit17_swizzling,bool needs_clflush_before,bool needs_clflush_after)852 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
853 char __user *user_data,
854 bool page_do_bit17_swizzling,
855 bool needs_clflush_before,
856 bool needs_clflush_after)
857 {
858 char *vaddr;
859 int ret;
860
861 if (unlikely(page_do_bit17_swizzling))
862 return -EINVAL;
863
864 vaddr = kmap_atomic(page);
865 if (needs_clflush_before)
866 drm_clflush_virt_range(vaddr + shmem_page_offset,
867 page_length);
868 ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
869 user_data, page_length);
870 if (needs_clflush_after)
871 drm_clflush_virt_range(vaddr + shmem_page_offset,
872 page_length);
873 kunmap_atomic(vaddr);
874
875 return ret ? -EFAULT : 0;
876 }
877
878 /* Only difference to the fast-path function is that this can handle bit17
879 * and uses non-atomic copy and kmap functions. */
880 static int
shmem_pwrite_slow(struct page * page,int shmem_page_offset,int page_length,char __user * user_data,bool page_do_bit17_swizzling,bool needs_clflush_before,bool needs_clflush_after)881 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
882 char __user *user_data,
883 bool page_do_bit17_swizzling,
884 bool needs_clflush_before,
885 bool needs_clflush_after)
886 {
887 char *vaddr;
888 int ret;
889
890 vaddr = kmap(page);
891 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
892 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
893 page_length,
894 page_do_bit17_swizzling);
895 if (page_do_bit17_swizzling)
896 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
897 user_data,
898 page_length);
899 else
900 ret = __copy_from_user(vaddr + shmem_page_offset,
901 user_data,
902 page_length);
903 if (needs_clflush_after)
904 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
905 page_length,
906 page_do_bit17_swizzling);
907 kunmap(page);
908
909 return ret ? -EFAULT : 0;
910 }
911
912 static int
i915_gem_shmem_pwrite(struct drm_device * dev,struct drm_i915_gem_object * obj,struct drm_i915_gem_pwrite * args,struct drm_file * file)913 i915_gem_shmem_pwrite(struct drm_device *dev,
914 struct drm_i915_gem_object *obj,
915 struct drm_i915_gem_pwrite *args,
916 struct drm_file *file)
917 {
918 ssize_t remain;
919 loff_t offset;
920 char __user *user_data;
921 int shmem_page_offset, page_length, ret = 0;
922 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
923 int hit_slowpath = 0;
924 int needs_clflush_after = 0;
925 int needs_clflush_before = 0;
926 struct sg_page_iter sg_iter;
927
928 user_data = to_user_ptr(args->data_ptr);
929 remain = args->size;
930
931 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
932
933 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
934 /* If we're not in the cpu write domain, set ourself into the gtt
935 * write domain and manually flush cachelines (if required). This
936 * optimizes for the case when the gpu will use the data
937 * right away and we therefore have to clflush anyway. */
938 needs_clflush_after = cpu_write_needs_clflush(obj);
939 ret = i915_gem_object_wait_rendering(obj, false);
940 if (ret)
941 return ret;
942
943 i915_gem_object_retire(obj);
944 }
945 /* Same trick applies to invalidate partially written cachelines read
946 * before writing. */
947 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
948 needs_clflush_before =
949 !cpu_cache_is_coherent(dev, obj->cache_level);
950
951 ret = i915_gem_object_get_pages(obj);
952 if (ret)
953 return ret;
954
955 intel_fb_obj_invalidate(obj, NULL, ORIGIN_CPU);
956
957 i915_gem_object_pin_pages(obj);
958
959 offset = args->offset;
960 obj->dirty = 1;
961
962 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
963 offset >> PAGE_SHIFT) {
964 struct page *page = sg_page_iter_page(&sg_iter);
965 int partial_cacheline_write;
966
967 if (remain <= 0)
968 break;
969
970 /* Operation in this page
971 *
972 * shmem_page_offset = offset within page in shmem file
973 * page_length = bytes to copy for this page
974 */
975 shmem_page_offset = offset_in_page(offset);
976
977 page_length = remain;
978 if ((shmem_page_offset + page_length) > PAGE_SIZE)
979 page_length = PAGE_SIZE - shmem_page_offset;
980
981 /* If we don't overwrite a cacheline completely we need to be
982 * careful to have up-to-date data by first clflushing. Don't
983 * overcomplicate things and flush the entire patch. */
984 partial_cacheline_write = needs_clflush_before &&
985 ((shmem_page_offset | page_length)
986 & (boot_cpu_data.x86_clflush_size - 1));
987
988 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
989 (page_to_phys(page) & (1 << 17)) != 0;
990
991 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
992 user_data, page_do_bit17_swizzling,
993 partial_cacheline_write,
994 needs_clflush_after);
995 if (ret == 0)
996 goto next_page;
997
998 hit_slowpath = 1;
999 mutex_unlock(&dev->struct_mutex);
1000 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
1001 user_data, page_do_bit17_swizzling,
1002 partial_cacheline_write,
1003 needs_clflush_after);
1004
1005 mutex_lock(&dev->struct_mutex);
1006
1007 if (ret)
1008 goto out;
1009
1010 next_page:
1011 remain -= page_length;
1012 user_data += page_length;
1013 offset += page_length;
1014 }
1015
1016 out:
1017 i915_gem_object_unpin_pages(obj);
1018
1019 if (hit_slowpath) {
1020 /*
1021 * Fixup: Flush cpu caches in case we didn't flush the dirty
1022 * cachelines in-line while writing and the object moved
1023 * out of the cpu write domain while we've dropped the lock.
1024 */
1025 if (!needs_clflush_after &&
1026 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1027 if (i915_gem_clflush_object(obj, obj->pin_display))
1028 i915_gem_chipset_flush(dev);
1029 }
1030 }
1031
1032 if (needs_clflush_after)
1033 i915_gem_chipset_flush(dev);
1034
1035 intel_fb_obj_flush(obj, false);
1036 return ret;
1037 }
1038
1039 /**
1040 * Writes data to the object referenced by handle.
1041 *
1042 * On error, the contents of the buffer that were to be modified are undefined.
1043 */
1044 int
i915_gem_pwrite_ioctl(struct drm_device * dev,void * data,struct drm_file * file)1045 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1046 struct drm_file *file)
1047 {
1048 struct drm_i915_private *dev_priv = dev->dev_private;
1049 struct drm_i915_gem_pwrite *args = data;
1050 struct drm_i915_gem_object *obj;
1051 int ret;
1052
1053 if (args->size == 0)
1054 return 0;
1055
1056 if (!access_ok(VERIFY_READ,
1057 to_user_ptr(args->data_ptr),
1058 args->size))
1059 return -EFAULT;
1060
1061 if (likely(!i915.prefault_disable)) {
1062 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1063 args->size);
1064 if (ret)
1065 return -EFAULT;
1066 }
1067
1068 intel_runtime_pm_get(dev_priv);
1069
1070 ret = i915_mutex_lock_interruptible(dev);
1071 if (ret)
1072 goto put_rpm;
1073
1074 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1075 if (&obj->base == NULL) {
1076 ret = -ENOENT;
1077 goto unlock;
1078 }
1079
1080 /* Bounds check destination. */
1081 if (args->offset > obj->base.size ||
1082 args->size > obj->base.size - args->offset) {
1083 ret = -EINVAL;
1084 goto out;
1085 }
1086
1087 /* prime objects have no backing filp to GEM pread/pwrite
1088 * pages from.
1089 */
1090 if (!obj->base.filp) {
1091 ret = -EINVAL;
1092 goto out;
1093 }
1094
1095 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1096
1097 ret = -EFAULT;
1098 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1099 * it would end up going through the fenced access, and we'll get
1100 * different detiling behavior between reading and writing.
1101 * pread/pwrite currently are reading and writing from the CPU
1102 * perspective, requiring manual detiling by the client.
1103 */
1104 if (obj->tiling_mode == I915_TILING_NONE &&
1105 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1106 cpu_write_needs_clflush(obj)) {
1107 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1108 /* Note that the gtt paths might fail with non-page-backed user
1109 * pointers (e.g. gtt mappings when moving data between
1110 * textures). Fallback to the shmem path in that case. */
1111 }
1112
1113 if (ret == -EFAULT || ret == -ENOSPC) {
1114 if (obj->phys_handle)
1115 ret = i915_gem_phys_pwrite(obj, args, file);
1116 else
1117 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1118 }
1119
1120 out:
1121 drm_gem_object_unreference(&obj->base);
1122 unlock:
1123 mutex_unlock(&dev->struct_mutex);
1124 put_rpm:
1125 intel_runtime_pm_put(dev_priv);
1126
1127 return ret;
1128 }
1129
1130 int
i915_gem_check_wedge(struct i915_gpu_error * error,bool interruptible)1131 i915_gem_check_wedge(struct i915_gpu_error *error,
1132 bool interruptible)
1133 {
1134 if (i915_reset_in_progress(error)) {
1135 /* Non-interruptible callers can't handle -EAGAIN, hence return
1136 * -EIO unconditionally for these. */
1137 if (!interruptible)
1138 return -EIO;
1139
1140 /* Recovery complete, but the reset failed ... */
1141 if (i915_terminally_wedged(error))
1142 return -EIO;
1143
1144 /*
1145 * Check if GPU Reset is in progress - we need intel_ring_begin
1146 * to work properly to reinit the hw state while the gpu is
1147 * still marked as reset-in-progress. Handle this with a flag.
1148 */
1149 if (!error->reload_in_reset)
1150 return -EAGAIN;
1151 }
1152
1153 return 0;
1154 }
1155
1156 /*
1157 * Compare arbitrary request against outstanding lazy request. Emit on match.
1158 */
1159 int
i915_gem_check_olr(struct drm_i915_gem_request * req)1160 i915_gem_check_olr(struct drm_i915_gem_request *req)
1161 {
1162 int ret;
1163
1164 WARN_ON(!mutex_is_locked(&req->ring->dev->struct_mutex));
1165
1166 ret = 0;
1167 if (req == req->ring->outstanding_lazy_request)
1168 ret = i915_add_request(req->ring);
1169
1170 return ret;
1171 }
1172
fake_irq(unsigned long data)1173 static void fake_irq(unsigned long data)
1174 {
1175 wake_up_process((struct task_struct *)data);
1176 }
1177
missed_irq(struct drm_i915_private * dev_priv,struct intel_engine_cs * ring)1178 static bool missed_irq(struct drm_i915_private *dev_priv,
1179 struct intel_engine_cs *ring)
1180 {
1181 return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
1182 }
1183
can_wait_boost(struct drm_i915_file_private * file_priv)1184 static bool can_wait_boost(struct drm_i915_file_private *file_priv)
1185 {
1186 if (file_priv == NULL)
1187 return true;
1188
1189 return !atomic_xchg(&file_priv->rps_wait_boost, true);
1190 }
1191
1192 /**
1193 * __i915_wait_request - wait until execution of request has finished
1194 * @req: duh!
1195 * @reset_counter: reset sequence associated with the given request
1196 * @interruptible: do an interruptible wait (normally yes)
1197 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1198 *
1199 * Note: It is of utmost importance that the passed in seqno and reset_counter
1200 * values have been read by the caller in an smp safe manner. Where read-side
1201 * locks are involved, it is sufficient to read the reset_counter before
1202 * unlocking the lock that protects the seqno. For lockless tricks, the
1203 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1204 * inserted.
1205 *
1206 * Returns 0 if the request was found within the alloted time. Else returns the
1207 * errno with remaining time filled in timeout argument.
1208 */
__i915_wait_request(struct drm_i915_gem_request * req,unsigned reset_counter,bool interruptible,s64 * timeout,struct drm_i915_file_private * file_priv)1209 int __i915_wait_request(struct drm_i915_gem_request *req,
1210 unsigned reset_counter,
1211 bool interruptible,
1212 s64 *timeout,
1213 struct drm_i915_file_private *file_priv)
1214 {
1215 struct intel_engine_cs *ring = i915_gem_request_get_ring(req);
1216 struct drm_device *dev = ring->dev;
1217 struct drm_i915_private *dev_priv = dev->dev_private;
1218 const bool irq_test_in_progress =
1219 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1220 DEFINE_WAIT(wait);
1221 unsigned long timeout_expire;
1222 s64 before, now;
1223 int ret;
1224
1225 WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1226
1227 if (i915_gem_request_completed(req, true))
1228 return 0;
1229
1230 timeout_expire = timeout ?
1231 jiffies + nsecs_to_jiffies_timeout((u64)*timeout) : 0;
1232
1233 if (INTEL_INFO(dev)->gen >= 6 && ring->id == RCS && can_wait_boost(file_priv)) {
1234 gen6_rps_boost(dev_priv);
1235 if (file_priv)
1236 mod_delayed_work(dev_priv->wq,
1237 &file_priv->mm.idle_work,
1238 msecs_to_jiffies(100));
1239 }
1240
1241 if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring)))
1242 return -ENODEV;
1243
1244 /* Record current time in case interrupted by signal, or wedged */
1245 trace_i915_gem_request_wait_begin(req);
1246 before = ktime_get_raw_ns();
1247 for (;;) {
1248 struct timer_list timer;
1249
1250 prepare_to_wait(&ring->irq_queue, &wait,
1251 interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
1252
1253 /* We need to check whether any gpu reset happened in between
1254 * the caller grabbing the seqno and now ... */
1255 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1256 /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1257 * is truely gone. */
1258 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1259 if (ret == 0)
1260 ret = -EAGAIN;
1261 break;
1262 }
1263
1264 if (i915_gem_request_completed(req, false)) {
1265 ret = 0;
1266 break;
1267 }
1268
1269 if (interruptible && signal_pending(current)) {
1270 ret = -ERESTARTSYS;
1271 break;
1272 }
1273
1274 if (timeout && time_after_eq(jiffies, timeout_expire)) {
1275 ret = -ETIME;
1276 break;
1277 }
1278
1279 timer.function = NULL;
1280 if (timeout || missed_irq(dev_priv, ring)) {
1281 unsigned long expire;
1282
1283 setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1284 expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
1285 mod_timer(&timer, expire);
1286 }
1287
1288 io_schedule();
1289
1290 if (timer.function) {
1291 del_singleshot_timer_sync(&timer);
1292 destroy_timer_on_stack(&timer);
1293 }
1294 }
1295 now = ktime_get_raw_ns();
1296 trace_i915_gem_request_wait_end(req);
1297
1298 if (!irq_test_in_progress)
1299 ring->irq_put(ring);
1300
1301 finish_wait(&ring->irq_queue, &wait);
1302
1303 if (timeout) {
1304 s64 tres = *timeout - (now - before);
1305
1306 *timeout = tres < 0 ? 0 : tres;
1307
1308 /*
1309 * Apparently ktime isn't accurate enough and occasionally has a
1310 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
1311 * things up to make the test happy. We allow up to 1 jiffy.
1312 *
1313 * This is a regrssion from the timespec->ktime conversion.
1314 */
1315 if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
1316 *timeout = 0;
1317 }
1318
1319 return ret;
1320 }
1321
1322 /**
1323 * Waits for a request to be signaled, and cleans up the
1324 * request and object lists appropriately for that event.
1325 */
1326 int
i915_wait_request(struct drm_i915_gem_request * req)1327 i915_wait_request(struct drm_i915_gem_request *req)
1328 {
1329 struct drm_device *dev;
1330 struct drm_i915_private *dev_priv;
1331 bool interruptible;
1332 unsigned reset_counter;
1333 int ret;
1334
1335 BUG_ON(req == NULL);
1336
1337 dev = req->ring->dev;
1338 dev_priv = dev->dev_private;
1339 interruptible = dev_priv->mm.interruptible;
1340
1341 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1342
1343 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1344 if (ret)
1345 return ret;
1346
1347 ret = i915_gem_check_olr(req);
1348 if (ret)
1349 return ret;
1350
1351 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1352 i915_gem_request_reference(req);
1353 ret = __i915_wait_request(req, reset_counter,
1354 interruptible, NULL, NULL);
1355 i915_gem_request_unreference(req);
1356 return ret;
1357 }
1358
1359 static int
i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object * obj)1360 i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj)
1361 {
1362 if (!obj->active)
1363 return 0;
1364
1365 /* Manually manage the write flush as we may have not yet
1366 * retired the buffer.
1367 *
1368 * Note that the last_write_req is always the earlier of
1369 * the two (read/write) requests, so if we haved successfully waited,
1370 * we know we have passed the last write.
1371 */
1372 i915_gem_request_assign(&obj->last_write_req, NULL);
1373
1374 return 0;
1375 }
1376
1377 /**
1378 * Ensures that all rendering to the object has completed and the object is
1379 * safe to unbind from the GTT or access from the CPU.
1380 */
1381 static __must_check int
i915_gem_object_wait_rendering(struct drm_i915_gem_object * obj,bool readonly)1382 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1383 bool readonly)
1384 {
1385 struct drm_i915_gem_request *req;
1386 int ret;
1387
1388 req = readonly ? obj->last_write_req : obj->last_read_req;
1389 if (!req)
1390 return 0;
1391
1392 ret = i915_wait_request(req);
1393 if (ret)
1394 return ret;
1395
1396 return i915_gem_object_wait_rendering__tail(obj);
1397 }
1398
1399 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1400 * as the object state may change during this call.
