1 /*
2  * Generic hugetlb support.
3  * (C) Nadia Yvette Chambers, April 2004
4  */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/module.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/bootmem.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/rmap.h>
23 #include <linux/swap.h>
24 #include <linux/swapops.h>
25 #include <linux/page-isolation.h>
26 #include <linux/jhash.h>
27 
28 #include <asm/page.h>
29 #include <asm/pgtable.h>
30 #include <asm/tlb.h>
31 
32 #include <linux/io.h>
33 #include <linux/hugetlb.h>
34 #include <linux/hugetlb_cgroup.h>
35 #include <linux/node.h>
36 #include "internal.h"
37 
38 int hugepages_treat_as_movable;
39 
40 int hugetlb_max_hstate __read_mostly;
41 unsigned int default_hstate_idx;
42 struct hstate hstates[HUGE_MAX_HSTATE];
43 /*
44  * Minimum page order among possible hugepage sizes, set to a proper value
45  * at boot time.
46  */
47 static unsigned int minimum_order __read_mostly = UINT_MAX;
48 
49 __initdata LIST_HEAD(huge_boot_pages);
50 
51 /* for command line parsing */
52 static struct hstate * __initdata parsed_hstate;
53 static unsigned long __initdata default_hstate_max_huge_pages;
54 static unsigned long __initdata default_hstate_size;
55 
56 /*
57  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
58  * free_huge_pages, and surplus_huge_pages.
59  */
60 DEFINE_SPINLOCK(hugetlb_lock);
61 
62 /*
63  * Serializes faults on the same logical page.  This is used to
64  * prevent spurious OOMs when the hugepage pool is fully utilized.
65  */
66 static int num_fault_mutexes;
67 static struct mutex *htlb_fault_mutex_table ____cacheline_aligned_in_smp;
68 
69 /* Forward declaration */
70 static int hugetlb_acct_memory(struct hstate *h, long delta);
71 
unlock_or_release_subpool(struct hugepage_subpool * spool)72 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
73 {
74 	bool free = (spool->count == 0) && (spool->used_hpages == 0);
75 
76 	spin_unlock(&spool->lock);
77 
78 	/* If no pages are used, and no other handles to the subpool
79 	 * remain, give up any reservations mased on minimum size and
80 	 * free the subpool */
81 	if (free) {
82 		if (spool->min_hpages != -1)
83 			hugetlb_acct_memory(spool->hstate,
84 						-spool->min_hpages);
85 		kfree(spool);
86 	}
87 }
88 
hugepage_new_subpool(struct hstate * h,long max_hpages,long min_hpages)89 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
90 						long min_hpages)
91 {
92 	struct hugepage_subpool *spool;
93 
94 	spool = kzalloc(sizeof(*spool), GFP_KERNEL);
95 	if (!spool)
96 		return NULL;
97 
98 	spin_lock_init(&spool->lock);
99 	spool->count = 1;
100 	spool->max_hpages = max_hpages;
101 	spool->hstate = h;
102 	spool->min_hpages = min_hpages;
103 
104 	if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
105 		kfree(spool);
106 		return NULL;
107 	}
108 	spool->rsv_hpages = min_hpages;
109 
110 	return spool;
111 }
112 
hugepage_put_subpool(struct hugepage_subpool * spool)113 void hugepage_put_subpool(struct hugepage_subpool *spool)
114 {
115 	spin_lock(&spool->lock);
116 	BUG_ON(!spool->count);
117 	spool->count--;
118 	unlock_or_release_subpool(spool);
119 }
120 
121 /*
122  * Subpool accounting for allocating and reserving pages.
123  * Return -ENOMEM if there are not enough resources to satisfy the
124  * the request.  Otherwise, return the number of pages by which the
125  * global pools must be adjusted (upward).  The returned value may
126  * only be different than the passed value (delta) in the case where
127  * a subpool minimum size must be manitained.
128  */
hugepage_subpool_get_pages(struct hugepage_subpool * spool,long delta)129 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
130 				      long delta)
131 {
132 	long ret = delta;
133 
134 	if (!spool)
135 		return ret;
136 
137 	spin_lock(&spool->lock);
138 
139 	if (spool->max_hpages != -1) {		/* maximum size accounting */
140 		if ((spool->used_hpages + delta) <= spool->max_hpages)
141 			spool->used_hpages += delta;
142 		else {
143 			ret = -ENOMEM;
144 			goto unlock_ret;
145 		}
146 	}
147 
148 	if (spool->min_hpages != -1) {		/* minimum size accounting */
149 		if (delta > spool->rsv_hpages) {
150 			/*
151 			 * Asking for more reserves than those already taken on
152 			 * behalf of subpool.  Return difference.
153 			 */
154 			ret = delta - spool->rsv_hpages;
155 			spool->rsv_hpages = 0;
156 		} else {
157 			ret = 0;	/* reserves already accounted for */
158 			spool->rsv_hpages -= delta;
159 		}
160 	}
161 
162 unlock_ret:
163 	spin_unlock(&spool->lock);
164 	return ret;
165 }
166 
167 /*
168  * Subpool accounting for freeing and unreserving pages.
169  * Return the number of global page reservations that must be dropped.
170  * The return value may only be different than the passed value (delta)
171  * in the case where a subpool minimum size must be maintained.
172  */
hugepage_subpool_put_pages(struct hugepage_subpool * spool,long delta)173 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
174 				       long delta)
175 {
176 	long ret = delta;
177 
178 	if (!spool)
179 		return delta;
180 
181 	spin_lock(&spool->lock);
182 
183 	if (spool->max_hpages != -1)		/* maximum size accounting */
184 		spool->used_hpages -= delta;
185 
186 	if (spool->min_hpages != -1) {		/* minimum size accounting */
187 		if (spool->rsv_hpages + delta <= spool->min_hpages)
188 			ret = 0;
189 		else
190 			ret = spool->rsv_hpages + delta - spool->min_hpages;
191 
192 		spool->rsv_hpages += delta;
193 		if (spool->rsv_hpages > spool->min_hpages)
194 			spool->rsv_hpages = spool->min_hpages;
195 	}
196 
197 	/*
198 	 * If hugetlbfs_put_super couldn't free spool due to an outstanding
199 	 * quota reference, free it now.
200 	 */
201 	unlock_or_release_subpool(spool);
202 
203 	return ret;
204 }
205 
subpool_inode(struct inode * inode)206 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
207 {
208 	return HUGETLBFS_SB(inode->i_sb)->spool;
209 }
210 
subpool_vma(struct vm_area_struct * vma)211 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
212 {
213 	return subpool_inode(file_inode(vma->vm_file));
214 }
215 
216 /*
217  * Region tracking -- allows tracking of reservations and instantiated pages
218  *                    across the pages in a mapping.
219  *
220  * The region data structures are embedded into a resv_map and
221  * protected by a resv_map's lock
222  */
223 struct file_region {
224 	struct list_head link;
225 	long from;
226 	long to;
227 };
228 
region_add(struct resv_map * resv,long f,long t)229 static long region_add(struct resv_map *resv, long f, long t)
230 {
231 	struct list_head *head = &resv->regions;
232 	struct file_region *rg, *nrg, *trg;
233 
234 	spin_lock(&resv->lock);
235 	/* Locate the region we are either in or before. */
236 	list_for_each_entry(rg, head, link)
237 		if (f <= rg->to)
238 			break;
239 
240 	/* Round our left edge to the current segment if it encloses us. */
241 	if (f > rg->from)
242 		f = rg->from;
243 
244 	/* Check for and consume any regions we now overlap with. */
245 	nrg = rg;
246 	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
247 		if (&rg->link == head)
248 			break;
249 		if (rg->from > t)
250 			break;
251 
252 		/* If this area reaches higher then extend our area to
253 		 * include it completely.  If this is not the first area
254 		 * which we intend to reuse, free it. */
255 		if (rg->to > t)
256 			t = rg->to;
257 		if (rg != nrg) {
258 			list_del(&rg->link);
259 			kfree(rg);
260 		}
261 	}
262 	nrg->from = f;
263 	nrg->to = t;
264 	spin_unlock(&resv->lock);
265 	return 0;
266 }
267 
region_chg(struct resv_map * resv,long f,long t)268 static long region_chg(struct resv_map *resv, long f, long t)
269 {
270 	struct list_head *head = &resv->regions;
271 	struct file_region *rg, *nrg = NULL;
272 	long chg = 0;
273 
274 retry:
275 	spin_lock(&resv->lock);
276 	/* Locate the region we are before or in. */
277 	list_for_each_entry(rg, head, link)
278 		if (f <= rg->to)
279 			break;
280 
281 	/* If we are below the current region then a new region is required.
282 	 * Subtle, allocate a new region at the position but make it zero
283 	 * size such that we can guarantee to record the reservation. */
284 	if (&rg->link == head || t < rg->from) {
285 		if (!nrg) {
286 			spin_unlock(&resv->lock);
287 			nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
288 			if (!nrg)
289 				return -ENOMEM;
290 
291 			nrg->from = f;
292 			nrg->to   = f;
293 			INIT_LIST_HEAD(&nrg->link);
294 			goto retry;
295 		}
296 
297 		list_add(&nrg->link, rg->link.prev);
298 		chg = t - f;
299 		goto out_nrg;
300 	}
301 
302 	/* Round our left edge to the current segment if it encloses us. */
303 	if (f > rg->from)
304 		f = rg->from;
305 	chg = t - f;
306 
307 	/* Check for and consume any regions we now overlap with. */
308 	list_for_each_entry(rg, rg->link.prev, link) {
309 		if (&rg->link == head)
310 			break;
311 		if (rg->from > t)
312 			goto out;
313 
314 		/* We overlap with this area, if it extends further than
315 		 * us then we must extend ourselves.  Account for its
316 		 * existing reservation. */
317 		if (rg->to > t) {
318 			chg += rg->to - t;
319 			t = rg->to;
320 		}
321 		chg -= rg->to - rg->from;
322 	}
323 
324 out:
325 	spin_unlock(&resv->lock);
326 	/*  We already know we raced and no longer need the new region */
327 	kfree(nrg);
328 	return chg;
329 out_nrg:
330 	spin_unlock(&resv->lock);
331 	return chg;
332 }
333 
region_truncate(struct resv_map * resv,long end)334 static long region_truncate(struct resv_map *resv, long end)
335 {
336 	struct list_head *head = &resv->regions;
337 	struct file_region *rg, *trg;
338 	long chg = 0;
339 
340 	spin_lock(&resv->lock);
341 	/* Locate the region we are either in or before. */
342 	list_for_each_entry(rg, head, link)
343 		if (end <= rg->to)
344 			break;
345 	if (&rg->link == head)
346 		goto out;
347 
348 	/* If we are in the middle of a region then adjust it. */
349 	if (end > rg->from) {
350 		chg = rg->to - end;
351 		rg->to = end;
352 		rg = list_entry(rg->link.next, typeof(*rg), link);
353 	}
354 
355 	/* Drop any remaining regions. */
356 	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
357 		if (&rg->link == head)
358 			break;
359 		chg += rg->to - rg->from;
360 		list_del(&rg->link);
361 		kfree(rg);
362 	}
363 
364 out:
365 	spin_unlock(&resv->lock);
366 	return chg;
367 }
368 
region_count(struct resv_map * resv,long f,long t)369 static long region_count(struct resv_map *resv, long f, long t)
370 {
371 	struct list_head *head = &resv->regions;
372 	struct file_region *rg;
373 	long chg = 0;
374 
375 	spin_lock(&resv->lock);
376 	/* Locate each segment we overlap with, and count that overlap. */
377 	list_for_each_entry(rg, head, link) {
378 		long seg_from;
379 		long seg_to;
380 
381 		if (rg->to <= f)
382 			continue;
383 		if (rg->from >= t)
384 			break;
385 
386 		seg_from = max(rg->from, f);
387 		seg_to = min(rg->to, t);
388 
389 		chg += seg_to - seg_from;
390 	}
391 	spin_unlock(&resv->lock);
392 
393 	return chg;
394 }
395 
396 /*
397  * Convert the address within this vma to the page offset within
398  * the mapping, in pagecache page units; huge pages here.
399  */
vma_hugecache_offset(struct hstate * h,struct vm_area_struct * vma,unsigned long address)400 static pgoff_t vma_hugecache_offset(struct hstate *h,
401 			struct vm_area_struct *vma, unsigned long address)
402 {
403 	return ((address - vma->vm_start) >> huge_page_shift(h)) +
404 			(vma->vm_pgoff >> huge_page_order(h));
405 }
406 
linear_hugepage_index(struct vm_area_struct * vma,unsigned long address)407 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
408 				     unsigned long address)
409 {
410 	return vma_hugecache_offset(hstate_vma(vma), vma, address);
411 }
412 
413 /*
414  * Return the size of the pages allocated when backing a VMA. In the majority
415  * cases this will be same size as used by the page table entries.
416  */
vma_kernel_pagesize(struct vm_area_struct * vma)417 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
418 {
419 	struct hstate *hstate;
420 
421 	if (!is_vm_hugetlb_page(vma))
422 		return PAGE_SIZE;
423 
424 	hstate = hstate_vma(vma);
425 
426 	return 1UL << huge_page_shift(hstate);
427 }
428 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
429 
430 /*
431  * Return the page size being used by the MMU to back a VMA. In the majority
432  * of cases, the page size used by the kernel matches the MMU size. On
433  * architectures where it differs, an architecture-specific version of this
434  * function is required.
435  */
436 #ifndef vma_mmu_pagesize
vma_mmu_pagesize(struct vm_area_struct * vma)437 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
438 {
439 	return vma_kernel_pagesize(vma);
440 }
441 #endif
442 
443 /*
444  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
445  * bits of the reservation map pointer, which are always clear due to
446  * alignment.
447  */
448 #define HPAGE_RESV_OWNER    (1UL << 0)
449 #define HPAGE_RESV_UNMAPPED (1UL << 1)
450 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
451 
452 /*
453  * These helpers are used to track how many pages are reserved for
454  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
455  * is guaranteed to have their future faults succeed.
456  *
457  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
458  * the reserve counters are updated with the hugetlb_lock held. It is safe
459  * to reset the VMA at fork() time as it is not in use yet and there is no
460  * chance of the global counters getting corrupted as a result of the values.
461  *
462  * The private mapping reservation is represented in a subtly different
463  * manner to a shared mapping.  A shared mapping has a region map associated
464  * with the underlying file, this region map represents the backing file
465  * pages which have ever had a reservation assigned which this persists even
466  * after the page is instantiated.  A private mapping has a region map
467  * associated with the original mmap which is attached to all VMAs which
468  * reference it, this region map represents those offsets which have consumed
469  * reservation ie. where pages have been instantiated.
470  */
get_vma_private_data(struct vm_area_struct * vma)471 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
472 {
473 	return (unsigned long)vma->vm_private_data;
474 }
475 
set_vma_private_data(struct vm_area_struct * vma,unsigned long value)476 static void set_vma_private_data(struct vm_area_struct *vma,
477 							unsigned long value)
478 {
479 	vma->vm_private_data = (void *)value;
480 }
481 
resv_map_alloc(void)482 struct resv_map *resv_map_alloc(void)
483 {
484 	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
485 	if (!resv_map)
486 		return NULL;
487 
488 	kref_init(&resv_map->refs);
489 	spin_lock_init(&resv_map->lock);
490 	INIT_LIST_HEAD(&resv_map->regions);
491 
492 	return resv_map;
493 }
494 
resv_map_release(struct kref * ref)495 void resv_map_release(struct kref *ref)
496 {
497 	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
498 
499 	/* Clear out any active regions before we release the map. */
500 	region_truncate(resv_map, 0);
501 	kfree(resv_map);
502 }
503 
inode_resv_map(struct inode * inode)504 static inline struct resv_map *inode_resv_map(struct inode *inode)
505 {
506 	return inode->i_mapping->private_data;
507 }
508 
vma_resv_map(struct vm_area_struct * vma)509 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
510 {
511 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
512 	if (vma->vm_flags & VM_MAYSHARE) {
513 		struct address_space *mapping = vma->vm_file->f_mapping;
514 		struct inode *inode = mapping->host;
515 
516 		return inode_resv_map(inode);
517 
518 	} else {
519 		return (struct resv_map *)(get_vma_private_data(vma) &
520 							~HPAGE_RESV_MASK);
521 	}
522 }
523 
set_vma_resv_map(struct vm_area_struct * vma,struct resv_map * map)524 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
525 {
526 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
527 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
528 
529 	set_vma_private_data(vma, (get_vma_private_data(vma) &
530 				HPAGE_RESV_MASK) | (unsigned long)map);
531 }
532 
set_vma_resv_flags(struct vm_area_struct * vma,unsigned long flags)533 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
534 {
535 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
536 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
537 
538 	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
539 }
540 
is_vma_resv_set(struct vm_area_struct * vma,unsigned long flag)541 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
542 {
543 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
544 
545 	return (get_vma_private_data(vma) & flag) != 0;
546 }
547 
548 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
reset_vma_resv_huge_pages(struct vm_area_struct * vma)549 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
550 {
551 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
552 	if (!(vma->vm_flags & VM_MAYSHARE))
553 		vma->vm_private_data = (void *)0;
554 }
555 
556 /* Returns true if the VMA has associated reserve pages */
vma_has_reserves(struct vm_area_struct * vma,long chg)557 static int vma_has_reserves(struct vm_area_struct *vma, long chg)
558 {
559 	if (vma->vm_flags & VM_NORESERVE) {
560 		/*
561 		 * This address is already reserved by other process(chg == 0),
562 		 * so, we should decrement reserved count. Without decrementing,
563 		 * reserve count remains after releasing inode, because this
564 		 * allocated page will go into page cache and is regarded as
565 		 * coming from reserved pool in releasing step.  Currently, we
566 		 * don't have any other solution to deal with this situation
567 		 * properly, so add work-around here.
