1 /*
2 * linux/fs/ext4/inode.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * 64-bit file support on 64-bit platforms by Jakub Jelinek
16 * (jj@sunsite.ms.mff.cuni.cz)
17 *
18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19 */
20
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/highuid.h>
24 #include <linux/pagemap.h>
25 #include <linux/dax.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/bitops.h>
40
41 #include "ext4_jbd2.h"
42 #include "xattr.h"
43 #include "acl.h"
44 #include "truncate.h"
45
46 #include <trace/events/ext4.h>
47
48 #define MPAGE_DA_EXTENT_TAIL 0x01
49
ext4_inode_csum(struct inode * inode,struct ext4_inode * raw,struct ext4_inode_info * ei)50 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
51 struct ext4_inode_info *ei)
52 {
53 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
54 __u16 csum_lo;
55 __u16 csum_hi = 0;
56 __u32 csum;
57
58 csum_lo = le16_to_cpu(raw->i_checksum_lo);
59 raw->i_checksum_lo = 0;
60 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
61 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
62 csum_hi = le16_to_cpu(raw->i_checksum_hi);
63 raw->i_checksum_hi = 0;
64 }
65
66 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
67 EXT4_INODE_SIZE(inode->i_sb));
68
69 raw->i_checksum_lo = cpu_to_le16(csum_lo);
70 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
71 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
72 raw->i_checksum_hi = cpu_to_le16(csum_hi);
73
74 return csum;
75 }
76
ext4_inode_csum_verify(struct inode * inode,struct ext4_inode * raw,struct ext4_inode_info * ei)77 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
78 struct ext4_inode_info *ei)
79 {
80 __u32 provided, calculated;
81
82 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
83 cpu_to_le32(EXT4_OS_LINUX) ||
84 !ext4_has_metadata_csum(inode->i_sb))
85 return 1;
86
87 provided = le16_to_cpu(raw->i_checksum_lo);
88 calculated = ext4_inode_csum(inode, raw, ei);
89 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
90 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
91 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
92 else
93 calculated &= 0xFFFF;
94
95 return provided == calculated;
96 }
97
ext4_inode_csum_set(struct inode * inode,struct ext4_inode * raw,struct ext4_inode_info * ei)98 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
99 struct ext4_inode_info *ei)
100 {
101 __u32 csum;
102
103 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
104 cpu_to_le32(EXT4_OS_LINUX) ||
105 !ext4_has_metadata_csum(inode->i_sb))
106 return;
107
108 csum = ext4_inode_csum(inode, raw, ei);
109 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
110 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
111 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
112 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
113 }
114
ext4_begin_ordered_truncate(struct inode * inode,loff_t new_size)115 static inline int ext4_begin_ordered_truncate(struct inode *inode,
116 loff_t new_size)
117 {
118 trace_ext4_begin_ordered_truncate(inode, new_size);
119 /*
120 * If jinode is zero, then we never opened the file for
121 * writing, so there's no need to call
122 * jbd2_journal_begin_ordered_truncate() since there's no
123 * outstanding writes we need to flush.
124 */
125 if (!EXT4_I(inode)->jinode)
126 return 0;
127 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
128 EXT4_I(inode)->jinode,
129 new_size);
130 }
131
132 static void ext4_invalidatepage(struct page *page, unsigned int offset,
133 unsigned int length);
134 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
135 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
136 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
137 int pextents);
138
139 /*
140 * Test whether an inode is a fast symlink.
141 */
ext4_inode_is_fast_symlink(struct inode * inode)142 int ext4_inode_is_fast_symlink(struct inode *inode)
143 {
144 int ea_blocks = EXT4_I(inode)->i_file_acl ?
145 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
146
147 if (ext4_has_inline_data(inode))
148 return 0;
149
150 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
151 }
152
153 /*
154 * Restart the transaction associated with *handle. This does a commit,
155 * so before we call here everything must be consistently dirtied against
156 * this transaction.
157 */
ext4_truncate_restart_trans(handle_t * handle,struct inode * inode,int nblocks)158 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
159 int nblocks)
160 {
161 int ret;
162
163 /*
164 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
165 * moment, get_block can be called only for blocks inside i_size since
166 * page cache has been already dropped and writes are blocked by
167 * i_mutex. So we can safely drop the i_data_sem here.
168 */
169 BUG_ON(EXT4_JOURNAL(inode) == NULL);
170 jbd_debug(2, "restarting handle %p\n", handle);
171 up_write(&EXT4_I(inode)->i_data_sem);
172 ret = ext4_journal_restart(handle, nblocks);
173 down_write(&EXT4_I(inode)->i_data_sem);
174 ext4_discard_preallocations(inode);
175
176 return ret;
177 }
178
179 /*
180 * Called at the last iput() if i_nlink is zero.
181 */
ext4_evict_inode(struct inode * inode)182 void ext4_evict_inode(struct inode *inode)
183 {
184 handle_t *handle;
185 int err;
186
187 trace_ext4_evict_inode(inode);
188
189 if (inode->i_nlink) {
190 /*
191 * When journalling data dirty buffers are tracked only in the
192 * journal. So although mm thinks everything is clean and
193 * ready for reaping the inode might still have some pages to
194 * write in the running transaction or waiting to be
195 * checkpointed. Thus calling jbd2_journal_invalidatepage()
196 * (via truncate_inode_pages()) to discard these buffers can
197 * cause data loss. Also even if we did not discard these
198 * buffers, we would have no way to find them after the inode
199 * is reaped and thus user could see stale data if he tries to
200 * read them before the transaction is checkpointed. So be
201 * careful and force everything to disk here... We use
202 * ei->i_datasync_tid to store the newest transaction
203 * containing inode's data.
204 *
205 * Note that directories do not have this problem because they
206 * don't use page cache.
