1 /*
2  *   This program is free software; you can redistribute it and/or
3  *   modify it under the terms of the GNU General Public License
4  *   as published by the Free Software Foundation; either version
5  *   2 of the License, or (at your option) any later version.
6  *
7  *   Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
8  *     & Swedish University of Agricultural Sciences.
9  *
10  *   Jens Laas <jens.laas@data.slu.se> Swedish University of
11  *     Agricultural Sciences.
12  *
13  *   Hans Liss <hans.liss@its.uu.se>  Uppsala Universitet
14  *
15  * This work is based on the LPC-trie which is originally described in:
16  *
17  * An experimental study of compression methods for dynamic tries
18  * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
19  * http://www.csc.kth.se/~snilsson/software/dyntrie2/
20  *
21  *
22  * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
23  * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
24  *
25  *
26  * Code from fib_hash has been reused which includes the following header:
27  *
28  *
29  * INET		An implementation of the TCP/IP protocol suite for the LINUX
30  *		operating system.  INET is implemented using the  BSD Socket
31  *		interface as the means of communication with the user level.
32  *
33  *		IPv4 FIB: lookup engine and maintenance routines.
34  *
35  *
36  * Authors:	Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
37  *
38  *		This program is free software; you can redistribute it and/or
39  *		modify it under the terms of the GNU General Public License
40  *		as published by the Free Software Foundation; either version
41  *		2 of the License, or (at your option) any later version.
42  *
43  * Substantial contributions to this work comes from:
44  *
45  *		David S. Miller, <davem@davemloft.net>
46  *		Stephen Hemminger <shemminger@osdl.org>
47  *		Paul E. McKenney <paulmck@us.ibm.com>
48  *		Patrick McHardy <kaber@trash.net>
49  */
50 
51 #define VERSION "0.409"
52 
53 #include <asm/uaccess.h>
54 #include <linux/bitops.h>
55 #include <linux/types.h>
56 #include <linux/kernel.h>
57 #include <linux/mm.h>
58 #include <linux/string.h>
59 #include <linux/socket.h>
60 #include <linux/sockios.h>
61 #include <linux/errno.h>
62 #include <linux/in.h>
63 #include <linux/inet.h>
64 #include <linux/inetdevice.h>
65 #include <linux/netdevice.h>
66 #include <linux/if_arp.h>
67 #include <linux/proc_fs.h>
68 #include <linux/rcupdate.h>
69 #include <linux/skbuff.h>
70 #include <linux/netlink.h>
71 #include <linux/init.h>
72 #include <linux/list.h>
73 #include <linux/slab.h>
74 #include <linux/export.h>
75 #include <net/net_namespace.h>
76 #include <net/ip.h>
77 #include <net/protocol.h>
78 #include <net/route.h>
79 #include <net/tcp.h>
80 #include <net/sock.h>
81 #include <net/ip_fib.h>
82 #include <net/switchdev.h>
83 #include "fib_lookup.h"
84 
85 #define MAX_STAT_DEPTH 32
86 
87 #define KEYLENGTH	(8*sizeof(t_key))
88 #define KEY_MAX		((t_key)~0)
89 
90 typedef unsigned int t_key;
91 
92 #define IS_TRIE(n)	((n)->pos >= KEYLENGTH)
93 #define IS_TNODE(n)	((n)->bits)
94 #define IS_LEAF(n)	(!(n)->bits)
95 
96 struct key_vector {
97 	t_key key;
98 	unsigned char pos;		/* 2log(KEYLENGTH) bits needed */
99 	unsigned char bits;		/* 2log(KEYLENGTH) bits needed */
100 	unsigned char slen;
101 	union {
102 		/* This list pointer if valid if (pos | bits) == 0 (LEAF) */
103 		struct hlist_head leaf;
104 		/* This array is valid if (pos | bits) > 0 (TNODE) */
105 		struct key_vector __rcu *tnode[0];
106 	};
107 };
108 
109 struct tnode {
110 	struct rcu_head rcu;
111 	t_key empty_children;		/* KEYLENGTH bits needed */
112 	t_key full_children;		/* KEYLENGTH bits needed */
113 	struct key_vector __rcu *parent;
114 	struct key_vector kv[1];
115 #define tn_bits kv[0].bits
116 };
117 
118 #define TNODE_SIZE(n)	offsetof(struct tnode, kv[0].tnode[n])
119 #define LEAF_SIZE	TNODE_SIZE(1)
120 
121 #ifdef CONFIG_IP_FIB_TRIE_STATS
122 struct trie_use_stats {
123 	unsigned int gets;
124 	unsigned int backtrack;
125 	unsigned int semantic_match_passed;
126 	unsigned int semantic_match_miss;
127 	unsigned int null_node_hit;
128 	unsigned int resize_node_skipped;
129 };
130 #endif
131 
132 struct trie_stat {
133 	unsigned int totdepth;
134 	unsigned int maxdepth;
135 	unsigned int tnodes;
136 	unsigned int leaves;
137 	unsigned int nullpointers;
138 	unsigned int prefixes;
139 	unsigned int nodesizes[MAX_STAT_DEPTH];
140 };
141 
142 struct trie {
143 	struct key_vector kv[1];
144 #ifdef CONFIG_IP_FIB_TRIE_STATS
145 	struct trie_use_stats __percpu *stats;
146 #endif
147 };
148 
149 static struct key_vector *resize(struct trie *t, struct key_vector *tn);
150 static size_t tnode_free_size;
151 
152 /*
153  * synchronize_rcu after call_rcu for that many pages; it should be especially
154  * useful before resizing the root node with PREEMPT_NONE configs; the value was
155  * obtained experimentally, aiming to avoid visible slowdown.
156  */
157 static const int sync_pages = 128;
158 
159 static struct kmem_cache *fn_alias_kmem __read_mostly;
160 static struct kmem_cache *trie_leaf_kmem __read_mostly;
161 
tn_info(struct key_vector * kv)162 static inline struct tnode *tn_info(struct key_vector *kv)
163 {
164 	return container_of(kv, struct tnode, kv[0]);
165 }
166 
167 /* caller must hold RTNL */
168 #define node_parent(tn) rtnl_dereference(tn_info(tn)->parent)
169 #define get_child(tn, i) rtnl_dereference((tn)->tnode[i])
170 
171 /* caller must hold RCU read lock or RTNL */
172 #define node_parent_rcu(tn) rcu_dereference_rtnl(tn_info(tn)->parent)
173 #define get_child_rcu(tn, i) rcu_dereference_rtnl((tn)->tnode[i])
174 
175 /* wrapper for rcu_assign_pointer */
node_set_parent(struct key_vector * n,struct key_vector * tp)176 static inline void node_set_parent(struct key_vector *n, struct key_vector *tp)
177 {
178 	if (n)
179 		rcu_assign_pointer(tn_info(n)->parent, tp);
180 }
181 
182 #define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER(tn_info(n)->parent, p)
183 
184 /* This provides us with the number of children in this node, in the case of a
185  * leaf this will return 0 meaning none of the children are accessible.
186  */
child_length(const struct key_vector * tn)187 static inline unsigned long child_length(const struct key_vector *tn)
188 {
189 	return (1ul << tn->bits) & ~(1ul);
190 }
191 
192 #define get_cindex(key, kv) (((key) ^ (kv)->key) >> (kv)->pos)
193 
get_index(t_key key,struct key_vector * kv)194 static inline unsigned long get_index(t_key key, struct key_vector *kv)
195 {
196 	unsigned long index = key ^ kv->key;
197 
198 	if ((BITS_PER_LONG <= KEYLENGTH) && (KEYLENGTH == kv->pos))
199 		return 0;
200 
201 	return index >> kv->pos;
202 }
203 
204 /* To understand this stuff, an understanding of keys and all their bits is
205  * necessary. Every node in the trie has a key associated with it, but not
206  * all of the bits in that key are significant.
207  *
208  * Consider a node 'n' and its parent 'tp'.
209  *
210  * If n is a leaf, every bit in its key is significant. Its presence is
211  * necessitated by path compression, since during a tree traversal (when
212  * searching for a leaf - unless we are doing an insertion) we will completely
213  * ignore all skipped bits we encounter. Thus we need to verify, at the end of
214  * a potentially successful search, that we have indeed been walking the
215  * correct key path.
216  *
217  * Note that we can never "miss" the correct key in the tree if present by
218  * following the wrong path. Path compression ensures that segments of the key
219  * that are the same for all keys with a given prefix are skipped, but the
220  * skipped part *is* identical for each node in the subtrie below the skipped
221  * bit! trie_insert() in this implementation takes care of that.
222  *
223  * if n is an internal node - a 'tnode' here, the various parts of its key
224  * have many different meanings.
225  *
226  * Example:
227  * _________________________________________________________________
228  * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
229  * -----------------------------------------------------------------
230  *  31  30  29  28  27  26  25  24  23  22  21  20  19  18  17  16
231  *
232  * _________________________________________________________________
233  * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
234  * -----------------------------------------------------------------
235  *  15  14  13  12  11  10   9   8   7   6   5   4   3   2   1   0
236  *
237  * tp->pos = 22
238  * tp->bits = 3
239  * n->pos = 13
240  * n->bits = 4
241  *
242  * First, let's just ignore the bits that come before the parent tp, that is
243  * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this
244  * point we do not use them for anything.
245  *
246  * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
247  * index into the parent's child array. That is, they will be used to find
248  * 'n' among tp's children.
249  *
250  * The bits from (n->pos + n->bits) to (tn->pos - 1) - "S" - are skipped bits
251  * for the node n.
252  *
253  * All the bits we have seen so far are significant to the node n. The rest
254  * of the bits are really not needed or indeed known in n->key.
255  *
256  * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
257  * n's child array, and will of course be different for each child.
258  *
259  * The rest of the bits, from 0 to (n->pos + n->bits), are completely unknown
260  * at this point.
261  */
262 
263 static const int halve_threshold = 25;
264 static const int inflate_threshold = 50;
265 static const int halve_threshold_root = 15;
266 static const int inflate_threshold_root = 30;
267 
__alias_free_mem(struct rcu_head * head)268 static void __alias_free_mem(struct rcu_head *head)
269 {
270 	struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
271 	kmem_cache_free(fn_alias_kmem, fa);
272 }
273 
alias_free_mem_rcu(struct fib_alias * fa)274 static inline void alias_free_mem_rcu(struct fib_alias *fa)
275 {
276 	call_rcu(&fa->rcu, __alias_free_mem);
277 }
278 
279 #define TNODE_KMALLOC_MAX \
280 	ilog2((PAGE_SIZE - TNODE_SIZE(0)) / sizeof(struct key_vector *))
281 #define TNODE_VMALLOC_MAX \
282 	ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct key_vector *))
283 
__node_free_rcu(struct rcu_head * head)284 static void __node_free_rcu(struct rcu_head *head)
285 {
286 	struct tnode *n = container_of(head, struct tnode, rcu);
287 
288 	if (!n->tn_bits)
289 		kmem_cache_free(trie_leaf_kmem, n);
290 	else if (n->tn_bits <= TNODE_KMALLOC_MAX)
291 		kfree(n);
292 	else
293 		vfree(n);
294 }
295 
296 #define node_free(n) call_rcu(&tn_info(n)->rcu, __node_free_rcu)
297 
tnode_alloc(int bits)298 static struct tnode *tnode_alloc(int bits)
299 {
300 	size_t size;
301 
302 	/* verify bits is within bounds */
303 	if (bits > TNODE_VMALLOC_MAX)
304 		return NULL;
305 
306 	/* determine size and verify it is non-zero and didn't overflow */
307 	size = TNODE_SIZE(1ul << bits);
308 
309 	if (size <= PAGE_SIZE)
310 		return kzalloc(size, GFP_KERNEL);
311 	else
312 		return vzalloc(size);
313 }
314 
empty_child_inc(struct key_vector * n)315 static inline void empty_child_inc(struct key_vector *n)
316 {
317 	++tn_info(n)->empty_children ? : ++tn_info(n)->full_children;
318 }
319 
empty_child_dec(struct key_vector * n)320 static inline void empty_child_dec(struct key_vector *n)
321 {
322 	tn_info(n)->empty_children-- ? : tn_info(n)->full_children--;
323 }
324 
leaf_new(t_key key,struct fib_alias * fa)325 static struct key_vector *leaf_new(t_key key, struct fib_alias *fa)
326 {
327 	struct tnode *kv = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
328 	struct key_vector *l = kv->kv;
329 
330 	if (!kv)
331 		return NULL;
332 
333 	/* initialize key vector */
334 	l->key = key;
335 	l->pos = 0;
336 	l->bits = 0;
337 	l->slen = fa->fa_slen;
338 
339 	/* link leaf to fib alias */
340 	INIT_HLIST_HEAD(&l->leaf);
341 	hlist_add_head(&fa->fa_list, &l->leaf);
342 
343 	return l;
344 }
345 
tnode_new(t_key key,int pos,int bits)346 static struct key_vector *tnode_new(t_key key, int pos, int bits)
347 {
348 	struct tnode *tnode = tnode_alloc(bits);
349 	unsigned int shift = pos + bits;
350 	struct key_vector *tn = tnode->kv;
351 
352 	/* verify bits and pos their msb bits clear and values are valid */
353 	BUG_ON(!bits || (shift > KEYLENGTH));
354 
355 	pr_debug("AT %p s=%zu %zu\n", tnode, TNODE_SIZE(0),
356 		 sizeof(struct key_vector *) << bits);
357 
358 	if (!tnode)
359 		return NULL;
360 
361 	if (bits == KEYLENGTH)
362 		tnode->full_children = 1;
363 	else
364 		tnode->empty_children = 1ul << bits;
365 
366 	tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0;
367 	tn->pos = pos;
368 	tn->bits = bits;
369 	tn->slen = pos;
370 
371 	return tn;
372 }
373 
374 /* Check whether a tnode 'n' is "full", i.e. it is an internal node
375  * and no bits are skipped. See discussion in dyntree paper p. 6
376  */
tnode_full(struct key_vector * tn,struct key_vector * n)377 static inline int tnode_full(struct key_vector *tn, struct key_vector *n)
378 {
379 	return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n);
380 }
381 
382 /* Add a child at position i overwriting the old value.
