1 /* Common capabilities, needed by capability.o.
2  *
3  *	This program is free software; you can redistribute it and/or modify
4  *	it under the terms of the GNU General Public License as published by
5  *	the Free Software Foundation; either version 2 of the License, or
6  *	(at your option) any later version.
7  *
8  */
9 
10 #include <linux/capability.h>
11 #include <linux/audit.h>
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/kernel.h>
15 #include <linux/security.h>
16 #include <linux/file.h>
17 #include <linux/mm.h>
18 #include <linux/mman.h>
19 #include <linux/pagemap.h>
20 #include <linux/swap.h>
21 #include <linux/skbuff.h>
22 #include <linux/netlink.h>
23 #include <linux/ptrace.h>
24 #include <linux/xattr.h>
25 #include <linux/hugetlb.h>
26 #include <linux/mount.h>
27 #include <linux/sched.h>
28 #include <linux/prctl.h>
29 #include <linux/securebits.h>
30 #include <linux/user_namespace.h>
31 #include <linux/binfmts.h>
32 #include <linux/personality.h>
33 
34 /*
35  * If a non-root user executes a setuid-root binary in
36  * !secure(SECURE_NOROOT) mode, then we raise capabilities.
37  * However if fE is also set, then the intent is for only
38  * the file capabilities to be applied, and the setuid-root
39  * bit is left on either to change the uid (plausible) or
40  * to get full privilege on a kernel without file capabilities
41  * support.  So in that case we do not raise capabilities.
42  *
43  * Warn if that happens, once per boot.
44  */
warn_setuid_and_fcaps_mixed(const char * fname)45 static void warn_setuid_and_fcaps_mixed(const char *fname)
46 {
47 	static int warned;
48 	if (!warned) {
49 		printk(KERN_INFO "warning: `%s' has both setuid-root and"
50 			" effective capabilities. Therefore not raising all"
51 			" capabilities.\n", fname);
52 		warned = 1;
53 	}
54 }
55 
cap_netlink_send(struct sock * sk,struct sk_buff * skb)56 int cap_netlink_send(struct sock *sk, struct sk_buff *skb)
57 {
58 	return 0;
59 }
60 
61 /**
62  * cap_capable - Determine whether a task has a particular effective capability
63  * @cred: The credentials to use
64  * @ns:  The user namespace in which we need the capability
65  * @cap: The capability to check for
66  * @audit: Whether to write an audit message or not
67  *
68  * Determine whether the nominated task has the specified capability amongst
69  * its effective set, returning 0 if it does, -ve if it does not.
70  *
71  * NOTE WELL: cap_has_capability() cannot be used like the kernel's capable()
72  * and has_capability() functions.  That is, it has the reverse semantics:
73  * cap_has_capability() returns 0 when a task has a capability, but the
74  * kernel's capable() and has_capability() returns 1 for this case.
75  */
cap_capable(const struct cred * cred,struct user_namespace * targ_ns,int cap,int audit)76 int cap_capable(const struct cred *cred, struct user_namespace *targ_ns,
77 		int cap, int audit)
78 {
79 	struct user_namespace *ns = targ_ns;
80 
81 	/* See if cred has the capability in the target user namespace
82 	 * by examining the target user namespace and all of the target
83 	 * user namespace's parents.
84 	 */
85 	for (;;) {
86 		/* Do we have the necessary capabilities? */
87 		if (ns == cred->user_ns)
88 			return cap_raised(cred->cap_effective, cap) ? 0 : -EPERM;
89 
90 		/* Have we tried all of the parent namespaces? */
91 		if (ns == &init_user_ns)
92 			return -EPERM;
93 
94 		/*
95 		 * The owner of the user namespace in the parent of the
96 		 * user namespace has all caps.
97 		 */
98 		if ((ns->parent == cred->user_ns) && uid_eq(ns->owner, cred->euid))
99 			return 0;
100 
101 		/*
102 		 * If you have a capability in a parent user ns, then you have
103 		 * it over all children user namespaces as well.
104 		 */
105 		ns = ns->parent;
106 	}
107 
108 	/* We never get here */
109 }
110 
111 /**
112  * cap_settime - Determine whether the current process may set the system clock
113  * @ts: The time to set
114  * @tz: The timezone to set
115  *
116  * Determine whether the current process may set the system clock and timezone
117  * information, returning 0 if permission granted, -ve if denied.
118  */
cap_settime(const struct timespec * ts,const struct timezone * tz)119 int cap_settime(const struct timespec *ts, const struct timezone *tz)
120 {
121 	if (!capable(CAP_SYS_TIME))
122 		return -EPERM;
123 	return 0;
124 }
125 
126 /**
127  * cap_ptrace_access_check - Determine whether the current process may access
128  *			   another
129  * @child: The process to be accessed
130  * @mode: The mode of attachment.
131  *
132  * If we are in the same or an ancestor user_ns and have all the target
133  * task's capabilities, then ptrace access is allowed.
134  * If we have the ptrace capability to the target user_ns, then ptrace
135  * access is allowed.
136  * Else denied.
