1 /*
2  * Based on arch/arm/mm/fault.c
3  *
4  * Copyright (C) 1995  Linus Torvalds
5  * Copyright (C) 1995-2004 Russell King
6  * Copyright (C) 2012 ARM Ltd.
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
19  */
20 
21 #include <linux/module.h>
22 #include <linux/signal.h>
23 #include <linux/mm.h>
24 #include <linux/hardirq.h>
25 #include <linux/init.h>
26 #include <linux/kprobes.h>
27 #include <linux/uaccess.h>
28 #include <linux/page-flags.h>
29 #include <linux/sched.h>
30 #include <linux/highmem.h>
31 #include <linux/perf_event.h>
32 
33 #include <asm/cpufeature.h>
34 #include <asm/exception.h>
35 #include <asm/debug-monitors.h>
36 #include <asm/esr.h>
37 #include <asm/sysreg.h>
38 #include <asm/system_misc.h>
39 #include <asm/pgtable.h>
40 #include <asm/tlbflush.h>
41 
42 static const char *fault_name(unsigned int esr);
43 
44 /*
45  * Dump out the page tables associated with 'addr' in mm 'mm'.
46  */
show_pte(struct mm_struct * mm,unsigned long addr)47 void show_pte(struct mm_struct *mm, unsigned long addr)
48 {
49 	pgd_t *pgd;
50 
51 	if (!mm)
52 		mm = &init_mm;
53 
54 	pr_alert("pgd = %p\n", mm->pgd);
55 	pgd = pgd_offset(mm, addr);
56 	pr_alert("[%08lx] *pgd=%016llx", addr, pgd_val(*pgd));
57 
58 	do {
59 		pud_t *pud;
60 		pmd_t *pmd;
61 		pte_t *pte;
62 
63 		if (pgd_none(*pgd) || pgd_bad(*pgd))
64 			break;
65 
66 		pud = pud_offset(pgd, addr);
67 		printk(", *pud=%016llx", pud_val(*pud));
68 		if (pud_none(*pud) || pud_bad(*pud))
69 			break;
70 
71 		pmd = pmd_offset(pud, addr);
72 		printk(", *pmd=%016llx", pmd_val(*pmd));
73 		if (pmd_none(*pmd) || pmd_bad(*pmd))
74 			break;
75 
76 		pte = pte_offset_map(pmd, addr);
77 		printk(", *pte=%016llx", pte_val(*pte));
78 		pte_unmap(pte);
79 	} while(0);
80 
81 	printk("\n");
82 }
83 
84 #ifdef CONFIG_ARM64_HW_AFDBM
85 /*
86  * This function sets the access flags (dirty, accessed), as well as write
87  * permission, and only to a more permissive setting.
88  *
89  * It needs to cope with hardware update of the accessed/dirty state by other
90  * agents in the system and can safely skip the __sync_icache_dcache() call as,
91  * like set_pte_at(), the PTE is never changed from no-exec to exec here.
92  *
93  * Returns whether or not the PTE actually changed.
94  */
ptep_set_access_flags(struct vm_area_struct * vma,unsigned long address,pte_t * ptep,pte_t entry,int dirty)95 int ptep_set_access_flags(struct vm_area_struct *vma,
96 			  unsigned long address, pte_t *ptep,
97 			  pte_t entry, int dirty)
98 {
99 	pteval_t old_pteval;
100 	unsigned int tmp;
101 
102 	if (pte_same(*ptep, entry))
103 		return 0;
104 
105 	/* only preserve the access flags and write permission */
106 	pte_val(entry) &= PTE_AF | PTE_WRITE | PTE_DIRTY;
107 
108 	/*
109 	 * PTE_RDONLY is cleared by default in the asm below, so set it in
110 	 * back if necessary (read-only or clean PTE).
111 	 */
112 	if (!pte_write(entry) || !pte_sw_dirty(entry))
113 		pte_val(entry) |= PTE_RDONLY;
114 
115 	/*
116 	 * Setting the flags must be done atomically to avoid racing with the
117 	 * hardware update of the access/dirty state.
118 	 */
119 	asm volatile("//	ptep_set_access_flags\n"
120 	"	prfm	pstl1strm, %2\n"
121 	"1:	ldxr	%0, %2\n"
122 	"	and	%0, %0, %3		// clear PTE_RDONLY\n"
123 	"	orr	%0, %0, %4		// set flags\n"
124 	"	stxr	%w1, %0, %2\n"
125 	"	cbnz	%w1, 1b\n"
126 	: "=&r" (old_pteval), "=&r" (tmp), "+Q" (pte_val(*ptep))
127 	: "L" (~PTE_RDONLY), "r" (pte_val(entry)));
128 
129 	flush_tlb_fix_spurious_fault(vma, address);
130 	return 1;
131 }
132 #endif
133 
134 /*
135  * The kernel tried to access some page that wasn't present.