568 		 */
569 		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
570 			return 1;
571 		else
572 			return 0;
573 	}
574 
575 	/* Shared mappings always use reserves */
576 	if (vma->vm_flags & VM_MAYSHARE)
577 		return 1;
578 
579 	/*
580 	 * Only the process that called mmap() has reserves for
581 	 * private mappings.
582 	 */
583 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
584 		return 1;
585 
586 	return 0;
587 }
588 
enqueue_huge_page(struct hstate * h,struct page * page)589 static void enqueue_huge_page(struct hstate *h, struct page *page)
590 {
591 	int nid = page_to_nid(page);
592 	list_move(&page->lru, &h->hugepage_freelists[nid]);
593 	h->free_huge_pages++;
594 	h->free_huge_pages_node[nid]++;
595 }
596 
dequeue_huge_page_node(struct hstate * h,int nid)597 static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
598 {
599 	struct page *page;
600 
601 	list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
602 		if (!is_migrate_isolate_page(page))
603 			break;
604 	/*
605 	 * if 'non-isolated free hugepage' not found on the list,
606 	 * the allocation fails.
607 	 */
608 	if (&h->hugepage_freelists[nid] == &page->lru)
609 		return NULL;
610 	list_move(&page->lru, &h->hugepage_activelist);
611 	set_page_refcounted(page);
612 	h->free_huge_pages--;
613 	h->free_huge_pages_node[nid]--;
614 	return page;
615 }
616 
617 /* Movability of hugepages depends on migration support. */
htlb_alloc_mask(struct hstate * h)618 static inline gfp_t htlb_alloc_mask(struct hstate *h)
619 {
620 	if (hugepages_treat_as_movable || hugepage_migration_supported(h))
621 		return GFP_HIGHUSER_MOVABLE;
622 	else
623 		return GFP_HIGHUSER;
624 }
625 
dequeue_huge_page_vma(struct hstate * h,struct vm_area_struct * vma,unsigned long address,int avoid_reserve,long chg)626 static struct page *dequeue_huge_page_vma(struct hstate *h,
627 				struct vm_area_struct *vma,
628 				unsigned long address, int avoid_reserve,
629 				long chg)
630 {
631 	struct page *page = NULL;
632 	struct mempolicy *mpol;
633 	nodemask_t *nodemask;
634 	struct zonelist *zonelist;
635 	struct zone *zone;
636 	struct zoneref *z;
637 	unsigned int cpuset_mems_cookie;
638 
639 	/*
640 	 * A child process with MAP_PRIVATE mappings created by their parent
641 	 * have no page reserves. This check ensures that reservations are
642 	 * not "stolen". The child may still get SIGKILLed
643 	 */
644 	if (!vma_has_reserves(vma, chg) &&
645 			h->free_huge_pages - h->resv_huge_pages == 0)
646 		goto err;
647 
648 	/* If reserves cannot be used, ensure enough pages are in the pool */
649 	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
650 		goto err;
651 
652 retry_cpuset:
653 	cpuset_mems_cookie = read_mems_allowed_begin();
654 	zonelist = huge_zonelist(vma, address,
655 					htlb_alloc_mask(h), &mpol, &nodemask);
656 
657 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
658 						MAX_NR_ZONES - 1, nodemask) {
659 		if (cpuset_zone_allowed(zone, htlb_alloc_mask(h))) {
660 			page = dequeue_huge_page_node(h, zone_to_nid(zone));
661 			if (page) {
662 				if (avoid_reserve)
663 					break;
664 				if (!vma_has_reserves(vma, chg))
665 					break;
666 
667 				SetPagePrivate(page);
668 				h->resv_huge_pages--;
669 				break;
670 			}
671 		}
672 	}
673 
674 	mpol_cond_put(mpol);
675 	if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
676 		goto retry_cpuset;
677 	return page;
678 
679 err:
680 	return NULL;
681 }
682 
683 /*
684  * common helper functions for hstate_next_node_to_{alloc|free}.
685  * We may have allocated or freed a huge page based on a different
686  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
687  * be outside of *nodes_allowed.  Ensure that we use an allowed
688  * node for alloc or free.
689  */
next_node_allowed(int nid,nodemask_t * nodes_allowed)690 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
691 {
692 	nid = next_node(nid, *nodes_allowed);
693 	if (nid == MAX_NUMNODES)
694 		nid = first_node(*nodes_allowed);
695 	VM_BUG_ON(nid >= MAX_NUMNODES);
696 
697 	return nid;
698 }
699 
get_valid_node_allowed(int nid,nodemask_t * nodes_allowed)700 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
701 {
702 	if (!node_isset(nid, *nodes_allowed))
703 		nid = next_node_allowed(nid, nodes_allowed);
704 	return nid;
705 }
706 
707 /*
708  * returns the previously saved node ["this node"] from which to
709  * allocate a persistent huge page for the pool and advance the
710  * next node from which to allocate, handling wrap at end of node
711  * mask.
712  */
hstate_next_node_to_alloc(struct hstate * h,nodemask_t * nodes_allowed)713 static int hstate_next_node_to_alloc(struct hstate *h,
714 					nodemask_t *nodes_allowed)
715 {
716 	int nid;
717 
718 	VM_BUG_ON(!nodes_allowed);
719 
720 	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
721 	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
722 
723 	return nid;
724 }
725 
726 /*
727  * helper for free_pool_huge_page() - return the previously saved
728  * node ["this node"] from which to free a huge page.  Advance the
729  * next node id whether or not we find a free huge page to free so
730  * that the next attempt to free addresses the next node.
731  */
hstate_next_node_to_free(struct hstate * h,nodemask_t * nodes_allowed)732 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
733 {
734 	int nid;
735 
736 	VM_BUG_ON(!nodes_allowed);
737 
738 	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
739 	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
740 
741 	return nid;
742 }
743 
744 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\
745 	for (nr_nodes = nodes_weight(*mask);				\
746 		nr_nodes > 0 &&						\
747 		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\
748 		nr_nodes--)
749 
750 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
751 	for (nr_nodes = nodes_weight(*mask);				\
752 		nr_nodes > 0 &&						\
753 		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
754 		nr_nodes--)
755 
756 #if defined(CONFIG_CMA) && defined(CONFIG_X86_64)
destroy_compound_gigantic_page(struct page * page,unsigned int order)757 static void destroy_compound_gigantic_page(struct page *page,
758 					unsigned int order)
759 {
760 	int i;
761 	int nr_pages = 1 << order;
762 	struct page *p = page + 1;
763 
764 	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
765 		__ClearPageTail(p);
766 		set_page_refcounted(p);
767 		p->first_page = NULL;
768 	}
769 
770 	set_compound_order(page, 0);
771 	__ClearPageHead(page);
772 }
773 
free_gigantic_page(struct page * page,unsigned int order)774 static void free_gigantic_page(struct page *page, unsigned int order)
775 {
776 	free_contig_range(page_to_pfn(page), 1 << order);
777 }
778 
__alloc_gigantic_page(unsigned long start_pfn,unsigned long nr_pages)779 static int __alloc_gigantic_page(unsigned long start_pfn,
780 				unsigned long nr_pages)
781 {
782 	unsigned long end_pfn = start_pfn + nr_pages;
783 	return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
784 }
785 
pfn_range_valid_gigantic(unsigned long start_pfn,unsigned long nr_pages)786 static bool pfn_range_valid_gigantic(unsigned long start_pfn,
787 				unsigned long nr_pages)
788 {
789 	unsigned long i, end_pfn = start_pfn + nr_pages;
790 	struct page *page;
791 
792 	for (i = start_pfn; i < end_pfn; i++) {
793 		if (!pfn_valid(i))
794 			return false;
795 
796 		page = pfn_to_page(i);
797 
798 		if (PageReserved(page))
799 			return false;
800 
801 		if (page_count(page) > 0)
802 			return false;
803 
804 		if (PageHuge(page))
805 			return false;
806 	}
807 
808 	return true;
809 }
810 
zone_spans_last_pfn(const struct zone * zone,unsigned long start_pfn,unsigned long nr_pages)811 static bool zone_spans_last_pfn(const struct zone *zone,
812 			unsigned long start_pfn, unsigned long nr_pages)
813 {
814 	unsigned long last_pfn = start_pfn + nr_pages - 1;
815 	return zone_spans_pfn(zone, last_pfn);
816 }
817 
alloc_gigantic_page(int nid,unsigned int order)818 static struct page *alloc_gigantic_page(int nid, unsigned int order)
819 {
820 	unsigned long nr_pages = 1 << order;
821 	unsigned long ret, pfn, flags;
822 	struct zone *z;
823 
824 	z = NODE_DATA(nid)->node_zones;
825 	for (; z - NODE_DATA(nid)->node_zones < MAX_NR_ZONES; z++) {
826 		spin_lock_irqsave(&z->lock, flags);
827 
828 		pfn = ALIGN(z->zone_start_pfn, nr_pages);
829 		while (zone_spans_last_pfn(z, pfn, nr_pages)) {
830 			if (pfn_range_valid_gigantic(pfn, nr_pages)) {
831 				/*
832 				 * We release the zone lock here because
833 				 * alloc_contig_range() will also lock the zone
834 				 * at some point. If there's an allocation
835 				 * spinning on this lock, it may win the race
836 				 * and cause alloc_contig_range() to fail...
837 				 */
838 				spin_unlock_irqrestore(&z->lock, flags);
839 				ret = __alloc_gigantic_page(pfn, nr_pages);
840 				if (!ret)
841 					return pfn_to_page(pfn);
842 				spin_lock_irqsave(&z->lock, flags);
843 			}
844 			pfn += nr_pages;
845 		}
846 
847 		spin_unlock_irqrestore(&z->lock, flags);
848 	}
849 
850 	return NULL;
851 }
852 
853 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
854 static void prep_compound_gigantic_page(struct page *page, unsigned int order);
855 
alloc_fresh_gigantic_page_node(struct hstate * h,int nid)856 static struct page *alloc_fresh_gigantic_page_node(struct hstate *h, int nid)
857 {
858 	struct page *page;
859 
860 	page = alloc_gigantic_page(nid, huge_page_order(h));
861 	if (page) {
862 		prep_compound_gigantic_page(page, huge_page_order(h));
863 		prep_new_huge_page(h, page, nid);
864 	}
865 
866 	return page;
867 }
868 
alloc_fresh_gigantic_page(struct hstate * h,nodemask_t * nodes_allowed)869 static int alloc_fresh_gigantic_page(struct hstate *h,
870 				nodemask_t *nodes_allowed)
871 {
872 	struct page *page = NULL;
873 	int nr_nodes, node;
874 
875 	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
876 		page = alloc_fresh_gigantic_page_node(h, node);
877 		if (page)
878 			return 1;
879 	}
880 
881 	return 0;
882 }
883 
gigantic_page_supported(void)884 static inline bool gigantic_page_supported(void) { return true; }
885 #else
gigantic_page_supported(void)886 static inline bool gigantic_page_supported(void) { return false; }
free_gigantic_page(struct page * page,unsigned int order)887 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
destroy_compound_gigantic_page(struct page * page,unsigned int order)888 static inline void destroy_compound_gigantic_page(struct page *page,
889 						unsigned int order) { }
alloc_fresh_gigantic_page(struct hstate * h,nodemask_t * nodes_allowed)890 static inline int alloc_fresh_gigantic_page(struct hstate *h,
891 					nodemask_t *nodes_allowed) { return 0; }
892 #endif
893 
update_and_free_page(struct hstate * h,struct page * page)894 static void update_and_free_page(struct hstate *h, struct page *page)
895 {
896 	int i;
897 
898 	if (hstate_is_gigantic(h) && !gigantic_page_supported())
899 		return;
900 
901 	h->nr_huge_pages--;
902 	h->nr_huge_pages_node[page_to_nid(page)]--;
903 	for (i = 0; i < pages_per_huge_page(h); i++) {
904 		page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
905 				1 << PG_referenced | 1 << PG_dirty |
906 				1 << PG_active | 1 << PG_private |
907 				1 << PG_writeback);
908 	}
909 	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
910 	set_compound_page_dtor(page, NULL);
911 	set_page_refcounted(page);
912 	if (hstate_is_gigantic(h)) {
913 		destroy_compound_gigantic_page(page, huge_page_order(h));
914 		free_gigantic_page(page, huge_page_order(h));
915 	} else {
916 		arch_release_hugepage(page);
917 		__free_pages(page, huge_page_order(h));
918 	}
919 }
920 
size_to_hstate(unsigned long size)921 struct hstate *size_to_hstate(unsigned long size)
922 {
923 	struct hstate *h;
924 
925 	for_each_hstate(h) {
926 		if (huge_page_size(h) == size)
927 			return h;
928 	}
929 	return NULL;
930 }
931 
932 /*
933  * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
934  * to hstate->hugepage_activelist.)
935  *
936  * This function can be called for tail pages, but never returns true for them.
937  */
page_huge_active(struct page * page)938 bool page_huge_active(struct page *page)
939 {
940 	VM_BUG_ON_PAGE(!PageHuge(page), page);
941 	return PageHead(page) && PagePrivate(&page[1]);
942 }
943 
944 /* never called for tail page */
set_page_huge_active(struct page * page)945 static void set_page_huge_active(struct page *page)
946 {
947 	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
948 	SetPagePrivate(&page[1]);
949 }
950 
clear_page_huge_active(struct page * page)951 static void clear_page_huge_active(struct page *page)
952 {
953 	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
954 	ClearPagePrivate(&page[1]);
955 }
956 
free_huge_page(struct page * page)957 void free_huge_page(struct page *page)
958 {
959 	/*
960 	 * Can't pass hstate in here because it is called from the
961 	 * compound page destructor.
962 	 */
963 	struct hstate *h = page_hstate(page);
964 	int nid = page_to_nid(page);
965 	struct hugepage_subpool *spool =
966 		(struct hugepage_subpool *)page_private(page);
967 	bool restore_reserve;
968 
969 	set_page_private(page, 0);
970 	page->mapping = NULL;
971 	BUG_ON(page_count(page));
972 	BUG_ON(page_mapcount(page));
973 	restore_reserve = PagePrivate(page);
974 	ClearPagePrivate(page);
975 
976 	/*
977 	 * A return code of zero implies that the subpool will be under its
978 	 * minimum size if the reservation is not restored after page is free.
979 	 * Therefore, force restore_reserve operation.
980 	 */
981 	if (hugepage_subpool_put_pages(spool, 1) == 0)
982 		restore_reserve = true;
983 
984 	spin_lock(&hugetlb_lock);
985 	clear_page_huge_active(page);
986 	hugetlb_cgroup_uncharge_page(hstate_index(h),
987 				     pages_per_huge_page(h), page);
988 	if (restore_reserve)
989 		h->resv_huge_pages++;
990 
991 	if (h->surplus_huge_pages_node[nid]) {
992 		/* remove the page from active list */
993 		list_del(&page->lru);
994 		update_and_free_page(h, page);
995 		h->surplus_huge_pages--;
996 		h->surplus_huge_pages_node[nid]--;
997 	} else {
998 		arch_clear_hugepage_flags(page);
999 		enqueue_huge_page(h, page);
1000 	}
1001 	spin_unlock(&hugetlb_lock);
1002 }
1003 
prep_new_huge_page(struct hstate * h,struct page * page,int nid)1004 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1005 {
1006 	INIT_LIST_HEAD(&page->lru);
1007 	set_compound_page_dtor(page, free_huge_page);
1008 	spin_lock(&hugetlb_lock);
1009 	set_hugetlb_cgroup(page, NULL);
1010 	h->nr_huge_pages++;
1011 	h->nr_huge_pages_node[nid]++;
1012 	spin_unlock(&hugetlb_lock);
1013 	put_page(page); /* free it into the hugepage allocator */
1014 }
1015 
prep_compound_gigantic_page(struct page * page,unsigned int order)1016 static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1017 {
1018 	int i;
1019 	int nr_pages = 1 << order;
1020 	struct page *p = page + 1;
1021 
1022 	/* we rely on prep_new_huge_page to set the destructor */
1023 	set_compound_order(page, order);
1024 	__SetPageHead(page);
1025 	__ClearPageReserved(page);
1026 	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1027 		/*
1028 		 * For gigantic hugepages allocated through bootmem at
1029 		 * boot, it's safer to be consistent with the not-gigantic
1030 		 * hugepages and clear the PG_reserved bit from all tail pages
1031 		 * too.  Otherwse drivers using get_user_pages() to access tail
1032 		 * pages may get the reference counting wrong if they see
1033 		 * PG_reserved set on a tail page (despite the head page not
1034 		 * having PG_reserved set).  Enforcing this consistency between
1035 		 * head and tail pages allows drivers to optimize away a check
1036 		 * on the head page when they need know if put_page() is needed
1037 		 * after get_user_pages().
1038 		 */
1039 		__ClearPageReserved(p);
1040 		set_page_count(p, 0);
1041 		p->first_page = page;
1042 		/* Make sure p->first_page is always valid for PageTail() */
1043 		smp_wmb();
1044 		__SetPageTail(p);
1045 	}
1046 }
1047 
1048 /*
1049  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1050  * transparent huge pages.  See the PageTransHuge() documentation for more
1051  * details.
1052  */
PageHuge(struct page * page)1053 int PageHuge(struct page *page)
1054 {
1055 	if (!PageCompound(page))
1056 		return 0;
1057 
1058 	page = compound_head(page);
1059 	return get_compound_page_dtor(page) == free_huge_page;
1060 }
1061 EXPORT_SYMBOL_GPL(PageHuge);
1062 
1063 /*
1064  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1065  * normal or transparent huge pages.