1401 */
1402 static __must_check int
i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object * obj,struct drm_i915_file_private * file_priv,bool readonly)1403 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1404 struct drm_i915_file_private *file_priv,
1405 bool readonly)
1406 {
1407 struct drm_i915_gem_request *req;
1408 struct drm_device *dev = obj->base.dev;
1409 struct drm_i915_private *dev_priv = dev->dev_private;
1410 unsigned reset_counter;
1411 int ret;
1412
1413 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1414 BUG_ON(!dev_priv->mm.interruptible);
1415
1416 req = readonly ? obj->last_write_req : obj->last_read_req;
1417 if (!req)
1418 return 0;
1419
1420 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1421 if (ret)
1422 return ret;
1423
1424 ret = i915_gem_check_olr(req);
1425 if (ret)
1426 return ret;
1427
1428 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1429 i915_gem_request_reference(req);
1430 mutex_unlock(&dev->struct_mutex);
1431 ret = __i915_wait_request(req, reset_counter, true, NULL, file_priv);
1432 mutex_lock(&dev->struct_mutex);
1433 i915_gem_request_unreference(req);
1434 if (ret)
1435 return ret;
1436
1437 return i915_gem_object_wait_rendering__tail(obj);
1438 }
1439
1440 /**
1441 * Called when user space prepares to use an object with the CPU, either
1442 * through the mmap ioctl's mapping or a GTT mapping.
1443 */
1444 int
i915_gem_set_domain_ioctl(struct drm_device * dev,void * data,struct drm_file * file)1445 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1446 struct drm_file *file)
1447 {
1448 struct drm_i915_gem_set_domain *args = data;
1449 struct drm_i915_gem_object *obj;
1450 uint32_t read_domains = args->read_domains;
1451 uint32_t write_domain = args->write_domain;
1452 int ret;
1453
1454 /* Only handle setting domains to types used by the CPU. */
1455 if (write_domain & I915_GEM_GPU_DOMAINS)
1456 return -EINVAL;
1457
1458 if (read_domains & I915_GEM_GPU_DOMAINS)
1459 return -EINVAL;
1460
1461 /* Having something in the write domain implies it's in the read
1462 * domain, and only that read domain. Enforce that in the request.
1463 */
1464 if (write_domain != 0 && read_domains != write_domain)
1465 return -EINVAL;
1466
1467 ret = i915_mutex_lock_interruptible(dev);
1468 if (ret)
1469 return ret;
1470
1471 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1472 if (&obj->base == NULL) {
1473 ret = -ENOENT;
1474 goto unlock;
1475 }
1476
1477 /* Try to flush the object off the GPU without holding the lock.
1478 * We will repeat the flush holding the lock in the normal manner
1479 * to catch cases where we are gazumped.
1480 */
1481 ret = i915_gem_object_wait_rendering__nonblocking(obj,
1482 file->driver_priv,
1483 !write_domain);
1484 if (ret)
1485 goto unref;
1486
1487 if (read_domains & I915_GEM_DOMAIN_GTT)
1488 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1489 else
1490 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1491
1492 unref:
1493 drm_gem_object_unreference(&obj->base);
1494 unlock:
1495 mutex_unlock(&dev->struct_mutex);
1496 return ret;
1497 }
1498
1499 /**
1500 * Called when user space has done writes to this buffer
1501 */
1502 int
i915_gem_sw_finish_ioctl(struct drm_device * dev,void * data,struct drm_file * file)1503 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1504 struct drm_file *file)
1505 {
1506 struct drm_i915_gem_sw_finish *args = data;
1507 struct drm_i915_gem_object *obj;
1508 int ret = 0;
1509
1510 ret = i915_mutex_lock_interruptible(dev);
1511 if (ret)
1512 return ret;
1513
1514 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1515 if (&obj->base == NULL) {
1516 ret = -ENOENT;
1517 goto unlock;
1518 }
1519
1520 /* Pinned buffers may be scanout, so flush the cache */
1521 if (obj->pin_display)
1522 i915_gem_object_flush_cpu_write_domain(obj);
1523
1524 drm_gem_object_unreference(&obj->base);
1525 unlock:
1526 mutex_unlock(&dev->struct_mutex);
1527 return ret;
1528 }
1529
1530 /**
1531 * Maps the contents of an object, returning the address it is mapped
1532 * into.
1533 *
1534 * While the mapping holds a reference on the contents of the object, it doesn't
1535 * imply a ref on the object itself.
1536 *
1537 * IMPORTANT:
1538 *
1539 * DRM driver writers who look a this function as an example for how to do GEM
1540 * mmap support, please don't implement mmap support like here. The modern way
1541 * to implement DRM mmap support is with an mmap offset ioctl (like
1542 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1543 * That way debug tooling like valgrind will understand what's going on, hiding
1544 * the mmap call in a driver private ioctl will break that. The i915 driver only
1545 * does cpu mmaps this way because we didn't know better.
1546 */
1547 int
i915_gem_mmap_ioctl(struct drm_device * dev,void * data,struct drm_file * file)1548 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1549 struct drm_file *file)
1550 {
1551 struct drm_i915_gem_mmap *args = data;
1552 struct drm_gem_object *obj;
1553 unsigned long addr;
1554
1555 if (args->flags & ~(I915_MMAP_WC))
1556 return -EINVAL;
1557
1558 if (args->flags & I915_MMAP_WC && !cpu_has_pat)
1559 return -ENODEV;
1560
1561 obj = drm_gem_object_lookup(dev, file, args->handle);
1562 if (obj == NULL)
1563 return -ENOENT;
1564
1565 /* prime objects have no backing filp to GEM mmap
1566 * pages from.
1567 */
1568 if (!obj->filp) {
1569 drm_gem_object_unreference_unlocked(obj);
1570 return -EINVAL;
1571 }
1572
1573 addr = vm_mmap(obj->filp, 0, args->size,
1574 PROT_READ | PROT_WRITE, MAP_SHARED,
1575 args->offset);
1576 if (args->flags & I915_MMAP_WC) {
1577 struct mm_struct *mm = current->mm;
1578 struct vm_area_struct *vma;
1579
1580 down_write(&mm->mmap_sem);
1581 vma = find_vma(mm, addr);
1582 if (vma)
1583 vma->vm_page_prot =
1584 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1585 else
1586 addr = -ENOMEM;
1587 up_write(&mm->mmap_sem);
1588 }
1589 drm_gem_object_unreference_unlocked(obj);
1590 if (IS_ERR((void *)addr))
1591 return addr;
1592
1593 args->addr_ptr = (uint64_t) addr;
1594
1595 return 0;
1596 }
1597
1598 /**
1599 * i915_gem_fault - fault a page into the GTT
1600 * vma: VMA in question
1601 * vmf: fault info
1602 *
1603 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1604 * from userspace. The fault handler takes care of binding the object to
1605 * the GTT (if needed), allocating and programming a fence register (again,
1606 * only if needed based on whether the old reg is still valid or the object
1607 * is tiled) and inserting a new PTE into the faulting process.
1608 *
1609 * Note that the faulting process may involve evicting existing objects
1610 * from the GTT and/or fence registers to make room. So performance may
1611 * suffer if the GTT working set is large or there are few fence registers
1612 * left.
1613 */
i915_gem_fault(struct vm_area_struct * vma,struct vm_fault * vmf)1614 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1615 {
1616 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1617 struct drm_device *dev = obj->base.dev;
1618 struct drm_i915_private *dev_priv = dev->dev_private;
1619 pgoff_t page_offset;
1620 unsigned long pfn;
1621 int ret = 0;
1622 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1623
1624 intel_runtime_pm_get(dev_priv);
1625
1626 /* We don't use vmf->pgoff since that has the fake offset */
1627 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1628 PAGE_SHIFT;
1629
1630 ret = i915_mutex_lock_interruptible(dev);
1631 if (ret)
1632 goto out;
1633
1634 trace_i915_gem_object_fault(obj, page_offset, true, write);
1635
1636 /* Try to flush the object off the GPU first without holding the lock.
1637 * Upon reacquiring the lock, we will perform our sanity checks and then
1638 * repeat the flush holding the lock in the normal manner to catch cases
1639 * where we are gazumped.
1640 */
1641 ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1642 if (ret)
1643 goto unlock;
1644
1645 /* Access to snoopable pages through the GTT is incoherent. */
1646 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1647 ret = -EFAULT;
1648 goto unlock;
1649 }
1650
1651 /* Now bind it into the GTT if needed */
1652 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
1653 if (ret)
1654 goto unlock;
1655
1656 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1657 if (ret)
1658 goto unpin;
1659
1660 ret = i915_gem_object_get_fence(obj);
1661 if (ret)
1662 goto unpin;
1663
1664 /* Finally, remap it using the new GTT offset */
1665 pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
1666 pfn >>= PAGE_SHIFT;
1667
1668 if (!obj->fault_mappable) {
1669 unsigned long size = min_t(unsigned long,
1670 vma->vm_end - vma->vm_start,
1671 obj->base.size);
1672 int i;
1673
1674 for (i = 0; i < size >> PAGE_SHIFT; i++) {
1675 ret = vm_insert_pfn(vma,
1676 (unsigned long)vma->vm_start + i * PAGE_SIZE,
1677 pfn + i);
1678 if (ret)
1679 break;
1680 }
1681
1682 obj->fault_mappable = true;
1683 } else
1684 ret = vm_insert_pfn(vma,
1685 (unsigned long)vmf->virtual_address,
1686 pfn + page_offset);
1687 unpin:
1688 i915_gem_object_ggtt_unpin(obj);
1689 unlock:
1690 mutex_unlock(&dev->struct_mutex);
1691 out:
1692 switch (ret) {
1693 case -EIO:
1694 /*
1695 * We eat errors when the gpu is terminally wedged to avoid
1696 * userspace unduly crashing (gl has no provisions for mmaps to
1697 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1698 * and so needs to be reported.
1699 */
1700 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1701 ret = VM_FAULT_SIGBUS;
1702 break;
1703 }
1704 case -EAGAIN:
1705 /*
1706 * EAGAIN means the gpu is hung and we'll wait for the error
1707 * handler to reset everything when re-faulting in
1708 * i915_mutex_lock_interruptible.
1709 */
1710 case 0:
1711 case -ERESTARTSYS:
1712 case -EINTR:
1713 case -EBUSY:
1714 /*
1715 * EBUSY is ok: this just means that another thread
1716 * already did the job.
1717 */
1718 ret = VM_FAULT_NOPAGE;
1719 break;
1720 case -ENOMEM:
1721 ret = VM_FAULT_OOM;
1722 break;
1723 case -ENOSPC:
1724 case -EFAULT:
1725 ret = VM_FAULT_SIGBUS;
1726 break;
1727 default:
1728 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1729 ret = VM_FAULT_SIGBUS;
1730 break;
1731 }
1732
1733 intel_runtime_pm_put(dev_priv);
1734 return ret;
1735 }
1736
1737 /**
1738 * i915_gem_release_mmap - remove physical page mappings
1739 * @obj: obj in question
1740 *
1741 * Preserve the reservation of the mmapping with the DRM core code, but
1742 * relinquish ownership of the pages back to the system.
1743 *
1744 * It is vital that we remove the page mapping if we have mapped a tiled
1745 * object through the GTT and then lose the fence register due to
1746 * resource pressure. Similarly if the object has been moved out of the
1747 * aperture, than pages mapped into userspace must be revoked. Removing the
1748 * mapping will then trigger a page fault on the next user access, allowing
1749 * fixup by i915_gem_fault().
1750 */
1751 void
i915_gem_release_mmap(struct drm_i915_gem_object * obj)1752 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1753 {
1754 if (!obj->fault_mappable)
1755 return;
1756
1757 drm_vma_node_unmap(&obj->base.vma_node,
1758 obj->base.dev->anon_inode->i_mapping);
1759 obj->fault_mappable = false;
1760 }
1761
1762 void
i915_gem_release_all_mmaps(struct drm_i915_private * dev_priv)1763 i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1764 {
1765 struct drm_i915_gem_object *obj;
1766
1767 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1768 i915_gem_release_mmap(obj);
1769 }
1770
1771 uint32_t
i915_gem_get_gtt_size(struct drm_device * dev,uint32_t size,int tiling_mode)1772 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1773 {
1774 uint32_t gtt_size;
1775
1776 if (INTEL_INFO(dev)->gen >= 4 ||
1777 tiling_mode == I915_TILING_NONE)
1778 return size;
1779
1780 /* Previous chips need a power-of-two fence region when tiling */
1781 if (INTEL_INFO(dev)->gen == 3)
1782 gtt_size = 1024*1024;
1783 else
1784 gtt_size = 512*1024;
1785
1786 while (gtt_size < size)
1787 gtt_size <<= 1;
1788
1789 return gtt_size;
1790 }
1791
1792 /**
1793 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1794 * @obj: object to check
1795 *
1796 * Return the required GTT alignment for an object, taking into account
1797 * potential fence register mapping.
1798 */
1799 uint32_t
i915_gem_get_gtt_alignment(struct drm_device * dev,uint32_t size,int tiling_mode,bool fenced)1800 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1801 int tiling_mode, bool fenced)
1802 {
1803 /*
1804 * Minimum alignment is 4k (GTT page size), but might be greater
1805 * if a fence register is needed for the object.
1806 */
1807 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1808 tiling_mode == I915_TILING_NONE)
1809 return 4096;
1810
1811 /*
1812 * Previous chips need to be aligned to the size of the smallest
1813 * fence register that can contain the object.
1814 */
1815 return i915_gem_get_gtt_size(dev, size, tiling_mode);
1816 }
1817
i915_gem_object_create_mmap_offset(struct drm_i915_gem_object * obj)1818 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1819 {
1820 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1821 int ret;
1822
1823 if (drm_vma_node_has_offset(&obj->base.vma_node))
1824 return 0;
1825
1826 dev_priv->mm.shrinker_no_lock_stealing = true;
1827
1828 ret = drm_gem_create_mmap_offset(&obj->base);
1829 if (ret != -ENOSPC)
1830 goto out;
1831
1832 /* Badly fragmented mmap space? The only way we can recover
1833 * space is by destroying unwanted objects. We can't randomly release
1834 * mmap_offsets as userspace expects them to be persistent for the
1835 * lifetime of the objects. The closest we can is to release the
1836 * offsets on purgeable objects by truncating it and marking it purged,
1837 * which prevents userspace from ever using that object again.
1838 */
1839 i915_gem_shrink(dev_priv,
1840 obj->base.size >> PAGE_SHIFT,
1841 I915_SHRINK_BOUND |
1842 I915_SHRINK_UNBOUND |
1843 I915_SHRINK_PURGEABLE);
1844 ret = drm_gem_create_mmap_offset(&obj->base);
1845 if (ret != -ENOSPC)
1846 goto out;
1847
1848 i915_gem_shrink_all(dev_priv);
1849 ret = drm_gem_create_mmap_offset(&obj->base);
1850 out:
1851 dev_priv->mm.shrinker_no_lock_stealing = false;
1852
1853 return ret;
1854 }
1855
i915_gem_object_free_mmap_offset(struct drm_i915_gem_object * obj)1856 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1857 {
1858 drm_gem_free_mmap_offset(&obj->base);
1859 }
1860
1861 int
i915_gem_mmap_gtt(struct drm_file * file,struct drm_device * dev,uint32_t handle,uint64_t * offset)1862 i915_gem_mmap_gtt(struct drm_file *file,
1863 struct drm_device *dev,
1864 uint32_t handle,
1865 uint64_t *offset)
1866 {
1867 struct drm_i915_private *dev_priv = dev->dev_private;
1868 struct drm_i915_gem_object *obj;
1869 int ret;
1870
1871 ret = i915_mutex_lock_interruptible(dev);
1872 if (ret)
1873 return ret;
1874
1875 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1876 if (&obj->base == NULL) {
1877 ret = -ENOENT;
1878 goto unlock;
1879 }
1880
1881 if (obj->base.size > dev_priv->gtt.mappable_end) {
1882 ret = -E2BIG;
1883 goto out;
1884 }
1885
1886 if (obj->madv != I915_MADV_WILLNEED) {
1887 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
1888 ret = -EFAULT;
1889 goto out;
1890 }
1891
1892 ret = i915_gem_object_create_mmap_offset(obj);
1893 if (ret)
1894 goto out;
1895
1896 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
1897
1898 out:
1899 drm_gem_object_unreference(&obj->base);
1900 unlock:
1901 mutex_unlock(&dev->struct_mutex);
1902 return ret;
1903 }
1904
1905 /**
1906 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1907 * @dev: DRM device
1908 * @data: GTT mapping ioctl data
1909 * @file: GEM object info
1910 *
1911 * Simply returns the fake offset to userspace so it can mmap it.
1912 * The mmap call will end up in drm_gem_mmap(), which will set things
1913 * up so we can get faults in the handler above.
1914 *
1915 * The fault handler will take care of binding the object into the GTT
1916 * (since it may have been evicted to make room for something), allocating
1917 * a fence register, and mapping the appropriate aperture address into
1918 * userspace.
1919 */
1920 int
i915_gem_mmap_gtt_ioctl(struct drm_device * dev,void * data,struct drm_file * file)1921 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1922 struct drm_file *file)
1923 {
1924 struct drm_i915_gem_mmap_gtt *args = data;
1925
1926 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1927 }
1928
1929 /* Immediately discard the backing storage */
1930 static void
i915_gem_object_truncate(struct drm_i915_gem_object * obj)1931 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1932 {
1933 i915_gem_object_free_mmap_offset(obj);
1934
1935 if (obj->base.filp == NULL)
1936 return;
1937
1938 /* Our goal here is to return as much of the memory as
1939 * is possible back to the system as we are called from OOM.
1940 * To do this we must instruct the shmfs to drop all of its
1941 * backing pages, *now*.
1942 */
1943 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
1944 obj->madv = __I915_MADV_PURGED;
1945 }
1946
1947 /* Try to discard unwanted pages */
1948 static void
i915_gem_object_invalidate(struct drm_i915_gem_object * obj)1949 i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
1950 {
1951 struct address_space *mapping;
1952
1953 switch (obj->madv) {
1954 case I915_MADV_DONTNEED:
1955 i915_gem_object_truncate(obj);
1956 case __I915_MADV_PURGED:
1957 return;
1958 }
1959
1960 if (obj->base.filp == NULL)
1961 return;
1962
1963 mapping = file_inode(obj->base.filp)->i_mapping,
1964 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
1965 }
1966
1967 static void
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object * obj)1968 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1969 {
1970 struct sg_page_iter sg_iter;
1971 int ret;
1972
1973 BUG_ON(obj->madv == __I915_MADV_PURGED);
1974
1975 ret = i915_gem_object_set_to_cpu_domain(obj, true);
1976 if (ret) {
1977 /* In the event of a disaster, abandon all caches and
1978 * hope for the best.
