1 /*******************************************************************************
2  *
3  * Intel Ethernet Controller XL710 Family Linux Virtual Function Driver
4  * Copyright(c) 2013 - 2014 Intel Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along
16  * with this program.  If not, see <http://www.gnu.org/licenses/>.
17  *
18  * The full GNU General Public License is included in this distribution in
19  * the file called "COPYING".
20  *
21  * Contact Information:
22  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
23  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24  *
25  ******************************************************************************/
26 
27 #include <linux/prefetch.h>
28 #include <net/busy_poll.h>
29 
30 #include "i40evf.h"
31 #include "i40e_prototype.h"
32 
build_ctob(u32 td_cmd,u32 td_offset,unsigned int size,u32 td_tag)33 static inline __le64 build_ctob(u32 td_cmd, u32 td_offset, unsigned int size,
34 				u32 td_tag)
35 {
36 	return cpu_to_le64(I40E_TX_DESC_DTYPE_DATA |
37 			   ((u64)td_cmd  << I40E_TXD_QW1_CMD_SHIFT) |
38 			   ((u64)td_offset << I40E_TXD_QW1_OFFSET_SHIFT) |
39 			   ((u64)size  << I40E_TXD_QW1_TX_BUF_SZ_SHIFT) |
40 			   ((u64)td_tag  << I40E_TXD_QW1_L2TAG1_SHIFT));
41 }
42 
43 #define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
44 
45 /**
46  * i40e_unmap_and_free_tx_resource - Release a Tx buffer
47  * @ring:      the ring that owns the buffer
48  * @tx_buffer: the buffer to free
49  **/
i40e_unmap_and_free_tx_resource(struct i40e_ring * ring,struct i40e_tx_buffer * tx_buffer)50 static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
51 					    struct i40e_tx_buffer *tx_buffer)
52 {
53 	if (tx_buffer->skb) {
54 		if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
55 			kfree(tx_buffer->raw_buf);
56 		else
57 			dev_kfree_skb_any(tx_buffer->skb);
58 
59 		if (dma_unmap_len(tx_buffer, len))
60 			dma_unmap_single(ring->dev,
61 					 dma_unmap_addr(tx_buffer, dma),
62 					 dma_unmap_len(tx_buffer, len),
63 					 DMA_TO_DEVICE);
64 	} else if (dma_unmap_len(tx_buffer, len)) {
65 		dma_unmap_page(ring->dev,
66 			       dma_unmap_addr(tx_buffer, dma),
67 			       dma_unmap_len(tx_buffer, len),
68 			       DMA_TO_DEVICE);
69 	}
70 	tx_buffer->next_to_watch = NULL;
71 	tx_buffer->skb = NULL;
72 	dma_unmap_len_set(tx_buffer, len, 0);
73 	/* tx_buffer must be completely set up in the transmit path */
74 }
75 
76 /**
77  * i40evf_clean_tx_ring - Free any empty Tx buffers
78  * @tx_ring: ring to be cleaned
79  **/
i40evf_clean_tx_ring(struct i40e_ring * tx_ring)80 void i40evf_clean_tx_ring(struct i40e_ring *tx_ring)
81 {
82 	unsigned long bi_size;
83 	u16 i;
84 
85 	/* ring already cleared, nothing to do */
86 	if (!tx_ring->tx_bi)
87 		return;
88 
89 	/* Free all the Tx ring sk_buffs */
90 	for (i = 0; i < tx_ring->count; i++)
91 		i40e_unmap_and_free_tx_resource(tx_ring, &tx_ring->tx_bi[i]);
92 
93 	bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
94 	memset(tx_ring->tx_bi, 0, bi_size);
95 
96 	/* Zero out the descriptor ring */
97 	memset(tx_ring->desc, 0, tx_ring->size);
98 
99 	tx_ring->next_to_use = 0;
100 	tx_ring->next_to_clean = 0;
101 
102 	if (!tx_ring->netdev)
103 		return;
104 
105 	/* cleanup Tx queue statistics */
106 	netdev_tx_reset_queue(netdev_get_tx_queue(tx_ring->netdev,
107 						  tx_ring->queue_index));
108 }
109 
110 /**
111  * i40evf_free_tx_resources - Free Tx resources per queue
112  * @tx_ring: Tx descriptor ring for a specific queue
113  *
114  * Free all transmit software resources
115  **/
i40evf_free_tx_resources(struct i40e_ring * tx_ring)116 void i40evf_free_tx_resources(struct i40e_ring *tx_ring)
117 {
118 	i40evf_clean_tx_ring(tx_ring);
119 	kfree(tx_ring->tx_bi);
120 	tx_ring->tx_bi = NULL;
121 
122 	if (tx_ring->desc) {
123 		dma_free_coherent(tx_ring->dev, tx_ring->size,
124 				  tx_ring->desc, tx_ring->dma);
125 		tx_ring->desc = NULL;
126 	}
127 }
128 
129 /**
130  * i40e_get_head - Retrieve head from head writeback
131  * @tx_ring:  tx ring to fetch head of
132  *
133  * Returns value of Tx ring head based on value stored
134  * in head write-back location
135  **/
i40e_get_head(struct i40e_ring * tx_ring)136 static inline u32 i40e_get_head(struct i40e_ring *tx_ring)
137 {
138 	void *head = (struct i40e_tx_desc *)tx_ring->desc + tx_ring->count;
139 
140 	return le32_to_cpu(*(volatile __le32 *)head);
141 }
142 
143 /**
144  * i40e_get_tx_pending - how many tx descriptors not processed
145  * @tx_ring: the ring of descriptors
146  *
147  * Since there is no access to the ring head register
148  * in XL710, we need to use our local copies
149  **/
i40e_get_tx_pending(struct i40e_ring * ring)150 static u32 i40e_get_tx_pending(struct i40e_ring *ring)
151 {
152 	u32 head, tail;
153 
154 	head = i40e_get_head(ring);
155 	tail = readl(ring->tail);
156 
157 	if (head != tail)
158 		return (head < tail) ?
159 			tail - head : (tail + ring->count - head);
160 
161 	return 0;
162 }
163 
164 /**
165  * i40e_check_tx_hang - Is there a hang in the Tx queue
166  * @tx_ring: the ring of descriptors
167  **/
i40e_check_tx_hang(struct i40e_ring * tx_ring)168 static bool i40e_check_tx_hang(struct i40e_ring *tx_ring)
169 {
170 	u32 tx_done = tx_ring->stats.packets;
171 	u32 tx_done_old = tx_ring->tx_stats.tx_done_old;
172 	u32 tx_pending = i40e_get_tx_pending(tx_ring);
173 	bool ret = false;
174 
175 	clear_check_for_tx_hang(tx_ring);
176 
177 	/* Check for a hung queue, but be thorough. This verifies
178 	 * that a transmit has been completed since the previous
179 	 * check AND there is at least one packet pending. The
180 	 * ARMED bit is set to indicate a potential hang. The
181 	 * bit is cleared if a pause frame is received to remove
182 	 * false hang detection due to PFC or 802.3x frames. By
183 	 * requiring this to fail twice we avoid races with
184 	 * PFC clearing the ARMED bit and conditions where we
185 	 * run the check_tx_hang logic with a transmit completion
186 	 * pending but without time to complete it yet.
