1 /*
2  * FP/SIMD context switching and fault handling
3  *
4  * Copyright (C) 2012 ARM Ltd.
5  * Author: Catalin Marinas <catalin.marinas@arm.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include <linux/cpu_pm.h>
21 #include <linux/kernel.h>
22 #include <linux/init.h>
23 #include <linux/sched.h>
24 #include <linux/signal.h>
25 #include <linux/hardirq.h>
26 
27 #include <asm/fpsimd.h>
28 #include <asm/cputype.h>
29 
30 #define FPEXC_IOF	(1 << 0)
31 #define FPEXC_DZF	(1 << 1)
32 #define FPEXC_OFF	(1 << 2)
33 #define FPEXC_UFF	(1 << 3)
34 #define FPEXC_IXF	(1 << 4)
35 #define FPEXC_IDF	(1 << 7)
36 
37 /*
38  * In order to reduce the number of times the FPSIMD state is needlessly saved
39  * and restored, we need to keep track of two things:
40  * (a) for each task, we need to remember which CPU was the last one to have
41  *     the task's FPSIMD state loaded into its FPSIMD registers;
42  * (b) for each CPU, we need to remember which task's userland FPSIMD state has
43  *     been loaded into its FPSIMD registers most recently, or whether it has
44  *     been used to perform kernel mode NEON in the meantime.
45  *
46  * For (a), we add a 'cpu' field to struct fpsimd_state, which gets updated to
47  * the id of the current CPU everytime the state is loaded onto a CPU. For (b),
48  * we add the per-cpu variable 'fpsimd_last_state' (below), which contains the
49  * address of the userland FPSIMD state of the task that was loaded onto the CPU
50  * the most recently, or NULL if kernel mode NEON has been performed after that.
51  *
52  * With this in place, we no longer have to restore the next FPSIMD state right
53  * when switching between tasks. Instead, we can defer this check to userland
54  * resume, at which time we verify whether the CPU's fpsimd_last_state and the
55  * task's fpsimd_state.cpu are still mutually in sync. If this is the case, we
56  * can omit the FPSIMD restore.
57  *
58  * As an optimization, we use the thread_info flag TIF_FOREIGN_FPSTATE to
59  * indicate whether or not the userland FPSIMD state of the current task is
60  * present in the registers. The flag is set unless the FPSIMD registers of this
61  * CPU currently contain the most recent userland FPSIMD state of the current
62  * task.
63  *
64  * For a certain task, the sequence may look something like this:
65  * - the task gets scheduled in; if both the task's fpsimd_state.cpu field
66  *   contains the id of the current CPU, and the CPU's fpsimd_last_state per-cpu
67  *   variable points to the task's fpsimd_state, the TIF_FOREIGN_FPSTATE flag is
68  *   cleared, otherwise it is set;
69  *
70  * - the task returns to userland; if TIF_FOREIGN_FPSTATE is set, the task's
71  *   userland FPSIMD state is copied from memory to the registers, the task's
72  *   fpsimd_state.cpu field is set to the id of the current CPU, the current
73  *   CPU's fpsimd_last_state pointer is set to this task's fpsimd_state and the
74  *   TIF_FOREIGN_FPSTATE flag is cleared;
75  *
76  * - the task executes an ordinary syscall; upon return to userland, the
77  *   TIF_FOREIGN_FPSTATE flag will still be cleared, so no FPSIMD state is
78  *   restored;
79  *
80  * - the task executes a syscall which executes some NEON instructions; this is
81  *   preceded by a call to kernel_neon_begin(), which copies the task's FPSIMD
82  *   register contents to memory, clears the fpsimd_last_state per-cpu variable
83  *   and sets the TIF_FOREIGN_FPSTATE flag;
84  *
85  * - the task gets preempted after kernel_neon_end() is called; as we have not
86  *   returned from the 2nd syscall yet, TIF_FOREIGN_FPSTATE is still set so
87  *   whatever is in the FPSIMD registers is not saved to memory, but discarded.
88  */
89 static DEFINE_PER_CPU(struct fpsimd_state *, fpsimd_last_state);
90 
91 /*
92  * Trapped FP/ASIMD access.
93  */
do_fpsimd_acc(unsigned int esr,struct pt_regs * regs)94 void do_fpsimd_acc(unsigned int esr, struct pt_regs *regs)
95 {
96 	/* TODO: implement lazy context saving/restoring */
97 	WARN_ON(1);
98 }
99 
100 /*
101  * Raise a SIGFPE for the current process.