207 */
208 if (ext4_should_journal_data(inode) &&
209 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
210 inode->i_ino != EXT4_JOURNAL_INO) {
211 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
212 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
213
214 jbd2_complete_transaction(journal, commit_tid);
215 filemap_write_and_wait(&inode->i_data);
216 }
217 truncate_inode_pages_final(&inode->i_data);
218
219 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
220 goto no_delete;
221 }
222
223 if (is_bad_inode(inode))
224 goto no_delete;
225 dquot_initialize(inode);
226
227 if (ext4_should_order_data(inode))
228 ext4_begin_ordered_truncate(inode, 0);
229 truncate_inode_pages_final(&inode->i_data);
230
231 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
232
233 /*
234 * Protect us against freezing - iput() caller didn't have to have any
235 * protection against it
236 */
237 sb_start_intwrite(inode->i_sb);
238 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
239 ext4_blocks_for_truncate(inode)+3);
240 if (IS_ERR(handle)) {
241 ext4_std_error(inode->i_sb, PTR_ERR(handle));
242 /*
243 * If we're going to skip the normal cleanup, we still need to
244 * make sure that the in-core orphan linked list is properly
245 * cleaned up.
246 */
247 ext4_orphan_del(NULL, inode);
248 sb_end_intwrite(inode->i_sb);
249 goto no_delete;
250 }
251
252 if (IS_SYNC(inode))
253 ext4_handle_sync(handle);
254 inode->i_size = 0;
255 err = ext4_mark_inode_dirty(handle, inode);
256 if (err) {
257 ext4_warning(inode->i_sb,
258 "couldn't mark inode dirty (err %d)", err);
259 goto stop_handle;
260 }
261 if (inode->i_blocks)
262 ext4_truncate(inode);
263
264 /*
265 * ext4_ext_truncate() doesn't reserve any slop when it
266 * restarts journal transactions; therefore there may not be
267 * enough credits left in the handle to remove the inode from
268 * the orphan list and set the dtime field.
269 */
270 if (!ext4_handle_has_enough_credits(handle, 3)) {
271 err = ext4_journal_extend(handle, 3);
272 if (err > 0)
273 err = ext4_journal_restart(handle, 3);
274 if (err != 0) {
275 ext4_warning(inode->i_sb,
276 "couldn't extend journal (err %d)", err);
277 stop_handle:
278 ext4_journal_stop(handle);
279 ext4_orphan_del(NULL, inode);
280 sb_end_intwrite(inode->i_sb);
281 goto no_delete;
282 }
283 }
284
285 /*
286 * Kill off the orphan record which ext4_truncate created.
287 * AKPM: I think this can be inside the above `if'.
288 * Note that ext4_orphan_del() has to be able to cope with the
289 * deletion of a non-existent orphan - this is because we don't
290 * know if ext4_truncate() actually created an orphan record.
291 * (Well, we could do this if we need to, but heck - it works)
292 */
293 ext4_orphan_del(handle, inode);
294 EXT4_I(inode)->i_dtime = get_seconds();
295
296 /*
297 * One subtle ordering requirement: if anything has gone wrong
298 * (transaction abort, IO errors, whatever), then we can still
299 * do these next steps (the fs will already have been marked as
300 * having errors), but we can't free the inode if the mark_dirty
301 * fails.
302 */
303 if (ext4_mark_inode_dirty(handle, inode))
304 /* If that failed, just do the required in-core inode clear. */
305 ext4_clear_inode(inode);
306 else
307 ext4_free_inode(handle, inode);
308 ext4_journal_stop(handle);
309 sb_end_intwrite(inode->i_sb);
310 return;
311 no_delete:
312 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
313 }
314
315 #ifdef CONFIG_QUOTA
ext4_get_reserved_space(struct inode * inode)316 qsize_t *ext4_get_reserved_space(struct inode *inode)
317 {
318 return &EXT4_I(inode)->i_reserved_quota;
319 }
320 #endif
321
322 /*
323 * Called with i_data_sem down, which is important since we can call
324 * ext4_discard_preallocations() from here.
325 */
ext4_da_update_reserve_space(struct inode * inode,int used,int quota_claim)326 void ext4_da_update_reserve_space(struct inode *inode,
327 int used, int quota_claim)
328 {
329 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
330 struct ext4_inode_info *ei = EXT4_I(inode);
331
332 spin_lock(&ei->i_block_reservation_lock);
333 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
334 if (unlikely(used > ei->i_reserved_data_blocks)) {
335 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
336 "with only %d reserved data blocks",
337 __func__, inode->i_ino, used,
338 ei->i_reserved_data_blocks);
339 WARN_ON(1);
340 used = ei->i_reserved_data_blocks;
341 }
342
343 /* Update per-inode reservations */
344 ei->i_reserved_data_blocks -= used;
345 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
346
347 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
348
349 /* Update quota subsystem for data blocks */
350 if (quota_claim)
351 dquot_claim_block(inode, EXT4_C2B(sbi, used));
352 else {
353 /*
354 * We did fallocate with an offset that is already delayed
355 * allocated. So on delayed allocated writeback we should
356 * not re-claim the quota for fallocated blocks.
357 */
358 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
359 }
360
361 /*
362 * If we have done all the pending block allocations and if
363 * there aren't any writers on the inode, we can discard the
364 * inode's preallocations.
365 */
366 if ((ei->i_reserved_data_blocks == 0) &&
367 (atomic_read(&inode->i_writecount) == 0))
368 ext4_discard_preallocations(inode);
369 }
370
__check_block_validity(struct inode * inode,const char * func,unsigned int line,struct ext4_map_blocks * map)371 static int __check_block_validity(struct inode *inode, const char *func,
372 unsigned int line,
373 struct ext4_map_blocks *map)
374 {
375 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
376 map->m_len)) {
377 ext4_error_inode(inode, func, line, map->m_pblk,
378 "lblock %lu mapped to illegal pblock "
379 "(length %d)", (unsigned long) map->m_lblk,
380 map->m_len);
381 return -EFSCORRUPTED;
382 }
383 return 0;
384 }
385
386 #define check_block_validity(inode, map) \
387 __check_block_validity((inode), __func__, __LINE__, (map))
388
389 #ifdef ES_AGGRESSIVE_TEST
ext4_map_blocks_es_recheck(handle_t * handle,struct inode * inode,struct ext4_map_blocks * es_map,struct ext4_map_blocks * map,int flags)390 static void ext4_map_blocks_es_recheck(handle_t *handle,
391 struct inode *inode,
392 struct ext4_map_blocks *es_map,
393 struct ext4_map_blocks *map,
394 int flags)
395 {
396 int retval;
397
398 map->m_flags = 0;
399 /*
400 * There is a race window that the result is not the same.
