1 /*
2  * Freescale GPMI NAND Flash Driver
3  *
4  * Copyright (C) 2008-2011 Freescale Semiconductor, Inc.
5  * Copyright (C) 2008 Embedded Alley Solutions, Inc.
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License along
18  * with this program; if not, write to the Free Software Foundation, Inc.,
19  * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
20  */
21 #include <linux/delay.h>
22 #include <linux/clk.h>
23 #include <linux/slab.h>
24 
25 #include "gpmi-nand.h"
26 #include "gpmi-regs.h"
27 #include "bch-regs.h"
28 
29 static struct timing_threshod timing_default_threshold = {
30 	.max_data_setup_cycles       = (BM_GPMI_TIMING0_DATA_SETUP >>
31 						BP_GPMI_TIMING0_DATA_SETUP),
32 	.internal_data_setup_in_ns   = 0,
33 	.max_sample_delay_factor     = (BM_GPMI_CTRL1_RDN_DELAY >>
34 						BP_GPMI_CTRL1_RDN_DELAY),
35 	.max_dll_clock_period_in_ns  = 32,
36 	.max_dll_delay_in_ns         = 16,
37 };
38 
39 #define MXS_SET_ADDR		0x4
40 #define MXS_CLR_ADDR		0x8
41 /*
42  * Clear the bit and poll it cleared.  This is usually called with
43  * a reset address and mask being either SFTRST(bit 31) or CLKGATE
44  * (bit 30).
45  */
clear_poll_bit(void __iomem * addr,u32 mask)46 static int clear_poll_bit(void __iomem *addr, u32 mask)
47 {
48 	int timeout = 0x400;
49 
50 	/* clear the bit */
51 	writel(mask, addr + MXS_CLR_ADDR);
52 
53 	/*
54 	 * SFTRST needs 3 GPMI clocks to settle, the reference manual
55 	 * recommends to wait 1us.
56 	 */
57 	udelay(1);
58 
59 	/* poll the bit becoming clear */
60 	while ((readl(addr) & mask) && --timeout)
61 		/* nothing */;
62 
63 	return !timeout;
64 }
65 
66 #define MODULE_CLKGATE		(1 << 30)
67 #define MODULE_SFTRST		(1 << 31)
68 /*
69  * The current mxs_reset_block() will do two things:
70  *  [1] enable the module.
71  *  [2] reset the module.
72  *
73  * In most of the cases, it's ok.
74  * But in MX23, there is a hardware bug in the BCH block (see erratum #2847).
75  * If you try to soft reset the BCH block, it becomes unusable until
76  * the next hard reset. This case occurs in the NAND boot mode. When the board
77  * boots by NAND, the ROM of the chip will initialize the BCH blocks itself.
78  * So If the driver tries to reset the BCH again, the BCH will not work anymore.
79  * You will see a DMA timeout in this case. The bug has been fixed
80  * in the following chips, such as MX28.
81  *
82  * To avoid this bug, just add a new parameter `just_enable` for
83  * the mxs_reset_block(), and rewrite it here.
84  */
gpmi_reset_block(void __iomem * reset_addr,bool just_enable)85 static int gpmi_reset_block(void __iomem *reset_addr, bool just_enable)
86 {
87 	int ret;
88 	int timeout = 0x400;
89 
90 	/* clear and poll SFTRST */
91 	ret = clear_poll_bit(reset_addr, MODULE_SFTRST);
92 	if (unlikely(ret))
93 		goto error;
94 
95 	/* clear CLKGATE */
96 	writel(MODULE_CLKGATE, reset_addr + MXS_CLR_ADDR);
97 
98 	if (!just_enable) {
99 		/* set SFTRST to reset the block */
100 		writel(MODULE_SFTRST, reset_addr + MXS_SET_ADDR);
101 		udelay(1);
102 
103 		/* poll CLKGATE becoming set */
104 		while ((!(readl(reset_addr) & MODULE_CLKGATE)) && --timeout)
105 			/* nothing */;
106 		if (unlikely(!timeout))
107 			goto error;
108 	}
109 
110 	/* clear and poll SFTRST */
111 	ret = clear_poll_bit(reset_addr, MODULE_SFTRST);
112 	if (unlikely(ret))
113 		goto error;
114 
115 	/* clear and poll CLKGATE */
116 	ret = clear_poll_bit(reset_addr, MODULE_CLKGATE);
117 	if (unlikely(ret))
118 		goto error;
119 
120 	return 0;
121 
122 error:
123 	pr_err("%s(%p): module reset timeout\n", __func__, reset_addr);
124 	return -ETIMEDOUT;
125 }
126 
__gpmi_enable_clk(struct gpmi_nand_data * this,bool v)127 static int __gpmi_enable_clk(struct gpmi_nand_data *this, bool v)
128 {
129 	struct clk *clk;
130 	int ret;
131 	int i;
132 
133 	for (i = 0; i < GPMI_CLK_MAX; i++) {
134 		clk = this->resources.clock[i];
135 		if (!clk)
136 			break;
137 
138 		if (v) {
139 			ret = clk_prepare_enable(clk);
140 			if (ret)
141 				goto err_clk;
142 		} else {
143 			clk_disable_unprepare(clk);
144 		}
145 	}
146 	return 0;
147 
148 err_clk:
149 	for (; i > 0; i--)
150 		clk_disable_unprepare(this->resources.clock[i - 1]);
151 	return ret;
152 }
153 
154 #define gpmi_enable_clk(x) __gpmi_enable_clk(x, true)
155 #define gpmi_disable_clk(x) __gpmi_enable_clk(x, false)
156 
gpmi_init(struct gpmi_nand_data * this)157 int gpmi_init(struct gpmi_nand_data *this)
158 {
159 	struct resources *r = &this->resources;
160 	int ret;
161 
162 	ret = gpmi_enable_clk(this);
163 	if (ret)
164 		goto err_out;
165 	ret = gpmi_reset_block(r->gpmi_regs, false);
166 	if (ret)
167 		goto err_out;
168 
169 	/*
170 	 * Reset BCH here, too. We got failures otherwise :(
171 	 * See later BCH reset for explanation of MX23 handling
172 	 */
173 	ret = gpmi_reset_block(r->bch_regs, GPMI_IS_MX23(this));
174 	if (ret)
175 		goto err_out;
176 
177 
178 	/* Choose NAND mode. */
179 	writel(BM_GPMI_CTRL1_GPMI_MODE, r->gpmi_regs + HW_GPMI_CTRL1_CLR);
180 
181 	/* Set the IRQ polarity. */
182 	writel(BM_GPMI_CTRL1_ATA_IRQRDY_POLARITY,
183 				r->gpmi_regs + HW_GPMI_CTRL1_SET);
184 
185 	/* Disable Write-Protection. */
186 	writel(BM_GPMI_CTRL1_DEV_RESET, r->gpmi_regs + HW_GPMI_CTRL1_SET);
187 
188 	/* Select BCH ECC. */
189 	writel(BM_GPMI_CTRL1_BCH_MODE, r->gpmi_regs + HW_GPMI_CTRL1_SET);
190 
191 	/*
192 	 * Decouple the chip select from dma channel. We use dma0 for all
193 	 * the chips.
