1 /*******************************************************************************
2  *
3  * Intel Ethernet Controller XL710 Family Linux Virtual Function Driver
4  * Copyright(c) 2013 - 2014 Intel Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along
16  * with this program.  If not, see <http://www.gnu.org/licenses/>.
17  *
18  * The full GNU General Public License is included in this distribution in
19  * the file called "COPYING".
20  *
21  * Contact Information:
22  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
23  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24  *
25  ******************************************************************************/
26 
27 #include <linux/prefetch.h>
28 #include <net/busy_poll.h>
29 
30 #include "i40evf.h"
31 #include "i40e_prototype.h"
32 
build_ctob(u32 td_cmd,u32 td_offset,unsigned int size,u32 td_tag)33 static inline __le64 build_ctob(u32 td_cmd, u32 td_offset, unsigned int size,
34 				u32 td_tag)
35 {
36 	return cpu_to_le64(I40E_TX_DESC_DTYPE_DATA |
37 			   ((u64)td_cmd  << I40E_TXD_QW1_CMD_SHIFT) |
38 			   ((u64)td_offset << I40E_TXD_QW1_OFFSET_SHIFT) |
39 			   ((u64)size  << I40E_TXD_QW1_TX_BUF_SZ_SHIFT) |
40 			   ((u64)td_tag  << I40E_TXD_QW1_L2TAG1_SHIFT));
41 }
42 
43 #define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
44 
45 /**
46  * i40e_unmap_and_free_tx_resource - Release a Tx buffer
47  * @ring:      the ring that owns the buffer
48  * @tx_buffer: the buffer to free
49  **/
i40e_unmap_and_free_tx_resource(struct i40e_ring * ring,struct i40e_tx_buffer * tx_buffer)50 static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
51 					    struct i40e_tx_buffer *tx_buffer)
52 {
53 	if (tx_buffer->skb) {
54 		if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
55 			kfree(tx_buffer->raw_buf);
56 		else
57 			dev_kfree_skb_any(tx_buffer->skb);
58 
59 		if (dma_unmap_len(tx_buffer, len))
60 			dma_unmap_single(ring->dev,
61 					 dma_unmap_addr(tx_buffer, dma),
62 					 dma_unmap_len(tx_buffer, len),
63 					 DMA_TO_DEVICE);
64 	} else if (dma_unmap_len(tx_buffer, len)) {
65 		dma_unmap_page(ring->dev,
66 			       dma_unmap_addr(tx_buffer, dma),
67 			       dma_unmap_len(tx_buffer, len),
68 			       DMA_TO_DEVICE);
69 	}
70 	tx_buffer->next_to_watch = NULL;
71 	tx_buffer->skb = NULL;
72 	dma_unmap_len_set(tx_buffer, len, 0);
73 	/* tx_buffer must be completely set up in the transmit path */
74 }
75 
76 /**
77  * i40evf_clean_tx_ring - Free any empty Tx buffers
78  * @tx_ring: ring to be cleaned
79  **/
i40evf_clean_tx_ring(struct i40e_ring * tx_ring)80 void i40evf_clean_tx_ring(struct i40e_ring *tx_ring)
81 {
82 	unsigned long bi_size;
83 	u16 i;
84 
85 	/* ring already cleared, nothing to do */
86 	if (!tx_ring->tx_bi)
87 		return;
88 
89 	/* Free all the Tx ring sk_buffs */
90 	for (i = 0; i < tx_ring->count; i++)
91 		i40e_unmap_and_free_tx_resource(tx_ring, &tx_ring->tx_bi[i]);
92 
93 	bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
94 	memset(tx_ring->tx_bi, 0, bi_size);
95 
96 	/* Zero out the descriptor ring */
97 	memset(tx_ring->desc, 0, tx_ring->size);
98 
99 	tx_ring->next_to_use = 0;
100 	tx_ring->next_to_clean = 0;
101 
102 	if (!tx_ring->netdev)
103 		return;
104 
105 	/* cleanup Tx queue statistics */
106 	netdev_tx_reset_queue(netdev_get_tx_queue(tx_ring->netdev,
107 						  tx_ring->queue_index));
108 }
109 
110 /**
111  * i40evf_free_tx_resources - Free Tx resources per queue
112  * @tx_ring: Tx descriptor ring for a specific queue
113  *
114  * Free all transmit software resources
115  **/
i40evf_free_tx_resources(struct i40e_ring * tx_ring)116 void i40evf_free_tx_resources(struct i40e_ring *tx_ring)
117 {
118 	i40evf_clean_tx_ring(tx_ring);
119 	kfree(tx_ring->tx_bi);
120 	tx_ring->tx_bi = NULL;
121 
122 	if (tx_ring->desc) {
123 		dma_free_coherent(tx_ring->dev, tx_ring->size,
124 				  tx_ring->desc, tx_ring->dma);
125 		tx_ring->desc = NULL;
126 	}
127 }
128 
129 /**
130  * i40e_get_head - Retrieve head from head writeback
131  * @tx_ring:  tx ring to fetch head of
132  *
133  * Returns value of Tx ring head based on value stored
134  * in head write-back location
135  **/
i40e_get_head(struct i40e_ring * tx_ring)136 static inline u32 i40e_get_head(struct i40e_ring *tx_ring)
137 {
138 	void *head = (struct i40e_tx_desc *)tx_ring->desc + tx_ring->count;
139 
140 	return le32_to_cpu(*(volatile __le32 *)head);
141 }
142 
143 #define WB_STRIDE 0x3
144 
145 /**
146  * i40e_clean_tx_irq - Reclaim resources after transmit completes
147  * @tx_ring:  tx ring to clean
148  * @budget:   how many cleans we're allowed
149  *
150  * Returns true if there's any budget left (e.g. the clean is finished)
151  **/
i40e_clean_tx_irq(struct i40e_ring * tx_ring,int budget)152 static bool i40e_clean_tx_irq(struct i40e_ring *tx_ring, int budget)
153 {
154 	u16 i = tx_ring->next_to_clean;
155 	struct i40e_tx_buffer *tx_buf;
156 	struct i40e_tx_desc *tx_head;
157 	struct i40e_tx_desc *tx_desc;
158 	unsigned int total_packets = 0;
159 	unsigned int total_bytes = 0;
160 
161 	tx_buf = &tx_ring->tx_bi[i];
162 	tx_desc = I40E_TX_DESC(tx_ring, i);
163 	i -= tx_ring->count;
164 
165 	tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring));
166 
167 	do {
168 		struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
169 
170 		/* if next_to_watch is not set then there is no work pending */
171 		if (!eop_desc)
172 			break;
173 
174 		/* prevent any other reads prior to eop_desc */
175 		read_barrier_depends();
176 
177 		/* we have caught up to head, no work left to do */
178 		if (tx_head == tx_desc)
179 			break;
180 
181 		/* clear next_to_watch to prevent false hangs */
182 		tx_buf->next_to_watch = NULL;
183 
184 		/* update the statistics for this packet */
185 		total_bytes += tx_buf->bytecount;
186 		total_packets += tx_buf->gso_segs;
187 
188 		/* free the skb */
189 		dev_kfree_skb_any(tx_buf->skb);
190 
191 		/* unmap skb header data */
192 		dma_unmap_single(tx_ring->dev,
193 				 dma_unmap_addr(tx_buf, dma),
194 				 dma_unmap_len(tx_buf, len),
195 				 DMA_TO_DEVICE);
196 
197 		/* clear tx_buffer data */
198 		tx_buf->skb = NULL;
199 		dma_unmap_len_set(tx_buf, len, 0);
200 
201 		/* unmap remaining buffers */
202 		while (tx_desc != eop_desc) {
203 
204 			tx_buf++;
205 			tx_desc++;
206 			i++;
207 			if (unlikely(!i)) {
208 				i -= tx_ring->count;
209 				tx_buf = tx_ring->tx_bi;
210 				tx_desc = I40E_TX_DESC(tx_ring, 0);
211 			}
212 
213 			/* unmap any remaining paged data */
214 			if (dma_unmap_len(tx_buf, len)) {
215 				dma_unmap_page(tx_ring->dev,
216 					       dma_unmap_addr(tx_buf, dma),
217 					       dma_unmap_len(tx_buf, len),
218 					       DMA_TO_DEVICE);
219 				dma_unmap_len_set(tx_buf, len, 0);
220 			}
221 		}
222 
223 		/* move us one more past the eop_desc for start of next pkt */
224 		tx_buf++;
225 		tx_desc++;
226 		i++;
227 		if (unlikely(!i)) {
228 			i -= tx_ring->count;
229 			tx_buf = tx_ring->tx_bi;
230 			tx_desc = I40E_TX_DESC(tx_ring, 0);
231 		}
232 
233 		prefetch(tx_desc);
234 
235 		/* update budget accounting */
236 		budget--;
237 	} while (likely(budget));
238 
239 	i += tx_ring->count;
240 	tx_ring->next_to_clean = i;
241 	u64_stats_update_begin(&tx_ring->syncp);
242 	tx_ring->stats.bytes += total_bytes;
243 	tx_ring->stats.packets += total_packets;
244 	u64_stats_update_end(&tx_ring->syncp);
245 	tx_ring->q_vector->tx.total_bytes += total_bytes;
246 	tx_ring->q_vector->tx.total_packets += total_packets;
247 
248 	/* check to see if there are any non-cache aligned descriptors
249 	 * waiting to be written back, and kick the hardware to force
250 	 * them to be written back in case of napi polling
251 	 */
252 	if (budget &&
253 	    !((i & WB_STRIDE) == WB_STRIDE) &&
254 	    !test_bit(__I40E_DOWN, &tx_ring->vsi->state) &&
255 	    (I40E_DESC_UNUSED(tx_ring) != tx_ring->count))
256 		tx_ring->arm_wb = true;
257 
258 	netdev_tx_completed_queue(netdev_get_tx_queue(tx_ring->netdev,
259 						      tx_ring->queue_index),
260 				  total_packets, total_bytes);
261 
262 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
263 	if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
264 		     (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
265 		/* Make sure that anybody stopping the queue after this
266 		 * sees the new next_to_clean.