1979 */
1980 WARN_ON(ret != -EIO);
1981 i915_gem_clflush_object(obj, true);
1982 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1983 }
1984
1985 if (i915_gem_object_needs_bit17_swizzle(obj))
1986 i915_gem_object_save_bit_17_swizzle(obj);
1987
1988 if (obj->madv == I915_MADV_DONTNEED)
1989 obj->dirty = 0;
1990
1991 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
1992 struct page *page = sg_page_iter_page(&sg_iter);
1993
1994 if (obj->dirty)
1995 set_page_dirty(page);
1996
1997 if (obj->madv == I915_MADV_WILLNEED)
1998 mark_page_accessed(page);
1999
2000 page_cache_release(page);
2001 }
2002 obj->dirty = 0;
2003
2004 sg_free_table(obj->pages);
2005 kfree(obj->pages);
2006 }
2007
2008 int
i915_gem_object_put_pages(struct drm_i915_gem_object * obj)2009 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2010 {
2011 const struct drm_i915_gem_object_ops *ops = obj->ops;
2012
2013 if (obj->pages == NULL)
2014 return 0;
2015
2016 if (obj->pages_pin_count)
2017 return -EBUSY;
2018
2019 BUG_ON(i915_gem_obj_bound_any(obj));
2020
2021 /* ->put_pages might need to allocate memory for the bit17 swizzle
2022 * array, hence protect them from being reaped by removing them from gtt
2023 * lists early. */
2024 list_del(&obj->global_list);
2025
2026 ops->put_pages(obj);
2027 obj->pages = NULL;
2028
2029 i915_gem_object_invalidate(obj);
2030
2031 return 0;
2032 }
2033
2034 static int
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object * obj)2035 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2036 {
2037 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2038 int page_count, i;
2039 struct address_space *mapping;
2040 struct sg_table *st;
2041 struct scatterlist *sg;
2042 struct sg_page_iter sg_iter;
2043 struct page *page;
2044 unsigned long last_pfn = 0; /* suppress gcc warning */
2045 gfp_t gfp;
2046
2047 /* Assert that the object is not currently in any GPU domain. As it
2048 * wasn't in the GTT, there shouldn't be any way it could have been in
2049 * a GPU cache
2050 */
2051 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2052 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2053
2054 st = kmalloc(sizeof(*st), GFP_KERNEL);
2055 if (st == NULL)
2056 return -ENOMEM;
2057
2058 page_count = obj->base.size / PAGE_SIZE;
2059 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2060 kfree(st);
2061 return -ENOMEM;
2062 }
2063
2064 /* Get the list of pages out of our struct file. They'll be pinned
2065 * at this point until we release them.
2066 *
2067 * Fail silently without starting the shrinker
2068 */
2069 mapping = file_inode(obj->base.filp)->i_mapping;
2070 gfp = mapping_gfp_mask(mapping);
2071 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
2072 gfp &= ~(__GFP_IO | __GFP_WAIT);
2073 sg = st->sgl;
2074 st->nents = 0;
2075 for (i = 0; i < page_count; i++) {
2076 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2077 if (IS_ERR(page)) {
2078 i915_gem_shrink(dev_priv,
2079 page_count,
2080 I915_SHRINK_BOUND |
2081 I915_SHRINK_UNBOUND |
2082 I915_SHRINK_PURGEABLE);
2083 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2084 }
2085 if (IS_ERR(page)) {
2086 /* We've tried hard to allocate the memory by reaping
2087 * our own buffer, now let the real VM do its job and
2088 * go down in flames if truly OOM.
2089 */
2090 i915_gem_shrink_all(dev_priv);
2091 page = shmem_read_mapping_page(mapping, i);
2092 if (IS_ERR(page))
2093 goto err_pages;
2094 }
2095 #ifdef CONFIG_SWIOTLB
2096 if (swiotlb_nr_tbl()) {
2097 st->nents++;
2098 sg_set_page(sg, page, PAGE_SIZE, 0);
2099 sg = sg_next(sg);
2100 continue;
2101 }
2102 #endif
2103 if (!i || page_to_pfn(page) != last_pfn + 1) {
2104 if (i)
2105 sg = sg_next(sg);
2106 st->nents++;
2107 sg_set_page(sg, page, PAGE_SIZE, 0);
2108 } else {
2109 sg->length += PAGE_SIZE;
2110 }
2111 last_pfn = page_to_pfn(page);
2112
2113 /* Check that the i965g/gm workaround works. */
2114 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2115 }
2116 #ifdef CONFIG_SWIOTLB
2117 if (!swiotlb_nr_tbl())
2118 #endif
2119 sg_mark_end(sg);
2120 obj->pages = st;
2121
2122 if (i915_gem_object_needs_bit17_swizzle(obj))
2123 i915_gem_object_do_bit_17_swizzle(obj);
2124
2125 if (obj->tiling_mode != I915_TILING_NONE &&
2126 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2127 i915_gem_object_pin_pages(obj);
2128
2129 return 0;
2130
2131 err_pages:
2132 sg_mark_end(sg);
2133 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2134 page_cache_release(sg_page_iter_page(&sg_iter));
2135 sg_free_table(st);
2136 kfree(st);
2137
2138 /* shmemfs first checks if there is enough memory to allocate the page
2139 * and reports ENOSPC should there be insufficient, along with the usual
2140 * ENOMEM for a genuine allocation failure.
2141 *
2142 * We use ENOSPC in our driver to mean that we have run out of aperture
2143 * space and so want to translate the error from shmemfs back to our
2144 * usual understanding of ENOMEM.
2145 */
2146 if (PTR_ERR(page) == -ENOSPC)
2147 return -ENOMEM;
2148 else
2149 return PTR_ERR(page);
2150 }
2151
2152 /* Ensure that the associated pages are gathered from the backing storage
2153 * and pinned into our object. i915_gem_object_get_pages() may be called
2154 * multiple times before they are released by a single call to
2155 * i915_gem_object_put_pages() - once the pages are no longer referenced
2156 * either as a result of memory pressure (reaping pages under the shrinker)
2157 * or as the object is itself released.
2158 */
2159 int
i915_gem_object_get_pages(struct drm_i915_gem_object * obj)2160 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2161 {
2162 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2163 const struct drm_i915_gem_object_ops *ops = obj->ops;
2164 int ret;
2165
2166 if (obj->pages)
2167 return 0;
2168
2169 if (obj->madv != I915_MADV_WILLNEED) {
2170 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2171 return -EFAULT;
2172 }
2173
2174 BUG_ON(obj->pages_pin_count);
2175
2176 ret = ops->get_pages(obj);
2177 if (ret)
2178 return ret;
2179
2180 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2181 return 0;
2182 }
2183
2184 static void
i915_gem_object_move_to_active(struct drm_i915_gem_object * obj,struct intel_engine_cs * ring)2185 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
2186 struct intel_engine_cs *ring)
2187 {
2188 struct drm_i915_gem_request *req;
2189 struct intel_engine_cs *old_ring;
2190
2191 BUG_ON(ring == NULL);
2192
2193 req = intel_ring_get_request(ring);
2194 old_ring = i915_gem_request_get_ring(obj->last_read_req);
2195
2196 if (old_ring != ring && obj->last_write_req) {
2197 /* Keep the request relative to the current ring */
2198 i915_gem_request_assign(&obj->last_write_req, req);
2199 }
2200
2201 /* Add a reference if we're newly entering the active list. */
2202 if (!obj->active) {
2203 drm_gem_object_reference(&obj->base);
2204 obj->active = 1;
2205 }
2206
2207 list_move_tail(&obj->ring_list, &ring->active_list);
2208
2209 i915_gem_request_assign(&obj->last_read_req, req);
2210 }
2211
i915_vma_move_to_active(struct i915_vma * vma,struct intel_engine_cs * ring)2212 void i915_vma_move_to_active(struct i915_vma *vma,
2213 struct intel_engine_cs *ring)
2214 {
2215 list_move_tail(&vma->mm_list, &vma->vm->active_list);
2216 return i915_gem_object_move_to_active(vma->obj, ring);
2217 }
2218
2219 static void
i915_gem_object_move_to_inactive(struct drm_i915_gem_object * obj)2220 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
2221 {
2222 struct i915_vma *vma;
2223
2224 BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
2225 BUG_ON(!obj->active);
2226
2227 list_for_each_entry(vma, &obj->vma_list, vma_link) {
2228 if (!list_empty(&vma->mm_list))
2229 list_move_tail(&vma->mm_list, &vma->vm->inactive_list);
2230 }
2231
2232 intel_fb_obj_flush(obj, true);
2233
2234 list_del_init(&obj->ring_list);
2235
2236 i915_gem_request_assign(&obj->last_read_req, NULL);
2237 i915_gem_request_assign(&obj->last_write_req, NULL);
2238 obj->base.write_domain = 0;
2239
2240 i915_gem_request_assign(&obj->last_fenced_req, NULL);
2241
2242 obj->active = 0;
2243 drm_gem_object_unreference(&obj->base);
2244
2245 WARN_ON(i915_verify_lists(dev));
2246 }
2247
2248 static void
i915_gem_object_retire(struct drm_i915_gem_object * obj)2249 i915_gem_object_retire(struct drm_i915_gem_object *obj)
2250 {
2251 if (obj->last_read_req == NULL)
2252 return;
2253
2254 if (i915_gem_request_completed(obj->last_read_req, true))
2255 i915_gem_object_move_to_inactive(obj);
2256 }
2257
2258 static int
i915_gem_init_seqno(struct drm_device * dev,u32 seqno)2259 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2260 {
2261 struct drm_i915_private *dev_priv = dev->dev_private;
2262 struct intel_engine_cs *ring;
2263 int ret, i, j;
2264
2265 /* Carefully retire all requests without writing to the rings */
2266 for_each_ring(ring, dev_priv, i) {
2267 ret = intel_ring_idle(ring);
2268 if (ret)
2269 return ret;
2270 }
2271 i915_gem_retire_requests(dev);
2272
2273 /* Finally reset hw state */
2274 for_each_ring(ring, dev_priv, i) {
2275 intel_ring_init_seqno(ring, seqno);
2276
2277 for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
2278 ring->semaphore.sync_seqno[j] = 0;
2279 }
2280
2281 return 0;
2282 }
2283
i915_gem_set_seqno(struct drm_device * dev,u32 seqno)2284 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2285 {
2286 struct drm_i915_private *dev_priv = dev->dev_private;
2287 int ret;
2288
2289 if (seqno == 0)
2290 return -EINVAL;
2291
2292 /* HWS page needs to be set less than what we
2293 * will inject to ring
2294 */
2295 ret = i915_gem_init_seqno(dev, seqno - 1);
2296 if (ret)
2297 return ret;
2298
2299 /* Carefully set the last_seqno value so that wrap
2300 * detection still works
2301 */
2302 dev_priv->next_seqno = seqno;
2303 dev_priv->last_seqno = seqno - 1;
2304 if (dev_priv->last_seqno == 0)
2305 dev_priv->last_seqno--;
2306
2307 return 0;
2308 }
2309
2310 int
i915_gem_get_seqno(struct drm_device * dev,u32 * seqno)2311 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2312 {
2313 struct drm_i915_private *dev_priv = dev->dev_private;
2314
2315 /* reserve 0 for non-seqno */
2316 if (dev_priv->next_seqno == 0) {
2317 int ret = i915_gem_init_seqno(dev, 0);
2318 if (ret)
2319 return ret;
2320
2321 dev_priv->next_seqno = 1;
2322 }
2323
2324 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2325 return 0;
2326 }
2327
__i915_add_request(struct intel_engine_cs * ring,struct drm_file * file,struct drm_i915_gem_object * obj)2328 int __i915_add_request(struct intel_engine_cs *ring,
2329 struct drm_file *file,
2330 struct drm_i915_gem_object *obj)
2331 {
2332 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2333 struct drm_i915_gem_request *request;
2334 struct intel_ringbuffer *ringbuf;
2335 u32 request_start;
2336 int ret;
2337
2338 request = ring->outstanding_lazy_request;
2339 if (WARN_ON(request == NULL))
2340 return -ENOMEM;
2341
2342 if (i915.enable_execlists) {
2343 ringbuf = request->ctx->engine[ring->id].ringbuf;
2344 } else
2345 ringbuf = ring->buffer;
2346
2347 request_start = intel_ring_get_tail(ringbuf);
2348 /*
2349 * Emit any outstanding flushes - execbuf can fail to emit the flush
2350 * after having emitted the batchbuffer command. Hence we need to fix
2351 * things up similar to emitting the lazy request. The difference here
2352 * is that the flush _must_ happen before the next request, no matter
2353 * what.
2354 */
2355 if (i915.enable_execlists) {
2356 ret = logical_ring_flush_all_caches(ringbuf, request->ctx);
2357 if (ret)
2358 return ret;
2359 } else {
2360 ret = intel_ring_flush_all_caches(ring);
2361 if (ret)
2362 return ret;
2363 }
2364
2365 /* Record the position of the start of the request so that
2366 * should we detect the updated seqno part-way through the
2367 * GPU processing the request, we never over-estimate the
2368 * position of the head.
2369 */
2370 request->postfix = intel_ring_get_tail(ringbuf);
2371
2372 if (i915.enable_execlists) {
2373 ret = ring->emit_request(ringbuf, request);
2374 if (ret)
2375 return ret;
2376 } else {
2377 ret = ring->add_request(ring);
2378 if (ret)
2379 return ret;
2380
2381 request->tail = intel_ring_get_tail(ringbuf);
2382 }
2383
2384 request->head = request_start;
2385
2386 /* Whilst this request exists, batch_obj will be on the
2387 * active_list, and so will hold the active reference. Only when this
2388 * request is retired will the the batch_obj be moved onto the
2389 * inactive_list and lose its active reference. Hence we do not need
2390 * to explicitly hold another reference here.
2391 */
2392 request->batch_obj = obj;
2393
2394 if (!i915.enable_execlists) {
2395 /* Hold a reference to the current context so that we can inspect
2396 * it later in case a hangcheck error event fires.
2397 */
2398 request->ctx = ring->last_context;
2399 if (request->ctx)
2400 i915_gem_context_reference(request->ctx);
2401 }
2402
2403 request->emitted_jiffies = jiffies;
2404 ring->last_submitted_seqno = request->seqno;
2405 list_add_tail(&request->list, &ring->request_list);
2406 request->file_priv = NULL;
2407
2408 if (file) {
2409 struct drm_i915_file_private *file_priv = file->driver_priv;
2410
2411 spin_lock(&file_priv->mm.lock);
2412 request->file_priv = file_priv;
2413 list_add_tail(&request->client_list,
2414 &file_priv->mm.request_list);
2415 spin_unlock(&file_priv->mm.lock);
2416
2417 request->pid = get_pid(task_pid(current));
2418 }
2419
2420 trace_i915_gem_request_add(request);
2421 ring->outstanding_lazy_request = NULL;
2422
2423 i915_queue_hangcheck(ring->dev);
2424
2425 cancel_delayed_work_sync(&dev_priv->mm.idle_work);
2426 queue_delayed_work(dev_priv->wq,
2427 &dev_priv->mm.retire_work,
2428 round_jiffies_up_relative(HZ));
2429 intel_mark_busy(dev_priv->dev);
2430
2431 return 0;
2432 }
2433
2434 static inline void
i915_gem_request_remove_from_client(struct drm_i915_gem_request * request)2435 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2436 {
2437 struct drm_i915_file_private *file_priv = request->file_priv;
2438
2439 if (!file_priv)
2440 return;
2441
2442 spin_lock(&file_priv->mm.lock);
2443 list_del(&request->client_list);
2444 request->file_priv = NULL;
2445 spin_unlock(&file_priv->mm.lock);
2446 }
2447
i915_context_is_banned(struct drm_i915_private * dev_priv,const struct intel_context * ctx)2448 static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2449 const struct intel_context *ctx)
2450 {
2451 unsigned long elapsed;
2452
2453 elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2454
2455 if (ctx->hang_stats.banned)
2456 return true;
2457
2458 if (ctx->hang_stats.ban_period_seconds &&
2459 elapsed <= ctx->hang_stats.ban_period_seconds) {
2460 if (!i915_gem_context_is_default(ctx)) {
2461 DRM_DEBUG("context hanging too fast, banning!\n");
2462 return true;
2463 } else if (i915_stop_ring_allow_ban(dev_priv)) {
2464 if (i915_stop_ring_allow_warn(dev_priv))
2465 DRM_ERROR("gpu hanging too fast, banning!\n");
2466 return true;
2467 }
2468 }
2469
2470 return false;
2471 }
2472
i915_set_reset_status(struct drm_i915_private * dev_priv,struct intel_context * ctx,const bool guilty)2473 static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2474 struct intel_context *ctx,
2475 const bool guilty)
2476 {
2477 struct i915_ctx_hang_stats *hs;
2478
2479 if (WARN_ON(!ctx))
2480 return;
2481
2482 hs = &ctx->hang_stats;
2483
2484 if (guilty) {
2485 hs->banned = i915_context_is_banned(dev_priv, ctx);
2486 hs->batch_active++;
2487 hs->guilty_ts = get_seconds();
2488 } else {
2489 hs->batch_pending++;
2490 }
2491 }
2492
i915_gem_free_request(struct drm_i915_gem_request * request)2493 static void i915_gem_free_request(struct drm_i915_gem_request *request)
2494 {
2495 list_del(&request->list);
2496 i915_gem_request_remove_from_client(request);
2497
2498 put_pid(request->pid);
2499
2500 i915_gem_request_unreference(request);
2501 }
2502
i915_gem_request_free(struct kref * req_ref)2503 void i915_gem_request_free(struct kref *req_ref)
2504 {
2505 struct drm_i915_gem_request *req = container_of(req_ref,
2506 typeof(*req), ref);
2507 struct intel_context *ctx = req->ctx;
2508
2509 if (ctx) {
2510 if (i915.enable_execlists) {
2511 struct intel_engine_cs *ring = req->ring;
2512
2513 if (ctx != ring->default_context)
2514 intel_lr_context_unpin(ring, ctx);
2515 }
2516
2517 i915_gem_context_unreference(ctx);
2518 }
2519
2520 kfree(req);
2521 }
2522
2523 struct drm_i915_gem_request *
i915_gem_find_active_request(struct intel_engine_cs * ring)2524 i915_gem_find_active_request(struct intel_engine_cs *ring)
2525 {
2526 struct drm_i915_gem_request *request;
2527
2528 list_for_each_entry(request, &ring->request_list, list) {
2529 if (i915_gem_request_completed(request, false))
2530 continue;
2531
2532 return request;
2533 }
2534
2535 return NULL;
2536 }
2537
i915_gem_reset_ring_status(struct drm_i915_private * dev_priv,struct intel_engine_cs * ring)2538 static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2539 struct intel_engine_cs *ring)
2540 {
2541 struct drm_i915_gem_request *request;
2542 bool ring_hung;
2543
2544 request = i915_gem_find_active_request(ring);
2545
2546 if (request == NULL)
2547 return;
2548
2549 ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2550
2551 i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2552
2553 list_for_each_entry_continue(request, &ring->request_list, list)
2554 i915_set_reset_status(dev_priv, request->ctx, false);
2555 }
2556
i915_gem_reset_ring_cleanup(struct drm_i915_private * dev_priv,struct intel_engine_cs * ring)2557 static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2558 struct intel_engine_cs *ring)
2559 {
2560 while (!list_empty(&ring->active_list)) {
2561 struct drm_i915_gem_object *obj;
2562
2563 obj = list_first_entry(&ring->active_list,
2564 struct drm_i915_gem_object,
2565 ring_list);
2566
2567 i915_gem_object_move_to_inactive(obj);
2568 }
2569
2570 /*
2571 * Clear the execlists queue up before freeing the requests, as those
2572 * are the ones that keep the context and ringbuffer backing objects
2573 * pinned in place.