194 	 */
195 	writel(BM_GPMI_CTRL1_DECOUPLE_CS, r->gpmi_regs + HW_GPMI_CTRL1_SET);
196 
197 	gpmi_disable_clk(this);
198 	return 0;
199 err_out:
200 	return ret;
201 }
202 
203 /* This function is very useful. It is called only when the bug occur. */
gpmi_dump_info(struct gpmi_nand_data * this)204 void gpmi_dump_info(struct gpmi_nand_data *this)
205 {
206 	struct resources *r = &this->resources;
207 	struct bch_geometry *geo = &this->bch_geometry;
208 	u32 reg;
209 	int i;
210 
211 	dev_err(this->dev, "Show GPMI registers :\n");
212 	for (i = 0; i <= HW_GPMI_DEBUG / 0x10 + 1; i++) {
213 		reg = readl(r->gpmi_regs + i * 0x10);
214 		dev_err(this->dev, "offset 0x%.3x : 0x%.8x\n", i * 0x10, reg);
215 	}
216 
217 	/* start to print out the BCH info */
218 	dev_err(this->dev, "Show BCH registers :\n");
219 	for (i = 0; i <= HW_BCH_VERSION / 0x10 + 1; i++) {
220 		reg = readl(r->bch_regs + i * 0x10);
221 		dev_err(this->dev, "offset 0x%.3x : 0x%.8x\n", i * 0x10, reg);
222 	}
223 	dev_err(this->dev, "BCH Geometry :\n"
224 		"GF length              : %u\n"
225 		"ECC Strength           : %u\n"
226 		"Page Size in Bytes     : %u\n"
227 		"Metadata Size in Bytes : %u\n"
228 		"ECC Chunk Size in Bytes: %u\n"
229 		"ECC Chunk Count        : %u\n"
230 		"Payload Size in Bytes  : %u\n"
231 		"Auxiliary Size in Bytes: %u\n"
232 		"Auxiliary Status Offset: %u\n"
233 		"Block Mark Byte Offset : %u\n"
234 		"Block Mark Bit Offset  : %u\n",
235 		geo->gf_len,
236 		geo->ecc_strength,
237 		geo->page_size,
238 		geo->metadata_size,
239 		geo->ecc_chunk_size,
240 		geo->ecc_chunk_count,
241 		geo->payload_size,
242 		geo->auxiliary_size,
243 		geo->auxiliary_status_offset,
244 		geo->block_mark_byte_offset,
245 		geo->block_mark_bit_offset);
246 }
247 
248 /* Configures the geometry for BCH.  */
bch_set_geometry(struct gpmi_nand_data * this)249 int bch_set_geometry(struct gpmi_nand_data *this)
250 {
251 	struct resources *r = &this->resources;
252 	struct bch_geometry *bch_geo = &this->bch_geometry;
253 	unsigned int block_count;
254 	unsigned int block_size;
255 	unsigned int metadata_size;
256 	unsigned int ecc_strength;
257 	unsigned int page_size;
258 	unsigned int gf_len;
259 	int ret;
260 
261 	if (common_nfc_set_geometry(this))
262 		return !0;
263 
264 	block_count   = bch_geo->ecc_chunk_count - 1;
265 	block_size    = bch_geo->ecc_chunk_size;
266 	metadata_size = bch_geo->metadata_size;
267 	ecc_strength  = bch_geo->ecc_strength >> 1;
268 	page_size     = bch_geo->page_size;
269 	gf_len        = bch_geo->gf_len;
270 
271 	ret = gpmi_enable_clk(this);
272 	if (ret)
273 		goto err_out;
274 
275 	/*
276 	* Due to erratum #2847 of the MX23, the BCH cannot be soft reset on this
277 	* chip, otherwise it will lock up. So we skip resetting BCH on the MX23.
278 	* On the other hand, the MX28 needs the reset, because one case has been
279 	* seen where the BCH produced ECC errors constantly after 10000
280 	* consecutive reboots. The latter case has not been seen on the MX23
281 	* yet, still we don't know if it could happen there as well.
282 	*/
283 	ret = gpmi_reset_block(r->bch_regs, GPMI_IS_MX23(this));
284 	if (ret)
285 		goto err_out;
286 
287 	/* Configure layout 0. */
288 	writel(BF_BCH_FLASH0LAYOUT0_NBLOCKS(block_count)
289 			| BF_BCH_FLASH0LAYOUT0_META_SIZE(metadata_size)
290 			| BF_BCH_FLASH0LAYOUT0_ECC0(ecc_strength, this)
291 			| BF_BCH_FLASH0LAYOUT0_GF(gf_len, this)
292 			| BF_BCH_FLASH0LAYOUT0_DATA0_SIZE(block_size, this),
293 			r->bch_regs + HW_BCH_FLASH0LAYOUT0);
294 
295 	writel(BF_BCH_FLASH0LAYOUT1_PAGE_SIZE(page_size)
296 			| BF_BCH_FLASH0LAYOUT1_ECCN(ecc_strength, this)
297 			| BF_BCH_FLASH0LAYOUT1_GF(gf_len, this)
298 			| BF_BCH_FLASH0LAYOUT1_DATAN_SIZE(block_size, this),
299 			r->bch_regs + HW_BCH_FLASH0LAYOUT1);
300 
301 	/* Set *all* chip selects to use layout 0. */
302 	writel(0, r->bch_regs + HW_BCH_LAYOUTSELECT);
303 
304 	/* Enable interrupts. */
305 	writel(BM_BCH_CTRL_COMPLETE_IRQ_EN,
306 				r->bch_regs + HW_BCH_CTRL_SET);
307 
308 	gpmi_disable_clk(this);
309 	return 0;
310 err_out:
311 	return ret;
312 }
313 
314 /* Converts time in nanoseconds to cycles. */
ns_to_cycles(unsigned int time,unsigned int period,unsigned int min)315 static unsigned int ns_to_cycles(unsigned int time,
316 			unsigned int period, unsigned int min)
317 {
318 	unsigned int k;
319 
320 	k = (time + period - 1) / period;
321 	return max(k, min);
322 }
323 
324 #define DEF_MIN_PROP_DELAY	5
325 #define DEF_MAX_PROP_DELAY	9
326 /* Apply timing to current hardware conditions. */
gpmi_nfc_compute_hardware_timing(struct gpmi_nand_data * this,struct gpmi_nfc_hardware_timing * hw)327 static int gpmi_nfc_compute_hardware_timing(struct gpmi_nand_data *this,
328 					struct gpmi_nfc_hardware_timing *hw)
329 {
330 	struct timing_threshod *nfc = &timing_default_threshold;
331 	struct resources *r = &this->resources;
332 	struct nand_chip *nand = &this->nand;
333 	struct nand_timing target = this->timing;
334 	bool improved_timing_is_available;
335 	unsigned long clock_frequency_in_hz;
336 	unsigned int clock_period_in_ns;
337 	bool dll_use_half_periods;
338 	unsigned int dll_delay_shift;
339 	unsigned int max_sample_delay_in_ns;
340 	unsigned int address_setup_in_cycles;
341 	unsigned int data_setup_in_ns;
342 	unsigned int data_setup_in_cycles;
343 	unsigned int data_hold_in_cycles;
344 	int ideal_sample_delay_in_ns;
345 	unsigned int sample_delay_factor;
346 	int tEYE;
347 	unsigned int min_prop_delay_in_ns = DEF_MIN_PROP_DELAY;
348 	unsigned int max_prop_delay_in_ns = DEF_MAX_PROP_DELAY;
349 
350 	/*
351 	 * If there are multiple chips, we need to relax the timings to allow
352 	 * for signal distortion due to higher capacitance.
353 	 */
354 	if (nand->numchips > 2) {
355 		target.data_setup_in_ns    += 10;
356 		target.data_hold_in_ns     += 10;
357 		target.address_setup_in_ns += 10;
358 	} else if (nand->numchips > 1) {
359 		target.data_setup_in_ns    += 5;
360 		target.data_hold_in_ns     += 5;
361 		target.address_setup_in_ns += 5;
362 	}
363 
364 	/* Check if improved timing information is available. */
365 	improved_timing_is_available =
366 		(target.tREA_in_ns  >= 0) &&
367 		(target.tRLOH_in_ns >= 0) &&
368 		(target.tRHOH_in_ns >= 0);
369 
370 	/* Inspect the clock. */
371 	nfc->clock_frequency_in_hz = clk_get_rate(r->clock[0]);
372 	clock_frequency_in_hz = nfc->clock_frequency_in_hz;
373 	clock_period_in_ns    = NSEC_PER_SEC / clock_frequency_in_hz;
374 
375 	/*
376 	 * The NFC quantizes setup and hold parameters in terms of clock cycles.
377 	 * Here, we quantize the setup and hold timing parameters to the
378 	 * next-highest clock period to make sure we apply at least the
379 	 * specified times.
380 	 *
381 	 * For data setup and data hold, the hardware interprets a value of zero
382 	 * as the largest possible delay. This is not what's intended by a zero
383 	 * in the input parameter, so we impose a minimum of one cycle.