267 		 */
268 		smp_mb();
269 		if (__netif_subqueue_stopped(tx_ring->netdev,
270 					     tx_ring->queue_index) &&
271 		   !test_bit(__I40E_DOWN, &tx_ring->vsi->state)) {
272 			netif_wake_subqueue(tx_ring->netdev,
273 					    tx_ring->queue_index);
274 			++tx_ring->tx_stats.restart_queue;
275 		}
276 	}
277 
278 	return !!budget;
279 }
280 
281 /**
282  * i40evf_force_wb -Arm hardware to do a wb on noncache aligned descriptors
283  * @vsi: the VSI we care about
284  * @q_vector: the vector  on which to force writeback
285  *
286  **/
i40evf_force_wb(struct i40e_vsi * vsi,struct i40e_q_vector * q_vector)287 static void i40evf_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
288 {
289 	u16 flags = q_vector->tx.ring[0].flags;
290 
291 	if (flags & I40E_TXR_FLAGS_WB_ON_ITR) {
292 		u32 val;
293 
294 		if (q_vector->arm_wb_state)
295 			return;
296 
297 		val = I40E_VFINT_DYN_CTLN1_WB_ON_ITR_MASK;
298 
299 		wr32(&vsi->back->hw,
300 		     I40E_VFINT_DYN_CTLN1(q_vector->v_idx +
301 					  vsi->base_vector - 1),
302 		     val);
303 		q_vector->arm_wb_state = true;
304 	} else {
305 		u32 val = I40E_VFINT_DYN_CTLN1_INTENA_MASK |
306 			  I40E_VFINT_DYN_CTLN1_ITR_INDX_MASK | /* set noitr */
307 			  I40E_VFINT_DYN_CTLN1_SWINT_TRIG_MASK |
308 			  I40E_VFINT_DYN_CTLN1_SW_ITR_INDX_ENA_MASK;
309 			  /* allow 00 to be written to the index */
310 
311 		wr32(&vsi->back->hw,
312 		     I40E_VFINT_DYN_CTLN1(q_vector->v_idx +
313 					  vsi->base_vector - 1), val);
314 	}
315 }
316 
317 /**
318  * i40e_set_new_dynamic_itr - Find new ITR level
319  * @rc: structure containing ring performance data
320  *
321  * Returns true if ITR changed, false if not
322  *
323  * Stores a new ITR value based on packets and byte counts during
324  * the last interrupt.  The advantage of per interrupt computation
325  * is faster updates and more accurate ITR for the current traffic
326  * pattern.  Constants in this function were computed based on
327  * theoretical maximum wire speed and thresholds were set based on
328  * testing data as well as attempting to minimize response time
329  * while increasing bulk throughput.
330  **/
i40e_set_new_dynamic_itr(struct i40e_ring_container * rc)331 static bool i40e_set_new_dynamic_itr(struct i40e_ring_container *rc)
332 {
333 	enum i40e_latency_range new_latency_range = rc->latency_range;
334 	struct i40e_q_vector *qv = rc->ring->q_vector;
335 	u32 new_itr = rc->itr;
336 	int bytes_per_int;
337 	int usecs;
338 
339 	if (rc->total_packets == 0 || !rc->itr)
340 		return false;
341 
342 	/* simple throttlerate management
343 	 *   0-10MB/s   lowest (50000 ints/s)
344 	 *  10-20MB/s   low    (20000 ints/s)
345 	 *  20-1249MB/s bulk   (18000 ints/s)
346 	 *  > 40000 Rx packets per second (8000 ints/s)
347 	 *
348 	 * The math works out because the divisor is in 10^(-6) which
349 	 * turns the bytes/us input value into MB/s values, but
350 	 * make sure to use usecs, as the register values written
351 	 * are in 2 usec increments in the ITR registers, and make sure
352 	 * to use the smoothed values that the countdown timer gives us.
353 	 */
354 	usecs = (rc->itr << 1) * ITR_COUNTDOWN_START;
355 	bytes_per_int = rc->total_bytes / usecs;
356 
357 	switch (new_latency_range) {
358 	case I40E_LOWEST_LATENCY:
359 		if (bytes_per_int > 10)
360 			new_latency_range = I40E_LOW_LATENCY;
361 		break;
362 	case I40E_LOW_LATENCY:
363 		if (bytes_per_int > 20)
364 			new_latency_range = I40E_BULK_LATENCY;
365 		else if (bytes_per_int <= 10)
366 			new_latency_range = I40E_LOWEST_LATENCY;
367 		break;
368 	case I40E_BULK_LATENCY:
369 	case I40E_ULTRA_LATENCY:
370 	default:
371 		if (bytes_per_int <= 20)
372 			new_latency_range = I40E_LOW_LATENCY;
373 		break;
374 	}
375 
376 	/* this is to adjust RX more aggressively when streaming small
377 	 * packets.  The value of 40000 was picked as it is just beyond
378 	 * what the hardware can receive per second if in low latency
379 	 * mode.
380 	 */
381 #define RX_ULTRA_PACKET_RATE 40000
382 
383 	if ((((rc->total_packets * 1000000) / usecs) > RX_ULTRA_PACKET_RATE) &&
384 	    (&qv->rx == rc))
385 		new_latency_range = I40E_ULTRA_LATENCY;
386 
387 	rc->latency_range = new_latency_range;
388 
389 	switch (new_latency_range) {
390 	case I40E_LOWEST_LATENCY:
391 		new_itr = I40E_ITR_50K;
392 		break;
393 	case I40E_LOW_LATENCY:
394 		new_itr = I40E_ITR_20K;
395 		break;
396 	case I40E_BULK_LATENCY:
397 		new_itr = I40E_ITR_18K;
398 		break;
399 	case I40E_ULTRA_LATENCY:
400 		new_itr = I40E_ITR_8K;
401 		break;
402 	default:
403 		break;
404 	}
405 
406 	rc->total_bytes = 0;
407 	rc->total_packets = 0;
408 
409 	if (new_itr != rc->itr) {
410 		rc->itr = new_itr;
411 		return true;
412 	}
413 
414 	return false;
415 }
416 
417 /*
418  * i40evf_setup_tx_descriptors - Allocate the Tx descriptors
419  * @tx_ring: the tx ring to set up
420  *
421  * Return 0 on success, negative on error
422  **/
i40evf_setup_tx_descriptors(struct i40e_ring * tx_ring)423 int i40evf_setup_tx_descriptors(struct i40e_ring *tx_ring)
424 {
425 	struct device *dev = tx_ring->dev;
426 	int bi_size;
427 
428 	if (!dev)
429 		return -ENOMEM;
430 
431 	/* warn if we are about to overwrite the pointer */
432 	WARN_ON(tx_ring->tx_bi);
433 	bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
434 	tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
435 	if (!tx_ring->tx_bi)
436 		goto err;
437 
438 	/* round up to nearest 4K */
439 	tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
440 	/* add u32 for head writeback, align after this takes care of
441 	 * guaranteeing this is at least one cache line in size
442 	 */
443 	tx_ring->size += sizeof(u32);
444 	tx_ring->size = ALIGN(tx_ring->size, 4096);
445 	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
446 					   &tx_ring->dma, GFP_KERNEL);
447 	if (!tx_ring->desc) {
448 		dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
449 			 tx_ring->size);
450 		goto err;
451 	}
452 
453 	tx_ring->next_to_use = 0;
454 	tx_ring->next_to_clean = 0;
455 	return 0;
456 
457 err:
458 	kfree(tx_ring->tx_bi);
459 	tx_ring->tx_bi = NULL;
460 	return -ENOMEM;
461 }
462 
463 /**
464  * i40evf_clean_rx_ring - Free Rx buffers
465  * @rx_ring: ring to be cleaned
466  **/
i40evf_clean_rx_ring(struct i40e_ring * rx_ring)467 void i40evf_clean_rx_ring(struct i40e_ring *rx_ring)
468 {
469 	struct device *dev = rx_ring->dev;
470 	struct i40e_rx_buffer *rx_bi;
471 	unsigned long bi_size;
472 	u16 i;
473 
474 	/* ring already cleared, nothing to do */
475 	if (!rx_ring->rx_bi)
476 		return;
477 
478 	if (ring_is_ps_enabled(rx_ring)) {
479 		int bufsz = ALIGN(rx_ring->rx_hdr_len, 256) * rx_ring->count;
480 
481 		rx_bi = &rx_ring->rx_bi[0];
482 		if (rx_bi->hdr_buf) {
483 			dma_free_coherent(dev,
484 					  bufsz,
485 					  rx_bi->hdr_buf,
486 					  rx_bi->dma);
487 			for (i = 0; i < rx_ring->count; i++) {
488 				rx_bi = &rx_ring->rx_bi[i];
489 				rx_bi->dma = 0;
490 				rx_bi->hdr_buf = NULL;
491 			}
492 		}
493 	}
494 	/* Free all the Rx ring sk_buffs */
495 	for (i = 0; i < rx_ring->count; i++) {
496 		rx_bi = &rx_ring->rx_bi[i];
497 		if (rx_bi->dma) {
498 			dma_unmap_single(dev,
499 					 rx_bi->dma,
500 					 rx_ring->rx_buf_len,
501 					 DMA_FROM_DEVICE);
502 			rx_bi->dma = 0;
503 		}
504 		if (rx_bi->skb) {
505 			dev_kfree_skb(rx_bi->skb);
506 			rx_bi->skb = NULL;
507 		}
508 		if (rx_bi->page) {
509 			if (rx_bi->page_dma) {
510 				dma_unmap_page(dev,
511 					       rx_bi->page_dma,
512 					       PAGE_SIZE / 2,
513 					       DMA_FROM_DEVICE);
514 				rx_bi->page_dma = 0;
515 			}
516 			__free_page(rx_bi->page);
517 			rx_bi->page = NULL;
518 			rx_bi->page_offset = 0;
519 		}
520 	}
521 
522 	bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
523 	memset(rx_ring->rx_bi, 0, bi_size);
524 
525 	/* Zero out the descriptor ring */
526 	memset(rx_ring->desc, 0, rx_ring->size);
527 
528 	rx_ring->next_to_clean = 0;
529 	rx_ring->next_to_use = 0;
530 }
531 
532 /**
533  * i40evf_free_rx_resources - Free Rx resources
534  * @rx_ring: ring to clean the resources from
535  *
536  * Free all receive software resources
537  **/
i40evf_free_rx_resources(struct i40e_ring * rx_ring)538 void i40evf_free_rx_resources(struct i40e_ring *rx_ring)
539 {
540 	i40evf_clean_rx_ring(rx_ring);
541 	kfree(rx_ring->rx_bi);
542 	rx_ring->rx_bi = NULL;
543 
544 	if (rx_ring->desc) {
545 		dma_free_coherent(rx_ring->dev, rx_ring->size,
546 				  rx_ring->desc, rx_ring->dma);
547 		rx_ring->desc = NULL;
548 	}
549 }
550 
551 /**
552  * i40evf_alloc_rx_headers - allocate rx header buffers
553  * @rx_ring: ring to alloc buffers
554  *
555  * Allocate rx header buffers for the entire ring. As these are static,
556  * this is only called when setting up a new ring.