136  */
__do_kernel_fault(struct mm_struct * mm,unsigned long addr,unsigned int esr,struct pt_regs * regs)137 static void __do_kernel_fault(struct mm_struct *mm, unsigned long addr,
138 			      unsigned int esr, struct pt_regs *regs)
139 {
140 	/*
141 	 * Are we prepared to handle this kernel fault?
142 	 */
143 	if (fixup_exception(regs))
144 		return;
145 
146 	/*
147 	 * No handler, we'll have to terminate things with extreme prejudice.
148 	 */
149 	bust_spinlocks(1);
150 	pr_alert("Unable to handle kernel %s at virtual address %08lx\n",
151 		 (addr < PAGE_SIZE) ? "NULL pointer dereference" :
152 		 "paging request", addr);
153 
154 	show_pte(mm, addr);
155 	die("Oops", regs, esr);
156 	bust_spinlocks(0);
157 	do_exit(SIGKILL);
158 }
159 
160 /*
161  * Something tried to access memory that isn't in our memory map. User mode
162  * accesses just cause a SIGSEGV
163  */
__do_user_fault(struct task_struct * tsk,unsigned long addr,unsigned int esr,unsigned int sig,int code,struct pt_regs * regs)164 static void __do_user_fault(struct task_struct *tsk, unsigned long addr,
165 			    unsigned int esr, unsigned int sig, int code,
166 			    struct pt_regs *regs)
167 {
168 	struct siginfo si;
169 
170 	if (unhandled_signal(tsk, sig) && show_unhandled_signals_ratelimited()) {
171 		pr_info("%s[%d]: unhandled %s (%d) at 0x%08lx, esr 0x%03x\n",
172 			tsk->comm, task_pid_nr(tsk), fault_name(esr), sig,
173 			addr, esr);
174 		show_pte(tsk->mm, addr);
175 		show_regs(regs);
176 	}
177 
178 	tsk->thread.fault_address = addr;
179 	tsk->thread.fault_code = esr;
180 	si.si_signo = sig;
181 	si.si_errno = 0;
182 	si.si_code = code;
183 	si.si_addr = (void __user *)addr;
184 	force_sig_info(sig, &si, tsk);
185 }
186 
do_bad_area(unsigned long addr,unsigned int esr,struct pt_regs * regs)187 static void do_bad_area(unsigned long addr, unsigned int esr, struct pt_regs *regs)
188 {
189 	struct task_struct *tsk = current;
190 	struct mm_struct *mm = tsk->active_mm;
191 
192 	/*
193 	 * If we are in kernel mode at this point, we have no context to
194 	 * handle this fault with.
195 	 */
196 	if (user_mode(regs))
197 		__do_user_fault(tsk, addr, esr, SIGSEGV, SEGV_MAPERR, regs);
198 	else
199 		__do_kernel_fault(mm, addr, esr, regs);
200 }
201 
202 #define VM_FAULT_BADMAP		0x010000
203 #define VM_FAULT_BADACCESS	0x020000
204 
205 #define ESR_LNX_EXEC		(1 << 24)
206 
__do_page_fault(struct mm_struct * mm,unsigned long addr,unsigned int mm_flags,unsigned long vm_flags,struct task_struct * tsk)207 static int __do_page_fault(struct mm_struct *mm, unsigned long addr,
208 			   unsigned int mm_flags, unsigned long vm_flags,
209 			   struct task_struct *tsk)
210 {
211 	struct vm_area_struct *vma;
212 	int fault;
213 
214 	vma = find_vma(mm, addr);
215 	fault = VM_FAULT_BADMAP;
216 	if (unlikely(!vma))
217 		goto out;
218 	if (unlikely(vma->vm_start > addr))
219 		goto check_stack;
220 
221 	/*
222 	 * Ok, we have a good vm_area for this memory access, so we can handle
223 	 * it.
224 	 */
225 good_area:
226 	/*
227 	 * Check that the permissions on the VMA allow for the fault which
228 	 * occurred. If we encountered a write or exec fault, we must have
229 	 * appropriate permissions, otherwise we allow any permission.