2574 */
2575 while (!list_empty(&ring->execlist_queue)) {
2576 struct drm_i915_gem_request *submit_req;
2577
2578 submit_req = list_first_entry(&ring->execlist_queue,
2579 struct drm_i915_gem_request,
2580 execlist_link);
2581 list_del(&submit_req->execlist_link);
2582 intel_runtime_pm_put(dev_priv);
2583
2584 if (submit_req->ctx != ring->default_context)
2585 intel_lr_context_unpin(ring, submit_req->ctx);
2586
2587 i915_gem_request_unreference(submit_req);
2588 }
2589
2590 /*
2591 * We must free the requests after all the corresponding objects have
2592 * been moved off active lists. Which is the same order as the normal
2593 * retire_requests function does. This is important if object hold
2594 * implicit references on things like e.g. ppgtt address spaces through
2595 * the request.
2596 */
2597 while (!list_empty(&ring->request_list)) {
2598 struct drm_i915_gem_request *request;
2599
2600 request = list_first_entry(&ring->request_list,
2601 struct drm_i915_gem_request,
2602 list);
2603
2604 i915_gem_free_request(request);
2605 }
2606
2607 /* This may not have been flushed before the reset, so clean it now */
2608 i915_gem_request_assign(&ring->outstanding_lazy_request, NULL);
2609 }
2610
i915_gem_restore_fences(struct drm_device * dev)2611 void i915_gem_restore_fences(struct drm_device *dev)
2612 {
2613 struct drm_i915_private *dev_priv = dev->dev_private;
2614 int i;
2615
2616 for (i = 0; i < dev_priv->num_fence_regs; i++) {
2617 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2618
2619 /*
2620 * Commit delayed tiling changes if we have an object still
2621 * attached to the fence, otherwise just clear the fence.
2622 */
2623 if (reg->obj) {
2624 i915_gem_object_update_fence(reg->obj, reg,
2625 reg->obj->tiling_mode);
2626 } else {
2627 i915_gem_write_fence(dev, i, NULL);
2628 }
2629 }
2630 }
2631
i915_gem_reset(struct drm_device * dev)2632 void i915_gem_reset(struct drm_device *dev)
2633 {
2634 struct drm_i915_private *dev_priv = dev->dev_private;
2635 struct intel_engine_cs *ring;
2636 int i;
2637
2638 /*
2639 * Before we free the objects from the requests, we need to inspect
2640 * them for finding the guilty party. As the requests only borrow
2641 * their reference to the objects, the inspection must be done first.
2642 */
2643 for_each_ring(ring, dev_priv, i)
2644 i915_gem_reset_ring_status(dev_priv, ring);
2645
2646 for_each_ring(ring, dev_priv, i)
2647 i915_gem_reset_ring_cleanup(dev_priv, ring);
2648
2649 i915_gem_context_reset(dev);
2650
2651 i915_gem_restore_fences(dev);
2652 }
2653
2654 /**
2655 * This function clears the request list as sequence numbers are passed.
2656 */
2657 void
i915_gem_retire_requests_ring(struct intel_engine_cs * ring)2658 i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
2659 {
2660 if (list_empty(&ring->request_list))
2661 return;
2662
2663 WARN_ON(i915_verify_lists(ring->dev));
2664
2665 /* Retire requests first as we use it above for the early return.
2666 * If we retire requests last, we may use a later seqno and so clear
2667 * the requests lists without clearing the active list, leading to
2668 * confusion.
2669 */
2670 while (!list_empty(&ring->request_list)) {
2671 struct drm_i915_gem_request *request;
2672
2673 request = list_first_entry(&ring->request_list,
2674 struct drm_i915_gem_request,
2675 list);
2676
2677 if (!i915_gem_request_completed(request, true))
2678 break;
2679
2680 trace_i915_gem_request_retire(request);
2681
2682 /* We know the GPU must have read the request to have
2683 * sent us the seqno + interrupt, so use the position
2684 * of tail of the request to update the last known position
2685 * of the GPU head.
2686 */
2687 request->ringbuf->last_retired_head = request->postfix;
2688
2689 i915_gem_free_request(request);
2690 }
2691
2692 /* Move any buffers on the active list that are no longer referenced
2693 * by the ringbuffer to the flushing/inactive lists as appropriate,
2694 * before we free the context associated with the requests.
2695 */
2696 while (!list_empty(&ring->active_list)) {
2697 struct drm_i915_gem_object *obj;
2698
2699 obj = list_first_entry(&ring->active_list,
2700 struct drm_i915_gem_object,
2701 ring_list);
2702
2703 if (!i915_gem_request_completed(obj->last_read_req, true))
2704 break;
2705
2706 i915_gem_object_move_to_inactive(obj);
2707 }
2708
2709 if (unlikely(ring->trace_irq_req &&
2710 i915_gem_request_completed(ring->trace_irq_req, true))) {
2711 ring->irq_put(ring);
2712 i915_gem_request_assign(&ring->trace_irq_req, NULL);
2713 }
2714
2715 WARN_ON(i915_verify_lists(ring->dev));
2716 }
2717
2718 bool
i915_gem_retire_requests(struct drm_device * dev)2719 i915_gem_retire_requests(struct drm_device *dev)
2720 {
2721 struct drm_i915_private *dev_priv = dev->dev_private;
2722 struct intel_engine_cs *ring;
2723 bool idle = true;
2724 int i;
2725
2726 for_each_ring(ring, dev_priv, i) {
2727 i915_gem_retire_requests_ring(ring);
2728 idle &= list_empty(&ring->request_list);
2729 if (i915.enable_execlists) {
2730 unsigned long flags;
2731
2732 spin_lock_irqsave(&ring->execlist_lock, flags);
2733 idle &= list_empty(&ring->execlist_queue);
2734 spin_unlock_irqrestore(&ring->execlist_lock, flags);
2735
2736 intel_execlists_retire_requests(ring);
2737 }
2738 }
2739
2740 if (idle)
2741 mod_delayed_work(dev_priv->wq,
2742 &dev_priv->mm.idle_work,
2743 msecs_to_jiffies(100));
2744
2745 return idle;
2746 }
2747
2748 static void
i915_gem_retire_work_handler(struct work_struct * work)2749 i915_gem_retire_work_handler(struct work_struct *work)
2750 {
2751 struct drm_i915_private *dev_priv =
2752 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2753 struct drm_device *dev = dev_priv->dev;
2754 bool idle;
2755
2756 /* Come back later if the device is busy... */
2757 idle = false;
2758 if (mutex_trylock(&dev->struct_mutex)) {
2759 idle = i915_gem_retire_requests(dev);
2760 mutex_unlock(&dev->struct_mutex);
2761 }
2762 if (!idle)
2763 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2764 round_jiffies_up_relative(HZ));
2765 }
2766
2767 static void
i915_gem_idle_work_handler(struct work_struct * work)2768 i915_gem_idle_work_handler(struct work_struct *work)
2769 {
2770 struct drm_i915_private *dev_priv =
2771 container_of(work, typeof(*dev_priv), mm.idle_work.work);
2772
2773 intel_mark_idle(dev_priv->dev);
2774 }
2775
2776 /**
2777 * Ensures that an object will eventually get non-busy by flushing any required
2778 * write domains, emitting any outstanding lazy request and retiring and
2779 * completed requests.
2780 */
2781 static int
i915_gem_object_flush_active(struct drm_i915_gem_object * obj)2782 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2783 {
2784 struct intel_engine_cs *ring;
2785 int ret;
2786
2787 if (obj->active) {
2788 ring = i915_gem_request_get_ring(obj->last_read_req);
2789
2790 ret = i915_gem_check_olr(obj->last_read_req);
2791 if (ret)
2792 return ret;
2793
2794 i915_gem_retire_requests_ring(ring);
2795 }
2796
2797 return 0;
2798 }
2799
2800 /**
2801 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2802 * @DRM_IOCTL_ARGS: standard ioctl arguments
2803 *
2804 * Returns 0 if successful, else an error is returned with the remaining time in
2805 * the timeout parameter.
2806 * -ETIME: object is still busy after timeout
2807 * -ERESTARTSYS: signal interrupted the wait
2808 * -ENONENT: object doesn't exist
2809 * Also possible, but rare:
2810 * -EAGAIN: GPU wedged
2811 * -ENOMEM: damn
2812 * -ENODEV: Internal IRQ fail
2813 * -E?: The add request failed
2814 *
2815 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2816 * non-zero timeout parameter the wait ioctl will wait for the given number of
2817 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2818 * without holding struct_mutex the object may become re-busied before this
2819 * function completes. A similar but shorter * race condition exists in the busy
2820 * ioctl
2821 */
2822 int
i915_gem_wait_ioctl(struct drm_device * dev,void * data,struct drm_file * file)2823 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2824 {
2825 struct drm_i915_private *dev_priv = dev->dev_private;
2826 struct drm_i915_gem_wait *args = data;
2827 struct drm_i915_gem_object *obj;
2828 struct drm_i915_gem_request *req;
2829 unsigned reset_counter;
2830 int ret = 0;
2831
2832 if (args->flags != 0)
2833 return -EINVAL;
2834
2835 ret = i915_mutex_lock_interruptible(dev);
2836 if (ret)
2837 return ret;
2838
2839 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2840 if (&obj->base == NULL) {
2841 mutex_unlock(&dev->struct_mutex);
2842 return -ENOENT;
2843 }
2844
2845 /* Need to make sure the object gets inactive eventually. */
2846 ret = i915_gem_object_flush_active(obj);
2847 if (ret)
2848 goto out;
2849
2850 if (!obj->active || !obj->last_read_req)
2851 goto out;
2852
2853 req = obj->last_read_req;
2854
2855 /* Do this after OLR check to make sure we make forward progress polling
2856 * on this IOCTL with a timeout == 0 (like busy ioctl)
2857 */
2858 if (args->timeout_ns == 0) {
2859 ret = -ETIME;
2860 goto out;
2861 }
2862
2863 drm_gem_object_unreference(&obj->base);
2864 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
2865 i915_gem_request_reference(req);
2866 mutex_unlock(&dev->struct_mutex);
2867
2868 ret = __i915_wait_request(req, reset_counter, true,
2869 args->timeout_ns > 0 ? &args->timeout_ns : NULL,
2870 file->driver_priv);
2871 mutex_lock(&dev->struct_mutex);
2872 i915_gem_request_unreference(req);
2873 mutex_unlock(&dev->struct_mutex);
2874 return ret;
2875
2876 out:
2877 drm_gem_object_unreference(&obj->base);
2878 mutex_unlock(&dev->struct_mutex);
2879 return ret;
2880 }
2881
2882 /**
2883 * i915_gem_object_sync - sync an object to a ring.
2884 *
2885 * @obj: object which may be in use on another ring.
2886 * @to: ring we wish to use the object on. May be NULL.
2887 *
2888 * This code is meant to abstract object synchronization with the GPU.
2889 * Calling with NULL implies synchronizing the object with the CPU
2890 * rather than a particular GPU ring.
2891 *
2892 * Returns 0 if successful, else propagates up the lower layer error.
2893 */
2894 int
i915_gem_object_sync(struct drm_i915_gem_object * obj,struct intel_engine_cs * to)2895 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2896 struct intel_engine_cs *to)
2897 {
2898 struct intel_engine_cs *from;
2899 u32 seqno;
2900 int ret, idx;
2901
2902 from = i915_gem_request_get_ring(obj->last_read_req);
2903
2904 if (from == NULL || to == from)
2905 return 0;
2906
2907 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2908 return i915_gem_object_wait_rendering(obj, false);
2909
2910 idx = intel_ring_sync_index(from, to);
2911
2912 seqno = i915_gem_request_get_seqno(obj->last_read_req);
2913 /* Optimization: Avoid semaphore sync when we are sure we already
2914 * waited for an object with higher seqno */
2915 if (seqno <= from->semaphore.sync_seqno[idx])
2916 return 0;
2917
2918 ret = i915_gem_check_olr(obj->last_read_req);
2919 if (ret)
2920 return ret;
2921
2922 trace_i915_gem_ring_sync_to(from, to, obj->last_read_req);
2923 ret = to->semaphore.sync_to(to, from, seqno);
2924 if (!ret)
2925 /* We use last_read_req because sync_to()
2926 * might have just caused seqno wrap under
2927 * the radar.
2928 */
2929 from->semaphore.sync_seqno[idx] =
2930 i915_gem_request_get_seqno(obj->last_read_req);
2931
2932 return ret;
2933 }
2934
i915_gem_object_finish_gtt(struct drm_i915_gem_object * obj)2935 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2936 {
2937 u32 old_write_domain, old_read_domains;
2938
2939 /* Force a pagefault for domain tracking on next user access */
2940 i915_gem_release_mmap(obj);
2941
2942 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2943 return;
2944
2945 /* Wait for any direct GTT access to complete */
2946 mb();
2947
2948 old_read_domains = obj->base.read_domains;
2949 old_write_domain = obj->base.write_domain;
2950
2951 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2952 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2953
2954 trace_i915_gem_object_change_domain(obj,
2955 old_read_domains,
2956 old_write_domain);
2957 }
2958
i915_vma_unbind(struct i915_vma * vma)2959 int i915_vma_unbind(struct i915_vma *vma)
2960 {
2961 struct drm_i915_gem_object *obj = vma->obj;
2962 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2963 int ret;
2964
2965 if (list_empty(&vma->vma_link))
2966 return 0;
2967
2968 if (!drm_mm_node_allocated(&vma->node)) {
2969 i915_gem_vma_destroy(vma);
2970 return 0;
2971 }
2972
2973 if (vma->pin_count)
2974 return -EBUSY;
2975
2976 BUG_ON(obj->pages == NULL);
2977
2978 ret = i915_gem_object_finish_gpu(obj);
2979 if (ret)
2980 return ret;
2981 /* Continue on if we fail due to EIO, the GPU is hung so we
2982 * should be safe and we need to cleanup or else we might
2983 * cause memory corruption through use-after-free.
2984 */
2985
2986 if (i915_is_ggtt(vma->vm) &&
2987 vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
2988 i915_gem_object_finish_gtt(obj);
2989
2990 /* release the fence reg _after_ flushing */
2991 ret = i915_gem_object_put_fence(obj);
2992 if (ret)
2993 return ret;
2994 }
2995
2996 trace_i915_vma_unbind(vma);
2997
2998 vma->unbind_vma(vma);
2999
3000 list_del_init(&vma->mm_list);
3001 if (i915_is_ggtt(vma->vm)) {
3002 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3003 obj->map_and_fenceable = false;
3004 } else if (vma->ggtt_view.pages) {
3005 sg_free_table(vma->ggtt_view.pages);
3006 kfree(vma->ggtt_view.pages);
3007 }
3008 vma->ggtt_view.pages = NULL;
3009 }
3010
3011 drm_mm_remove_node(&vma->node);
3012 i915_gem_vma_destroy(vma);
3013
3014 /* Since the unbound list is global, only move to that list if
3015 * no more VMAs exist. */
3016 if (list_empty(&obj->vma_list)) {
3017 /* Throw away the active reference before
3018 * moving to the unbound list. */
3019 i915_gem_object_retire(obj);
3020
3021 i915_gem_gtt_finish_object(obj);
3022 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3023 }
3024
3025 /* And finally now the object is completely decoupled from this vma,
3026 * we can drop its hold on the backing storage and allow it to be
3027 * reaped by the shrinker.