557  **/
i40evf_alloc_rx_headers(struct i40e_ring * rx_ring)558 void i40evf_alloc_rx_headers(struct i40e_ring *rx_ring)
559 {
560 	struct device *dev = rx_ring->dev;
561 	struct i40e_rx_buffer *rx_bi;
562 	dma_addr_t dma;
563 	void *buffer;
564 	int buf_size;
565 	int i;
566 
567 	if (rx_ring->rx_bi[0].hdr_buf)
568 		return;
569 	/* Make sure the buffers don't cross cache line boundaries. */
570 	buf_size = ALIGN(rx_ring->rx_hdr_len, 256);
571 	buffer = dma_alloc_coherent(dev, buf_size * rx_ring->count,
572 				    &dma, GFP_KERNEL);
573 	if (!buffer)
574 		return;
575 	for (i = 0; i < rx_ring->count; i++) {
576 		rx_bi = &rx_ring->rx_bi[i];
577 		rx_bi->dma = dma + (i * buf_size);
578 		rx_bi->hdr_buf = buffer + (i * buf_size);
579 	}
580 }
581 
582 /**
583  * i40evf_setup_rx_descriptors - Allocate Rx descriptors
584  * @rx_ring: Rx descriptor ring (for a specific queue) to setup
585  *
586  * Returns 0 on success, negative on failure
587  **/
i40evf_setup_rx_descriptors(struct i40e_ring * rx_ring)588 int i40evf_setup_rx_descriptors(struct i40e_ring *rx_ring)
589 {
590 	struct device *dev = rx_ring->dev;
591 	int bi_size;
592 
593 	/* warn if we are about to overwrite the pointer */
594 	WARN_ON(rx_ring->rx_bi);
595 	bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
596 	rx_ring->rx_bi = kzalloc(bi_size, GFP_KERNEL);
597 	if (!rx_ring->rx_bi)
598 		goto err;
599 
600 	u64_stats_init(&rx_ring->syncp);
601 
602 	/* Round up to nearest 4K */
603 	rx_ring->size = ring_is_16byte_desc_enabled(rx_ring)
604 		? rx_ring->count * sizeof(union i40e_16byte_rx_desc)
605 		: rx_ring->count * sizeof(union i40e_32byte_rx_desc);
606 	rx_ring->size = ALIGN(rx_ring->size, 4096);
607 	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
608 					   &rx_ring->dma, GFP_KERNEL);
609 
610 	if (!rx_ring->desc) {
611 		dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
612 			 rx_ring->size);
613 		goto err;
614 	}
615 
616 	rx_ring->next_to_clean = 0;
617 	rx_ring->next_to_use = 0;
618 
619 	return 0;
620 err:
621 	kfree(rx_ring->rx_bi);
622 	rx_ring->rx_bi = NULL;
623 	return -ENOMEM;
624 }
625 
626 /**
627  * i40e_release_rx_desc - Store the new tail and head values
628  * @rx_ring: ring to bump
629  * @val: new head index
630  **/
i40e_release_rx_desc(struct i40e_ring * rx_ring,u32 val)631 static inline void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
632 {
633 	rx_ring->next_to_use = val;
634 	/* Force memory writes to complete before letting h/w
635 	 * know there are new descriptors to fetch.  (Only
636 	 * applicable for weak-ordered memory model archs,
637 	 * such as IA-64).
638 	 */
639 	wmb();
640 	writel(val, rx_ring->tail);
641 }
642 
643 /**
644  * i40evf_alloc_rx_buffers_ps - Replace used receive buffers; packet split
645  * @rx_ring: ring to place buffers on
646  * @cleaned_count: number of buffers to replace
647  **/
i40evf_alloc_rx_buffers_ps(struct i40e_ring * rx_ring,u16 cleaned_count)648 void i40evf_alloc_rx_buffers_ps(struct i40e_ring *rx_ring, u16 cleaned_count)
649 {
650 	u16 i = rx_ring->next_to_use;
651 	union i40e_rx_desc *rx_desc;
652 	struct i40e_rx_buffer *bi;
653 
654 	/* do nothing if no valid netdev defined */
655 	if (!rx_ring->netdev || !cleaned_count)
656 		return;
657 
658 	while (cleaned_count--) {
659 		rx_desc = I40E_RX_DESC(rx_ring, i);
660 		bi = &rx_ring->rx_bi[i];
661 
662 		if (bi->skb) /* desc is in use */
663 			goto no_buffers;
664 		if (!bi->page) {
665 			bi->page = alloc_page(GFP_ATOMIC);
666 			if (!bi->page) {
667 				rx_ring->rx_stats.alloc_page_failed++;
668 				goto no_buffers;
669 			}
670 		}
671 
672 		if (!bi->page_dma) {
673 			/* use a half page if we're re-using */
674 			bi->page_offset ^= PAGE_SIZE / 2;
675 			bi->page_dma = dma_map_page(rx_ring->dev,
676 						    bi->page,
677 						    bi->page_offset,
678 						    PAGE_SIZE / 2,
679 						    DMA_FROM_DEVICE);
680 			if (dma_mapping_error(rx_ring->dev,
681 					      bi->page_dma)) {
682 				rx_ring->rx_stats.alloc_page_failed++;
683 				bi->page_dma = 0;
684 				goto no_buffers;
685 			}
686 		}
687 
688 		dma_sync_single_range_for_device(rx_ring->dev,
689 						 bi->dma,
690 						 0,
691 						 rx_ring->rx_hdr_len,
692 						 DMA_FROM_DEVICE);
693 		/* Refresh the desc even if buffer_addrs didn't change
694 		 * because each write-back erases this info.
695 		 */
696 		rx_desc->read.pkt_addr = cpu_to_le64(bi->page_dma);
697 		rx_desc->read.hdr_addr = cpu_to_le64(bi->dma);
698 		i++;
699 		if (i == rx_ring->count)
700 			i = 0;
701 	}
702 
703 no_buffers:
704 	if (rx_ring->next_to_use != i)
705 		i40e_release_rx_desc(rx_ring, i);
706 }
707 
708 /**
709  * i40evf_alloc_rx_buffers_1buf - Replace used receive buffers; single buffer
710  * @rx_ring: ring to place buffers on
711  * @cleaned_count: number of buffers to replace
712  **/
i40evf_alloc_rx_buffers_1buf(struct i40e_ring * rx_ring,u16 cleaned_count)713 void i40evf_alloc_rx_buffers_1buf(struct i40e_ring *rx_ring, u16 cleaned_count)
714 {
715 	u16 i = rx_ring->next_to_use;
716 	union i40e_rx_desc *rx_desc;
717 	struct i40e_rx_buffer *bi;
718 	struct sk_buff *skb;
719 
720 	/* do nothing if no valid netdev defined */
721 	if (!rx_ring->netdev || !cleaned_count)
722 		return;
723 
724 	while (cleaned_count--) {
725 		rx_desc = I40E_RX_DESC(rx_ring, i);
726 		bi = &rx_ring->rx_bi[i];
727 		skb = bi->skb;
728 
729 		if (!skb) {
730 			skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
731 							rx_ring->rx_buf_len);
732 			if (!skb) {
733 				rx_ring->rx_stats.alloc_buff_failed++;
734 				goto no_buffers;
735 			}
736 			/* initialize queue mapping */
737 			skb_record_rx_queue(skb, rx_ring->queue_index);
738 			bi->skb = skb;
739 		}
740 
741 		if (!bi->dma) {
742 			bi->dma = dma_map_single(rx_ring->dev,
743 						 skb->data,
744 						 rx_ring->rx_buf_len,
745 						 DMA_FROM_DEVICE);
746 			if (dma_mapping_error(rx_ring->dev, bi->dma)) {
747 				rx_ring->rx_stats.alloc_buff_failed++;
748 				bi->dma = 0;
749 				goto no_buffers;
750 			}
751 		}
752 
753 		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma);
754 		rx_desc->read.hdr_addr = 0;
755 		i++;
756 		if (i == rx_ring->count)
757 			i = 0;
758 	}
759 
760 no_buffers:
761 	if (rx_ring->next_to_use != i)
762 		i40e_release_rx_desc(rx_ring, i);
763 }
764 
765 /**
766  * i40e_receive_skb - Send a completed packet up the stack
767  * @rx_ring:  rx ring in play
768  * @skb: packet to send up
769  * @vlan_tag: vlan tag for packet
770  **/
i40e_receive_skb(struct i40e_ring * rx_ring,struct sk_buff * skb,u16 vlan_tag)771 static void i40e_receive_skb(struct i40e_ring *rx_ring,
772 			     struct sk_buff *skb, u16 vlan_tag)
773 {
774 	struct i40e_q_vector *q_vector = rx_ring->q_vector;
775 
776 	if (vlan_tag & VLAN_VID_MASK)
777 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
778 
779 	napi_gro_receive(&q_vector->napi, skb);
780 }
781 
782 /**
783  * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
784  * @vsi: the VSI we care about
785  * @skb: skb currently being received and modified
786  * @rx_status: status value of last descriptor in packet
787  * @rx_error: error value of last descriptor in packet
788  * @rx_ptype: ptype value of last descriptor in packet
789  **/
i40e_rx_checksum(struct i40e_vsi * vsi,struct sk_buff * skb,u32 rx_status,u32 rx_error,u16 rx_ptype)790 static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
791 				    struct sk_buff *skb,
792 				    u32 rx_status,
793 				    u32 rx_error,
794 				    u16 rx_ptype)
795 {
796 	struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(rx_ptype);
797 	bool ipv4 = false, ipv6 = false;
798 	bool ipv4_tunnel, ipv6_tunnel;
799 	__wsum rx_udp_csum;
800 	struct iphdr *iph;
801 	__sum16 csum;
802 
803 	ipv4_tunnel = (rx_ptype >= I40E_RX_PTYPE_GRENAT4_MAC_PAY3) &&
804 		     (rx_ptype <= I40E_RX_PTYPE_GRENAT4_MACVLAN_IPV6_ICMP_PAY4);
805 	ipv6_tunnel = (rx_ptype >= I40E_RX_PTYPE_GRENAT6_MAC_PAY3) &&
806 		     (rx_ptype <= I40E_RX_PTYPE_GRENAT6_MACVLAN_IPV6_ICMP_PAY4);
807 
808 	skb->ip_summed = CHECKSUM_NONE;
809 
810 	/* Rx csum enabled and ip headers found? */
811 	if (!(vsi->netdev->features & NETIF_F_RXCSUM))
812 		return;
813 
814 	/* did the hardware decode the packet and checksum? */
815 	if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
816 		return;
817 
818 	/* both known and outer_ip must be set for the below code to work */
819 	if (!(decoded.known && decoded.outer_ip))
820 		return;
821 
822 	if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
823 	    decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4)
824 		ipv4 = true;
825 	else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
826 		 decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6)
827 		ipv6 = true;
828 
829 	if (ipv4 &&
830 	    (rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) |
831 			 BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT))))
832 		goto checksum_fail;
833 
834 	/* likely incorrect csum if alternate IP extension headers found */
835 	if (ipv6 &&
836 	    rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
837 		/* don't increment checksum err here, non-fatal err */
838 		return;
839 
840 	/* there was some L4 error, count error and punt packet to the stack */
841 	if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT))
842 		goto checksum_fail;
843 
844 	/* handle packets that were not able to be checksummed due
845 	 * to arrival speed, in this case the stack can compute
846 	 * the csum.