102  */
do_fpsimd_exc(unsigned int esr,struct pt_regs * regs)103 void do_fpsimd_exc(unsigned int esr, struct pt_regs *regs)
104 {
105 	siginfo_t info;
106 	unsigned int si_code = 0;
107 
108 	if (esr & FPEXC_IOF)
109 		si_code = FPE_FLTINV;
110 	else if (esr & FPEXC_DZF)
111 		si_code = FPE_FLTDIV;
112 	else if (esr & FPEXC_OFF)
113 		si_code = FPE_FLTOVF;
114 	else if (esr & FPEXC_UFF)
115 		si_code = FPE_FLTUND;
116 	else if (esr & FPEXC_IXF)
117 		si_code = FPE_FLTRES;
118 
119 	memset(&info, 0, sizeof(info));
120 	info.si_signo = SIGFPE;
121 	info.si_code = si_code;
122 	info.si_addr = (void __user *)instruction_pointer(regs);
123 
124 	send_sig_info(SIGFPE, &info, current);
125 }
126 
fpsimd_thread_switch(struct task_struct * next)127 void fpsimd_thread_switch(struct task_struct *next)
128 {
129 	/*
130 	 * Save the current FPSIMD state to memory, but only if whatever is in
131 	 * the registers is in fact the most recent userland FPSIMD state of
132 	 * 'current'.
133 	 */
134 	if (current->mm && !test_thread_flag(TIF_FOREIGN_FPSTATE))
135 		fpsimd_save_state(&current->thread.fpsimd_state);
136 
137 	if (next->mm) {
138 		/*
139 		 * If we are switching to a task whose most recent userland
140 		 * FPSIMD state is already in the registers of *this* cpu,
141 		 * we can skip loading the state from memory. Otherwise, set
142 		 * the TIF_FOREIGN_FPSTATE flag so the state will be loaded
143 		 * upon the next return to userland.
144 		 */
145 		struct fpsimd_state *st = &next->thread.fpsimd_state;
146 
147 		if (__this_cpu_read(fpsimd_last_state) == st
148 		    && st->cpu == smp_processor_id())
149 			clear_ti_thread_flag(task_thread_info(next),
150 					     TIF_FOREIGN_FPSTATE);
151 		else
152 			set_ti_thread_flag(task_thread_info(next),
153 					   TIF_FOREIGN_FPSTATE);
154 	}
155 }
156 
fpsimd_flush_thread(void)157 void fpsimd_flush_thread(void)
158 {
159 	memset(&current->thread.fpsimd_state, 0, sizeof(struct fpsimd_state));
160 	fpsimd_flush_task_state(current);
161 	set_thread_flag(TIF_FOREIGN_FPSTATE);
162 }
163 
164 /*
165  * Save the userland FPSIMD state of 'current' to memory, but only if the state
166  * currently held in the registers does in fact belong to 'current'
167  */
fpsimd_preserve_current_state(void)168 void fpsimd_preserve_current_state(void)
169 {
170 	preempt_disable();
171 	if (!test_thread_flag(TIF_FOREIGN_FPSTATE))
172 		fpsimd_save_state(&current->thread.fpsimd_state);
173 	preempt_enable();
174 }
175 
176 /*
177  * Load the userland FPSIMD state of 'current' from memory, but only if the
178  * FPSIMD state already held in the registers is /not/ the most recent FPSIMD
179  * state of 'current'
180  */
fpsimd_restore_current_state(void)181 void fpsimd_restore_current_state(void)
182 {
183 	preempt_disable();
184 	if (test_and_clear_thread_flag(TIF_FOREIGN_FPSTATE)) {
185 		struct fpsimd_state *st = &current->thread.fpsimd_state;
186 
187 		fpsimd_load_state(st);
188 		this_cpu_write(fpsimd_last_state, st);
189 		st->cpu = smp_processor_id();
190 	}
191 	preempt_enable();
192 }
193 
194 /*
195  * Load an updated userland FPSIMD state for 'current' from memory and set the
196  * flag that indicates that the FPSIMD register contents are the most recent
197  * FPSIMD state of 'current'
198  */
fpsimd_update_current_state(struct fpsimd_state * state)199 void fpsimd_update_current_state(struct fpsimd_state *state)
200 {
201 	preempt_disable();
202 	fpsimd_load_state(state);
203 	if (test_and_clear_thread_flag(TIF_FOREIGN_FPSTATE)) {