383  * Update the value of full_children and empty_children.
384  */
put_child(struct key_vector * tn,unsigned long i,struct key_vector * n)385 static void put_child(struct key_vector *tn, unsigned long i,
386 		      struct key_vector *n)
387 {
388 	struct key_vector *chi = get_child(tn, i);
389 	int isfull, wasfull;
390 
391 	BUG_ON(i >= child_length(tn));
392 
393 	/* update emptyChildren, overflow into fullChildren */
394 	if (!n && chi)
395 		empty_child_inc(tn);
396 	if (n && !chi)
397 		empty_child_dec(tn);
398 
399 	/* update fullChildren */
400 	wasfull = tnode_full(tn, chi);
401 	isfull = tnode_full(tn, n);
402 
403 	if (wasfull && !isfull)
404 		tn_info(tn)->full_children--;
405 	else if (!wasfull && isfull)
406 		tn_info(tn)->full_children++;
407 
408 	if (n && (tn->slen < n->slen))
409 		tn->slen = n->slen;
410 
411 	rcu_assign_pointer(tn->tnode[i], n);
412 }
413 
update_children(struct key_vector * tn)414 static void update_children(struct key_vector *tn)
415 {
416 	unsigned long i;
417 
418 	/* update all of the child parent pointers */
419 	for (i = child_length(tn); i;) {
420 		struct key_vector *inode = get_child(tn, --i);
421 
422 		if (!inode)
423 			continue;
424 
425 		/* Either update the children of a tnode that
426 		 * already belongs to us or update the child
427 		 * to point to ourselves.
428 		 */
429 		if (node_parent(inode) == tn)
430 			update_children(inode);
431 		else
432 			node_set_parent(inode, tn);
433 	}
434 }
435 
put_child_root(struct key_vector * tp,t_key key,struct key_vector * n)436 static inline void put_child_root(struct key_vector *tp, t_key key,
437 				  struct key_vector *n)
438 {
439 	if (IS_TRIE(tp))
440 		rcu_assign_pointer(tp->tnode[0], n);
441 	else
442 		put_child(tp, get_index(key, tp), n);
443 }
444 
tnode_free_init(struct key_vector * tn)445 static inline void tnode_free_init(struct key_vector *tn)
446 {
447 	tn_info(tn)->rcu.next = NULL;
448 }
449 
tnode_free_append(struct key_vector * tn,struct key_vector * n)450 static inline void tnode_free_append(struct key_vector *tn,
451 				     struct key_vector *n)
452 {
453 	tn_info(n)->rcu.next = tn_info(tn)->rcu.next;
454 	tn_info(tn)->rcu.next = &tn_info(n)->rcu;
455 }
456 
tnode_free(struct key_vector * tn)457 static void tnode_free(struct key_vector *tn)
458 {
459 	struct callback_head *head = &tn_info(tn)->rcu;
460 
461 	while (head) {
462 		head = head->next;
463 		tnode_free_size += TNODE_SIZE(1ul << tn->bits);
464 		node_free(tn);
465 
466 		tn = container_of(head, struct tnode, rcu)->kv;
467 	}
468 
469 	if (tnode_free_size >= PAGE_SIZE * sync_pages) {
470 		tnode_free_size = 0;
471 		synchronize_rcu();
472 	}
473 }
474 
replace(struct trie * t,struct key_vector * oldtnode,struct key_vector * tn)475 static struct key_vector *replace(struct trie *t,
476 				  struct key_vector *oldtnode,
477 				  struct key_vector *tn)
478 {
479 	struct key_vector *tp = node_parent(oldtnode);
480 	unsigned long i;
481 
482 	/* setup the parent pointer out of and back into this node */
483 	NODE_INIT_PARENT(tn, tp);
484 	put_child_root(tp, tn->key, tn);
485 
486 	/* update all of the child parent pointers */
487 	update_children(tn);
488 
489 	/* all pointers should be clean so we are done */
490 	tnode_free(oldtnode);
491 
492 	/* resize children now that oldtnode is freed */
493 	for (i = child_length(tn); i;) {
494 		struct key_vector *inode = get_child(tn, --i);
495 
496 		/* resize child node */
497 		if (tnode_full(tn, inode))
498 			tn = resize(t, inode);
499 	}
500 
501 	return tp;
502 }
503 
inflate(struct trie * t,struct key_vector * oldtnode)504 static struct key_vector *inflate(struct trie *t,
505 				  struct key_vector *oldtnode)
506 {
507 	struct key_vector *tn;
508 	unsigned long i;
509 	t_key m;
510 
511 	pr_debug("In inflate\n");
512 
513 	tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1);
514 	if (!tn)
515 		goto notnode;
516 
517 	/* prepare oldtnode to be freed */
518 	tnode_free_init(oldtnode);
519 
520 	/* Assemble all of the pointers in our cluster, in this case that
521 	 * represents all of the pointers out of our allocated nodes that
522 	 * point to existing tnodes and the links between our allocated
523 	 * nodes.
524 	 */
525 	for (i = child_length(oldtnode), m = 1u << tn->pos; i;) {
526 		struct key_vector *inode = get_child(oldtnode, --i);
527 		struct key_vector *node0, *node1;
528 		unsigned long j, k;
529 
530 		/* An empty child */
531 		if (!inode)
532 			continue;
533 
534 		/* A leaf or an internal node with skipped bits */
535 		if (!tnode_full(oldtnode, inode)) {
536 			put_child(tn, get_index(inode->key, tn), inode);
537 			continue;
538 		}
539 
540 		/* drop the node in the old tnode free list */
541 		tnode_free_append(oldtnode, inode);
542 
543 		/* An internal node with two children */
544 		if (inode->bits == 1) {
545 			put_child(tn, 2 * i + 1, get_child(inode, 1));
546 			put_child(tn, 2 * i, get_child(inode, 0));
547 			continue;
548 		}
549 
550 		/* We will replace this node 'inode' with two new
551 		 * ones, 'node0' and 'node1', each with half of the
552 		 * original children. The two new nodes will have
553 		 * a position one bit further down the key and this
554 		 * means that the "significant" part of their keys
555 		 * (see the discussion near the top of this file)
556 		 * will differ by one bit, which will be "0" in
557 		 * node0's key and "1" in node1's key. Since we are
558 		 * moving the key position by one step, the bit that
559 		 * we are moving away from - the bit at position
560 		 * (tn->pos) - is the one that will differ between
561 		 * node0 and node1. So... we synthesize that bit in the
562 		 * two new keys.
563 		 */
564 		node1 = tnode_new(inode->key | m, inode->pos, inode->bits - 1);
565 		if (!node1)
566 			goto nomem;
567 		node0 = tnode_new(inode->key, inode->pos, inode->bits - 1);
568 
569 		tnode_free_append(tn, node1);
570 		if (!node0)
571 			goto nomem;
572 		tnode_free_append(tn, node0);
573 
574 		/* populate child pointers in new nodes */
575 		for (k = child_length(inode), j = k / 2; j;) {
576 			put_child(node1, --j, get_child(inode, --k));
577 			put_child(node0, j, get_child(inode, j));
578 			put_child(node1, --j, get_child(inode, --k));
579 			put_child(node0, j, get_child(inode, j));
580 		}
581 
582 		/* link new nodes to parent */
583 		NODE_INIT_PARENT(node1, tn);
584 		NODE_INIT_PARENT(node0, tn);
585 
586 		/* link parent to nodes */
587 		put_child(tn, 2 * i + 1, node1);
588 		put_child(tn, 2 * i, node0);
589 	}
590 
591 	/* setup the parent pointers into and out of this node */
592 	return replace(t, oldtnode, tn);
593 nomem:
594 	/* all pointers should be clean so we are done */
595 	tnode_free(tn);
596 notnode:
597 	return NULL;
598 }
599 
halve(struct trie * t,struct key_vector * oldtnode)600 static struct key_vector *halve(struct trie *t,
601 				struct key_vector *oldtnode)
602 {
603 	struct key_vector *tn;
604 	unsigned long i;
605 
606 	pr_debug("In halve\n");
607 
608 	tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1);
609 	if (!tn)
610 		goto notnode;
611 
612 	/* prepare oldtnode to be freed */
613 	tnode_free_init(oldtnode);
614 
615 	/* Assemble all of the pointers in our cluster, in this case that
616 	 * represents all of the pointers out of our allocated nodes that
617 	 * point to existing tnodes and the links between our allocated
618 	 * nodes.
619 	 */
620 	for (i = child_length(oldtnode); i;) {
621 		struct key_vector *node1 = get_child(oldtnode, --i);
622 		struct key_vector *node0 = get_child(oldtnode, --i);
623 		struct key_vector *inode;
624 
625 		/* At least one of the children is empty */
626 		if (!node1 || !node0) {
627 			put_child(tn, i / 2, node1 ? : node0);
628 			continue;
629 		}
630 
631 		/* Two nonempty children */
632 		inode = tnode_new(node0->key, oldtnode->pos, 1);
633 		if (!inode)
634 			goto nomem;
635 		tnode_free_append(tn, inode);
636 
637 		/* initialize pointers out of node */
638 		put_child(inode, 1, node1);
639 		put_child(inode, 0, node0);
640 		NODE_INIT_PARENT(inode, tn);
641 
642 		/* link parent to node */
643 		put_child(tn, i / 2, inode);
644 	}
645 
646 	/* setup the parent pointers into and out of this node */
647 	return replace(t, oldtnode, tn);
648 nomem:
649 	/* all pointers should be clean so we are done */
650 	tnode_free(tn);
651 notnode:
652 	return NULL;
653 }
654 
collapse(struct trie * t,struct key_vector * oldtnode)655 static struct key_vector *collapse(struct trie *t,
656 				   struct key_vector *oldtnode)
657 {
658 	struct key_vector *n, *tp;
659 	unsigned long i;
660 
661 	/* scan the tnode looking for that one child that might still exist */
662 	for (n = NULL, i = child_length(oldtnode); !n && i;)
663 		n = get_child(oldtnode, --i);
664 
665 	/* compress one level */
666 	tp = node_parent(oldtnode);
667 	put_child_root(tp, oldtnode->key, n);
668 	node_set_parent(n, tp);
669 
670 	/* drop dead node */
671 	node_free(oldtnode);
672 
673 	return tp;
674 }
675 
update_suffix(struct key_vector * tn)676 static unsigned char update_suffix(struct key_vector *tn)
677 {
678 	unsigned char slen = tn->pos;
679 	unsigned long stride, i;
680 
681 	/* search though the list of children looking for nodes that might
682 	 * have a suffix greater than the one we currently have.  This is
683 	 * why we start with a stride of 2 since a stride of 1 would
684 	 * represent the nodes with suffix length equal to tn->pos
685 	 */
686 	for (i = 0, stride = 0x2ul ; i < child_length(tn); i += stride) {
687 		struct key_vector *n = get_child(tn, i);
688 
689 		if (!n || (n->slen <= slen))
690 			continue;
691 
692 		/* update stride and slen based on new value */
693 		stride <<= (n->slen - slen);
694 		slen = n->slen;
695 		i &= ~(stride - 1);
696 
697 		/* if slen covers all but the last bit we can stop here
698 		 * there will be nothing longer than that since only node
699 		 * 0 and 1 << (bits - 1) could have that as their suffix
700 		 * length.