137  *
138  * Determine whether a process may access another, returning 0 if permission
139  * granted, -ve if denied.
140  */
cap_ptrace_access_check(struct task_struct * child,unsigned int mode)141 int cap_ptrace_access_check(struct task_struct *child, unsigned int mode)
142 {
143 	int ret = 0;
144 	const struct cred *cred, *child_cred;
145 	const kernel_cap_t *caller_caps;
146 
147 	rcu_read_lock();
148 	cred = current_cred();
149 	child_cred = __task_cred(child);
150 	if (mode & PTRACE_MODE_FSCREDS)
151 		caller_caps = &cred->cap_effective;
152 	else
153 		caller_caps = &cred->cap_permitted;
154 	if (cred->user_ns == child_cred->user_ns &&
155 	    cap_issubset(child_cred->cap_permitted, *caller_caps))
156 		goto out;
157 	if (ns_capable(child_cred->user_ns, CAP_SYS_PTRACE))
158 		goto out;
159 	ret = -EPERM;
160 out:
161 	rcu_read_unlock();
162 	return ret;
163 }
164 
165 /**
166  * cap_ptrace_traceme - Determine whether another process may trace the current
167  * @parent: The task proposed to be the tracer
168  *
169  * If parent is in the same or an ancestor user_ns and has all current's
170  * capabilities, then ptrace access is allowed.
171  * If parent has the ptrace capability to current's user_ns, then ptrace
172  * access is allowed.
173  * Else denied.
174  *
175  * Determine whether the nominated task is permitted to trace the current
176  * process, returning 0 if permission is granted, -ve if denied.
177  */
cap_ptrace_traceme(struct task_struct * parent)178 int cap_ptrace_traceme(struct task_struct *parent)
179 {
180 	int ret = 0;
181 	const struct cred *cred, *child_cred;
182 
183 	rcu_read_lock();
184 	cred = __task_cred(parent);
185 	child_cred = current_cred();
186 	if (cred->user_ns == child_cred->user_ns &&
187 	    cap_issubset(child_cred->cap_permitted, cred->cap_permitted))
188 		goto out;
189 	if (has_ns_capability(parent, child_cred->user_ns, CAP_SYS_PTRACE))
190 		goto out;
191 	ret = -EPERM;
192 out:
193 	rcu_read_unlock();
194 	return ret;
195 }
196 
197 /**
198  * cap_capget - Retrieve a task's capability sets
199  * @target: The task from which to retrieve the capability sets
200  * @effective: The place to record the effective set
201  * @inheritable: The place to record the inheritable set
202  * @permitted: The place to record the permitted set
203  *
204  * This function retrieves the capabilities of the nominated task and returns
205  * them to the caller.
206  */
cap_capget(struct task_struct * target,kernel_cap_t * effective,kernel_cap_t * inheritable,kernel_cap_t * permitted)207 int cap_capget(struct task_struct *target, kernel_cap_t *effective,
208 	       kernel_cap_t *inheritable, kernel_cap_t *permitted)
209 {
210 	const struct cred *cred;
211 
212 	/* Derived from kernel/capability.c:sys_capget. */
213 	rcu_read_lock();
214 	cred = __task_cred(target);
215 	*effective   = cred->cap_effective;
216 	*inheritable = cred->cap_inheritable;
217 	*permitted   = cred->cap_permitted;
218 	rcu_read_unlock();
219 	return 0;
220 }
221 
222 /*
223  * Determine whether the inheritable capabilities are limited to the old
224  * permitted set.  Returns 1 if they are limited, 0 if they are not.
225  */
cap_inh_is_capped(void)226 static inline int cap_inh_is_capped(void)
227 {
228 
229 	/* they are so limited unless the current task has the CAP_SETPCAP
230 	 * capability
231 	 */
232 	if (cap_capable(current_cred(), current_cred()->user_ns,
233 			CAP_SETPCAP, SECURITY_CAP_AUDIT) == 0)
234 		return 0;
235 	return 1;
236 }
237 
238 /**
239  * cap_capset - Validate and apply proposed changes to current's capabilities
240  * @new: The proposed new credentials; alterations should be made here
241  * @old: The current task's current credentials
242  * @effective: A pointer to the proposed new effective capabilities set
243  * @inheritable: A pointer to the proposed new inheritable capabilities set
244  * @permitted: A pointer to the proposed new permitted capabilities set
245  *
246  * This function validates and applies a proposed mass change to the current
247  * process's capability sets.  The changes are made to the proposed new
248  * credentials, and assuming no error, will be committed by the caller of LSM.