3028 */
3029 i915_gem_object_unpin_pages(obj);
3030
3031 return 0;
3032 }
3033
i915_gpu_idle(struct drm_device * dev)3034 int i915_gpu_idle(struct drm_device *dev)
3035 {
3036 struct drm_i915_private *dev_priv = dev->dev_private;
3037 struct intel_engine_cs *ring;
3038 int ret, i;
3039
3040 /* Flush everything onto the inactive list. */
3041 for_each_ring(ring, dev_priv, i) {
3042 if (!i915.enable_execlists) {
3043 ret = i915_switch_context(ring, ring->default_context);
3044 if (ret)
3045 return ret;
3046 }
3047
3048 ret = intel_ring_idle(ring);
3049 if (ret)
3050 return ret;
3051 }
3052
3053 return 0;
3054 }
3055
i965_write_fence_reg(struct drm_device * dev,int reg,struct drm_i915_gem_object * obj)3056 static void i965_write_fence_reg(struct drm_device *dev, int reg,
3057 struct drm_i915_gem_object *obj)
3058 {
3059 struct drm_i915_private *dev_priv = dev->dev_private;
3060 int fence_reg;
3061 int fence_pitch_shift;
3062
3063 if (INTEL_INFO(dev)->gen >= 6) {
3064 fence_reg = FENCE_REG_SANDYBRIDGE_0;
3065 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
3066 } else {
3067 fence_reg = FENCE_REG_965_0;
3068 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
3069 }
3070
3071 fence_reg += reg * 8;
3072
3073 /* To w/a incoherency with non-atomic 64-bit register updates,
3074 * we split the 64-bit update into two 32-bit writes. In order
3075 * for a partial fence not to be evaluated between writes, we
3076 * precede the update with write to turn off the fence register,
3077 * and only enable the fence as the last step.
3078 *
3079 * For extra levels of paranoia, we make sure each step lands
3080 * before applying the next step.
3081 */
3082 I915_WRITE(fence_reg, 0);
3083 POSTING_READ(fence_reg);
3084
3085 if (obj) {
3086 u32 size = i915_gem_obj_ggtt_size(obj);
3087 uint64_t val;
3088
3089 /* Adjust fence size to match tiled area */
3090 if (obj->tiling_mode != I915_TILING_NONE) {
3091 uint32_t row_size = obj->stride *
3092 (obj->tiling_mode == I915_TILING_Y ? 32 : 8);
3093 size = (size / row_size) * row_size;
3094 }
3095
3096 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
3097 0xfffff000) << 32;
3098 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
3099 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
3100 if (obj->tiling_mode == I915_TILING_Y)
3101 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
3102 val |= I965_FENCE_REG_VALID;
3103
3104 I915_WRITE(fence_reg + 4, val >> 32);
3105 POSTING_READ(fence_reg + 4);
3106
3107 I915_WRITE(fence_reg + 0, val);
3108 POSTING_READ(fence_reg);
3109 } else {
3110 I915_WRITE(fence_reg + 4, 0);
3111 POSTING_READ(fence_reg + 4);
3112 }
3113 }
3114
i915_write_fence_reg(struct drm_device * dev,int reg,struct drm_i915_gem_object * obj)3115 static void i915_write_fence_reg(struct drm_device *dev, int reg,
3116 struct drm_i915_gem_object *obj)
3117 {
3118 struct drm_i915_private *dev_priv = dev->dev_private;
3119 u32 val;
3120
3121 if (obj) {
3122 u32 size = i915_gem_obj_ggtt_size(obj);
3123 int pitch_val;
3124 int tile_width;
3125
3126 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
3127 (size & -size) != size ||
3128 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3129 "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
3130 i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
3131
3132 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
3133 tile_width = 128;
3134 else
3135 tile_width = 512;
3136
3137 /* Note: pitch better be a power of two tile widths */
3138 pitch_val = obj->stride / tile_width;
3139 pitch_val = ffs(pitch_val) - 1;
3140
3141 val = i915_gem_obj_ggtt_offset(obj);
3142 if (obj->tiling_mode == I915_TILING_Y)
3143 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3144 val |= I915_FENCE_SIZE_BITS(size);
3145 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3146 val |= I830_FENCE_REG_VALID;
3147 } else
3148 val = 0;
3149
3150 if (reg < 8)
3151 reg = FENCE_REG_830_0 + reg * 4;
3152 else
3153 reg = FENCE_REG_945_8 + (reg - 8) * 4;
3154
3155 I915_WRITE(reg, val);
3156 POSTING_READ(reg);
3157 }
3158
i830_write_fence_reg(struct drm_device * dev,int reg,struct drm_i915_gem_object * obj)3159 static void i830_write_fence_reg(struct drm_device *dev, int reg,
3160 struct drm_i915_gem_object *obj)
3161 {
3162 struct drm_i915_private *dev_priv = dev->dev_private;
3163 uint32_t val;
3164
3165 if (obj) {
3166 u32 size = i915_gem_obj_ggtt_size(obj);
3167 uint32_t pitch_val;
3168
3169 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
3170 (size & -size) != size ||
3171 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3172 "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
3173 i915_gem_obj_ggtt_offset(obj), size);
3174
3175 pitch_val = obj->stride / 128;
3176 pitch_val = ffs(pitch_val) - 1;
3177
3178 val = i915_gem_obj_ggtt_offset(obj);
3179 if (obj->tiling_mode == I915_TILING_Y)
3180 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3181 val |= I830_FENCE_SIZE_BITS(size);
3182 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3183 val |= I830_FENCE_REG_VALID;
3184 } else
3185 val = 0;
3186
3187 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
3188 POSTING_READ(FENCE_REG_830_0 + reg * 4);
3189 }
3190
i915_gem_object_needs_mb(struct drm_i915_gem_object * obj)3191 inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
3192 {
3193 return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
3194 }
3195
i915_gem_write_fence(struct drm_device * dev,int reg,struct drm_i915_gem_object * obj)3196 static void i915_gem_write_fence(struct drm_device *dev, int reg,
3197 struct drm_i915_gem_object *obj)
3198 {
3199 struct drm_i915_private *dev_priv = dev->dev_private;
3200
3201 /* Ensure that all CPU reads are completed before installing a fence
3202 * and all writes before removing the fence.
3203 */
3204 if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
3205 mb();
3206
3207 WARN(obj && (!obj->stride || !obj->tiling_mode),
3208 "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
3209 obj->stride, obj->tiling_mode);
3210
3211 if (IS_GEN2(dev))
3212 i830_write_fence_reg(dev, reg, obj);
3213 else if (IS_GEN3(dev))
3214 i915_write_fence_reg(dev, reg, obj);
3215 else if (INTEL_INFO(dev)->gen >= 4)
3216 i965_write_fence_reg(dev, reg, obj);
3217
3218 /* And similarly be paranoid that no direct access to this region
3219 * is reordered to before the fence is installed.
3220 */
3221 if (i915_gem_object_needs_mb(obj))
3222 mb();
3223 }
3224
fence_number(struct drm_i915_private * dev_priv,struct drm_i915_fence_reg * fence)3225 static inline int fence_number(struct drm_i915_private *dev_priv,
3226 struct drm_i915_fence_reg *fence)
3227 {
3228 return fence - dev_priv->fence_regs;
3229 }
3230
i915_gem_object_update_fence(struct drm_i915_gem_object * obj,struct drm_i915_fence_reg * fence,bool enable)3231 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
3232 struct drm_i915_fence_reg *fence,
3233 bool enable)
3234 {
3235 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3236 int reg = fence_number(dev_priv, fence);
3237
3238 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
3239
3240 if (enable) {
3241 obj->fence_reg = reg;
3242 fence->obj = obj;
3243 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
3244 } else {
3245 obj->fence_reg = I915_FENCE_REG_NONE;
3246 fence->obj = NULL;
3247 list_del_init(&fence->lru_list);
3248 }
3249 obj->fence_dirty = false;
3250 }
3251
3252 static int
i915_gem_object_wait_fence(struct drm_i915_gem_object * obj)3253 i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
3254 {
3255 if (obj->last_fenced_req) {
3256 int ret = i915_wait_request(obj->last_fenced_req);
3257 if (ret)
3258 return ret;
3259
3260 i915_gem_request_assign(&obj->last_fenced_req, NULL);
3261 }
3262
3263 return 0;
3264 }
3265
3266 int
i915_gem_object_put_fence(struct drm_i915_gem_object * obj)3267 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
3268 {
3269 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3270 struct drm_i915_fence_reg *fence;
3271 int ret;
3272
3273 ret = i915_gem_object_wait_fence(obj);
3274 if (ret)
3275 return ret;
3276
3277 if (obj->fence_reg == I915_FENCE_REG_NONE)
3278 return 0;
3279
3280 fence = &dev_priv->fence_regs[obj->fence_reg];
3281
3282 if (WARN_ON(fence->pin_count))
3283 return -EBUSY;
3284
3285 i915_gem_object_fence_lost(obj);
3286 i915_gem_object_update_fence(obj, fence, false);
3287
3288 return 0;
3289 }
3290
3291 static struct drm_i915_fence_reg *
i915_find_fence_reg(struct drm_device * dev)3292 i915_find_fence_reg(struct drm_device *dev)
3293 {
3294 struct drm_i915_private *dev_priv = dev->dev_private;
3295 struct drm_i915_fence_reg *reg, *avail;
3296 int i;
3297
3298 /* First try to find a free reg */
3299 avail = NULL;
3300 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
3301 reg = &dev_priv->fence_regs[i];
3302 if (!reg->obj)
3303 return reg;
3304
3305 if (!reg->pin_count)
3306 avail = reg;
3307 }
3308
3309 if (avail == NULL)
3310 goto deadlock;
3311
3312 /* None available, try to steal one or wait for a user to finish */
3313 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
3314 if (reg->pin_count)
3315 continue;
3316
3317 return reg;
3318 }
3319
3320 deadlock:
3321 /* Wait for completion of pending flips which consume fences */
3322 if (intel_has_pending_fb_unpin(dev))
3323 return ERR_PTR(-EAGAIN);
3324
3325 return ERR_PTR(-EDEADLK);
3326 }
3327
3328 /**
3329 * i915_gem_object_get_fence - set up fencing for an object
3330 * @obj: object to map through a fence reg
3331 *
3332 * When mapping objects through the GTT, userspace wants to be able to write
3333 * to them without having to worry about swizzling if the object is tiled.
3334 * This function walks the fence regs looking for a free one for @obj,
3335 * stealing one if it can't find any.
3336 *
3337 * It then sets up the reg based on the object's properties: address, pitch
3338 * and tiling format.
3339 *
3340 * For an untiled surface, this removes any existing fence.
3341 */
3342 int
i915_gem_object_get_fence(struct drm_i915_gem_object * obj)3343 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
3344 {
3345 struct drm_device *dev = obj->base.dev;
3346 struct drm_i915_private *dev_priv = dev->dev_private;
3347 bool enable = obj->tiling_mode != I915_TILING_NONE;
3348 struct drm_i915_fence_reg *reg;
3349 int ret;
3350
3351 /* Have we updated the tiling parameters upon the object and so
3352 * will need to serialise the write to the associated fence register?
3353 */
3354 if (obj->fence_dirty) {
3355 ret = i915_gem_object_wait_fence(obj);
3356 if (ret)
3357 return ret;
3358 }
3359
3360 /* Just update our place in the LRU if our fence is getting reused. */
3361 if (obj->fence_reg != I915_FENCE_REG_NONE) {
3362 reg = &dev_priv->fence_regs[obj->fence_reg];
3363 if (!obj->fence_dirty) {
3364 list_move_tail(®->lru_list,
3365 &dev_priv->mm.fence_list);
3366 return 0;
3367 }
3368 } else if (enable) {
3369 if (WARN_ON(!obj->map_and_fenceable))
3370 return -EINVAL;
3371
3372 reg = i915_find_fence_reg(dev);
3373 if (IS_ERR(reg))
3374 return PTR_ERR(reg);
3375
3376 if (reg->obj) {
3377 struct drm_i915_gem_object *old = reg->obj;
3378
3379 ret = i915_gem_object_wait_fence(old);
3380 if (ret)
3381 return ret;
3382
3383 i915_gem_object_fence_lost(old);
3384 }
3385 } else
3386 return 0;
3387
3388 i915_gem_object_update_fence(obj, reg, enable);
3389
3390 return 0;
3391 }
3392
i915_gem_valid_gtt_space(struct i915_vma * vma,unsigned long cache_level)3393 static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3394 unsigned long cache_level)
3395 {
3396 struct drm_mm_node *gtt_space = &vma->node;
3397 struct drm_mm_node *other;
3398
3399 /*
3400 * On some machines we have to be careful when putting differing types
3401 * of snoopable memory together to avoid the prefetcher crossing memory
3402 * domains and dying. During vm initialisation, we decide whether or not
3403 * these constraints apply and set the drm_mm.color_adjust
3404 * appropriately.
3405 */
3406 if (vma->vm->mm.color_adjust == NULL)
3407 return true;
3408
3409 if (!drm_mm_node_allocated(gtt_space))
3410 return true;
3411
3412 if (list_empty(>t_space->node_list))
3413 return true;
3414
3415 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3416 if (other->allocated && !other->hole_follows && other->color != cache_level)
3417 return false;
3418
3419 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3420 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3421 return false;
3422
3423 return true;
3424 }
3425
3426 /**
3427 * Finds free space in the GTT aperture and binds the object there.
3428 */
3429 static struct i915_vma *
i915_gem_object_bind_to_vm(struct drm_i915_gem_object * obj,struct i915_address_space * vm,const struct i915_ggtt_view * ggtt_view,unsigned alignment,uint64_t flags)3430 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3431 struct i915_address_space *vm,
3432 const struct i915_ggtt_view *ggtt_view,
3433 unsigned alignment,
3434 uint64_t flags)
3435 {
3436 struct drm_device *dev = obj->base.dev;
3437 struct drm_i915_private *dev_priv = dev->dev_private;
3438 u32 size, fence_size, fence_alignment, unfenced_alignment;
3439 unsigned long start =
3440 flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3441 unsigned long end =
3442 flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
3443 struct i915_vma *vma;
3444 int ret;
3445
3446 if(WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
3447 return ERR_PTR(-EINVAL);
3448
3449 fence_size = i915_gem_get_gtt_size(dev,
3450 obj->base.size,
3451 obj->tiling_mode);
3452 fence_alignment = i915_gem_get_gtt_alignment(dev,
3453 obj->base.size,
3454 obj->tiling_mode, true);
3455 unfenced_alignment =
3456 i915_gem_get_gtt_alignment(dev,
3457 obj->base.size,
3458 obj->tiling_mode, false);
3459
3460 if (alignment == 0)
3461 alignment = flags & PIN_MAPPABLE ? fence_alignment :
3462 unfenced_alignment;
3463 if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3464 DRM_DEBUG("Invalid object alignment requested %u\n", alignment);
3465 return ERR_PTR(-EINVAL);
3466 }
3467
3468 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3469
3470 /* If the object is bigger than the entire aperture, reject it early
3471 * before evicting everything in a vain attempt to find space.
3472 */
3473 if (obj->base.size > end) {
3474 DRM_DEBUG("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%lu\n",
3475 obj->base.size,
3476 flags & PIN_MAPPABLE ? "mappable" : "total",
3477 end);
3478 return ERR_PTR(-E2BIG);
3479 }
3480
3481 ret = i915_gem_object_get_pages(obj);
3482 if (ret)
3483 return ERR_PTR(ret);
3484
3485 i915_gem_object_pin_pages(obj);
3486
3487 vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
3488 i915_gem_obj_lookup_or_create_vma(obj, vm);
3489
3490 if (IS_ERR(vma))
3491 goto err_unpin;
3492
3493 search_free:
3494 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3495 size, alignment,
3496 obj->cache_level,
3497 start, end,
3498 DRM_MM_SEARCH_DEFAULT,
3499 DRM_MM_CREATE_DEFAULT);
3500 if (ret) {
3501 ret = i915_gem_evict_something(dev, vm, size, alignment,
3502 obj->cache_level,
3503 start, end,
3504 flags);
3505 if (ret == 0)
3506 goto search_free;
3507
3508 goto err_free_vma;
3509 }
3510 if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
3511 ret = -EINVAL;
3512 goto err_remove_node;
3513 }
3514
3515 ret = i915_gem_gtt_prepare_object(obj);
3516 if (ret)
3517 goto err_remove_node;
3518
3519 /* allocate before insert / bind */
3520 if (vma->vm->allocate_va_range) {
3521 trace_i915_va_alloc(vma->vm, vma->node.start, vma->node.size,
3522 VM_TO_TRACE_NAME(vma->vm));
3523 ret = vma->vm->allocate_va_range(vma->vm,
3524 vma->node.start,
3525 vma->node.size);
3526 if (ret)
3527 goto err_remove_node;
3528 }
3529
3530 trace_i915_vma_bind(vma, flags);
3531 ret = i915_vma_bind(vma, obj->cache_level,
3532 flags & PIN_GLOBAL ? GLOBAL_BIND : 0);
3533 if (ret)
3534 goto err_finish_gtt;
3535
3536 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3537 list_add_tail(&vma->mm_list, &vm->inactive_list);
3538
3539 return vma;
3540
3541 err_finish_gtt:
3542 i915_gem_gtt_finish_object(obj);
3543 err_remove_node:
3544 drm_mm_remove_node(&vma->node);
3545 err_free_vma:
3546 i915_gem_vma_destroy(vma);
3547 vma = ERR_PTR(ret);
3548 err_unpin:
3549 i915_gem_object_unpin_pages(obj);
3550 return vma;
3551 }
3552
3553 bool
i915_gem_clflush_object(struct drm_i915_gem_object * obj,bool force)3554 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3555 bool force)
3556 {
3557 /* If we don't have a page list set up, then we're not pinned
3558 * to GPU, and we can ignore the cache flush because it'll happen
3559 * again at bind time.