1066  */
PageHeadHuge(struct page * page_head)1067 int PageHeadHuge(struct page *page_head)
1068 {
1069 	if (!PageHead(page_head))
1070 		return 0;
1071 
1072 	return get_compound_page_dtor(page_head) == free_huge_page;
1073 }
1074 
__basepage_index(struct page * page)1075 pgoff_t __basepage_index(struct page *page)
1076 {
1077 	struct page *page_head = compound_head(page);
1078 	pgoff_t index = page_index(page_head);
1079 	unsigned long compound_idx;
1080 
1081 	if (!PageHuge(page_head))
1082 		return page_index(page);
1083 
1084 	if (compound_order(page_head) >= MAX_ORDER)
1085 		compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1086 	else
1087 		compound_idx = page - page_head;
1088 
1089 	return (index << compound_order(page_head)) + compound_idx;
1090 }
1091 
alloc_fresh_huge_page_node(struct hstate * h,int nid)1092 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
1093 {
1094 	struct page *page;
1095 
1096 	page = alloc_pages_exact_node(nid,
1097 		htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
1098 						__GFP_REPEAT|__GFP_NOWARN,
1099 		huge_page_order(h));
1100 	if (page) {
1101 		if (arch_prepare_hugepage(page)) {
1102 			__free_pages(page, huge_page_order(h));
1103 			return NULL;
1104 		}
1105 		prep_new_huge_page(h, page, nid);
1106 	}
1107 
1108 	return page;
1109 }
1110 
alloc_fresh_huge_page(struct hstate * h,nodemask_t * nodes_allowed)1111 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
1112 {
1113 	struct page *page;
1114 	int nr_nodes, node;
1115 	int ret = 0;
1116 
1117 	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1118 		page = alloc_fresh_huge_page_node(h, node);
1119 		if (page) {
1120 			ret = 1;
1121 			break;
1122 		}
1123 	}
1124 
1125 	if (ret)
1126 		count_vm_event(HTLB_BUDDY_PGALLOC);
1127 	else
1128 		count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1129 
1130 	return ret;
1131 }
1132 
1133 /*
1134  * Free huge page from pool from next node to free.
1135  * Attempt to keep persistent huge pages more or less
1136  * balanced over allowed nodes.
1137  * Called with hugetlb_lock locked.
1138  */
free_pool_huge_page(struct hstate * h,nodemask_t * nodes_allowed,bool acct_surplus)1139 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1140 							 bool acct_surplus)
1141 {
1142 	int nr_nodes, node;
1143 	int ret = 0;
1144 
1145 	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1146 		/*
1147 		 * If we're returning unused surplus pages, only examine
1148 		 * nodes with surplus pages.
1149 		 */
1150 		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1151 		    !list_empty(&h->hugepage_freelists[node])) {
1152 			struct page *page =
1153 				list_entry(h->hugepage_freelists[node].next,
1154 					  struct page, lru);
1155 			list_del(&page->lru);
1156 			h->free_huge_pages--;
1157 			h->free_huge_pages_node[node]--;
1158 			if (acct_surplus) {
1159 				h->surplus_huge_pages--;
1160 				h->surplus_huge_pages_node[node]--;
1161 			}
1162 			update_and_free_page(h, page);
1163 			ret = 1;
1164 			break;
1165 		}
1166 	}
1167 
1168 	return ret;
1169 }
1170 
1171 /*
1172  * Dissolve a given free hugepage into free buddy pages. This function does
1173  * nothing for in-use (including surplus) hugepages.
1174  */
dissolve_free_huge_page(struct page * page)1175 static void dissolve_free_huge_page(struct page *page)
1176 {
1177 	spin_lock(&hugetlb_lock);
1178 	if (PageHuge(page) && !page_count(page)) {
1179 		struct hstate *h = page_hstate(page);
1180 		int nid = page_to_nid(page);
1181 		list_del(&page->lru);
1182 		h->free_huge_pages--;
1183 		h->free_huge_pages_node[nid]--;
1184 		update_and_free_page(h, page);
1185 	}
1186 	spin_unlock(&hugetlb_lock);
1187 }
1188 
1189 /*
1190  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1191  * make specified memory blocks removable from the system.
1192  * Note that start_pfn should aligned with (minimum) hugepage size.
1193  */
dissolve_free_huge_pages(unsigned long start_pfn,unsigned long end_pfn)1194 void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1195 {
1196 	unsigned long pfn;
1197 
1198 	if (!hugepages_supported())
1199 		return;
1200 
1201 	VM_BUG_ON(!IS_ALIGNED(start_pfn, 1 << minimum_order));
1202 	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order)
1203 		dissolve_free_huge_page(pfn_to_page(pfn));
1204 }
1205 
alloc_buddy_huge_page(struct hstate * h,int nid)1206 static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
1207 {
1208 	struct page *page;
1209 	unsigned int r_nid;
1210 
1211 	if (hstate_is_gigantic(h))
1212 		return NULL;
1213 
1214 	/*
1215 	 * Assume we will successfully allocate the surplus page to
1216 	 * prevent racing processes from causing the surplus to exceed
1217 	 * overcommit
1218 	 *
1219 	 * This however introduces a different race, where a process B
1220 	 * tries to grow the static hugepage pool while alloc_pages() is
1221 	 * called by process A. B will only examine the per-node
1222 	 * counters in determining if surplus huge pages can be
1223 	 * converted to normal huge pages in adjust_pool_surplus(). A
1224 	 * won't be able to increment the per-node counter, until the
1225 	 * lock is dropped by B, but B doesn't drop hugetlb_lock until
1226 	 * no more huge pages can be converted from surplus to normal
1227 	 * state (and doesn't try to convert again). Thus, we have a
1228 	 * case where a surplus huge page exists, the pool is grown, and
1229 	 * the surplus huge page still exists after, even though it
1230 	 * should just have been converted to a normal huge page. This
1231 	 * does not leak memory, though, as the hugepage will be freed
1232 	 * once it is out of use. It also does not allow the counters to
1233 	 * go out of whack in adjust_pool_surplus() as we don't modify
1234 	 * the node values until we've gotten the hugepage and only the
1235 	 * per-node value is checked there.
1236 	 */
1237 	spin_lock(&hugetlb_lock);
1238 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1239 		spin_unlock(&hugetlb_lock);
1240 		return NULL;
1241 	} else {
1242 		h->nr_huge_pages++;
1243 		h->surplus_huge_pages++;
1244 	}
1245 	spin_unlock(&hugetlb_lock);
1246 
1247 	if (nid == NUMA_NO_NODE)
1248 		page = alloc_pages(htlb_alloc_mask(h)|__GFP_COMP|
1249 				   __GFP_REPEAT|__GFP_NOWARN,
1250 				   huge_page_order(h));
1251 	else
1252 		page = alloc_pages_exact_node(nid,
1253 			htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
1254 			__GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
1255 
1256 	if (page && arch_prepare_hugepage(page)) {
1257 		__free_pages(page, huge_page_order(h));
1258 		page = NULL;
1259 	}
1260 
1261 	spin_lock(&hugetlb_lock);
1262 	if (page) {
1263 		INIT_LIST_HEAD(&page->lru);
1264 		r_nid = page_to_nid(page);
1265 		set_compound_page_dtor(page, free_huge_page);
1266 		set_hugetlb_cgroup(page, NULL);
1267 		/*
1268 		 * We incremented the global counters already
1269 		 */
1270 		h->nr_huge_pages_node[r_nid]++;
1271 		h->surplus_huge_pages_node[r_nid]++;
1272 		__count_vm_event(HTLB_BUDDY_PGALLOC);
1273 	} else {
1274 		h->nr_huge_pages--;
1275 		h->surplus_huge_pages--;
1276 		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1277 	}
1278 	spin_unlock(&hugetlb_lock);
1279 
1280 	return page;
1281 }
1282 
1283 /*
1284  * This allocation function is useful in the context where vma is irrelevant.
1285  * E.g. soft-offlining uses this function because it only cares physical
1286  * address of error page.
1287  */
alloc_huge_page_node(struct hstate * h,int nid)1288 struct page *alloc_huge_page_node(struct hstate *h, int nid)
1289 {
1290 	struct page *page = NULL;
1291 
1292 	spin_lock(&hugetlb_lock);
1293 	if (h->free_huge_pages - h->resv_huge_pages > 0)
1294 		page = dequeue_huge_page_node(h, nid);
1295 	spin_unlock(&hugetlb_lock);
1296 
1297 	if (!page)
1298 		page = alloc_buddy_huge_page(h, nid);
1299 
1300 	return page;
1301 }
1302 
1303 /*
1304  * Increase the hugetlb pool such that it can accommodate a reservation
1305  * of size 'delta'.
1306  */
gather_surplus_pages(struct hstate * h,int delta)1307 static int gather_surplus_pages(struct hstate *h, int delta)
1308 {
1309 	struct list_head surplus_list;
1310 	struct page *page, *tmp;
1311 	int ret, i;
1312 	int needed, allocated;
1313 	bool alloc_ok = true;
1314 
1315 	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1316 	if (needed <= 0) {
1317 		h->resv_huge_pages += delta;
1318 		return 0;
1319 	}
1320 
1321 	allocated = 0;
1322 	INIT_LIST_HEAD(&surplus_list);
1323 
1324 	ret = -ENOMEM;
1325 retry:
1326 	spin_unlock(&hugetlb_lock);
1327 	for (i = 0; i < needed; i++) {
1328 		page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1329 		if (!page) {
1330 			alloc_ok = false;
1331 			break;
1332 		}
1333 		list_add(&page->lru, &surplus_list);
1334 	}
1335 	allocated += i;
1336 
1337 	/*
1338 	 * After retaking hugetlb_lock, we need to recalculate 'needed'
1339 	 * because either resv_huge_pages or free_huge_pages may have changed.
1340 	 */
1341 	spin_lock(&hugetlb_lock);
1342 	needed = (h->resv_huge_pages + delta) -
1343 			(h->free_huge_pages + allocated);
1344 	if (needed > 0) {
1345 		if (alloc_ok)
1346 			goto retry;
1347 		/*
1348 		 * We were not able to allocate enough pages to
1349 		 * satisfy the entire reservation so we free what
1350 		 * we've allocated so far.
1351 		 */
1352 		goto free;
1353 	}
1354 	/*
1355 	 * The surplus_list now contains _at_least_ the number of extra pages
1356 	 * needed to accommodate the reservation.  Add the appropriate number
1357 	 * of pages to the hugetlb pool and free the extras back to the buddy
1358 	 * allocator.  Commit the entire reservation here to prevent another
1359 	 * process from stealing the pages as they are added to the pool but
1360 	 * before they are reserved.
1361 	 */
1362 	needed += allocated;
1363 	h->resv_huge_pages += delta;
1364 	ret = 0;
1365 
1366 	/* Free the needed pages to the hugetlb pool */
1367 	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1368 		if ((--needed) < 0)
1369 			break;
1370 		/*
1371 		 * This page is now managed by the hugetlb allocator and has
1372 		 * no users -- drop the buddy allocator's reference.
1373 		 */
1374 		put_page_testzero(page);
1375 		VM_BUG_ON_PAGE(page_count(page), page);
1376 		enqueue_huge_page(h, page);
1377 	}
1378 free:
1379 	spin_unlock(&hugetlb_lock);
1380 
1381 	/* Free unnecessary surplus pages to the buddy allocator */
1382 	list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1383 		put_page(page);
1384 	spin_lock(&hugetlb_lock);
1385 
1386 	return ret;
1387 }
1388 
1389 /*
1390  * When releasing a hugetlb pool reservation, any surplus pages that were
1391  * allocated to satisfy the reservation must be explicitly freed if they were
1392  * never used.
1393  * Called with hugetlb_lock held.
1394  */
return_unused_surplus_pages(struct hstate * h,unsigned long unused_resv_pages)1395 static void return_unused_surplus_pages(struct hstate *h,
1396 					unsigned long unused_resv_pages)
1397 {
1398 	unsigned long nr_pages;
1399 
1400 	/* Uncommit the reservation */
1401 	h->resv_huge_pages -= unused_resv_pages;
1402 
1403 	/* Cannot return gigantic pages currently */
1404 	if (hstate_is_gigantic(h))
1405 		return;
1406 
1407 	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1408 
1409 	/*
1410 	 * We want to release as many surplus pages as possible, spread
1411 	 * evenly across all nodes with memory. Iterate across these nodes
1412 	 * until we can no longer free unreserved surplus pages. This occurs
1413 	 * when the nodes with surplus pages have no free pages.
1414 	 * free_pool_huge_page() will balance the the freed pages across the
1415 	 * on-line nodes with memory and will handle the hstate accounting.
1416 	 */
1417 	while (nr_pages--) {
1418 		if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1419 			break;
1420 		cond_resched_lock(&hugetlb_lock);
1421 	}
1422 }
1423 
1424 /*
1425  * Determine if the huge page at addr within the vma has an associated
1426  * reservation.  Where it does not we will need to logically increase
1427  * reservation and actually increase subpool usage before an allocation
1428  * can occur.  Where any new reservation would be required the
1429  * reservation change is prepared, but not committed.  Once the page
1430  * has been allocated from the subpool and instantiated the change should
1431  * be committed via vma_commit_reservation.  No action is required on
1432  * failure.
1433  */
vma_needs_reservation(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)1434 static long vma_needs_reservation(struct hstate *h,
1435 			struct vm_area_struct *vma, unsigned long addr)
1436 {
1437 	struct resv_map *resv;
1438 	pgoff_t idx;
1439 	long chg;
1440 
1441 	resv = vma_resv_map(vma);
1442 	if (!resv)
1443 		return 1;
1444 
1445 	idx = vma_hugecache_offset(h, vma, addr);
1446 	chg = region_chg(resv, idx, idx + 1);
1447 
1448 	if (vma->vm_flags & VM_MAYSHARE)
1449 		return chg;
1450 	else
1451 		return chg < 0 ? chg : 0;
1452 }
vma_commit_reservation(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)1453 static void vma_commit_reservation(struct hstate *h,
1454 			struct vm_area_struct *vma, unsigned long addr)
1455 {
1456 	struct resv_map *resv;
1457 	pgoff_t idx;
1458 
1459 	resv = vma_resv_map(vma);
1460 	if (!resv)
1461 		return;
1462 
1463 	idx = vma_hugecache_offset(h, vma, addr);
1464 	region_add(resv, idx, idx + 1);
1465 }
1466 
alloc_huge_page(struct vm_area_struct * vma,unsigned long addr,int avoid_reserve)1467 static struct page *alloc_huge_page(struct vm_area_struct *vma,
1468 				    unsigned long addr, int avoid_reserve)
1469 {
1470 	struct hugepage_subpool *spool = subpool_vma(vma);
1471 	struct hstate *h = hstate_vma(vma);
1472 	struct page *page;
1473 	long chg;
1474 	int ret, idx;
1475 	struct hugetlb_cgroup *h_cg;
1476 
1477 	idx = hstate_index(h);
1478 	/*
1479 	 * Processes that did not create the mapping will have no
1480 	 * reserves and will not have accounted against subpool
1481 	 * limit. Check that the subpool limit can be made before
1482 	 * satisfying the allocation MAP_NORESERVE mappings may also
1483 	 * need pages and subpool limit allocated allocated if no reserve
1484 	 * mapping overlaps.
1485 	 */
1486 	chg = vma_needs_reservation(h, vma, addr);
1487 	if (chg < 0)
1488 		return ERR_PTR(-ENOMEM);
1489 	if (chg || avoid_reserve)
1490 		if (hugepage_subpool_get_pages(spool, 1) < 0)
1491 			return ERR_PTR(-ENOSPC);
1492 
1493 	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1494 	if (ret)
1495 		goto out_subpool_put;
1496 
1497 	spin_lock(&hugetlb_lock);
1498 	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, chg);
1499 	if (!page) {
1500 		spin_unlock(&hugetlb_lock);
1501 		page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1502 		if (!page)
1503 			goto out_uncharge_cgroup;
1504 
1505 		spin_lock(&hugetlb_lock);
1506 		list_move(&page->lru, &h->hugepage_activelist);
1507 		/* Fall through */
1508 	}
1509 	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
1510 	spin_unlock(&hugetlb_lock);
1511 
1512 	set_page_private(page, (unsigned long)spool);
1513 
1514 	vma_commit_reservation(h, vma, addr);
1515 	return page;
1516 
1517 out_uncharge_cgroup:
1518 	hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
1519 out_subpool_put:
1520 	if (chg || avoid_reserve)
1521 		hugepage_subpool_put_pages(spool, 1);
1522 	return ERR_PTR(-ENOSPC);
1523 }
1524 
1525 /*
1526  * alloc_huge_page()'s wrapper which simply returns the page if allocation
1527  * succeeds, otherwise NULL. This function is called from new_vma_page(),
1528  * where no ERR_VALUE is expected to be returned.
1529  */
alloc_huge_page_noerr(struct vm_area_struct * vma,unsigned long addr,int avoid_reserve)1530 struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
1531 				unsigned long addr, int avoid_reserve)
1532 {
1533 	struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
1534 	if (IS_ERR(page))
1535 		page = NULL;
1536 	return page;
1537 }
1538 
alloc_bootmem_huge_page(struct hstate * h)1539 int __weak alloc_bootmem_huge_page(struct hstate *h)
1540 {
1541 	struct huge_bootmem_page *m;
1542 	int nr_nodes, node;
1543 
1544 	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
1545 		void *addr;
1546 
1547 		addr = memblock_virt_alloc_try_nid_nopanic(
1548 				huge_page_size(h), huge_page_size(h),
1549 				0, BOOTMEM_ALLOC_ACCESSIBLE, node);
1550 		if (addr) {
1551 			/*
1552 			 * Use the beginning of the huge page to store the
1553 			 * huge_bootmem_page struct (until gather_bootmem
1554 			 * puts them into the mem_map).