249  */
cap_capset(struct cred * new,const struct cred * old,const kernel_cap_t * effective,const kernel_cap_t * inheritable,const kernel_cap_t * permitted)250 int cap_capset(struct cred *new,
251 	       const struct cred *old,
252 	       const kernel_cap_t *effective,
253 	       const kernel_cap_t *inheritable,
254 	       const kernel_cap_t *permitted)
255 {
256 	if (cap_inh_is_capped() &&
257 	    !cap_issubset(*inheritable,
258 			  cap_combine(old->cap_inheritable,
259 				      old->cap_permitted)))
260 		/* incapable of using this inheritable set */
261 		return -EPERM;
262 
263 	if (!cap_issubset(*inheritable,
264 			  cap_combine(old->cap_inheritable,
265 				      old->cap_bset)))
266 		/* no new pI capabilities outside bounding set */
267 		return -EPERM;
268 
269 	/* verify restrictions on target's new Permitted set */
270 	if (!cap_issubset(*permitted, old->cap_permitted))
271 		return -EPERM;
272 
273 	/* verify the _new_Effective_ is a subset of the _new_Permitted_ */
274 	if (!cap_issubset(*effective, *permitted))
275 		return -EPERM;
276 
277 	new->cap_effective   = *effective;
278 	new->cap_inheritable = *inheritable;
279 	new->cap_permitted   = *permitted;
280 	return 0;
281 }
282 
283 /*
284  * Clear proposed capability sets for execve().
285  */
bprm_clear_caps(struct linux_binprm * bprm)286 static inline void bprm_clear_caps(struct linux_binprm *bprm)
287 {
288 	cap_clear(bprm->cred->cap_permitted);
289 	bprm->cap_effective = false;
290 }
291 
292 /**
293  * cap_inode_need_killpriv - Determine if inode change affects privileges
294  * @dentry: The inode/dentry in being changed with change marked ATTR_KILL_PRIV
295  *
296  * Determine if an inode having a change applied that's marked ATTR_KILL_PRIV
297  * affects the security markings on that inode, and if it is, should
298  * inode_killpriv() be invoked or the change rejected?
299  *
300  * Returns 0 if granted; +ve if granted, but inode_killpriv() is required; and
301  * -ve to deny the change.
302  */
cap_inode_need_killpriv(struct dentry * dentry)303 int cap_inode_need_killpriv(struct dentry *dentry)
304 {
305 	struct inode *inode = d_backing_inode(dentry);
306 	int error;
307 
308 	if (!inode->i_op->getxattr)
309 	       return 0;
310 
311 	error = inode->i_op->getxattr(dentry, XATTR_NAME_CAPS, NULL, 0);
312 	if (error <= 0)
313 		return 0;
314 	return 1;
315 }
316 
317 /**
318  * cap_inode_killpriv - Erase the security markings on an inode
319  * @dentry: The inode/dentry to alter
320  *
321  * Erase the privilege-enhancing security markings on an inode.
322  *
323  * Returns 0 if successful, -ve on error.
324  */
cap_inode_killpriv(struct dentry * dentry)325 int cap_inode_killpriv(struct dentry *dentry)
326 {
327 	struct inode *inode = d_backing_inode(dentry);
328 
329 	if (!inode->i_op->removexattr)
330 	       return 0;
331 
332 	return inode->i_op->removexattr(dentry, XATTR_NAME_CAPS);
333 }
334 
335 /*
336  * Calculate the new process capability sets from the capability sets attached
337  * to a file.
338  */
bprm_caps_from_vfs_caps(struct cpu_vfs_cap_data * caps,struct linux_binprm * bprm,bool * effective,bool * has_cap)339 static inline int bprm_caps_from_vfs_caps(struct cpu_vfs_cap_data *caps,
340 					  struct linux_binprm *bprm,
341 					  bool *effective,
342 					  bool *has_cap)
343 {
344 	struct cred *new = bprm->cred;
345 	unsigned i;
346 	int ret = 0;
347 
348 	if (caps->magic_etc & VFS_CAP_FLAGS_EFFECTIVE)
349 		*effective = true;
350 
351 	if (caps->magic_etc & VFS_CAP_REVISION_MASK)
352 		*has_cap = true;
353 
354 	CAP_FOR_EACH_U32(i) {
355 		__u32 permitted = caps->permitted.cap[i];
356 		__u32 inheritable = caps->inheritable.cap[i];
357 
358 		/*
359 		 * pP' = (X & fP) | (pI & fI)
360 		 */
361 		new->cap_permitted.cap[i] =
362 			(new->cap_bset.cap[i] & permitted) |
363 			(new->cap_inheritable.cap[i] & inheritable);
364 
365 		if (permitted & ~new->cap_permitted.cap[i])
366 			/* insufficient to execute correctly */
367 			ret = -EPERM;
368 	}
369 
370 	/*
371 	 * For legacy apps, with no internal support for recognizing they
372 	 * do not have enough capabilities, we return an error if they are
373 	 * missing some "forced" (aka file-permitted) capabilities.
374 	 */
375 	return *effective ? ret : 0;
376 }
377 
378 /*
379  * Extract the on-exec-apply capability sets for an executable file.