3560 */
3561 if (obj->pages == NULL)
3562 return false;
3563
3564 /*
3565 * Stolen memory is always coherent with the GPU as it is explicitly
3566 * marked as wc by the system, or the system is cache-coherent.
3567 */
3568 if (obj->stolen || obj->phys_handle)
3569 return false;
3570
3571 /* If the GPU is snooping the contents of the CPU cache,
3572 * we do not need to manually clear the CPU cache lines. However,
3573 * the caches are only snooped when the render cache is
3574 * flushed/invalidated. As we always have to emit invalidations
3575 * and flushes when moving into and out of the RENDER domain, correct
3576 * snooping behaviour occurs naturally as the result of our domain
3577 * tracking.
3578 */
3579 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3580 obj->cache_dirty = true;
3581 return false;
3582 }
3583
3584 trace_i915_gem_object_clflush(obj);
3585 drm_clflush_sg(obj->pages);
3586 obj->cache_dirty = false;
3587
3588 return true;
3589 }
3590
3591 /** Flushes the GTT write domain for the object if it's dirty. */
3592 static void
i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object * obj)3593 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3594 {
3595 uint32_t old_write_domain;
3596
3597 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3598 return;
3599
3600 /* No actual flushing is required for the GTT write domain. Writes
3601 * to it immediately go to main memory as far as we know, so there's
3602 * no chipset flush. It also doesn't land in render cache.
3603 *
3604 * However, we do have to enforce the order so that all writes through
3605 * the GTT land before any writes to the device, such as updates to
3606 * the GATT itself.
3607 */
3608 wmb();
3609
3610 old_write_domain = obj->base.write_domain;
3611 obj->base.write_domain = 0;
3612
3613 intel_fb_obj_flush(obj, false);
3614
3615 trace_i915_gem_object_change_domain(obj,
3616 obj->base.read_domains,
3617 old_write_domain);
3618 }
3619
3620 /** Flushes the CPU write domain for the object if it's dirty. */
3621 static void
i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object * obj)3622 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3623 {
3624 uint32_t old_write_domain;
3625
3626 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3627 return;
3628
3629 if (i915_gem_clflush_object(obj, obj->pin_display))
3630 i915_gem_chipset_flush(obj->base.dev);
3631
3632 old_write_domain = obj->base.write_domain;
3633 obj->base.write_domain = 0;
3634
3635 intel_fb_obj_flush(obj, false);
3636
3637 trace_i915_gem_object_change_domain(obj,
3638 obj->base.read_domains,
3639 old_write_domain);
3640 }
3641
3642 /**
3643 * Moves a single object to the GTT read, and possibly write domain.
3644 *
3645 * This function returns when the move is complete, including waiting on
3646 * flushes to occur.
3647 */
3648 int
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object * obj,bool write)3649 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3650 {
3651 uint32_t old_write_domain, old_read_domains;
3652 struct i915_vma *vma;
3653 int ret;
3654
3655 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3656 return 0;
3657
3658 ret = i915_gem_object_wait_rendering(obj, !write);
3659 if (ret)
3660 return ret;
3661
3662 i915_gem_object_retire(obj);
3663
3664 /* Flush and acquire obj->pages so that we are coherent through
3665 * direct access in memory with previous cached writes through
3666 * shmemfs and that our cache domain tracking remains valid.
3667 * For example, if the obj->filp was moved to swap without us
3668 * being notified and releasing the pages, we would mistakenly
3669 * continue to assume that the obj remained out of the CPU cached
3670 * domain.
3671 */
3672 ret = i915_gem_object_get_pages(obj);
3673 if (ret)
3674 return ret;
3675
3676 i915_gem_object_flush_cpu_write_domain(obj);
3677
3678 /* Serialise direct access to this object with the barriers for
3679 * coherent writes from the GPU, by effectively invalidating the
3680 * GTT domain upon first access.
3681 */
3682 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3683 mb();
3684
3685 old_write_domain = obj->base.write_domain;
3686 old_read_domains = obj->base.read_domains;
3687
3688 /* It should now be out of any other write domains, and we can update
3689 * the domain values for our changes.
3690 */
3691 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3692 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3693 if (write) {
3694 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3695 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3696 obj->dirty = 1;
3697 }
3698
3699 if (write)
3700 intel_fb_obj_invalidate(obj, NULL, ORIGIN_GTT);
3701
3702 trace_i915_gem_object_change_domain(obj,
3703 old_read_domains,
3704 old_write_domain);
3705
3706 /* And bump the LRU for this access */
3707 vma = i915_gem_obj_to_ggtt(obj);
3708 if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
3709 list_move_tail(&vma->mm_list,
3710 &to_i915(obj->base.dev)->gtt.base.inactive_list);
3711
3712 return 0;
3713 }
3714
i915_gem_object_set_cache_level(struct drm_i915_gem_object * obj,enum i915_cache_level cache_level)3715 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3716 enum i915_cache_level cache_level)
3717 {
3718 struct drm_device *dev = obj->base.dev;
3719 struct i915_vma *vma, *next;
3720 int ret;
3721
3722 if (obj->cache_level == cache_level)
3723 return 0;
3724
3725 if (i915_gem_obj_is_pinned(obj)) {
3726 DRM_DEBUG("can not change the cache level of pinned objects\n");
3727 return -EBUSY;
3728 }
3729
3730 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
3731 if (!i915_gem_valid_gtt_space(vma, cache_level)) {
3732 ret = i915_vma_unbind(vma);
3733 if (ret)
3734 return ret;
3735 }
3736 }
3737
3738 if (i915_gem_obj_bound_any(obj)) {
3739 ret = i915_gem_object_finish_gpu(obj);
3740 if (ret)
3741 return ret;
3742
3743 i915_gem_object_finish_gtt(obj);
3744
3745 /* Before SandyBridge, you could not use tiling or fence
3746 * registers with snooped memory, so relinquish any fences
3747 * currently pointing to our region in the aperture.
3748 */
3749 if (INTEL_INFO(dev)->gen < 6) {
3750 ret = i915_gem_object_put_fence(obj);
3751 if (ret)
3752 return ret;
3753 }
3754
3755 list_for_each_entry(vma, &obj->vma_list, vma_link)
3756 if (drm_mm_node_allocated(&vma->node)) {
3757 ret = i915_vma_bind(vma, cache_level,
3758 vma->bound & GLOBAL_BIND);
3759 if (ret)
3760 return ret;
3761 }
3762 }
3763
3764 list_for_each_entry(vma, &obj->vma_list, vma_link)
3765 vma->node.color = cache_level;
3766 obj->cache_level = cache_level;
3767
3768 if (obj->cache_dirty &&
3769 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
3770 cpu_write_needs_clflush(obj)) {
3771 if (i915_gem_clflush_object(obj, true))
3772 i915_gem_chipset_flush(obj->base.dev);
3773 }
3774
3775 return 0;
3776 }
3777
i915_gem_get_caching_ioctl(struct drm_device * dev,void * data,struct drm_file * file)3778 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3779 struct drm_file *file)
3780 {
3781 struct drm_i915_gem_caching *args = data;
3782 struct drm_i915_gem_object *obj;
3783 int ret;
3784
3785 ret = i915_mutex_lock_interruptible(dev);
3786 if (ret)
3787 return ret;
3788
3789 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3790 if (&obj->base == NULL) {
3791 ret = -ENOENT;
3792 goto unlock;
3793 }
3794
3795 switch (obj->cache_level) {
3796 case I915_CACHE_LLC:
3797 case I915_CACHE_L3_LLC:
3798 args->caching = I915_CACHING_CACHED;
3799 break;
3800
3801 case I915_CACHE_WT:
3802 args->caching = I915_CACHING_DISPLAY;
3803 break;
3804
3805 default:
3806 args->caching = I915_CACHING_NONE;
3807 break;
3808 }
3809
3810 drm_gem_object_unreference(&obj->base);
3811 unlock:
3812 mutex_unlock(&dev->struct_mutex);
3813 return ret;
3814 }
3815
i915_gem_set_caching_ioctl(struct drm_device * dev,void * data,struct drm_file * file)3816 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3817 struct drm_file *file)
3818 {
3819 struct drm_i915_gem_caching *args = data;
3820 struct drm_i915_gem_object *obj;
3821 enum i915_cache_level level;
3822 int ret;
3823
3824 switch (args->caching) {
3825 case I915_CACHING_NONE:
3826 level = I915_CACHE_NONE;
3827 break;
3828 case I915_CACHING_CACHED:
3829 level = I915_CACHE_LLC;
3830 break;
3831 case I915_CACHING_DISPLAY:
3832 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3833 break;
3834 default:
3835 return -EINVAL;
3836 }
3837
3838 ret = i915_mutex_lock_interruptible(dev);
3839 if (ret)
3840 return ret;
3841
3842 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3843 if (&obj->base == NULL) {
3844 ret = -ENOENT;
3845 goto unlock;
3846 }
3847
3848 ret = i915_gem_object_set_cache_level(obj, level);
3849
3850 drm_gem_object_unreference(&obj->base);
3851 unlock:
3852 mutex_unlock(&dev->struct_mutex);
3853 return ret;
3854 }
3855
is_pin_display(struct drm_i915_gem_object * obj)3856 static bool is_pin_display(struct drm_i915_gem_object *obj)
3857 {
3858 struct i915_vma *vma;
3859
3860 vma = i915_gem_obj_to_ggtt(obj);
3861 if (!vma)
3862 return false;
3863
3864 /* There are 2 sources that pin objects:
3865 * 1. The display engine (scanouts, sprites, cursors);
3866 * 2. Reservations for execbuffer;
3867 *
3868 * We can ignore reservations as we hold the struct_mutex and
3869 * are only called outside of the reservation path.
3870 */
3871 return vma->pin_count;
3872 }
3873
3874 /*
3875 * Prepare buffer for display plane (scanout, cursors, etc).
3876 * Can be called from an uninterruptible phase (modesetting) and allows
3877 * any flushes to be pipelined (for pageflips).
3878 */
3879 int
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object * obj,u32 alignment,struct intel_engine_cs * pipelined,const struct i915_ggtt_view * view)3880 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3881 u32 alignment,
3882 struct intel_engine_cs *pipelined,
3883 const struct i915_ggtt_view *view)
3884 {
3885 u32 old_read_domains, old_write_domain;
3886 bool was_pin_display;
3887 int ret;
3888
3889 if (pipelined != i915_gem_request_get_ring(obj->last_read_req)) {
3890 ret = i915_gem_object_sync(obj, pipelined);
3891 if (ret)
3892 return ret;
3893 }
3894
3895 /* Mark the pin_display early so that we account for the
3896 * display coherency whilst setting up the cache domains.
3897 */
3898 was_pin_display = obj->pin_display;
3899 obj->pin_display = true;
3900
3901 /* The display engine is not coherent with the LLC cache on gen6. As
3902 * a result, we make sure that the pinning that is about to occur is
3903 * done with uncached PTEs. This is lowest common denominator for all
3904 * chipsets.
3905 *
3906 * However for gen6+, we could do better by using the GFDT bit instead
3907 * of uncaching, which would allow us to flush all the LLC-cached data
3908 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3909 */
3910 ret = i915_gem_object_set_cache_level(obj,
3911 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
3912 if (ret)
3913 goto err_unpin_display;
3914
3915 /* As the user may map the buffer once pinned in the display plane
3916 * (e.g. libkms for the bootup splash), we have to ensure that we
3917 * always use map_and_fenceable for all scanout buffers.
3918 */
3919 ret = i915_gem_object_ggtt_pin(obj, view, alignment,
3920 view->type == I915_GGTT_VIEW_NORMAL ?
3921 PIN_MAPPABLE : 0);
3922 if (ret)
3923 goto err_unpin_display;
3924
3925 i915_gem_object_flush_cpu_write_domain(obj);
3926
3927 old_write_domain = obj->base.write_domain;
3928 old_read_domains = obj->base.read_domains;
3929
3930 /* It should now be out of any other write domains, and we can update
3931 * the domain values for our changes.
3932 */
3933 obj->base.write_domain = 0;
3934 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3935
3936 trace_i915_gem_object_change_domain(obj,
3937 old_read_domains,
3938 old_write_domain);
3939
3940 return 0;
3941
3942 err_unpin_display:
3943 WARN_ON(was_pin_display != is_pin_display(obj));
3944 obj->pin_display = was_pin_display;
3945 return ret;
3946 }
3947
3948 void
i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object * obj,const struct i915_ggtt_view * view)3949 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
3950 const struct i915_ggtt_view *view)
3951 {
3952 i915_gem_object_ggtt_unpin_view(obj, view);
3953
3954 obj->pin_display = is_pin_display(obj);
3955 }
3956
3957 int
i915_gem_object_finish_gpu(struct drm_i915_gem_object * obj)3958 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3959 {
3960 int ret;
3961
3962 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3963 return 0;
3964
3965 ret = i915_gem_object_wait_rendering(obj, false);
3966 if (ret)
3967 return ret;
3968
3969 /* Ensure that we invalidate the GPU's caches and TLBs. */
3970 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3971 return 0;
3972 }
3973
3974 /**
3975 * Moves a single object to the CPU read, and possibly write domain.
3976 *
3977 * This function returns when the move is complete, including waiting on
3978 * flushes to occur.
3979 */
3980 int
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object * obj,bool write)3981 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3982 {
3983 uint32_t old_write_domain, old_read_domains;
3984 int ret;
3985
3986 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3987 return 0;
3988
3989 ret = i915_gem_object_wait_rendering(obj, !write);
3990 if (ret)
3991 return ret;
3992
3993 i915_gem_object_retire(obj);
3994 i915_gem_object_flush_gtt_write_domain(obj);
3995
3996 old_write_domain = obj->base.write_domain;
3997 old_read_domains = obj->base.read_domains;
3998
3999 /* Flush the CPU cache if it's still invalid. */
4000 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4001 i915_gem_clflush_object(obj, false);
4002
4003 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4004 }
4005
4006 /* It should now be out of any other write domains, and we can update
4007 * the domain values for our changes.
4008 */
4009 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
4010
4011 /* If we're writing through the CPU, then the GPU read domains will
4012 * need to be invalidated at next use.
4013 */
4014 if (write) {
4015 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4016 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4017 }
4018
4019 if (write)
4020 intel_fb_obj_invalidate(obj, NULL, ORIGIN_CPU);
4021
4022 trace_i915_gem_object_change_domain(obj,
4023 old_read_domains,
4024 old_write_domain);
4025
4026 return 0;
4027 }
4028
4029 /* Throttle our rendering by waiting until the ring has completed our requests
4030 * emitted over 20 msec ago.
4031 *
4032 * Note that if we were to use the current jiffies each time around the loop,
4033 * we wouldn't escape the function with any frames outstanding if the time to
4034 * render a frame was over 20ms.
4035 *
4036 * This should get us reasonable parallelism between CPU and GPU but also
4037 * relatively low latency when blocking on a particular request to finish.
4038 */
4039 static int
i915_gem_ring_throttle(struct drm_device * dev,struct drm_file * file)4040 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4041 {
4042 struct drm_i915_private *dev_priv = dev->dev_private;
4043 struct drm_i915_file_private *file_priv = file->driver_priv;
4044 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
4045 struct drm_i915_gem_request *request, *target = NULL;
4046 unsigned reset_counter;
4047 int ret;
4048
4049 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
4050 if (ret)
4051 return ret;
4052
4053 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
4054 if (ret)
4055 return ret;
4056
4057 spin_lock(&file_priv->mm.lock);
4058 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4059 if (time_after_eq(request->emitted_jiffies, recent_enough))
4060 break;
4061
4062 target = request;
4063 }
4064 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
4065 if (target)
4066 i915_gem_request_reference(target);
4067 spin_unlock(&file_priv->mm.lock);
4068
4069 if (target == NULL)
4070 return 0;
4071
4072 ret = __i915_wait_request(target, reset_counter, true, NULL, NULL);
4073 if (ret == 0)
4074 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4075
4076 mutex_lock(&dev->struct_mutex);
4077 i915_gem_request_unreference(target);
4078 mutex_unlock(&dev->struct_mutex);
4079
4080 return ret;
4081 }
4082
4083 static bool
i915_vma_misplaced(struct i915_vma * vma,uint32_t alignment,uint64_t flags)4084 i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4085 {
4086 struct drm_i915_gem_object *obj = vma->obj;
4087
4088 if (alignment &&
4089 vma->node.start & (alignment - 1))
4090 return true;
4091
4092 if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4093 return true;
4094
4095 if (flags & PIN_OFFSET_BIAS &&
4096 vma->node.start < (flags & PIN_OFFSET_MASK))
4097 return true;
4098
4099 return false;
4100 }
4101
4102 static int
i915_gem_object_do_pin(struct drm_i915_gem_object * obj,struct i915_address_space * vm,const struct i915_ggtt_view * ggtt_view,uint32_t alignment,uint64_t flags)4103 i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
4104 struct i915_address_space *vm,
4105 const struct i915_ggtt_view *ggtt_view,
4106 uint32_t alignment,
4107 uint64_t flags)
4108 {
4109 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4110 struct i915_vma *vma;
4111 unsigned bound;
4112 int ret;
4113
4114 if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4115 return -ENODEV;
4116
4117 if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4118 return -EINVAL;
4119
4120 if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
4121 return -EINVAL;
4122
4123 if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
4124 return -EINVAL;
4125
4126 vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
4127 i915_gem_obj_to_vma(obj, vm);
4128
4129 if (IS_ERR(vma))
4130 return PTR_ERR(vma);
4131
4132 if (vma) {
4133 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4134 return -EBUSY;
4135
4136 if (i915_vma_misplaced(vma, alignment, flags)) {
4137 unsigned long offset;
4138 offset = ggtt_view ? i915_gem_obj_ggtt_offset_view(obj, ggtt_view) :
4139 i915_gem_obj_offset(obj, vm);
4140 WARN(vma->pin_count,
4141 "bo is already pinned in %s with incorrect alignment:"
4142 " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
4143 " obj->map_and_fenceable=%d\n",
4144 ggtt_view ? "ggtt" : "ppgtt",
4145 offset,
4146 alignment,
4147 !!(flags & PIN_MAPPABLE),
4148 obj->map_and_fenceable);
4149 ret = i915_vma_unbind(vma);
4150 if (ret)
4151 return ret;
4152
4153 vma = NULL;
4154 }
4155 }
4156
4157 bound = vma ? vma->bound : 0;
4158 if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4159 /* In true PPGTT, bind has possibly changed PDEs, which
4160 * means we must do a context switch before the GPU can
4161 * accurately read some of the VMAs.