1555 			 */
1556 			m = addr;
1557 			goto found;
1558 		}
1559 	}
1560 	return 0;
1561 
1562 found:
1563 	BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
1564 	/* Put them into a private list first because mem_map is not up yet */
1565 	list_add(&m->list, &huge_boot_pages);
1566 	m->hstate = h;
1567 	return 1;
1568 }
1569 
prep_compound_huge_page(struct page * page,unsigned int order)1570 static void __init prep_compound_huge_page(struct page *page,
1571 		unsigned int order)
1572 {
1573 	if (unlikely(order > (MAX_ORDER - 1)))
1574 		prep_compound_gigantic_page(page, order);
1575 	else
1576 		prep_compound_page(page, order);
1577 }
1578 
1579 /* Put bootmem huge pages into the standard lists after mem_map is up */
gather_bootmem_prealloc(void)1580 static void __init gather_bootmem_prealloc(void)
1581 {
1582 	struct huge_bootmem_page *m;
1583 
1584 	list_for_each_entry(m, &huge_boot_pages, list) {
1585 		struct hstate *h = m->hstate;
1586 		struct page *page;
1587 
1588 #ifdef CONFIG_HIGHMEM
1589 		page = pfn_to_page(m->phys >> PAGE_SHIFT);
1590 		memblock_free_late(__pa(m),
1591 				   sizeof(struct huge_bootmem_page));
1592 #else
1593 		page = virt_to_page(m);
1594 #endif
1595 		WARN_ON(page_count(page) != 1);
1596 		prep_compound_huge_page(page, h->order);
1597 		WARN_ON(PageReserved(page));
1598 		prep_new_huge_page(h, page, page_to_nid(page));
1599 		/*
1600 		 * If we had gigantic hugepages allocated at boot time, we need
1601 		 * to restore the 'stolen' pages to totalram_pages in order to
1602 		 * fix confusing memory reports from free(1) and another
1603 		 * side-effects, like CommitLimit going negative.
1604 		 */
1605 		if (hstate_is_gigantic(h))
1606 			adjust_managed_page_count(page, 1 << h->order);
1607 	}
1608 }
1609 
hugetlb_hstate_alloc_pages(struct hstate * h)1610 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1611 {
1612 	unsigned long i;
1613 
1614 	for (i = 0; i < h->max_huge_pages; ++i) {
1615 		if (hstate_is_gigantic(h)) {
1616 			if (!alloc_bootmem_huge_page(h))
1617 				break;
1618 		} else if (!alloc_fresh_huge_page(h,
1619 					 &node_states[N_MEMORY]))
1620 			break;
1621 	}
1622 	h->max_huge_pages = i;
1623 }
1624 
hugetlb_init_hstates(void)1625 static void __init hugetlb_init_hstates(void)
1626 {
1627 	struct hstate *h;
1628 
1629 	for_each_hstate(h) {
1630 		if (minimum_order > huge_page_order(h))
1631 			minimum_order = huge_page_order(h);
1632 
1633 		/* oversize hugepages were init'ed in early boot */
1634 		if (!hstate_is_gigantic(h))
1635 			hugetlb_hstate_alloc_pages(h);
1636 	}
1637 	VM_BUG_ON(minimum_order == UINT_MAX);
1638 }
1639 
memfmt(char * buf,unsigned long n)1640 static char * __init memfmt(char *buf, unsigned long n)
1641 {
1642 	if (n >= (1UL << 30))
1643 		sprintf(buf, "%lu GB", n >> 30);
1644 	else if (n >= (1UL << 20))
1645 		sprintf(buf, "%lu MB", n >> 20);
1646 	else
1647 		sprintf(buf, "%lu KB", n >> 10);
1648 	return buf;
1649 }
1650 
report_hugepages(void)1651 static void __init report_hugepages(void)
1652 {
1653 	struct hstate *h;
1654 
1655 	for_each_hstate(h) {
1656 		char buf[32];
1657 		pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
1658 			memfmt(buf, huge_page_size(h)),
1659 			h->free_huge_pages);
1660 	}
1661 }
1662 
1663 #ifdef CONFIG_HIGHMEM
try_to_free_low(struct hstate * h,unsigned long count,nodemask_t * nodes_allowed)1664 static void try_to_free_low(struct hstate *h, unsigned long count,
1665 						nodemask_t *nodes_allowed)
1666 {
1667 	int i;
1668 
1669 	if (hstate_is_gigantic(h))
1670 		return;
1671 
1672 	for_each_node_mask(i, *nodes_allowed) {
1673 		struct page *page, *next;
1674 		struct list_head *freel = &h->hugepage_freelists[i];
1675 		list_for_each_entry_safe(page, next, freel, lru) {
1676 			if (count >= h->nr_huge_pages)
1677 				return;
1678 			if (PageHighMem(page))
1679 				continue;
1680 			list_del(&page->lru);
1681 			update_and_free_page(h, page);
1682 			h->free_huge_pages--;
1683 			h->free_huge_pages_node[page_to_nid(page)]--;
1684 		}
1685 	}
1686 }
1687 #else
try_to_free_low(struct hstate * h,unsigned long count,nodemask_t * nodes_allowed)1688 static inline void try_to_free_low(struct hstate *h, unsigned long count,
1689 						nodemask_t *nodes_allowed)
1690 {
1691 }
1692 #endif
1693 
1694 /*
1695  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
1696  * balanced by operating on them in a round-robin fashion.
1697  * Returns 1 if an adjustment was made.
1698  */
adjust_pool_surplus(struct hstate * h,nodemask_t * nodes_allowed,int delta)1699 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1700 				int delta)
1701 {
1702 	int nr_nodes, node;
1703 
1704 	VM_BUG_ON(delta != -1 && delta != 1);
1705 
1706 	if (delta < 0) {
1707 		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1708 			if (h->surplus_huge_pages_node[node])
1709 				goto found;
1710 		}
1711 	} else {
1712 		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1713 			if (h->surplus_huge_pages_node[node] <
1714 					h->nr_huge_pages_node[node])
1715 				goto found;
1716 		}
1717 	}
1718 	return 0;
1719 
1720 found:
1721 	h->surplus_huge_pages += delta;
1722 	h->surplus_huge_pages_node[node] += delta;
1723 	return 1;
1724 }
1725 
1726 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
set_max_huge_pages(struct hstate * h,unsigned long count,nodemask_t * nodes_allowed)1727 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1728 						nodemask_t *nodes_allowed)
1729 {
1730 	unsigned long min_count, ret;
1731 
1732 	if (hstate_is_gigantic(h) && !gigantic_page_supported())
1733 		return h->max_huge_pages;
1734 
1735 	/*
1736 	 * Increase the pool size
1737 	 * First take pages out of surplus state.  Then make up the
1738 	 * remaining difference by allocating fresh huge pages.
1739 	 *
1740 	 * We might race with alloc_buddy_huge_page() here and be unable
1741 	 * to convert a surplus huge page to a normal huge page. That is
1742 	 * not critical, though, it just means the overall size of the
1743 	 * pool might be one hugepage larger than it needs to be, but
1744 	 * within all the constraints specified by the sysctls.
1745 	 */
1746 	spin_lock(&hugetlb_lock);
1747 	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1748 		if (!adjust_pool_surplus(h, nodes_allowed, -1))
1749 			break;
1750 	}
1751 
1752 	while (count > persistent_huge_pages(h)) {
1753 		/*
1754 		 * If this allocation races such that we no longer need the
1755 		 * page, free_huge_page will handle it by freeing the page
1756 		 * and reducing the surplus.
1757 		 */
1758 		spin_unlock(&hugetlb_lock);
1759 		if (hstate_is_gigantic(h))
1760 			ret = alloc_fresh_gigantic_page(h, nodes_allowed);
1761 		else
1762 			ret = alloc_fresh_huge_page(h, nodes_allowed);
1763 		spin_lock(&hugetlb_lock);
1764 		if (!ret)
1765 			goto out;
1766 
1767 		/* Bail for signals. Probably ctrl-c from user */
1768 		if (signal_pending(current))
1769 			goto out;
1770 	}
1771 
1772 	/*
1773 	 * Decrease the pool size
1774 	 * First return free pages to the buddy allocator (being careful
1775 	 * to keep enough around to satisfy reservations).  Then place
1776 	 * pages into surplus state as needed so the pool will shrink
1777 	 * to the desired size as pages become free.
1778 	 *
1779 	 * By placing pages into the surplus state independent of the
1780 	 * overcommit value, we are allowing the surplus pool size to
1781 	 * exceed overcommit. There are few sane options here. Since
1782 	 * alloc_buddy_huge_page() is checking the global counter,
1783 	 * though, we'll note that we're not allowed to exceed surplus
1784 	 * and won't grow the pool anywhere else. Not until one of the
1785 	 * sysctls are changed, or the surplus pages go out of use.
1786 	 */
1787 	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1788 	min_count = max(count, min_count);
1789 	try_to_free_low(h, min_count, nodes_allowed);
1790 	while (min_count < persistent_huge_pages(h)) {
1791 		if (!free_pool_huge_page(h, nodes_allowed, 0))
1792 			break;
1793 		cond_resched_lock(&hugetlb_lock);
1794 	}
1795 	while (count < persistent_huge_pages(h)) {
1796 		if (!adjust_pool_surplus(h, nodes_allowed, 1))
1797 			break;
1798 	}
1799 out:
1800 	ret = persistent_huge_pages(h);
1801 	spin_unlock(&hugetlb_lock);
1802 	return ret;
1803 }
1804 
1805 #define HSTATE_ATTR_RO(_name) \
1806 	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1807 
1808 #define HSTATE_ATTR(_name) \
1809 	static struct kobj_attribute _name##_attr = \
1810 		__ATTR(_name, 0644, _name##_show, _name##_store)
1811 
1812 static struct kobject *hugepages_kobj;
1813 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1814 
1815 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1816 
kobj_to_hstate(struct kobject * kobj,int * nidp)1817 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1818 {
1819 	int i;
1820 
1821 	for (i = 0; i < HUGE_MAX_HSTATE; i++)
1822 		if (hstate_kobjs[i] == kobj) {
1823 			if (nidp)
1824 				*nidp = NUMA_NO_NODE;
1825 			return &hstates[i];
1826 		}
1827 
1828 	return kobj_to_node_hstate(kobj, nidp);
1829 }
1830 
nr_hugepages_show_common(struct kobject * kobj,struct kobj_attribute * attr,char * buf)1831 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1832 					struct kobj_attribute *attr, char *buf)
1833 {
1834 	struct hstate *h;
1835 	unsigned long nr_huge_pages;
1836 	int nid;
1837 
1838 	h = kobj_to_hstate(kobj, &nid);
1839 	if (nid == NUMA_NO_NODE)
1840 		nr_huge_pages = h->nr_huge_pages;
1841 	else
1842 		nr_huge_pages = h->nr_huge_pages_node[nid];
1843 
1844 	return sprintf(buf, "%lu\n", nr_huge_pages);
1845 }
1846 
__nr_hugepages_store_common(bool obey_mempolicy,struct hstate * h,int nid,unsigned long count,size_t len)1847 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
1848 					   struct hstate *h, int nid,
1849 					   unsigned long count, size_t len)
1850 {
1851 	int err;
1852 	NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1853 
1854 	if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
1855 		err = -EINVAL;
1856 		goto out;
1857 	}
1858 
1859 	if (nid == NUMA_NO_NODE) {
1860 		/*
1861 		 * global hstate attribute
1862 		 */
1863 		if (!(obey_mempolicy &&
1864 				init_nodemask_of_mempolicy(nodes_allowed))) {
1865 			NODEMASK_FREE(nodes_allowed);
1866 			nodes_allowed = &node_states[N_MEMORY];
1867 		}
1868 	} else if (nodes_allowed) {
1869 		/*
1870 		 * per node hstate attribute: adjust count to global,
1871 		 * but restrict alloc/free to the specified node.
1872 		 */
1873 		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1874 		init_nodemask_of_node(nodes_allowed, nid);
1875 	} else
1876 		nodes_allowed = &node_states[N_MEMORY];
1877 
1878 	h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1879 
1880 	if (nodes_allowed != &node_states[N_MEMORY])
1881 		NODEMASK_FREE(nodes_allowed);
1882 
1883 	return len;
1884 out:
1885 	NODEMASK_FREE(nodes_allowed);
1886 	return err;
1887 }
1888 
nr_hugepages_store_common(bool obey_mempolicy,struct kobject * kobj,const char * buf,size_t len)1889 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1890 					 struct kobject *kobj, const char *buf,
1891 					 size_t len)
1892 {
1893 	struct hstate *h;
1894 	unsigned long count;
1895 	int nid;
1896 	int err;
1897 
1898 	err = kstrtoul(buf, 10, &count);
1899 	if (err)
1900 		return err;
1901 
1902 	h = kobj_to_hstate(kobj, &nid);
1903 	return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
1904 }
1905 
nr_hugepages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)1906 static ssize_t nr_hugepages_show(struct kobject *kobj,
1907 				       struct kobj_attribute *attr, char *buf)
1908 {
1909 	return nr_hugepages_show_common(kobj, attr, buf);
1910 }
1911 
nr_hugepages_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t len)1912 static ssize_t nr_hugepages_store(struct kobject *kobj,
1913 	       struct kobj_attribute *attr, const char *buf, size_t len)
1914 {
1915 	return nr_hugepages_store_common(false, kobj, buf, len);
1916 }
1917 HSTATE_ATTR(nr_hugepages);
1918 
1919 #ifdef CONFIG_NUMA
1920 
1921 /*
1922  * hstate attribute for optionally mempolicy-based constraint on persistent
1923  * huge page alloc/free.
1924  */
nr_hugepages_mempolicy_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)1925 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1926 				       struct kobj_attribute *attr, char *buf)
1927 {
1928 	return nr_hugepages_show_common(kobj, attr, buf);
1929 }
1930 
nr_hugepages_mempolicy_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t len)1931 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1932 	       struct kobj_attribute *attr, const char *buf, size_t len)
1933 {
1934 	return nr_hugepages_store_common(true, kobj, buf, len);
1935 }
1936 HSTATE_ATTR(nr_hugepages_mempolicy);
1937 #endif
1938 
1939 
nr_overcommit_hugepages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)1940 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1941 					struct kobj_attribute *attr, char *buf)
1942 {
1943 	struct hstate *h = kobj_to_hstate(kobj, NULL);
1944 	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1945 }
1946 
nr_overcommit_hugepages_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)1947 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1948 		struct kobj_attribute *attr, const char *buf, size_t count)
1949 {
1950 	int err;
1951 	unsigned long input;
1952 	struct hstate *h = kobj_to_hstate(kobj, NULL);
1953 
1954 	if (hstate_is_gigantic(h))
1955 		return -EINVAL;
1956 
1957 	err = kstrtoul(buf, 10, &input);
1958 	if (err)
1959 		return err;
1960 
1961 	spin_lock(&hugetlb_lock);
1962 	h->nr_overcommit_huge_pages = input;
1963 	spin_unlock(&hugetlb_lock);
1964 
1965 	return count;
1966 }
1967 HSTATE_ATTR(nr_overcommit_hugepages);
1968 
free_hugepages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)1969 static ssize_t free_hugepages_show(struct kobject *kobj,
1970 					struct kobj_attribute *attr, char *buf)
1971 {
1972 	struct hstate *h;
1973 	unsigned long free_huge_pages;
1974 	int nid;
1975 
1976 	h = kobj_to_hstate(kobj, &nid);
1977 	if (nid == NUMA_NO_NODE)
1978 		free_huge_pages = h->free_huge_pages;
1979 	else
1980 		free_huge_pages = h->free_huge_pages_node[nid];
1981 
1982 	return sprintf(buf, "%lu\n", free_huge_pages);
1983 }
1984 HSTATE_ATTR_RO(free_hugepages);
1985 
resv_hugepages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)1986 static ssize_t resv_hugepages_show(struct kobject *kobj,
1987 					struct kobj_attribute *attr, char *buf)
1988 {
1989 	struct hstate *h = kobj_to_hstate(kobj, NULL);
1990 	return sprintf(buf, "%lu\n", h->resv_huge_pages);
1991 }
1992 HSTATE_ATTR_RO(resv_hugepages);
1993 
surplus_hugepages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)1994 static ssize_t surplus_hugepages_show(struct kobject *kobj,
1995 					struct kobj_attribute *attr, char *buf)
1996 {
1997 	struct hstate *h;
1998 	unsigned long surplus_huge_pages;
1999 	int nid;
2000 
2001 	h = kobj_to_hstate(kobj, &nid);
2002 	if (nid == NUMA_NO_NODE)
2003 		surplus_huge_pages = h->surplus_huge_pages;
2004 	else
2005 		surplus_huge_pages = h->surplus_huge_pages_node[nid];
2006 
2007 	return sprintf(buf, "%lu\n", surplus_huge_pages);
2008 }
2009 HSTATE_ATTR_RO(surplus_hugepages);
2010 
2011 static struct attribute *hstate_attrs[] = {
2012 	&nr_hugepages_attr.attr,
2013 	&nr_overcommit_hugepages_attr.attr,
2014 	&free_hugepages_attr.attr,
2015 	&resv_hugepages_attr.attr,
2016 	&surplus_hugepages_attr.attr,
2017 #ifdef CONFIG_NUMA
2018 	&nr_hugepages_mempolicy_attr.attr,
2019 #endif
2020 	NULL,
2021 };
2022 
2023 static struct attribute_group hstate_attr_group = {
2024 	.attrs = hstate_attrs,
2025 };
2026 
hugetlb_sysfs_add_hstate(struct hstate * h,struct kobject * parent,struct kobject ** hstate_kobjs,struct attribute_group * hstate_attr_group)2027 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2028 				    struct kobject **hstate_kobjs,
2029 				    struct attribute_group *hstate_attr_group)
2030 {
2031 	int retval;
2032 	int hi = hstate_index(h);
2033 
2034 	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2035 	if (!hstate_kobjs[hi])
2036 		return -ENOMEM;
2037 
2038 	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2039 	if (retval)
2040 		kobject_put(hstate_kobjs[hi]);
2041 
2042 	return retval;
2043 }
2044 
hugetlb_sysfs_init(void)2045 static void __init hugetlb_sysfs_init(void)
2046 {
2047 	struct hstate *h;
2048 	int err;
2049 
2050 	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2051 	if (!hugepages_kobj)
2052 		return;
2053 
2054 	for_each_hstate(h) {
2055 		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2056 					 hstate_kobjs, &hstate_attr_group);
2057 		if (err)
2058 			pr_err("Hugetlb: Unable to add hstate %s", h->name);
2059 	}
2060 }
2061 
2062 #ifdef CONFIG_NUMA
2063 
2064 /*
2065  * node_hstate/s - associate per node hstate attributes, via their kobjects,
2066  * with node devices in node_devices[] using a parallel array.  The array
2067  * index of a node device or _hstate == node id.