230 	 */
231 	if (!(vma->vm_flags & vm_flags)) {
232 		fault = VM_FAULT_BADACCESS;
233 		goto out;
234 	}
235 
236 	return handle_mm_fault(mm, vma, addr & PAGE_MASK, mm_flags);
237 
238 check_stack:
239 	if (vma->vm_flags & VM_GROWSDOWN && !expand_stack(vma, addr))
240 		goto good_area;
241 out:
242 	return fault;
243 }
244 
do_page_fault(unsigned long addr,unsigned int esr,struct pt_regs * regs)245 static int __kprobes do_page_fault(unsigned long addr, unsigned int esr,
246 				   struct pt_regs *regs)
247 {
248 	struct task_struct *tsk;
249 	struct mm_struct *mm;
250 	int fault, sig, code;
251 	unsigned long vm_flags = VM_READ | VM_WRITE | VM_EXEC;
252 	unsigned int mm_flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
253 
254 	tsk = current;
255 	mm  = tsk->mm;
256 
257 	/* Enable interrupts if they were enabled in the parent context. */
258 	if (interrupts_enabled(regs))
259 		local_irq_enable();
260 
261 	/*
262 	 * If we're in an interrupt or have no user context, we must not take
263 	 * the fault.
264 	 */
265 	if (faulthandler_disabled() || !mm)
266 		goto no_context;
267 
268 	if (user_mode(regs))
269 		mm_flags |= FAULT_FLAG_USER;
270 
271 	if (esr & ESR_LNX_EXEC) {
272 		vm_flags = VM_EXEC;
273 	} else if ((esr & ESR_ELx_WNR) && !(esr & ESR_ELx_CM)) {
274 		vm_flags = VM_WRITE;
275 		mm_flags |= FAULT_FLAG_WRITE;
276 	}
277 
278 	/*
279 	 * PAN bit set implies the fault happened in kernel space, but not
280 	 * in the arch's user access functions.
281 	 */
282 	if (IS_ENABLED(CONFIG_ARM64_PAN) && (regs->pstate & PSR_PAN_BIT))
283 		goto no_context;
284 
285 	/*
286 	 * As per x86, we may deadlock here. However, since the kernel only
287 	 * validly references user space from well defined areas of the code,
288 	 * we can bug out early if this is from code which shouldn't.
289 	 */
290 	if (!down_read_trylock(&mm->mmap_sem)) {
291 		if (!user_mode(regs) && !search_exception_tables(regs->pc))
292 			goto no_context;
293 retry:
294 		down_read(&mm->mmap_sem);
295 	} else {
296 		/*
297 		 * The above down_read_trylock() might have succeeded in which
298 		 * case, we'll have missed the might_sleep() from down_read().
299 		 */
300 		might_sleep();
301 #ifdef CONFIG_DEBUG_VM
302 		if (!user_mode(regs) && !search_exception_tables(regs->pc))
303 			goto no_context;
304 #endif
305 	}
306 
307 	fault = __do_page_fault(mm, addr, mm_flags, vm_flags, tsk);
308 
309 	/*
310 	 * If we need to retry but a fatal signal is pending, handle the
311 	 * signal first. We do not need to release the mmap_sem because it
312 	 * would already be released in __lock_page_or_retry in mm/filemap.c.
313 	 */
314 	if ((fault & VM_FAULT_RETRY) && fatal_signal_pending(current))
315 		return 0;
316 
317 	/*
318 	 * Major/minor page fault accounting is only done on the initial
319 	 * attempt. If we go through a retry, it is extremely likely that the
320 	 * page will be found in page cache at that point.
321 	 */
322 
323 	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr);
324 	if (mm_flags & FAULT_FLAG_ALLOW_RETRY) {
325 		if (fault & VM_FAULT_MAJOR) {
326 			tsk->maj_flt++;
327 			perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs,
328 				      addr);
329 		} else {
330 			tsk->min_flt++;
331 			perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs,
332 				      addr);
333 		}
334 		if (fault & VM_FAULT_RETRY) {
335 			/*
336 			 * Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk of
337 			 * starvation.
338 			 */
339 			mm_flags &= ~FAULT_FLAG_ALLOW_RETRY;
340 			mm_flags |= FAULT_FLAG_TRIED;
341 			goto retry;
342 		}
343 	}
344 
345 	up_read(&mm->mmap_sem);
346 
347 	/*
348 	 * Handle the "normal" case first - VM_FAULT_MAJOR / VM_FAULT_MINOR
349 	 */
350 	if (likely(!(fault & (VM_FAULT_ERROR | VM_FAULT_BADMAP |
351 			      VM_FAULT_BADACCESS))))
352 		return 0;
353 
354 	/*
355 	 * If we are in kernel mode at this point, we have no context to
356 	 * handle this fault with.