401 * e.g. xfstests #223 when dioread_nolock enables. The reason
402 * is that we lookup a block mapping in extent status tree with
403 * out taking i_data_sem. So at the time the unwritten extent
404 * could be converted.
405 */
406 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
407 down_read(&EXT4_I(inode)->i_data_sem);
408 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
409 retval = ext4_ext_map_blocks(handle, inode, map, flags &
410 EXT4_GET_BLOCKS_KEEP_SIZE);
411 } else {
412 retval = ext4_ind_map_blocks(handle, inode, map, flags &
413 EXT4_GET_BLOCKS_KEEP_SIZE);
414 }
415 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
416 up_read((&EXT4_I(inode)->i_data_sem));
417
418 /*
419 * We don't check m_len because extent will be collpased in status
420 * tree. So the m_len might not equal.
421 */
422 if (es_map->m_lblk != map->m_lblk ||
423 es_map->m_flags != map->m_flags ||
424 es_map->m_pblk != map->m_pblk) {
425 printk("ES cache assertion failed for inode: %lu "
426 "es_cached ex [%d/%d/%llu/%x] != "
427 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
428 inode->i_ino, es_map->m_lblk, es_map->m_len,
429 es_map->m_pblk, es_map->m_flags, map->m_lblk,
430 map->m_len, map->m_pblk, map->m_flags,
431 retval, flags);
432 }
433 }
434 #endif /* ES_AGGRESSIVE_TEST */
435
436 /*
437 * The ext4_map_blocks() function tries to look up the requested blocks,
438 * and returns if the blocks are already mapped.
439 *
440 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
441 * and store the allocated blocks in the result buffer head and mark it
442 * mapped.
443 *
444 * If file type is extents based, it will call ext4_ext_map_blocks(),
445 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
446 * based files
447 *
448 * On success, it returns the number of blocks being mapped or allocated.
449 * if create==0 and the blocks are pre-allocated and unwritten block,
450 * the result buffer head is unmapped. If the create ==1, it will make sure
451 * the buffer head is mapped.
452 *
453 * It returns 0 if plain look up failed (blocks have not been allocated), in
454 * that case, buffer head is unmapped
455 *
456 * It returns the error in case of allocation failure.
457 */
ext4_map_blocks(handle_t * handle,struct inode * inode,struct ext4_map_blocks * map,int flags)458 int ext4_map_blocks(handle_t *handle, struct inode *inode,
459 struct ext4_map_blocks *map, int flags)
460 {
461 struct extent_status es;
462 int retval;
463 int ret = 0;
464 #ifdef ES_AGGRESSIVE_TEST
465 struct ext4_map_blocks orig_map;
466
467 memcpy(&orig_map, map, sizeof(*map));
468 #endif
469
470 map->m_flags = 0;
471 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
472 "logical block %lu\n", inode->i_ino, flags, map->m_len,
473 (unsigned long) map->m_lblk);
474
475 /*
476 * ext4_map_blocks returns an int, and m_len is an unsigned int
477 */
478 if (unlikely(map->m_len > INT_MAX))
479 map->m_len = INT_MAX;
480
481 /* We can handle the block number less than EXT_MAX_BLOCKS */
482 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
483 return -EFSCORRUPTED;
484
485 /* Lookup extent status tree firstly */
486 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
487 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
488 map->m_pblk = ext4_es_pblock(&es) +
489 map->m_lblk - es.es_lblk;
490 map->m_flags |= ext4_es_is_written(&es) ?
491 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
492 retval = es.es_len - (map->m_lblk - es.es_lblk);
493 if (retval > map->m_len)
494 retval = map->m_len;
495 map->m_len = retval;
496 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
497 retval = 0;
498 } else {
499 BUG_ON(1);
500 }
501 #ifdef ES_AGGRESSIVE_TEST
502 ext4_map_blocks_es_recheck(handle, inode, map,
503 &orig_map, flags);
504 #endif
505 goto found;
506 }
507
508 /*
509 * Try to see if we can get the block without requesting a new
510 * file system block.
511 */
512 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
513 down_read(&EXT4_I(inode)->i_data_sem);
514 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
515 retval = ext4_ext_map_blocks(handle, inode, map, flags &
516 EXT4_GET_BLOCKS_KEEP_SIZE);
517 } else {
518 retval = ext4_ind_map_blocks(handle, inode, map, flags &
519 EXT4_GET_BLOCKS_KEEP_SIZE);
520 }
521 if (retval > 0) {
522 unsigned int status;
523
524 if (unlikely(retval != map->m_len)) {
525 ext4_warning(inode->i_sb,
526 "ES len assertion failed for inode "
527 "%lu: retval %d != map->m_len %d",
528 inode->i_ino, retval, map->m_len);
529 WARN_ON(1);
530 }
531
532 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
533 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
534 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
535 !(status & EXTENT_STATUS_WRITTEN) &&
536 ext4_find_delalloc_range(inode, map->m_lblk,
537 map->m_lblk + map->m_len - 1))
538 status |= EXTENT_STATUS_DELAYED;
539 ret = ext4_es_insert_extent(inode, map->m_lblk,
540 map->m_len, map->m_pblk, status);
541 if (ret < 0)
542 retval = ret;
543 }
544 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
545 up_read((&EXT4_I(inode)->i_data_sem));
546
547 found:
548 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
549 ret = check_block_validity(inode, map);
550 if (ret != 0)
551 return ret;
552 }
553
554 /* If it is only a block(s) look up */
555 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
556 return retval;
557
558 /*
559 * Returns if the blocks have already allocated
560 *
561 * Note that if blocks have been preallocated
562 * ext4_ext_get_block() returns the create = 0
563 * with buffer head unmapped.