380  */
get_vfs_caps_from_disk(const struct dentry * dentry,struct cpu_vfs_cap_data * cpu_caps)381 int get_vfs_caps_from_disk(const struct dentry *dentry, struct cpu_vfs_cap_data *cpu_caps)
382 {
383 	struct inode *inode = d_backing_inode(dentry);
384 	__u32 magic_etc;
385 	unsigned tocopy, i;
386 	int size;
387 	struct vfs_cap_data caps;
388 
389 	memset(cpu_caps, 0, sizeof(struct cpu_vfs_cap_data));
390 
391 	if (!inode || !inode->i_op->getxattr)
392 		return -ENODATA;
393 
394 	size = inode->i_op->getxattr((struct dentry *)dentry, XATTR_NAME_CAPS, &caps,
395 				   XATTR_CAPS_SZ);
396 	if (size == -ENODATA || size == -EOPNOTSUPP)
397 		/* no data, that's ok */
398 		return -ENODATA;
399 	if (size < 0)
400 		return size;
401 
402 	if (size < sizeof(magic_etc))
403 		return -EINVAL;
404 
405 	cpu_caps->magic_etc = magic_etc = le32_to_cpu(caps.magic_etc);
406 
407 	switch (magic_etc & VFS_CAP_REVISION_MASK) {
408 	case VFS_CAP_REVISION_1:
409 		if (size != XATTR_CAPS_SZ_1)
410 			return -EINVAL;
411 		tocopy = VFS_CAP_U32_1;
412 		break;
413 	case VFS_CAP_REVISION_2:
414 		if (size != XATTR_CAPS_SZ_2)
415 			return -EINVAL;
416 		tocopy = VFS_CAP_U32_2;
417 		break;
418 	default:
419 		return -EINVAL;
420 	}
421 
422 	CAP_FOR_EACH_U32(i) {
423 		if (i >= tocopy)
424 			break;
425 		cpu_caps->permitted.cap[i] = le32_to_cpu(caps.data[i].permitted);
426 		cpu_caps->inheritable.cap[i] = le32_to_cpu(caps.data[i].inheritable);
427 	}
428 
429 	cpu_caps->permitted.cap[CAP_LAST_U32] &= CAP_LAST_U32_VALID_MASK;
430 	cpu_caps->inheritable.cap[CAP_LAST_U32] &= CAP_LAST_U32_VALID_MASK;
431 
432 	return 0;
433 }
434 
435 /*
436  * Attempt to get the on-exec apply capability sets for an executable file from
437  * its xattrs and, if present, apply them to the proposed credentials being
438  * constructed by execve().
439  */
get_file_caps(struct linux_binprm * bprm,bool * effective,bool * has_cap)440 static int get_file_caps(struct linux_binprm *bprm, bool *effective, bool *has_cap)
441 {
442 	int rc = 0;
443 	struct cpu_vfs_cap_data vcaps;
444 
445 	bprm_clear_caps(bprm);
446 
447 	if (!file_caps_enabled)
448 		return 0;
449 
450 	if (bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)
451 		return 0;
452 
453 	rc = get_vfs_caps_from_disk(bprm->file->f_path.dentry, &vcaps);
454 	if (rc < 0) {
455 		if (rc == -EINVAL)
456 			printk(KERN_NOTICE "%s: get_vfs_caps_from_disk returned %d for %s\n",
457 				__func__, rc, bprm->filename);
458 		else if (rc == -ENODATA)
459 			rc = 0;
460 		goto out;
461 	}
462 
463 	rc = bprm_caps_from_vfs_caps(&vcaps, bprm, effective, has_cap);
464 	if (rc == -EINVAL)
465 		printk(KERN_NOTICE "%s: cap_from_disk returned %d for %s\n",
466 		       __func__, rc, bprm->filename);
467 
468 out:
469 	if (rc)
470 		bprm_clear_caps(bprm);
471 
472 	return rc;
473 }
474 
475 /**
476  * cap_bprm_set_creds - Set up the proposed credentials for execve().
477  * @bprm: The execution parameters, including the proposed creds
478  *
479  * Set up the proposed credentials for a new execution context being
480  * constructed by execve().  The proposed creds in @bprm->cred is altered,
481  * which won't take effect immediately.  Returns 0 if successful, -ve on error.
482  */
cap_bprm_set_creds(struct linux_binprm * bprm)483 int cap_bprm_set_creds(struct linux_binprm *bprm)
484 {
485 	const struct cred *old = current_cred();
486 	struct cred *new = bprm->cred;
487 	bool effective, has_cap = false;
488 	int ret;
489 	kuid_t root_uid;
490 
491 	effective = false;
492 	ret = get_file_caps(bprm, &effective, &has_cap);
493 	if (ret < 0)
494 		return ret;
495 
496 	root_uid = make_kuid(new->user_ns, 0);
497 
498 	if (!issecure(SECURE_NOROOT)) {
499 		/*
500 		 * If the legacy file capability is set, then don't set privs
501 		 * for a setuid root binary run by a non-root user.  Do set it
502 		 * for a root user just to cause least surprise to an admin.
503 		 */
504 		if (has_cap && !uid_eq(new->uid, root_uid) && uid_eq(new->euid, root_uid)) {
505 			warn_setuid_and_fcaps_mixed(bprm->filename);
506 			goto skip;
507 		}
508 		/*
509 		 * To support inheritance of root-permissions and suid-root
510 		 * executables under compatibility mode, we override the
511 		 * capability sets for the file.