357 	 */
358 	if (!user_mode(regs))
359 		goto no_context;
360 
361 	if (fault & VM_FAULT_OOM) {
362 		/*
363 		 * We ran out of memory, call the OOM killer, and return to
364 		 * userspace (which will retry the fault, or kill us if we got
365 		 * oom-killed).
366 		 */
367 		pagefault_out_of_memory();
368 		return 0;
369 	}
370 
371 	if (fault & VM_FAULT_SIGBUS) {
372 		/*
373 		 * We had some memory, but were unable to successfully fix up
374 		 * this page fault.
375 		 */
376 		sig = SIGBUS;
377 		code = BUS_ADRERR;
378 	} else {
379 		/*
380 		 * Something tried to access memory that isn't in our memory
381 		 * map.
382 		 */
383 		sig = SIGSEGV;
384 		code = fault == VM_FAULT_BADACCESS ?
385 			SEGV_ACCERR : SEGV_MAPERR;
386 	}
387 
388 	__do_user_fault(tsk, addr, esr, sig, code, regs);
389 	return 0;
390 
391 no_context:
392 	__do_kernel_fault(mm, addr, esr, regs);
393 	return 0;
394 }
395 
396 /*
397  * First Level Translation Fault Handler
398  *
399  * We enter here because the first level page table doesn't contain a valid
400  * entry for the address.
401  *
402  * If the address is in kernel space (>= TASK_SIZE), then we are probably
403  * faulting in the vmalloc() area.
404  *
405  * If the init_task's first level page tables contains the relevant entry, we
406  * copy the it to this task.  If not, we send the process a signal, fixup the
407  * exception, or oops the kernel.
408  *
409  * NOTE! We MUST NOT take any locks for this case. We may be in an interrupt
410  * or a critical region, and should only copy the information from the master
411  * page table, nothing more.
412  */
do_translation_fault(unsigned long addr,unsigned int esr,struct pt_regs * regs)413 static int __kprobes do_translation_fault(unsigned long addr,
414 					  unsigned int esr,
415 					  struct pt_regs *regs)
416 {
417 	if (addr < TASK_SIZE)
418 		return do_page_fault(addr, esr, regs);
419 
420 	do_bad_area(addr, esr, regs);
421 	return 0;
422 }
423 
424 /*
425  * This abort handler always returns "fault".
426  */
do_bad(unsigned long addr,unsigned int esr,struct pt_regs * regs)427 static int do_bad(unsigned long addr, unsigned int esr, struct pt_regs *regs)
428 {
429 	return 1;
430 }
431 
432 static struct fault_info {
433 	int	(*fn)(unsigned long addr, unsigned int esr, struct pt_regs *regs);
434 	int	sig;
435 	int	code;
436 	const char *name;
437 } fault_info[] = {
438 	{ do_bad,		SIGBUS,  0,		"ttbr address size fault"	},
439 	{ do_bad,		SIGBUS,  0,		"level 1 address size fault"	},
440 	{ do_bad,		SIGBUS,  0,		"level 2 address size fault"	},
441 	{ do_bad,		SIGBUS,  0,		"level 3 address size fault"	},
442 	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"level 0 translation fault"	},
443 	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"level 1 translation fault"	},
444 	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"level 2 translation fault"	},
445 	{ do_page_fault,	SIGSEGV, SEGV_MAPERR,	"level 3 translation fault"	},
446 	{ do_bad,		SIGBUS,  0,		"unknown 8"			},
447 	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 1 access flag fault"	},
448 	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 2 access flag fault"	},
449 	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 3 access flag fault"	},
450 	{ do_bad,		SIGBUS,  0,		"unknown 12"			},
451 	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 1 permission fault"	},
452 	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 2 permission fault"	},
453 	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 3 permission fault"	},