384 	 */
385 	data_setup_in_cycles    = ns_to_cycles(target.data_setup_in_ns,
386 							clock_period_in_ns, 1);
387 	data_hold_in_cycles     = ns_to_cycles(target.data_hold_in_ns,
388 							clock_period_in_ns, 1);
389 	address_setup_in_cycles = ns_to_cycles(target.address_setup_in_ns,
390 							clock_period_in_ns, 0);
391 
392 	/*
393 	 * The clock's period affects the sample delay in a number of ways:
394 	 *
395 	 * (1) The NFC HAL tells us the maximum clock period the sample delay
396 	 *     DLL can tolerate. If the clock period is greater than half that
397 	 *     maximum, we must configure the DLL to be driven by half periods.
398 	 *
399 	 * (2) We need to convert from an ideal sample delay, in ns, to a
400 	 *     "sample delay factor," which the NFC uses. This factor depends on
401 	 *     whether we're driving the DLL with full or half periods.
402 	 *     Paraphrasing the reference manual:
403 	 *
404 	 *         AD = SDF x 0.125 x RP
405 	 *
406 	 * where:
407 	 *
408 	 *     AD   is the applied delay, in ns.
409 	 *     SDF  is the sample delay factor, which is dimensionless.
410 	 *     RP   is the reference period, in ns, which is a full clock period
411 	 *          if the DLL is being driven by full periods, or half that if
412 	 *          the DLL is being driven by half periods.
413 	 *
414 	 * Let's re-arrange this in a way that's more useful to us:
415 	 *
416 	 *                        8
417 	 *         SDF  =  AD x ----
418 	 *                       RP
419 	 *
420 	 * The reference period is either the clock period or half that, so this
421 	 * is:
422 	 *
423 	 *                        8       AD x DDF
424 	 *         SDF  =  AD x -----  =  --------
425 	 *                      f x P        P
426 	 *
427 	 * where:
428 	 *
429 	 *       f  is 1 or 1/2, depending on how we're driving the DLL.
430 	 *       P  is the clock period.
431 	 *     DDF  is the DLL Delay Factor, a dimensionless value that
432 	 *          incorporates all the constants in the conversion.
433 	 *
434 	 * DDF will be either 8 or 16, both of which are powers of two. We can
435 	 * reduce the cost of this conversion by using bit shifts instead of
436 	 * multiplication or division. Thus:
437 	 *
438 	 *                 AD << DDS
439 	 *         SDF  =  ---------
440 	 *                     P
441 	 *
442 	 *     or
443 	 *
444 	 *         AD  =  (SDF >> DDS) x P
445 	 *
446 	 * where:
447 	 *
448 	 *     DDS  is the DLL Delay Shift, the logarithm to base 2 of the DDF.
449 	 */
450 	if (clock_period_in_ns > (nfc->max_dll_clock_period_in_ns >> 1)) {
451 		dll_use_half_periods = true;
452 		dll_delay_shift      = 3 + 1;
453 	} else {
454 		dll_use_half_periods = false;
455 		dll_delay_shift      = 3;
456 	}
457 
458 	/*
459 	 * Compute the maximum sample delay the NFC allows, under current
460 	 * conditions. If the clock is running too slowly, no sample delay is
461 	 * possible.
462 	 */
463 	if (clock_period_in_ns > nfc->max_dll_clock_period_in_ns)
464 		max_sample_delay_in_ns = 0;
465 	else {
466 		/*
467 		 * Compute the delay implied by the largest sample delay factor
468 		 * the NFC allows.
469 		 */
470 		max_sample_delay_in_ns =
471 			(nfc->max_sample_delay_factor * clock_period_in_ns) >>
472 								dll_delay_shift;
473 
474 		/*
475 		 * Check if the implied sample delay larger than the NFC
476 		 * actually allows.
477 		 */
478 		if (max_sample_delay_in_ns > nfc->max_dll_delay_in_ns)
479 			max_sample_delay_in_ns = nfc->max_dll_delay_in_ns;
480 	}
481 
482 	/*
483 	 * Check if improved timing information is available. If not, we have to
484 	 * use a less-sophisticated algorithm.
485 	 */
486 	if (!improved_timing_is_available) {
487 		/*
488 		 * Fold the read setup time required by the NFC into the ideal
489 		 * sample delay.
490 		 */
491 		ideal_sample_delay_in_ns = target.gpmi_sample_delay_in_ns +
492 						nfc->internal_data_setup_in_ns;
493 
494 		/*
495 		 * The ideal sample delay may be greater than the maximum
496 		 * allowed by the NFC. If so, we can trade off sample delay time
497 		 * for more data setup time.
498 		 *
499 		 * In each iteration of the following loop, we add a cycle to
500 		 * the data setup time and subtract a corresponding amount from
501 		 * the sample delay until we've satisified the constraints or
502 		 * can't do any better.
503 		 */
504 		while ((ideal_sample_delay_in_ns > max_sample_delay_in_ns) &&
505 			(data_setup_in_cycles < nfc->max_data_setup_cycles)) {
506 
507 			data_setup_in_cycles++;
508 			ideal_sample_delay_in_ns -= clock_period_in_ns;
509 
510 			if (ideal_sample_delay_in_ns < 0)
511 				ideal_sample_delay_in_ns = 0;
512 
513 		}
514 
515 		/*
516 		 * Compute the sample delay factor that corresponds most closely
517 		 * to the ideal sample delay. If the result is too large for the
518 		 * NFC, use the maximum value.
519 		 *
520 		 * Notice that we use the ns_to_cycles function to compute the
521 		 * sample delay factor. We do this because the form of the
522 		 * computation is the same as that for calculating cycles.
523 		 */
524 		sample_delay_factor =
525 			ns_to_cycles(
526 				ideal_sample_delay_in_ns << dll_delay_shift,
527 							clock_period_in_ns, 0);
528 
529 		if (sample_delay_factor > nfc->max_sample_delay_factor)
530 			sample_delay_factor = nfc->max_sample_delay_factor;
531 
532 		/* Skip to the part where we return our results. */
533 		goto return_results;
534 	}
535 
536 	/*
537 	 * If control arrives here, we have more detailed timing information,
538 	 * so we can use a better algorithm.
539 	 */
540 
541 	/*
542 	 * Fold the read setup time required by the NFC into the maximum
543 	 * propagation delay.
544 	 */
545 	max_prop_delay_in_ns += nfc->internal_data_setup_in_ns;
546 
547 	/*
548 	 * Earlier, we computed the number of clock cycles required to satisfy
549 	 * the data setup time. Now, we need to know the actual nanoseconds.
550 	 */
551 	data_setup_in_ns = clock_period_in_ns * data_setup_in_cycles;
552 
553 	/*
554 	 * Compute tEYE, the width of the data eye when reading from the NAND
555 	 * Flash. The eye width is fundamentally determined by the data setup
556 	 * time, perturbed by propagation delays and some characteristics of the
557 	 * NAND Flash device.
558 	 *
559 	 * start of the eye = max_prop_delay + tREA
560 	 * end of the eye   = min_prop_delay + tRHOH + data_setup
561 	 */
562 	tEYE = (int)min_prop_delay_in_ns + (int)target.tRHOH_in_ns +
563 							(int)data_setup_in_ns;
564 
565 	tEYE -= (int)max_prop_delay_in_ns + (int)target.tREA_in_ns;
566 
567 	/*
568 	 * The eye must be open. If it's not, we can try to open it by
569 	 * increasing its main forcer, the data setup time.
570 	 *
571 	 * In each iteration of the following loop, we increase the data setup
572 	 * time by a single clock cycle. We do this until either the eye is
573 	 * open or we run into NFC limits.
574 	 */
575 	while ((tEYE <= 0) &&
576 			(data_setup_in_cycles < nfc->max_data_setup_cycles)) {
577 		/* Give a cycle to data setup. */
578 		data_setup_in_cycles++;
579 		/* Synchronize the data setup time with the cycles. */
580 		data_setup_in_ns += clock_period_in_ns;
581 		/* Adjust tEYE accordingly. */
582 		tEYE += clock_period_in_ns;
583 	}
584 
585 	/*
586 	 * When control arrives here, the eye is open. The ideal time to sample
587 	 * the data is in the center of the eye:
588 	 *
589 	 *     end of the eye + start of the eye
590 	 *     ---------------------------------  -  data_setup
591 	 *                    2
592 	 *
593 	 * After some algebra, this simplifies to the code immediately below.