187 	 */
188 	if ((tx_done_old == tx_done) && tx_pending) {
189 		/* make sure it is true for two checks in a row */
190 		ret = test_and_set_bit(__I40E_HANG_CHECK_ARMED,
191 				       &tx_ring->state);
192 	} else if (tx_done_old == tx_done &&
193 		   (tx_pending < I40E_MIN_DESC_PENDING) && (tx_pending > 0)) {
194 		/* update completed stats and disarm the hang check */
195 		tx_ring->tx_stats.tx_done_old = tx_done;
196 		clear_bit(__I40E_HANG_CHECK_ARMED, &tx_ring->state);
197 	}
198 
199 	return ret;
200 }
201 
202 #define WB_STRIDE 0x3
203 
204 /**
205  * i40e_clean_tx_irq - Reclaim resources after transmit completes
206  * @tx_ring:  tx ring to clean
207  * @budget:   how many cleans we're allowed
208  *
209  * Returns true if there's any budget left (e.g. the clean is finished)
210  **/
i40e_clean_tx_irq(struct i40e_ring * tx_ring,int budget)211 static bool i40e_clean_tx_irq(struct i40e_ring *tx_ring, int budget)
212 {
213 	u16 i = tx_ring->next_to_clean;
214 	struct i40e_tx_buffer *tx_buf;
215 	struct i40e_tx_desc *tx_head;
216 	struct i40e_tx_desc *tx_desc;
217 	unsigned int total_packets = 0;
218 	unsigned int total_bytes = 0;
219 
220 	tx_buf = &tx_ring->tx_bi[i];
221 	tx_desc = I40E_TX_DESC(tx_ring, i);
222 	i -= tx_ring->count;
223 
224 	tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring));
225 
226 	do {
227 		struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
228 
229 		/* if next_to_watch is not set then there is no work pending */
230 		if (!eop_desc)
231 			break;
232 
233 		/* prevent any other reads prior to eop_desc */
234 		read_barrier_depends();
235 
236 		/* we have caught up to head, no work left to do */
237 		if (tx_head == tx_desc)
238 			break;
239 
240 		/* clear next_to_watch to prevent false hangs */
241 		tx_buf->next_to_watch = NULL;
242 
243 		/* update the statistics for this packet */
244 		total_bytes += tx_buf->bytecount;
245 		total_packets += tx_buf->gso_segs;
246 
247 		/* free the skb */
248 		dev_kfree_skb_any(tx_buf->skb);
249 
250 		/* unmap skb header data */
251 		dma_unmap_single(tx_ring->dev,
252 				 dma_unmap_addr(tx_buf, dma),
253 				 dma_unmap_len(tx_buf, len),
254 				 DMA_TO_DEVICE);
255 
256 		/* clear tx_buffer data */
257 		tx_buf->skb = NULL;
258 		dma_unmap_len_set(tx_buf, len, 0);
259 
260 		/* unmap remaining buffers */
261 		while (tx_desc != eop_desc) {
262 
263 			tx_buf++;
264 			tx_desc++;
265 			i++;
266 			if (unlikely(!i)) {
267 				i -= tx_ring->count;
268 				tx_buf = tx_ring->tx_bi;
269 				tx_desc = I40E_TX_DESC(tx_ring, 0);
270 			}
271 
272 			/* unmap any remaining paged data */
273 			if (dma_unmap_len(tx_buf, len)) {
274 				dma_unmap_page(tx_ring->dev,
275 					       dma_unmap_addr(tx_buf, dma),
276 					       dma_unmap_len(tx_buf, len),
277 					       DMA_TO_DEVICE);
278 				dma_unmap_len_set(tx_buf, len, 0);
279 			}
280 		}
281 
282 		/* move us one more past the eop_desc for start of next pkt */
283 		tx_buf++;
284 		tx_desc++;
285 		i++;
286 		if (unlikely(!i)) {
287 			i -= tx_ring->count;
288 			tx_buf = tx_ring->tx_bi;
289 			tx_desc = I40E_TX_DESC(tx_ring, 0);
290 		}
291 
292 		prefetch(tx_desc);
293 
294 		/* update budget accounting */
295 		budget--;
296 	} while (likely(budget));
297 
298 	i += tx_ring->count;
299 	tx_ring->next_to_clean = i;
300 	u64_stats_update_begin(&tx_ring->syncp);
301 	tx_ring->stats.bytes += total_bytes;
302 	tx_ring->stats.packets += total_packets;
303 	u64_stats_update_end(&tx_ring->syncp);
304 	tx_ring->q_vector->tx.total_bytes += total_bytes;
305 	tx_ring->q_vector->tx.total_packets += total_packets;
306 
307 	if (budget &&
308 	    !((i & WB_STRIDE) == WB_STRIDE) &&
309 	    !test_bit(__I40E_DOWN, &tx_ring->vsi->state) &&
310 	    (I40E_DESC_UNUSED(tx_ring) != tx_ring->count))
311 		tx_ring->arm_wb = true;
312 	else
313 		tx_ring->arm_wb = false;
314 
315 	if (check_for_tx_hang(tx_ring) && i40e_check_tx_hang(tx_ring)) {
316 		/* schedule immediate reset if we believe we hung */
317 		dev_info(tx_ring->dev, "Detected Tx Unit Hang\n"
318 			 "  VSI                  <%d>\n"
319 			 "  Tx Queue             <%d>\n"
320 			 "  next_to_use          <%x>\n"
321 			 "  next_to_clean        <%x>\n",
322 			 tx_ring->vsi->seid,
323 			 tx_ring->queue_index,
324 			 tx_ring->next_to_use, i);
325 		dev_info(tx_ring->dev, "tx_bi[next_to_clean]\n"
326 			 "  time_stamp           <%lx>\n"
327 			 "  jiffies              <%lx>\n",
328 			 tx_ring->tx_bi[i].time_stamp, jiffies);
329 
330 		netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
331 
332 		dev_info(tx_ring->dev,
333 			 "tx hang detected on queue %d, resetting adapter\n",
334 			 tx_ring->queue_index);
335 
336 		tx_ring->netdev->netdev_ops->ndo_tx_timeout(tx_ring->netdev);
337 
338 		/* the adapter is about to reset, no point in enabling stuff */
339 		return true;
340 	}
341 
342 	netdev_tx_completed_queue(netdev_get_tx_queue(tx_ring->netdev,
343 						      tx_ring->queue_index),
344 				  total_packets, total_bytes);
345 
346 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
347 	if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
348 		     (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
349 		/* Make sure that anybody stopping the queue after this
350 		 * sees the new next_to_clean.
351 		 */
352 		smp_mb();
353 		if (__netif_subqueue_stopped(tx_ring->netdev,
354 					     tx_ring->queue_index) &&
355 		   !test_bit(__I40E_DOWN, &tx_ring->vsi->state)) {
356 			netif_wake_subqueue(tx_ring->netdev,
357 					    tx_ring->queue_index);
358 			++tx_ring->tx_stats.restart_queue;
359 		}
360 	}
361 
362 	return budget > 0;
363 }
364 
365 /**
366  * i40e_force_wb -Arm hardware to do a wb on noncache aligned descriptors
367  * @vsi: the VSI we care about
368  * @q_vector: the vector  on which to force writeback
369  *
370  **/
i40e_force_wb(struct i40e_vsi * vsi,struct i40e_q_vector * q_vector)371 static void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
372 {
373 	u32 val = I40E_VFINT_DYN_CTLN_INTENA_MASK |
374 		  I40E_VFINT_DYN_CTLN1_ITR_INDX_MASK | /* set noitr */
375 		  I40E_VFINT_DYN_CTLN_SWINT_TRIG_MASK |
376 		  I40E_VFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK;
377 		  /* allow 00 to be written to the index */
378 
379 	wr32(&vsi->back->hw,
380 	     I40E_VFINT_DYN_CTLN1(q_vector->v_idx + vsi->base_vector - 1),
381 	     val);
382 }
383 
384 /**
385  * i40e_set_new_dynamic_itr - Find new ITR level
386  * @rc: structure containing ring performance data
387  *
388  * Stores a new ITR value based on packets and byte counts during
389  * the last interrupt.  The advantage of per interrupt computation
390  * is faster updates and more accurate ITR for the current traffic
391  * pattern.  Constants in this function were computed based on
392  * theoretical maximum wire speed and thresholds were set based on
393  * testing data as well as attempting to minimize response time
394  * while increasing bulk throughput.
395  **/
i40e_set_new_dynamic_itr(struct i40e_ring_container * rc)396 static void i40e_set_new_dynamic_itr(struct i40e_ring_container *rc)
397 {
398 	enum i40e_latency_range new_latency_range = rc->latency_range;
399 	u32 new_itr = rc->itr;
400 	int bytes_per_int;
401 
402 	if (rc->total_packets == 0 || !rc->itr)
403 		return;
404 
405 	/* simple throttlerate management
406 	 *   0-10MB/s   lowest (100000 ints/s)
407 	 *  10-20MB/s   low    (20000 ints/s)
408 	 *  20-1249MB/s bulk   (8000 ints/s)
409 	 */
410 	bytes_per_int = rc->total_bytes / rc->itr;
411 	switch (rc->itr) {
412 	case I40E_LOWEST_LATENCY:
413 		if (bytes_per_int > 10)
414 			new_latency_range = I40E_LOW_LATENCY;
415 		break;
416 	case I40E_LOW_LATENCY:
417 		if (bytes_per_int > 20)
418 			new_latency_range = I40E_BULK_LATENCY;
419 		else if (bytes_per_int <= 10)
420 			new_latency_range = I40E_LOWEST_LATENCY;
421 		break;
422 	case I40E_BULK_LATENCY:
423 		if (bytes_per_int <= 20)
424 			rc->latency_range = I40E_LOW_LATENCY;
425 		break;
426 	}
427 
428 	switch (new_latency_range) {
429 	case I40E_LOWEST_LATENCY:
430 		new_itr = I40E_ITR_100K;
431 		break;
432 	case I40E_LOW_LATENCY:
433 		new_itr = I40E_ITR_20K;
434 		break;
435 	case I40E_BULK_LATENCY:
436 		new_itr = I40E_ITR_8K;
437 		break;
438 	default:
439 		break;
440 	}
441 
442 	if (new_itr != rc->itr) {
443 		/* do an exponential smoothing */
444 		new_itr = (10 * new_itr * rc->itr) /
445 			  ((9 * new_itr) + rc->itr);
446 		rc->itr = new_itr & I40E_MAX_ITR;
447 	}
448 
449 	rc->total_bytes = 0;
450 	rc->total_packets = 0;
451 }
452 
453 /**
454  * i40e_update_dynamic_itr - Adjust ITR based on bytes per int
455  * @q_vector: the vector to adjust
456  **/
i40e_update_dynamic_itr(struct i40e_q_vector * q_vector)457 static void i40e_update_dynamic_itr(struct i40e_q_vector *q_vector)