847 	 */
848 	if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT))
849 		return;
850 
851 	/* If VXLAN traffic has an outer UDPv4 checksum we need to check
852 	 * it in the driver, hardware does not do it for us.
853 	 * Since L3L4P bit was set we assume a valid IHL value (>=5)
854 	 * so the total length of IPv4 header is IHL*4 bytes
855 	 * The UDP_0 bit *may* bet set if the *inner* header is UDP
856 	 */
857 	if (ipv4_tunnel) {
858 		skb->transport_header = skb->mac_header +
859 					sizeof(struct ethhdr) +
860 					(ip_hdr(skb)->ihl * 4);
861 
862 		/* Add 4 bytes for VLAN tagged packets */
863 		skb->transport_header += (skb->protocol == htons(ETH_P_8021Q) ||
864 					  skb->protocol == htons(ETH_P_8021AD))
865 					  ? VLAN_HLEN : 0;
866 
867 		if ((ip_hdr(skb)->protocol == IPPROTO_UDP) &&
868 		    (udp_hdr(skb)->check != 0)) {
869 			rx_udp_csum = udp_csum(skb);
870 			iph = ip_hdr(skb);
871 			csum = csum_tcpudp_magic(iph->saddr, iph->daddr,
872 						 (skb->len -
873 						  skb_transport_offset(skb)),
874 						 IPPROTO_UDP, rx_udp_csum);
875 
876 			if (udp_hdr(skb)->check != csum)
877 				goto checksum_fail;
878 
879 		} /* else its GRE and so no outer UDP header */
880 	}
881 
882 	skb->ip_summed = CHECKSUM_UNNECESSARY;
883 	skb->csum_level = ipv4_tunnel || ipv6_tunnel;
884 
885 	return;
886 
887 checksum_fail:
888 	vsi->back->hw_csum_rx_error++;
889 }
890 
891 /**
892  * i40e_rx_hash - returns the hash value from the Rx descriptor
893  * @ring: descriptor ring
894  * @rx_desc: specific descriptor
895  **/
i40e_rx_hash(struct i40e_ring * ring,union i40e_rx_desc * rx_desc)896 static inline u32 i40e_rx_hash(struct i40e_ring *ring,
897 			       union i40e_rx_desc *rx_desc)
898 {
899 	const __le64 rss_mask =
900 		cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
901 			    I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);
902 
903 	if ((ring->netdev->features & NETIF_F_RXHASH) &&
904 	    (rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask)
905 		return le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
906 	else
907 		return 0;
908 }
909 
910 /**
911  * i40e_ptype_to_hash - get a hash type
912  * @ptype: the ptype value from the descriptor
913  *
914  * Returns a hash type to be used by skb_set_hash
915  **/
i40e_ptype_to_hash(u8 ptype)916 static inline enum pkt_hash_types i40e_ptype_to_hash(u8 ptype)
917 {
918 	struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);
919 
920 	if (!decoded.known)
921 		return PKT_HASH_TYPE_NONE;
922 
923 	if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
924 	    decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4)
925 		return PKT_HASH_TYPE_L4;
926 	else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
927 		 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3)
928 		return PKT_HASH_TYPE_L3;
929 	else
930 		return PKT_HASH_TYPE_L2;
931 }
932 
933 /**
934  * i40e_clean_rx_irq_ps - Reclaim resources after receive; packet split
935  * @rx_ring:  rx ring to clean
936  * @budget:   how many cleans we're allowed
937  *
938  * Returns true if there's any budget left (e.g. the clean is finished)
939  **/
i40e_clean_rx_irq_ps(struct i40e_ring * rx_ring,int budget)940 static int i40e_clean_rx_irq_ps(struct i40e_ring *rx_ring, int budget)
941 {
942 	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
943 	u16 rx_packet_len, rx_header_len, rx_sph, rx_hbo;
944 	u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
945 	const int current_node = numa_mem_id();
946 	struct i40e_vsi *vsi = rx_ring->vsi;
947 	u16 i = rx_ring->next_to_clean;
948 	union i40e_rx_desc *rx_desc;
949 	u32 rx_error, rx_status;
950 	u8 rx_ptype;
951 	u64 qword;
952 
953 	do {
954 		struct i40e_rx_buffer *rx_bi;
955 		struct sk_buff *skb;
956 		u16 vlan_tag;
957 		/* return some buffers to hardware, one at a time is too slow */
958 		if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
959 			i40evf_alloc_rx_buffers_ps(rx_ring, cleaned_count);
960 			cleaned_count = 0;
961 		}
962 
963 		i = rx_ring->next_to_clean;
964 		rx_desc = I40E_RX_DESC(rx_ring, i);
965 		qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
966 		rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
967 			I40E_RXD_QW1_STATUS_SHIFT;
968 
969 		if (!(rx_status & BIT(I40E_RX_DESC_STATUS_DD_SHIFT)))
970 			break;
971 
972 		/* This memory barrier is needed to keep us from reading
973 		 * any other fields out of the rx_desc until we know the
974 		 * DD bit is set.
975 		 */
976 		dma_rmb();
977 		rx_bi = &rx_ring->rx_bi[i];
978 		skb = rx_bi->skb;
979 		if (likely(!skb)) {
980 			skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
981 							rx_ring->rx_hdr_len);
982 			if (!skb) {
983 				rx_ring->rx_stats.alloc_buff_failed++;
984 				break;
985 			}
986 
987 			/* initialize queue mapping */
988 			skb_record_rx_queue(skb, rx_ring->queue_index);
989 			/* we are reusing so sync this buffer for CPU use */
990 			dma_sync_single_range_for_cpu(rx_ring->dev,
991 						      rx_bi->dma,
992 						      0,
993 						      rx_ring->rx_hdr_len,
994 						      DMA_FROM_DEVICE);
995 		}
996 		rx_packet_len = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
997 				I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
998 		rx_header_len = (qword & I40E_RXD_QW1_LENGTH_HBUF_MASK) >>
999 				I40E_RXD_QW1_LENGTH_HBUF_SHIFT;
1000 		rx_sph = (qword & I40E_RXD_QW1_LENGTH_SPH_MASK) >>
1001 			 I40E_RXD_QW1_LENGTH_SPH_SHIFT;
1002 
1003 		rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
1004 			   I40E_RXD_QW1_ERROR_SHIFT;
1005 		rx_hbo = rx_error & BIT(I40E_RX_DESC_ERROR_HBO_SHIFT);
1006 		rx_error &= ~BIT(I40E_RX_DESC_ERROR_HBO_SHIFT);
1007 
1008 		rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
1009 			   I40E_RXD_QW1_PTYPE_SHIFT;
1010 		prefetch(rx_bi->page);
1011 		rx_bi->skb = NULL;
1012 		cleaned_count++;
1013 		if (rx_hbo || rx_sph) {
1014 			int len;
1015 
1016 			if (rx_hbo)
1017 				len = I40E_RX_HDR_SIZE;
1018 			else
1019 				len = rx_header_len;
1020 			memcpy(__skb_put(skb, len), rx_bi->hdr_buf, len);
1021 		} else if (skb->len == 0) {
1022 			int len;
1023 
1024 			len = (rx_packet_len > skb_headlen(skb) ?