701 		 */
702 		if ((slen + 1) >= (tn->pos + tn->bits))
703 			break;
704 	}
705 
706 	tn->slen = slen;
707 
708 	return slen;
709 }
710 
711 /* From "Implementing a dynamic compressed trie" by Stefan Nilsson of
712  * the Helsinki University of Technology and Matti Tikkanen of Nokia
713  * Telecommunications, page 6:
714  * "A node is doubled if the ratio of non-empty children to all
715  * children in the *doubled* node is at least 'high'."
716  *
717  * 'high' in this instance is the variable 'inflate_threshold'. It
718  * is expressed as a percentage, so we multiply it with
719  * child_length() and instead of multiplying by 2 (since the
720  * child array will be doubled by inflate()) and multiplying
721  * the left-hand side by 100 (to handle the percentage thing) we
722  * multiply the left-hand side by 50.
723  *
724  * The left-hand side may look a bit weird: child_length(tn)
725  * - tn->empty_children is of course the number of non-null children
726  * in the current node. tn->full_children is the number of "full"
727  * children, that is non-null tnodes with a skip value of 0.
728  * All of those will be doubled in the resulting inflated tnode, so
729  * we just count them one extra time here.
730  *
731  * A clearer way to write this would be:
732  *
733  * to_be_doubled = tn->full_children;
734  * not_to_be_doubled = child_length(tn) - tn->empty_children -
735  *     tn->full_children;
736  *
737  * new_child_length = child_length(tn) * 2;
738  *
739  * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
740  *      new_child_length;
741  * if (new_fill_factor >= inflate_threshold)
742  *
743  * ...and so on, tho it would mess up the while () loop.
744  *
745  * anyway,
746  * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
747  *      inflate_threshold
748  *
749  * avoid a division:
750  * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
751  *      inflate_threshold * new_child_length
752  *
753  * expand not_to_be_doubled and to_be_doubled, and shorten:
754  * 100 * (child_length(tn) - tn->empty_children +
755  *    tn->full_children) >= inflate_threshold * new_child_length
756  *
757  * expand new_child_length:
758  * 100 * (child_length(tn) - tn->empty_children +
759  *    tn->full_children) >=
760  *      inflate_threshold * child_length(tn) * 2
761  *
762  * shorten again:
763  * 50 * (tn->full_children + child_length(tn) -
764  *    tn->empty_children) >= inflate_threshold *
765  *    child_length(tn)
766  *
767  */
should_inflate(struct key_vector * tp,struct key_vector * tn)768 static inline bool should_inflate(struct key_vector *tp, struct key_vector *tn)
769 {
770 	unsigned long used = child_length(tn);
771 	unsigned long threshold = used;
772 
773 	/* Keep root node larger */
774 	threshold *= IS_TRIE(tp) ? inflate_threshold_root : inflate_threshold;
775 	used -= tn_info(tn)->empty_children;
776 	used += tn_info(tn)->full_children;
777 
778 	/* if bits == KEYLENGTH then pos = 0, and will fail below */
779 
780 	return (used > 1) && tn->pos && ((50 * used) >= threshold);
781 }
782 
should_halve(struct key_vector * tp,struct key_vector * tn)783 static inline bool should_halve(struct key_vector *tp, struct key_vector *tn)
784 {
785 	unsigned long used = child_length(tn);
786 	unsigned long threshold = used;
787 
788 	/* Keep root node larger */
789 	threshold *= IS_TRIE(tp) ? halve_threshold_root : halve_threshold;
790 	used -= tn_info(tn)->empty_children;
791 
792 	/* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */
793 
794 	return (used > 1) && (tn->bits > 1) && ((100 * used) < threshold);
795 }
796 
should_collapse(struct key_vector * tn)797 static inline bool should_collapse(struct key_vector *tn)
798 {
799 	unsigned long used = child_length(tn);
800 
801 	used -= tn_info(tn)->empty_children;
802 
803 	/* account for bits == KEYLENGTH case */
804 	if ((tn->bits == KEYLENGTH) && tn_info(tn)->full_children)
805 		used -= KEY_MAX;
806 
807 	/* One child or none, time to drop us from the trie */
808 	return used < 2;
809 }
810 
811 #define MAX_WORK 10
resize(struct trie * t,struct key_vector * tn)812 static struct key_vector *resize(struct trie *t, struct key_vector *tn)
813 {
814 #ifdef CONFIG_IP_FIB_TRIE_STATS
815 	struct trie_use_stats __percpu *stats = t->stats;
816 #endif
817 	struct key_vector *tp = node_parent(tn);
818 	unsigned long cindex = get_index(tn->key, tp);
819 	int max_work = MAX_WORK;
820 
821 	pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
822 		 tn, inflate_threshold, halve_threshold);
823 
824 	/* track the tnode via the pointer from the parent instead of
825 	 * doing it ourselves.  This way we can let RCU fully do its
826 	 * thing without us interfering
827 	 */
828 	BUG_ON(tn != get_child(tp, cindex));
829 
830 	/* Double as long as the resulting node has a number of
831 	 * nonempty nodes that are above the threshold.
832 	 */
833 	while (should_inflate(tp, tn) && max_work) {
834 		tp = inflate(t, tn);
835 		if (!tp) {
836 #ifdef CONFIG_IP_FIB_TRIE_STATS
837 			this_cpu_inc(stats->resize_node_skipped);
838 #endif
839 			break;
840 		}
841 
842 		max_work--;
843 		tn = get_child(tp, cindex);
844 	}
845 
846 	/* update parent in case inflate failed */
847 	tp = node_parent(tn);
848 
849 	/* Return if at least one inflate is run */
850 	if (max_work != MAX_WORK)
851 		return tp;
852 
853 	/* Halve as long as the number of empty children in this
854 	 * node is above threshold.
855 	 */
856 	while (should_halve(tp, tn) && max_work) {
857 		tp = halve(t, tn);
858 		if (!tp) {
859 #ifdef CONFIG_IP_FIB_TRIE_STATS
860 			this_cpu_inc(stats->resize_node_skipped);
861 #endif
862 			break;
863 		}
864 
865 		max_work--;
866 		tn = get_child(tp, cindex);
867 	}
868 
869 	/* Only one child remains */
870 	if (should_collapse(tn))
871 		return collapse(t, tn);
872 
873 	/* update parent in case halve failed */
874 	tp = node_parent(tn);
875 
876 	/* Return if at least one deflate was run */
877 	if (max_work != MAX_WORK)
878 		return tp;
879 
880 	/* push the suffix length to the parent node */
881 	if (tn->slen > tn->pos) {
882 		unsigned char slen = update_suffix(tn);
883 
884 		if (slen > tp->slen)
885 			tp->slen = slen;
886 	}
887 
888 	return tp;
889 }
890 
leaf_pull_suffix(struct key_vector * tp,struct key_vector * l)891 static void leaf_pull_suffix(struct key_vector *tp, struct key_vector *l)
892 {
893 	while ((tp->slen > tp->pos) && (tp->slen > l->slen)) {
894 		if (update_suffix(tp) > l->slen)
895 			break;
896 		tp = node_parent(tp);
897 	}
898 }
899 
leaf_push_suffix(struct key_vector * tn,struct key_vector * l)900 static void leaf_push_suffix(struct key_vector *tn, struct key_vector *l)
901 {
902 	/* if this is a new leaf then tn will be NULL and we can sort
903 	 * out parent suffix lengths as a part of trie_rebalance
904 	 */
905 	while (tn->slen < l->slen) {
906 		tn->slen = l->slen;
907 		tn = node_parent(tn);
908 	}
909 }
910 
911 /* rcu_read_lock needs to be hold by caller from readside */
fib_find_node(struct trie * t,struct key_vector ** tp,u32 key)912 static struct key_vector *fib_find_node(struct trie *t,
913 					struct key_vector **tp, u32 key)
914 {
915 	struct key_vector *pn, *n = t->kv;
916 	unsigned long index = 0;
917 
918 	do {
919 		pn = n;
920 		n = get_child_rcu(n, index);
921 
922 		if (!n)
923 			break;
924 
925 		index = get_cindex(key, n);
926 
927 		/* This bit of code is a bit tricky but it combines multiple
928 		 * checks into a single check.  The prefix consists of the
929 		 * prefix plus zeros for the bits in the cindex. The index
930 		 * is the difference between the key and this value.  From
931 		 * this we can actually derive several pieces of data.
932 		 *   if (index >= (1ul << bits))
933 		 *     we have a mismatch in skip bits and failed
934 		 *   else
935 		 *     we know the value is cindex
936 		 *
937 		 * This check is safe even if bits == KEYLENGTH due to the
938 		 * fact that we can only allocate a node with 32 bits if a
939 		 * long is greater than 32 bits.
940 		 */
941 		if (index >= (1ul << n->bits)) {
942 			n = NULL;
943 			break;
944 		}
945 
946 		/* keep searching until we find a perfect match leaf or NULL */
947 	} while (IS_TNODE(n));
948 
949 	*tp = pn;
950 
951 	return n;
952 }
953 
954 /* Return the first fib alias matching TOS with
955  * priority less than or equal to PRIO.
956  */
fib_find_alias(struct hlist_head * fah,u8 slen,u8 tos,u32 prio,u32 tb_id)957 static struct fib_alias *fib_find_alias(struct hlist_head *fah, u8 slen,
958 					u8 tos, u32 prio, u32 tb_id)
959 {
960 	struct fib_alias *fa;
961 
962 	if (!fah)
963 		return NULL;
964 
965 	hlist_for_each_entry(fa, fah, fa_list) {
966 		if (fa->fa_slen < slen)
967 			continue;
968 		if (fa->fa_slen != slen)
969 			break;
970 		if (fa->tb_id > tb_id)
971 			continue;
972 		if (fa->tb_id != tb_id)
973 			break;
974 		if (fa->fa_tos > tos)
975 			continue;
976 		if (fa->fa_info->fib_priority >= prio || fa->fa_tos < tos)
977 			return fa;
978 	}
979 
980 	return NULL;
981 }
982 
trie_rebalance(struct trie * t,struct key_vector * tn)983 static void trie_rebalance(struct trie *t, struct key_vector *tn)
984 {
985 	while (!IS_TRIE(tn))
986 		tn = resize(t, tn);
987 }
988 
fib_insert_node(struct trie * t,struct key_vector * tp,struct fib_alias * new,t_key key)989 static int fib_insert_node(struct trie *t, struct key_vector *tp,
990 			   struct fib_alias *new, t_key key)
991 {
992 	struct key_vector *n, *l;
993 
994 	l = leaf_new(key, new);
995 	if (!l)
996 		goto noleaf;
997 
998 	/* retrieve child from parent node */
999 	n = get_child(tp, get_index(key, tp));
1000 
1001 	/* Case 2: n is a LEAF or a TNODE and the key doesn't match.