458 {
459 	u16 vector = q_vector->vsi->base_vector + q_vector->v_idx;
460 	struct i40e_hw *hw = &q_vector->vsi->back->hw;
461 	u32 reg_addr;
462 	u16 old_itr;
463 
464 	reg_addr = I40E_VFINT_ITRN1(I40E_RX_ITR, vector - 1);
465 	old_itr = q_vector->rx.itr;
466 	i40e_set_new_dynamic_itr(&q_vector->rx);
467 	if (old_itr != q_vector->rx.itr)
468 		wr32(hw, reg_addr, q_vector->rx.itr);
469 
470 	reg_addr = I40E_VFINT_ITRN1(I40E_TX_ITR, vector - 1);
471 	old_itr = q_vector->tx.itr;
472 	i40e_set_new_dynamic_itr(&q_vector->tx);
473 	if (old_itr != q_vector->tx.itr)
474 		wr32(hw, reg_addr, q_vector->tx.itr);
475 }
476 
477 /**
478  * i40evf_setup_tx_descriptors - Allocate the Tx descriptors
479  * @tx_ring: the tx ring to set up
480  *
481  * Return 0 on success, negative on error
482  **/
i40evf_setup_tx_descriptors(struct i40e_ring * tx_ring)483 int i40evf_setup_tx_descriptors(struct i40e_ring *tx_ring)
484 {
485 	struct device *dev = tx_ring->dev;
486 	int bi_size;
487 
488 	if (!dev)
489 		return -ENOMEM;
490 
491 	bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
492 	tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
493 	if (!tx_ring->tx_bi)
494 		goto err;
495 
496 	/* round up to nearest 4K */
497 	tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
498 	/* add u32 for head writeback, align after this takes care of
499 	 * guaranteeing this is at least one cache line in size
500 	 */
501 	tx_ring->size += sizeof(u32);
502 	tx_ring->size = ALIGN(tx_ring->size, 4096);
503 	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
504 					   &tx_ring->dma, GFP_KERNEL);
505 	if (!tx_ring->desc) {
506 		dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
507 			 tx_ring->size);
508 		goto err;
509 	}
510 
511 	tx_ring->next_to_use = 0;
512 	tx_ring->next_to_clean = 0;
513 	return 0;
514 
515 err:
516 	kfree(tx_ring->tx_bi);
517 	tx_ring->tx_bi = NULL;
518 	return -ENOMEM;
519 }
520 
521 /**
522  * i40evf_clean_rx_ring - Free Rx buffers
523  * @rx_ring: ring to be cleaned
524  **/
i40evf_clean_rx_ring(struct i40e_ring * rx_ring)525 void i40evf_clean_rx_ring(struct i40e_ring *rx_ring)
526 {
527 	struct device *dev = rx_ring->dev;
528 	struct i40e_rx_buffer *rx_bi;
529 	unsigned long bi_size;
530 	u16 i;
531 
532 	/* ring already cleared, nothing to do */
533 	if (!rx_ring->rx_bi)
534 		return;
535 
536 	if (ring_is_ps_enabled(rx_ring)) {
537 		int bufsz = ALIGN(rx_ring->rx_hdr_len, 256) * rx_ring->count;
538 
539 		rx_bi = &rx_ring->rx_bi[0];
540 		if (rx_bi->hdr_buf) {
541 			dma_free_coherent(dev,
542 					  bufsz,
543 					  rx_bi->hdr_buf,
544 					  rx_bi->dma);
545 			for (i = 0; i < rx_ring->count; i++) {
546 				rx_bi = &rx_ring->rx_bi[i];
547 				rx_bi->dma = 0;
548 				rx_bi->hdr_buf = NULL;
549 			}
550 		}
551 	}
552 	/* Free all the Rx ring sk_buffs */
553 	for (i = 0; i < rx_ring->count; i++) {
554 		rx_bi = &rx_ring->rx_bi[i];
555 		if (rx_bi->dma) {
556 			dma_unmap_single(dev,
557 					 rx_bi->dma,
558 					 rx_ring->rx_buf_len,
559 					 DMA_FROM_DEVICE);
560 			rx_bi->dma = 0;
561 		}
562 		if (rx_bi->skb) {
563 			dev_kfree_skb(rx_bi->skb);
564 			rx_bi->skb = NULL;
565 		}
566 		if (rx_bi->page) {
567 			if (rx_bi->page_dma) {
568 				dma_unmap_page(dev,
569 					       rx_bi->page_dma,
570 					       PAGE_SIZE / 2,
571 					       DMA_FROM_DEVICE);
572 				rx_bi->page_dma = 0;
573 			}
574 			__free_page(rx_bi->page);
575 			rx_bi->page = NULL;
576 			rx_bi->page_offset = 0;
577 		}
578 	}
579 
580 	bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
581 	memset(rx_ring->rx_bi, 0, bi_size);
582 
583 	/* Zero out the descriptor ring */
584 	memset(rx_ring->desc, 0, rx_ring->size);
585 
586 	rx_ring->next_to_clean = 0;
587 	rx_ring->next_to_use = 0;
588 }
589 
590 /**
591  * i40evf_free_rx_resources - Free Rx resources
592  * @rx_ring: ring to clean the resources from
593  *
594  * Free all receive software resources
595  **/
i40evf_free_rx_resources(struct i40e_ring * rx_ring)596 void i40evf_free_rx_resources(struct i40e_ring *rx_ring)
597 {
598 	i40evf_clean_rx_ring(rx_ring);
599 	kfree(rx_ring->rx_bi);
600 	rx_ring->rx_bi = NULL;
601 
602 	if (rx_ring->desc) {
603 		dma_free_coherent(rx_ring->dev, rx_ring->size,
604 				  rx_ring->desc, rx_ring->dma);
605 		rx_ring->desc = NULL;
606 	}
607 }
608 
609 /**
610  * i40evf_alloc_rx_headers - allocate rx header buffers
611  * @rx_ring: ring to alloc buffers
612  *
613  * Allocate rx header buffers for the entire ring. As these are static,
614  * this is only called when setting up a new ring.
615  **/
i40evf_alloc_rx_headers(struct i40e_ring * rx_ring)616 void i40evf_alloc_rx_headers(struct i40e_ring *rx_ring)
617 {
618 	struct device *dev = rx_ring->dev;
619 	struct i40e_rx_buffer *rx_bi;
620 	dma_addr_t dma;
621 	void *buffer;
622 	int buf_size;
623 	int i;
624 
625 	if (rx_ring->rx_bi[0].hdr_buf)
626 		return;
627 	/* Make sure the buffers don't cross cache line boundaries. */
628 	buf_size = ALIGN(rx_ring->rx_hdr_len, 256);
629 	buffer = dma_alloc_coherent(dev, buf_size * rx_ring->count,
630 				    &dma, GFP_KERNEL);
631 	if (!buffer)
632 		return;
633 	for (i = 0; i < rx_ring->count; i++) {
634 		rx_bi = &rx_ring->rx_bi[i];
635 		rx_bi->dma = dma + (i * buf_size);
636 		rx_bi->hdr_buf = buffer + (i * buf_size);
637 	}
638 }
639 
640 /**
641  * i40evf_setup_rx_descriptors - Allocate Rx descriptors
642  * @rx_ring: Rx descriptor ring (for a specific queue) to setup
643  *
644  * Returns 0 on success, negative on failure
645  **/
i40evf_setup_rx_descriptors(struct i40e_ring * rx_ring)646 int i40evf_setup_rx_descriptors(struct i40e_ring *rx_ring)
647 {
648 	struct device *dev = rx_ring->dev;
649 	int bi_size;
650 
651 	bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
652 	rx_ring->rx_bi = kzalloc(bi_size, GFP_KERNEL);
653 	if (!rx_ring->rx_bi)
654 		goto err;
655 
656 	u64_stats_init(&rx_ring->syncp);
657 
658 	/* Round up to nearest 4K */
659 	rx_ring->size = ring_is_16byte_desc_enabled(rx_ring)
660 		? rx_ring->count * sizeof(union i40e_16byte_rx_desc)
661 		: rx_ring->count * sizeof(union i40e_32byte_rx_desc);
662 	rx_ring->size = ALIGN(rx_ring->size, 4096);
663 	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
664 					   &rx_ring->dma, GFP_KERNEL);
665 
666 	if (!rx_ring->desc) {
667 		dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
668 			 rx_ring->size);
669 		goto err;
670 	}
671 
672 	rx_ring->next_to_clean = 0;
673 	rx_ring->next_to_use = 0;
674 
675 	return 0;
676 err:
677 	kfree(rx_ring->rx_bi);
678 	rx_ring->rx_bi = NULL;
679 	return -ENOMEM;
680 }
681 
682 /**
683  * i40e_release_rx_desc - Store the new tail and head values
684  * @rx_ring: ring to bump
685  * @val: new head index
686  **/
i40e_release_rx_desc(struct i40e_ring * rx_ring,u32 val)687 static inline void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
688 {
689 	rx_ring->next_to_use = val;
690 	/* Force memory writes to complete before letting h/w
691 	 * know there are new descriptors to fetch.  (Only
692 	 * applicable for weak-ordered memory model archs,
693 	 * such as IA-64).
694 	 */
695 	wmb();
696 	writel(val, rx_ring->tail);
697 }
698 
699 /**
700  * i40evf_alloc_rx_buffers_ps - Replace used receive buffers; packet split
701  * @rx_ring: ring to place buffers on
702  * @cleaned_count: number of buffers to replace
703  **/
i40evf_alloc_rx_buffers_ps(struct i40e_ring * rx_ring,u16 cleaned_count)704 void i40evf_alloc_rx_buffers_ps(struct i40e_ring *rx_ring, u16 cleaned_count)
705 {
706 	u16 i = rx_ring->next_to_use;
707 	union i40e_rx_desc *rx_desc;
708 	struct i40e_rx_buffer *bi;
709 
710 	/* do nothing if no valid netdev defined */
711 	if (!rx_ring->netdev || !cleaned_count)
712 		return;
713 
714 	while (cleaned_count--) {
715 		rx_desc = I40E_RX_DESC(rx_ring, i);
716 		bi = &rx_ring->rx_bi[i];
717 
718 		if (bi->skb) /* desc is in use */
719 			goto no_buffers;
720 		if (!bi->page) {
721 			bi->page = alloc_page(GFP_ATOMIC);
722 			if (!bi->page) {
723 				rx_ring->rx_stats.alloc_page_failed++;
724 				goto no_buffers;
725 			}
726 		}
727 
728 		if (!bi->page_dma) {
729 			/* use a half page if we're re-using */
730 			bi->page_offset ^= PAGE_SIZE / 2;
731 			bi->page_dma = dma_map_page(rx_ring->dev,
732 						    bi->page,
733 						    bi->page_offset,
734 						    PAGE_SIZE / 2,
735 						    DMA_FROM_DEVICE);
736 			if (dma_mapping_error(rx_ring->dev,
737 					      bi->page_dma)) {
738 				rx_ring->rx_stats.alloc_page_failed++;
739 				bi->page_dma = 0;
740 				goto no_buffers;
741 			}
742 		}
743 
744 		dma_sync_single_range_for_device(rx_ring->dev,
745 						 bi->dma,
746 						 0,
747 						 rx_ring->rx_hdr_len,
748 						 DMA_FROM_DEVICE);
749 		/* Refresh the desc even if buffer_addrs didn't change
750 		 * because each write-back erases this info.