1025 				skb_headlen(skb) : rx_packet_len);
1026 			memcpy(__skb_put(skb, len),
1027 			       rx_bi->page + rx_bi->page_offset,
1028 			       len);
1029 			rx_bi->page_offset += len;
1030 			rx_packet_len -= len;
1031 		}
1032 
1033 		/* Get the rest of the data if this was a header split */
1034 		if (rx_packet_len) {
1035 			skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
1036 					   rx_bi->page,
1037 					   rx_bi->page_offset,
1038 					   rx_packet_len);
1039 
1040 			skb->len += rx_packet_len;
1041 			skb->data_len += rx_packet_len;
1042 			skb->truesize += rx_packet_len;
1043 
1044 			if ((page_count(rx_bi->page) == 1) &&
1045 			    (page_to_nid(rx_bi->page) == current_node))
1046 				get_page(rx_bi->page);
1047 			else
1048 				rx_bi->page = NULL;
1049 
1050 			dma_unmap_page(rx_ring->dev,
1051 				       rx_bi->page_dma,
1052 				       PAGE_SIZE / 2,
1053 				       DMA_FROM_DEVICE);
1054 			rx_bi->page_dma = 0;
1055 		}
1056 		I40E_RX_INCREMENT(rx_ring, i);
1057 
1058 		if (unlikely(
1059 		    !(rx_status & BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)))) {
1060 			struct i40e_rx_buffer *next_buffer;
1061 
1062 			next_buffer = &rx_ring->rx_bi[i];
1063 			next_buffer->skb = skb;
1064 			rx_ring->rx_stats.non_eop_descs++;
1065 			continue;
1066 		}
1067 
1068 		/* ERR_MASK will only have valid bits if EOP set */
1069 		if (unlikely(rx_error & BIT(I40E_RX_DESC_ERROR_RXE_SHIFT))) {
1070 			dev_kfree_skb_any(skb);
1071 			continue;
1072 		}
1073 
1074 		skb_set_hash(skb, i40e_rx_hash(rx_ring, rx_desc),
1075 			     i40e_ptype_to_hash(rx_ptype));
1076 		/* probably a little skewed due to removing CRC */
1077 		total_rx_bytes += skb->len;
1078 		total_rx_packets++;
1079 
1080 		skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1081 
1082 		i40e_rx_checksum(vsi, skb, rx_status, rx_error, rx_ptype);
1083 
1084 		vlan_tag = rx_status & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)
1085 			 ? le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1)
1086 			 : 0;
1087 #ifdef I40E_FCOE
1088 		if (!i40e_fcoe_handle_offload(rx_ring, rx_desc, skb)) {
1089 			dev_kfree_skb_any(skb);
1090 			continue;
1091 		}
1092 #endif
1093 		skb_mark_napi_id(skb, &rx_ring->q_vector->napi);
1094 		i40e_receive_skb(rx_ring, skb, vlan_tag);
1095 
1096 		rx_desc->wb.qword1.status_error_len = 0;
1097 
1098 	} while (likely(total_rx_packets < budget));
1099 
1100 	u64_stats_update_begin(&rx_ring->syncp);
1101 	rx_ring->stats.packets += total_rx_packets;
1102 	rx_ring->stats.bytes += total_rx_bytes;
1103 	u64_stats_update_end(&rx_ring->syncp);
1104 	rx_ring->q_vector->rx.total_packets += total_rx_packets;
1105 	rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
1106 
1107 	return total_rx_packets;
1108 }
1109 
1110 /**
1111  * i40e_clean_rx_irq_1buf - Reclaim resources after receive; single buffer
1112  * @rx_ring:  rx ring to clean
1113  * @budget:   how many cleans we're allowed
1114  *
1115  * Returns number of packets cleaned
1116  **/
i40e_clean_rx_irq_1buf(struct i40e_ring * rx_ring,int budget)1117 static int i40e_clean_rx_irq_1buf(struct i40e_ring *rx_ring, int budget)
1118 {
1119 	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1120 	u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
1121 	struct i40e_vsi *vsi = rx_ring->vsi;
1122 	union i40e_rx_desc *rx_desc;
1123 	u32 rx_error, rx_status;
1124 	u16 rx_packet_len;
1125 	u8 rx_ptype;
1126 	u64 qword;
1127 	u16 i;
1128 
1129 	do {
1130 		struct i40e_rx_buffer *rx_bi;
1131 		struct sk_buff *skb;
1132 		u16 vlan_tag;
1133 		/* return some buffers to hardware, one at a time is too slow */
1134 		if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
1135 			i40evf_alloc_rx_buffers_1buf(rx_ring, cleaned_count);
1136 			cleaned_count = 0;
1137 		}
1138 
1139 		i = rx_ring->next_to_clean;
1140 		rx_desc = I40E_RX_DESC(rx_ring, i);
1141 		qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1142 		rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1143 			I40E_RXD_QW1_STATUS_SHIFT;
1144 
1145 		if (!(rx_status & BIT(I40E_RX_DESC_STATUS_DD_SHIFT)))
1146 			break;
1147 
1148 		/* This memory barrier is needed to keep us from reading
1149 		 * any other fields out of the rx_desc until we know the
1150 		 * DD bit is set.
1151 		 */
1152 		dma_rmb();
1153 
1154 		rx_bi = &rx_ring->rx_bi[i];
1155 		skb = rx_bi->skb;
1156 		prefetch(skb->data);
1157 
1158 		rx_packet_len = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
1159 				I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
1160 
1161 		rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
1162 			   I40E_RXD_QW1_ERROR_SHIFT;
1163 		rx_error &= ~BIT(I40E_RX_DESC_ERROR_HBO_SHIFT);
1164 
1165 		rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
1166 			   I40E_RXD_QW1_PTYPE_SHIFT;
1167 		rx_bi->skb = NULL;
1168 		cleaned_count++;
1169 
1170 		/* Get the header and possibly the whole packet
1171 		 * If this is an skb from previous receive dma will be 0
1172 		 */
1173 		skb_put(skb, rx_packet_len);
1174 		dma_unmap_single(rx_ring->dev, rx_bi->dma, rx_ring->rx_buf_len,
1175 				 DMA_FROM_DEVICE);
1176 		rx_bi->dma = 0;
1177 
1178 		I40E_RX_INCREMENT(rx_ring, i);
1179 
1180 		if (unlikely(
1181 		    !(rx_status & BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)))) {
1182 			rx_ring->rx_stats.non_eop_descs++;
1183 			continue;
1184 		}
1185 
1186 		/* ERR_MASK will only have valid bits if EOP set */
1187 		if (unlikely(rx_error & BIT(I40E_RX_DESC_ERROR_RXE_SHIFT))) {
1188 			dev_kfree_skb_any(skb);
1189 			continue;
1190 		}
1191 
1192 		skb_set_hash(skb, i40e_rx_hash(rx_ring, rx_desc),
1193 			     i40e_ptype_to_hash(rx_ptype));
1194 		/* probably a little skewed due to removing CRC */
1195 		total_rx_bytes += skb->len;
1196 		total_rx_packets++;
1197 
1198 		skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1199 
1200 		i40e_rx_checksum(vsi, skb, rx_status, rx_error, rx_ptype);
1201 
1202 		vlan_tag = rx_status & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)
1203 			 ? le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1)
1204 			 : 0;
1205 		i40e_receive_skb(rx_ring, skb, vlan_tag);
1206 
1207 		rx_desc->wb.qword1.status_error_len = 0;
1208 	} while (likely(total_rx_packets < budget));
1209 
1210 	u64_stats_update_begin(&rx_ring->syncp);
1211 	rx_ring->stats.packets += total_rx_packets;
1212 	rx_ring->stats.bytes += total_rx_bytes;
1213 	u64_stats_update_end(&rx_ring->syncp);
1214 	rx_ring->q_vector->rx.total_packets += total_rx_packets;
1215 	rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
1216 
1217 	return total_rx_packets;
1218 }
1219 
i40e_buildreg_itr(const int type,const u16 itr)1220 static u32 i40e_buildreg_itr(const int type, const u16 itr)
1221 {
1222 	u32 val;
1223 
1224 	val = I40E_VFINT_DYN_CTLN1_INTENA_MASK |
1225 	      I40E_VFINT_DYN_CTLN1_CLEARPBA_MASK |
1226 	      (type << I40E_VFINT_DYN_CTLN1_ITR_INDX_SHIFT) |
1227 	      (itr << I40E_VFINT_DYN_CTLN1_INTERVAL_SHIFT);
1228 
1229 	return val;
1230 }
1231 
1232 /* a small macro to shorten up some long lines */
1233 #define INTREG I40E_VFINT_DYN_CTLN1
1234 
1235 /**
1236  * i40e_update_enable_itr - Update itr and re-enable MSIX interrupt
1237  * @vsi: the VSI we care about
1238  * @q_vector: q_vector for which itr is being updated and interrupt enabled
1239  *
1240  **/
i40e_update_enable_itr(struct i40e_vsi * vsi,struct i40e_q_vector * q_vector)1241 static inline void i40e_update_enable_itr(struct i40e_vsi *vsi,
1242 					  struct i40e_q_vector *q_vector)
1243 {
1244 	struct i40e_hw *hw = &vsi->back->hw;
1245 	bool rx = false, tx = false;
1246 	u32 rxval, txval;
1247 	int vector;
1248 
1249 	vector = (q_vector->v_idx + vsi->base_vector);
1250 
1251 	/* avoid dynamic calculation if in countdown mode OR if
1252 	 * all dynamic is disabled
1253 	 */
1254 	rxval = txval = i40e_buildreg_itr(I40E_ITR_NONE, 0);
1255 
1256 	if (q_vector->itr_countdown > 0 ||
1257 	    (!ITR_IS_DYNAMIC(vsi->rx_itr_setting) &&
1258 	     !ITR_IS_DYNAMIC(vsi->tx_itr_setting))) {
1259 		goto enable_int;
1260 	}
1261 
1262 	if (ITR_IS_DYNAMIC(vsi->rx_itr_setting)) {
1263 		rx = i40e_set_new_dynamic_itr(&q_vector->rx);
1264 		rxval = i40e_buildreg_itr(I40E_RX_ITR, q_vector->rx.itr);
1265 	}
1266 	if (ITR_IS_DYNAMIC(vsi->tx_itr_setting)) {
1267 		tx = i40e_set_new_dynamic_itr(&q_vector->tx);
1268 		txval = i40e_buildreg_itr(I40E_TX_ITR, q_vector->tx.itr);
1269 	}
1270 	if (rx || tx) {
1271 		/* get the higher of the two ITR adjustments and
1272 		 * use the same value for both ITR registers
1273 		 * when in adaptive mode (Rx and/or Tx)
1274 		 */
1275 		u16 itr = max(q_vector->tx.itr, q_vector->rx.itr);
1276 
1277 		q_vector->tx.itr = q_vector->rx.itr = itr;
1278 		txval = i40e_buildreg_itr(I40E_TX_ITR, itr);
1279 		tx = true;
1280 		rxval = i40e_buildreg_itr(I40E_RX_ITR, itr);
1281 		rx = true;
1282 	}
1283 
1284 	/* only need to enable the interrupt once, but need
1285 	 * to possibly update both ITR values
1286 	 */
1287 	if (rx) {
1288 		/* set the INTENA_MSK_MASK so that this first write
1289 		 * won't actually enable the interrupt, instead just
1290 		 * updating the ITR (it's bit 31 PF and VF)
1291 		 */
1292 		rxval |= BIT(31);
1293 		/* don't check _DOWN because interrupt isn't being enabled */
1294 		wr32(hw, INTREG(vector - 1), rxval);
1295 	}
1296 
1297 enable_int:
1298 	if (!test_bit(__I40E_DOWN, &vsi->state))
1299 		wr32(hw, INTREG(vector - 1), txval);
1300 
1301 	if (q_vector->itr_countdown)
1302 		q_vector->itr_countdown--;
1303 	else
1304 		q_vector->itr_countdown = ITR_COUNTDOWN_START;
1305 
1306 }
1307 
1308 /**
1309  * i40evf_napi_poll - NAPI polling Rx/Tx cleanup routine
1310  * @napi: napi struct with our devices info in it
1311  * @budget: amount of work driver is allowed to do this pass, in packets
1312  *
1313  * This function will clean all queues associated with a q_vector.