1002 	 *
1003 	 *  Add a new tnode here
1004 	 *  first tnode need some special handling
1005 	 *  leaves us in position for handling as case 3
1006 	 */
1007 	if (n) {
1008 		struct key_vector *tn;
1009 
1010 		tn = tnode_new(key, __fls(key ^ n->key), 1);
1011 		if (!tn)
1012 			goto notnode;
1013 
1014 		/* initialize routes out of node */
1015 		NODE_INIT_PARENT(tn, tp);
1016 		put_child(tn, get_index(key, tn) ^ 1, n);
1017 
1018 		/* start adding routes into the node */
1019 		put_child_root(tp, key, tn);
1020 		node_set_parent(n, tn);
1021 
1022 		/* parent now has a NULL spot where the leaf can go */
1023 		tp = tn;
1024 	}
1025 
1026 	/* Case 3: n is NULL, and will just insert a new leaf */
1027 	NODE_INIT_PARENT(l, tp);
1028 	put_child_root(tp, key, l);
1029 	trie_rebalance(t, tp);
1030 
1031 	return 0;
1032 notnode:
1033 	node_free(l);
1034 noleaf:
1035 	return -ENOMEM;
1036 }
1037 
fib_insert_alias(struct trie * t,struct key_vector * tp,struct key_vector * l,struct fib_alias * new,struct fib_alias * fa,t_key key)1038 static int fib_insert_alias(struct trie *t, struct key_vector *tp,
1039 			    struct key_vector *l, struct fib_alias *new,
1040 			    struct fib_alias *fa, t_key key)
1041 {
1042 	if (!l)
1043 		return fib_insert_node(t, tp, new, key);
1044 
1045 	if (fa) {
1046 		hlist_add_before_rcu(&new->fa_list, &fa->fa_list);
1047 	} else {
1048 		struct fib_alias *last;
1049 
1050 		hlist_for_each_entry(last, &l->leaf, fa_list) {
1051 			if (new->fa_slen < last->fa_slen)
1052 				break;
1053 			if ((new->fa_slen == last->fa_slen) &&
1054 			    (new->tb_id > last->tb_id))
1055 				break;
1056 			fa = last;
1057 		}
1058 
1059 		if (fa)
1060 			hlist_add_behind_rcu(&new->fa_list, &fa->fa_list);
1061 		else
1062 			hlist_add_head_rcu(&new->fa_list, &l->leaf);
1063 	}
1064 
1065 	/* if we added to the tail node then we need to update slen */
1066 	if (l->slen < new->fa_slen) {
1067 		l->slen = new->fa_slen;
1068 		leaf_push_suffix(tp, l);
1069 	}
1070 
1071 	return 0;
1072 }
1073 
1074 /* Caller must hold RTNL. */
fib_table_insert(struct fib_table * tb,struct fib_config * cfg)1075 int fib_table_insert(struct fib_table *tb, struct fib_config *cfg)
1076 {
1077 	struct trie *t = (struct trie *)tb->tb_data;
1078 	struct fib_alias *fa, *new_fa;
1079 	struct key_vector *l, *tp;
1080 	struct fib_info *fi;
1081 	u8 plen = cfg->fc_dst_len;
1082 	u8 slen = KEYLENGTH - plen;
1083 	u8 tos = cfg->fc_tos;
1084 	u32 key;
1085 	int err;
1086 
1087 	if (plen > KEYLENGTH)
1088 		return -EINVAL;
1089 
1090 	key = ntohl(cfg->fc_dst);
1091 
1092 	pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
1093 
1094 	if ((plen < KEYLENGTH) && (key << plen))
1095 		return -EINVAL;
1096 
1097 	fi = fib_create_info(cfg);
1098 	if (IS_ERR(fi)) {
1099 		err = PTR_ERR(fi);
1100 		goto err;
1101 	}
1102 
1103 	l = fib_find_node(t, &tp, key);
1104 	fa = l ? fib_find_alias(&l->leaf, slen, tos, fi->fib_priority,
1105 				tb->tb_id) : NULL;
1106 
1107 	/* Now fa, if non-NULL, points to the first fib alias
1108 	 * with the same keys [prefix,tos,priority], if such key already
1109 	 * exists or to the node before which we will insert new one.
1110 	 *
1111 	 * If fa is NULL, we will need to allocate a new one and
1112 	 * insert to the tail of the section matching the suffix length
1113 	 * of the new alias.
1114 	 */
1115 
1116 	if (fa && fa->fa_tos == tos &&
1117 	    fa->fa_info->fib_priority == fi->fib_priority) {
1118 		struct fib_alias *fa_first, *fa_match;
1119 
1120 		err = -EEXIST;
1121 		if (cfg->fc_nlflags & NLM_F_EXCL)
1122 			goto out;
1123 
1124 		/* We have 2 goals:
1125 		 * 1. Find exact match for type, scope, fib_info to avoid
1126 		 * duplicate routes
1127 		 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1128 		 */
1129 		fa_match = NULL;
1130 		fa_first = fa;
1131 		hlist_for_each_entry_from(fa, fa_list) {
1132 			if ((fa->fa_slen != slen) ||
1133 			    (fa->tb_id != tb->tb_id) ||
1134 			    (fa->fa_tos != tos))
1135 				break;
1136 			if (fa->fa_info->fib_priority != fi->fib_priority)
1137 				break;
1138 			if (fa->fa_type == cfg->fc_type &&
1139 			    fa->fa_info == fi) {
1140 				fa_match = fa;
1141 				break;
1142 			}
1143 		}
1144 
1145 		if (cfg->fc_nlflags & NLM_F_REPLACE) {
1146 			struct fib_info *fi_drop;
1147 			u8 state;
1148 
1149 			fa = fa_first;
1150 			if (fa_match) {
1151 				if (fa == fa_match)
1152 					err = 0;
1153 				goto out;
1154 			}
1155 			err = -ENOBUFS;
1156 			new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1157 			if (!new_fa)
1158 				goto out;
1159 
1160 			fi_drop = fa->fa_info;
1161 			new_fa->fa_tos = fa->fa_tos;
1162 			new_fa->fa_info = fi;
1163 			new_fa->fa_type = cfg->fc_type;
1164 			state = fa->fa_state;
1165 			new_fa->fa_state = state & ~FA_S_ACCESSED;
1166 			new_fa->fa_slen = fa->fa_slen;
1167 			new_fa->tb_id = tb->tb_id;
1168 
1169 			err = netdev_switch_fib_ipv4_add(key, plen, fi,
1170 							 new_fa->fa_tos,
1171 							 cfg->fc_type,
1172 							 cfg->fc_nlflags,
1173 							 tb->tb_id);
1174 			if (err) {
1175 				netdev_switch_fib_ipv4_abort(fi);
1176 				kmem_cache_free(fn_alias_kmem, new_fa);
1177 				goto out;
1178 			}
1179 
1180 			hlist_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1181 
1182 			alias_free_mem_rcu(fa);
1183 
1184 			fib_release_info(fi_drop);
1185 			if (state & FA_S_ACCESSED)
1186 				rt_cache_flush(cfg->fc_nlinfo.nl_net);
1187 			rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
1188 				tb->tb_id, &cfg->fc_nlinfo, NLM_F_REPLACE);
1189 
1190 			goto succeeded;
1191 		}
1192 		/* Error if we find a perfect match which
1193 		 * uses the same scope, type, and nexthop
1194 		 * information.
1195 		 */
1196 		if (fa_match)
1197 			goto out;
1198 
1199 		if (!(cfg->fc_nlflags & NLM_F_APPEND))
1200 			fa = fa_first;
1201 	}
1202 	err = -ENOENT;
1203 	if (!(cfg->fc_nlflags & NLM_F_CREATE))
1204 		goto out;
1205 
1206 	err = -ENOBUFS;
1207 	new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1208 	if (!new_fa)
1209 		goto out;
1210 
1211 	new_fa->fa_info = fi;
1212 	new_fa->fa_tos = tos;
1213 	new_fa->fa_type = cfg->fc_type;
1214 	new_fa->fa_state = 0;
1215 	new_fa->fa_slen = slen;
1216 	new_fa->tb_id = tb->tb_id;
1217 
1218 	/* (Optionally) offload fib entry to switch hardware. */
1219 	err = netdev_switch_fib_ipv4_add(key, plen, fi, tos,
1220 					 cfg->fc_type,
1221 					 cfg->fc_nlflags,
1222 					 tb->tb_id);
1223 	if (err) {
1224 		netdev_switch_fib_ipv4_abort(fi);
1225 		goto out_free_new_fa;
1226 	}
1227 
1228 	/* Insert new entry to the list. */
1229 	err = fib_insert_alias(t, tp, l, new_fa, fa, key);
1230 	if (err)
1231 		goto out_sw_fib_del;
1232 
1233 	if (!plen)
1234 		tb->tb_num_default++;
1235 
1236 	rt_cache_flush(cfg->fc_nlinfo.nl_net);
1237 	rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, new_fa->tb_id,
1238 		  &cfg->fc_nlinfo, 0);
1239 succeeded:
1240 	return 0;
1241 
1242 out_sw_fib_del:
1243 	netdev_switch_fib_ipv4_del(key, plen, fi, tos, cfg->fc_type, tb->tb_id);
1244 out_free_new_fa:
1245 	kmem_cache_free(fn_alias_kmem, new_fa);
1246 out:
1247 	fib_release_info(fi);
1248 err:
1249 	return err;
1250 }
1251 
prefix_mismatch(t_key key,struct key_vector * n)1252 static inline t_key prefix_mismatch(t_key key, struct key_vector *n)
1253 {
1254 	t_key prefix = n->key;
1255 
1256 	return (key ^ prefix) & (prefix | -prefix);
1257 }
1258 
1259 /* should be called with rcu_read_lock */
fib_table_lookup(struct fib_table * tb,const struct flowi4 * flp,struct fib_result * res,int fib_flags)1260 int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
1261 		     struct fib_result *res, int fib_flags)
1262 {
1263 	struct trie *t = (struct trie *) tb->tb_data;
1264 #ifdef CONFIG_IP_FIB_TRIE_STATS
1265 	struct trie_use_stats __percpu *stats = t->stats;
1266 #endif
1267 	const t_key key = ntohl(flp->daddr);
1268 	struct key_vector *n, *pn;
1269 	struct fib_alias *fa;
1270 	unsigned long index;
1271 	t_key cindex;
1272 
1273 	pn = t->kv;
1274 	cindex = 0;
1275 
1276 	n = get_child_rcu(pn, cindex);
1277 	if (!n)
1278 		return -EAGAIN;
1279 
1280 #ifdef CONFIG_IP_FIB_TRIE_STATS
1281 	this_cpu_inc(stats->gets);
1282 #endif
1283 
1284 	/* Step 1: Travel to the longest prefix match in the trie */
1285 	for (;;) {
1286 		index = get_cindex(key, n);
1287 
1288 		/* This bit of code is a bit tricky but it combines multiple
1289 		 * checks into a single check.  The prefix consists of the
1290 		 * prefix plus zeros for the "bits" in the prefix. The index
1291 		 * is the difference between the key and this value.  From
1292 		 * this we can actually derive several pieces of data.
1293 		 *   if (index >= (1ul << bits))
1294 		 *     we have a mismatch in skip bits and failed
1295 		 *   else
1296 		 *     we know the value is cindex
1297 		 *
1298 		 * This check is safe even if bits == KEYLENGTH due to the
1299 		 * fact that we can only allocate a node with 32 bits if a
1300 		 * long is greater than 32 bits.
1301 		 */
1302 		if (index >= (1ul << n->bits))
1303 			break;
1304 
1305 		/* we have found a leaf. Prefixes have already been compared */
1306 		if (IS_LEAF(n))
1307 			goto found;
1308 
1309 		/* only record pn and cindex if we are going to be chopping
1310 		 * bits later.  Otherwise we are just wasting cycles.
1311 		 */
1312 		if (n->slen > n->pos) {
1313 			pn = n;
1314 			cindex = index;
1315 		}
1316 
1317 		n = get_child_rcu(n, index);
1318 		if (unlikely(!n))
1319 			goto backtrace;
1320 	}
1321 
1322 	/* Step 2: Sort out leaves and begin backtracing for longest prefix */
1323 	for (;;) {
1324 		/* record the pointer where our next node pointer is stored */
1325 		struct key_vector __rcu **cptr = n->tnode;
1326 
1327 		/* This test verifies that none of the bits that differ
1328 		 * between the key and the prefix exist in the region of
1329 		 * the lsb and higher in the prefix.