751 		 */
752 		rx_desc->read.pkt_addr = cpu_to_le64(bi->page_dma);
753 		rx_desc->read.hdr_addr = cpu_to_le64(bi->dma);
754 		i++;
755 		if (i == rx_ring->count)
756 			i = 0;
757 	}
758 
759 no_buffers:
760 	if (rx_ring->next_to_use != i)
761 		i40e_release_rx_desc(rx_ring, i);
762 }
763 
764 /**
765  * i40evf_alloc_rx_buffers_1buf - Replace used receive buffers; single buffer
766  * @rx_ring: ring to place buffers on
767  * @cleaned_count: number of buffers to replace
768  **/
i40evf_alloc_rx_buffers_1buf(struct i40e_ring * rx_ring,u16 cleaned_count)769 void i40evf_alloc_rx_buffers_1buf(struct i40e_ring *rx_ring, u16 cleaned_count)
770 {
771 	u16 i = rx_ring->next_to_use;
772 	union i40e_rx_desc *rx_desc;
773 	struct i40e_rx_buffer *bi;
774 	struct sk_buff *skb;
775 
776 	/* do nothing if no valid netdev defined */
777 	if (!rx_ring->netdev || !cleaned_count)
778 		return;
779 
780 	while (cleaned_count--) {
781 		rx_desc = I40E_RX_DESC(rx_ring, i);
782 		bi = &rx_ring->rx_bi[i];
783 		skb = bi->skb;
784 
785 		if (!skb) {
786 			skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
787 							rx_ring->rx_buf_len);
788 			if (!skb) {
789 				rx_ring->rx_stats.alloc_buff_failed++;
790 				goto no_buffers;
791 			}
792 			/* initialize queue mapping */
793 			skb_record_rx_queue(skb, rx_ring->queue_index);
794 			bi->skb = skb;
795 		}
796 
797 		if (!bi->dma) {
798 			bi->dma = dma_map_single(rx_ring->dev,
799 						 skb->data,
800 						 rx_ring->rx_buf_len,
801 						 DMA_FROM_DEVICE);
802 			if (dma_mapping_error(rx_ring->dev, bi->dma)) {
803 				rx_ring->rx_stats.alloc_buff_failed++;
804 				bi->dma = 0;
805 				goto no_buffers;
806 			}
807 		}
808 
809 		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma);
810 		rx_desc->read.hdr_addr = 0;
811 		i++;
812 		if (i == rx_ring->count)
813 			i = 0;
814 	}
815 
816 no_buffers:
817 	if (rx_ring->next_to_use != i)
818 		i40e_release_rx_desc(rx_ring, i);
819 }
820 
821 /**
822  * i40e_receive_skb - Send a completed packet up the stack
823  * @rx_ring:  rx ring in play
824  * @skb: packet to send up
825  * @vlan_tag: vlan tag for packet
826  **/
i40e_receive_skb(struct i40e_ring * rx_ring,struct sk_buff * skb,u16 vlan_tag)827 static void i40e_receive_skb(struct i40e_ring *rx_ring,
828 			     struct sk_buff *skb, u16 vlan_tag)
829 {
830 	struct i40e_q_vector *q_vector = rx_ring->q_vector;
831 	struct i40e_vsi *vsi = rx_ring->vsi;
832 	u64 flags = vsi->back->flags;
833 
834 	if (vlan_tag & VLAN_VID_MASK)
835 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
836 
837 	if (flags & I40E_FLAG_IN_NETPOLL)
838 		netif_rx(skb);
839 	else
840 		napi_gro_receive(&q_vector->napi, skb);
841 }
842 
843 /**
844  * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
845  * @vsi: the VSI we care about
846  * @skb: skb currently being received and modified
847  * @rx_status: status value of last descriptor in packet
848  * @rx_error: error value of last descriptor in packet
849  * @rx_ptype: ptype value of last descriptor in packet
850  **/
i40e_rx_checksum(struct i40e_vsi * vsi,struct sk_buff * skb,u32 rx_status,u32 rx_error,u16 rx_ptype)851 static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
852 				    struct sk_buff *skb,
853 				    u32 rx_status,
854 				    u32 rx_error,
855 				    u16 rx_ptype)
856 {
857 	struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(rx_ptype);
858 	bool ipv4 = false, ipv6 = false;
859 	bool ipv4_tunnel, ipv6_tunnel;
860 	__wsum rx_udp_csum;
861 	struct iphdr *iph;
862 	__sum16 csum;
863 
864 	ipv4_tunnel = (rx_ptype >= I40E_RX_PTYPE_GRENAT4_MAC_PAY3) &&
865 		     (rx_ptype <= I40E_RX_PTYPE_GRENAT4_MACVLAN_IPV6_ICMP_PAY4);
866 	ipv6_tunnel = (rx_ptype >= I40E_RX_PTYPE_GRENAT6_MAC_PAY3) &&
867 		     (rx_ptype <= I40E_RX_PTYPE_GRENAT6_MACVLAN_IPV6_ICMP_PAY4);
868 
869 	skb->ip_summed = CHECKSUM_NONE;
870 
871 	/* Rx csum enabled and ip headers found? */
872 	if (!(vsi->netdev->features & NETIF_F_RXCSUM))
873 		return;
874 
875 	/* did the hardware decode the packet and checksum? */
876 	if (!(rx_status & (1 << I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
877 		return;
878 
879 	/* both known and outer_ip must be set for the below code to work */
880 	if (!(decoded.known && decoded.outer_ip))
881 		return;
882 
883 	if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
884 	    decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4)
885 		ipv4 = true;
886 	else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
887 		 decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6)
888 		ipv6 = true;
889 
890 	if (ipv4 &&
891 	    (rx_error & ((1 << I40E_RX_DESC_ERROR_IPE_SHIFT) |
892 			 (1 << I40E_RX_DESC_ERROR_EIPE_SHIFT))))
893 		goto checksum_fail;
894 
895 	/* likely incorrect csum if alternate IP extension headers found */
896 	if (ipv6 &&
897 	    rx_status & (1 << I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
898 		/* don't increment checksum err here, non-fatal err */
899 		return;
900 
901 	/* there was some L4 error, count error and punt packet to the stack */
902 	if (rx_error & (1 << I40E_RX_DESC_ERROR_L4E_SHIFT))
903 		goto checksum_fail;
904 
905 	/* handle packets that were not able to be checksummed due
906 	 * to arrival speed, in this case the stack can compute
907 	 * the csum.
908 	 */
909 	if (rx_error & (1 << I40E_RX_DESC_ERROR_PPRS_SHIFT))
910 		return;
911 
912 	/* If VXLAN traffic has an outer UDPv4 checksum we need to check
913 	 * it in the driver, hardware does not do it for us.
914 	 * Since L3L4P bit was set we assume a valid IHL value (>=5)
915 	 * so the total length of IPv4 header is IHL*4 bytes
916 	 * The UDP_0 bit *may* bet set if the *inner* header is UDP
917 	 */
918 	if (ipv4_tunnel) {
919 		skb->transport_header = skb->mac_header +
920 					sizeof(struct ethhdr) +
921 					(ip_hdr(skb)->ihl * 4);
922 
923 		/* Add 4 bytes for VLAN tagged packets */
924 		skb->transport_header += (skb->protocol == htons(ETH_P_8021Q) ||
925 					  skb->protocol == htons(ETH_P_8021AD))
926 					  ? VLAN_HLEN : 0;
927 
928 		if ((ip_hdr(skb)->protocol == IPPROTO_UDP) &&
929 		    (udp_hdr(skb)->check != 0)) {
930 			rx_udp_csum = udp_csum(skb);
931 			iph = ip_hdr(skb);
932 			csum = csum_tcpudp_magic(iph->saddr, iph->daddr,
933 						 (skb->len -
934 						  skb_transport_offset(skb)),
935 						 IPPROTO_UDP, rx_udp_csum);
936 
937 			if (udp_hdr(skb)->check != csum)
938 				goto checksum_fail;
939 
940 		} /* else its GRE and so no outer UDP header */
941 	}
942 
943 	skb->ip_summed = CHECKSUM_UNNECESSARY;
944 	skb->csum_level = ipv4_tunnel || ipv6_tunnel;
945 
946 	return;
947 
948 checksum_fail:
949 	vsi->back->hw_csum_rx_error++;
950 }
951 
952 /**
953  * i40e_rx_hash - returns the hash value from the Rx descriptor
954  * @ring: descriptor ring
955  * @rx_desc: specific descriptor
956  **/
i40e_rx_hash(struct i40e_ring * ring,union i40e_rx_desc * rx_desc)957 static inline u32 i40e_rx_hash(struct i40e_ring *ring,
958 			       union i40e_rx_desc *rx_desc)
959 {
960 	const __le64 rss_mask =
961 		cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
962 			    I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);
963 
964 	if ((ring->netdev->features & NETIF_F_RXHASH) &&
965 	    (rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask)
966 		return le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
967 	else
968 		return 0;
969 }
970 
971 /**
972  * i40e_ptype_to_hash - get a hash type
973  * @ptype: the ptype value from the descriptor
974  *
975  * Returns a hash type to be used by skb_set_hash
976  **/
i40e_ptype_to_hash(u8 ptype)977 static inline enum pkt_hash_types i40e_ptype_to_hash(u8 ptype)
978 {
979 	struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);
980 
981 	if (!decoded.known)
982 		return PKT_HASH_TYPE_NONE;
983 
984 	if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
985 	    decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4)
986 		return PKT_HASH_TYPE_L4;
987 	else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
988 		 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3)
989 		return PKT_HASH_TYPE_L3;
990 	else
991 		return PKT_HASH_TYPE_L2;
992 }
993 
994 /**
995  * i40e_clean_rx_irq_ps - Reclaim resources after receive; packet split
996  * @rx_ring:  rx ring to clean
997  * @budget:   how many cleans we're allowed
998  *
999  * Returns true if there's any budget left (e.g. the clean is finished)
1000  **/
i40e_clean_rx_irq_ps(struct i40e_ring * rx_ring,int budget)1001 static int i40e_clean_rx_irq_ps(struct i40e_ring *rx_ring, int budget)
1002 {
1003 	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1004 	u16 rx_packet_len, rx_header_len, rx_sph, rx_hbo;
1005 	u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
1006 	const int current_node = numa_node_id();
1007 	struct i40e_vsi *vsi = rx_ring->vsi;
1008 	u16 i = rx_ring->next_to_clean;
1009 	union i40e_rx_desc *rx_desc;
1010 	u32 rx_error, rx_status;
1011 	u8 rx_ptype;
1012 	u64 qword;
1013 
1014 	do {
1015 		struct i40e_rx_buffer *rx_bi;
1016 		struct sk_buff *skb;
1017 		u16 vlan_tag;
1018 		/* return some buffers to hardware, one at a time is too slow */
1019 		if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
1020 			i40evf_alloc_rx_buffers_ps(rx_ring, cleaned_count);
1021 			cleaned_count = 0;
1022 		}
1023 
1024 		i = rx_ring->next_to_clean;
1025 		rx_desc = I40E_RX_DESC(rx_ring, i);
1026 		qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1027 		rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1028 			I40E_RXD_QW1_STATUS_SHIFT;
1029 
1030 		if (!(rx_status & (1 << I40E_RX_DESC_STATUS_DD_SHIFT)))
1031 			break;
1032 
1033 		/* This memory barrier is needed to keep us from reading
1034 		 * any other fields out of the rx_desc until we know the
1035 		 * DD bit is set.