4162 */
4163 vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
4164 flags);
4165 if (IS_ERR(vma))
4166 return PTR_ERR(vma);
4167 }
4168
4169 if (flags & PIN_GLOBAL && !(vma->bound & GLOBAL_BIND)) {
4170 ret = i915_vma_bind(vma, obj->cache_level, GLOBAL_BIND);
4171 if (ret)
4172 return ret;
4173 }
4174
4175 if ((bound ^ vma->bound) & GLOBAL_BIND) {
4176 bool mappable, fenceable;
4177 u32 fence_size, fence_alignment;
4178
4179 fence_size = i915_gem_get_gtt_size(obj->base.dev,
4180 obj->base.size,
4181 obj->tiling_mode);
4182 fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
4183 obj->base.size,
4184 obj->tiling_mode,
4185 true);
4186
4187 fenceable = (vma->node.size == fence_size &&
4188 (vma->node.start & (fence_alignment - 1)) == 0);
4189
4190 mappable = (vma->node.start + fence_size <=
4191 dev_priv->gtt.mappable_end);
4192
4193 obj->map_and_fenceable = mappable && fenceable;
4194 }
4195
4196 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
4197
4198 vma->pin_count++;
4199 if (flags & PIN_MAPPABLE)
4200 obj->pin_mappable |= true;
4201
4202 return 0;
4203 }
4204
4205 int
i915_gem_object_pin(struct drm_i915_gem_object * obj,struct i915_address_space * vm,uint32_t alignment,uint64_t flags)4206 i915_gem_object_pin(struct drm_i915_gem_object *obj,
4207 struct i915_address_space *vm,
4208 uint32_t alignment,
4209 uint64_t flags)
4210 {
4211 return i915_gem_object_do_pin(obj, vm,
4212 i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
4213 alignment, flags);
4214 }
4215
4216 int
i915_gem_object_ggtt_pin(struct drm_i915_gem_object * obj,const struct i915_ggtt_view * view,uint32_t alignment,uint64_t flags)4217 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4218 const struct i915_ggtt_view *view,
4219 uint32_t alignment,
4220 uint64_t flags)
4221 {
4222 if (WARN_ONCE(!view, "no view specified"))
4223 return -EINVAL;
4224
4225 return i915_gem_object_do_pin(obj, i915_obj_to_ggtt(obj), view,
4226 alignment, flags | PIN_GLOBAL);
4227 }
4228
4229 void
i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object * obj,const struct i915_ggtt_view * view)4230 i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
4231 const struct i915_ggtt_view *view)
4232 {
4233 struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
4234
4235 BUG_ON(!vma);
4236 WARN_ON(vma->pin_count == 0);
4237 WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
4238
4239 if (--vma->pin_count == 0 && view->type == I915_GGTT_VIEW_NORMAL)
4240 obj->pin_mappable = false;
4241 }
4242
4243 bool
i915_gem_object_pin_fence(struct drm_i915_gem_object * obj)4244 i915_gem_object_pin_fence(struct drm_i915_gem_object *obj)
4245 {
4246 if (obj->fence_reg != I915_FENCE_REG_NONE) {
4247 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4248 struct i915_vma *ggtt_vma = i915_gem_obj_to_ggtt(obj);
4249
4250 WARN_ON(!ggtt_vma ||
4251 dev_priv->fence_regs[obj->fence_reg].pin_count >
4252 ggtt_vma->pin_count);
4253 dev_priv->fence_regs[obj->fence_reg].pin_count++;
4254 return true;
4255 } else
4256 return false;
4257 }
4258
4259 void
i915_gem_object_unpin_fence(struct drm_i915_gem_object * obj)4260 i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj)
4261 {
4262 if (obj->fence_reg != I915_FENCE_REG_NONE) {
4263 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4264 WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count <= 0);
4265 dev_priv->fence_regs[obj->fence_reg].pin_count--;
4266 }
4267 }
4268
4269 int
i915_gem_busy_ioctl(struct drm_device * dev,void * data,struct drm_file * file)4270 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4271 struct drm_file *file)
4272 {
4273 struct drm_i915_gem_busy *args = data;
4274 struct drm_i915_gem_object *obj;
4275 int ret;
4276
4277 ret = i915_mutex_lock_interruptible(dev);
4278 if (ret)
4279 return ret;
4280
4281 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4282 if (&obj->base == NULL) {
4283 ret = -ENOENT;
4284 goto unlock;
4285 }
4286
4287 /* Count all active objects as busy, even if they are currently not used
4288 * by the gpu. Users of this interface expect objects to eventually
4289 * become non-busy without any further actions, therefore emit any
4290 * necessary flushes here.
4291 */
4292 ret = i915_gem_object_flush_active(obj);
4293
4294 args->busy = obj->active;
4295 if (obj->last_read_req) {
4296 struct intel_engine_cs *ring;
4297 BUILD_BUG_ON(I915_NUM_RINGS > 16);
4298 ring = i915_gem_request_get_ring(obj->last_read_req);
4299 args->busy |= intel_ring_flag(ring) << 16;
4300 }
4301
4302 drm_gem_object_unreference(&obj->base);
4303 unlock:
4304 mutex_unlock(&dev->struct_mutex);
4305 return ret;
4306 }
4307
4308 int
i915_gem_throttle_ioctl(struct drm_device * dev,void * data,struct drm_file * file_priv)4309 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4310 struct drm_file *file_priv)
4311 {
4312 return i915_gem_ring_throttle(dev, file_priv);
4313 }
4314
4315 int
i915_gem_madvise_ioctl(struct drm_device * dev,void * data,struct drm_file * file_priv)4316 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4317 struct drm_file *file_priv)
4318 {
4319 struct drm_i915_private *dev_priv = dev->dev_private;
4320 struct drm_i915_gem_madvise *args = data;
4321 struct drm_i915_gem_object *obj;
4322 int ret;
4323
4324 switch (args->madv) {
4325 case I915_MADV_DONTNEED:
4326 case I915_MADV_WILLNEED:
4327 break;
4328 default:
4329 return -EINVAL;
4330 }
4331
4332 ret = i915_mutex_lock_interruptible(dev);
4333 if (ret)
4334 return ret;
4335
4336 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4337 if (&obj->base == NULL) {
4338 ret = -ENOENT;
4339 goto unlock;
4340 }
4341
4342 if (i915_gem_obj_is_pinned(obj)) {
4343 ret = -EINVAL;
4344 goto out;
4345 }
4346
4347 if (obj->pages &&
4348 obj->tiling_mode != I915_TILING_NONE &&
4349 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4350 if (obj->madv == I915_MADV_WILLNEED)
4351 i915_gem_object_unpin_pages(obj);
4352 if (args->madv == I915_MADV_WILLNEED)
4353 i915_gem_object_pin_pages(obj);
4354 }
4355
4356 if (obj->madv != __I915_MADV_PURGED)
4357 obj->madv = args->madv;
4358
4359 /* if the object is no longer attached, discard its backing storage */
4360 if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
4361 i915_gem_object_truncate(obj);
4362
4363 args->retained = obj->madv != __I915_MADV_PURGED;
4364
4365 out:
4366 drm_gem_object_unreference(&obj->base);
4367 unlock:
4368 mutex_unlock(&dev->struct_mutex);
4369 return ret;
4370 }
4371
i915_gem_object_init(struct drm_i915_gem_object * obj,const struct drm_i915_gem_object_ops * ops)4372 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4373 const struct drm_i915_gem_object_ops *ops)
4374 {
4375 INIT_LIST_HEAD(&obj->global_list);
4376 INIT_LIST_HEAD(&obj->ring_list);
4377 INIT_LIST_HEAD(&obj->obj_exec_link);
4378 INIT_LIST_HEAD(&obj->vma_list);
4379 INIT_LIST_HEAD(&obj->batch_pool_list);
4380
4381 obj->ops = ops;
4382
4383 obj->fence_reg = I915_FENCE_REG_NONE;
4384 obj->madv = I915_MADV_WILLNEED;
4385
4386 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4387 }
4388
4389 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4390 .get_pages = i915_gem_object_get_pages_gtt,
4391 .put_pages = i915_gem_object_put_pages_gtt,
4392 };
4393
i915_gem_alloc_object(struct drm_device * dev,size_t size)4394 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4395 size_t size)
4396 {
4397 struct drm_i915_gem_object *obj;
4398 struct address_space *mapping;
4399 gfp_t mask;
4400
4401 obj = i915_gem_object_alloc(dev);
4402 if (obj == NULL)
4403 return NULL;
4404
4405 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4406 i915_gem_object_free(obj);
4407 return NULL;
4408 }
4409
4410 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4411 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4412 /* 965gm cannot relocate objects above 4GiB. */
4413 mask &= ~__GFP_HIGHMEM;
4414 mask |= __GFP_DMA32;
4415 }
4416
4417 mapping = file_inode(obj->base.filp)->i_mapping;
4418 mapping_set_gfp_mask(mapping, mask);
4419
4420 i915_gem_object_init(obj, &i915_gem_object_ops);
4421
4422 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4423 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4424
4425 if (HAS_LLC(dev)) {
4426 /* On some devices, we can have the GPU use the LLC (the CPU
4427 * cache) for about a 10% performance improvement
4428 * compared to uncached. Graphics requests other than
4429 * display scanout are coherent with the CPU in
4430 * accessing this cache. This means in this mode we
4431 * don't need to clflush on the CPU side, and on the
4432 * GPU side we only need to flush internal caches to
4433 * get data visible to the CPU.
4434 *
4435 * However, we maintain the display planes as UC, and so
4436 * need to rebind when first used as such.
4437 */
4438 obj->cache_level = I915_CACHE_LLC;
4439 } else
4440 obj->cache_level = I915_CACHE_NONE;
4441
4442 trace_i915_gem_object_create(obj);
4443
4444 return obj;
4445 }
4446
discard_backing_storage(struct drm_i915_gem_object * obj)4447 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4448 {
4449 /* If we are the last user of the backing storage (be it shmemfs
4450 * pages or stolen etc), we know that the pages are going to be
4451 * immediately released. In this case, we can then skip copying
4452 * back the contents from the GPU.
4453 */
4454
4455 if (obj->madv != I915_MADV_WILLNEED)
4456 return false;
4457
4458 if (obj->base.filp == NULL)
4459 return true;
4460
4461 /* At first glance, this looks racy, but then again so would be
4462 * userspace racing mmap against close. However, the first external
4463 * reference to the filp can only be obtained through the
4464 * i915_gem_mmap_ioctl() which safeguards us against the user
4465 * acquiring such a reference whilst we are in the middle of
4466 * freeing the object.
4467 */
4468 return atomic_long_read(&obj->base.filp->f_count) == 1;
4469 }
4470
i915_gem_free_object(struct drm_gem_object * gem_obj)4471 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4472 {
4473 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4474 struct drm_device *dev = obj->base.dev;
4475 struct drm_i915_private *dev_priv = dev->dev_private;
4476 struct i915_vma *vma, *next;
4477
4478 intel_runtime_pm_get(dev_priv);
4479
4480 trace_i915_gem_object_destroy(obj);
4481
4482 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4483 int ret;
4484
4485 vma->pin_count = 0;
4486 ret = i915_vma_unbind(vma);
4487 if (WARN_ON(ret == -ERESTARTSYS)) {
4488 bool was_interruptible;
4489
4490 was_interruptible = dev_priv->mm.interruptible;
4491 dev_priv->mm.interruptible = false;
4492
4493 WARN_ON(i915_vma_unbind(vma));
4494
4495 dev_priv->mm.interruptible = was_interruptible;
4496 }
4497 }
4498
4499 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4500 * before progressing. */
4501 if (obj->stolen)
4502 i915_gem_object_unpin_pages(obj);
4503
4504 WARN_ON(obj->frontbuffer_bits);
4505
4506 if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4507 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4508 obj->tiling_mode != I915_TILING_NONE)
4509 i915_gem_object_unpin_pages(obj);
4510
4511 if (WARN_ON(obj->pages_pin_count))
4512 obj->pages_pin_count = 0;
4513 if (discard_backing_storage(obj))
4514 obj->madv = I915_MADV_DONTNEED;
4515 i915_gem_object_put_pages(obj);
4516 i915_gem_object_free_mmap_offset(obj);
4517
4518 BUG_ON(obj->pages);
4519
4520 if (obj->base.import_attach)
4521 drm_prime_gem_destroy(&obj->base, NULL);
4522
4523 if (obj->ops->release)
4524 obj->ops->release(obj);
4525
4526 drm_gem_object_release(&obj->base);
4527 i915_gem_info_remove_obj(dev_priv, obj->base.size);
4528
4529 kfree(obj->bit_17);
4530 i915_gem_object_free(obj);
4531
4532 intel_runtime_pm_put(dev_priv);
4533 }
4534
i915_gem_obj_to_vma(struct drm_i915_gem_object * obj,struct i915_address_space * vm)4535 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4536 struct i915_address_space *vm)
4537 {
4538 struct i915_vma *vma;
4539 list_for_each_entry(vma, &obj->vma_list, vma_link) {
4540 if (i915_is_ggtt(vma->vm) &&
4541 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
4542 continue;
4543 if (vma->vm == vm)
4544 return vma;
4545 }
4546 return NULL;
4547 }
4548
i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object * obj,const struct i915_ggtt_view * view)4549 struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
4550 const struct i915_ggtt_view *view)
4551 {
4552 struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
4553 struct i915_vma *vma;
4554
4555 if (WARN_ONCE(!view, "no view specified"))
4556 return ERR_PTR(-EINVAL);
4557
4558 list_for_each_entry(vma, &obj->vma_list, vma_link)
4559 if (vma->vm == ggtt &&
4560 i915_ggtt_view_equal(&vma->ggtt_view, view))
4561 return vma;
4562 return NULL;
4563 }
4564
i915_gem_vma_destroy(struct i915_vma * vma)4565 void i915_gem_vma_destroy(struct i915_vma *vma)
4566 {
4567 struct i915_address_space *vm = NULL;
4568 WARN_ON(vma->node.allocated);
4569
4570 /* Keep the vma as a placeholder in the execbuffer reservation lists */
4571 if (!list_empty(&vma->exec_list))
4572 return;
4573
4574 vm = vma->vm;
4575
4576 if (!i915_is_ggtt(vm))
4577 i915_ppgtt_put(i915_vm_to_ppgtt(vm));
4578
4579 list_del(&vma->vma_link);
4580
4581 kfree(vma);
4582 }
4583
4584 static void
i915_gem_stop_ringbuffers(struct drm_device * dev)4585 i915_gem_stop_ringbuffers(struct drm_device *dev)
4586 {
4587 struct drm_i915_private *dev_priv = dev->dev_private;
4588 struct intel_engine_cs *ring;
4589 int i;
4590
4591 for_each_ring(ring, dev_priv, i)
4592 dev_priv->gt.stop_ring(ring);
4593 }
4594
4595 int
i915_gem_suspend(struct drm_device * dev)4596 i915_gem_suspend(struct drm_device *dev)
4597 {
4598 struct drm_i915_private *dev_priv = dev->dev_private;
4599 int ret = 0;
4600
4601 mutex_lock(&dev->struct_mutex);
4602 ret = i915_gpu_idle(dev);
4603 if (ret)
4604 goto err;
4605
4606 i915_gem_retire_requests(dev);
4607
4608 i915_gem_stop_ringbuffers(dev);
4609 mutex_unlock(&dev->struct_mutex);
4610
4611 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4612 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4613 flush_delayed_work(&dev_priv->mm.idle_work);
4614
4615 /* Assert that we sucessfully flushed all the work and
4616 * reset the GPU back to its idle, low power state.
4617 */
4618 WARN_ON(dev_priv->mm.busy);
4619
4620 return 0;
4621
4622 err:
4623 mutex_unlock(&dev->struct_mutex);
4624 return ret;
4625 }
4626
i915_gem_l3_remap(struct intel_engine_cs * ring,int slice)4627 int i915_gem_l3_remap(struct intel_engine_cs *ring, int slice)
4628 {
4629 struct drm_device *dev = ring->dev;
4630 struct drm_i915_private *dev_priv = dev->dev_private;
4631 u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4632 u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4633 int i, ret;
4634
4635 if (!HAS_L3_DPF(dev) || !remap_info)
4636 return 0;
4637
4638 ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
4639 if (ret)
4640 return ret;
4641
4642 /*
4643 * Note: We do not worry about the concurrent register cacheline hang
4644 * here because no other code should access these registers other than
4645 * at initialization time.