594 	 */
595 	ideal_sample_delay_in_ns =
596 		((int)max_prop_delay_in_ns +
597 			(int)target.tREA_in_ns +
598 				(int)min_prop_delay_in_ns +
599 					(int)target.tRHOH_in_ns -
600 						(int)data_setup_in_ns) >> 1;
601 
602 	/*
603 	 * The following figure illustrates some aspects of a NAND Flash read:
604 	 *
605 	 *
606 	 *           __                   _____________________________________
607 	 * RDN         \_________________/
608 	 *
609 	 *                                         <---- tEYE ----->
610 	 *                                        /-----------------\
611 	 * Read Data ----------------------------<                   >---------
612 	 *                                        \-----------------/
613 	 *             ^                 ^                 ^              ^
614 	 *             |                 |                 |              |
615 	 *             |<--Data Setup -->|<--Delay Time -->|              |
616 	 *             |                 |                 |              |
617 	 *             |                 |                                |
618 	 *             |                 |<--   Quantized Delay Time   -->|
619 	 *             |                 |                                |
620 	 *
621 	 *
622 	 * We have some issues we must now address:
623 	 *
624 	 * (1) The *ideal* sample delay time must not be negative. If it is, we
625 	 *     jam it to zero.
626 	 *
627 	 * (2) The *ideal* sample delay time must not be greater than that
628 	 *     allowed by the NFC. If it is, we can increase the data setup
629 	 *     time, which will reduce the delay between the end of the data
630 	 *     setup and the center of the eye. It will also make the eye
631 	 *     larger, which might help with the next issue...
632 	 *
633 	 * (3) The *quantized* sample delay time must not fall either before the
634 	 *     eye opens or after it closes (the latter is the problem
635 	 *     illustrated in the above figure).
636 	 */
637 
638 	/* Jam a negative ideal sample delay to zero. */
639 	if (ideal_sample_delay_in_ns < 0)
640 		ideal_sample_delay_in_ns = 0;
641 
642 	/*
643 	 * Extend the data setup as needed to reduce the ideal sample delay
644 	 * below the maximum permitted by the NFC.
645 	 */
646 	while ((ideal_sample_delay_in_ns > max_sample_delay_in_ns) &&
647 			(data_setup_in_cycles < nfc->max_data_setup_cycles)) {
648 
649 		/* Give a cycle to data setup. */
650 		data_setup_in_cycles++;
651 		/* Synchronize the data setup time with the cycles. */
652 		data_setup_in_ns += clock_period_in_ns;
653 		/* Adjust tEYE accordingly. */
654 		tEYE += clock_period_in_ns;
655 
656 		/*
657 		 * Decrease the ideal sample delay by one half cycle, to keep it
658 		 * in the middle of the eye.
659 		 */
660 		ideal_sample_delay_in_ns -= (clock_period_in_ns >> 1);
661 
662 		/* Jam a negative ideal sample delay to zero. */
663 		if (ideal_sample_delay_in_ns < 0)
664 			ideal_sample_delay_in_ns = 0;
665 	}
666 
667 	/*
668 	 * Compute the sample delay factor that corresponds to the ideal sample
669 	 * delay. If the result is too large, then use the maximum allowed
670 	 * value.
671 	 *
672 	 * Notice that we use the ns_to_cycles function to compute the sample
673 	 * delay factor. We do this because the form of the computation is the
674 	 * same as that for calculating cycles.
675 	 */
676 	sample_delay_factor =
677 		ns_to_cycles(ideal_sample_delay_in_ns << dll_delay_shift,
678 							clock_period_in_ns, 0);
679 
680 	if (sample_delay_factor > nfc->max_sample_delay_factor)
681 		sample_delay_factor = nfc->max_sample_delay_factor;
682 
683 	/*
684 	 * These macros conveniently encapsulate a computation we'll use to
685 	 * continuously evaluate whether or not the data sample delay is inside
686 	 * the eye.
687 	 */
688 	#define IDEAL_DELAY  ((int) ideal_sample_delay_in_ns)
689 
690 	#define QUANTIZED_DELAY  \
691 		((int) ((sample_delay_factor * clock_period_in_ns) >> \
692 							dll_delay_shift))
693 
694 	#define DELAY_ERROR  (abs(QUANTIZED_DELAY - IDEAL_DELAY))
695 
696 	#define SAMPLE_IS_NOT_WITHIN_THE_EYE  (DELAY_ERROR > (tEYE >> 1))
697 
698 	/*
699 	 * While the quantized sample time falls outside the eye, reduce the
700 	 * sample delay or extend the data setup to move the sampling point back
701 	 * toward the eye. Do not allow the number of data setup cycles to
702 	 * exceed the maximum allowed by the NFC.
703 	 */
704 	while (SAMPLE_IS_NOT_WITHIN_THE_EYE &&
705 			(data_setup_in_cycles < nfc->max_data_setup_cycles)) {
706 		/*
707 		 * If control arrives here, the quantized sample delay falls
708 		 * outside the eye. Check if it's before the eye opens, or after
709 		 * the eye closes.
710 		 */
711 		if (QUANTIZED_DELAY > IDEAL_DELAY) {
712 			/*
713 			 * If control arrives here, the quantized sample delay
714 			 * falls after the eye closes. Decrease the quantized
715 			 * delay time and then go back to re-evaluate.
716 			 */
717 			if (sample_delay_factor != 0)
718 				sample_delay_factor--;
719 			continue;
720 		}
721 
722 		/*
723 		 * If control arrives here, the quantized sample delay falls
724 		 * before the eye opens. Shift the sample point by increasing
725 		 * data setup time. This will also make the eye larger.
726 		 */
727 
728 		/* Give a cycle to data setup. */
729 		data_setup_in_cycles++;
730 		/* Synchronize the data setup time with the cycles. */
731 		data_setup_in_ns += clock_period_in_ns;
732 		/* Adjust tEYE accordingly. */
733 		tEYE += clock_period_in_ns;
734 
735 		/*
736 		 * Decrease the ideal sample delay by one half cycle, to keep it
737 		 * in the middle of the eye.
738 		 */
739 		ideal_sample_delay_in_ns -= (clock_period_in_ns >> 1);
740 
741 		/* ...and one less period for the delay time. */
742 		ideal_sample_delay_in_ns -= clock_period_in_ns;
743 
744 		/* Jam a negative ideal sample delay to zero. */
745 		if (ideal_sample_delay_in_ns < 0)
746 			ideal_sample_delay_in_ns = 0;
747 
748 		/*
749 		 * We have a new ideal sample delay, so re-compute the quantized
750 		 * delay.
751 		 */
752 		sample_delay_factor =
753 			ns_to_cycles(
754 				ideal_sample_delay_in_ns << dll_delay_shift,
755 							clock_period_in_ns, 0);
756 
757 		if (sample_delay_factor > nfc->max_sample_delay_factor)
758 			sample_delay_factor = nfc->max_sample_delay_factor;
759 	}
760 
761 	/* Control arrives here when we're ready to return our results. */
762 return_results:
763 	hw->data_setup_in_cycles    = data_setup_in_cycles;
764 	hw->data_hold_in_cycles     = data_hold_in_cycles;
765 	hw->address_setup_in_cycles = address_setup_in_cycles;
766 	hw->use_half_periods        = dll_use_half_periods;
767 	hw->sample_delay_factor     = sample_delay_factor;
768 	hw->device_busy_timeout     = GPMI_DEFAULT_BUSY_TIMEOUT;
769 	hw->wrn_dly_sel             = BV_GPMI_CTRL1_WRN_DLY_SEL_4_TO_8NS;
770 
771 	/* Return success. */
772 	return 0;
773 }
774 
775 /*
776  * <1> Firstly, we should know what's the GPMI-clock means.
777  *     The GPMI-clock is the internal clock in the gpmi nand controller.
778  *     If you set 100MHz to gpmi nand controller, the GPMI-clock's period
779  *     is 10ns. Mark the GPMI-clock's period as GPMI-clock-period.
780  *
781  * <2> Secondly, we should know what's the frequency on the nand chip pins.
782  *     The frequency on the nand chip pins is derived from the GPMI-clock.
783  *     We can get it from the following equation:
784  *
785  *         F = G / (DS + DH)
786  *
787  *         F  : the frequency on the nand chip pins.
788  *         G  : the GPMI clock, such as 100MHz.