1036 		 */
1037 		dma_rmb();
1038 		rx_bi = &rx_ring->rx_bi[i];
1039 		skb = rx_bi->skb;
1040 		if (likely(!skb)) {
1041 			skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
1042 							rx_ring->rx_hdr_len);
1043 			if (!skb) {
1044 				rx_ring->rx_stats.alloc_buff_failed++;
1045 				break;
1046 			}
1047 
1048 			/* initialize queue mapping */
1049 			skb_record_rx_queue(skb, rx_ring->queue_index);
1050 			/* we are reusing so sync this buffer for CPU use */
1051 			dma_sync_single_range_for_cpu(rx_ring->dev,
1052 						      rx_bi->dma,
1053 						      0,
1054 						      rx_ring->rx_hdr_len,
1055 						      DMA_FROM_DEVICE);
1056 		}
1057 		rx_packet_len = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
1058 				I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
1059 		rx_header_len = (qword & I40E_RXD_QW1_LENGTH_HBUF_MASK) >>
1060 				I40E_RXD_QW1_LENGTH_HBUF_SHIFT;
1061 		rx_sph = (qword & I40E_RXD_QW1_LENGTH_SPH_MASK) >>
1062 			 I40E_RXD_QW1_LENGTH_SPH_SHIFT;
1063 
1064 		rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
1065 			   I40E_RXD_QW1_ERROR_SHIFT;
1066 		rx_hbo = rx_error & (1 << I40E_RX_DESC_ERROR_HBO_SHIFT);
1067 		rx_error &= ~(1 << I40E_RX_DESC_ERROR_HBO_SHIFT);
1068 
1069 		rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
1070 			   I40E_RXD_QW1_PTYPE_SHIFT;
1071 		prefetch(rx_bi->page);
1072 		rx_bi->skb = NULL;
1073 		cleaned_count++;
1074 		if (rx_hbo || rx_sph) {
1075 			int len;
1076 			if (rx_hbo)
1077 				len = I40E_RX_HDR_SIZE;
1078 			else
1079 				len = rx_header_len;
1080 			memcpy(__skb_put(skb, len), rx_bi->hdr_buf, len);
1081 		} else if (skb->len == 0) {
1082 			int len;
1083 
1084 			len = (rx_packet_len > skb_headlen(skb) ?
1085 				skb_headlen(skb) : rx_packet_len);
1086 			memcpy(__skb_put(skb, len),
1087 			       rx_bi->page + rx_bi->page_offset,
1088 			       len);
1089 			rx_bi->page_offset += len;
1090 			rx_packet_len -= len;
1091 		}
1092 
1093 		/* Get the rest of the data if this was a header split */
1094 		if (rx_packet_len) {
1095 			skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
1096 					   rx_bi->page,
1097 					   rx_bi->page_offset,
1098 					   rx_packet_len);
1099 
1100 			skb->len += rx_packet_len;
1101 			skb->data_len += rx_packet_len;
1102 			skb->truesize += rx_packet_len;
1103 
1104 			if ((page_count(rx_bi->page) == 1) &&
1105 			    (page_to_nid(rx_bi->page) == current_node))
1106 				get_page(rx_bi->page);
1107 			else
1108 				rx_bi->page = NULL;
1109 
1110 			dma_unmap_page(rx_ring->dev,
1111 				       rx_bi->page_dma,
1112 				       PAGE_SIZE / 2,
1113 				       DMA_FROM_DEVICE);
1114 			rx_bi->page_dma = 0;
1115 		}
1116 		I40E_RX_INCREMENT(rx_ring, i);
1117 
1118 		if (unlikely(
1119 		    !(rx_status & (1 << I40E_RX_DESC_STATUS_EOF_SHIFT)))) {
1120 			struct i40e_rx_buffer *next_buffer;
1121 
1122 			next_buffer = &rx_ring->rx_bi[i];
1123 			next_buffer->skb = skb;
1124 			rx_ring->rx_stats.non_eop_descs++;
1125 			continue;
1126 		}
1127 
1128 		/* ERR_MASK will only have valid bits if EOP set */
1129 		if (unlikely(rx_error & (1 << I40E_RX_DESC_ERROR_RXE_SHIFT))) {
1130 			dev_kfree_skb_any(skb);
1131 			/* TODO: shouldn't we increment a counter indicating the
1132 			 * drop?
1133 			 */
1134 			continue;
1135 		}
1136 
1137 		skb_set_hash(skb, i40e_rx_hash(rx_ring, rx_desc),
1138 			     i40e_ptype_to_hash(rx_ptype));
1139 		/* probably a little skewed due to removing CRC */
1140 		total_rx_bytes += skb->len;
1141 		total_rx_packets++;
1142 
1143 		skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1144 
1145 		i40e_rx_checksum(vsi, skb, rx_status, rx_error, rx_ptype);
1146 
1147 		vlan_tag = rx_status & (1 << I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)
1148 			 ? le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1)
1149 			 : 0;
1150 #ifdef I40E_FCOE
1151 		if (!i40e_fcoe_handle_offload(rx_ring, rx_desc, skb)) {
1152 			dev_kfree_skb_any(skb);
1153 			continue;
1154 		}
1155 #endif
1156 		skb_mark_napi_id(skb, &rx_ring->q_vector->napi);
1157 		i40e_receive_skb(rx_ring, skb, vlan_tag);
1158 
1159 		rx_ring->netdev->last_rx = jiffies;
1160 		rx_desc->wb.qword1.status_error_len = 0;
1161 
1162 	} while (likely(total_rx_packets < budget));
1163 
1164 	u64_stats_update_begin(&rx_ring->syncp);
1165 	rx_ring->stats.packets += total_rx_packets;
1166 	rx_ring->stats.bytes += total_rx_bytes;
1167 	u64_stats_update_end(&rx_ring->syncp);
1168 	rx_ring->q_vector->rx.total_packets += total_rx_packets;
1169 	rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
1170 
1171 	return total_rx_packets;
1172 }
1173 
1174 /**
1175  * i40e_clean_rx_irq_1buf - Reclaim resources after receive; single buffer
1176  * @rx_ring:  rx ring to clean
1177  * @budget:   how many cleans we're allowed
1178  *
1179  * Returns number of packets cleaned
1180  **/
i40e_clean_rx_irq_1buf(struct i40e_ring * rx_ring,int budget)1181 static int i40e_clean_rx_irq_1buf(struct i40e_ring *rx_ring, int budget)
1182 {
1183 	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1184 	u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
1185 	struct i40e_vsi *vsi = rx_ring->vsi;
1186 	union i40e_rx_desc *rx_desc;
1187 	u32 rx_error, rx_status;
1188 	u16 rx_packet_len;
1189 	u8 rx_ptype;
1190 	u64 qword;
1191 	u16 i;
1192 
1193 	do {
1194 		struct i40e_rx_buffer *rx_bi;
1195 		struct sk_buff *skb;
1196 		u16 vlan_tag;
1197 		/* return some buffers to hardware, one at a time is too slow */
1198 		if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
1199 			i40evf_alloc_rx_buffers_1buf(rx_ring, cleaned_count);
1200 			cleaned_count = 0;
1201 		}
1202 
1203 		i = rx_ring->next_to_clean;
1204 		rx_desc = I40E_RX_DESC(rx_ring, i);
1205 		qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1206 		rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1207 			I40E_RXD_QW1_STATUS_SHIFT;
1208 
1209 		if (!(rx_status & (1 << I40E_RX_DESC_STATUS_DD_SHIFT)))
1210 			break;
1211 
1212 		/* This memory barrier is needed to keep us from reading
1213 		 * any other fields out of the rx_desc until we know the
1214 		 * DD bit is set.
1215 		 */
1216 		dma_rmb();
1217 
1218 		rx_bi = &rx_ring->rx_bi[i];
1219 		skb = rx_bi->skb;
1220 		prefetch(skb->data);
1221 
1222 		rx_packet_len = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
1223 				I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
1224 
1225 		rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
1226 			   I40E_RXD_QW1_ERROR_SHIFT;
1227 		rx_error &= ~(1 << I40E_RX_DESC_ERROR_HBO_SHIFT);
1228 
1229 		rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
1230 			   I40E_RXD_QW1_PTYPE_SHIFT;
1231 		rx_bi->skb = NULL;
1232 		cleaned_count++;
1233 
1234 		/* Get the header and possibly the whole packet
1235 		 * If this is an skb from previous receive dma will be 0
1236 		 */
1237 		skb_put(skb, rx_packet_len);
1238 		dma_unmap_single(rx_ring->dev, rx_bi->dma, rx_ring->rx_buf_len,
1239 				 DMA_FROM_DEVICE);
1240 		rx_bi->dma = 0;
1241 
1242 		I40E_RX_INCREMENT(rx_ring, i);
1243 
1244 		if (unlikely(
1245 		    !(rx_status & (1 << I40E_RX_DESC_STATUS_EOF_SHIFT)))) {
1246 			rx_ring->rx_stats.non_eop_descs++;
1247 			continue;
1248 		}
1249 
1250 		/* ERR_MASK will only have valid bits if EOP set */
1251 		if (unlikely(rx_error & (1 << I40E_RX_DESC_ERROR_RXE_SHIFT))) {
1252 			dev_kfree_skb_any(skb);
1253 			/* TODO: shouldn't we increment a counter indicating the
1254 			 * drop?
1255 			 */
1256 			continue;
1257 		}
1258 
1259 		skb_set_hash(skb, i40e_rx_hash(rx_ring, rx_desc),
1260 			     i40e_ptype_to_hash(rx_ptype));
1261 		/* probably a little skewed due to removing CRC */
1262 		total_rx_bytes += skb->len;
1263 		total_rx_packets++;
1264 
1265 		skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1266 
1267 		i40e_rx_checksum(vsi, skb, rx_status, rx_error, rx_ptype);
1268 
1269 		vlan_tag = rx_status & (1 << I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)
1270 			 ? le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1)
1271 			 : 0;
1272 		i40e_receive_skb(rx_ring, skb, vlan_tag);
1273 
1274 		rx_ring->netdev->last_rx = jiffies;
1275 		rx_desc->wb.qword1.status_error_len = 0;
1276 	} while (likely(total_rx_packets < budget));
1277 
1278 	u64_stats_update_begin(&rx_ring->syncp);
1279 	rx_ring->stats.packets += total_rx_packets;
1280 	rx_ring->stats.bytes += total_rx_bytes;
1281 	u64_stats_update_end(&rx_ring->syncp);
1282 	rx_ring->q_vector->rx.total_packets += total_rx_packets;
1283 	rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
1284 
1285 	return total_rx_packets;
1286 }
1287 
1288 /**
1289  * i40evf_napi_poll - NAPI polling Rx/Tx cleanup routine
1290  * @napi: napi struct with our devices info in it
1291  * @budget: amount of work driver is allowed to do this pass, in packets
1292  *
1293  * This function will clean all queues associated with a q_vector.