1314  *
1315  * Returns the amount of work done
1316  **/
i40evf_napi_poll(struct napi_struct * napi,int budget)1317 int i40evf_napi_poll(struct napi_struct *napi, int budget)
1318 {
1319 	struct i40e_q_vector *q_vector =
1320 			       container_of(napi, struct i40e_q_vector, napi);
1321 	struct i40e_vsi *vsi = q_vector->vsi;
1322 	struct i40e_ring *ring;
1323 	bool clean_complete = true;
1324 	bool arm_wb = false;
1325 	int budget_per_ring;
1326 	int work_done = 0;
1327 
1328 	if (test_bit(__I40E_DOWN, &vsi->state)) {
1329 		napi_complete(napi);
1330 		return 0;
1331 	}
1332 
1333 	/* Since the actual Tx work is minimal, we can give the Tx a larger
1334 	 * budget and be more aggressive about cleaning up the Tx descriptors.
1335 	 */
1336 	i40e_for_each_ring(ring, q_vector->tx) {
1337 		clean_complete &= i40e_clean_tx_irq(ring, vsi->work_limit);
1338 		arm_wb |= ring->arm_wb;
1339 		ring->arm_wb = false;
1340 	}
1341 
1342 	/* Handle case where we are called by netpoll with a budget of 0 */
1343 	if (budget <= 0)
1344 		goto tx_only;
1345 
1346 	/* We attempt to distribute budget to each Rx queue fairly, but don't
1347 	 * allow the budget to go below 1 because that would exit polling early.
1348 	 */
1349 	budget_per_ring = max(budget/q_vector->num_ringpairs, 1);
1350 
1351 	i40e_for_each_ring(ring, q_vector->rx) {
1352 		int cleaned;
1353 
1354 		if (ring_is_ps_enabled(ring))
1355 			cleaned = i40e_clean_rx_irq_ps(ring, budget_per_ring);
1356 		else
1357 			cleaned = i40e_clean_rx_irq_1buf(ring, budget_per_ring);
1358 
1359 		work_done += cleaned;
1360 		/* if we didn't clean as many as budgeted, we must be done */
1361 		clean_complete &= (budget_per_ring != cleaned);
1362 	}
1363 
1364 	/* If work not completed, return budget and polling will return */
1365 	if (!clean_complete) {
1366 tx_only:
1367 		if (arm_wb)
1368 			i40evf_force_wb(vsi, q_vector);
1369 		return budget;
1370 	}
1371 
1372 	if (vsi->back->flags & I40E_TXR_FLAGS_WB_ON_ITR)
1373 		q_vector->arm_wb_state = false;
1374 
1375 	/* Work is done so exit the polling mode and re-enable the interrupt */
1376 	napi_complete_done(napi, work_done);
1377 	i40e_update_enable_itr(vsi, q_vector);
1378 	return 0;
1379 }
1380 
1381 /**
1382  * i40evf_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
1383  * @skb:     send buffer
1384  * @tx_ring: ring to send buffer on
1385  * @flags:   the tx flags to be set
1386  *
1387  * Checks the skb and set up correspondingly several generic transmit flags
1388  * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
1389  *
1390  * Returns error code indicate the frame should be dropped upon error and the
1391  * otherwise  returns 0 to indicate the flags has been set properly.
1392  **/
i40evf_tx_prepare_vlan_flags(struct sk_buff * skb,struct i40e_ring * tx_ring,u32 * flags)1393 static inline int i40evf_tx_prepare_vlan_flags(struct sk_buff *skb,
1394 					       struct i40e_ring *tx_ring,
1395 					       u32 *flags)
1396 {
1397 	__be16 protocol = skb->protocol;
1398 	u32  tx_flags = 0;
1399 
1400 	if (protocol == htons(ETH_P_8021Q) &&
1401 	    !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
1402 		/* When HW VLAN acceleration is turned off by the user the
1403 		 * stack sets the protocol to 8021q so that the driver
1404 		 * can take any steps required to support the SW only
1405 		 * VLAN handling.  In our case the driver doesn't need
1406 		 * to take any further steps so just set the protocol
1407 		 * to the encapsulated ethertype.
1408 		 */
1409 		skb->protocol = vlan_get_protocol(skb);
1410 		goto out;
1411 	}
1412 
1413 	/* if we have a HW VLAN tag being added, default to the HW one */
1414 	if (skb_vlan_tag_present(skb)) {
1415 		tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
1416 		tx_flags |= I40E_TX_FLAGS_HW_VLAN;
1417 	/* else if it is a SW VLAN, check the next protocol and store the tag */
1418 	} else if (protocol == htons(ETH_P_8021Q)) {
1419 		struct vlan_hdr *vhdr, _vhdr;
1420 
1421 		vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
1422 		if (!vhdr)
1423 			return -EINVAL;
1424 
1425 		protocol = vhdr->h_vlan_encapsulated_proto;
1426 		tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
1427 		tx_flags |= I40E_TX_FLAGS_SW_VLAN;
1428 	}
1429 
1430 out:
1431 	*flags = tx_flags;
1432 	return 0;
1433 }
1434 
1435 /**
1436  * i40e_tso - set up the tso context descriptor
1437  * @tx_ring:  ptr to the ring to send
1438  * @skb:      ptr to the skb we're sending
1439  * @hdr_len:  ptr to the size of the packet header
1440  * @cd_tunneling: ptr to context descriptor bits
1441  *
1442  * Returns 0 if no TSO can happen, 1 if tso is going, or error
1443  **/
i40e_tso(struct i40e_ring * tx_ring,struct sk_buff * skb,u8 * hdr_len,u64 * cd_type_cmd_tso_mss,u32 * cd_tunneling)1444 static int i40e_tso(struct i40e_ring *tx_ring, struct sk_buff *skb,
1445 		    u8 *hdr_len, u64 *cd_type_cmd_tso_mss,
1446 		    u32 *cd_tunneling)
1447 {
1448 	u32 cd_cmd, cd_tso_len, cd_mss;
1449 	struct ipv6hdr *ipv6h;
1450 	struct tcphdr *tcph;
1451 	struct iphdr *iph;
1452 	u32 l4len;
1453 	int err;
1454 
1455 	if (!skb_is_gso(skb))
1456 		return 0;
1457 
1458 	err = skb_cow_head(skb, 0);
1459 	if (err < 0)
1460 		return err;
1461 
1462 	iph = skb->encapsulation ? inner_ip_hdr(skb) : ip_hdr(skb);
1463 	ipv6h = skb->encapsulation ? inner_ipv6_hdr(skb) : ipv6_hdr(skb);
1464 
1465 	if (iph->version == 4) {
1466 		tcph = skb->encapsulation ? inner_tcp_hdr(skb) : tcp_hdr(skb);
1467 		iph->tot_len = 0;
1468 		iph->check = 0;
1469 		tcph->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
1470 						 0, IPPROTO_TCP, 0);
1471 	} else if (ipv6h->version == 6) {
1472 		tcph = skb->encapsulation ? inner_tcp_hdr(skb) : tcp_hdr(skb);
1473 		ipv6h->payload_len = 0;
1474 		tcph->check = ~csum_ipv6_magic(&ipv6h->saddr, &ipv6h->daddr,
1475 					       0, IPPROTO_TCP, 0);
1476 	}
1477 
1478 	l4len = skb->encapsulation ? inner_tcp_hdrlen(skb) : tcp_hdrlen(skb);
1479 	*hdr_len = (skb->encapsulation
1480 		    ? (skb_inner_transport_header(skb) - skb->data)
1481 		    : skb_transport_offset(skb)) + l4len;
1482 
1483 	/* find the field values */
1484 	cd_cmd = I40E_TX_CTX_DESC_TSO;
1485 	cd_tso_len = skb->len - *hdr_len;
1486 	cd_mss = skb_shinfo(skb)->gso_size;
1487 	*cd_type_cmd_tso_mss |= ((u64)cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
1488 				((u64)cd_tso_len <<
1489 				 I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
1490 				((u64)cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
1491 	return 1;
1492 }
1493 
1494 /**
1495  * i40e_tx_enable_csum - Enable Tx checksum offloads
1496  * @skb: send buffer
1497  * @tx_flags: pointer to Tx flags currently set
1498  * @td_cmd: Tx descriptor command bits to set
1499  * @td_offset: Tx descriptor header offsets to set
1500  * @cd_tunneling: ptr to context desc bits
1501  **/
i40e_tx_enable_csum(struct sk_buff * skb,u32 * tx_flags,u32 * td_cmd,u32 * td_offset,struct i40e_ring * tx_ring,u32 * cd_tunneling)1502 static void i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
1503 				u32 *td_cmd, u32 *td_offset,
1504 				struct i40e_ring *tx_ring,
1505 				u32 *cd_tunneling)
1506 {
1507 	struct ipv6hdr *this_ipv6_hdr;
1508 	unsigned int this_tcp_hdrlen;
1509 	struct iphdr *this_ip_hdr;
1510 	u32 network_hdr_len;
1511 	u8 l4_hdr = 0;
1512 	struct udphdr *oudph;
1513 	struct iphdr *oiph;
1514 	u32 l4_tunnel = 0;
1515 
1516 	if (skb->encapsulation) {
1517 		switch (ip_hdr(skb)->protocol) {
1518 		case IPPROTO_UDP:
1519 			oudph = udp_hdr(skb);
1520 			oiph = ip_hdr(skb);
1521 			l4_tunnel = I40E_TXD_CTX_UDP_TUNNELING;
1522 			*tx_flags |= I40E_TX_FLAGS_VXLAN_TUNNEL;
1523 			break;
1524 		default:
1525 			return;
1526 		}
1527 		network_hdr_len = skb_inner_network_header_len(skb);
1528 		this_ip_hdr = inner_ip_hdr(skb);
1529 		this_ipv6_hdr = inner_ipv6_hdr(skb);
1530 		this_tcp_hdrlen = inner_tcp_hdrlen(skb);
1531 
1532 		if (*tx_flags & I40E_TX_FLAGS_IPV4) {
1533 			if (*tx_flags & I40E_TX_FLAGS_TSO) {
1534 				*cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV4;
1535 				ip_hdr(skb)->check = 0;
1536 			} else {
1537 				*cd_tunneling |=
1538 					 I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
1539 			}
1540 		} else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
1541 			*cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV6;
1542 			if (*tx_flags & I40E_TX_FLAGS_TSO)
1543 				ip_hdr(skb)->check = 0;
1544 		}
1545 
1546 		/* Now set the ctx descriptor fields */
1547 		*cd_tunneling |= (skb_network_header_len(skb) >> 2) <<
1548 				   I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT      |
1549 				   l4_tunnel                             |
1550 				   ((skb_inner_network_offset(skb) -
1551 					skb_transport_offset(skb)) >> 1) <<
1552 				   I40E_TXD_CTX_QW0_NATLEN_SHIFT;
1553 		if (this_ip_hdr->version == 6) {
1554 			*tx_flags &= ~I40E_TX_FLAGS_IPV4;
1555 			*tx_flags |= I40E_TX_FLAGS_IPV6;
1556 		}
1557 
1558 
1559 		if ((tx_ring->flags & I40E_TXR_FLAGS_OUTER_UDP_CSUM) &&
1560 		    (l4_tunnel == I40E_TXD_CTX_UDP_TUNNELING)        &&
1561 		    (*cd_tunneling & I40E_TXD_CTX_QW0_EXT_IP_MASK)) {
1562 			oudph->check = ~csum_tcpudp_magic(oiph->saddr,
1563 					oiph->daddr,
1564 					(skb->len - skb_transport_offset(skb)),
1565 					IPPROTO_UDP, 0);
1566 			*cd_tunneling |= I40E_TXD_CTX_QW0_L4T_CS_MASK;
1567 		}
1568 	} else {
1569 		network_hdr_len = skb_network_header_len(skb);
1570 		this_ip_hdr = ip_hdr(skb);
1571 		this_ipv6_hdr = ipv6_hdr(skb);
1572 		this_tcp_hdrlen = tcp_hdrlen(skb);
1573 	}
1574 
1575 	/* Enable IP checksum offloads */
1576 	if (*tx_flags & I40E_TX_FLAGS_IPV4) {
1577 		l4_hdr = this_ip_hdr->protocol;
1578 		/* the stack computes the IP header already, the only time we
1579 		 * need the hardware to recompute it is in the case of TSO.