1330 		 */
1331 		if (unlikely(prefix_mismatch(key, n)) || (n->slen == n->pos))
1332 			goto backtrace;
1333 
1334 		/* exit out and process leaf */
1335 		if (unlikely(IS_LEAF(n)))
1336 			break;
1337 
1338 		/* Don't bother recording parent info.  Since we are in
1339 		 * prefix match mode we will have to come back to wherever
1340 		 * we started this traversal anyway
1341 		 */
1342 
1343 		while ((n = rcu_dereference(*cptr)) == NULL) {
1344 backtrace:
1345 #ifdef CONFIG_IP_FIB_TRIE_STATS
1346 			if (!n)
1347 				this_cpu_inc(stats->null_node_hit);
1348 #endif
1349 			/* If we are at cindex 0 there are no more bits for
1350 			 * us to strip at this level so we must ascend back
1351 			 * up one level to see if there are any more bits to
1352 			 * be stripped there.
1353 			 */
1354 			while (!cindex) {
1355 				t_key pkey = pn->key;
1356 
1357 				/* If we don't have a parent then there is
1358 				 * nothing for us to do as we do not have any
1359 				 * further nodes to parse.
1360 				 */
1361 				if (IS_TRIE(pn))
1362 					return -EAGAIN;
1363 #ifdef CONFIG_IP_FIB_TRIE_STATS
1364 				this_cpu_inc(stats->backtrack);
1365 #endif
1366 				/* Get Child's index */
1367 				pn = node_parent_rcu(pn);
1368 				cindex = get_index(pkey, pn);
1369 			}
1370 
1371 			/* strip the least significant bit from the cindex */
1372 			cindex &= cindex - 1;
1373 
1374 			/* grab pointer for next child node */
1375 			cptr = &pn->tnode[cindex];
1376 		}
1377 	}
1378 
1379 found:
1380 	/* this line carries forward the xor from earlier in the function */
1381 	index = key ^ n->key;
1382 
1383 	/* Step 3: Process the leaf, if that fails fall back to backtracing */
1384 	hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
1385 		struct fib_info *fi = fa->fa_info;
1386 		int nhsel, err;
1387 
1388 		if ((index >= (1ul << fa->fa_slen)) &&
1389 		    ((BITS_PER_LONG > KEYLENGTH) || (fa->fa_slen != KEYLENGTH)))
1390 			continue;
1391 		if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos)
1392 			continue;
1393 		if (fi->fib_dead)
1394 			continue;
1395 		if (fa->fa_info->fib_scope < flp->flowi4_scope)
1396 			continue;
1397 		fib_alias_accessed(fa);
1398 		err = fib_props[fa->fa_type].error;
1399 		if (unlikely(err < 0)) {
1400 #ifdef CONFIG_IP_FIB_TRIE_STATS
1401 			this_cpu_inc(stats->semantic_match_passed);
1402 #endif
1403 			return err;
1404 		}
1405 		if (fi->fib_flags & RTNH_F_DEAD)
1406 			continue;
1407 		for (nhsel = 0; nhsel < fi->fib_nhs; nhsel++) {
1408 			const struct fib_nh *nh = &fi->fib_nh[nhsel];
1409 
1410 			if (nh->nh_flags & RTNH_F_DEAD)
1411 				continue;
1412 			if (flp->flowi4_oif && flp->flowi4_oif != nh->nh_oif)
1413 				continue;
1414 
1415 			if (!(fib_flags & FIB_LOOKUP_NOREF))
1416 				atomic_inc(&fi->fib_clntref);
1417 
1418 			res->prefixlen = KEYLENGTH - fa->fa_slen;
1419 			res->nh_sel = nhsel;
1420 			res->type = fa->fa_type;
1421 			res->scope = fi->fib_scope;
1422 			res->fi = fi;
1423 			res->table = tb;
1424 			res->fa_head = &n->leaf;
1425 #ifdef CONFIG_IP_FIB_TRIE_STATS
1426 			this_cpu_inc(stats->semantic_match_passed);
1427 #endif
1428 			return err;
1429 		}
1430 	}
1431 #ifdef CONFIG_IP_FIB_TRIE_STATS
1432 	this_cpu_inc(stats->semantic_match_miss);
1433 #endif
1434 	goto backtrace;
1435 }
1436 EXPORT_SYMBOL_GPL(fib_table_lookup);
1437 
fib_remove_alias(struct trie * t,struct key_vector * tp,struct key_vector * l,struct fib_alias * old)1438 static void fib_remove_alias(struct trie *t, struct key_vector *tp,
1439 			     struct key_vector *l, struct fib_alias *old)
1440 {
1441 	/* record the location of the previous list_info entry */
1442 	struct hlist_node **pprev = old->fa_list.pprev;
1443 	struct fib_alias *fa = hlist_entry(pprev, typeof(*fa), fa_list.next);
1444 
1445 	/* remove the fib_alias from the list */
1446 	hlist_del_rcu(&old->fa_list);
1447 
1448 	/* if we emptied the list this leaf will be freed and we can sort
1449 	 * out parent suffix lengths as a part of trie_rebalance
1450 	 */
1451 	if (hlist_empty(&l->leaf)) {
1452 		put_child_root(tp, l->key, NULL);
1453 		node_free(l);
1454 		trie_rebalance(t, tp);
1455 		return;
1456 	}
1457 
1458 	/* only access fa if it is pointing at the last valid hlist_node */
1459 	if (*pprev)
1460 		return;
1461 
1462 	/* update the trie with the latest suffix length */
1463 	l->slen = fa->fa_slen;
1464 	leaf_pull_suffix(tp, l);
1465 }
1466 
1467 /* Caller must hold RTNL. */
fib_table_delete(struct fib_table * tb,struct fib_config * cfg)1468 int fib_table_delete(struct fib_table *tb, struct fib_config *cfg)
1469 {
1470 	struct trie *t = (struct trie *) tb->tb_data;
1471 	struct fib_alias *fa, *fa_to_delete;
1472 	struct key_vector *l, *tp;
1473 	u8 plen = cfg->fc_dst_len;
1474 	u8 slen = KEYLENGTH - plen;
1475 	u8 tos = cfg->fc_tos;
1476 	u32 key;
1477 
1478 	if (plen > KEYLENGTH)
1479 		return -EINVAL;
1480 
1481 	key = ntohl(cfg->fc_dst);
1482 
1483 	if ((plen < KEYLENGTH) && (key << plen))
1484 		return -EINVAL;
1485 
1486 	l = fib_find_node(t, &tp, key);
1487 	if (!l)
1488 		return -ESRCH;
1489 
1490 	fa = fib_find_alias(&l->leaf, slen, tos, 0, tb->tb_id);
1491 	if (!fa)
1492 		return -ESRCH;
1493 
1494 	pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
1495 
1496 	fa_to_delete = NULL;
1497 	hlist_for_each_entry_from(fa, fa_list) {
1498 		struct fib_info *fi = fa->fa_info;
1499 
1500 		if ((fa->fa_slen != slen) ||
1501 		    (fa->tb_id != tb->tb_id) ||
1502 		    (fa->fa_tos != tos))
1503 			break;
1504 
1505 		if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1506 		    (cfg->fc_scope == RT_SCOPE_NOWHERE ||
1507 		     fa->fa_info->fib_scope == cfg->fc_scope) &&
1508 		    (!cfg->fc_prefsrc ||
1509 		     fi->fib_prefsrc == cfg->fc_prefsrc) &&
1510 		    (!cfg->fc_protocol ||
1511 		     fi->fib_protocol == cfg->fc_protocol) &&
1512 		    fib_nh_match(cfg, fi) == 0) {
1513 			fa_to_delete = fa;
1514 			break;
1515 		}
1516 	}
1517 
1518 	if (!fa_to_delete)
1519 		return -ESRCH;
1520 
1521 	netdev_switch_fib_ipv4_del(key, plen, fa_to_delete->fa_info, tos,
1522 				   cfg->fc_type, tb->tb_id);
1523 
1524 	rtmsg_fib(RTM_DELROUTE, htonl(key), fa_to_delete, plen, tb->tb_id,
1525 		  &cfg->fc_nlinfo, 0);
1526 
1527 	if (!plen)
1528 		tb->tb_num_default--;
1529 
1530 	fib_remove_alias(t, tp, l, fa_to_delete);
1531 
1532 	if (fa_to_delete->fa_state & FA_S_ACCESSED)
1533 		rt_cache_flush(cfg->fc_nlinfo.nl_net);
1534 
1535 	fib_release_info(fa_to_delete->fa_info);
1536 	alias_free_mem_rcu(fa_to_delete);
1537 	return 0;
1538 }
1539 
1540 /* Scan for the next leaf starting at the provided key value */
leaf_walk_rcu(struct key_vector ** tn,t_key key)1541 static struct key_vector *leaf_walk_rcu(struct key_vector **tn, t_key key)
1542 {
1543 	struct key_vector *pn, *n = *tn;
1544 	unsigned long cindex;
1545 
1546 	/* this loop is meant to try and find the key in the trie */
1547 	do {
1548 		/* record parent and next child index */
1549 		pn = n;
1550 		cindex = (key > pn->key) ? get_index(key, pn) : 0;
1551 
1552 		if (cindex >> pn->bits)
1553 			break;
1554 
1555 		/* descend into the next child */
1556 		n = get_child_rcu(pn, cindex++);
1557 		if (!n)
1558 			break;
1559 
1560 		/* guarantee forward progress on the keys */
1561 		if (IS_LEAF(n) && (n->key >= key))
1562 			goto found;
1563 	} while (IS_TNODE(n));
1564 
1565 	/* this loop will search for the next leaf with a greater key */
1566 	while (!IS_TRIE(pn)) {
1567 		/* if we exhausted the parent node we will need to climb */
1568 		if (cindex >= (1ul << pn->bits)) {
1569 			t_key pkey = pn->key;
1570 
1571 			pn = node_parent_rcu(pn);
1572 			cindex = get_index(pkey, pn) + 1;
1573 			continue;
1574 		}
1575 
1576 		/* grab the next available node */
1577 		n = get_child_rcu(pn, cindex++);
1578 		if (!n)
1579 			continue;
1580 
1581 		/* no need to compare keys since we bumped the index */
1582 		if (IS_LEAF(n))
1583 			goto found;
1584 
1585 		/* Rescan start scanning in new node */
1586 		pn = n;
1587 		cindex = 0;
1588 	}
1589 
1590 	*tn = pn;
1591 	return NULL; /* Root of trie */
1592 found:
1593 	/* if we are at the limit for keys just return NULL for the tnode */
1594 	*tn = pn;
1595 	return n;
1596 }
1597 
fib_trie_free(struct fib_table * tb)1598 static void fib_trie_free(struct fib_table *tb)
1599 {
1600 	struct trie *t = (struct trie *)tb->tb_data;
1601 	struct key_vector *pn = t->kv;
1602 	unsigned long cindex = 1;