512 		 *
513 		 * If only the real uid is 0, we do not set the effective bit.
514 		 */
515 		if (uid_eq(new->euid, root_uid) || uid_eq(new->uid, root_uid)) {
516 			/* pP' = (cap_bset & ~0) | (pI & ~0) */
517 			new->cap_permitted = cap_combine(old->cap_bset,
518 							 old->cap_inheritable);
519 		}
520 		if (uid_eq(new->euid, root_uid))
521 			effective = true;
522 	}
523 skip:
524 
525 	/* if we have fs caps, clear dangerous personality flags */
526 	if (!cap_issubset(new->cap_permitted, old->cap_permitted))
527 		bprm->per_clear |= PER_CLEAR_ON_SETID;
528 
529 
530 	/* Don't let someone trace a set[ug]id/setpcap binary with the revised
531 	 * credentials unless they have the appropriate permit.
532 	 *
533 	 * In addition, if NO_NEW_PRIVS, then ensure we get no new privs.
534 	 */
535 	if ((!uid_eq(new->euid, old->uid) ||
536 	     !gid_eq(new->egid, old->gid) ||
537 	     !cap_issubset(new->cap_permitted, old->cap_permitted)) &&
538 	    bprm->unsafe & ~LSM_UNSAFE_PTRACE_CAP) {
539 		/* downgrade; they get no more than they had, and maybe less */
540 		if (!capable(CAP_SETUID) ||
541 		    (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS)) {
542 			new->euid = new->uid;
543 			new->egid = new->gid;
544 		}
545 		new->cap_permitted = cap_intersect(new->cap_permitted,
546 						   old->cap_permitted);
547 	}
548 
549 	new->suid = new->fsuid = new->euid;
550 	new->sgid = new->fsgid = new->egid;
551 
552 	if (effective)
553 		new->cap_effective = new->cap_permitted;
554 	else
555 		cap_clear(new->cap_effective);
556 	bprm->cap_effective = effective;
557 
558 	/*
559 	 * Audit candidate if current->cap_effective is set
560 	 *
561 	 * We do not bother to audit if 3 things are true:
562 	 *   1) cap_effective has all caps
563 	 *   2) we are root
564 	 *   3) root is supposed to have all caps (SECURE_NOROOT)
565 	 * Since this is just a normal root execing a process.
566 	 *
567 	 * Number 1 above might fail if you don't have a full bset, but I think
568 	 * that is interesting information to audit.
569 	 */
570 	if (!cap_isclear(new->cap_effective)) {
571 		if (!cap_issubset(CAP_FULL_SET, new->cap_effective) ||
572 		    !uid_eq(new->euid, root_uid) || !uid_eq(new->uid, root_uid) ||
573 		    issecure(SECURE_NOROOT)) {
574 			ret = audit_log_bprm_fcaps(bprm, new, old);
575 			if (ret < 0)
576 				return ret;
577 		}
578 	}
579 
580 	new->securebits &= ~issecure_mask(SECURE_KEEP_CAPS);
581 	return 0;
582 }
583 
584 /**
585  * cap_bprm_secureexec - Determine whether a secure execution is required
586  * @bprm: The execution parameters
587  *
588  * Determine whether a secure execution is required, return 1 if it is, and 0
589  * if it is not.
590  *
591  * The credentials have been committed by this point, and so are no longer
592  * available through @bprm->cred.
593  */
cap_bprm_secureexec(struct linux_binprm * bprm)594 int cap_bprm_secureexec(struct linux_binprm *bprm)
595 {
596 	const struct cred *cred = current_cred();
597 	kuid_t root_uid = make_kuid(cred->user_ns, 0);
598 
599 	if (!uid_eq(cred->uid, root_uid)) {
600 		if (bprm->cap_effective)
601 			return 1;
602 		if (!cap_isclear(cred->cap_permitted))
603 			return 1;
604 	}
605 
606 	return (!uid_eq(cred->euid, cred->uid) ||
607 		!gid_eq(cred->egid, cred->gid));
608 }
609 
610 /**
611  * cap_inode_setxattr - Determine whether an xattr may be altered
612  * @dentry: The inode/dentry being altered
613  * @name: The name of the xattr to be changed
614  * @value: The value that the xattr will be changed to
615  * @size: The size of value
616  * @flags: The replacement flag
617  *
618  * Determine whether an xattr may be altered or set on an inode, returning 0 if
619  * permission is granted, -ve if denied.
620  *
621  * This is used to make sure security xattrs don't get updated or set by those
622  * who aren't privileged to do so.