1580 		 */
1581 		if (*tx_flags & I40E_TX_FLAGS_TSO) {
1582 			*td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV4_CSUM;
1583 			this_ip_hdr->check = 0;
1584 		} else {
1585 			*td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV4;
1586 		}
1587 		/* Now set the td_offset for IP header length */
1588 		*td_offset = (network_hdr_len >> 2) <<
1589 			      I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
1590 	} else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
1591 		l4_hdr = this_ipv6_hdr->nexthdr;
1592 		*td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
1593 		/* Now set the td_offset for IP header length */
1594 		*td_offset = (network_hdr_len >> 2) <<
1595 			      I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
1596 	}
1597 	/* words in MACLEN + dwords in IPLEN + dwords in L4Len */
1598 	*td_offset |= (skb_network_offset(skb) >> 1) <<
1599 		       I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
1600 
1601 	/* Enable L4 checksum offloads */
1602 	switch (l4_hdr) {
1603 	case IPPROTO_TCP:
1604 		/* enable checksum offloads */
1605 		*td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
1606 		*td_offset |= (this_tcp_hdrlen >> 2) <<
1607 			       I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
1608 		break;
1609 	case IPPROTO_SCTP:
1610 		/* enable SCTP checksum offload */
1611 		*td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
1612 		*td_offset |= (sizeof(struct sctphdr) >> 2) <<
1613 			       I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
1614 		break;
1615 	case IPPROTO_UDP:
1616 		/* enable UDP checksum offload */
1617 		*td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
1618 		*td_offset |= (sizeof(struct udphdr) >> 2) <<
1619 			       I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
1620 		break;
1621 	default:
1622 		break;
1623 	}
1624 }
1625 
1626 /**
1627  * i40e_create_tx_ctx Build the Tx context descriptor
1628  * @tx_ring:  ring to create the descriptor on
1629  * @cd_type_cmd_tso_mss: Quad Word 1
1630  * @cd_tunneling: Quad Word 0 - bits 0-31
1631  * @cd_l2tag2: Quad Word 0 - bits 32-63
1632  **/
i40e_create_tx_ctx(struct i40e_ring * tx_ring,const u64 cd_type_cmd_tso_mss,const u32 cd_tunneling,const u32 cd_l2tag2)1633 static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
1634 			       const u64 cd_type_cmd_tso_mss,
1635 			       const u32 cd_tunneling, const u32 cd_l2tag2)
1636 {
1637 	struct i40e_tx_context_desc *context_desc;
1638 	int i = tx_ring->next_to_use;
1639 
1640 	if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
1641 	    !cd_tunneling && !cd_l2tag2)
1642 		return;
1643 
1644 	/* grab the next descriptor */
1645 	context_desc = I40E_TX_CTXTDESC(tx_ring, i);
1646 
1647 	i++;
1648 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
1649 
1650 	/* cpu_to_le32 and assign to struct fields */
1651 	context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
1652 	context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
1653 	context_desc->rsvd = cpu_to_le16(0);
1654 	context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
1655 }
1656 
1657  /**
1658  * i40e_chk_linearize - Check if there are more than 8 fragments per packet
1659  * @skb:      send buffer
1660  * @tx_flags: collected send information
1661  *
1662  * Note: Our HW can't scatter-gather more than 8 fragments to build
1663  * a packet on the wire and so we need to figure out the cases where we
1664  * need to linearize the skb.
1665  **/
i40e_chk_linearize(struct sk_buff * skb,u32 tx_flags)1666 static bool i40e_chk_linearize(struct sk_buff *skb, u32 tx_flags)
1667 {
1668 	struct skb_frag_struct *frag;
1669 	bool linearize = false;
1670 	unsigned int size = 0;
1671 	u16 num_frags;
1672 	u16 gso_segs;
1673 
1674 	num_frags = skb_shinfo(skb)->nr_frags;
1675 	gso_segs = skb_shinfo(skb)->gso_segs;
1676 
1677 	if (tx_flags & (I40E_TX_FLAGS_TSO | I40E_TX_FLAGS_FSO)) {
1678 		u16 j = 0;
1679 
1680 		if (num_frags < (I40E_MAX_BUFFER_TXD))
1681 			goto linearize_chk_done;
1682 		/* try the simple math, if we have too many frags per segment */
1683 		if (DIV_ROUND_UP((num_frags + gso_segs), gso_segs) >
1684 		    I40E_MAX_BUFFER_TXD) {
1685 			linearize = true;
1686 			goto linearize_chk_done;
1687 		}
1688 		frag = &skb_shinfo(skb)->frags[0];
1689 		/* we might still have more fragments per segment */
1690 		do {
1691 			size += skb_frag_size(frag);
1692 			frag++; j++;
1693 			if ((size >= skb_shinfo(skb)->gso_size) &&
1694 			    (j < I40E_MAX_BUFFER_TXD)) {
1695 				size = (size % skb_shinfo(skb)->gso_size);
1696 				j = (size) ? 1 : 0;
1697 			}
1698 			if (j == I40E_MAX_BUFFER_TXD) {
1699 				linearize = true;
1700 				break;
1701 			}
1702 			num_frags--;
1703 		} while (num_frags);
1704 	} else {
1705 		if (num_frags >= I40E_MAX_BUFFER_TXD)
1706 			linearize = true;
1707 	}
1708 
1709 linearize_chk_done:
1710 	return linearize;
1711 }
1712 
1713 /**
1714  * __i40evf_maybe_stop_tx - 2nd level check for tx stop conditions
1715  * @tx_ring: the ring to be checked
1716  * @size:    the size buffer we want to assure is available
1717  *
1718  * Returns -EBUSY if a stop is needed, else 0
1719  **/
__i40evf_maybe_stop_tx(struct i40e_ring * tx_ring,int size)1720 static inline int __i40evf_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
1721 {
1722 	netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
1723 	/* Memory barrier before checking head and tail */
1724 	smp_mb();
1725 
1726 	/* Check again in a case another CPU has just made room available. */
1727 	if (likely(I40E_DESC_UNUSED(tx_ring) < size))
1728 		return -EBUSY;
1729 
1730 	/* A reprieve! - use start_queue because it doesn't call schedule */
1731 	netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
1732 	++tx_ring->tx_stats.restart_queue;
1733 	return 0;
1734 }
1735 
1736 /**
1737  * i40evf_maybe_stop_tx - 1st level check for tx stop conditions
1738  * @tx_ring: the ring to be checked
1739  * @size:    the size buffer we want to assure is available
1740  *
1741  * Returns 0 if stop is not needed
1742  **/
i40evf_maybe_stop_tx(struct i40e_ring * tx_ring,int size)1743 static inline int i40evf_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
1744 {
1745 	if (likely(I40E_DESC_UNUSED(tx_ring) >= size))
1746 		return 0;
1747 	return __i40evf_maybe_stop_tx(tx_ring, size);
1748 }
1749 
1750 /**
1751  * i40evf_tx_map - Build the Tx descriptor
1752  * @tx_ring:  ring to send buffer on
1753  * @skb:      send buffer
1754  * @first:    first buffer info buffer to use
1755  * @tx_flags: collected send information
1756  * @hdr_len:  size of the packet header
1757  * @td_cmd:   the command field in the descriptor
1758  * @td_offset: offset for checksum or crc
1759  **/
i40evf_tx_map(struct i40e_ring * tx_ring,struct sk_buff * skb,struct i40e_tx_buffer * first,u32 tx_flags,const u8 hdr_len,u32 td_cmd,u32 td_offset)1760 static inline void i40evf_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
1761 				 struct i40e_tx_buffer *first, u32 tx_flags,
1762 				 const u8 hdr_len, u32 td_cmd, u32 td_offset)
1763 {
1764 	unsigned int data_len = skb->data_len;
1765 	unsigned int size = skb_headlen(skb);
1766 	struct skb_frag_struct *frag;
1767 	struct i40e_tx_buffer *tx_bi;
1768 	struct i40e_tx_desc *tx_desc;
1769 	u16 i = tx_ring->next_to_use;
1770 	u32 td_tag = 0;
1771 	dma_addr_t dma;
1772 	u16 gso_segs;
1773 
1774 	if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
1775 		td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
1776 		td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >>
1777 			 I40E_TX_FLAGS_VLAN_SHIFT;
1778 	}
1779 
1780 	if (tx_flags & (I40E_TX_FLAGS_TSO | I40E_TX_FLAGS_FSO))
1781 		gso_segs = skb_shinfo(skb)->gso_segs;
1782 	else
1783 		gso_segs = 1;
1784 
1785 	/* multiply data chunks by size of headers */
1786 	first->bytecount = skb->len - hdr_len + (gso_segs * hdr_len);
1787 	first->gso_segs = gso_segs;
1788 	first->skb = skb;
1789 	first->tx_flags = tx_flags;
1790 
1791 	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
1792 
1793 	tx_desc = I40E_TX_DESC(tx_ring, i);
1794 	tx_bi = first;
1795 
1796 	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
1797 		if (dma_mapping_error(tx_ring->dev, dma))
1798 			goto dma_error;
1799 
1800 		/* record length, and DMA address */
1801 		dma_unmap_len_set(tx_bi, len, size);
1802 		dma_unmap_addr_set(tx_bi, dma, dma);
1803 
1804 		tx_desc->buffer_addr = cpu_to_le64(dma);
1805 
1806 		while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
1807 			tx_desc->cmd_type_offset_bsz =
1808 				build_ctob(td_cmd, td_offset,
1809 					   I40E_MAX_DATA_PER_TXD, td_tag);
1810 
1811 			tx_desc++;
1812 			i++;
1813 			if (i == tx_ring->count) {
1814 				tx_desc = I40E_TX_DESC(tx_ring, 0);
1815 				i = 0;
1816 			}
1817 
1818 			dma += I40E_MAX_DATA_PER_TXD;
1819 			size -= I40E_MAX_DATA_PER_TXD;
1820 
1821 			tx_desc->buffer_addr = cpu_to_le64(dma);
1822 		}
1823 
1824 		if (likely(!data_len))
1825 			break;
1826 
1827 		tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
1828 							  size, td_tag);
1829 
1830 		tx_desc++;
1831 		i++;
1832 		if (i == tx_ring->count) {
1833 			tx_desc = I40E_TX_DESC(tx_ring, 0);
1834 			i = 0;
1835 		}
1836 
1837 		size = skb_frag_size(frag);
1838 		data_len -= size;
1839 
1840 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
1841 				       DMA_TO_DEVICE);
1842 
1843 		tx_bi = &tx_ring->tx_bi[i];
1844 	}
1845 
1846 	/* Place RS bit on last descriptor of any packet that spans across the
1847 	 * 4th descriptor (WB_STRIDE aka 0x3) in a 64B cacheline.