1603 	struct hlist_node *tmp;
1604 	struct fib_alias *fa;
1605 
1606 	/* walk trie in reverse order and free everything */
1607 	for (;;) {
1608 		struct key_vector *n;
1609 
1610 		if (!(cindex--)) {
1611 			t_key pkey = pn->key;
1612 
1613 			if (IS_TRIE(pn))
1614 				break;
1615 
1616 			n = pn;
1617 			pn = node_parent(pn);
1618 
1619 			/* drop emptied tnode */
1620 			put_child_root(pn, n->key, NULL);
1621 			node_free(n);
1622 
1623 			cindex = get_index(pkey, pn);
1624 
1625 			continue;
1626 		}
1627 
1628 		/* grab the next available node */
1629 		n = get_child(pn, cindex);
1630 		if (!n)
1631 			continue;
1632 
1633 		if (IS_TNODE(n)) {
1634 			/* record pn and cindex for leaf walking */
1635 			pn = n;
1636 			cindex = 1ul << n->bits;
1637 
1638 			continue;
1639 		}
1640 
1641 		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1642 			hlist_del_rcu(&fa->fa_list);
1643 			alias_free_mem_rcu(fa);
1644 		}
1645 
1646 		put_child_root(pn, n->key, NULL);
1647 		node_free(n);
1648 	}
1649 
1650 #ifdef CONFIG_IP_FIB_TRIE_STATS
1651 	free_percpu(t->stats);
1652 #endif
1653 	kfree(tb);
1654 }
1655 
fib_trie_unmerge(struct fib_table * oldtb)1656 struct fib_table *fib_trie_unmerge(struct fib_table *oldtb)
1657 {
1658 	struct trie *ot = (struct trie *)oldtb->tb_data;
1659 	struct key_vector *l, *tp = ot->kv;
1660 	struct fib_table *local_tb;
1661 	struct fib_alias *fa;
1662 	struct trie *lt;
1663 	t_key key = 0;
1664 
1665 	if (oldtb->tb_data == oldtb->__data)
1666 		return oldtb;
1667 
1668 	local_tb = fib_trie_table(RT_TABLE_LOCAL, NULL);
1669 	if (!local_tb)
1670 		return NULL;
1671 
1672 	lt = (struct trie *)local_tb->tb_data;
1673 
1674 	while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
1675 		struct key_vector *local_l = NULL, *local_tp;
1676 
1677 		hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
1678 			struct fib_alias *new_fa;
1679 
1680 			if (local_tb->tb_id != fa->tb_id)
1681 				continue;
1682 
1683 			/* clone fa for new local table */
1684 			new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1685 			if (!new_fa)
1686 				goto out;
1687 
1688 			memcpy(new_fa, fa, sizeof(*fa));
1689 
1690 			/* insert clone into table */
1691 			if (!local_l)
1692 				local_l = fib_find_node(lt, &local_tp, l->key);
1693 
1694 			if (fib_insert_alias(lt, local_tp, local_l, new_fa,
1695 					     NULL, l->key))
1696 				goto out;
1697 		}
1698 
1699 		/* stop loop if key wrapped back to 0 */
1700 		key = l->key + 1;
1701 		if (key < l->key)
1702 			break;
1703 	}
1704 
1705 	return local_tb;
1706 out:
1707 	fib_trie_free(local_tb);
1708 
1709 	return NULL;
1710 }
1711 
1712 /* Caller must hold RTNL */
fib_table_flush_external(struct fib_table * tb)1713 void fib_table_flush_external(struct fib_table *tb)
1714 {
1715 	struct trie *t = (struct trie *)tb->tb_data;
1716 	struct key_vector *pn = t->kv;
1717 	unsigned long cindex = 1;
1718 	struct hlist_node *tmp;
1719 	struct fib_alias *fa;
1720 
1721 	/* walk trie in reverse order */
1722 	for (;;) {
1723 		unsigned char slen = 0;
1724 		struct key_vector *n;
1725 
1726 		if (!(cindex--)) {
1727 			t_key pkey = pn->key;
1728 
1729 			/* cannot resize the trie vector */
1730 			if (IS_TRIE(pn))
1731 				break;
1732 
1733 			/* resize completed node */
1734 			pn = resize(t, pn);
1735 			cindex = get_index(pkey, pn);
1736 
1737 			continue;
1738 		}
1739 
1740 		/* grab the next available node */
1741 		n = get_child(pn, cindex);
1742 		if (!n)
1743 			continue;
1744 
1745 		if (IS_TNODE(n)) {
1746 			/* record pn and cindex for leaf walking */
1747 			pn = n;
1748 			cindex = 1ul << n->bits;
1749 
1750 			continue;
1751 		}
1752 
1753 		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1754 			struct fib_info *fi = fa->fa_info;
1755 
1756 			/* if alias was cloned to local then we just
1757 			 * need to remove the local copy from main
1758 			 */
1759 			if (tb->tb_id != fa->tb_id) {
1760 				hlist_del_rcu(&fa->fa_list);
1761 				alias_free_mem_rcu(fa);
1762 				continue;
1763 			}
1764 
1765 			/* record local slen */
1766 			slen = fa->fa_slen;
1767 
1768 			if (!fi || !(fi->fib_flags & RTNH_F_OFFLOAD))
1769 				continue;
1770 
1771 			netdev_switch_fib_ipv4_del(n->key,
1772 						   KEYLENGTH - fa->fa_slen,
1773 						   fi, fa->fa_tos,
1774 						   fa->fa_type, tb->tb_id);
1775 		}
1776 
1777 		/* update leaf slen */
1778 		n->slen = slen;
1779 
1780 		if (hlist_empty(&n->leaf)) {
1781 			put_child_root(pn, n->key, NULL);
1782 			node_free(n);
1783 		}
1784 	}
1785 }
1786 
1787 /* Caller must hold RTNL. */
fib_table_flush(struct fib_table * tb)1788 int fib_table_flush(struct fib_table *tb)
1789 {
1790 	struct trie *t = (struct trie *)tb->tb_data;
1791 	struct key_vector *pn = t->kv;
1792 	unsigned long cindex = 1;
1793 	struct hlist_node *tmp;
1794 	struct fib_alias *fa;
1795 	int found = 0;
1796 
1797 	/* walk trie in reverse order */
1798 	for (;;) {
1799 		unsigned char slen = 0;
1800 		struct key_vector *n;
1801 
1802 		if (!(cindex--)) {
1803 			t_key pkey = pn->key;
1804 
1805 			/* cannot resize the trie vector */
1806 			if (IS_TRIE(pn))
1807 				break;
1808 
1809 			/* resize completed node */
1810 			pn = resize(t, pn);
1811 			cindex = get_index(pkey, pn);
1812 
1813 			continue;
1814 		}
1815 
1816 		/* grab the next available node */
1817 		n = get_child(pn, cindex);
1818 		if (!n)
1819 			continue;
1820 
1821 		if (IS_TNODE(n)) {
1822 			/* record pn and cindex for leaf walking */
1823 			pn = n;
1824 			cindex = 1ul << n->bits;
1825 
1826 			continue;
1827 		}
1828 
1829 		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1830 			struct fib_info *fi = fa->fa_info;
1831 
1832 			if (!fi || !(fi->fib_flags & RTNH_F_DEAD)) {
1833 				slen = fa->fa_slen;
1834 				continue;
1835 			}
1836 
1837 			netdev_switch_fib_ipv4_del(n->key,
1838 						   KEYLENGTH - fa->fa_slen,
1839 						   fi, fa->fa_tos,
1840 						   fa->fa_type, tb->tb_id);
1841 			hlist_del_rcu(&fa->fa_list);
1842 			fib_release_info(fa->fa_info);
1843 			alias_free_mem_rcu(fa);
1844 			found++;
1845 		}
1846 
1847 		/* update leaf slen */
1848 		n->slen = slen;
1849 
1850 		if (hlist_empty(&n->leaf)) {
1851 			put_child_root(pn, n->key, NULL);
1852 			node_free(n);
1853 		}
1854 	}
1855 
1856 	pr_debug("trie_flush found=%d\n", found);
1857 	return found;
1858 }
1859 
__trie_free_rcu(struct rcu_head * head)1860 static void __trie_free_rcu(struct rcu_head *head)
1861 {
1862 	struct fib_table *tb = container_of(head, struct fib_table, rcu);
1863 #ifdef CONFIG_IP_FIB_TRIE_STATS
1864 	struct trie *t = (struct trie *)tb->tb_data;
1865 
1866 	if (tb->tb_data == tb->__data)
1867 		free_percpu(t->stats);
1868 #endif /* CONFIG_IP_FIB_TRIE_STATS */
1869 	kfree(tb);
1870 }
1871 
fib_free_table(struct fib_table * tb)1872 void fib_free_table(struct fib_table *tb)
1873 {
1874 	call_rcu(&tb->rcu, __trie_free_rcu);
1875 }
1876 
fn_trie_dump_leaf(struct key_vector * l,struct fib_table * tb,struct sk_buff * skb,struct netlink_callback * cb)1877 static int fn_trie_dump_leaf(struct key_vector *l, struct fib_table *tb,
1878 			     struct sk_buff *skb, struct netlink_callback *cb)
1879 {
1880 	__be32 xkey = htonl(l->key);
1881 	struct fib_alias *fa;
1882 	int i, s_i;
1883 
1884 	s_i = cb->args[4];
1885 	i = 0;
1886 
1887 	/* rcu_read_lock is hold by caller */
1888 	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
1889 		if (i < s_i) {
1890 			i++;
1891 			continue;
1892 		}
1893 
1894 		if (tb->tb_id != fa->tb_id) {
1895 			i++;
1896 			continue;
1897 		}
1898 
1899 		if (fib_dump_info(skb, NETLINK_CB(cb->skb).portid,
1900 				  cb->nlh->nlmsg_seq,
1901 				  RTM_NEWROUTE,
1902 				  tb->tb_id,
1903 				  fa->fa_type,
1904 				  xkey,
1905 				  KEYLENGTH - fa->fa_slen,
1906 				  fa->fa_tos,
1907 				  fa->fa_info, NLM_F_MULTI) < 0) {
1908 			cb->args[4] = i;
1909 			return -1;
1910 		}
1911 		i++;
1912 	}
1913 
1914 	cb->args[4] = i;
1915 	return skb->len;
1916 }
1917 
1918 /* rcu_read_lock needs to be hold by caller from readside */
fib_table_dump(struct fib_table * tb,struct sk_buff * skb,struct netlink_callback * cb)1919 int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
1920 		   struct netlink_callback *cb)
1921 {
1922 	struct trie *t = (struct trie *)tb->tb_data;
1923 	struct key_vector *l, *tp = t->kv;
1924 	/* Dump starting at last key.
1925 	 * Note: 0.0.0.0/0 (ie default) is first key.