2068  * This is here to avoid any static dependency of the node device driver, in
2069  * the base kernel, on the hugetlb module.
2070  */
2071 struct node_hstate {
2072 	struct kobject		*hugepages_kobj;
2073 	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
2074 };
2075 struct node_hstate node_hstates[MAX_NUMNODES];
2076 
2077 /*
2078  * A subset of global hstate attributes for node devices
2079  */
2080 static struct attribute *per_node_hstate_attrs[] = {
2081 	&nr_hugepages_attr.attr,
2082 	&free_hugepages_attr.attr,
2083 	&surplus_hugepages_attr.attr,
2084 	NULL,
2085 };
2086 
2087 static struct attribute_group per_node_hstate_attr_group = {
2088 	.attrs = per_node_hstate_attrs,
2089 };
2090 
2091 /*
2092  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2093  * Returns node id via non-NULL nidp.
2094  */
kobj_to_node_hstate(struct kobject * kobj,int * nidp)2095 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2096 {
2097 	int nid;
2098 
2099 	for (nid = 0; nid < nr_node_ids; nid++) {
2100 		struct node_hstate *nhs = &node_hstates[nid];
2101 		int i;
2102 		for (i = 0; i < HUGE_MAX_HSTATE; i++)
2103 			if (nhs->hstate_kobjs[i] == kobj) {
2104 				if (nidp)
2105 					*nidp = nid;
2106 				return &hstates[i];
2107 			}
2108 	}
2109 
2110 	BUG();
2111 	return NULL;
2112 }
2113 
2114 /*
2115  * Unregister hstate attributes from a single node device.
2116  * No-op if no hstate attributes attached.
2117  */
hugetlb_unregister_node(struct node * node)2118 static void hugetlb_unregister_node(struct node *node)
2119 {
2120 	struct hstate *h;
2121 	struct node_hstate *nhs = &node_hstates[node->dev.id];
2122 
2123 	if (!nhs->hugepages_kobj)
2124 		return;		/* no hstate attributes */
2125 
2126 	for_each_hstate(h) {
2127 		int idx = hstate_index(h);
2128 		if (nhs->hstate_kobjs[idx]) {
2129 			kobject_put(nhs->hstate_kobjs[idx]);
2130 			nhs->hstate_kobjs[idx] = NULL;
2131 		}
2132 	}
2133 
2134 	kobject_put(nhs->hugepages_kobj);
2135 	nhs->hugepages_kobj = NULL;
2136 }
2137 
2138 /*
2139  * hugetlb module exit:  unregister hstate attributes from node devices
2140  * that have them.
2141  */
hugetlb_unregister_all_nodes(void)2142 static void hugetlb_unregister_all_nodes(void)
2143 {
2144 	int nid;
2145 
2146 	/*
2147 	 * disable node device registrations.
2148 	 */
2149 	register_hugetlbfs_with_node(NULL, NULL);
2150 
2151 	/*
2152 	 * remove hstate attributes from any nodes that have them.
2153 	 */
2154 	for (nid = 0; nid < nr_node_ids; nid++)
2155 		hugetlb_unregister_node(node_devices[nid]);
2156 }
2157 
2158 /*
2159  * Register hstate attributes for a single node device.
2160  * No-op if attributes already registered.
2161  */
hugetlb_register_node(struct node * node)2162 static void hugetlb_register_node(struct node *node)
2163 {
2164 	struct hstate *h;
2165 	struct node_hstate *nhs = &node_hstates[node->dev.id];
2166 	int err;
2167 
2168 	if (nhs->hugepages_kobj)
2169 		return;		/* already allocated */
2170 
2171 	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2172 							&node->dev.kobj);
2173 	if (!nhs->hugepages_kobj)
2174 		return;
2175 
2176 	for_each_hstate(h) {
2177 		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2178 						nhs->hstate_kobjs,
2179 						&per_node_hstate_attr_group);
2180 		if (err) {
2181 			pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2182 				h->name, node->dev.id);
2183 			hugetlb_unregister_node(node);
2184 			break;
2185 		}
2186 	}
2187 }
2188 
2189 /*
2190  * hugetlb init time:  register hstate attributes for all registered node
2191  * devices of nodes that have memory.  All on-line nodes should have
2192  * registered their associated device by this time.
2193  */
hugetlb_register_all_nodes(void)2194 static void __init hugetlb_register_all_nodes(void)
2195 {
2196 	int nid;
2197 
2198 	for_each_node_state(nid, N_MEMORY) {
2199 		struct node *node = node_devices[nid];
2200 		if (node->dev.id == nid)
2201 			hugetlb_register_node(node);
2202 	}
2203 
2204 	/*
2205 	 * Let the node device driver know we're here so it can
2206 	 * [un]register hstate attributes on node hotplug.
2207 	 */
2208 	register_hugetlbfs_with_node(hugetlb_register_node,
2209 				     hugetlb_unregister_node);
2210 }
2211 #else	/* !CONFIG_NUMA */
2212 
kobj_to_node_hstate(struct kobject * kobj,int * nidp)2213 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2214 {
2215 	BUG();
2216 	if (nidp)
2217 		*nidp = -1;
2218 	return NULL;
2219 }
2220 
hugetlb_unregister_all_nodes(void)2221 static void hugetlb_unregister_all_nodes(void) { }
2222 
hugetlb_register_all_nodes(void)2223 static void hugetlb_register_all_nodes(void) { }
2224 
2225 #endif
2226 
hugetlb_exit(void)2227 static void __exit hugetlb_exit(void)
2228 {
2229 	struct hstate *h;
2230 
2231 	hugetlb_unregister_all_nodes();
2232 
2233 	for_each_hstate(h) {
2234 		kobject_put(hstate_kobjs[hstate_index(h)]);
2235 	}
2236 
2237 	kobject_put(hugepages_kobj);
2238 	kfree(htlb_fault_mutex_table);
2239 }
2240 module_exit(hugetlb_exit);
2241 
hugetlb_init(void)2242 static int __init hugetlb_init(void)
2243 {
2244 	int i;
2245 
2246 	if (!hugepages_supported())
2247 		return 0;
2248 
2249 	if (!size_to_hstate(default_hstate_size)) {
2250 		default_hstate_size = HPAGE_SIZE;
2251 		if (!size_to_hstate(default_hstate_size))
2252 			hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2253 	}
2254 	default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2255 	if (default_hstate_max_huge_pages)
2256 		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2257 
2258 	hugetlb_init_hstates();
2259 	gather_bootmem_prealloc();
2260 	report_hugepages();
2261 
2262 	hugetlb_sysfs_init();
2263 	hugetlb_register_all_nodes();
2264 	hugetlb_cgroup_file_init();
2265 
2266 #ifdef CONFIG_SMP
2267 	num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2268 #else
2269 	num_fault_mutexes = 1;
2270 #endif
2271 	htlb_fault_mutex_table =
2272 		kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
2273 	BUG_ON(!htlb_fault_mutex_table);
2274 
2275 	for (i = 0; i < num_fault_mutexes; i++)
2276 		mutex_init(&htlb_fault_mutex_table[i]);
2277 	return 0;
2278 }
2279 module_init(hugetlb_init);
2280 
2281 /* Should be called on processing a hugepagesz=... option */
hugetlb_add_hstate(unsigned int order)2282 void __init hugetlb_add_hstate(unsigned int order)
2283 {
2284 	struct hstate *h;
2285 	unsigned long i;
2286 
2287 	if (size_to_hstate(PAGE_SIZE << order)) {
2288 		pr_warning("hugepagesz= specified twice, ignoring\n");
2289 		return;
2290 	}
2291 	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2292 	BUG_ON(order == 0);
2293 	h = &hstates[hugetlb_max_hstate++];
2294 	h->order = order;
2295 	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2296 	h->nr_huge_pages = 0;
2297 	h->free_huge_pages = 0;
2298 	for (i = 0; i < MAX_NUMNODES; ++i)
2299 		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2300 	INIT_LIST_HEAD(&h->hugepage_activelist);
2301 	h->next_nid_to_alloc = first_node(node_states[N_MEMORY]);
2302 	h->next_nid_to_free = first_node(node_states[N_MEMORY]);
2303 	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2304 					huge_page_size(h)/1024);
2305 
2306 	parsed_hstate = h;
2307 }
2308 
hugetlb_nrpages_setup(char * s)2309 static int __init hugetlb_nrpages_setup(char *s)
2310 {
2311 	unsigned long *mhp;
2312 	static unsigned long *last_mhp;
2313 
2314 	/*
2315 	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2316 	 * so this hugepages= parameter goes to the "default hstate".
2317 	 */
2318 	if (!hugetlb_max_hstate)
2319 		mhp = &default_hstate_max_huge_pages;
2320 	else
2321 		mhp = &parsed_hstate->max_huge_pages;
2322 
2323 	if (mhp == last_mhp) {
2324 		pr_warning("hugepages= specified twice without "
2325 			   "interleaving hugepagesz=, ignoring\n");
2326 		return 1;
2327 	}
2328 
2329 	if (sscanf(s, "%lu", mhp) <= 0)
2330 		*mhp = 0;
2331 
2332 	/*
2333 	 * Global state is always initialized later in hugetlb_init.
2334 	 * But we need to allocate >= MAX_ORDER hstates here early to still
2335 	 * use the bootmem allocator.
2336 	 */
2337 	if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2338 		hugetlb_hstate_alloc_pages(parsed_hstate);
2339 
2340 	last_mhp = mhp;
2341 
2342 	return 1;
2343 }
2344 __setup("hugepages=", hugetlb_nrpages_setup);
2345 
hugetlb_default_setup(char * s)2346 static int __init hugetlb_default_setup(char *s)
2347 {
2348 	default_hstate_size = memparse(s, &s);
2349 	return 1;
2350 }
2351 __setup("default_hugepagesz=", hugetlb_default_setup);
2352 
cpuset_mems_nr(unsigned int * array)2353 static unsigned int cpuset_mems_nr(unsigned int *array)
2354 {
2355 	int node;
2356 	unsigned int nr = 0;
2357 
2358 	for_each_node_mask(node, cpuset_current_mems_allowed)
2359 		nr += array[node];
2360 
2361 	return nr;
2362 }
2363 
2364 #ifdef CONFIG_SYSCTL
hugetlb_sysctl_handler_common(bool obey_mempolicy,struct ctl_table * table,int write,void __user * buffer,size_t * length,loff_t * ppos)2365 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2366 			 struct ctl_table *table, int write,
2367 			 void __user *buffer, size_t *length, loff_t *ppos)
2368 {
2369 	struct hstate *h = &default_hstate;
2370 	unsigned long tmp = h->max_huge_pages;
2371 	int ret;
2372 
2373 	if (!hugepages_supported())
2374 		return -ENOTSUPP;
2375 
2376 	table->data = &tmp;
2377 	table->maxlen = sizeof(unsigned long);
2378 	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2379 	if (ret)
2380 		goto out;
2381 
2382 	if (write)
2383 		ret = __nr_hugepages_store_common(obey_mempolicy, h,
2384 						  NUMA_NO_NODE, tmp, *length);
2385 out:
2386 	return ret;
2387 }
2388 
hugetlb_sysctl_handler(struct ctl_table * table,int write,void __user * buffer,size_t * length,loff_t * ppos)2389 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2390 			  void __user *buffer, size_t *length, loff_t *ppos)
2391 {
2392 
2393 	return hugetlb_sysctl_handler_common(false, table, write,
2394 							buffer, length, ppos);
2395 }
2396 
2397 #ifdef CONFIG_NUMA
hugetlb_mempolicy_sysctl_handler(struct ctl_table * table,int write,void __user * buffer,size_t * length,loff_t * ppos)2398 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2399 			  void __user *buffer, size_t *length, loff_t *ppos)
2400 {
2401 	return hugetlb_sysctl_handler_common(true, table, write,
2402 							buffer, length, ppos);
2403 }
2404 #endif /* CONFIG_NUMA */
2405 
hugetlb_overcommit_handler(struct ctl_table * table,int write,void __user * buffer,size_t * length,loff_t * ppos)2406 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2407 			void __user *buffer,
2408 			size_t *length, loff_t *ppos)
2409 {
2410 	struct hstate *h = &default_hstate;
2411 	unsigned long tmp;
2412 	int ret;
2413 
2414 	if (!hugepages_supported())
2415 		return -ENOTSUPP;
2416 
2417 	tmp = h->nr_overcommit_huge_pages;
2418 
2419 	if (write && hstate_is_gigantic(h))
2420 		return -EINVAL;
2421 
2422 	table->data = &tmp;
2423 	table->maxlen = sizeof(unsigned long);
2424 	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2425 	if (ret)
2426 		goto out;
2427 
2428 	if (write) {
2429 		spin_lock(&hugetlb_lock);
2430 		h->nr_overcommit_huge_pages = tmp;
2431 		spin_unlock(&hugetlb_lock);
2432 	}
2433 out:
2434 	return ret;
2435 }
2436 
2437 #endif /* CONFIG_SYSCTL */
2438 
hugetlb_report_meminfo(struct seq_file * m)2439 void hugetlb_report_meminfo(struct seq_file *m)
2440 {
2441 	struct hstate *h = &default_hstate;
2442 	if (!hugepages_supported())
2443 		return;
2444 	seq_printf(m,
2445 			"HugePages_Total:   %5lu\n"
2446 			"HugePages_Free:    %5lu\n"
2447 			"HugePages_Rsvd:    %5lu\n"
2448 			"HugePages_Surp:    %5lu\n"
2449 			"Hugepagesize:   %8lu kB\n",
2450 			h->nr_huge_pages,
2451 			h->free_huge_pages,
2452 			h->resv_huge_pages,
2453 			h->surplus_huge_pages,
2454 			1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2455 }
2456 
hugetlb_report_node_meminfo(int nid,char * buf)2457 int hugetlb_report_node_meminfo(int nid, char *buf)
2458 {
2459 	struct hstate *h = &default_hstate;
2460 	if (!hugepages_supported())
2461 		return 0;
2462 	return sprintf(buf,
2463 		"Node %d HugePages_Total: %5u\n"
2464 		"Node %d HugePages_Free:  %5u\n"
2465 		"Node %d HugePages_Surp:  %5u\n",
2466 		nid, h->nr_huge_pages_node[nid],
2467 		nid, h->free_huge_pages_node[nid],
2468 		nid, h->surplus_huge_pages_node[nid]);
2469 }
2470 
hugetlb_show_meminfo(void)2471 void hugetlb_show_meminfo(void)
2472 {
2473 	struct hstate *h;
2474 	int nid;
2475 
2476 	if (!hugepages_supported())
2477 		return;
2478 
2479 	for_each_node_state(nid, N_MEMORY)
2480 		for_each_hstate(h)
2481 			pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
2482 				nid,
2483 				h->nr_huge_pages_node[nid],
2484 				h->free_huge_pages_node[nid],
2485 				h->surplus_huge_pages_node[nid],
2486 				1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2487 }
2488 
2489 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
hugetlb_total_pages(void)2490 unsigned long hugetlb_total_pages(void)
2491 {
2492 	struct hstate *h;
2493 	unsigned long nr_total_pages = 0;
2494 
2495 	for_each_hstate(h)
2496 		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
2497 	return nr_total_pages;
2498 }
2499 
hugetlb_acct_memory(struct hstate * h,long delta)2500 static int hugetlb_acct_memory(struct hstate *h, long delta)
2501 {
2502 	int ret = -ENOMEM;
2503 
2504 	spin_lock(&hugetlb_lock);
2505 	/*
2506 	 * When cpuset is configured, it breaks the strict hugetlb page
2507 	 * reservation as the accounting is done on a global variable. Such
2508 	 * reservation is completely rubbish in the presence of cpuset because
2509 	 * the reservation is not checked against page availability for the
2510 	 * current cpuset. Application can still potentially OOM'ed by kernel
2511 	 * with lack of free htlb page in cpuset that the task is in.
2512 	 * Attempt to enforce strict accounting with cpuset is almost
2513 	 * impossible (or too ugly) because cpuset is too fluid that
2514 	 * task or memory node can be dynamically moved between cpusets.
2515 	 *
2516 	 * The change of semantics for shared hugetlb mapping with cpuset is
2517 	 * undesirable. However, in order to preserve some of the semantics,
2518 	 * we fall back to check against current free page availability as
2519 	 * a best attempt and hopefully to minimize the impact of changing
2520 	 * semantics that cpuset has.
2521 	 */
2522 	if (delta > 0) {
2523 		if (gather_surplus_pages(h, delta) < 0)
2524 			goto out;
2525 
2526 		if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2527 			return_unused_surplus_pages(h, delta);
2528 			goto out;
2529 		}
2530 	}
2531 
2532 	ret = 0;
2533 	if (delta < 0)
2534 		return_unused_surplus_pages(h, (unsigned long) -delta);
2535 
2536 out:
2537 	spin_unlock(&hugetlb_lock);
2538 	return ret;
2539 }
2540 
hugetlb_vm_op_open(struct vm_area_struct * vma)2541 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2542 {
2543 	struct resv_map *resv = vma_resv_map(vma);
2544 
2545 	/*
2546 	 * This new VMA should share its siblings reservation map if present.
2547 	 * The VMA will only ever have a valid reservation map pointer where
2548 	 * it is being copied for another still existing VMA.  As that VMA
2549 	 * has a reference to the reservation map it cannot disappear until
2550 	 * after this open call completes.  It is therefore safe to take a
2551 	 * new reference here without additional locking.