454 	{ do_bad,		SIGBUS,  0,		"synchronous external abort"	},
455 	{ do_bad,		SIGBUS,  0,		"unknown 17"			},
456 	{ do_bad,		SIGBUS,  0,		"unknown 18"			},
457 	{ do_bad,		SIGBUS,  0,		"unknown 19"			},
458 	{ do_bad,		SIGBUS,  0,		"synchronous abort (translation table walk)" },
459 	{ do_bad,		SIGBUS,  0,		"synchronous abort (translation table walk)" },
460 	{ do_bad,		SIGBUS,  0,		"synchronous abort (translation table walk)" },
461 	{ do_bad,		SIGBUS,  0,		"synchronous abort (translation table walk)" },
462 	{ do_bad,		SIGBUS,  0,		"synchronous parity error"	},
463 	{ do_bad,		SIGBUS,  0,		"unknown 25"			},
464 	{ do_bad,		SIGBUS,  0,		"unknown 26"			},
465 	{ do_bad,		SIGBUS,  0,		"unknown 27"			},
466 	{ do_bad,		SIGBUS,  0,		"synchronous parity error (translation table walk)" },
467 	{ do_bad,		SIGBUS,  0,		"synchronous parity error (translation table walk)" },
468 	{ do_bad,		SIGBUS,  0,		"synchronous parity error (translation table walk)" },
469 	{ do_bad,		SIGBUS,  0,		"synchronous parity error (translation table walk)" },
470 	{ do_bad,		SIGBUS,  0,		"unknown 32"			},
471 	{ do_bad,		SIGBUS,  BUS_ADRALN,	"alignment fault"		},
472 	{ do_bad,		SIGBUS,  0,		"unknown 34"			},
473 	{ do_bad,		SIGBUS,  0,		"unknown 35"			},
474 	{ do_bad,		SIGBUS,  0,		"unknown 36"			},
475 	{ do_bad,		SIGBUS,  0,		"unknown 37"			},
476 	{ do_bad,		SIGBUS,  0,		"unknown 38"			},
477 	{ do_bad,		SIGBUS,  0,		"unknown 39"			},
478 	{ do_bad,		SIGBUS,  0,		"unknown 40"			},
479 	{ do_bad,		SIGBUS,  0,		"unknown 41"			},
480 	{ do_bad,		SIGBUS,  0,		"unknown 42"			},
481 	{ do_bad,		SIGBUS,  0,		"unknown 43"			},
482 	{ do_bad,		SIGBUS,  0,		"unknown 44"			},
483 	{ do_bad,		SIGBUS,  0,		"unknown 45"			},
484 	{ do_bad,		SIGBUS,  0,		"unknown 46"			},
485 	{ do_bad,		SIGBUS,  0,		"unknown 47"			},
486 	{ do_bad,		SIGBUS,  0,		"TLB conflict abort"		},
487 	{ do_bad,		SIGBUS,  0,		"unknown 49"			},
488 	{ do_bad,		SIGBUS,  0,		"unknown 50"			},
489 	{ do_bad,		SIGBUS,  0,		"unknown 51"			},
490 	{ do_bad,		SIGBUS,  0,		"implementation fault (lockdown abort)" },
491 	{ do_bad,		SIGBUS,  0,		"implementation fault (unsupported exclusive)" },
492 	{ do_bad,		SIGBUS,  0,		"unknown 54"			},
493 	{ do_bad,		SIGBUS,  0,		"unknown 55"			},
494 	{ do_bad,		SIGBUS,  0,		"unknown 56"			},
495 	{ do_bad,		SIGBUS,  0,		"unknown 57"			},
496 	{ do_bad,		SIGBUS,  0,		"unknown 58" 			},
497 	{ do_bad,		SIGBUS,  0,		"unknown 59"			},
498 	{ do_bad,		SIGBUS,  0,		"unknown 60"			},
499 	{ do_bad,		SIGBUS,  0,		"section domain fault"		},
500 	{ do_bad,		SIGBUS,  0,		"page domain fault"		},
501 	{ do_bad,		SIGBUS,  0,		"unknown 63"			},
502 };
503 
fault_name(unsigned int esr)504 static const char *fault_name(unsigned int esr)
505 {
506 	const struct fault_info *inf = fault_info + (esr & 63);
507 	return inf->name;
508 }
509 
510 /*
511  * Dispatch a data abort to the relevant handler.
512  */
do_mem_abort(unsigned long addr,unsigned int esr,struct pt_regs * regs)513 asmlinkage void __exception do_mem_abort(unsigned long addr, unsigned int esr,
514 					 struct pt_regs *regs)
515 {
516 	const struct fault_info *inf = fault_info + (esr & 63);
517 	struct siginfo info;
518 
519 	if (!inf->fn(addr, esr, regs))
520 		return;
521 
522 	pr_alert("Unhandled fault: %s (0x%08x) at 0x%016lx\n",
523 		 inf->name, esr, addr);
524 
525 	info.si_signo = inf->sig;
526 	info.si_errno = 0;
527 	info.si_code  = inf->code;
528 	info.si_addr  = (void __user *)addr;
529 	arm64_notify_die("", regs, &info, esr);
530 }
531 
532 /*
533  * Handle stack alignment exceptions.