1294  *
1295  * Returns the amount of work done
1296  **/
i40evf_napi_poll(struct napi_struct * napi,int budget)1297 int i40evf_napi_poll(struct napi_struct *napi, int budget)
1298 {
1299 	struct i40e_q_vector *q_vector =
1300 			       container_of(napi, struct i40e_q_vector, napi);
1301 	struct i40e_vsi *vsi = q_vector->vsi;
1302 	struct i40e_ring *ring;
1303 	bool clean_complete = true;
1304 	bool arm_wb = false;
1305 	int budget_per_ring;
1306 	int cleaned;
1307 
1308 	if (test_bit(__I40E_DOWN, &vsi->state)) {
1309 		napi_complete(napi);
1310 		return 0;
1311 	}
1312 
1313 	/* Since the actual Tx work is minimal, we can give the Tx a larger
1314 	 * budget and be more aggressive about cleaning up the Tx descriptors.
1315 	 */
1316 	i40e_for_each_ring(ring, q_vector->tx) {
1317 		clean_complete &= i40e_clean_tx_irq(ring, vsi->work_limit);
1318 		arm_wb |= ring->arm_wb;
1319 	}
1320 
1321 	/* We attempt to distribute budget to each Rx queue fairly, but don't
1322 	 * allow the budget to go below 1 because that would exit polling early.
1323 	 */
1324 	budget_per_ring = max(budget/q_vector->num_ringpairs, 1);
1325 
1326 	i40e_for_each_ring(ring, q_vector->rx) {
1327 		if (ring_is_ps_enabled(ring))
1328 			cleaned = i40e_clean_rx_irq_ps(ring, budget_per_ring);
1329 		else
1330 			cleaned = i40e_clean_rx_irq_1buf(ring, budget_per_ring);
1331 		/* if we didn't clean as many as budgeted, we must be done */
1332 		clean_complete &= (budget_per_ring != cleaned);
1333 	}
1334 
1335 	/* If work not completed, return budget and polling will return */
1336 	if (!clean_complete) {
1337 		if (arm_wb)
1338 			i40e_force_wb(vsi, q_vector);
1339 		return budget;
1340 	}
1341 
1342 	/* Work is done so exit the polling mode and re-enable the interrupt */
1343 	napi_complete(napi);
1344 	if (ITR_IS_DYNAMIC(vsi->rx_itr_setting) ||
1345 	    ITR_IS_DYNAMIC(vsi->tx_itr_setting))
1346 		i40e_update_dynamic_itr(q_vector);
1347 
1348 	if (!test_bit(__I40E_DOWN, &vsi->state))
1349 		i40evf_irq_enable_queues(vsi->back, 1 << q_vector->v_idx);
1350 
1351 	return 0;
1352 }
1353 
1354 /**
1355  * i40e_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
1356  * @skb:     send buffer
1357  * @tx_ring: ring to send buffer on
1358  * @flags:   the tx flags to be set
1359  *
1360  * Checks the skb and set up correspondingly several generic transmit flags
1361  * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
1362  *
1363  * Returns error code indicate the frame should be dropped upon error and the
1364  * otherwise  returns 0 to indicate the flags has been set properly.
1365  **/
i40e_tx_prepare_vlan_flags(struct sk_buff * skb,struct i40e_ring * tx_ring,u32 * flags)1366 static int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
1367 				      struct i40e_ring *tx_ring,
1368 				      u32 *flags)
1369 {
1370 	__be16 protocol = skb->protocol;
1371 	u32  tx_flags = 0;
1372 
1373 	if (protocol == htons(ETH_P_8021Q) &&
1374 	    !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
1375 		/* When HW VLAN acceleration is turned off by the user the
1376 		 * stack sets the protocol to 8021q so that the driver
1377 		 * can take any steps required to support the SW only
1378 		 * VLAN handling.  In our case the driver doesn't need
1379 		 * to take any further steps so just set the protocol
1380 		 * to the encapsulated ethertype.
1381 		 */
1382 		skb->protocol = vlan_get_protocol(skb);
1383 		goto out;
1384 	}
1385 
1386 	/* if we have a HW VLAN tag being added, default to the HW one */
1387 	if (skb_vlan_tag_present(skb)) {
1388 		tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
1389 		tx_flags |= I40E_TX_FLAGS_HW_VLAN;
1390 	/* else if it is a SW VLAN, check the next protocol and store the tag */
1391 	} else if (protocol == htons(ETH_P_8021Q)) {
1392 		struct vlan_hdr *vhdr, _vhdr;
1393 		vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
1394 		if (!vhdr)
1395 			return -EINVAL;
1396 
1397 		protocol = vhdr->h_vlan_encapsulated_proto;
1398 		tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
1399 		tx_flags |= I40E_TX_FLAGS_SW_VLAN;
1400 	}
1401 
1402 out:
1403 	*flags = tx_flags;
1404 	return 0;
1405 }
1406 
1407 /**
1408  * i40e_tso - set up the tso context descriptor
1409  * @tx_ring:  ptr to the ring to send
1410  * @skb:      ptr to the skb we're sending
1411  * @tx_flags: the collected send information
1412  * @protocol: the send protocol
1413  * @hdr_len:  ptr to the size of the packet header
1414  * @cd_tunneling: ptr to context descriptor bits
1415  *
1416  * Returns 0 if no TSO can happen, 1 if tso is going, or error
1417  **/
i40e_tso(struct i40e_ring * tx_ring,struct sk_buff * skb,u32 tx_flags,__be16 protocol,u8 * hdr_len,u64 * cd_type_cmd_tso_mss,u32 * cd_tunneling)1418 static int i40e_tso(struct i40e_ring *tx_ring, struct sk_buff *skb,
1419 		    u32 tx_flags, __be16 protocol, u8 *hdr_len,
1420 		    u64 *cd_type_cmd_tso_mss, u32 *cd_tunneling)
1421 {
1422 	u32 cd_cmd, cd_tso_len, cd_mss;
1423 	struct ipv6hdr *ipv6h;
1424 	struct tcphdr *tcph;
1425 	struct iphdr *iph;
1426 	u32 l4len;
1427 	int err;
1428 
1429 	if (!skb_is_gso(skb))
1430 		return 0;
1431 
1432 	err = skb_cow_head(skb, 0);
1433 	if (err < 0)
1434 		return err;
1435 
1436 	iph = skb->encapsulation ? inner_ip_hdr(skb) : ip_hdr(skb);
1437 	ipv6h = skb->encapsulation ? inner_ipv6_hdr(skb) : ipv6_hdr(skb);
1438 
1439 	if (iph->version == 4) {
1440 		tcph = skb->encapsulation ? inner_tcp_hdr(skb) : tcp_hdr(skb);
1441 		iph->tot_len = 0;
1442 		iph->check = 0;
1443 		tcph->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
1444 						 0, IPPROTO_TCP, 0);
1445 	} else if (ipv6h->version == 6) {
1446 		tcph = skb->encapsulation ? inner_tcp_hdr(skb) : tcp_hdr(skb);
1447 		ipv6h->payload_len = 0;
1448 		tcph->check = ~csum_ipv6_magic(&ipv6h->saddr, &ipv6h->daddr,
1449 					       0, IPPROTO_TCP, 0);
1450 	}
1451 
1452 	l4len = skb->encapsulation ? inner_tcp_hdrlen(skb) : tcp_hdrlen(skb);
1453 	*hdr_len = (skb->encapsulation
1454 		    ? (skb_inner_transport_header(skb) - skb->data)
1455 		    : skb_transport_offset(skb)) + l4len;
1456 
1457 	/* find the field values */
1458 	cd_cmd = I40E_TX_CTX_DESC_TSO;
1459 	cd_tso_len = skb->len - *hdr_len;
1460 	cd_mss = skb_shinfo(skb)->gso_size;
1461 	*cd_type_cmd_tso_mss |= ((u64)cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
1462 				((u64)cd_tso_len <<
1463 				 I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
1464 				((u64)cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
1465 	return 1;
1466 }
1467 
1468 /**
1469  * i40e_tx_enable_csum - Enable Tx checksum offloads
1470  * @skb: send buffer
1471  * @tx_flags: Tx flags currently set
1472  * @td_cmd: Tx descriptor command bits to set
1473  * @td_offset: Tx descriptor header offsets to set
1474  * @cd_tunneling: ptr to context desc bits
1475  **/
i40e_tx_enable_csum(struct sk_buff * skb,u32 tx_flags,u32 * td_cmd,u32 * td_offset,struct i40e_ring * tx_ring,u32 * cd_tunneling)1476 static void i40e_tx_enable_csum(struct sk_buff *skb, u32 tx_flags,
1477 				u32 *td_cmd, u32 *td_offset,
1478 				struct i40e_ring *tx_ring,
1479 				u32 *cd_tunneling)
1480 {
1481 	struct ipv6hdr *this_ipv6_hdr;
1482 	unsigned int this_tcp_hdrlen;
1483 	struct iphdr *this_ip_hdr;
1484 	u32 network_hdr_len;
1485 	u8 l4_hdr = 0;
1486 	u32 l4_tunnel = 0;
1487 
1488 	if (skb->encapsulation) {
1489 		switch (ip_hdr(skb)->protocol) {
1490 		case IPPROTO_UDP:
1491 			l4_tunnel = I40E_TXD_CTX_UDP_TUNNELING;
1492 			break;
1493 		default:
1494 			return;
1495 		}
1496 		network_hdr_len = skb_inner_network_header_len(skb);
1497 		this_ip_hdr = inner_ip_hdr(skb);
1498 		this_ipv6_hdr = inner_ipv6_hdr(skb);
1499 		this_tcp_hdrlen = inner_tcp_hdrlen(skb);
1500 
1501 		if (tx_flags & I40E_TX_FLAGS_IPV4) {
1502 
1503 			if (tx_flags & I40E_TX_FLAGS_TSO) {
1504 				*cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV4;
1505 				ip_hdr(skb)->check = 0;
1506 			} else {
1507 				*cd_tunneling |=
1508 					 I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
1509 			}
1510 		} else if (tx_flags & I40E_TX_FLAGS_IPV6) {
1511 			*cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV6;
1512 			if (tx_flags & I40E_TX_FLAGS_TSO)
1513 				ip_hdr(skb)->check = 0;
1514 		}
1515 
1516 		/* Now set the ctx descriptor fields */
1517 		*cd_tunneling |= (skb_network_header_len(skb) >> 2) <<
1518 				   I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT      |
1519 				   l4_tunnel                             |
1520 				   ((skb_inner_network_offset(skb) -
1521 					skb_transport_offset(skb)) >> 1) <<
1522 				   I40E_TXD_CTX_QW0_NATLEN_SHIFT;
1523 		if (this_ip_hdr->version == 6) {
1524 			tx_flags &= ~I40E_TX_FLAGS_IPV4;
1525 			tx_flags |= I40E_TX_FLAGS_IPV6;
1526 		}
1527 
1528 
1529 	} else {
1530 		network_hdr_len = skb_network_header_len(skb);
1531 		this_ip_hdr = ip_hdr(skb);
1532 		this_ipv6_hdr = ipv6_hdr(skb);
1533 		this_tcp_hdrlen = tcp_hdrlen(skb);
1534 	}
1535 
1536 	/* Enable IP checksum offloads */
1537 	if (tx_flags & I40E_TX_FLAGS_IPV4) {
1538 		l4_hdr = this_ip_hdr->protocol;
1539 		/* the stack computes the IP header already, the only time we
1540 		 * need the hardware to recompute it is in the case of TSO.