789  *         DS : GPMI_HW_GPMI_TIMING0:DATA_SETUP
790  *         DH : GPMI_HW_GPMI_TIMING0:DATA_HOLD
791  *
792  * <3> Thirdly, when the frequency on the nand chip pins is above 33MHz,
793  *     the nand EDO(extended Data Out) timing could be applied.
794  *     The GPMI implements a feedback read strobe to sample the read data.
795  *     The feedback read strobe can be delayed to support the nand EDO timing
796  *     where the read strobe may deasserts before the read data is valid, and
797  *     read data is valid for some time after read strobe.
798  *
799  *     The following figure illustrates some aspects of a NAND Flash read:
800  *
801  *                   |<---tREA---->|
802  *                   |             |
803  *                   |         |   |
804  *                   |<--tRP-->|   |
805  *                   |         |   |
806  *                  __          ___|__________________________________
807  *     RDN            \________/   |
808  *                                 |
809  *                                 /---------\
810  *     Read Data    --------------<           >---------
811  *                                 \---------/
812  *                                |     |
813  *                                |<-D->|
814  *     FeedbackRDN  ________             ____________
815  *                          \___________/
816  *
817  *          D stands for delay, set in the HW_GPMI_CTRL1:RDN_DELAY.
818  *
819  *
820  * <4> Now, we begin to describe how to compute the right RDN_DELAY.
821  *
822  *  4.1) From the aspect of the nand chip pins:
823  *        Delay = (tREA + C - tRP)               {1}
824  *
825  *        tREA : the maximum read access time. From the ONFI nand standards,
826  *               we know that tREA is 16ns in mode 5, tREA is 20ns is mode 4.
827  *               Please check it in : www.onfi.org
828  *        C    : a constant for adjust the delay. default is 4.
829  *        tRP  : the read pulse width.
830  *               Specified by the HW_GPMI_TIMING0:DATA_SETUP:
831  *                    tRP = (GPMI-clock-period) * DATA_SETUP
832  *
833  *  4.2) From the aspect of the GPMI nand controller:
834  *         Delay = RDN_DELAY * 0.125 * RP        {2}
835  *
836  *         RP   : the DLL reference period.
837  *            if (GPMI-clock-period > DLL_THRETHOLD)
838  *                   RP = GPMI-clock-period / 2;
839  *            else
840  *                   RP = GPMI-clock-period;
841  *
842  *            Set the HW_GPMI_CTRL1:HALF_PERIOD if GPMI-clock-period
843  *            is greater DLL_THRETHOLD. In other SOCs, the DLL_THRETHOLD
844  *            is 16ns, but in mx6q, we use 12ns.
845  *
846  *  4.3) since {1} equals {2}, we get:
847  *
848  *                    (tREA + 4 - tRP) * 8
849  *         RDN_DELAY = ---------------------     {3}
850  *                           RP
851  *
852  *  4.4) We only support the fastest asynchronous mode of ONFI nand.
853  *       For some ONFI nand, the mode 4 is the fastest mode;
854  *       while for some ONFI nand, the mode 5 is the fastest mode.
855  *       So we only support the mode 4 and mode 5. It is no need to
856  *       support other modes.
857  */
gpmi_compute_edo_timing(struct gpmi_nand_data * this,struct gpmi_nfc_hardware_timing * hw)858 static void gpmi_compute_edo_timing(struct gpmi_nand_data *this,
859 			struct gpmi_nfc_hardware_timing *hw)
860 {
861 	struct resources *r = &this->resources;
862 	unsigned long rate = clk_get_rate(r->clock[0]);
863 	int mode = this->timing_mode;
864 	int dll_threshold = this->devdata->max_chain_delay;
865 	unsigned long delay;
866 	unsigned long clk_period;
867 	int t_rea;
868 	int c = 4;
869 	int t_rp;
870 	int rp;
871 
872 	/*
873 	 * [1] for GPMI_HW_GPMI_TIMING0:
874 	 *     The async mode requires 40MHz for mode 4, 50MHz for mode 5.
875 	 *     The GPMI can support 100MHz at most. So if we want to
876 	 *     get the 40MHz or 50MHz, we have to set DS=1, DH=1.
877 	 *     Set the ADDRESS_SETUP to 0 in mode 4.
878 	 */
879 	hw->data_setup_in_cycles = 1;
880 	hw->data_hold_in_cycles = 1;
881 	hw->address_setup_in_cycles = ((mode == 5) ? 1 : 0);
882 
883 	/* [2] for GPMI_HW_GPMI_TIMING1 */
884 	hw->device_busy_timeout = 0x9000;
885 
886 	/* [3] for GPMI_HW_GPMI_CTRL1 */
887 	hw->wrn_dly_sel = BV_GPMI_CTRL1_WRN_DLY_SEL_NO_DELAY;
888 
889 	/*
890 	 * Enlarge 10 times for the numerator and denominator in {3}.
891 	 * This make us to get more accurate result.
892 	 */
893 	clk_period = NSEC_PER_SEC / (rate / 10);
894 	dll_threshold *= 10;
895 	t_rea = ((mode == 5) ? 16 : 20) * 10;
896 	c *= 10;
897 
898 	t_rp = clk_period * 1; /* DATA_SETUP is 1 */
899 
900 	if (clk_period > dll_threshold) {
901 		hw->use_half_periods = 1;
902 		rp = clk_period / 2;
903 	} else {
904 		hw->use_half_periods = 0;
905 		rp = clk_period;
906 	}
907 
908 	/*
909 	 * Multiply the numerator with 10, we could do a round off:
910 	 *      7.8 round up to 8; 7.4 round down to 7.
911 	 */
912 	delay  = (((t_rea + c - t_rp) * 8) * 10) / rp;
913 	delay = (delay + 5) / 10;
914 
915 	hw->sample_delay_factor = delay;
916 }
917 
enable_edo_mode(struct gpmi_nand_data * this,int mode)918 static int enable_edo_mode(struct gpmi_nand_data *this, int mode)
919 {
920 	struct resources  *r = &this->resources;
921 	struct nand_chip *nand = &this->nand;
922 	struct mtd_info	 *mtd = &this->mtd;
923 	uint8_t *feature;
924 	unsigned long rate;
925 	int ret;
926 
927 	feature = kzalloc(ONFI_SUBFEATURE_PARAM_LEN, GFP_KERNEL);
928 	if (!feature)
929 		return -ENOMEM;
930 
931 	nand->select_chip(mtd, 0);
932 