564 */
565 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
566 /*
567 * If we need to convert extent to unwritten
568 * we continue and do the actual work in
569 * ext4_ext_map_blocks()
570 */
571 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
572 return retval;
573
574 /*
575 * Here we clear m_flags because after allocating an new extent,
576 * it will be set again.
577 */
578 map->m_flags &= ~EXT4_MAP_FLAGS;
579
580 /*
581 * New blocks allocate and/or writing to unwritten extent
582 * will possibly result in updating i_data, so we take
583 * the write lock of i_data_sem, and call get_block()
584 * with create == 1 flag.
585 */
586 down_write(&EXT4_I(inode)->i_data_sem);
587
588 /*
589 * We need to check for EXT4 here because migrate
590 * could have changed the inode type in between
591 */
592 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
593 retval = ext4_ext_map_blocks(handle, inode, map, flags);
594 } else {
595 retval = ext4_ind_map_blocks(handle, inode, map, flags);
596
597 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
598 /*
599 * We allocated new blocks which will result in
600 * i_data's format changing. Force the migrate
601 * to fail by clearing migrate flags
602 */
603 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
604 }
605
606 /*
607 * Update reserved blocks/metadata blocks after successful
608 * block allocation which had been deferred till now. We don't
609 * support fallocate for non extent files. So we can update
610 * reserve space here.
611 */
612 if ((retval > 0) &&
613 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
614 ext4_da_update_reserve_space(inode, retval, 1);
615 }
616
617 if (retval > 0) {
618 unsigned int status;
619
620 if (unlikely(retval != map->m_len)) {
621 ext4_warning(inode->i_sb,
622 "ES len assertion failed for inode "
623 "%lu: retval %d != map->m_len %d",
624 inode->i_ino, retval, map->m_len);
625 WARN_ON(1);
626 }
627
628 /*
629 * If the extent has been zeroed out, we don't need to update
630 * extent status tree.
631 */
632 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
633 ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
634 if (ext4_es_is_written(&es))
635 goto has_zeroout;
636 }
637 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
638 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
639 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
640 !(status & EXTENT_STATUS_WRITTEN) &&
641 ext4_find_delalloc_range(inode, map->m_lblk,
642 map->m_lblk + map->m_len - 1))
643 status |= EXTENT_STATUS_DELAYED;
644 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
645 map->m_pblk, status);
646 if (ret < 0)
647 retval = ret;
648 }
649
650 has_zeroout:
651 up_write((&EXT4_I(inode)->i_data_sem));
652 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
653 ret = check_block_validity(inode, map);
654 if (ret != 0)
655 return ret;
656 }
657 return retval;
658 }
659
660 /*
661 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
662 * we have to be careful as someone else may be manipulating b_state as well.
663 */
ext4_update_bh_state(struct buffer_head * bh,unsigned long flags)664 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
665 {
666 unsigned long old_state;
667 unsigned long new_state;
668
669 flags &= EXT4_MAP_FLAGS;
670
671 /* Dummy buffer_head? Set non-atomically. */
672 if (!bh->b_page) {
673 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
674 return;
675 }
676 /*
677 * Someone else may be modifying b_state. Be careful! This is ugly but
678 * once we get rid of using bh as a container for mapping information
679 * to pass to / from get_block functions, this can go away.
680 */
681 do {
682 old_state = READ_ONCE(bh->b_state);
683 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
684 } while (unlikely(
685 cmpxchg(&bh->b_state, old_state, new_state) != old_state));
686 }
687
688 /* Maximum number of blocks we map for direct IO at once. */
689 #define DIO_MAX_BLOCKS 4096
690
_ext4_get_block(struct inode * inode,sector_t iblock,struct buffer_head * bh,int flags)691 static int _ext4_get_block(struct inode *inode, sector_t iblock,
692 struct buffer_head *bh, int flags)
693 {
694 handle_t *handle = ext4_journal_current_handle();
695 struct ext4_map_blocks map;
696 int ret = 0, started = 0;
697 int dio_credits;
698
699 if (ext4_has_inline_data(inode))
700 return -ERANGE;
701
702 map.m_lblk = iblock;
703 map.m_len = bh->b_size >> inode->i_blkbits;
704
705 if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
706 /* Direct IO write... */
707 if (map.m_len > DIO_MAX_BLOCKS)
708 map.m_len = DIO_MAX_BLOCKS;
709 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
710 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
711 dio_credits);
712 if (IS_ERR(handle)) {
713 ret = PTR_ERR(handle);
714 return ret;
715 }
716 started = 1;
717 }
718
719 ret = ext4_map_blocks(handle, inode, &map, flags);
720 if (ret > 0) {
721 ext4_io_end_t *io_end = ext4_inode_aio(inode);
722
723 map_bh(bh, inode->i_sb, map.m_pblk);
724 ext4_update_bh_state(bh, map.m_flags);
725 if (IS_DAX(inode) && buffer_unwritten(bh)) {
726 /*
727 * dgc: I suspect unwritten conversion on ext4+DAX is
728 * fundamentally broken here when there are concurrent
729 * read/write in progress on this inode.