4646 */
4647 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4648 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4649 intel_ring_emit(ring, reg_base + i);
4650 intel_ring_emit(ring, remap_info[i/4]);
4651 }
4652
4653 intel_ring_advance(ring);
4654
4655 return ret;
4656 }
4657
i915_gem_init_swizzling(struct drm_device * dev)4658 void i915_gem_init_swizzling(struct drm_device *dev)
4659 {
4660 struct drm_i915_private *dev_priv = dev->dev_private;
4661
4662 if (INTEL_INFO(dev)->gen < 5 ||
4663 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4664 return;
4665
4666 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4667 DISP_TILE_SURFACE_SWIZZLING);
4668
4669 if (IS_GEN5(dev))
4670 return;
4671
4672 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4673 if (IS_GEN6(dev))
4674 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4675 else if (IS_GEN7(dev))
4676 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4677 else if (IS_GEN8(dev))
4678 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4679 else
4680 BUG();
4681 }
4682
4683 static bool
intel_enable_blt(struct drm_device * dev)4684 intel_enable_blt(struct drm_device *dev)
4685 {
4686 if (!HAS_BLT(dev))
4687 return false;
4688
4689 /* The blitter was dysfunctional on early prototypes */
4690 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4691 DRM_INFO("BLT not supported on this pre-production hardware;"
4692 " graphics performance will be degraded.\n");
4693 return false;
4694 }
4695
4696 return true;
4697 }
4698
init_unused_ring(struct drm_device * dev,u32 base)4699 static void init_unused_ring(struct drm_device *dev, u32 base)
4700 {
4701 struct drm_i915_private *dev_priv = dev->dev_private;
4702
4703 I915_WRITE(RING_CTL(base), 0);
4704 I915_WRITE(RING_HEAD(base), 0);
4705 I915_WRITE(RING_TAIL(base), 0);
4706 I915_WRITE(RING_START(base), 0);
4707 }
4708
init_unused_rings(struct drm_device * dev)4709 static void init_unused_rings(struct drm_device *dev)
4710 {
4711 if (IS_I830(dev)) {
4712 init_unused_ring(dev, PRB1_BASE);
4713 init_unused_ring(dev, SRB0_BASE);
4714 init_unused_ring(dev, SRB1_BASE);
4715 init_unused_ring(dev, SRB2_BASE);
4716 init_unused_ring(dev, SRB3_BASE);
4717 } else if (IS_GEN2(dev)) {
4718 init_unused_ring(dev, SRB0_BASE);
4719 init_unused_ring(dev, SRB1_BASE);
4720 } else if (IS_GEN3(dev)) {
4721 init_unused_ring(dev, PRB1_BASE);
4722 init_unused_ring(dev, PRB2_BASE);
4723 }
4724 }
4725
i915_gem_init_rings(struct drm_device * dev)4726 int i915_gem_init_rings(struct drm_device *dev)
4727 {
4728 struct drm_i915_private *dev_priv = dev->dev_private;
4729 int ret;
4730
4731 ret = intel_init_render_ring_buffer(dev);
4732 if (ret)
4733 return ret;
4734
4735 if (HAS_BSD(dev)) {
4736 ret = intel_init_bsd_ring_buffer(dev);
4737 if (ret)
4738 goto cleanup_render_ring;
4739 }
4740
4741 if (intel_enable_blt(dev)) {
4742 ret = intel_init_blt_ring_buffer(dev);
4743 if (ret)
4744 goto cleanup_bsd_ring;
4745 }
4746
4747 if (HAS_VEBOX(dev)) {
4748 ret = intel_init_vebox_ring_buffer(dev);
4749 if (ret)
4750 goto cleanup_blt_ring;
4751 }
4752
4753 if (HAS_BSD2(dev)) {
4754 ret = intel_init_bsd2_ring_buffer(dev);
4755 if (ret)
4756 goto cleanup_vebox_ring;
4757 }
4758
4759 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4760 if (ret)
4761 goto cleanup_bsd2_ring;
4762
4763 return 0;
4764
4765 cleanup_bsd2_ring:
4766 intel_cleanup_ring_buffer(&dev_priv->ring[VCS2]);
4767 cleanup_vebox_ring:
4768 intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4769 cleanup_blt_ring:
4770 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4771 cleanup_bsd_ring:
4772 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4773 cleanup_render_ring:
4774 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4775
4776 return ret;
4777 }
4778
4779 int
i915_gem_init_hw(struct drm_device * dev)4780 i915_gem_init_hw(struct drm_device *dev)
4781 {
4782 struct drm_i915_private *dev_priv = dev->dev_private;
4783 struct intel_engine_cs *ring;
4784 int ret, i;
4785
4786 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4787 return -EIO;
4788
4789 /* Double layer security blanket, see i915_gem_init() */
4790 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4791
4792 if (dev_priv->ellc_size)
4793 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4794
4795 if (IS_HASWELL(dev))
4796 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4797 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4798
4799 if (HAS_PCH_NOP(dev)) {
4800 if (IS_IVYBRIDGE(dev)) {
4801 u32 temp = I915_READ(GEN7_MSG_CTL);
4802 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4803 I915_WRITE(GEN7_MSG_CTL, temp);
4804 } else if (INTEL_INFO(dev)->gen >= 7) {
4805 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4806 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4807 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4808 }
4809 }
4810
4811 i915_gem_init_swizzling(dev);
4812
4813 /*
4814 * At least 830 can leave some of the unused rings
4815 * "active" (ie. head != tail) after resume which
4816 * will prevent c3 entry. Makes sure all unused rings
4817 * are totally idle.
4818 */
4819 init_unused_rings(dev);
4820
4821 for_each_ring(ring, dev_priv, i) {
4822 ret = ring->init_hw(ring);
4823 if (ret)
4824 goto out;
4825 }
4826
4827 for (i = 0; i < NUM_L3_SLICES(dev); i++)
4828 i915_gem_l3_remap(&dev_priv->ring[RCS], i);
4829
4830 ret = i915_ppgtt_init_hw(dev);
4831 if (ret && ret != -EIO) {
4832 DRM_ERROR("PPGTT enable failed %d\n", ret);
4833 i915_gem_cleanup_ringbuffer(dev);
4834 }
4835
4836 ret = i915_gem_context_enable(dev_priv);
4837 if (ret && ret != -EIO) {
4838 DRM_ERROR("Context enable failed %d\n", ret);
4839 i915_gem_cleanup_ringbuffer(dev);
4840
4841 goto out;
4842 }
4843
4844 out:
4845 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4846 return ret;
4847 }
4848
i915_gem_init(struct drm_device * dev)4849 int i915_gem_init(struct drm_device *dev)
4850 {
4851 struct drm_i915_private *dev_priv = dev->dev_private;
4852 int ret;
4853
4854 i915.enable_execlists = intel_sanitize_enable_execlists(dev,
4855 i915.enable_execlists);
4856
4857 mutex_lock(&dev->struct_mutex);
4858
4859 if (IS_VALLEYVIEW(dev)) {
4860 /* VLVA0 (potential hack), BIOS isn't actually waking us */
4861 I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
4862 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
4863 VLV_GTLC_ALLOWWAKEACK), 10))
4864 DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4865 }
4866
4867 if (!i915.enable_execlists) {
4868 dev_priv->gt.do_execbuf = i915_gem_ringbuffer_submission;
4869 dev_priv->gt.init_rings = i915_gem_init_rings;
4870 dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
4871 dev_priv->gt.stop_ring = intel_stop_ring_buffer;
4872 } else {
4873 dev_priv->gt.do_execbuf = intel_execlists_submission;
4874 dev_priv->gt.init_rings = intel_logical_rings_init;
4875 dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
4876 dev_priv->gt.stop_ring = intel_logical_ring_stop;
4877 }
4878
4879 /* This is just a security blanket to placate dragons.
4880 * On some systems, we very sporadically observe that the first TLBs
4881 * used by the CS may be stale, despite us poking the TLB reset. If
4882 * we hold the forcewake during initialisation these problems
4883 * just magically go away.
4884 */
4885 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4886
4887 ret = i915_gem_init_userptr(dev);
4888 if (ret)
4889 goto out_unlock;
4890
4891 i915_gem_init_global_gtt(dev);
4892
4893 ret = i915_gem_context_init(dev);
4894 if (ret)
4895 goto out_unlock;
4896
4897 ret = dev_priv->gt.init_rings(dev);
4898 if (ret)
4899 goto out_unlock;
4900
4901 ret = i915_gem_init_hw(dev);
4902 if (ret == -EIO) {
4903 /* Allow ring initialisation to fail by marking the GPU as
4904 * wedged. But we only want to do this where the GPU is angry,
4905 * for all other failure, such as an allocation failure, bail.
4906 */
4907 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4908 atomic_set_mask(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
4909 ret = 0;
4910 }
4911
4912 out_unlock:
4913 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4914 mutex_unlock(&dev->struct_mutex);
4915
4916 return ret;
4917 }
4918
4919 void
i915_gem_cleanup_ringbuffer(struct drm_device * dev)4920 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4921 {
4922 struct drm_i915_private *dev_priv = dev->dev_private;
4923 struct intel_engine_cs *ring;
4924 int i;
4925
4926 for_each_ring(ring, dev_priv, i)
4927 dev_priv->gt.cleanup_ring(ring);
4928 }
4929
4930 static void
init_ring_lists(struct intel_engine_cs * ring)4931 init_ring_lists(struct intel_engine_cs *ring)
4932 {
4933 INIT_LIST_HEAD(&ring->active_list);
4934 INIT_LIST_HEAD(&ring->request_list);
4935 }
4936
i915_init_vm(struct drm_i915_private * dev_priv,struct i915_address_space * vm)4937 void i915_init_vm(struct drm_i915_private *dev_priv,
4938 struct i915_address_space *vm)
4939 {
4940 if (!i915_is_ggtt(vm))
4941 drm_mm_init(&vm->mm, vm->start, vm->total);
4942 vm->dev = dev_priv->dev;
4943 INIT_LIST_HEAD(&vm->active_list);
4944 INIT_LIST_HEAD(&vm->inactive_list);
4945 INIT_LIST_HEAD(&vm->global_link);
4946 list_add_tail(&vm->global_link, &dev_priv->vm_list);
4947 }
4948
4949 void
i915_gem_load(struct drm_device * dev)4950 i915_gem_load(struct drm_device *dev)
4951 {
4952 struct drm_i915_private *dev_priv = dev->dev_private;
4953 int i;
4954
4955 dev_priv->slab =
4956 kmem_cache_create("i915_gem_object",
4957 sizeof(struct drm_i915_gem_object), 0,
4958 SLAB_HWCACHE_ALIGN,
4959 NULL);
4960
4961 INIT_LIST_HEAD(&dev_priv->vm_list);
4962 i915_init_vm(dev_priv, &dev_priv->gtt.base);
4963
4964 INIT_LIST_HEAD(&dev_priv->context_list);
4965 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4966 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4967 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4968 for (i = 0; i < I915_NUM_RINGS; i++)
4969 init_ring_lists(&dev_priv->ring[i]);
4970 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4971 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4972 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4973 i915_gem_retire_work_handler);
4974 INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
4975 i915_gem_idle_work_handler);
4976 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4977
4978 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4979
4980 if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
4981 dev_priv->num_fence_regs = 32;
4982 else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4983 dev_priv->num_fence_regs = 16;
4984 else
4985 dev_priv->num_fence_regs = 8;
4986
4987 if (intel_vgpu_active(dev))
4988 dev_priv->num_fence_regs =
4989 I915_READ(vgtif_reg(avail_rs.fence_num));
4990
4991 /* Initialize fence registers to zero */
4992 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4993 i915_gem_restore_fences(dev);
4994
4995 i915_gem_detect_bit_6_swizzle(dev);
4996 init_waitqueue_head(&dev_priv->pending_flip_queue);
4997
4998 dev_priv->mm.interruptible = true;
4999
5000 i915_gem_shrinker_init(dev_priv);
5001
5002 i915_gem_batch_pool_init(dev, &dev_priv->mm.batch_pool);
5003
5004 mutex_init(&dev_priv->fb_tracking.lock);
5005 }
5006
i915_gem_release(struct drm_device * dev,struct drm_file * file)5007 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5008 {
5009 struct drm_i915_file_private *file_priv = file->driver_priv;
5010
5011 cancel_delayed_work_sync(&file_priv->mm.idle_work);
5012
5013 /* Clean up our request list when the client is going away, so that
5014 * later retire_requests won't dereference our soon-to-be-gone
5015 * file_priv.
5016 */
5017 spin_lock(&file_priv->mm.lock);
5018 while (!list_empty(&file_priv->mm.request_list)) {
5019 struct drm_i915_gem_request *request;
5020
5021 request = list_first_entry(&file_priv->mm.request_list,
5022 struct drm_i915_gem_request,
5023 client_list);
5024 list_del(&request->client_list);
5025 request->file_priv = NULL;
5026 }
5027 spin_unlock(&file_priv->mm.lock);
5028 }
5029
5030 static void
i915_gem_file_idle_work_handler(struct work_struct * work)5031 i915_gem_file_idle_work_handler(struct work_struct *work)
5032 {
5033 struct drm_i915_file_private *file_priv =
5034 container_of(work, typeof(*file_priv), mm.idle_work.work);
5035
5036 atomic_set(&file_priv->rps_wait_boost, false);
5037 }
5038
i915_gem_open(struct drm_device * dev,struct drm_file * file)5039 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5040 {
5041 struct drm_i915_file_private *file_priv;
5042 int ret;
5043
5044 DRM_DEBUG_DRIVER("\n");
5045
5046 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5047 if (!file_priv)
5048 return -ENOMEM;
5049
5050 file->driver_priv = file_priv;
5051 file_priv->dev_priv = dev->dev_private;
5052 file_priv->file = file;
5053
5054 spin_lock_init(&file_priv->mm.lock);
5055 INIT_LIST_HEAD(&file_priv->mm.request_list);
5056 INIT_DELAYED_WORK(&file_priv->mm.idle_work,
5057 i915_gem_file_idle_work_handler);
5058
5059 ret = i915_gem_context_open(dev, file);
5060 if (ret)
5061 kfree(file_priv);
5062
5063 return ret;
5064 }
5065
5066 /**
5067 * i915_gem_track_fb - update frontbuffer tracking
5068 * old: current GEM buffer for the frontbuffer slots
5069 * new: new GEM buffer for the frontbuffer slots
5070 * frontbuffer_bits: bitmask of frontbuffer slots
5071 *
5072 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5073 * from @old and setting them in @new. Both @old and @new can be NULL.
5074 */
i915_gem_track_fb(struct drm_i915_gem_object * old,struct drm_i915_gem_object * new,unsigned frontbuffer_bits)5075 void i915_gem_track_fb(struct drm_i915_gem_object *old,
5076 struct drm_i915_gem_object *new,
5077 unsigned frontbuffer_bits)
5078 {
5079 if (old) {
5080 WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5081 WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5082 old->frontbuffer_bits &= ~frontbuffer_bits;
5083 }
5084
5085 if (new) {
5086 WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5087 WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5088 new->frontbuffer_bits |= frontbuffer_bits;
5089 }
5090 }
5091
5092 /* All the new VM stuff */
5093 unsigned long
i915_gem_obj_offset(struct drm_i915_gem_object * o,struct i915_address_space * vm)5094 i915_gem_obj_offset(struct drm_i915_gem_object *o,
5095 struct i915_address_space *vm)
5096 {
5097 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5098 struct i915_vma *vma;
5099
5100 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5101
5102 list_for_each_entry(vma, &o->vma_list, vma_link) {
5103 if (i915_is_ggtt(vma->vm) &&
5104 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5105 continue;
5106 if (vma->vm == vm)
5107 return vma->node.start;
5108 }
5109
5110 WARN(1, "%s vma for this object not found.\n",
5111 i915_is_ggtt(vm) ? "global" : "ppgtt");
5112 return -1;
5113 }
5114
5115 unsigned long
i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object * o,const struct i915_ggtt_view * view)5116 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
5117 const struct i915_ggtt_view *view)
5118 {
5119 struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5120 struct i915_vma *vma;
5121
5122 list_for_each_entry(vma, &o->vma_list, vma_link)
5123 if (vma->vm == ggtt &&
5124 i915_ggtt_view_equal(&vma->ggtt_view, view))
5125 return vma->node.start;
5126
5127 WARN(1, "global vma for this object not found.\n");
5128 return -1;
5129 }
5130
i915_gem_obj_bound(struct drm_i915_gem_object * o,struct i915_address_space * vm)5131 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5132 struct i915_address_space *vm)
5133 {
5134 struct i915_vma *vma;
5135
5136 list_for_each_entry(vma, &o->vma_list, vma_link) {
5137 if (i915_is_ggtt(vma->vm) &&
5138 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5139 continue;
5140 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5141 return true;
5142 }
5143
5144 return false;
5145 }
5146
i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object * o,const struct i915_ggtt_view * view)5147 bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
5148 const struct i915_ggtt_view *view)
5149 {
5150 struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5151 struct i915_vma *vma;
5152
5153 list_for_each_entry(vma, &o->vma_list, vma_link)
5154 if (vma->vm == ggtt &&
5155 i915_ggtt_view_equal(&vma->ggtt_view, view) &&
5156 drm_mm_node_allocated(&vma->node))
5157 return true;
5158
5159 return false;
5160 }
5161
i915_gem_obj_bound_any(struct drm_i915_gem_object * o)5162 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5163 {
5164 struct i915_vma *vma;
5165
5166 list_for_each_entry(vma, &o->vma_list, vma_link)
5167 if (drm_mm_node_allocated(&vma->node))
5168 return true;
5169
5170 return false;
5171 }
5172
i915_gem_obj_size(struct drm_i915_gem_object * o,struct i915_address_space * vm)5173 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5174 struct i915_address_space *vm)
5175 {
5176 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5177 struct i915_vma *vma;
5178
5179 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5180
5181 BUG_ON(list_empty(&o->vma_list));
5182
5183 list_for_each_entry(vma, &o->vma_list, vma_link) {
5184 if (i915_is_ggtt(vma->vm) &&
5185 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5186 continue;
5187 if (vma->vm == vm)
5188 return vma->node.size;
5189 }
5190 return 0;
5191 }
5192
i915_gem_obj_is_pinned(struct drm_i915_gem_object * obj)5193 bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5194 {
5195 struct i915_vma *vma;
5196 list_for_each_entry(vma, &obj->vma_list, vma_link) {
5197 if (i915_is_ggtt(vma->vm) &&
5198 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5199 continue;
5200 if (vma->pin_count > 0)
5201 return true;
5202 }
5203 return false;
5204 }
5205
5206