2552 	 */
2553 	if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
2554 		kref_get(&resv->refs);
2555 }
2556 
hugetlb_vm_op_close(struct vm_area_struct * vma)2557 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2558 {
2559 	struct hstate *h = hstate_vma(vma);
2560 	struct resv_map *resv = vma_resv_map(vma);
2561 	struct hugepage_subpool *spool = subpool_vma(vma);
2562 	unsigned long reserve, start, end;
2563 	long gbl_reserve;
2564 
2565 	if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
2566 		return;
2567 
2568 	start = vma_hugecache_offset(h, vma, vma->vm_start);
2569 	end = vma_hugecache_offset(h, vma, vma->vm_end);
2570 
2571 	reserve = (end - start) - region_count(resv, start, end);
2572 
2573 	kref_put(&resv->refs, resv_map_release);
2574 
2575 	if (reserve) {
2576 		/*
2577 		 * Decrement reserve counts.  The global reserve count may be
2578 		 * adjusted if the subpool has a minimum size.
2579 		 */
2580 		gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
2581 		hugetlb_acct_memory(h, -gbl_reserve);
2582 	}
2583 }
2584 
2585 /*
2586  * We cannot handle pagefaults against hugetlb pages at all.  They cause
2587  * handle_mm_fault() to try to instantiate regular-sized pages in the
2588  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
2589  * this far.
2590  */
hugetlb_vm_op_fault(struct vm_area_struct * vma,struct vm_fault * vmf)2591 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2592 {
2593 	BUG();
2594 	return 0;
2595 }
2596 
2597 const struct vm_operations_struct hugetlb_vm_ops = {
2598 	.fault = hugetlb_vm_op_fault,
2599 	.open = hugetlb_vm_op_open,
2600 	.close = hugetlb_vm_op_close,
2601 };
2602 
make_huge_pte(struct vm_area_struct * vma,struct page * page,int writable)2603 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2604 				int writable)
2605 {
2606 	pte_t entry;
2607 
2608 	if (writable) {
2609 		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
2610 					 vma->vm_page_prot)));
2611 	} else {
2612 		entry = huge_pte_wrprotect(mk_huge_pte(page,
2613 					   vma->vm_page_prot));
2614 	}
2615 	entry = pte_mkyoung(entry);
2616 	entry = pte_mkhuge(entry);
2617 	entry = arch_make_huge_pte(entry, vma, page, writable);
2618 
2619 	return entry;
2620 }
2621 
set_huge_ptep_writable(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)2622 static void set_huge_ptep_writable(struct vm_area_struct *vma,
2623 				   unsigned long address, pte_t *ptep)
2624 {
2625 	pte_t entry;
2626 
2627 	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
2628 	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
2629 		update_mmu_cache(vma, address, ptep);
2630 }
2631 
is_hugetlb_entry_migration(pte_t pte)2632 static int is_hugetlb_entry_migration(pte_t pte)
2633 {
2634 	swp_entry_t swp;
2635 
2636 	if (huge_pte_none(pte) || pte_present(pte))
2637 		return 0;
2638 	swp = pte_to_swp_entry(pte);
2639 	if (non_swap_entry(swp) && is_migration_entry(swp))
2640 		return 1;
2641 	else
2642 		return 0;
2643 }
2644 
is_hugetlb_entry_hwpoisoned(pte_t pte)2645 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2646 {
2647 	swp_entry_t swp;
2648 
2649 	if (huge_pte_none(pte) || pte_present(pte))
2650 		return 0;
2651 	swp = pte_to_swp_entry(pte);
2652 	if (non_swap_entry(swp) && is_hwpoison_entry(swp))
2653 		return 1;
2654 	else
2655 		return 0;
2656 }
2657 
copy_hugetlb_page_range(struct mm_struct * dst,struct mm_struct * src,struct vm_area_struct * vma)2658 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2659 			    struct vm_area_struct *vma)
2660 {
2661 	pte_t *src_pte, *dst_pte, entry;
2662 	struct page *ptepage;
2663 	unsigned long addr;
2664 	int cow;
2665 	struct hstate *h = hstate_vma(vma);
2666 	unsigned long sz = huge_page_size(h);
2667 	unsigned long mmun_start;	/* For mmu_notifiers */
2668 	unsigned long mmun_end;		/* For mmu_notifiers */
2669 	int ret = 0;
2670 
2671 	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
2672 
2673 	mmun_start = vma->vm_start;
2674 	mmun_end = vma->vm_end;
2675 	if (cow)
2676 		mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
2677 
2678 	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
2679 		spinlock_t *src_ptl, *dst_ptl;
2680 		src_pte = huge_pte_offset(src, addr);
2681 		if (!src_pte)
2682 			continue;
2683 		dst_pte = huge_pte_alloc(dst, addr, sz);
2684 		if (!dst_pte) {
2685 			ret = -ENOMEM;
2686 			break;
2687 		}
2688 
2689 		/* If the pagetables are shared don't copy or take references */
2690 		if (dst_pte == src_pte)
2691 			continue;
2692 
2693 		dst_ptl = huge_pte_lock(h, dst, dst_pte);
2694 		src_ptl = huge_pte_lockptr(h, src, src_pte);
2695 		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
2696 		entry = huge_ptep_get(src_pte);
2697 		if (huge_pte_none(entry)) { /* skip none entry */
2698 			;
2699 		} else if (unlikely(is_hugetlb_entry_migration(entry) ||
2700 				    is_hugetlb_entry_hwpoisoned(entry))) {
2701 			swp_entry_t swp_entry = pte_to_swp_entry(entry);
2702 
2703 			if (is_write_migration_entry(swp_entry) && cow) {
2704 				/*
2705 				 * COW mappings require pages in both
2706 				 * parent and child to be set to read.
2707 				 */
2708 				make_migration_entry_read(&swp_entry);
2709 				entry = swp_entry_to_pte(swp_entry);
2710 				set_huge_pte_at(src, addr, src_pte, entry);
2711 			}
2712 			set_huge_pte_at(dst, addr, dst_pte, entry);
2713 		} else {
2714 			if (cow) {
2715 				huge_ptep_set_wrprotect(src, addr, src_pte);
2716 				mmu_notifier_invalidate_range(src, mmun_start,
2717 								   mmun_end);
2718 			}
2719 			entry = huge_ptep_get(src_pte);
2720 			ptepage = pte_page(entry);
2721 			get_page(ptepage);
2722 			page_dup_rmap(ptepage);
2723 			set_huge_pte_at(dst, addr, dst_pte, entry);
2724 		}
2725 		spin_unlock(src_ptl);
2726 		spin_unlock(dst_ptl);
2727 	}
2728 
2729 	if (cow)
2730 		mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
2731 
2732 	return ret;
2733 }
2734 
__unmap_hugepage_range(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long start,unsigned long end,struct page * ref_page)2735 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
2736 			    unsigned long start, unsigned long end,
2737 			    struct page *ref_page)
2738 {
2739 	int force_flush = 0;
2740 	struct mm_struct *mm = vma->vm_mm;
2741 	unsigned long address;
2742 	pte_t *ptep;
2743 	pte_t pte;
2744 	spinlock_t *ptl;
2745 	struct page *page;
2746 	struct hstate *h = hstate_vma(vma);
2747 	unsigned long sz = huge_page_size(h);
2748 	const unsigned long mmun_start = start;	/* For mmu_notifiers */
2749 	const unsigned long mmun_end   = end;	/* For mmu_notifiers */
2750 
2751 	WARN_ON(!is_vm_hugetlb_page(vma));
2752 	BUG_ON(start & ~huge_page_mask(h));
2753 	BUG_ON(end & ~huge_page_mask(h));
2754 
2755 	tlb_start_vma(tlb, vma);
2756 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2757 	address = start;
2758 again:
2759 	for (; address < end; address += sz) {
2760 		ptep = huge_pte_offset(mm, address);
2761 		if (!ptep)
2762 			continue;
2763 
2764 		ptl = huge_pte_lock(h, mm, ptep);
2765 		if (huge_pmd_unshare(mm, &address, ptep))
2766 			goto unlock;
2767 
2768 		pte = huge_ptep_get(ptep);
2769 		if (huge_pte_none(pte))
2770 			goto unlock;
2771 
2772 		/*
2773 		 * Migrating hugepage or HWPoisoned hugepage is already
2774 		 * unmapped and its refcount is dropped, so just clear pte here.
2775 		 */
2776 		if (unlikely(!pte_present(pte))) {
2777 			huge_pte_clear(mm, address, ptep);
2778 			goto unlock;
2779 		}
2780 
2781 		page = pte_page(pte);
2782 		/*
2783 		 * If a reference page is supplied, it is because a specific
2784 		 * page is being unmapped, not a range. Ensure the page we
2785 		 * are about to unmap is the actual page of interest.
2786 		 */
2787 		if (ref_page) {
2788 			if (page != ref_page)
2789 				goto unlock;
2790 
2791 			/*
2792 			 * Mark the VMA as having unmapped its page so that
2793 			 * future faults in this VMA will fail rather than
2794 			 * looking like data was lost
2795 			 */
2796 			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2797 		}
2798 
2799 		pte = huge_ptep_get_and_clear(mm, address, ptep);
2800 		tlb_remove_tlb_entry(tlb, ptep, address);
2801 		if (huge_pte_dirty(pte))
2802 			set_page_dirty(page);
2803 
2804 		page_remove_rmap(page);
2805 		force_flush = !__tlb_remove_page(tlb, page);
2806 		if (force_flush) {
2807 			address += sz;
2808 			spin_unlock(ptl);
2809 			break;
2810 		}
2811 		/* Bail out after unmapping reference page if supplied */
2812 		if (ref_page) {
2813 			spin_unlock(ptl);
2814 			break;
2815 		}
2816 unlock:
2817 		spin_unlock(ptl);
2818 	}
2819 	/*
2820 	 * mmu_gather ran out of room to batch pages, we break out of
2821 	 * the PTE lock to avoid doing the potential expensive TLB invalidate
2822 	 * and page-free while holding it.
2823 	 */
2824 	if (force_flush) {
2825 		force_flush = 0;
2826 		tlb_flush_mmu(tlb);
2827 		if (address < end && !ref_page)
2828 			goto again;
2829 	}
2830 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2831 	tlb_end_vma(tlb, vma);
2832 }
2833 
__unmap_hugepage_range_final(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long start,unsigned long end,struct page * ref_page)2834 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
2835 			  struct vm_area_struct *vma, unsigned long start,
2836 			  unsigned long end, struct page *ref_page)
2837 {
2838 	__unmap_hugepage_range(tlb, vma, start, end, ref_page);
2839 
2840 	/*
2841 	 * Clear this flag so that x86's huge_pmd_share page_table_shareable
2842 	 * test will fail on a vma being torn down, and not grab a page table
2843 	 * on its way out.  We're lucky that the flag has such an appropriate
2844 	 * name, and can in fact be safely cleared here. We could clear it
2845 	 * before the __unmap_hugepage_range above, but all that's necessary
2846 	 * is to clear it before releasing the i_mmap_rwsem. This works
2847 	 * because in the context this is called, the VMA is about to be
2848 	 * destroyed and the i_mmap_rwsem is held.
2849 	 */
2850 	vma->vm_flags &= ~VM_MAYSHARE;
2851 }
2852 
unmap_hugepage_range(struct vm_area_struct * vma,unsigned long start,unsigned long end,struct page * ref_page)2853 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2854 			  unsigned long end, struct page *ref_page)
2855 {
2856 	struct mm_struct *mm;
2857 	struct mmu_gather tlb;
2858 
2859 	mm = vma->vm_mm;
2860 
2861 	tlb_gather_mmu(&tlb, mm, start, end);
2862 	__unmap_hugepage_range(&tlb, vma, start, end, ref_page);
2863 	tlb_finish_mmu(&tlb, start, end);
2864 }
2865 
2866 /*
2867  * This is called when the original mapper is failing to COW a MAP_PRIVATE
2868  * mappping it owns the reserve page for. The intention is to unmap the page
2869  * from other VMAs and let the children be SIGKILLed if they are faulting the
2870  * same region.
2871  */
unmap_ref_private(struct mm_struct * mm,struct vm_area_struct * vma,struct page * page,unsigned long address)2872 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2873 			      struct page *page, unsigned long address)
2874 {
2875 	struct hstate *h = hstate_vma(vma);
2876 	struct vm_area_struct *iter_vma;
2877 	struct address_space *mapping;
2878 	pgoff_t pgoff;
2879 
2880 	/*
2881 	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2882 	 * from page cache lookup which is in HPAGE_SIZE units.
2883 	 */
2884 	address = address & huge_page_mask(h);
2885 	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
2886 			vma->vm_pgoff;
2887 	mapping = file_inode(vma->vm_file)->i_mapping;
2888 
2889 	/*
2890 	 * Take the mapping lock for the duration of the table walk. As
2891 	 * this mapping should be shared between all the VMAs,
2892 	 * __unmap_hugepage_range() is called as the lock is already held
2893 	 */
2894 	i_mmap_lock_write(mapping);
2895 	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
2896 		/* Do not unmap the current VMA */
2897 		if (iter_vma == vma)
2898 			continue;
2899 
2900 		/*
2901 		 * Shared VMAs have their own reserves and do not affect
2902 		 * MAP_PRIVATE accounting but it is possible that a shared
2903 		 * VMA is using the same page so check and skip such VMAs.
2904 		 */
2905 		if (iter_vma->vm_flags & VM_MAYSHARE)
2906 			continue;
2907 
2908 		/*
2909 		 * Unmap the page from other VMAs without their own reserves.
2910 		 * They get marked to be SIGKILLed if they fault in these
2911 		 * areas. This is because a future no-page fault on this VMA
2912 		 * could insert a zeroed page instead of the data existing
2913 		 * from the time of fork. This would look like data corruption
2914 		 */
2915 		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2916 			unmap_hugepage_range(iter_vma, address,
2917 					     address + huge_page_size(h), page);
2918 	}
2919 	i_mmap_unlock_write(mapping);
2920 }
2921 
2922 /*
2923  * Hugetlb_cow() should be called with page lock of the original hugepage held.
2924  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
2925  * cannot race with other handlers or page migration.
2926  * Keep the pte_same checks anyway to make transition from the mutex easier.
2927  */
hugetlb_cow(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long address,pte_t * ptep,pte_t pte,struct page * pagecache_page,spinlock_t * ptl)2928 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2929 			unsigned long address, pte_t *ptep, pte_t pte,
2930 			struct page *pagecache_page, spinlock_t *ptl)
2931 {
2932 	struct hstate *h = hstate_vma(vma);
2933 	struct page *old_page, *new_page;
2934 	int ret = 0, outside_reserve = 0;
2935 	unsigned long mmun_start;	/* For mmu_notifiers */
2936 	unsigned long mmun_end;		/* For mmu_notifiers */
2937 
2938 	old_page = pte_page(pte);
2939 
2940 retry_avoidcopy:
2941 	/* If no-one else is actually using this page, avoid the copy
2942 	 * and just make the page writable */
2943 	if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
2944 		page_move_anon_rmap(old_page, vma, address);
2945 		set_huge_ptep_writable(vma, address, ptep);
2946 		return 0;
2947 	}
2948 
2949 	/*
2950 	 * If the process that created a MAP_PRIVATE mapping is about to
2951 	 * perform a COW due to a shared page count, attempt to satisfy
2952 	 * the allocation without using the existing reserves. The pagecache
2953 	 * page is used to determine if the reserve at this address was
2954 	 * consumed or not. If reserves were used, a partial faulted mapping
2955 	 * at the time of fork() could consume its reserves on COW instead
2956 	 * of the full address range.
2957 	 */
2958 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2959 			old_page != pagecache_page)
2960 		outside_reserve = 1;
2961 
2962 	page_cache_get(old_page);
2963 
2964 	/*
2965 	 * Drop page table lock as buddy allocator may be called. It will
2966 	 * be acquired again before returning to the caller, as expected.
2967 	 */
2968 	spin_unlock(ptl);
2969 	new_page = alloc_huge_page(vma, address, outside_reserve);
2970 
2971 	if (IS_ERR(new_page)) {
2972 		/*
2973 		 * If a process owning a MAP_PRIVATE mapping fails to COW,
2974 		 * it is due to references held by a child and an insufficient
2975 		 * huge page pool. To guarantee the original mappers
2976 		 * reliability, unmap the page from child processes. The child
2977 		 * may get SIGKILLed if it later faults.
2978 		 */
2979 		if (outside_reserve) {
2980 			page_cache_release(old_page);
2981 			BUG_ON(huge_pte_none(pte));
2982 			unmap_ref_private(mm, vma, old_page, address);
2983 			BUG_ON(huge_pte_none(pte));
2984 			spin_lock(ptl);
2985 			ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2986 			if (likely(ptep &&
2987 				   pte_same(huge_ptep_get(ptep), pte)))
2988 				goto retry_avoidcopy;
2989 			/*
2990 			 * race occurs while re-acquiring page table
2991 			 * lock, and our job is done.
2992 			 */
2993 			return 0;
2994 		}
2995 
2996 		ret = (PTR_ERR(new_page) == -ENOMEM) ?
2997 			VM_FAULT_OOM : VM_FAULT_SIGBUS;
2998 		goto out_release_old;
2999 	}
3000 
3001 	/*
3002 	 * When the original hugepage is shared one, it does not have
3003 	 * anon_vma prepared.