730 */
731 WARN_ON_ONCE(io_end);
732 bh->b_assoc_map = inode->i_mapping;
733 bh->b_private = (void *)(unsigned long)iblock;
734 }
735 if (io_end && io_end->flag & EXT4_IO_END_UNWRITTEN)
736 set_buffer_defer_completion(bh);
737 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
738 ret = 0;
739 }
740 if (started)
741 ext4_journal_stop(handle);
742 return ret;
743 }
744
ext4_get_block(struct inode * inode,sector_t iblock,struct buffer_head * bh,int create)745 int ext4_get_block(struct inode *inode, sector_t iblock,
746 struct buffer_head *bh, int create)
747 {
748 return _ext4_get_block(inode, iblock, bh,
749 create ? EXT4_GET_BLOCKS_CREATE : 0);
750 }
751
752 /*
753 * `handle' can be NULL if create is zero
754 */
ext4_getblk(handle_t * handle,struct inode * inode,ext4_lblk_t block,int map_flags)755 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
756 ext4_lblk_t block, int map_flags)
757 {
758 struct ext4_map_blocks map;
759 struct buffer_head *bh;
760 int create = map_flags & EXT4_GET_BLOCKS_CREATE;
761 int err;
762
763 J_ASSERT(handle != NULL || create == 0);
764
765 map.m_lblk = block;
766 map.m_len = 1;
767 err = ext4_map_blocks(handle, inode, &map, map_flags);
768
769 if (err == 0)
770 return create ? ERR_PTR(-ENOSPC) : NULL;
771 if (err < 0)
772 return ERR_PTR(err);
773
774 bh = sb_getblk(inode->i_sb, map.m_pblk);
775 if (unlikely(!bh))
776 return ERR_PTR(-ENOMEM);
777 if (map.m_flags & EXT4_MAP_NEW) {
778 J_ASSERT(create != 0);
779 J_ASSERT(handle != NULL);
780
781 /*
782 * Now that we do not always journal data, we should
783 * keep in mind whether this should always journal the
784 * new buffer as metadata. For now, regular file
785 * writes use ext4_get_block instead, so it's not a
786 * problem.
787 */
788 lock_buffer(bh);
789 BUFFER_TRACE(bh, "call get_create_access");
790 err = ext4_journal_get_create_access(handle, bh);
791 if (unlikely(err)) {
792 unlock_buffer(bh);
793 goto errout;
794 }
795 if (!buffer_uptodate(bh)) {
796 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
797 set_buffer_uptodate(bh);
798 }
799 unlock_buffer(bh);
800 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
801 err = ext4_handle_dirty_metadata(handle, inode, bh);
802 if (unlikely(err))
803 goto errout;
804 } else
805 BUFFER_TRACE(bh, "not a new buffer");
806 return bh;
807 errout:
808 brelse(bh);
809 return ERR_PTR(err);
810 }
811
ext4_bread(handle_t * handle,struct inode * inode,ext4_lblk_t block,int map_flags)812 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
813 ext4_lblk_t block, int map_flags)
814 {
815 struct buffer_head *bh;
816
817 bh = ext4_getblk(handle, inode, block, map_flags);
818 if (IS_ERR(bh))
819 return bh;
820 if (!bh || buffer_uptodate(bh))
821 return bh;
822 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
823 wait_on_buffer(bh);
824 if (buffer_uptodate(bh))
825 return bh;
826 put_bh(bh);
827 return ERR_PTR(-EIO);
828 }
829
ext4_walk_page_buffers(handle_t * handle,struct buffer_head * head,unsigned from,unsigned to,int * partial,int (* fn)(handle_t * handle,struct buffer_head * bh))830 int ext4_walk_page_buffers(handle_t *handle,
831 struct buffer_head *head,
832 unsigned from,
833 unsigned to,
834 int *partial,
835 int (*fn)(handle_t *handle,
836 struct buffer_head *bh))
837 {
838 struct buffer_head *bh;
839 unsigned block_start, block_end;
840 unsigned blocksize = head->b_size;
841 int err, ret = 0;
842 struct buffer_head *next;
843
844 for (bh = head, block_start = 0;
845 ret == 0 && (bh != head || !block_start);
846 block_start = block_end, bh = next) {
847 next = bh->b_this_page;
848 block_end = block_start + blocksize;
849 if (block_end <= from || block_start >= to) {
850 if (partial && !buffer_uptodate(bh))
851 *partial = 1;
852 continue;
853 }
854 err = (*fn)(handle, bh);
855 if (!ret)
856 ret = err;
857 }
858 return ret;
859 }
860
861 /*
862 * To preserve ordering, it is essential that the hole instantiation and
863 * the data write be encapsulated in a single transaction. We cannot
864 * close off a transaction and start a new one between the ext4_get_block()
865 * and the commit_write(). So doing the jbd2_journal_start at the start of
866 * prepare_write() is the right place.
867 *
868 * Also, this function can nest inside ext4_writepage(). In that case, we
869 * *know* that ext4_writepage() has generated enough buffer credits to do the
870 * whole page. So we won't block on the journal in that case, which is good,
871 * because the caller may be PF_MEMALLOC.
872 *
873 * By accident, ext4 can be reentered when a transaction is open via
874 * quota file writes. If we were to commit the transaction while thus
875 * reentered, there can be a deadlock - we would be holding a quota
876 * lock, and the commit would never complete if another thread had a
877 * transaction open and was blocking on the quota lock - a ranking
878 * violation.
879 *
880 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
881 * will _not_ run commit under these circumstances because handle->h_ref
882 * is elevated. We'll still have enough credits for the tiny quotafile
883 * write.
884 */
do_journal_get_write_access(handle_t * handle,struct buffer_head * bh)885 int do_journal_get_write_access(handle_t *handle,
886 struct buffer_head *bh)
887 {
888 int dirty = buffer_dirty(bh);
889 int ret;
890
891 if (!buffer_mapped(bh) || buffer_freed(bh))
892 return 0;
893 /*
894 * __block_write_begin() could have dirtied some buffers. Clean
895 * the dirty bit as jbd2_journal_get_write_access() could complain
896 * otherwise about fs integrity issues. Setting of the dirty bit
897 * by __block_write_begin() isn't a real problem here as we clear
898 * the bit before releasing a page lock and thus writeback cannot
899 * ever write the buffer.