933 	/* [1] send SET FEATURE commond to NAND */
934 	feature[0] = mode;
935 	ret = nand->onfi_set_features(mtd, nand,
936 				ONFI_FEATURE_ADDR_TIMING_MODE, feature);
937 	if (ret)
938 		goto err_out;
939 
940 	/* [2] send GET FEATURE command to double-check the timing mode */
941 	memset(feature, 0, ONFI_SUBFEATURE_PARAM_LEN);
942 	ret = nand->onfi_get_features(mtd, nand,
943 				ONFI_FEATURE_ADDR_TIMING_MODE, feature);
944 	if (ret || feature[0] != mode)
945 		goto err_out;
946 
947 	nand->select_chip(mtd, -1);
948 
949 	/* [3] set the main IO clock, 100MHz for mode 5, 80MHz for mode 4. */
950 	rate = (mode == 5) ? 100000000 : 80000000;
951 	clk_set_rate(r->clock[0], rate);
952 
953 	/* Let the gpmi_begin() re-compute the timing again. */
954 	this->flags &= ~GPMI_TIMING_INIT_OK;
955 
956 	this->flags |= GPMI_ASYNC_EDO_ENABLED;
957 	this->timing_mode = mode;
958 	kfree(feature);
959 	dev_info(this->dev, "enable the asynchronous EDO mode %d\n", mode);
960 	return 0;
961 
962 err_out:
963 	nand->select_chip(mtd, -1);
964 	kfree(feature);
965 	dev_err(this->dev, "mode:%d ,failed in set feature.\n", mode);
966 	return -EINVAL;
967 }
968 
gpmi_extra_init(struct gpmi_nand_data * this)969 int gpmi_extra_init(struct gpmi_nand_data *this)
970 {
971 	struct nand_chip *chip = &this->nand;
972 
973 	/* Enable the asynchronous EDO feature. */
974 	if (GPMI_IS_MX6(this) && chip->onfi_version) {
975 		int mode = onfi_get_async_timing_mode(chip);
976 
977 		/* We only support the timing mode 4 and mode 5. */
978 		if (mode & ONFI_TIMING_MODE_5)
979 			mode = 5;
980 		else if (mode & ONFI_TIMING_MODE_4)
981 			mode = 4;
982 		else
983 			return 0;
984 
985 		return enable_edo_mode(this, mode);
986 	}
987 	return 0;
988 }
989 
990 /* Begin the I/O */
gpmi_begin(struct gpmi_nand_data * this)991 void gpmi_begin(struct gpmi_nand_data *this)
992 {
993 	struct resources *r = &this->resources;
994 	void __iomem *gpmi_regs = r->gpmi_regs;
995 	unsigned int   clock_period_in_ns;
996 	uint32_t       reg;
997 	unsigned int   dll_wait_time_in_us;
998 	struct gpmi_nfc_hardware_timing  hw;
999 	int ret;
1000 
1001 	/* Enable the clock. */
1002 	ret = gpmi_enable_clk(this);
1003 	if (ret) {
1004 		dev_err(this->dev, "We failed in enable the clk\n");
1005 		goto err_out;
1006 	}
1007 
1008 	/* Only initialize the timing once */
1009 	if (this->flags & GPMI_TIMING_INIT_OK)
1010 		return;
1011 	this->flags |= GPMI_TIMING_INIT_OK;
1012 
1013 	if (this->flags & GPMI_ASYNC_EDO_ENABLED)
1014 		gpmi_compute_edo_timing(this, &hw);
1015 	else
1016 		gpmi_nfc_compute_hardware_timing(this, &hw);
1017 
1018 	/* [1] Set HW_GPMI_TIMING0 */
1019 	reg = BF_GPMI_TIMING0_ADDRESS_SETUP(hw.address_setup_in_cycles) |
1020 		BF_GPMI_TIMING0_DATA_HOLD(hw.data_hold_in_cycles)         |
1021 		BF_GPMI_TIMING0_DATA_SETUP(hw.data_setup_in_cycles);
1022 
1023 	writel(reg, gpmi_regs + HW_GPMI_TIMING0);
1024 
1025 	/* [2] Set HW_GPMI_TIMING1 */
1026 	writel(BF_GPMI_TIMING1_BUSY_TIMEOUT(hw.device_busy_timeout),
1027 		gpmi_regs + HW_GPMI_TIMING1);
1028 
1029 	/* [3] The following code is to set the HW_GPMI_CTRL1. */
1030 
1031 	/* Set the WRN_DLY_SEL */
1032 	writel(BM_GPMI_CTRL1_WRN_DLY_SEL, gpmi_regs + HW_GPMI_CTRL1_CLR);
1033 	writel(BF_GPMI_CTRL1_WRN_DLY_SEL(hw.wrn_dly_sel),
1034 					gpmi_regs + HW_GPMI_CTRL1_SET);
1035 
1036 	/* DLL_ENABLE must be set to 0 when setting RDN_DELAY or HALF_PERIOD. */
1037 	writel(BM_GPMI_CTRL1_DLL_ENABLE, gpmi_regs + HW_GPMI_CTRL1_CLR);
1038 
1039 	/* Clear out the DLL control fields. */
1040 	reg = BM_GPMI_CTRL1_RDN_DELAY | BM_GPMI_CTRL1_HALF_PERIOD;
1041 	writel(reg, gpmi_regs + HW_GPMI_CTRL1_CLR);
1042 
1043 	/* If no sample delay is called for, return immediately. */
1044 	if (!hw.sample_delay_factor)
1045 		return;
1046 
1047 	/* Set RDN_DELAY or HALF_PERIOD. */
1048 	reg = ((hw.use_half_periods) ? BM_GPMI_CTRL1_HALF_PERIOD : 0)
1049 		| BF_GPMI_CTRL1_RDN_DELAY(hw.sample_delay_factor);
1050 
1051 	writel(reg, gpmi_regs + HW_GPMI_CTRL1_SET);
1052 
1053 	/* At last, we enable the DLL. */
1054 	writel(BM_GPMI_CTRL1_DLL_ENABLE, gpmi_regs + HW_GPMI_CTRL1_SET);
1055 
1056 	/*
1057 	 * After we enable the GPMI DLL, we have to wait 64 clock cycles before
1058 	 * we can use the GPMI. Calculate the amount of time we need to wait,
1059 	 * in microseconds.
1060 	 */
1061 	clock_period_in_ns = NSEC_PER_SEC / clk_get_rate(r->clock[0]);
1062 	dll_wait_time_in_us = (clock_period_in_ns * 64) / 1000;
1063 
1064 	if (!dll_wait_time_in_us)
1065 		dll_wait_time_in_us = 1;
1066 
1067 	/* Wait for the DLL to settle. */
1068 	udelay(dll_wait_time_in_us);
1069 
1070 err_out:
1071 	return;
1072 }
1073 
gpmi_end(struct gpmi_nand_data * this)1074 void gpmi_end(struct gpmi_nand_data *this)
1075 {
1076 	gpmi_disable_clk(this);
1077 }
1078 
1079 /* Clears a BCH interrupt. */
gpmi_clear_bch(struct gpmi_nand_data * this)1080 void gpmi_clear_bch(struct gpmi_nand_data *this)
1081 {
1082 	struct resources *r = &this->resources;
1083 	writel(BM_BCH_CTRL_COMPLETE_IRQ, r->bch_regs + HW_BCH_CTRL_CLR);
1084 }
1085 
1086 /* Returns the Ready/Busy status of the given chip. */
gpmi_is_ready(struct gpmi_nand_data * this,unsigned chip)1087 int gpmi_is_ready(struct gpmi_nand_data *this, unsigned chip)
1088 {
1089 	struct resources *r = &this->resources;
1090 	uint32_t mask = 0;
1091 	uint32_t reg = 0;
1092 
1093 	if (GPMI_IS_MX23(this)) {
1094 		mask = MX23_BM_GPMI_DEBUG_READY0 << chip;
1095 		reg = readl(r->gpmi_regs + HW_GPMI_DEBUG);
1096 	} else if (GPMI_IS_MX28(this) || GPMI_IS_MX6(this)) {
1097 		/*
1098 		 * In the imx6, all the ready/busy pins are bound
1099 		 * together. So we only need to check chip 0.