3004 	 */
3005 	if (unlikely(anon_vma_prepare(vma))) {
3006 		ret = VM_FAULT_OOM;
3007 		goto out_release_all;
3008 	}
3009 
3010 	copy_user_huge_page(new_page, old_page, address, vma,
3011 			    pages_per_huge_page(h));
3012 	__SetPageUptodate(new_page);
3013 	set_page_huge_active(new_page);
3014 
3015 	mmun_start = address & huge_page_mask(h);
3016 	mmun_end = mmun_start + huge_page_size(h);
3017 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3018 
3019 	/*
3020 	 * Retake the page table lock to check for racing updates
3021 	 * before the page tables are altered
3022 	 */
3023 	spin_lock(ptl);
3024 	ptep = huge_pte_offset(mm, address & huge_page_mask(h));
3025 	if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
3026 		ClearPagePrivate(new_page);
3027 
3028 		/* Break COW */
3029 		huge_ptep_clear_flush(vma, address, ptep);
3030 		mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
3031 		set_huge_pte_at(mm, address, ptep,
3032 				make_huge_pte(vma, new_page, 1));
3033 		page_remove_rmap(old_page);
3034 		hugepage_add_new_anon_rmap(new_page, vma, address);
3035 		/* Make the old page be freed below */
3036 		new_page = old_page;
3037 	}
3038 	spin_unlock(ptl);
3039 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3040 out_release_all:
3041 	page_cache_release(new_page);
3042 out_release_old:
3043 	page_cache_release(old_page);
3044 
3045 	spin_lock(ptl); /* Caller expects lock to be held */
3046 	return ret;
3047 }
3048 
3049 /* Return the pagecache page at a given address within a VMA */
hugetlbfs_pagecache_page(struct hstate * h,struct vm_area_struct * vma,unsigned long address)3050 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3051 			struct vm_area_struct *vma, unsigned long address)
3052 {
3053 	struct address_space *mapping;
3054 	pgoff_t idx;
3055 
3056 	mapping = vma->vm_file->f_mapping;
3057 	idx = vma_hugecache_offset(h, vma, address);
3058 
3059 	return find_lock_page(mapping, idx);
3060 }
3061 
3062 /*
3063  * Return whether there is a pagecache page to back given address within VMA.
3064  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3065  */
hugetlbfs_pagecache_present(struct hstate * h,struct vm_area_struct * vma,unsigned long address)3066 static bool hugetlbfs_pagecache_present(struct hstate *h,
3067 			struct vm_area_struct *vma, unsigned long address)
3068 {
3069 	struct address_space *mapping;
3070 	pgoff_t idx;
3071 	struct page *page;
3072 
3073 	mapping = vma->vm_file->f_mapping;
3074 	idx = vma_hugecache_offset(h, vma, address);
3075 
3076 	page = find_get_page(mapping, idx);
3077 	if (page)
3078 		put_page(page);
3079 	return page != NULL;
3080 }
3081 
hugetlb_no_page(struct mm_struct * mm,struct vm_area_struct * vma,struct address_space * mapping,pgoff_t idx,unsigned long address,pte_t * ptep,unsigned int flags)3082 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
3083 			   struct address_space *mapping, pgoff_t idx,
3084 			   unsigned long address, pte_t *ptep, unsigned int flags)
3085 {
3086 	struct hstate *h = hstate_vma(vma);
3087 	int ret = VM_FAULT_SIGBUS;
3088 	int anon_rmap = 0;
3089 	unsigned long size;
3090 	struct page *page;
3091 	pte_t new_pte;
3092 	spinlock_t *ptl;
3093 
3094 	/*
3095 	 * Currently, we are forced to kill the process in the event the
3096 	 * original mapper has unmapped pages from the child due to a failed
3097 	 * COW. Warn that such a situation has occurred as it may not be obvious
3098 	 */
3099 	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
3100 		pr_warning("PID %d killed due to inadequate hugepage pool\n",
3101 			   current->pid);
3102 		return ret;
3103 	}
3104 
3105 	/*
3106 	 * Use page lock to guard against racing truncation
3107 	 * before we get page_table_lock.
3108 	 */
3109 retry:
3110 	page = find_lock_page(mapping, idx);
3111 	if (!page) {
3112 		size = i_size_read(mapping->host) >> huge_page_shift(h);
3113 		if (idx >= size)
3114 			goto out;
3115 		page = alloc_huge_page(vma, address, 0);
3116 		if (IS_ERR(page)) {
3117 			ret = PTR_ERR(page);
3118 			if (ret == -ENOMEM)
3119 				ret = VM_FAULT_OOM;
3120 			else
3121 				ret = VM_FAULT_SIGBUS;
3122 			goto out;
3123 		}
3124 		clear_huge_page(page, address, pages_per_huge_page(h));
3125 		__SetPageUptodate(page);
3126 		set_page_huge_active(page);
3127 
3128 		if (vma->vm_flags & VM_MAYSHARE) {
3129 			int err;
3130 			struct inode *inode = mapping->host;
3131 
3132 			err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3133 			if (err) {
3134 				put_page(page);
3135 				if (err == -EEXIST)
3136 					goto retry;
3137 				goto out;
3138 			}
3139 			ClearPagePrivate(page);
3140 
3141 			spin_lock(&inode->i_lock);
3142 			inode->i_blocks += blocks_per_huge_page(h);
3143 			spin_unlock(&inode->i_lock);
3144 		} else {
3145 			lock_page(page);
3146 			if (unlikely(anon_vma_prepare(vma))) {
3147 				ret = VM_FAULT_OOM;
3148 				goto backout_unlocked;
3149 			}
3150 			anon_rmap = 1;
3151 		}
3152 	} else {
3153 		/*
3154 		 * If memory error occurs between mmap() and fault, some process
3155 		 * don't have hwpoisoned swap entry for errored virtual address.
3156 		 * So we need to block hugepage fault by PG_hwpoison bit check.
3157 		 */
3158 		if (unlikely(PageHWPoison(page))) {
3159 			ret = VM_FAULT_HWPOISON |
3160 				VM_FAULT_SET_HINDEX(hstate_index(h));
3161 			goto backout_unlocked;
3162 		}
3163 	}
3164 
3165 	/*
3166 	 * If we are going to COW a private mapping later, we examine the
3167 	 * pending reservations for this page now. This will ensure that
3168 	 * any allocations necessary to record that reservation occur outside
3169 	 * the spinlock.
3170 	 */
3171 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
3172 		if (vma_needs_reservation(h, vma, address) < 0) {
3173 			ret = VM_FAULT_OOM;
3174 			goto backout_unlocked;
3175 		}
3176 
3177 	ptl = huge_pte_lockptr(h, mm, ptep);
3178 	spin_lock(ptl);
3179 	size = i_size_read(mapping->host) >> huge_page_shift(h);
3180 	if (idx >= size)
3181 		goto backout;
3182 
3183 	ret = 0;
3184 	if (!huge_pte_none(huge_ptep_get(ptep)))
3185 		goto backout;
3186 
3187 	if (anon_rmap) {
3188 		ClearPagePrivate(page);
3189 		hugepage_add_new_anon_rmap(page, vma, address);
3190 	} else
3191 		page_dup_rmap(page);
3192 	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3193 				&& (vma->vm_flags & VM_SHARED)));
3194 	set_huge_pte_at(mm, address, ptep, new_pte);
3195 
3196 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3197 		/* Optimization, do the COW without a second fault */
3198 		ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page, ptl);
3199 	}
3200 
3201 	spin_unlock(ptl);
3202 	unlock_page(page);
3203 out:
3204 	return ret;
3205 
3206 backout:
3207 	spin_unlock(ptl);
3208 backout_unlocked:
3209 	unlock_page(page);
3210 	put_page(page);
3211 	goto out;
3212 }
3213 
3214 #ifdef CONFIG_SMP
fault_mutex_hash(struct hstate * h,struct mm_struct * mm,struct vm_area_struct * vma,struct address_space * mapping,pgoff_t idx,unsigned long address)3215 static u32 fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3216 			    struct vm_area_struct *vma,
3217 			    struct address_space *mapping,
3218 			    pgoff_t idx, unsigned long address)
3219 {
3220 	unsigned long key[2];
3221 	u32 hash;
3222 
3223 	if (vma->vm_flags & VM_SHARED) {
3224 		key[0] = (unsigned long) mapping;
3225 		key[1] = idx;
3226 	} else {
3227 		key[0] = (unsigned long) mm;
3228 		key[1] = address >> huge_page_shift(h);
3229 	}
3230 
3231 	hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
3232 
3233 	return hash & (num_fault_mutexes - 1);
3234 }
3235 #else
3236 /*
3237  * For uniprocesor systems we always use a single mutex, so just
3238  * return 0 and avoid the hashing overhead.
3239  */
fault_mutex_hash(struct hstate * h,struct mm_struct * mm,struct vm_area_struct * vma,struct address_space * mapping,pgoff_t idx,unsigned long address)3240 static u32 fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3241 			    struct vm_area_struct *vma,
3242 			    struct address_space *mapping,
3243 			    pgoff_t idx, unsigned long address)
3244 {
3245 	return 0;
3246 }
3247 #endif
3248 
hugetlb_fault(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long address,unsigned int flags)3249 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3250 			unsigned long address, unsigned int flags)
3251 {
3252 	pte_t *ptep, entry;
3253 	spinlock_t *ptl;
3254 	int ret;
3255 	u32 hash;
3256 	pgoff_t idx;
3257 	struct page *page = NULL;
3258 	struct page *pagecache_page = NULL;
3259 	struct hstate *h = hstate_vma(vma);
3260 	struct address_space *mapping;
3261 	int need_wait_lock = 0;
3262 
3263 	address &= huge_page_mask(h);
3264 
3265 	ptep = huge_pte_offset(mm, address);
3266 	if (ptep) {
3267 		entry = huge_ptep_get(ptep);
3268 		if (unlikely(is_hugetlb_entry_migration(entry))) {
3269 			migration_entry_wait_huge(vma, mm, ptep);
3270 			return 0;
3271 		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
3272 			return VM_FAULT_HWPOISON_LARGE |
3273 				VM_FAULT_SET_HINDEX(hstate_index(h));
3274 	}
3275 
3276 	ptep = huge_pte_alloc(mm, address, huge_page_size(h));
3277 	if (!ptep)
3278 		return VM_FAULT_OOM;
3279 
3280 	mapping = vma->vm_file->f_mapping;
3281 	idx = vma_hugecache_offset(h, vma, address);
3282 
3283 	/*
3284 	 * Serialize hugepage allocation and instantiation, so that we don't
3285 	 * get spurious allocation failures if two CPUs race to instantiate
3286 	 * the same page in the page cache.
3287 	 */
3288 	hash = fault_mutex_hash(h, mm, vma, mapping, idx, address);
3289 	mutex_lock(&htlb_fault_mutex_table[hash]);
3290 
3291 	entry = huge_ptep_get(ptep);
3292 	if (huge_pte_none(entry)) {
3293 		ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
3294 		goto out_mutex;
3295 	}
3296 
3297 	ret = 0;
3298 
3299 	/*
3300 	 * entry could be a migration/hwpoison entry at this point, so this
3301 	 * check prevents the kernel from going below assuming that we have
3302 	 * a active hugepage in pagecache. This goto expects the 2nd page fault,
3303 	 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
3304 	 * handle it.
3305 	 */
3306 	if (!pte_present(entry))
3307 		goto out_mutex;
3308 
3309 	/*
3310 	 * If we are going to COW the mapping later, we examine the pending
3311 	 * reservations for this page now. This will ensure that any
3312 	 * allocations necessary to record that reservation occur outside the
3313 	 * spinlock. For private mappings, we also lookup the pagecache
3314 	 * page now as it is used to determine if a reservation has been
3315 	 * consumed.
3316 	 */
3317 	if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
3318 		if (vma_needs_reservation(h, vma, address) < 0) {
3319 			ret = VM_FAULT_OOM;
3320 			goto out_mutex;
3321 		}
3322 
3323 		if (!(vma->vm_flags & VM_MAYSHARE))
3324 			pagecache_page = hugetlbfs_pagecache_page(h,
3325 								vma, address);
3326 	}
3327 
3328 	ptl = huge_pte_lock(h, mm, ptep);
3329 
3330 	/* Check for a racing update before calling hugetlb_cow */
3331 	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
3332 		goto out_ptl;
3333 
3334 	/*
3335 	 * hugetlb_cow() requires page locks of pte_page(entry) and
3336 	 * pagecache_page, so here we need take the former one
3337 	 * when page != pagecache_page or !pagecache_page.
3338 	 */
3339 	page = pte_page(entry);
3340 	if (page != pagecache_page)
3341 		if (!trylock_page(page)) {
3342 			need_wait_lock = 1;
3343 			goto out_ptl;
3344 		}
3345 
3346 	get_page(page);
3347 
3348 	if (flags & FAULT_FLAG_WRITE) {
3349 		if (!huge_pte_write(entry)) {
3350 			ret = hugetlb_cow(mm, vma, address, ptep, entry,
3351 					pagecache_page, ptl);
3352 			goto out_put_page;
3353 		}
3354 		entry = huge_pte_mkdirty(entry);
3355 	}
3356 	entry = pte_mkyoung(entry);
3357 	if (huge_ptep_set_access_flags(vma, address, ptep, entry,
3358 						flags & FAULT_FLAG_WRITE))
3359 		update_mmu_cache(vma, address, ptep);
3360 out_put_page:
3361 	if (page != pagecache_page)
3362 		unlock_page(page);
3363 	put_page(page);
3364 out_ptl:
3365 	spin_unlock(ptl);
3366 
3367 	if (pagecache_page) {
3368 		unlock_page(pagecache_page);
3369 		put_page(pagecache_page);
3370 	}
3371 out_mutex:
3372 	mutex_unlock(&htlb_fault_mutex_table[hash]);
3373 	/*
3374 	 * Generally it's safe to hold refcount during waiting page lock. But
3375 	 * here we just wait to defer the next page fault to avoid busy loop and
3376 	 * the page is not used after unlocked before returning from the current
3377 	 * page fault. So we are safe from accessing freed page, even if we wait
3378 	 * here without taking refcount.
3379 	 */
3380 	if (need_wait_lock)
3381 		wait_on_page_locked(page);
3382 	return ret;
3383 }
3384 
follow_hugetlb_page(struct mm_struct * mm,struct vm_area_struct * vma,struct page ** pages,struct vm_area_struct ** vmas,unsigned long * position,unsigned long * nr_pages,long i,unsigned int flags)3385 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
3386 			 struct page **pages, struct vm_area_struct **vmas,
3387 			 unsigned long *position, unsigned long *nr_pages,
3388 			 long i, unsigned int flags)
3389 {
3390 	unsigned long pfn_offset;
3391 	unsigned long vaddr = *position;
3392 	unsigned long remainder = *nr_pages;
3393 	struct hstate *h = hstate_vma(vma);
3394 
3395 	while (vaddr < vma->vm_end && remainder) {
3396 		pte_t *pte;
3397 		spinlock_t *ptl = NULL;
3398 		int absent;
3399 		struct page *page;
3400 
3401 		/*
3402 		 * If we have a pending SIGKILL, don't keep faulting pages and
3403 		 * potentially allocating memory.
3404 		 */
3405 		if (unlikely(fatal_signal_pending(current))) {
3406 			remainder = 0;
3407 			break;
3408 		}
3409 
3410 		/*
3411 		 * Some archs (sparc64, sh*) have multiple pte_ts to
3412 		 * each hugepage.  We have to make sure we get the
3413 		 * first, for the page indexing below to work.
3414 		 *
3415 		 * Note that page table lock is not held when pte is null.
3416 		 */
3417 		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
3418 		if (pte)
3419 			ptl = huge_pte_lock(h, mm, pte);
3420 		absent = !pte || huge_pte_none(huge_ptep_get(pte));
3421 
3422 		/*
3423 		 * When coredumping, it suits get_dump_page if we just return
3424 		 * an error where there's an empty slot with no huge pagecache
3425 		 * to back it.  This way, we avoid allocating a hugepage, and
3426 		 * the sparse dumpfile avoids allocating disk blocks, but its
3427 		 * huge holes still show up with zeroes where they need to be.
3428 		 */
3429 		if (absent && (flags & FOLL_DUMP) &&
3430 		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
3431 			if (pte)
3432 				spin_unlock(ptl);
3433 			remainder = 0;
3434 			break;
3435 		}
3436 
3437 		/*
3438 		 * We need call hugetlb_fault for both hugepages under migration
3439 		 * (in which case hugetlb_fault waits for the migration,) and
3440 		 * hwpoisoned hugepages (in which case we need to prevent the
3441 		 * caller from accessing to them.) In order to do this, we use
3442 		 * here is_swap_pte instead of is_hugetlb_entry_migration and
3443 		 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
3444 		 * both cases, and because we can't follow correct pages
3445 		 * directly from any kind of swap entries.
3446 		 */
3447 		if (absent || is_swap_pte(huge_ptep_get(pte)) ||
3448 		    ((flags & FOLL_WRITE) &&
3449 		      !huge_pte_write(huge_ptep_get(pte)))) {
3450 			int ret;
3451 
3452 			if (pte)
3453 				spin_unlock(ptl);
3454 			ret = hugetlb_fault(mm, vma, vaddr,
3455 				(flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
3456 			if (!(ret & VM_FAULT_ERROR))
3457 				continue;
3458 
3459 			remainder = 0;
3460 			break;
3461 		}
3462 
3463 		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
3464 		page = pte_page(huge_ptep_get(pte));
3465 same_page:
3466 		if (pages) {
3467 			pages[i] = mem_map_offset(page, pfn_offset);
3468 			get_page_foll(pages[i]);
3469 		}
3470 
3471 		if (vmas)
3472 			vmas[i] = vma;
3473 
3474 		vaddr += PAGE_SIZE;
3475 		++pfn_offset;
3476 		--remainder;
3477 		++i;
3478 		if (vaddr < vma->vm_end && remainder &&
3479 				pfn_offset < pages_per_huge_page(h)) {
3480 			/*
3481 			 * We use pfn_offset to avoid touching the pageframes
3482 			 * of this compound page.