900 */
901 if (dirty)
902 clear_buffer_dirty(bh);
903 BUFFER_TRACE(bh, "get write access");
904 ret = ext4_journal_get_write_access(handle, bh);
905 if (!ret && dirty)
906 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
907 return ret;
908 }
909
910 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
911 struct buffer_head *bh_result, int create);
912
913 #ifdef CONFIG_EXT4_FS_ENCRYPTION
ext4_block_write_begin(struct page * page,loff_t pos,unsigned len,get_block_t * get_block)914 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
915 get_block_t *get_block)
916 {
917 unsigned from = pos & (PAGE_CACHE_SIZE - 1);
918 unsigned to = from + len;
919 struct inode *inode = page->mapping->host;
920 unsigned block_start, block_end;
921 sector_t block;
922 int err = 0;
923 unsigned blocksize = inode->i_sb->s_blocksize;
924 unsigned bbits;
925 struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
926 bool decrypt = false;
927
928 BUG_ON(!PageLocked(page));
929 BUG_ON(from > PAGE_CACHE_SIZE);
930 BUG_ON(to > PAGE_CACHE_SIZE);
931 BUG_ON(from > to);
932
933 if (!page_has_buffers(page))
934 create_empty_buffers(page, blocksize, 0);
935 head = page_buffers(page);
936 bbits = ilog2(blocksize);
937 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
938
939 for (bh = head, block_start = 0; bh != head || !block_start;
940 block++, block_start = block_end, bh = bh->b_this_page) {
941 block_end = block_start + blocksize;
942 if (block_end <= from || block_start >= to) {
943 if (PageUptodate(page)) {
944 if (!buffer_uptodate(bh))
945 set_buffer_uptodate(bh);
946 }
947 continue;
948 }
949 if (buffer_new(bh))
950 clear_buffer_new(bh);
951 if (!buffer_mapped(bh)) {
952 WARN_ON(bh->b_size != blocksize);
953 err = get_block(inode, block, bh, 1);
954 if (err)
955 break;
956 if (buffer_new(bh)) {
957 unmap_underlying_metadata(bh->b_bdev,
958 bh->b_blocknr);
959 if (PageUptodate(page)) {
960 clear_buffer_new(bh);
961 set_buffer_uptodate(bh);
962 mark_buffer_dirty(bh);
963 continue;
964 }
965 if (block_end > to || block_start < from)
966 zero_user_segments(page, to, block_end,
967 block_start, from);
968 continue;
969 }
970 }
971 if (PageUptodate(page)) {
972 if (!buffer_uptodate(bh))
973 set_buffer_uptodate(bh);
974 continue;
975 }
976 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
977 !buffer_unwritten(bh) &&
978 (block_start < from || block_end > to)) {
979 ll_rw_block(READ, 1, &bh);
980 *wait_bh++ = bh;
981 decrypt = ext4_encrypted_inode(inode) &&
982 S_ISREG(inode->i_mode);
983 }
984 }
985 /*
986 * If we issued read requests, let them complete.
987 */
988 while (wait_bh > wait) {
989 wait_on_buffer(*--wait_bh);
990 if (!buffer_uptodate(*wait_bh))
991 err = -EIO;
992 }
993 if (unlikely(err))
994 page_zero_new_buffers(page, from, to);
995 else if (decrypt)
996 err = ext4_decrypt(page);
997 return err;
998 }
999 #endif
1000
ext4_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata)1001 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1002 loff_t pos, unsigned len, unsigned flags,
1003 struct page **pagep, void **fsdata)
1004 {
1005 struct inode *inode = mapping->host;
1006 int ret, needed_blocks;
1007 handle_t *handle;
1008 int retries = 0;
1009 struct page *page;
1010 pgoff_t index;
1011 unsigned from, to;
1012
1013 trace_ext4_write_begin(inode, pos, len, flags);
1014 /*
1015 * Reserve one block more for addition to orphan list in case
1016 * we allocate blocks but write fails for some reason
1017 */
1018 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1019 index = pos >> PAGE_CACHE_SHIFT;
1020 from = pos & (PAGE_CACHE_SIZE - 1);
1021 to = from + len;
1022
1023 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1024 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1025 flags, pagep);
1026 if (ret < 0)
1027 return ret;
1028 if (ret == 1)
1029 return 0;
1030 }
1031
1032 /*
1033 * grab_cache_page_write_begin() can take a long time if the
1034 * system is thrashing due to memory pressure, or if the page
1035 * is being written back. So grab it first before we start
1036 * the transaction handle. This also allows us to allocate
1037 * the page (if needed) without using GFP_NOFS.
1038 */
1039 retry_grab:
1040 page = grab_cache_page_write_begin(mapping, index, flags);
1041 if (!page)
1042 return -ENOMEM;
1043 unlock_page(page);
1044
1045 retry_journal:
1046 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1047 if (IS_ERR(handle)) {
1048 page_cache_release(page);
1049 return PTR_ERR(handle);
1050 }
1051
1052 lock_page(page);
1053 if (page->mapping != mapping) {
1054 /* The page got truncated from under us */
1055 unlock_page(page);
1056 page_cache_release(page);
1057 ext4_journal_stop(handle);
1058 goto retry_grab;
1059 }
1060 /* In case writeback began while the page was unlocked */
1061 wait_for_stable_page(page);
1062
1063 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1064 if (ext4_should_dioread_nolock(inode))
1065 ret = ext4_block_write_begin(page, pos, len,
1066 ext4_get_block_write);
1067 else
1068 ret = ext4_block_write_begin(page, pos, len,
1069 ext4_get_block);
1070 #else
1071 if (ext4_should_dioread_nolock(inode))
1072 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
1073 else
1074 ret = __block_write_begin(page, pos, len, ext4_get_block);
1075 #endif
1076 if (!ret && ext4_should_journal_data(inode)) {
1077 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1078 from, to, NULL,
1079 do_journal_get_write_access);
1080 }
1081
1082 if (ret) {
1083 unlock_page(page);
1084 /*
1085 * __block_write_begin may have instantiated a few blocks
1086 * outside i_size. Trim these off again. Don't need
1087 * i_size_read because we hold i_mutex.