204 		struct fpsimd_state *st = &current->thread.fpsimd_state;
205 
206 		this_cpu_write(fpsimd_last_state, st);
207 		st->cpu = smp_processor_id();
208 	}
209 	preempt_enable();
210 }
211 
212 /*
213  * Invalidate live CPU copies of task t's FPSIMD state
214  */
fpsimd_flush_task_state(struct task_struct * t)215 void fpsimd_flush_task_state(struct task_struct *t)
216 {
217 	t->thread.fpsimd_state.cpu = NR_CPUS;
218 }
219 
220 #ifdef CONFIG_KERNEL_MODE_NEON
221 
222 static DEFINE_PER_CPU(struct fpsimd_partial_state, hardirq_fpsimdstate);
223 static DEFINE_PER_CPU(struct fpsimd_partial_state, softirq_fpsimdstate);
224 
225 /*
226  * Kernel-side NEON support functions
227  */
kernel_neon_begin_partial(u32 num_regs)228 void kernel_neon_begin_partial(u32 num_regs)
229 {
230 	if (in_interrupt()) {
231 		struct fpsimd_partial_state *s = this_cpu_ptr(
232 			in_irq() ? &hardirq_fpsimdstate : &softirq_fpsimdstate);
233 
234 		BUG_ON(num_regs > 32);
235 		fpsimd_save_partial_state(s, roundup(num_regs, 2));
236 	} else {
237 		/*
238 		 * Save the userland FPSIMD state if we have one and if we
239 		 * haven't done so already. Clear fpsimd_last_state to indicate
240 		 * that there is no longer userland FPSIMD state in the
241 		 * registers.
242 		 */
243 		preempt_disable();
244 		if (current->mm &&
245 		    !test_and_set_thread_flag(TIF_FOREIGN_FPSTATE))
246 			fpsimd_save_state(&current->thread.fpsimd_state);
247 		this_cpu_write(fpsimd_last_state, NULL);
248 	}
249 }
250 EXPORT_SYMBOL(kernel_neon_begin_partial);
251 
kernel_neon_end(void)252 void kernel_neon_end(void)
253 {
254 	if (in_interrupt()) {
255 		struct fpsimd_partial_state *s = this_cpu_ptr(
256 			in_irq() ? &hardirq_fpsimdstate : &softirq_fpsimdstate);
257 		fpsimd_load_partial_state(s);
258 	} else {
259 		preempt_enable();
260 	}
261 }
262 EXPORT_SYMBOL(kernel_neon_end);
263 
264 #endif /* CONFIG_KERNEL_MODE_NEON */
265 
266 #ifdef CONFIG_CPU_PM
fpsimd_cpu_pm_notifier(struct notifier_block * self,unsigned long cmd,void * v)267 static int fpsimd_cpu_pm_notifier(struct notifier_block *self,
268 				  unsigned long cmd, void *v)
269 {
270 	switch (cmd) {
271 	case CPU_PM_ENTER:
272 		if (current->mm && !test_thread_flag(TIF_FOREIGN_FPSTATE))
273 			fpsimd_save_state(&current->thread.fpsimd_state);
274 		this_cpu_write(fpsimd_last_state, NULL);
275 		break;
276 	case CPU_PM_EXIT:
277 		if (current->mm)
278 			set_thread_flag(TIF_FOREIGN_FPSTATE);
279 		break;
280 	case CPU_PM_ENTER_FAILED:
281 	default:
282 		return NOTIFY_DONE;
283 	}
284 	return NOTIFY_OK;
285 }
286 
287 static struct notifier_block fpsimd_cpu_pm_notifier_block = {
288 	.notifier_call = fpsimd_cpu_pm_notifier,
289 };
290 
fpsimd_pm_init(void)291 static void fpsimd_pm_init(void)
292 {
293 	cpu_pm_register_notifier(&fpsimd_cpu_pm_notifier_block);
294 }
295 
296 #else
fpsimd_pm_init(void)297 static inline void fpsimd_pm_init(void) { }
298 #endif /* CONFIG_CPU_PM */
299 
300 /*
301  * FP/SIMD support code initialisation.
302  */
fpsimd_init(void)303 static int __init fpsimd_init(void)
304 {
305 	u64 pfr = read_cpuid(ID_AA64PFR0_EL1);
306 
307 	if (pfr & (0xf << 16)) {
308 		pr_notice("Floating-point is not implemented\n");
309 		return 0;
310 	}
311 	elf_hwcap |= HWCAP_FP;
312 
313 	if (pfr & (0xf << 20))
314 		pr_notice("Advanced SIMD is not implemented\n");
315 	else
316 		elf_hwcap |= HWCAP_ASIMD;
317 
318 	fpsimd_pm_init();
319 
320 	return 0;
321 }
322 late_initcall(fpsimd_init);
323