1926 	 */
1927 	int count = cb->args[2];
1928 	t_key key = cb->args[3];
1929 
1930 	while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
1931 		if (fn_trie_dump_leaf(l, tb, skb, cb) < 0) {
1932 			cb->args[3] = key;
1933 			cb->args[2] = count;
1934 			return -1;
1935 		}
1936 
1937 		++count;
1938 		key = l->key + 1;
1939 
1940 		memset(&cb->args[4], 0,
1941 		       sizeof(cb->args) - 4*sizeof(cb->args[0]));
1942 
1943 		/* stop loop if key wrapped back to 0 */
1944 		if (key < l->key)
1945 			break;
1946 	}
1947 
1948 	cb->args[3] = key;
1949 	cb->args[2] = count;
1950 
1951 	return skb->len;
1952 }
1953 
fib_trie_init(void)1954 void __init fib_trie_init(void)
1955 {
1956 	fn_alias_kmem = kmem_cache_create("ip_fib_alias",
1957 					  sizeof(struct fib_alias),
1958 					  0, SLAB_PANIC, NULL);
1959 
1960 	trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
1961 					   LEAF_SIZE,
1962 					   0, SLAB_PANIC, NULL);
1963 }
1964 
fib_trie_table(u32 id,struct fib_table * alias)1965 struct fib_table *fib_trie_table(u32 id, struct fib_table *alias)
1966 {
1967 	struct fib_table *tb;
1968 	struct trie *t;
1969 	size_t sz = sizeof(*tb);
1970 
1971 	if (!alias)
1972 		sz += sizeof(struct trie);
1973 
1974 	tb = kzalloc(sz, GFP_KERNEL);
1975 	if (!tb)
1976 		return NULL;
1977 
1978 	tb->tb_id = id;
1979 	tb->tb_default = -1;
1980 	tb->tb_num_default = 0;
1981 	tb->tb_data = (alias ? alias->__data : tb->__data);
1982 
1983 	if (alias)
1984 		return tb;
1985 
1986 	t = (struct trie *) tb->tb_data;
1987 	t->kv[0].pos = KEYLENGTH;
1988 	t->kv[0].slen = KEYLENGTH;
1989 #ifdef CONFIG_IP_FIB_TRIE_STATS
1990 	t->stats = alloc_percpu(struct trie_use_stats);
1991 	if (!t->stats) {
1992 		kfree(tb);
1993 		tb = NULL;
1994 	}
1995 #endif
1996 
1997 	return tb;
1998 }
1999 
2000 #ifdef CONFIG_PROC_FS
2001 /* Depth first Trie walk iterator */
2002 struct fib_trie_iter {
2003 	struct seq_net_private p;
2004 	struct fib_table *tb;
2005 	struct key_vector *tnode;
2006 	unsigned int index;
2007 	unsigned int depth;
2008 };
2009 
fib_trie_get_next(struct fib_trie_iter * iter)2010 static struct key_vector *fib_trie_get_next(struct fib_trie_iter *iter)
2011 {
2012 	unsigned long cindex = iter->index;
2013 	struct key_vector *pn = iter->tnode;
2014 	t_key pkey;
2015 
2016 	pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
2017 		 iter->tnode, iter->index, iter->depth);
2018 
2019 	while (!IS_TRIE(pn)) {
2020 		while (cindex < child_length(pn)) {
2021 			struct key_vector *n = get_child_rcu(pn, cindex++);
2022 
2023 			if (!n)
2024 				continue;
2025 
2026 			if (IS_LEAF(n)) {
2027 				iter->tnode = pn;
2028 				iter->index = cindex;
2029 			} else {
2030 				/* push down one level */
2031 				iter->tnode = n;
2032 				iter->index = 0;
2033 				++iter->depth;
2034 			}
2035 
2036 			return n;
2037 		}
2038 
2039 		/* Current node exhausted, pop back up */
2040 		pkey = pn->key;
2041 		pn = node_parent_rcu(pn);
2042 		cindex = get_index(pkey, pn) + 1;
2043 		--iter->depth;
2044 	}
2045 
2046 	/* record root node so further searches know we are done */
2047 	iter->tnode = pn;
2048 	iter->index = 0;
2049 
2050 	return NULL;
2051 }
2052 
fib_trie_get_first(struct fib_trie_iter * iter,struct trie * t)2053 static struct key_vector *fib_trie_get_first(struct fib_trie_iter *iter,
2054 					     struct trie *t)
2055 {
2056 	struct key_vector *n, *pn = t->kv;
2057 
2058 	if (!t)
2059 		return NULL;
2060 
2061 	n = rcu_dereference(pn->tnode[0]);
2062 	if (!n)
2063 		return NULL;
2064 
2065 	if (IS_TNODE(n)) {
2066 		iter->tnode = n;
2067 		iter->index = 0;
2068 		iter->depth = 1;
2069 	} else {
2070 		iter->tnode = pn;
2071 		iter->index = 0;
2072 		iter->depth = 0;
2073 	}
2074 
2075 	return n;
2076 }
2077 
trie_collect_stats(struct trie * t,struct trie_stat * s)2078 static void trie_collect_stats(struct trie *t, struct trie_stat *s)
2079 {
2080 	struct key_vector *n;
2081 	struct fib_trie_iter iter;
2082 
2083 	memset(s, 0, sizeof(*s));
2084 
2085 	rcu_read_lock();
2086 	for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
2087 		if (IS_LEAF(n)) {
2088 			struct fib_alias *fa;
2089 
2090 			s->leaves++;
2091 			s->totdepth += iter.depth;
2092 			if (iter.depth > s->maxdepth)
2093 				s->maxdepth = iter.depth;
2094 
2095 			hlist_for_each_entry_rcu(fa, &n->leaf, fa_list)
2096 				++s->prefixes;
2097 		} else {
2098 			s->tnodes++;
2099 			if (n->bits < MAX_STAT_DEPTH)
2100 				s->nodesizes[n->bits]++;
2101 			s->nullpointers += tn_info(n)->empty_children;
2102 		}
2103 	}
2104 	rcu_read_unlock();
2105 }
2106 
2107 /*
2108  *	This outputs /proc/net/fib_triestats
2109  */
trie_show_stats(struct seq_file * seq,struct trie_stat * stat)2110 static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
2111 {
2112 	unsigned int i, max, pointers, bytes, avdepth;
2113 
2114 	if (stat->leaves)
2115 		avdepth = stat->totdepth*100 / stat->leaves;
2116 	else
2117 		avdepth = 0;
2118 
2119 	seq_printf(seq, "\tAver depth:     %u.%02d\n",
2120 		   avdepth / 100, avdepth % 100);
2121 	seq_printf(seq, "\tMax depth:      %u\n", stat->maxdepth);
2122 
2123 	seq_printf(seq, "\tLeaves:         %u\n", stat->leaves);
2124 	bytes = LEAF_SIZE * stat->leaves;
2125 
2126 	seq_printf(seq, "\tPrefixes:       %u\n", stat->prefixes);
2127 	bytes += sizeof(struct fib_alias) * stat->prefixes;
2128 
2129 	seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
2130 	bytes += TNODE_SIZE(0) * stat->tnodes;
2131 
2132 	max = MAX_STAT_DEPTH;
2133 	while (max > 0 && stat->nodesizes[max-1] == 0)
2134 		max--;
2135 
2136 	pointers = 0;
2137 	for (i = 1; i < max; i++)
2138 		if (stat->nodesizes[i] != 0) {
2139 			seq_printf(seq, "  %u: %u",  i, stat->nodesizes[i]);
2140 			pointers += (1<<i) * stat->nodesizes[i];
2141 		}
2142 	seq_putc(seq, '\n');
2143 	seq_printf(seq, "\tPointers: %u\n", pointers);
2144 
2145 	bytes += sizeof(struct key_vector *) * pointers;
2146 	seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
2147 	seq_printf(seq, "Total size: %u  kB\n", (bytes + 1023) / 1024);
2148 }
2149 
2150 #ifdef CONFIG_IP_FIB_TRIE_STATS
trie_show_usage(struct seq_file * seq,const struct trie_use_stats __percpu * stats)2151 static void trie_show_usage(struct seq_file *seq,
2152 			    const struct trie_use_stats __percpu *stats)
2153 {
2154 	struct trie_use_stats s = { 0 };
2155 	int cpu;
2156 
2157 	/* loop through all of the CPUs and gather up the stats */
2158 	for_each_possible_cpu(cpu) {
2159 		const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu);
2160 
2161 		s.gets += pcpu->gets;
2162 		s.backtrack += pcpu->backtrack;
2163 		s.semantic_match_passed += pcpu->semantic_match_passed;
2164 		s.semantic_match_miss += pcpu->semantic_match_miss;
2165 		s.null_node_hit += pcpu->null_node_hit;
2166 		s.resize_node_skipped += pcpu->resize_node_skipped;
2167 	}
2168 
2169 	seq_printf(seq, "\nCounters:\n---------\n");
2170 	seq_printf(seq, "gets = %u\n", s.gets);
2171 	seq_printf(seq, "backtracks = %u\n", s.backtrack);
2172 	seq_printf(seq, "semantic match passed = %u\n",
2173 		   s.semantic_match_passed);
2174 	seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss);
2175 	seq_printf(seq, "null node hit= %u\n", s.null_node_hit);
2176 	seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped);
2177 }
2178 #endif /*  CONFIG_IP_FIB_TRIE_STATS */
2179 
fib_table_print(struct seq_file * seq,struct fib_table * tb)2180 static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
2181 {
2182 	if (tb->tb_id == RT_TABLE_LOCAL)
2183 		seq_puts(seq, "Local:\n");
2184 	else if (tb->tb_id == RT_TABLE_MAIN)
2185 		seq_puts(seq, "Main:\n");
2186 	else
2187 		seq_printf(seq, "Id %d:\n", tb->tb_id);
2188 }
2189 
2190 
fib_triestat_seq_show(struct seq_file * seq,void * v)2191 static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2192 {
2193 	struct net *net = (struct net *)seq->private;
2194 	unsigned int h;
2195 
2196 	seq_printf(seq,
2197 		   "Basic info: size of leaf:"
2198 		   " %Zd bytes, size of tnode: %Zd bytes.\n",
2199 		   LEAF_SIZE, TNODE_SIZE(0));
2200 
2201 	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2202 		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2203 		struct fib_table *tb;
2204 
2205 		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2206 			struct trie *t = (struct trie *) tb->tb_data;
2207 			struct trie_stat stat;
2208 
2209 			if (!t)
2210 				continue;
2211 
2212 			fib_table_print(seq, tb);
2213 
2214 			trie_collect_stats(t, &stat);
2215 			trie_show_stats(seq, &stat);
2216 #ifdef CONFIG_IP_FIB_TRIE_STATS
2217 			trie_show_usage(seq, t->stats);
2218 #endif
2219 		}
2220 	}
2221 
2222 	return 0;
2223 }
2224 
fib_triestat_seq_open(struct inode * inode,struct file * file)2225 static int fib_triestat_seq_open(struct inode *inode, struct file *file)
2226 {
2227 	return single_open_net(inode, file, fib_triestat_seq_show);
2228 }
2229 
2230 static const struct file_operations fib_triestat_fops = {
2231 	.owner	= THIS_MODULE,
2232 	.open	= fib_triestat_seq_open,
2233 	.read	= seq_read,
2234 	.llseek	= seq_lseek,
2235 	.release = single_release_net,
2236 };
2237 
fib_trie_get_idx(struct seq_file * seq,loff_t pos)2238 static struct key_vector *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
2239 {
2240 	struct fib_trie_iter *iter = seq->private;
2241 	struct net *net = seq_file_net(seq);
2242 	loff_t idx = 0;
2243 	unsigned int h;
2244 
2245 	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2246 		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2247 		struct fib_table *tb;
2248 
2249 		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2250 			struct key_vector *n;
2251 
2252 			for (n = fib_trie_get_first(iter,
2253 						    (struct trie *) tb->tb_data);
2254 			     n; n = fib_trie_get_next(iter))
2255 				if (pos == idx++) {
2256 					iter->tb = tb;
2257 					return n;
2258 				}
2259 		}
2260 	}
2261 
2262 	return NULL;
2263 }
2264 
fib_trie_seq_start(struct seq_file * seq,loff_t * pos)2265 static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
2266 	__acquires(RCU)
2267 {
2268 	rcu_read_lock();
2269 	return fib_trie_get_idx(seq, *pos);
2270 }
2271 
fib_trie_seq_next(struct seq_file * seq,void * v,loff_t * pos)2272 static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2273 {
2274 	struct fib_trie_iter *iter = seq->private;
2275 	struct net *net = seq_file_net(seq);
2276 	struct fib_table *tb = iter->tb;
2277 	struct hlist_node *tb_node;
2278 	unsigned int h;
2279 	struct key_vector *n;
2280 
2281 	++*pos;
2282 	/* next node in same table */
2283 	n = fib_trie_get_next(iter);
2284 	if (n)
2285 		return n;
2286 
2287 	/* walk rest of this hash chain */
2288 	h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