1088 *
1089 * Add inode to orphan list in case we crash before
1090 * truncate finishes
1091 */
1092 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1093 ext4_orphan_add(handle, inode);
1094
1095 ext4_journal_stop(handle);
1096 if (pos + len > inode->i_size) {
1097 ext4_truncate_failed_write(inode);
1098 /*
1099 * If truncate failed early the inode might
1100 * still be on the orphan list; we need to
1101 * make sure the inode is removed from the
1102 * orphan list in that case.
1103 */
1104 if (inode->i_nlink)
1105 ext4_orphan_del(NULL, inode);
1106 }
1107
1108 if (ret == -ENOSPC &&
1109 ext4_should_retry_alloc(inode->i_sb, &retries))
1110 goto retry_journal;
1111 page_cache_release(page);
1112 return ret;
1113 }
1114 *pagep = page;
1115 return ret;
1116 }
1117
1118 /* For write_end() in data=journal mode */
write_end_fn(handle_t * handle,struct buffer_head * bh)1119 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1120 {
1121 int ret;
1122 if (!buffer_mapped(bh) || buffer_freed(bh))
1123 return 0;
1124 set_buffer_uptodate(bh);
1125 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1126 clear_buffer_meta(bh);
1127 clear_buffer_prio(bh);
1128 return ret;
1129 }
1130
1131 /*
1132 * We need to pick up the new inode size which generic_commit_write gave us
1133 * `file' can be NULL - eg, when called from page_symlink().
1134 *
1135 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1136 * buffers are managed internally.
1137 */
ext4_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)1138 static int ext4_write_end(struct file *file,
1139 struct address_space *mapping,
1140 loff_t pos, unsigned len, unsigned copied,
1141 struct page *page, void *fsdata)
1142 {
1143 handle_t *handle = ext4_journal_current_handle();
1144 struct inode *inode = mapping->host;
1145 loff_t old_size = inode->i_size;
1146 int ret = 0, ret2;
1147 int i_size_changed = 0;
1148
1149 trace_ext4_write_end(inode, pos, len, copied);
1150 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1151 ret = ext4_jbd2_file_inode(handle, inode);
1152 if (ret) {
1153 unlock_page(page);
1154 page_cache_release(page);
1155 goto errout;
1156 }
1157 }
1158
1159 if (ext4_has_inline_data(inode)) {
1160 ret = ext4_write_inline_data_end(inode, pos, len,
1161 copied, page);
1162 if (ret < 0)
1163 goto errout;
1164 copied = ret;
1165 } else
1166 copied = block_write_end(file, mapping, pos,
1167 len, copied, page, fsdata);
1168 /*
1169 * it's important to update i_size while still holding page lock:
1170 * page writeout could otherwise come in and zero beyond i_size.
1171 */
1172 i_size_changed = ext4_update_inode_size(inode, pos + copied);
1173 unlock_page(page);
1174 page_cache_release(page);
1175
1176 if (old_size < pos)
1177 pagecache_isize_extended(inode, old_size, pos);
1178 /*
1179 * Don't mark the inode dirty under page lock. First, it unnecessarily
1180 * makes the holding time of page lock longer. Second, it forces lock
1181 * ordering of page lock and transaction start for journaling
1182 * filesystems.
1183 */
1184 if (i_size_changed)
1185 ext4_mark_inode_dirty(handle, inode);
1186
1187 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1188 /* if we have allocated more blocks and copied
1189 * less. We will have blocks allocated outside
1190 * inode->i_size. So truncate them
1191 */
1192 ext4_orphan_add(handle, inode);
1193 errout:
1194 ret2 = ext4_journal_stop(handle);
1195 if (!ret)
1196 ret = ret2;
1197
1198 if (pos + len > inode->i_size) {
1199 ext4_truncate_failed_write(inode);
1200 /*
1201 * If truncate failed early the inode might still be
1202 * on the orphan list; we need to make sure the inode
1203 * is removed from the orphan list in that case.
1204 */
1205 if (inode->i_nlink)
1206 ext4_orphan_del(NULL, inode);
1207 }
1208
1209 return ret ? ret : copied;
1210 }
1211
1212 /*
1213 * This is a private version of page_zero_new_buffers() which doesn't
1214 * set the buffer to be dirty, since in data=journalled mode we need
1215 * to call ext4_handle_dirty_metadata() instead.
1216 */
zero_new_buffers(struct page * page,unsigned from,unsigned to)1217 static void zero_new_buffers(struct page *page, unsigned from, unsigned to)
1218 {
1219 unsigned int block_start = 0, block_end;
1220 struct buffer_head *head, *bh;
1221
1222 bh = head = page_buffers(page);
1223 do {
1224 block_end = block_start + bh->b_size;
1225 if (buffer_new(bh)) {
1226 if (block_end > from && block_start < to) {
1227 if (!PageUptodate(page)) {
1228 unsigned start, size;
1229
1230 start = max(from, block_start);
1231 size = min(to, block_end) - start;
1232
1233 zero_user(page, start, size);
1234 set_buffer_uptodate(bh);
1235 }
1236 clear_buffer_new(bh);
1237 }
1238 }
1239 block_start = block_end;
1240 bh = bh->b_this_page;
1241 } while (bh != head);
1242 }
1243
ext4_journalled_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)1244 static int ext4_journalled_write_end(struct file *file,
1245 struct address_space *mapping,
1246 loff_t pos, unsigned len, unsigned copied,
1247 struct page *page, void *fsdata)
1248 {
1249 handle_t *handle = ext4_journal_current_handle();
1250 struct inode *inode = mapping->host;
1251 loff_t old_size = inode->i_size;
1252 int ret = 0, ret2;
1253 int partial = 0;
1254 unsigned from, to;
1255 int size_changed = 0;
1256
1257 trace_ext4_journalled_write_end(inode, pos, len, copied);
1258 from = pos & (PAGE_CACHE_SIZE - 1);
1259 to = from + len;
1260
1261 BUG_ON(!ext4_handle_valid(handle));
1262
1263 if (ext4_has_inline_data(inode))
1264 copied = ext4_write_inline_data_end(inode, pos, len,
1265 copied, page);
1266 else {
1267 if (copied < len) {
1268 if (!PageUptodate(page))
1269 copied = 0;
1270 zero_new_buffers(page, from+copied, to);
1271 }
1272
1273 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1274 to, &partial, write_end_fn);
1275 if (!partial)
1276 SetPageUptodate(page);
1277 }
1278 size_changed = ext4_update_inode_size(inode, pos + copied);
1279 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1280 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1281 unlock_page(page);
1282 page_cache_release(page);
1283
1284 if (old_size < pos)
1285 pagecache_isize_extended(inode, old_size, pos);
1286
1287 if (size_changed) {
1288 ret2 = ext4_mark_inode_dirty(handle, inode);
1289 if (!ret)
1290 ret = ret2;
1291 }
1292
1293 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1294 /* if we have allocated more blocks and copied
1295 * less. We will have blocks allocated outside
1296 * inode->i_size. So truncate them
1297 */
1298 ext4_orphan_add(handle, inode);
1299
1300 ret2 = ext4_journal_stop(handle);
1301 if (!ret)
1302 ret = ret2;
1303 if (pos + len > inode->i_size) {
1304 ext4_truncate_failed_write(inode);
1305 /*
1306 * If truncate failed early the inode might still be
1307 * on the orphan list; we need to make sure the inode
1308 * is removed from the orphan list in that case.