1848 	 */
1849 #define WB_STRIDE 0x3
1850 	if (((i & WB_STRIDE) != WB_STRIDE) &&
1851 	    (first <= &tx_ring->tx_bi[i]) &&
1852 	    (first >= &tx_ring->tx_bi[i & ~WB_STRIDE])) {
1853 		tx_desc->cmd_type_offset_bsz =
1854 			build_ctob(td_cmd, td_offset, size, td_tag) |
1855 			cpu_to_le64((u64)I40E_TX_DESC_CMD_EOP <<
1856 					 I40E_TXD_QW1_CMD_SHIFT);
1857 	} else {
1858 		tx_desc->cmd_type_offset_bsz =
1859 			build_ctob(td_cmd, td_offset, size, td_tag) |
1860 			cpu_to_le64((u64)I40E_TXD_CMD <<
1861 					 I40E_TXD_QW1_CMD_SHIFT);
1862 	}
1863 
1864 	netdev_tx_sent_queue(netdev_get_tx_queue(tx_ring->netdev,
1865 						 tx_ring->queue_index),
1866 			     first->bytecount);
1867 
1868 	/* Force memory writes to complete before letting h/w
1869 	 * know there are new descriptors to fetch.  (Only
1870 	 * applicable for weak-ordered memory model archs,
1871 	 * such as IA-64).
1872 	 */
1873 	wmb();
1874 
1875 	/* set next_to_watch value indicating a packet is present */
1876 	first->next_to_watch = tx_desc;
1877 
1878 	i++;
1879 	if (i == tx_ring->count)
1880 		i = 0;
1881 
1882 	tx_ring->next_to_use = i;
1883 
1884 	i40evf_maybe_stop_tx(tx_ring, DESC_NEEDED);
1885 	/* notify HW of packet */
1886 	if (!skb->xmit_more ||
1887 	    netif_xmit_stopped(netdev_get_tx_queue(tx_ring->netdev,
1888 						   tx_ring->queue_index)))
1889 		writel(i, tx_ring->tail);
1890 	else
1891 		prefetchw(tx_desc + 1);
1892 
1893 	return;
1894 
1895 dma_error:
1896 	dev_info(tx_ring->dev, "TX DMA map failed\n");
1897 
1898 	/* clear dma mappings for failed tx_bi map */
1899 	for (;;) {
1900 		tx_bi = &tx_ring->tx_bi[i];
1901 		i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
1902 		if (tx_bi == first)
1903 			break;
1904 		if (i == 0)
1905 			i = tx_ring->count;
1906 		i--;
1907 	}
1908 
1909 	tx_ring->next_to_use = i;
1910 }
1911 
1912 /**
1913  * i40evf_xmit_descriptor_count - calculate number of tx descriptors needed
1914  * @skb:     send buffer
1915  * @tx_ring: ring to send buffer on
1916  *
1917  * Returns number of data descriptors needed for this skb. Returns 0 to indicate
1918  * there is not enough descriptors available in this ring since we need at least
1919  * one descriptor.
1920  **/
i40evf_xmit_descriptor_count(struct sk_buff * skb,struct i40e_ring * tx_ring)1921 static inline int i40evf_xmit_descriptor_count(struct sk_buff *skb,
1922 					       struct i40e_ring *tx_ring)
1923 {
1924 	unsigned int f;
1925 	int count = 0;
1926 
1927 	/* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
1928 	 *       + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
1929 	 *       + 4 desc gap to avoid the cache line where head is,
1930 	 *       + 1 desc for context descriptor,
1931 	 * otherwise try next time
1932 	 */
1933 	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
1934 		count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
1935 
1936 	count += TXD_USE_COUNT(skb_headlen(skb));
1937 	if (i40evf_maybe_stop_tx(tx_ring, count + 4 + 1)) {
1938 		tx_ring->tx_stats.tx_busy++;
1939 		return 0;
1940 	}
1941 	return count;
1942 }
1943 
1944 /**
1945  * i40e_xmit_frame_ring - Sends buffer on Tx ring
1946  * @skb:     send buffer
1947  * @tx_ring: ring to send buffer on
1948  *
1949  * Returns NETDEV_TX_OK if sent, else an error code
1950  **/
i40e_xmit_frame_ring(struct sk_buff * skb,struct i40e_ring * tx_ring)1951 static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
1952 					struct i40e_ring *tx_ring)
1953 {
1954 	u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
1955 	u32 cd_tunneling = 0, cd_l2tag2 = 0;
1956 	struct i40e_tx_buffer *first;
1957 	u32 td_offset = 0;
1958 	u32 tx_flags = 0;
1959 	__be16 protocol;
1960 	u32 td_cmd = 0;
1961 	u8 hdr_len = 0;
1962 	int tso;
1963 
1964 	if (0 == i40evf_xmit_descriptor_count(skb, tx_ring))
1965 		return NETDEV_TX_BUSY;
1966 
1967 	/* prepare the xmit flags */
1968 	if (i40evf_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
1969 		goto out_drop;
1970 
1971 	/* obtain protocol of skb */
1972 	protocol = vlan_get_protocol(skb);
1973 
1974 	/* record the location of the first descriptor for this packet */
1975 	first = &tx_ring->tx_bi[tx_ring->next_to_use];
1976 
1977 	/* setup IPv4/IPv6 offloads */
1978 	if (protocol == htons(ETH_P_IP))
1979 		tx_flags |= I40E_TX_FLAGS_IPV4;
1980 	else if (protocol == htons(ETH_P_IPV6))
1981 		tx_flags |= I40E_TX_FLAGS_IPV6;
1982 
1983 	tso = i40e_tso(tx_ring, skb, &hdr_len,
1984 		       &cd_type_cmd_tso_mss, &cd_tunneling);
1985 
1986 	if (tso < 0)
1987 		goto out_drop;
1988 	else if (tso)
1989 		tx_flags |= I40E_TX_FLAGS_TSO;
1990 
1991 	if (i40e_chk_linearize(skb, tx_flags)) {
1992 		if (skb_linearize(skb))
1993 			goto out_drop;
1994 		tx_ring->tx_stats.tx_linearize++;
1995 	}
1996 	skb_tx_timestamp(skb);
1997 
1998 	/* always enable CRC insertion offload */
1999 	td_cmd |= I40E_TX_DESC_CMD_ICRC;
2000 
2001 	/* Always offload the checksum, since it's in the data descriptor */
2002 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
2003 		tx_flags |= I40E_TX_FLAGS_CSUM;
2004 
2005 		i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
2006 				    tx_ring, &cd_tunneling);
2007 	}
2008 
2009 	i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
2010 			   cd_tunneling, cd_l2tag2);
2011 
2012 	i40evf_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
2013 		      td_cmd, td_offset);
2014 
2015 	return NETDEV_TX_OK;
2016 
2017 out_drop:
2018 	dev_kfree_skb_any(skb);
2019 	return NETDEV_TX_OK;
2020 }
2021 
2022 /**
2023  * i40evf_xmit_frame - Selects the correct VSI and Tx queue to send buffer
2024  * @skb:    send buffer
2025  * @netdev: network interface device structure
2026  *
2027  * Returns NETDEV_TX_OK if sent, else an error code
2028  **/
i40evf_xmit_frame(struct sk_buff * skb,struct net_device * netdev)2029 netdev_tx_t i40evf_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
2030 {
2031 	struct i40evf_adapter *adapter = netdev_priv(netdev);
2032 	struct i40e_ring *tx_ring = adapter->tx_rings[skb->queue_mapping];
2033 
2034 	/* hardware can't handle really short frames, hardware padding works
2035 	 * beyond this point
2036 	 */
2037 	if (unlikely(skb->len < I40E_MIN_TX_LEN)) {
2038 		if (skb_pad(skb, I40E_MIN_TX_LEN - skb->len))
2039 			return NETDEV_TX_OK;
2040 		skb->len = I40E_MIN_TX_LEN;
2041 		skb_set_tail_pointer(skb, I40E_MIN_TX_LEN);
2042 	}
2043 
2044 	return i40e_xmit_frame_ring(skb, tx_ring);
2045 }
2046