623  */
cap_inode_setxattr(struct dentry * dentry,const char * name,const void * value,size_t size,int flags)624 int cap_inode_setxattr(struct dentry *dentry, const char *name,
625 		       const void *value, size_t size, int flags)
626 {
627 	if (!strcmp(name, XATTR_NAME_CAPS)) {
628 		if (!capable(CAP_SETFCAP))
629 			return -EPERM;
630 		return 0;
631 	}
632 
633 	if (!strncmp(name, XATTR_SECURITY_PREFIX,
634 		     sizeof(XATTR_SECURITY_PREFIX) - 1) &&
635 	    !capable(CAP_SYS_ADMIN))
636 		return -EPERM;
637 	return 0;
638 }
639 
640 /**
641  * cap_inode_removexattr - Determine whether an xattr may be removed
642  * @dentry: The inode/dentry being altered
643  * @name: The name of the xattr to be changed
644  *
645  * Determine whether an xattr may be removed from an inode, returning 0 if
646  * permission is granted, -ve if denied.
647  *
648  * This is used to make sure security xattrs don't get removed by those who
649  * aren't privileged to remove them.
650  */
cap_inode_removexattr(struct dentry * dentry,const char * name)651 int cap_inode_removexattr(struct dentry *dentry, const char *name)
652 {
653 	if (!strcmp(name, XATTR_NAME_CAPS)) {
654 		if (!capable(CAP_SETFCAP))
655 			return -EPERM;
656 		return 0;
657 	}
658 
659 	if (!strncmp(name, XATTR_SECURITY_PREFIX,
660 		     sizeof(XATTR_SECURITY_PREFIX) - 1) &&
661 	    !capable(CAP_SYS_ADMIN))
662 		return -EPERM;
663 	return 0;
664 }
665 
666 /*
667  * cap_emulate_setxuid() fixes the effective / permitted capabilities of
668  * a process after a call to setuid, setreuid, or setresuid.
669  *
670  *  1) When set*uiding _from_ one of {r,e,s}uid == 0 _to_ all of
671  *  {r,e,s}uid != 0, the permitted and effective capabilities are
672  *  cleared.
673  *
674  *  2) When set*uiding _from_ euid == 0 _to_ euid != 0, the effective
675  *  capabilities of the process are cleared.
676  *
677  *  3) When set*uiding _from_ euid != 0 _to_ euid == 0, the effective
678  *  capabilities are set to the permitted capabilities.
679  *
680  *  fsuid is handled elsewhere. fsuid == 0 and {r,e,s}uid!= 0 should
681  *  never happen.
682  *
683  *  -astor
684  *
685  * cevans - New behaviour, Oct '99
686  * A process may, via prctl(), elect to keep its capabilities when it
687  * calls setuid() and switches away from uid==0. Both permitted and
688  * effective sets will be retained.
689  * Without this change, it was impossible for a daemon to drop only some
690  * of its privilege. The call to setuid(!=0) would drop all privileges!
691  * Keeping uid 0 is not an option because uid 0 owns too many vital
692  * files..
693  * Thanks to Olaf Kirch and Peter Benie for spotting this.
694  */
cap_emulate_setxuid(struct cred * new,const struct cred * old)695 static inline void cap_emulate_setxuid(struct cred *new, const struct cred *old)
696 {
697 	kuid_t root_uid = make_kuid(old->user_ns, 0);
698 
699 	if ((uid_eq(old->uid, root_uid) ||
700 	     uid_eq(old->euid, root_uid) ||
701 	     uid_eq(old->suid, root_uid)) &&
702 	    (!uid_eq(new->uid, root_uid) &&
703 	     !uid_eq(new->euid, root_uid) &&
704 	     !uid_eq(new->suid, root_uid)) &&
705 	    !issecure(SECURE_KEEP_CAPS)) {
706 		cap_clear(new->cap_permitted);
707 		cap_clear(new->cap_effective);
708 	}
709 	if (uid_eq(old->euid, root_uid) && !uid_eq(new->euid, root_uid))
710 		cap_clear(new->cap_effective);
711 	if (!uid_eq(old->euid, root_uid) && uid_eq(new->euid, root_uid))
712 		new->cap_effective = new->cap_permitted;
713 }
714 
715 /**
716  * cap_task_fix_setuid - Fix up the results of setuid() call
717  * @new: The proposed credentials
718  * @old: The current task's current credentials
719  * @flags: Indications of what has changed
720  *
721  * Fix up the results of setuid() call before the credential changes are
722  * actually applied, returning 0 to grant the changes, -ve to deny them.
723  */
cap_task_fix_setuid(struct cred * new,const struct cred * old,int flags)724 int cap_task_fix_setuid(struct cred *new, const struct cred *old, int flags)
725 {
726 	switch (flags) {
727 	case LSM_SETID_RE:
728 	case LSM_SETID_ID:
729 	case LSM_SETID_RES:
730 		/* juggle the capabilities to follow [RES]UID changes unless
731 		 * otherwise suppressed */
732 		if (!issecure(SECURE_NO_SETUID_FIXUP))
733 			cap_emulate_setxuid(new, old);
734 		break;
735 
736 	case LSM_SETID_FS:
737 		/* juggle the capabilties to follow FSUID changes, unless
738 		 * otherwise suppressed
739 		 *
740 		 * FIXME - is fsuser used for all CAP_FS_MASK capabilities?
741 		 *          if not, we might be a bit too harsh here.