3483 			 */
3484 			goto same_page;
3485 		}
3486 		spin_unlock(ptl);
3487 	}
3488 	*nr_pages = remainder;
3489 	*position = vaddr;
3490 
3491 	return i ? i : -EFAULT;
3492 }
3493 
hugetlb_change_protection(struct vm_area_struct * vma,unsigned long address,unsigned long end,pgprot_t newprot)3494 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
3495 		unsigned long address, unsigned long end, pgprot_t newprot)
3496 {
3497 	struct mm_struct *mm = vma->vm_mm;
3498 	unsigned long start = address;
3499 	pte_t *ptep;
3500 	pte_t pte;
3501 	struct hstate *h = hstate_vma(vma);
3502 	unsigned long pages = 0;
3503 
3504 	BUG_ON(address >= end);
3505 	flush_cache_range(vma, address, end);
3506 
3507 	mmu_notifier_invalidate_range_start(mm, start, end);
3508 	i_mmap_lock_write(vma->vm_file->f_mapping);
3509 	for (; address < end; address += huge_page_size(h)) {
3510 		spinlock_t *ptl;
3511 		ptep = huge_pte_offset(mm, address);
3512 		if (!ptep)
3513 			continue;
3514 		ptl = huge_pte_lock(h, mm, ptep);
3515 		if (huge_pmd_unshare(mm, &address, ptep)) {
3516 			pages++;
3517 			spin_unlock(ptl);
3518 			continue;
3519 		}
3520 		pte = huge_ptep_get(ptep);
3521 		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
3522 			spin_unlock(ptl);
3523 			continue;
3524 		}
3525 		if (unlikely(is_hugetlb_entry_migration(pte))) {
3526 			swp_entry_t entry = pte_to_swp_entry(pte);
3527 
3528 			if (is_write_migration_entry(entry)) {
3529 				pte_t newpte;
3530 
3531 				make_migration_entry_read(&entry);
3532 				newpte = swp_entry_to_pte(entry);
3533 				set_huge_pte_at(mm, address, ptep, newpte);
3534 				pages++;
3535 			}
3536 			spin_unlock(ptl);
3537 			continue;
3538 		}
3539 		if (!huge_pte_none(pte)) {
3540 			pte = huge_ptep_get_and_clear(mm, address, ptep);
3541 			pte = pte_mkhuge(huge_pte_modify(pte, newprot));
3542 			pte = arch_make_huge_pte(pte, vma, NULL, 0);
3543 			set_huge_pte_at(mm, address, ptep, pte);
3544 			pages++;
3545 		}
3546 		spin_unlock(ptl);
3547 	}
3548 	/*
3549 	 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
3550 	 * may have cleared our pud entry and done put_page on the page table:
3551 	 * once we release i_mmap_rwsem, another task can do the final put_page
3552 	 * and that page table be reused and filled with junk.
3553 	 */
3554 	flush_tlb_range(vma, start, end);
3555 	mmu_notifier_invalidate_range(mm, start, end);
3556 	i_mmap_unlock_write(vma->vm_file->f_mapping);
3557 	mmu_notifier_invalidate_range_end(mm, start, end);
3558 
3559 	return pages << h->order;
3560 }
3561 
hugetlb_reserve_pages(struct inode * inode,long from,long to,struct vm_area_struct * vma,vm_flags_t vm_flags)3562 int hugetlb_reserve_pages(struct inode *inode,
3563 					long from, long to,
3564 					struct vm_area_struct *vma,
3565 					vm_flags_t vm_flags)
3566 {
3567 	long ret, chg;
3568 	struct hstate *h = hstate_inode(inode);
3569 	struct hugepage_subpool *spool = subpool_inode(inode);
3570 	struct resv_map *resv_map;
3571 	long gbl_reserve;
3572 
3573 	/*
3574 	 * Only apply hugepage reservation if asked. At fault time, an
3575 	 * attempt will be made for VM_NORESERVE to allocate a page
3576 	 * without using reserves
3577 	 */
3578 	if (vm_flags & VM_NORESERVE)
3579 		return 0;
3580 
3581 	/*
3582 	 * Shared mappings base their reservation on the number of pages that
3583 	 * are already allocated on behalf of the file. Private mappings need
3584 	 * to reserve the full area even if read-only as mprotect() may be
3585 	 * called to make the mapping read-write. Assume !vma is a shm mapping
3586 	 */
3587 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
3588 		resv_map = inode_resv_map(inode);
3589 
3590 		chg = region_chg(resv_map, from, to);
3591 
3592 	} else {
3593 		resv_map = resv_map_alloc();
3594 		if (!resv_map)
3595 			return -ENOMEM;
3596 
3597 		chg = to - from;
3598 
3599 		set_vma_resv_map(vma, resv_map);
3600 		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
3601 	}
3602 
3603 	if (chg < 0) {
3604 		ret = chg;
3605 		goto out_err;
3606 	}
3607 
3608 	/*
3609 	 * There must be enough pages in the subpool for the mapping. If
3610 	 * the subpool has a minimum size, there may be some global
3611 	 * reservations already in place (gbl_reserve).
3612 	 */
3613 	gbl_reserve = hugepage_subpool_get_pages(spool, chg);
3614 	if (gbl_reserve < 0) {
3615 		ret = -ENOSPC;
3616 		goto out_err;
3617 	}
3618 
3619 	/*
3620 	 * Check enough hugepages are available for the reservation.
3621 	 * Hand the pages back to the subpool if there are not
3622 	 */
3623 	ret = hugetlb_acct_memory(h, gbl_reserve);
3624 	if (ret < 0) {
3625 		/* put back original number of pages, chg */
3626 		(void)hugepage_subpool_put_pages(spool, chg);
3627 		goto out_err;
3628 	}
3629 
3630 	/*
3631 	 * Account for the reservations made. Shared mappings record regions
3632 	 * that have reservations as they are shared by multiple VMAs.
3633 	 * When the last VMA disappears, the region map says how much
3634 	 * the reservation was and the page cache tells how much of
3635 	 * the reservation was consumed. Private mappings are per-VMA and
3636 	 * only the consumed reservations are tracked. When the VMA
3637 	 * disappears, the original reservation is the VMA size and the
3638 	 * consumed reservations are stored in the map. Hence, nothing
3639 	 * else has to be done for private mappings here
3640 	 */
3641 	if (!vma || vma->vm_flags & VM_MAYSHARE)
3642 		region_add(resv_map, from, to);
3643 	return 0;
3644 out_err:
3645 	if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3646 		kref_put(&resv_map->refs, resv_map_release);
3647 	return ret;
3648 }
3649 
hugetlb_unreserve_pages(struct inode * inode,long offset,long freed)3650 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
3651 {
3652 	struct hstate *h = hstate_inode(inode);
3653 	struct resv_map *resv_map = inode_resv_map(inode);
3654 	long chg = 0;
3655 	struct hugepage_subpool *spool = subpool_inode(inode);
3656 	long gbl_reserve;
3657 
3658 	if (resv_map)
3659 		chg = region_truncate(resv_map, offset);
3660 	spin_lock(&inode->i_lock);
3661 	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
3662 	spin_unlock(&inode->i_lock);
3663 
3664 	/*
3665 	 * If the subpool has a minimum size, the number of global
3666 	 * reservations to be released may be adjusted.
3667 	 */
3668 	gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
3669 	hugetlb_acct_memory(h, -gbl_reserve);
3670 }
3671 
3672 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
page_table_shareable(struct vm_area_struct * svma,struct vm_area_struct * vma,unsigned long addr,pgoff_t idx)3673 static unsigned long page_table_shareable(struct vm_area_struct *svma,
3674 				struct vm_area_struct *vma,
3675 				unsigned long addr, pgoff_t idx)
3676 {
3677 	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
3678 				svma->vm_start;
3679 	unsigned long sbase = saddr & PUD_MASK;
3680 	unsigned long s_end = sbase + PUD_SIZE;
3681 
3682 	/* Allow segments to share if only one is marked locked */
3683 	unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED;
3684 	unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED;
3685 
3686 	/*
3687 	 * match the virtual addresses, permission and the alignment of the
3688 	 * page table page.
3689 	 */
3690 	if (pmd_index(addr) != pmd_index(saddr) ||
3691 	    vm_flags != svm_flags ||
3692 	    sbase < svma->vm_start || svma->vm_end < s_end)
3693 		return 0;
3694 
3695 	return saddr;
3696 }
3697 
vma_shareable(struct vm_area_struct * vma,unsigned long addr)3698 static int vma_shareable(struct vm_area_struct *vma, unsigned long addr)
3699 {
3700 	unsigned long base = addr & PUD_MASK;
3701 	unsigned long end = base + PUD_SIZE;
3702 
3703 	/*
3704 	 * check on proper vm_flags and page table alignment
3705 	 */
3706 	if (vma->vm_flags & VM_MAYSHARE &&
3707 	    vma->vm_start <= base && end <= vma->vm_end)
3708 		return 1;
3709 	return 0;
3710 }
3711 
3712 /*
3713  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
3714  * and returns the corresponding pte. While this is not necessary for the
3715  * !shared pmd case because we can allocate the pmd later as well, it makes the
3716  * code much cleaner. pmd allocation is essential for the shared case because
3717  * pud has to be populated inside the same i_mmap_rwsem section - otherwise
3718  * racing tasks could either miss the sharing (see huge_pte_offset) or select a
3719  * bad pmd for sharing.
3720  */
huge_pmd_share(struct mm_struct * mm,unsigned long addr,pud_t * pud)3721 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3722 {
3723 	struct vm_area_struct *vma = find_vma(mm, addr);
3724 	struct address_space *mapping = vma->vm_file->f_mapping;
3725 	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
3726 			vma->vm_pgoff;
3727 	struct vm_area_struct *svma;
3728 	unsigned long saddr;
3729 	pte_t *spte = NULL;
3730 	pte_t *pte;
3731 	spinlock_t *ptl;
3732 
3733 	if (!vma_shareable(vma, addr))
3734 		return (pte_t *)pmd_alloc(mm, pud, addr);
3735 
3736 	i_mmap_lock_write(mapping);
3737 	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
3738 		if (svma == vma)
3739 			continue;
3740 
3741 		saddr = page_table_shareable(svma, vma, addr, idx);
3742 		if (saddr) {
3743 			spte = huge_pte_offset(svma->vm_mm, saddr);
3744 			if (spte) {
3745 				mm_inc_nr_pmds(mm);
3746 				get_page(virt_to_page(spte));
3747 				break;
3748 			}
3749 		}
3750 	}
3751 
3752 	if (!spte)
3753 		goto out;
3754 
3755 	ptl = huge_pte_lockptr(hstate_vma(vma), mm, spte);
3756 	spin_lock(ptl);
3757 	if (pud_none(*pud)) {
3758 		pud_populate(mm, pud,
3759 				(pmd_t *)((unsigned long)spte & PAGE_MASK));
3760 	} else {
3761 		put_page(virt_to_page(spte));
3762 		mm_inc_nr_pmds(mm);
3763 	}
3764 	spin_unlock(ptl);
3765 out:
3766 	pte = (pte_t *)pmd_alloc(mm, pud, addr);
3767 	i_mmap_unlock_write(mapping);
3768 	return pte;
3769 }
3770 
3771 /*
3772  * unmap huge page backed by shared pte.
3773  *
3774  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
3775  * indicated by page_count > 1, unmap is achieved by clearing pud and
3776  * decrementing the ref count. If count == 1, the pte page is not shared.
3777  *
3778  * called with page table lock held.
3779  *
3780  * returns: 1 successfully unmapped a shared pte page
3781  *	    0 the underlying pte page is not shared, or it is the last user
3782  */
huge_pmd_unshare(struct mm_struct * mm,unsigned long * addr,pte_t * ptep)3783 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
3784 {
3785 	pgd_t *pgd = pgd_offset(mm, *addr);
3786 	pud_t *pud = pud_offset(pgd, *addr);
3787 
3788 	BUG_ON(page_count(virt_to_page(ptep)) == 0);
3789 	if (page_count(virt_to_page(ptep)) == 1)
3790 		return 0;
3791 
3792 	pud_clear(pud);
3793 	put_page(virt_to_page(ptep));
3794 	mm_dec_nr_pmds(mm);
3795 	*addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
3796 	return 1;
3797 }
3798 #define want_pmd_share()	(1)
3799 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
huge_pmd_share(struct mm_struct * mm,unsigned long addr,pud_t * pud)3800 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3801 {
3802 	return NULL;
3803 }
3804 #define want_pmd_share()	(0)
3805 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3806 
3807 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
huge_pte_alloc(struct mm_struct * mm,unsigned long addr,unsigned long sz)3808 pte_t *huge_pte_alloc(struct mm_struct *mm,
3809 			unsigned long addr, unsigned long sz)
3810 {
3811 	pgd_t *pgd;
3812 	pud_t *pud;
3813 	pte_t *pte = NULL;
3814 
3815 	pgd = pgd_offset(mm, addr);
3816 	pud = pud_alloc(mm, pgd, addr);
3817 	if (pud) {
3818 		if (sz == PUD_SIZE) {
3819 			pte = (pte_t *)pud;
3820 		} else {
3821 			BUG_ON(sz != PMD_SIZE);
3822 			if (want_pmd_share() && pud_none(*pud))
3823 				pte = huge_pmd_share(mm, addr, pud);
3824 			else
3825 				pte = (pte_t *)pmd_alloc(mm, pud, addr);
3826 		}
3827 	}
3828 	BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));
3829 
3830 	return pte;
3831 }
3832 
huge_pte_offset(struct mm_struct * mm,unsigned long addr)3833 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
3834 {
3835 	pgd_t *pgd;
3836 	pud_t *pud;
3837 	pmd_t *pmd = NULL;
3838 
3839 	pgd = pgd_offset(mm, addr);
3840 	if (pgd_present(*pgd)) {
3841 		pud = pud_offset(pgd, addr);
3842 		if (pud_present(*pud)) {
3843 			if (pud_huge(*pud))
3844 				return (pte_t *)pud;
3845 			pmd = pmd_offset(pud, addr);
3846 		}
3847 	}
3848 	return (pte_t *) pmd;
3849 }
3850 
3851 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3852 
3853 /*
3854  * These functions are overwritable if your architecture needs its own
3855  * behavior.
3856  */
3857 struct page * __weak
follow_huge_addr(struct mm_struct * mm,unsigned long address,int write)3858 follow_huge_addr(struct mm_struct *mm, unsigned long address,
3859 			      int write)
3860 {
3861 	return ERR_PTR(-EINVAL);
3862 }
3863 
3864 struct page * __weak
follow_huge_pmd(struct mm_struct * mm,unsigned long address,pmd_t * pmd,int flags)3865 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
3866 		pmd_t *pmd, int flags)
3867 {
3868 	struct page *page = NULL;
3869 	spinlock_t *ptl;
3870 retry:
3871 	ptl = pmd_lockptr(mm, pmd);
3872 	spin_lock(ptl);
3873 	/*
3874 	 * make sure that the address range covered by this pmd is not
3875 	 * unmapped from other threads.
3876 	 */
3877 	if (!pmd_huge(*pmd))
3878 		goto out;
3879 	if (pmd_present(*pmd)) {
3880 		page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
3881 		if (flags & FOLL_GET)
3882 			get_page(page);
3883 	} else {
3884 		if (is_hugetlb_entry_migration(huge_ptep_get((pte_t *)pmd))) {
3885 			spin_unlock(ptl);
3886 			__migration_entry_wait(mm, (pte_t *)pmd, ptl);
3887 			goto retry;
3888 		}
3889 		/*
3890 		 * hwpoisoned entry is treated as no_page_table in
3891 		 * follow_page_mask().
3892 		 */
3893 	}
3894 out:
3895 	spin_unlock(ptl);
3896 	return page;
3897 }
3898 
3899 struct page * __weak
follow_huge_pud(struct mm_struct * mm,unsigned long address,pud_t * pud,int flags)3900 follow_huge_pud(struct mm_struct *mm, unsigned long address,
3901 		pud_t *pud, int flags)
3902 {
3903 	if (flags & FOLL_GET)
3904 		return NULL;
3905 
3906 	return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
3907 }
3908 
3909 #ifdef CONFIG_MEMORY_FAILURE
3910 
3911 /*
3912  * This function is called from memory failure code.
3913  * Assume the caller holds page lock of the head page.
3914  */
dequeue_hwpoisoned_huge_page(struct page * hpage)3915 int dequeue_hwpoisoned_huge_page(struct page *hpage)
3916 {
3917 	struct hstate *h = page_hstate(hpage);
3918 	int nid = page_to_nid(hpage);
3919 	int ret = -EBUSY;
3920 
3921 	spin_lock(&hugetlb_lock);
3922 	/*
3923 	 * Just checking !page_huge_active is not enough, because that could be
3924 	 * an isolated/hwpoisoned hugepage (which have >0 refcount).
3925 	 */
3926 	if (!page_huge_active(hpage) && !page_count(hpage)) {
3927 		/*
3928 		 * Hwpoisoned hugepage isn't linked to activelist or freelist,
3929 		 * but dangling hpage->lru can trigger list-debug warnings
3930 		 * (this happens when we call unpoison_memory() on it),
3931 		 * so let it point to itself with list_del_init().
3932 		 */
3933 		list_del_init(&hpage->lru);
3934 		set_page_refcounted(hpage);
3935 		h->free_huge_pages--;
3936 		h->free_huge_pages_node[nid]--;
3937 		ret = 0;
3938 	}
3939 	spin_unlock(&hugetlb_lock);
3940 	return ret;
3941 }
3942 #endif
3943 
isolate_huge_page(struct page * page,struct list_head * list)3944 bool isolate_huge_page(struct page *page, struct list_head *list)
3945 {
3946 	bool ret = true;
3947 
3948 	VM_BUG_ON_PAGE(!PageHead(page), page);
3949 	spin_lock(&hugetlb_lock);
3950 	if (!page_huge_active(page) || !get_page_unless_zero(page)) {
3951 		ret = false;
3952 		goto unlock;
3953 	}
3954 	clear_page_huge_active(page);
3955 	list_move_tail(&page->lru, list);
3956 unlock:
3957 	spin_unlock(&hugetlb_lock);
3958 	return ret;
3959 }
3960 
putback_active_hugepage(struct page * page)3961 void putback_active_hugepage(struct page *page)
3962 {
3963 	VM_BUG_ON_PAGE(!PageHead(page), page);
3964 	spin_lock(&hugetlb_lock);
3965 	set_page_huge_active(page);
3966 	list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
3967 	spin_unlock(&hugetlb_lock);
3968 	put_page(page);
3969 }
3970