2289 	while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) {
2290 		tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
2291 		n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2292 		if (n)
2293 			goto found;
2294 	}
2295 
2296 	/* new hash chain */
2297 	while (++h < FIB_TABLE_HASHSZ) {
2298 		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2299 		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2300 			n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2301 			if (n)
2302 				goto found;
2303 		}
2304 	}
2305 	return NULL;
2306 
2307 found:
2308 	iter->tb = tb;
2309 	return n;
2310 }
2311 
fib_trie_seq_stop(struct seq_file * seq,void * v)2312 static void fib_trie_seq_stop(struct seq_file *seq, void *v)
2313 	__releases(RCU)
2314 {
2315 	rcu_read_unlock();
2316 }
2317 
seq_indent(struct seq_file * seq,int n)2318 static void seq_indent(struct seq_file *seq, int n)
2319 {
2320 	while (n-- > 0)
2321 		seq_puts(seq, "   ");
2322 }
2323 
rtn_scope(char * buf,size_t len,enum rt_scope_t s)2324 static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
2325 {
2326 	switch (s) {
2327 	case RT_SCOPE_UNIVERSE: return "universe";
2328 	case RT_SCOPE_SITE:	return "site";
2329 	case RT_SCOPE_LINK:	return "link";
2330 	case RT_SCOPE_HOST:	return "host";
2331 	case RT_SCOPE_NOWHERE:	return "nowhere";
2332 	default:
2333 		snprintf(buf, len, "scope=%d", s);
2334 		return buf;
2335 	}
2336 }
2337 
2338 static const char *const rtn_type_names[__RTN_MAX] = {
2339 	[RTN_UNSPEC] = "UNSPEC",
2340 	[RTN_UNICAST] = "UNICAST",
2341 	[RTN_LOCAL] = "LOCAL",
2342 	[RTN_BROADCAST] = "BROADCAST",
2343 	[RTN_ANYCAST] = "ANYCAST",
2344 	[RTN_MULTICAST] = "MULTICAST",
2345 	[RTN_BLACKHOLE] = "BLACKHOLE",
2346 	[RTN_UNREACHABLE] = "UNREACHABLE",
2347 	[RTN_PROHIBIT] = "PROHIBIT",
2348 	[RTN_THROW] = "THROW",
2349 	[RTN_NAT] = "NAT",
2350 	[RTN_XRESOLVE] = "XRESOLVE",
2351 };
2352 
rtn_type(char * buf,size_t len,unsigned int t)2353 static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
2354 {
2355 	if (t < __RTN_MAX && rtn_type_names[t])
2356 		return rtn_type_names[t];
2357 	snprintf(buf, len, "type %u", t);
2358 	return buf;
2359 }
2360 
2361 /* Pretty print the trie */
fib_trie_seq_show(struct seq_file * seq,void * v)2362 static int fib_trie_seq_show(struct seq_file *seq, void *v)
2363 {
2364 	const struct fib_trie_iter *iter = seq->private;
2365 	struct key_vector *n = v;
2366 
2367 	if (IS_TRIE(node_parent_rcu(n)))
2368 		fib_table_print(seq, iter->tb);
2369 
2370 	if (IS_TNODE(n)) {
2371 		__be32 prf = htonl(n->key);
2372 
2373 		seq_indent(seq, iter->depth-1);
2374 		seq_printf(seq, "  +-- %pI4/%zu %u %u %u\n",
2375 			   &prf, KEYLENGTH - n->pos - n->bits, n->bits,
2376 			   tn_info(n)->full_children,
2377 			   tn_info(n)->empty_children);
2378 	} else {
2379 		__be32 val = htonl(n->key);
2380 		struct fib_alias *fa;
2381 
2382 		seq_indent(seq, iter->depth);
2383 		seq_printf(seq, "  |-- %pI4\n", &val);
2384 
2385 		hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
2386 			char buf1[32], buf2[32];
2387 
2388 			seq_indent(seq, iter->depth + 1);
2389 			seq_printf(seq, "  /%zu %s %s",
2390 				   KEYLENGTH - fa->fa_slen,
2391 				   rtn_scope(buf1, sizeof(buf1),
2392 					     fa->fa_info->fib_scope),
2393 				   rtn_type(buf2, sizeof(buf2),
2394 					    fa->fa_type));
2395 			if (fa->fa_tos)
2396 				seq_printf(seq, " tos=%d", fa->fa_tos);
2397 			seq_putc(seq, '\n');
2398 		}
2399 	}
2400 
2401 	return 0;
2402 }
2403 
2404 static const struct seq_operations fib_trie_seq_ops = {
2405 	.start  = fib_trie_seq_start,
2406 	.next   = fib_trie_seq_next,
2407 	.stop   = fib_trie_seq_stop,
2408 	.show   = fib_trie_seq_show,
2409 };
2410 
fib_trie_seq_open(struct inode * inode,struct file * file)2411 static int fib_trie_seq_open(struct inode *inode, struct file *file)
2412 {
2413 	return seq_open_net(inode, file, &fib_trie_seq_ops,
2414 			    sizeof(struct fib_trie_iter));
2415 }
2416 
2417 static const struct file_operations fib_trie_fops = {
2418 	.owner  = THIS_MODULE,
2419 	.open   = fib_trie_seq_open,
2420 	.read   = seq_read,
2421 	.llseek = seq_lseek,
2422 	.release = seq_release_net,
2423 };
2424 
2425 struct fib_route_iter {
2426 	struct seq_net_private p;
2427 	struct fib_table *main_tb;
2428 	struct key_vector *tnode;
2429 	loff_t	pos;
2430 	t_key	key;
2431 };
2432 
fib_route_get_idx(struct fib_route_iter * iter,loff_t pos)2433 static struct key_vector *fib_route_get_idx(struct fib_route_iter *iter,
2434 					    loff_t pos)
2435 {
2436 	struct fib_table *tb = iter->main_tb;
2437 	struct key_vector *l, **tp = &iter->tnode;
2438 	struct trie *t;
2439 	t_key key;
2440 
2441 	/* use cache location of next-to-find key */
2442 	if (iter->pos > 0 && pos >= iter->pos) {
2443 		pos -= iter->pos;
2444 		key = iter->key;
2445 	} else {
2446 		t = (struct trie *)tb->tb_data;
2447 		iter->tnode = t->kv;
2448 		iter->pos = 0;
2449 		key = 0;
2450 	}
2451 
2452 	while ((l = leaf_walk_rcu(tp, key)) != NULL) {
2453 		key = l->key + 1;
2454 		iter->pos++;
2455 
2456 		if (--pos <= 0)
2457 			break;
2458 
2459 		l = NULL;
2460 
2461 		/* handle unlikely case of a key wrap */
2462 		if (!key)
2463 			break;
2464 	}
2465 
2466 	if (l)
2467 		iter->key = key;	/* remember it */
2468 	else
2469 		iter->pos = 0;		/* forget it */
2470 
2471 	return l;
2472 }
2473 
fib_route_seq_start(struct seq_file * seq,loff_t * pos)2474 static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
2475 	__acquires(RCU)
2476 {
2477 	struct fib_route_iter *iter = seq->private;
2478 	struct fib_table *tb;
2479 	struct trie *t;
2480 
2481 	rcu_read_lock();
2482 
2483 	tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
2484 	if (!tb)
2485 		return NULL;
2486 
2487 	iter->main_tb = tb;
2488 
2489 	if (*pos != 0)
2490 		return fib_route_get_idx(iter, *pos);
2491 
2492 	t = (struct trie *)tb->tb_data;
2493 	iter->tnode = t->kv;
2494 	iter->pos = 0;
2495 	iter->key = 0;
2496 
2497 	return SEQ_START_TOKEN;
2498 }
2499 
fib_route_seq_next(struct seq_file * seq,void * v,loff_t * pos)2500 static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2501 {
2502 	struct fib_route_iter *iter = seq->private;
2503 	struct key_vector *l = NULL;
2504 	t_key key = iter->key;
2505 
2506 	++*pos;
2507 
2508 	/* only allow key of 0 for start of sequence */
2509 	if ((v == SEQ_START_TOKEN) || key)
2510 		l = leaf_walk_rcu(&iter->tnode, key);
2511 
2512 	if (l) {
2513 		iter->key = l->key + 1;
2514 		iter->pos++;
2515 	} else {
2516 		iter->pos = 0;
2517 	}
2518 
2519 	return l;
2520 }
2521 
fib_route_seq_stop(struct seq_file * seq,void * v)2522 static void fib_route_seq_stop(struct seq_file *seq, void *v)
2523 	__releases(RCU)
2524 {
2525 	rcu_read_unlock();
2526 }
2527 
fib_flag_trans(int type,__be32 mask,const struct fib_info * fi)2528 static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
2529 {
2530 	unsigned int flags = 0;
2531 
2532 	if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
2533 		flags = RTF_REJECT;
2534 	if (fi && fi->fib_nh->nh_gw)
2535 		flags |= RTF_GATEWAY;
2536 	if (mask == htonl(0xFFFFFFFF))
2537 		flags |= RTF_HOST;
2538 	flags |= RTF_UP;
2539 	return flags;
2540 }
2541 
2542 /*
2543  *	This outputs /proc/net/route.
2544  *	The format of the file is not supposed to be changed
2545  *	and needs to be same as fib_hash output to avoid breaking
2546  *	legacy utilities
2547  */
fib_route_seq_show(struct seq_file * seq,void * v)2548 static int fib_route_seq_show(struct seq_file *seq, void *v)
2549 {
2550 	struct fib_route_iter *iter = seq->private;
2551 	struct fib_table *tb = iter->main_tb;
2552 	struct fib_alias *fa;
2553 	struct key_vector *l = v;
2554 	__be32 prefix;
2555 
2556 	if (v == SEQ_START_TOKEN) {
2557 		seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2558 			   "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2559 			   "\tWindow\tIRTT");
2560 		return 0;
2561 	}
2562 
2563 	prefix = htonl(l->key);
2564 
2565 	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2566 		const struct fib_info *fi = fa->fa_info;
2567 		__be32 mask = inet_make_mask(KEYLENGTH - fa->fa_slen);
2568 		unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
2569 
2570 		if ((fa->fa_type == RTN_BROADCAST) ||
2571 		    (fa->fa_type == RTN_MULTICAST))
2572 			continue;
2573 
2574 		if (fa->tb_id != tb->tb_id)
2575 			continue;
2576 
2577 		seq_setwidth(seq, 127);
2578 
2579 		if (fi)
2580 			seq_printf(seq,
2581 				   "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
2582 				   "%d\t%08X\t%d\t%u\t%u",
2583 				   fi->fib_dev ? fi->fib_dev->name : "*",
2584 				   prefix,
2585 				   fi->fib_nh->nh_gw, flags, 0, 0,
2586 				   fi->fib_priority,
2587 				   mask,
2588 				   (fi->fib_advmss ?
2589 				    fi->fib_advmss + 40 : 0),
2590 				   fi->fib_window,
2591 				   fi->fib_rtt >> 3);
2592 		else
2593 			seq_printf(seq,
2594 				   "*\t%08X\t%08X\t%04X\t%d\t%u\t"
2595 				   "%d\t%08X\t%d\t%u\t%u",
2596 				   prefix, 0, flags, 0, 0, 0,
2597 				   mask, 0, 0, 0);
2598 
2599 		seq_pad(seq, '\n');
2600 	}
2601 
2602 	return 0;
2603 }
2604 
2605 static const struct seq_operations fib_route_seq_ops = {
2606 	.start  = fib_route_seq_start,
2607 	.next   = fib_route_seq_next,
2608 	.stop   = fib_route_seq_stop,
2609 	.show   = fib_route_seq_show,
2610 };
2611 
fib_route_seq_open(struct inode * inode,struct file * file)2612 static int fib_route_seq_open(struct inode *inode, struct file *file)
2613 {
2614 	return seq_open_net(inode, file, &fib_route_seq_ops,
2615 			    sizeof(struct fib_route_iter));
2616 }
2617 
2618 static const struct file_operations fib_route_fops = {
2619 	.owner  = THIS_MODULE,
2620 	.open   = fib_route_seq_open,
2621 	.read   = seq_read,
2622 	.llseek = seq_lseek,
2623 	.release = seq_release_net,
2624 };
2625 
fib_proc_init(struct net * net)2626 int __net_init fib_proc_init(struct net *net)
2627 {
2628 	if (!proc_create("fib_trie", S_IRUGO, net->proc_net, &fib_trie_fops))
2629 		goto out1;
2630 
2631 	if (!proc_create("fib_triestat", S_IRUGO, net->proc_net,
2632 			 &fib_triestat_fops))
2633 		goto out2;
2634 
2635 	if (!proc_create("route", S_IRUGO, net->proc_net, &fib_route_fops))
2636 		goto out3;
2637 
2638 	return 0;
2639 
2640 out3:
2641 	remove_proc_entry("fib_triestat", net->proc_net);
2642 out2:
2643 	remove_proc_entry("fib_trie", net->proc_net);
2644 out1:
2645 	return -ENOMEM;
2646 }
2647 
fib_proc_exit(struct net * net)2648 void __net_exit fib_proc_exit(struct net *net)
2649 {
2650 	remove_proc_entry("fib_trie", net->proc_net);
2651 	remove_proc_entry("fib_triestat", net->proc_net);
2652 	remove_proc_entry("route", net->proc_net);
2653 }
2654 
2655 #endif /* CONFIG_PROC_FS */
2656