742 		 */
743 		if (!issecure(SECURE_NO_SETUID_FIXUP)) {
744 			kuid_t root_uid = make_kuid(old->user_ns, 0);
745 			if (uid_eq(old->fsuid, root_uid) && !uid_eq(new->fsuid, root_uid))
746 				new->cap_effective =
747 					cap_drop_fs_set(new->cap_effective);
748 
749 			if (!uid_eq(old->fsuid, root_uid) && uid_eq(new->fsuid, root_uid))
750 				new->cap_effective =
751 					cap_raise_fs_set(new->cap_effective,
752 							 new->cap_permitted);
753 		}
754 		break;
755 
756 	default:
757 		return -EINVAL;
758 	}
759 
760 	return 0;
761 }
762 
763 /*
764  * Rationale: code calling task_setscheduler, task_setioprio, and
765  * task_setnice, assumes that
766  *   . if capable(cap_sys_nice), then those actions should be allowed
767  *   . if not capable(cap_sys_nice), but acting on your own processes,
768  *   	then those actions should be allowed
769  * This is insufficient now since you can call code without suid, but
770  * yet with increased caps.
771  * So we check for increased caps on the target process.
772  */
cap_safe_nice(struct task_struct * p)773 static int cap_safe_nice(struct task_struct *p)
774 {
775 	int is_subset, ret = 0;
776 
777 	rcu_read_lock();
778 	is_subset = cap_issubset(__task_cred(p)->cap_permitted,
779 				 current_cred()->cap_permitted);
780 	if (!is_subset && !ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE))
781 		ret = -EPERM;
782 	rcu_read_unlock();
783 
784 	return ret;
785 }
786 
787 /**
788  * cap_task_setscheduler - Detemine if scheduler policy change is permitted
789  * @p: The task to affect
790  *
791  * Detemine if the requested scheduler policy change is permitted for the
792  * specified task, returning 0 if permission is granted, -ve if denied.
793  */
cap_task_setscheduler(struct task_struct * p)794 int cap_task_setscheduler(struct task_struct *p)
795 {
796 	return cap_safe_nice(p);
797 }
798 
799 /**
800  * cap_task_ioprio - Detemine if I/O priority change is permitted
801  * @p: The task to affect
802  * @ioprio: The I/O priority to set
803  *
804  * Detemine if the requested I/O priority change is permitted for the specified
805  * task, returning 0 if permission is granted, -ve if denied.
806  */
cap_task_setioprio(struct task_struct * p,int ioprio)807 int cap_task_setioprio(struct task_struct *p, int ioprio)
808 {
809 	return cap_safe_nice(p);
810 }
811 
812 /**
813  * cap_task_ioprio - Detemine if task priority change is permitted
814  * @p: The task to affect
815  * @nice: The nice value to set
816  *
817  * Detemine if the requested task priority change is permitted for the
818  * specified task, returning 0 if permission is granted, -ve if denied.
819  */
cap_task_setnice(struct task_struct * p,int nice)820 int cap_task_setnice(struct task_struct *p, int nice)
821 {
822 	return cap_safe_nice(p);
823 }
824 
825 /*
826  * Implement PR_CAPBSET_DROP.  Attempt to remove the specified capability from
827  * the current task's bounding set.  Returns 0 on success, -ve on error.
828  */
cap_prctl_drop(unsigned long cap)829 static int cap_prctl_drop(unsigned long cap)
830 {
831 	struct cred *new;
832 
833 	if (!ns_capable(current_user_ns(), CAP_SETPCAP))
834 		return -EPERM;
835 	if (!cap_valid(cap))
836 		return -EINVAL;
837 
838 	new = prepare_creds();
839 	if (!new)
840 		return -ENOMEM;
841 	cap_lower(new->cap_bset, cap);
842 	return commit_creds(new);
843 }
844 
845 /**
846  * cap_task_prctl - Implement process control functions for this security module
847  * @option: The process control function requested
848  * @arg2, @arg3, @arg4, @arg5: The argument data for this function
849  *
850  * Allow process control functions (sys_prctl()) to alter capabilities; may
851  * also deny access to other functions not otherwise implemented here.
852  *
853  * Returns 0 or +ve on success, -ENOSYS if this function is not implemented
854  * here, other -ve on error.  If -ENOSYS is returned, sys_prctl() and other LSM
855  * modules will consider performing the function.
856  */
cap_task_prctl(int option,unsigned long arg2,unsigned long arg3,unsigned long arg4,unsigned long arg5)857 int cap_task_prctl(int option, unsigned long arg2, unsigned long arg3,
858 		   unsigned long arg4, unsigned long arg5)
859 {
860 	const struct cred *old = current_cred();
861 	struct cred *new;
862 
863 	switch (option) {
864 	case PR_CAPBSET_READ:
865 		if (!cap_valid(arg2))
866 			return -EINVAL;
867 		return !!cap_raised(old->cap_bset, arg2);
868 
869 	case PR_CAPBSET_DROP:
870 		return cap_prctl_drop(arg2);
871 
872 	/*
873 	 * The next four prctl's remain to assist with transitioning a
874 	 * system from legacy UID=0 based privilege (when filesystem
875 	 * capabilities are not in use) to a system using filesystem
876 	 * capabilities only - as the POSIX.1e draft intended.