1100 		 */
1101 		if (GPMI_IS_MX6(this))
1102 			chip = 0;
1103 
1104 		/* MX28 shares the same R/B register as MX6Q. */
1105 		mask = MX28_BF_GPMI_STAT_READY_BUSY(1 << chip);
1106 		reg = readl(r->gpmi_regs + HW_GPMI_STAT);
1107 	} else
1108 		dev_err(this->dev, "unknown arch.\n");
1109 	return reg & mask;
1110 }
1111 
set_dma_type(struct gpmi_nand_data * this,enum dma_ops_type type)1112 static inline void set_dma_type(struct gpmi_nand_data *this,
1113 					enum dma_ops_type type)
1114 {
1115 	this->last_dma_type = this->dma_type;
1116 	this->dma_type = type;
1117 }
1118 
gpmi_send_command(struct gpmi_nand_data * this)1119 int gpmi_send_command(struct gpmi_nand_data *this)
1120 {
1121 	struct dma_chan *channel = get_dma_chan(this);
1122 	struct dma_async_tx_descriptor *desc;
1123 	struct scatterlist *sgl;
1124 	int chip = this->current_chip;
1125 	u32 pio[3];
1126 
1127 	/* [1] send out the PIO words */
1128 	pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__WRITE)
1129 		| BM_GPMI_CTRL0_WORD_LENGTH
1130 		| BF_GPMI_CTRL0_CS(chip, this)
1131 		| BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
1132 		| BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_CLE)
1133 		| BM_GPMI_CTRL0_ADDRESS_INCREMENT
1134 		| BF_GPMI_CTRL0_XFER_COUNT(this->command_length);
1135 	pio[1] = pio[2] = 0;
1136 	desc = dmaengine_prep_slave_sg(channel,
1137 					(struct scatterlist *)pio,
1138 					ARRAY_SIZE(pio), DMA_TRANS_NONE, 0);
1139 	if (!desc)
1140 		return -EINVAL;
1141 
1142 	/* [2] send out the COMMAND + ADDRESS string stored in @buffer */
1143 	sgl = &this->cmd_sgl;
1144 
1145 	sg_init_one(sgl, this->cmd_buffer, this->command_length);
1146 	dma_map_sg(this->dev, sgl, 1, DMA_TO_DEVICE);
1147 	desc = dmaengine_prep_slave_sg(channel,
1148 				sgl, 1, DMA_MEM_TO_DEV,
1149 				DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1150 	if (!desc)
1151 		return -EINVAL;
1152 
1153 	/* [3] submit the DMA */
1154 	set_dma_type(this, DMA_FOR_COMMAND);
1155 	return start_dma_without_bch_irq(this, desc);
1156 }
1157 
gpmi_send_data(struct gpmi_nand_data * this)1158 int gpmi_send_data(struct gpmi_nand_data *this)
1159 {
1160 	struct dma_async_tx_descriptor *desc;
1161 	struct dma_chan *channel = get_dma_chan(this);
1162 	int chip = this->current_chip;
1163 	uint32_t command_mode;
1164 	uint32_t address;
1165 	u32 pio[2];
1166 
1167 	/* [1] PIO */
1168 	command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WRITE;
1169 	address      = BV_GPMI_CTRL0_ADDRESS__NAND_DATA;
1170 
1171 	pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode)
1172 		| BM_GPMI_CTRL0_WORD_LENGTH
1173 		| BF_GPMI_CTRL0_CS(chip, this)
1174 		| BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
1175 		| BF_GPMI_CTRL0_ADDRESS(address)
1176 		| BF_GPMI_CTRL0_XFER_COUNT(this->upper_len);
1177 	pio[1] = 0;
1178 	desc = dmaengine_prep_slave_sg(channel, (struct scatterlist *)pio,
1179 					ARRAY_SIZE(pio), DMA_TRANS_NONE, 0);
1180 	if (!desc)
1181 		return -EINVAL;
1182 
1183 	/* [2] send DMA request */
1184 	prepare_data_dma(this, DMA_TO_DEVICE);
1185 	desc = dmaengine_prep_slave_sg(channel, &this->data_sgl,
1186 					1, DMA_MEM_TO_DEV,
1187 					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1188 	if (!desc)
1189 		return -EINVAL;
1190 
1191 	/* [3] submit the DMA */
1192 	set_dma_type(this, DMA_FOR_WRITE_DATA);
1193 	return start_dma_without_bch_irq(this, desc);
1194 }
1195 
gpmi_read_data(struct gpmi_nand_data * this)1196 int gpmi_read_data(struct gpmi_nand_data *this)
1197 {
1198 	struct dma_async_tx_descriptor *desc;
1199 	struct dma_chan *channel = get_dma_chan(this);
1200 	int chip = this->current_chip;
1201 	u32 pio[2];
1202 
1203 	/* [1] : send PIO */
1204 	pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__READ)
1205 		| BM_GPMI_CTRL0_WORD_LENGTH
1206 		| BF_GPMI_CTRL0_CS(chip, this)
1207 		| BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
1208 		| BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_DATA)
1209 		| BF_GPMI_CTRL0_XFER_COUNT(this->upper_len);
1210 	pio[1] = 0;
1211 	desc = dmaengine_prep_slave_sg(channel,
1212 					(struct scatterlist *)pio,
1213 					ARRAY_SIZE(pio), DMA_TRANS_NONE, 0);
1214 	if (!desc)
1215 		return -EINVAL;
1216 
1217 	/* [2] : send DMA request */
1218 	prepare_data_dma(this, DMA_FROM_DEVICE);
1219 	desc = dmaengine_prep_slave_sg(channel, &this->data_sgl,
1220 					1, DMA_DEV_TO_MEM,
1221 					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1222 	if (!desc)
1223 		return -EINVAL;
1224 
1225 	/* [3] : submit the DMA */
1226 	set_dma_type(this, DMA_FOR_READ_DATA);
1227 	return start_dma_without_bch_irq(this, desc);
1228 }
1229 
gpmi_send_page(struct gpmi_nand_data * this,dma_addr_t payload,dma_addr_t auxiliary)1230 int gpmi_send_page(struct gpmi_nand_data *this,
1231 			dma_addr_t payload, dma_addr_t auxiliary)
1232 {
1233 	struct bch_geometry *geo = &this->bch_geometry;
1234 	uint32_t command_mode;
1235 	uint32_t address;
1236 	uint32_t ecc_command;
1237 	uint32_t buffer_mask;
1238 	struct dma_async_tx_descriptor *desc;
1239 	struct dma_chan *channel = get_dma_chan(this);
1240 	int chip = this->current_chip;
1241 	u32 pio[6];
1242 
1243 	/* A DMA descriptor that does an ECC page read. */
1244 	command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WRITE;
1245 	address      = BV_GPMI_CTRL0_ADDRESS__NAND_DATA;
1246 	ecc_command  = BV_GPMI_ECCCTRL_ECC_CMD__BCH_ENCODE;
1247 	buffer_mask  = BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_PAGE |
1248 				BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_AUXONLY;
1249 
1250 	pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode)
1251 		| BM_GPMI_CTRL0_WORD_LENGTH
1252 		| BF_GPMI_CTRL0_CS(chip, this)
1253 		| BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
1254 		| BF_GPMI_CTRL0_ADDRESS(address)
1255 		| BF_GPMI_CTRL0_XFER_COUNT(0);
1256 	pio[1] = 0;
1257 	pio[2] = BM_GPMI_ECCCTRL_ENABLE_ECC
1258 		| BF_GPMI_ECCCTRL_ECC_CMD(ecc_command)
1259 		| BF_GPMI_ECCCTRL_BUFFER_MASK(buffer_mask);
1260 	pio[3] = geo->page_size;
1261 	pio[4] = payload;
1262 	pio[5] = auxiliary;
1263 
1264 	desc = dmaengine_prep_slave_sg(channel,
1265 					(struct scatterlist *)pio,
1266 					ARRAY_SIZE(pio), DMA_TRANS_NONE,
1267 					DMA_CTRL_ACK);
1268 	if (!desc)
1269 		return -EINVAL;
1270 
1271 	set_dma_type(this, DMA_FOR_WRITE_ECC_PAGE);
1272 	return start_dma_with_bch_irq(this, desc);
1273 }
1274 
gpmi_read_page(struct gpmi_nand_data * this,dma_addr_t payload,dma_addr_t auxiliary)1275 int gpmi_read_page(struct gpmi_nand_data *this,
1276 				dma_addr_t payload, dma_addr_t auxiliary)
1277 {
1278 	struct bch_geometry *geo = &this->bch_geometry;
1279 	uint32_t command_mode;
1280 	uint32_t address;
1281 	uint32_t ecc_command;
1282 	uint32_t buffer_mask;
1283 	struct dma_async_tx_descriptor *desc;
1284 	struct dma_chan *channel = get_dma_chan(this);
1285 	int chip = this->current_chip;
1286 	u32 pio[6];
1287 
1288 	/* [1] Wait for the chip to report ready. */
1289 	command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WAIT_FOR_READY;
1290 	address      = BV_GPMI_CTRL0_ADDRESS__NAND_DATA;
1291 
1292 	pio[0] =  BF_GPMI_CTRL0_COMMAND_MODE(command_mode)