1541 		 */
1542 		if (tx_flags & I40E_TX_FLAGS_TSO) {
1543 			*td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV4_CSUM;
1544 			this_ip_hdr->check = 0;
1545 		} else {
1546 			*td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV4;
1547 		}
1548 		/* Now set the td_offset for IP header length */
1549 		*td_offset = (network_hdr_len >> 2) <<
1550 			      I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
1551 	} else if (tx_flags & I40E_TX_FLAGS_IPV6) {
1552 		l4_hdr = this_ipv6_hdr->nexthdr;
1553 		*td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
1554 		/* Now set the td_offset for IP header length */
1555 		*td_offset = (network_hdr_len >> 2) <<
1556 			      I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
1557 	}
1558 	/* words in MACLEN + dwords in IPLEN + dwords in L4Len */
1559 	*td_offset |= (skb_network_offset(skb) >> 1) <<
1560 		       I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
1561 
1562 	/* Enable L4 checksum offloads */
1563 	switch (l4_hdr) {
1564 	case IPPROTO_TCP:
1565 		/* enable checksum offloads */
1566 		*td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
1567 		*td_offset |= (this_tcp_hdrlen >> 2) <<
1568 			       I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
1569 		break;
1570 	case IPPROTO_SCTP:
1571 		/* enable SCTP checksum offload */
1572 		*td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
1573 		*td_offset |= (sizeof(struct sctphdr) >> 2) <<
1574 			       I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
1575 		break;
1576 	case IPPROTO_UDP:
1577 		/* enable UDP checksum offload */
1578 		*td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
1579 		*td_offset |= (sizeof(struct udphdr) >> 2) <<
1580 			       I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
1581 		break;
1582 	default:
1583 		break;
1584 	}
1585 }
1586 
1587 /**
1588  * i40e_create_tx_ctx Build the Tx context descriptor
1589  * @tx_ring:  ring to create the descriptor on
1590  * @cd_type_cmd_tso_mss: Quad Word 1
1591  * @cd_tunneling: Quad Word 0 - bits 0-31
1592  * @cd_l2tag2: Quad Word 0 - bits 32-63
1593  **/
i40e_create_tx_ctx(struct i40e_ring * tx_ring,const u64 cd_type_cmd_tso_mss,const u32 cd_tunneling,const u32 cd_l2tag2)1594 static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
1595 			       const u64 cd_type_cmd_tso_mss,
1596 			       const u32 cd_tunneling, const u32 cd_l2tag2)
1597 {
1598 	struct i40e_tx_context_desc *context_desc;
1599 	int i = tx_ring->next_to_use;
1600 
1601 	if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
1602 	    !cd_tunneling && !cd_l2tag2)
1603 		return;
1604 
1605 	/* grab the next descriptor */
1606 	context_desc = I40E_TX_CTXTDESC(tx_ring, i);
1607 
1608 	i++;
1609 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
1610 
1611 	/* cpu_to_le32 and assign to struct fields */
1612 	context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
1613 	context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
1614 	context_desc->rsvd = cpu_to_le16(0);
1615 	context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
1616 }
1617 
1618  /**
1619  * i40e_chk_linearize - Check if there are more than 8 fragments per packet
1620  * @skb:      send buffer
1621  * @tx_flags: collected send information
1622  *
1623  * Note: Our HW can't scatter-gather more than 8 fragments to build
1624  * a packet on the wire and so we need to figure out the cases where we
1625  * need to linearize the skb.
1626  **/
i40e_chk_linearize(struct sk_buff * skb,u32 tx_flags)1627 static bool i40e_chk_linearize(struct sk_buff *skb, u32 tx_flags)
1628 {
1629 	struct skb_frag_struct *frag;
1630 	bool linearize = false;
1631 	unsigned int size = 0;
1632 	u16 num_frags;
1633 	u16 gso_segs;
1634 
1635 	num_frags = skb_shinfo(skb)->nr_frags;
1636 	gso_segs = skb_shinfo(skb)->gso_segs;
1637 
1638 	if (tx_flags & (I40E_TX_FLAGS_TSO | I40E_TX_FLAGS_FSO)) {
1639 		u16 j = 0;
1640 
1641 		if (num_frags < (I40E_MAX_BUFFER_TXD))
1642 			goto linearize_chk_done;
1643 		/* try the simple math, if we have too many frags per segment */
1644 		if (DIV_ROUND_UP((num_frags + gso_segs), gso_segs) >
1645 		    I40E_MAX_BUFFER_TXD) {
1646 			linearize = true;
1647 			goto linearize_chk_done;
1648 		}
1649 		frag = &skb_shinfo(skb)->frags[0];
1650 		/* we might still have more fragments per segment */
1651 		do {
1652 			size += skb_frag_size(frag);
1653 			frag++; j++;
1654 			if ((size >= skb_shinfo(skb)->gso_size) &&
1655 			    (j < I40E_MAX_BUFFER_TXD)) {
1656 				size = (size % skb_shinfo(skb)->gso_size);
1657 				j = (size) ? 1 : 0;
1658 			}
1659 			if (j == I40E_MAX_BUFFER_TXD) {
1660 				linearize = true;
1661 				break;
1662 			}
1663 			num_frags--;
1664 		} while (num_frags);
1665 	} else {
1666 		if (num_frags >= I40E_MAX_BUFFER_TXD)
1667 			linearize = true;
1668 	}
1669 
1670 linearize_chk_done:
1671 	return linearize;
1672 }
1673 
1674 /**
1675  * i40e_tx_map - Build the Tx descriptor
1676  * @tx_ring:  ring to send buffer on
1677  * @skb:      send buffer
1678  * @first:    first buffer info buffer to use
1679  * @tx_flags: collected send information
1680  * @hdr_len:  size of the packet header
1681  * @td_cmd:   the command field in the descriptor
1682  * @td_offset: offset for checksum or crc
1683  **/
i40e_tx_map(struct i40e_ring * tx_ring,struct sk_buff * skb,struct i40e_tx_buffer * first,u32 tx_flags,const u8 hdr_len,u32 td_cmd,u32 td_offset)1684 static void i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
1685 			struct i40e_tx_buffer *first, u32 tx_flags,
1686 			const u8 hdr_len, u32 td_cmd, u32 td_offset)
1687 {
1688 	unsigned int data_len = skb->data_len;
1689 	unsigned int size = skb_headlen(skb);
1690 	struct skb_frag_struct *frag;
1691 	struct i40e_tx_buffer *tx_bi;
1692 	struct i40e_tx_desc *tx_desc;
1693 	u16 i = tx_ring->next_to_use;
1694 	u32 td_tag = 0;
1695 	dma_addr_t dma;
1696 	u16 gso_segs;
1697 
1698 	if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
1699 		td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
1700 		td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >>
1701 			 I40E_TX_FLAGS_VLAN_SHIFT;
1702 	}
1703 
1704 	if (tx_flags & (I40E_TX_FLAGS_TSO | I40E_TX_FLAGS_FSO))
1705 		gso_segs = skb_shinfo(skb)->gso_segs;
1706 	else
1707 		gso_segs = 1;
1708 
1709 	/* multiply data chunks by size of headers */
1710 	first->bytecount = skb->len - hdr_len + (gso_segs * hdr_len);
1711 	first->gso_segs = gso_segs;
1712 	first->skb = skb;
1713 	first->tx_flags = tx_flags;
1714 
1715 	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
1716 
1717 	tx_desc = I40E_TX_DESC(tx_ring, i);
1718 	tx_bi = first;
1719 
1720 	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
1721 		if (dma_mapping_error(tx_ring->dev, dma))
1722 			goto dma_error;
1723 
1724 		/* record length, and DMA address */
1725 		dma_unmap_len_set(tx_bi, len, size);
1726 		dma_unmap_addr_set(tx_bi, dma, dma);
1727 
1728 		tx_desc->buffer_addr = cpu_to_le64(dma);
1729 
1730 		while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
1731 			tx_desc->cmd_type_offset_bsz =
1732 				build_ctob(td_cmd, td_offset,
1733 					   I40E_MAX_DATA_PER_TXD, td_tag);
1734 
1735 			tx_desc++;
1736 			i++;
1737 			if (i == tx_ring->count) {
1738 				tx_desc = I40E_TX_DESC(tx_ring, 0);
1739 				i = 0;
1740 			}
1741 
1742 			dma += I40E_MAX_DATA_PER_TXD;
1743 			size -= I40E_MAX_DATA_PER_TXD;
1744 
1745 			tx_desc->buffer_addr = cpu_to_le64(dma);
1746 		}
1747 
1748 		if (likely(!data_len))
1749 			break;
1750 
1751 		tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
1752 							  size, td_tag);
1753 
1754 		tx_desc++;
1755 		i++;
1756 		if (i == tx_ring->count) {
1757 			tx_desc = I40E_TX_DESC(tx_ring, 0);
1758 			i = 0;
1759 		}
1760 
1761 		size = skb_frag_size(frag);
1762 		data_len -= size;
1763 
1764 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
1765 				       DMA_TO_DEVICE);
1766 
1767 		tx_bi = &tx_ring->tx_bi[i];
1768 	}
1769 
1770 	/* Place RS bit on last descriptor of any packet that spans across the
1771 	 * 4th descriptor (WB_STRIDE aka 0x3) in a 64B cacheline.