877 	 *
878 	 * Note:
879 	 *
880 	 *  PR_SET_SECUREBITS =
881 	 *      issecure_mask(SECURE_KEEP_CAPS_LOCKED)
882 	 *    | issecure_mask(SECURE_NOROOT)
883 	 *    | issecure_mask(SECURE_NOROOT_LOCKED)
884 	 *    | issecure_mask(SECURE_NO_SETUID_FIXUP)
885 	 *    | issecure_mask(SECURE_NO_SETUID_FIXUP_LOCKED)
886 	 *
887 	 * will ensure that the current process and all of its
888 	 * children will be locked into a pure
889 	 * capability-based-privilege environment.
890 	 */
891 	case PR_SET_SECUREBITS:
892 		if ((((old->securebits & SECURE_ALL_LOCKS) >> 1)
893 		     & (old->securebits ^ arg2))			/*[1]*/
894 		    || ((old->securebits & SECURE_ALL_LOCKS & ~arg2))	/*[2]*/
895 		    || (arg2 & ~(SECURE_ALL_LOCKS | SECURE_ALL_BITS))	/*[3]*/
896 		    || (cap_capable(current_cred(),
897 				    current_cred()->user_ns, CAP_SETPCAP,
898 				    SECURITY_CAP_AUDIT) != 0)		/*[4]*/
899 			/*
900 			 * [1] no changing of bits that are locked
901 			 * [2] no unlocking of locks
902 			 * [3] no setting of unsupported bits
903 			 * [4] doing anything requires privilege (go read about
904 			 *     the "sendmail capabilities bug")
905 			 */
906 		    )
907 			/* cannot change a locked bit */
908 			return -EPERM;
909 
910 		new = prepare_creds();
911 		if (!new)
912 			return -ENOMEM;
913 		new->securebits = arg2;
914 		return commit_creds(new);
915 
916 	case PR_GET_SECUREBITS:
917 		return old->securebits;
918 
919 	case PR_GET_KEEPCAPS:
920 		return !!issecure(SECURE_KEEP_CAPS);
921 
922 	case PR_SET_KEEPCAPS:
923 		if (arg2 > 1) /* Note, we rely on arg2 being unsigned here */
924 			return -EINVAL;
925 		if (issecure(SECURE_KEEP_CAPS_LOCKED))
926 			return -EPERM;
927 
928 		new = prepare_creds();
929 		if (!new)
930 			return -ENOMEM;
931 		if (arg2)
932 			new->securebits |= issecure_mask(SECURE_KEEP_CAPS);
933 		else
934 			new->securebits &= ~issecure_mask(SECURE_KEEP_CAPS);
935 		return commit_creds(new);
936 
937 	default:
938 		/* No functionality available - continue with default */
939 		return -ENOSYS;
940 	}
941 }
942 
943 /**
944  * cap_vm_enough_memory - Determine whether a new virtual mapping is permitted
945  * @mm: The VM space in which the new mapping is to be made
946  * @pages: The size of the mapping
947  *
948  * Determine whether the allocation of a new virtual mapping by the current
949  * task is permitted, returning 0 if permission is granted, -ve if not.
950  */
cap_vm_enough_memory(struct mm_struct * mm,long pages)951 int cap_vm_enough_memory(struct mm_struct *mm, long pages)
952 {
953 	int cap_sys_admin = 0;
954 
955 	if (cap_capable(current_cred(), &init_user_ns, CAP_SYS_ADMIN,
956 			SECURITY_CAP_NOAUDIT) == 0)
957 		cap_sys_admin = 1;
958 	return __vm_enough_memory(mm, pages, cap_sys_admin);
959 }
960 
961 /*
962  * cap_mmap_addr - check if able to map given addr
963  * @addr: address attempting to be mapped
964  *
965  * If the process is attempting to map memory below dac_mmap_min_addr they need
966  * CAP_SYS_RAWIO.  The other parameters to this function are unused by the
967  * capability security module.  Returns 0 if this mapping should be allowed
968  * -EPERM if not.
969  */
cap_mmap_addr(unsigned long addr)970 int cap_mmap_addr(unsigned long addr)
971 {
972 	int ret = 0;
973 
974 	if (addr < dac_mmap_min_addr) {
975 		ret = cap_capable(current_cred(), &init_user_ns, CAP_SYS_RAWIO,
976 				  SECURITY_CAP_AUDIT);
977 		/* set PF_SUPERPRIV if it turns out we allow the low mmap */
978 		if (ret == 0)
979 			current->flags |= PF_SUPERPRIV;
980 	}
981 	return ret;
982 }
983 
cap_mmap_file(struct file * file,unsigned long reqprot,unsigned long prot,unsigned long flags)984 int cap_mmap_file(struct file *file, unsigned long reqprot,
985 		  unsigned long prot, unsigned long flags)
986 {
987 	return 0;
988 }
989