534  */
do_sp_pc_abort(unsigned long addr,unsigned int esr,struct pt_regs * regs)535 asmlinkage void __exception do_sp_pc_abort(unsigned long addr,
536 					   unsigned int esr,
537 					   struct pt_regs *regs)
538 {
539 	struct siginfo info;
540 	struct task_struct *tsk = current;
541 
542 	if (show_unhandled_signals && unhandled_signal(tsk, SIGBUS))
543 		pr_info_ratelimited("%s[%d]: %s exception: pc=%p sp=%p\n",
544 				    tsk->comm, task_pid_nr(tsk),
545 				    esr_get_class_string(esr), (void *)regs->pc,
546 				    (void *)regs->sp);
547 
548 	info.si_signo = SIGBUS;
549 	info.si_errno = 0;
550 	info.si_code  = BUS_ADRALN;
551 	info.si_addr  = (void __user *)addr;
552 	arm64_notify_die("Oops - SP/PC alignment exception", regs, &info, esr);
553 }
554 
555 int __init early_brk64(unsigned long addr, unsigned int esr,
556 		       struct pt_regs *regs);
557 
558 /*
559  * __refdata because early_brk64 is __init, but the reference to it is
560  * clobbered at arch_initcall time.
561  * See traps.c and debug-monitors.c:debug_traps_init().
562  */
563 static struct fault_info __refdata debug_fault_info[] = {
564 	{ do_bad,	SIGTRAP,	TRAP_HWBKPT,	"hardware breakpoint"	},
565 	{ do_bad,	SIGTRAP,	TRAP_HWBKPT,	"hardware single-step"	},
566 	{ do_bad,	SIGTRAP,	TRAP_HWBKPT,	"hardware watchpoint"	},
567 	{ do_bad,	SIGBUS,		0,		"unknown 3"		},
568 	{ do_bad,	SIGTRAP,	TRAP_BRKPT,	"aarch32 BKPT"		},
569 	{ do_bad,	SIGTRAP,	0,		"aarch32 vector catch"	},
570 	{ early_brk64,	SIGTRAP,	TRAP_BRKPT,	"aarch64 BRK"		},
571 	{ do_bad,	SIGBUS,		0,		"unknown 7"		},
572 };
573 
hook_debug_fault_code(int nr,int (* fn)(unsigned long,unsigned int,struct pt_regs *),int sig,int code,const char * name)574 void __init hook_debug_fault_code(int nr,
575 				  int (*fn)(unsigned long, unsigned int, struct pt_regs *),
576 				  int sig, int code, const char *name)
577 {
578 	BUG_ON(nr < 0 || nr >= ARRAY_SIZE(debug_fault_info));
579 
580 	debug_fault_info[nr].fn		= fn;
581 	debug_fault_info[nr].sig	= sig;
582 	debug_fault_info[nr].code	= code;
583 	debug_fault_info[nr].name	= name;
584 }
585 
do_debug_exception(unsigned long addr,unsigned int esr,struct pt_regs * regs)586 asmlinkage int __exception do_debug_exception(unsigned long addr,
587 					      unsigned int esr,
588 					      struct pt_regs *regs)
589 {
590 	const struct fault_info *inf = debug_fault_info + DBG_ESR_EVT(esr);
591 	struct siginfo info;
592 
593 	if (!inf->fn(addr, esr, regs))
594 		return 1;
595 
596 	pr_alert("Unhandled debug exception: %s (0x%08x) at 0x%016lx\n",
597 		 inf->name, esr, addr);
598 
599 	info.si_signo = inf->sig;
600 	info.si_errno = 0;
601 	info.si_code  = inf->code;
602 	info.si_addr  = (void __user *)addr;
603 	arm64_notify_die("", regs, &info, 0);
604 
605 	return 0;
606 }
607 
608 #ifdef CONFIG_ARM64_PAN
cpu_enable_pan(void * __unused)609 void cpu_enable_pan(void *__unused)
610 {
611 	config_sctlr_el1(SCTLR_EL1_SPAN, 0);
612 }
613 #endif /* CONFIG_ARM64_PAN */
614