1772 	 */
1773 #define WB_STRIDE 0x3
1774 	if (((i & WB_STRIDE) != WB_STRIDE) &&
1775 	    (first <= &tx_ring->tx_bi[i]) &&
1776 	    (first >= &tx_ring->tx_bi[i & ~WB_STRIDE])) {
1777 		tx_desc->cmd_type_offset_bsz =
1778 			build_ctob(td_cmd, td_offset, size, td_tag) |
1779 			cpu_to_le64((u64)I40E_TX_DESC_CMD_EOP <<
1780 					 I40E_TXD_QW1_CMD_SHIFT);
1781 	} else {
1782 		tx_desc->cmd_type_offset_bsz =
1783 			build_ctob(td_cmd, td_offset, size, td_tag) |
1784 			cpu_to_le64((u64)I40E_TXD_CMD <<
1785 					 I40E_TXD_QW1_CMD_SHIFT);
1786 	}
1787 
1788 	netdev_tx_sent_queue(netdev_get_tx_queue(tx_ring->netdev,
1789 						 tx_ring->queue_index),
1790 			     first->bytecount);
1791 
1792 	/* set the timestamp */
1793 	first->time_stamp = jiffies;
1794 
1795 	/* Force memory writes to complete before letting h/w
1796 	 * know there are new descriptors to fetch.  (Only
1797 	 * applicable for weak-ordered memory model archs,
1798 	 * such as IA-64).
1799 	 */
1800 	wmb();
1801 
1802 	/* set next_to_watch value indicating a packet is present */
1803 	first->next_to_watch = tx_desc;
1804 
1805 	i++;
1806 	if (i == tx_ring->count)
1807 		i = 0;
1808 
1809 	tx_ring->next_to_use = i;
1810 
1811 	/* notify HW of packet */
1812 	writel(i, tx_ring->tail);
1813 
1814 	return;
1815 
1816 dma_error:
1817 	dev_info(tx_ring->dev, "TX DMA map failed\n");
1818 
1819 	/* clear dma mappings for failed tx_bi map */
1820 	for (;;) {
1821 		tx_bi = &tx_ring->tx_bi[i];
1822 		i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
1823 		if (tx_bi == first)
1824 			break;
1825 		if (i == 0)
1826 			i = tx_ring->count;
1827 		i--;
1828 	}
1829 
1830 	tx_ring->next_to_use = i;
1831 }
1832 
1833 /**
1834  * __i40e_maybe_stop_tx - 2nd level check for tx stop conditions
1835  * @tx_ring: the ring to be checked
1836  * @size:    the size buffer we want to assure is available
1837  *
1838  * Returns -EBUSY if a stop is needed, else 0
1839  **/
__i40e_maybe_stop_tx(struct i40e_ring * tx_ring,int size)1840 static inline int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
1841 {
1842 	netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
1843 	/* Memory barrier before checking head and tail */
1844 	smp_mb();
1845 
1846 	/* Check again in a case another CPU has just made room available. */
1847 	if (likely(I40E_DESC_UNUSED(tx_ring) < size))
1848 		return -EBUSY;
1849 
1850 	/* A reprieve! - use start_queue because it doesn't call schedule */
1851 	netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
1852 	++tx_ring->tx_stats.restart_queue;
1853 	return 0;
1854 }
1855 
1856 /**
1857  * i40e_maybe_stop_tx - 1st level check for tx stop conditions
1858  * @tx_ring: the ring to be checked
1859  * @size:    the size buffer we want to assure is available
1860  *
1861  * Returns 0 if stop is not needed
1862  **/
i40e_maybe_stop_tx(struct i40e_ring * tx_ring,int size)1863 static int i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
1864 {
1865 	if (likely(I40E_DESC_UNUSED(tx_ring) >= size))
1866 		return 0;
1867 	return __i40e_maybe_stop_tx(tx_ring, size);
1868 }
1869 
1870 /**
1871  * i40e_xmit_descriptor_count - calculate number of tx descriptors needed
1872  * @skb:     send buffer
1873  * @tx_ring: ring to send buffer on
1874  *
1875  * Returns number of data descriptors needed for this skb. Returns 0 to indicate
1876  * there is not enough descriptors available in this ring since we need at least
1877  * one descriptor.
1878  **/
i40e_xmit_descriptor_count(struct sk_buff * skb,struct i40e_ring * tx_ring)1879 static int i40e_xmit_descriptor_count(struct sk_buff *skb,
1880 				      struct i40e_ring *tx_ring)
1881 {
1882 	unsigned int f;
1883 	int count = 0;
1884 
1885 	/* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
1886 	 *       + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
1887 	 *       + 4 desc gap to avoid the cache line where head is,
1888 	 *       + 1 desc for context descriptor,
1889 	 * otherwise try next time
1890 	 */
1891 	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
1892 		count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
1893 
1894 	count += TXD_USE_COUNT(skb_headlen(skb));
1895 	if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) {
1896 		tx_ring->tx_stats.tx_busy++;
1897 		return 0;
1898 	}
1899 	return count;
1900 }
1901 
1902 /**
1903  * i40e_xmit_frame_ring - Sends buffer on Tx ring
1904  * @skb:     send buffer
1905  * @tx_ring: ring to send buffer on
1906  *
1907  * Returns NETDEV_TX_OK if sent, else an error code
1908  **/
i40e_xmit_frame_ring(struct sk_buff * skb,struct i40e_ring * tx_ring)1909 static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
1910 					struct i40e_ring *tx_ring)
1911 {
1912 	u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
1913 	u32 cd_tunneling = 0, cd_l2tag2 = 0;
1914 	struct i40e_tx_buffer *first;
1915 	u32 td_offset = 0;
1916 	u32 tx_flags = 0;
1917 	__be16 protocol;
1918 	u32 td_cmd = 0;
1919 	u8 hdr_len = 0;
1920 	int tso;
1921 	if (0 == i40e_xmit_descriptor_count(skb, tx_ring))
1922 		return NETDEV_TX_BUSY;
1923 
1924 	/* prepare the xmit flags */
1925 	if (i40e_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
1926 		goto out_drop;
1927 
1928 	/* obtain protocol of skb */
1929 	protocol = vlan_get_protocol(skb);
1930 
1931 	/* record the location of the first descriptor for this packet */
1932 	first = &tx_ring->tx_bi[tx_ring->next_to_use];
1933 
1934 	/* setup IPv4/IPv6 offloads */
1935 	if (protocol == htons(ETH_P_IP))
1936 		tx_flags |= I40E_TX_FLAGS_IPV4;
1937 	else if (protocol == htons(ETH_P_IPV6))
1938 		tx_flags |= I40E_TX_FLAGS_IPV6;
1939 
1940 	tso = i40e_tso(tx_ring, skb, tx_flags, protocol, &hdr_len,
1941 		       &cd_type_cmd_tso_mss, &cd_tunneling);
1942 
1943 	if (tso < 0)
1944 		goto out_drop;
1945 	else if (tso)
1946 		tx_flags |= I40E_TX_FLAGS_TSO;
1947 
1948 	if (i40e_chk_linearize(skb, tx_flags))
1949 		if (skb_linearize(skb))
1950 			goto out_drop;
1951 
1952 	skb_tx_timestamp(skb);
1953 
1954 	/* always enable CRC insertion offload */
1955 	td_cmd |= I40E_TX_DESC_CMD_ICRC;
1956 
1957 	/* Always offload the checksum, since it's in the data descriptor */
1958 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
1959 		tx_flags |= I40E_TX_FLAGS_CSUM;
1960 
1961 		i40e_tx_enable_csum(skb, tx_flags, &td_cmd, &td_offset,
1962 				    tx_ring, &cd_tunneling);
1963 	}
1964 
1965 	i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
1966 			   cd_tunneling, cd_l2tag2);
1967 
1968 	i40e_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
1969 		    td_cmd, td_offset);
1970 
1971 	i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
1972 
1973 	return NETDEV_TX_OK;
1974 
1975 out_drop:
1976 	dev_kfree_skb_any(skb);
1977 	return NETDEV_TX_OK;
1978 }
1979 
1980 /**
1981  * i40evf_xmit_frame - Selects the correct VSI and Tx queue to send buffer
1982  * @skb:    send buffer
1983  * @netdev: network interface device structure
1984  *
1985  * Returns NETDEV_TX_OK if sent, else an error code
1986  **/
i40evf_xmit_frame(struct sk_buff * skb,struct net_device * netdev)1987 netdev_tx_t i40evf_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
1988 {
1989 	struct i40evf_adapter *adapter = netdev_priv(netdev);
1990 	struct i40e_ring *tx_ring = adapter->tx_rings[skb->queue_mapping];
1991 
1992 	/* hardware can't handle really short frames, hardware padding works
1993 	 * beyond this point
1994 	 */
1995 	if (unlikely(skb->len < I40E_MIN_TX_LEN)) {
1996 		if (skb_pad(skb, I40E_MIN_TX_LEN - skb->len))
1997 			return NETDEV_TX_OK;
1998 		skb->len = I40E_MIN_TX_LEN;
1999 		skb_set_tail_pointer(skb, I40E_MIN_TX_LEN);
2000 	}
2001 
2002 	return i40e_xmit_frame_ring(skb, tx_ring);
2003 }
2004