1293 		| BM_GPMI_CTRL0_WORD_LENGTH
1294 		| BF_GPMI_CTRL0_CS(chip, this)
1295 		| BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
1296 		| BF_GPMI_CTRL0_ADDRESS(address)
1297 		| BF_GPMI_CTRL0_XFER_COUNT(0);
1298 	pio[1] = 0;
1299 	desc = dmaengine_prep_slave_sg(channel,
1300 				(struct scatterlist *)pio, 2,
1301 				DMA_TRANS_NONE, 0);
1302 	if (!desc)
1303 		return -EINVAL;
1304 
1305 	/* [2] Enable the BCH block and read. */
1306 	command_mode = BV_GPMI_CTRL0_COMMAND_MODE__READ;
1307 	address      = BV_GPMI_CTRL0_ADDRESS__NAND_DATA;
1308 	ecc_command  = BV_GPMI_ECCCTRL_ECC_CMD__BCH_DECODE;
1309 	buffer_mask  = BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_PAGE
1310 			| BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_AUXONLY;
1311 
1312 	pio[0] =  BF_GPMI_CTRL0_COMMAND_MODE(command_mode)
1313 		| BM_GPMI_CTRL0_WORD_LENGTH
1314 		| BF_GPMI_CTRL0_CS(chip, this)
1315 		| BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
1316 		| BF_GPMI_CTRL0_ADDRESS(address)
1317 		| BF_GPMI_CTRL0_XFER_COUNT(geo->page_size);
1318 
1319 	pio[1] = 0;
1320 	pio[2] =  BM_GPMI_ECCCTRL_ENABLE_ECC
1321 		| BF_GPMI_ECCCTRL_ECC_CMD(ecc_command)
1322 		| BF_GPMI_ECCCTRL_BUFFER_MASK(buffer_mask);
1323 	pio[3] = geo->page_size;
1324 	pio[4] = payload;
1325 	pio[5] = auxiliary;
1326 	desc = dmaengine_prep_slave_sg(channel,
1327 					(struct scatterlist *)pio,
1328 					ARRAY_SIZE(pio), DMA_TRANS_NONE,
1329 					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1330 	if (!desc)
1331 		return -EINVAL;
1332 
1333 	/* [3] Disable the BCH block */
1334 	command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WAIT_FOR_READY;
1335 	address      = BV_GPMI_CTRL0_ADDRESS__NAND_DATA;
1336 
1337 	pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode)
1338 		| BM_GPMI_CTRL0_WORD_LENGTH
1339 		| BF_GPMI_CTRL0_CS(chip, this)
1340 		| BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
1341 		| BF_GPMI_CTRL0_ADDRESS(address)
1342 		| BF_GPMI_CTRL0_XFER_COUNT(geo->page_size);
1343 	pio[1] = 0;
1344 	pio[2] = 0; /* clear GPMI_HW_GPMI_ECCCTRL, disable the BCH. */
1345 	desc = dmaengine_prep_slave_sg(channel,
1346 				(struct scatterlist *)pio, 3,
1347 				DMA_TRANS_NONE,
1348 				DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1349 	if (!desc)
1350 		return -EINVAL;
1351 
1352 	/* [4] submit the DMA */
1353 	set_dma_type(this, DMA_FOR_READ_ECC_PAGE);
1354 	return start_dma_with_bch_irq(this, desc);
1355 }
1356 
1357 /**
1358  * gpmi_copy_bits - copy bits from one memory region to another
1359  * @dst: destination buffer
1360  * @dst_bit_off: bit offset we're starting to write at
1361  * @src: source buffer
1362  * @src_bit_off: bit offset we're starting to read from
1363  * @nbits: number of bits to copy
1364  *
1365  * This functions copies bits from one memory region to another, and is used by
1366  * the GPMI driver to copy ECC sections which are not guaranteed to be byte
1367  * aligned.
1368  *
1369  * src and dst should not overlap.
1370  *
1371  */
gpmi_copy_bits(u8 * dst,size_t dst_bit_off,const u8 * src,size_t src_bit_off,size_t nbits)1372 void gpmi_copy_bits(u8 *dst, size_t dst_bit_off,
1373 		    const u8 *src, size_t src_bit_off,
1374 		    size_t nbits)
1375 {
1376 	size_t i;
1377 	size_t nbytes;
1378 	u32 src_buffer = 0;
1379 	size_t bits_in_src_buffer = 0;
1380 
1381 	if (!nbits)
1382 		return;
1383 
1384 	/*
1385 	 * Move src and dst pointers to the closest byte pointer and store bit
1386 	 * offsets within a byte.
1387 	 */
1388 	src += src_bit_off / 8;
1389 	src_bit_off %= 8;
1390 
1391 	dst += dst_bit_off / 8;
1392 	dst_bit_off %= 8;
1393 
1394 	/*
1395 	 * Initialize the src_buffer value with bits available in the first
1396 	 * byte of data so that we end up with a byte aligned src pointer.
1397 	 */
1398 	if (src_bit_off) {
1399 		src_buffer = src[0] >> src_bit_off;
1400 		if (nbits >= (8 - src_bit_off)) {
1401 			bits_in_src_buffer += 8 - src_bit_off;
1402 		} else {
1403 			src_buffer &= GENMASK(nbits - 1, 0);
1404 			bits_in_src_buffer += nbits;
1405 		}
1406 		nbits -= bits_in_src_buffer;
1407 		src++;
1408 	}
1409 
1410 	/* Calculate the number of bytes that can be copied from src to dst. */
1411 	nbytes = nbits / 8;
1412 
1413 	/* Try to align dst to a byte boundary. */
1414 	if (dst_bit_off) {
1415 		if (bits_in_src_buffer < (8 - dst_bit_off) && nbytes) {
1416 			src_buffer |= src[0] << bits_in_src_buffer;
1417 			bits_in_src_buffer += 8;
1418 			src++;
1419 			nbytes--;
1420 		}
1421 
1422 		if (bits_in_src_buffer >= (8 - dst_bit_off)) {
1423 			dst[0] &= GENMASK(dst_bit_off - 1, 0);
1424 			dst[0] |= src_buffer << dst_bit_off;
1425 			src_buffer >>= (8 - dst_bit_off);
1426 			bits_in_src_buffer -= (8 - dst_bit_off);
1427 			dst_bit_off = 0;
1428 			dst++;
1429 			if (bits_in_src_buffer > 7) {
1430 				bits_in_src_buffer -= 8;
1431 				dst[0] = src_buffer;
1432 				dst++;
1433 				src_buffer >>= 8;
1434 			}
1435 		}
1436 	}
1437 
1438 	if (!bits_in_src_buffer && !dst_bit_off) {
1439 		/*
1440 		 * Both src and dst pointers are byte aligned, thus we can
1441 		 * just use the optimized memcpy function.
1442 		 */
1443 		if (nbytes)
1444 			memcpy(dst, src, nbytes);
1445 	} else {
1446 		/*
1447 		 * src buffer is not byte aligned, hence we have to copy each
1448 		 * src byte to the src_buffer variable before extracting a byte
1449 		 * to store in dst.
1450 		 */
1451 		for (i = 0; i < nbytes; i++) {
1452 			src_buffer |= src[i] << bits_in_src_buffer;
1453 			dst[i] = src_buffer;
1454 			src_buffer >>= 8;
1455 		}
1456 	}
1457 	/* Update dst and src pointers */
1458 	dst += nbytes;
1459 	src += nbytes;
1460 
1461 	/*
1462 	 * nbits is the number of remaining bits. It should not exceed 8 as
1463 	 * we've already copied as much bytes as possible.
1464 	 */
1465 	nbits %= 8;
1466 
1467 	/*
1468 	 * If there's no more bits to copy to the destination and src buffer
1469 	 * was already byte aligned, then we're done.
1470 	 */
1471 	if (!nbits && !bits_in_src_buffer)
1472 		return;
1473 
1474 	/* Copy the remaining bits to src_buffer */
1475 	if (nbits)
1476 		src_buffer |= (*src & GENMASK(nbits - 1, 0)) <<
1477 			      bits_in_src_buffer;
1478 	bits_in_src_buffer += nbits;
1479 
1480 	/*
1481 	 * In case there were not enough bits to get a byte aligned dst buffer
1482 	 * prepare the src_buffer variable to match the dst organization (shift
1483 	 * src_buffer by dst_bit_off and retrieve the least significant bits
1484 	 * from dst).
1485 	 */
1486 	if (dst_bit_off)
1487 		src_buffer = (src_buffer << dst_bit_off) |
1488 			     (*dst & GENMASK(dst_bit_off - 1, 0));
1489 	bits_in_src_buffer += dst_bit_off;
1490 
1491 	/*
1492 	 * Keep most significant bits from dst if we end up with an unaligned
1493 	 * number of bits.
1494 	 */
1495 	nbytes = bits_in_src_buffer / 8;
1496 	if (bits_in_src_buffer % 8) {
1497 		src_buffer |= (dst[nbytes] &
1498 			       GENMASK(7, bits_in_src_buffer % 8)) <<
1499 			      (nbytes * 8);
1500 		nbytes++;
1501 	}
1502 
1503 	/* Copy the remaining bytes to dst */
1504 	for (i = 0; i < nbytes; i++) {
1505 		dst[i] = src_buffer;
1506 		src_buffer >>= 8;
1507 	}
1508 }
1509