1309 */
1310 if (inode->i_nlink)
1311 ext4_orphan_del(NULL, inode);
1312 }
1313
1314 return ret ? ret : copied;
1315 }
1316
1317 /*
1318 * Reserve space for a single cluster
1319 */
ext4_da_reserve_space(struct inode * inode)1320 static int ext4_da_reserve_space(struct inode *inode)
1321 {
1322 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1323 struct ext4_inode_info *ei = EXT4_I(inode);
1324 int ret;
1325
1326 /*
1327 * We will charge metadata quota at writeout time; this saves
1328 * us from metadata over-estimation, though we may go over by
1329 * a small amount in the end. Here we just reserve for data.
1330 */
1331 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1332 if (ret)
1333 return ret;
1334
1335 spin_lock(&ei->i_block_reservation_lock);
1336 if (ext4_claim_free_clusters(sbi, 1, 0)) {
1337 spin_unlock(&ei->i_block_reservation_lock);
1338 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1339 return -ENOSPC;
1340 }
1341 ei->i_reserved_data_blocks++;
1342 trace_ext4_da_reserve_space(inode);
1343 spin_unlock(&ei->i_block_reservation_lock);
1344
1345 return 0; /* success */
1346 }
1347
ext4_da_release_space(struct inode * inode,int to_free)1348 static void ext4_da_release_space(struct inode *inode, int to_free)
1349 {
1350 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1351 struct ext4_inode_info *ei = EXT4_I(inode);
1352
1353 if (!to_free)
1354 return; /* Nothing to release, exit */
1355
1356 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1357
1358 trace_ext4_da_release_space(inode, to_free);
1359 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1360 /*
1361 * if there aren't enough reserved blocks, then the
1362 * counter is messed up somewhere. Since this
1363 * function is called from invalidate page, it's
1364 * harmless to return without any action.
1365 */
1366 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1367 "ino %lu, to_free %d with only %d reserved "
1368 "data blocks", inode->i_ino, to_free,
1369 ei->i_reserved_data_blocks);
1370 WARN_ON(1);
1371 to_free = ei->i_reserved_data_blocks;
1372 }
1373 ei->i_reserved_data_blocks -= to_free;
1374
1375 /* update fs dirty data blocks counter */
1376 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1377
1378 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1379
1380 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1381 }
1382
ext4_da_page_release_reservation(struct page * page,unsigned int offset,unsigned int length)1383 static void ext4_da_page_release_reservation(struct page *page,
1384 unsigned int offset,
1385 unsigned int length)
1386 {
1387 int to_release = 0, contiguous_blks = 0;
1388 struct buffer_head *head, *bh;
1389 unsigned int curr_off = 0;
1390 struct inode *inode = page->mapping->host;
1391 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1392 unsigned int stop = offset + length;
1393 int num_clusters;
1394 ext4_fsblk_t lblk;
1395
1396 BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
1397
1398 head = page_buffers(page);
1399 bh = head;
1400 do {
1401 unsigned int next_off = curr_off + bh->b_size;
1402
1403 if (next_off > stop)
1404 break;
1405
1406 if ((offset <= curr_off) && (buffer_delay(bh))) {
1407 to_release++;
1408 contiguous_blks++;
1409 clear_buffer_delay(bh);
1410 } else if (contiguous_blks) {
1411 lblk = page->index <<
1412 (PAGE_CACHE_SHIFT - inode->i_blkbits);
1413 lblk += (curr_off >> inode->i_blkbits) -
1414 contiguous_blks;
1415 ext4_es_remove_extent(inode, lblk, contiguous_blks);
1416 contiguous_blks = 0;
1417 }
1418 curr_off = next_off;
1419 } while ((bh = bh->b_this_page) != head);
1420
1421 if (contiguous_blks) {
1422 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1423 lblk += (curr_off >> inode->i_blkbits) - contiguous_blks;
1424 ext4_es_remove_extent(inode, lblk, contiguous_blks);
1425 }
1426
1427 /* If we have released all the blocks belonging to a cluster, then we
1428 * need to release the reserved space for that cluster. */
1429 num_clusters = EXT4_NUM_B2C(sbi, to_release);
1430 while (num_clusters > 0) {
1431 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1432 ((num_clusters - 1) << sbi->s_cluster_bits);
1433 if (sbi->s_cluster_ratio == 1 ||
1434 !ext4_find_delalloc_cluster(inode, lblk))
1435 ext4_da_release_space(inode, 1);
1436
1437 num_clusters--;
1438 }
1439 }
1440
1441 /*
1442 * Delayed allocation stuff
1443 */
1444
1445 struct mpage_da_data {
1446 struct inode *inode;
1447 struct writeback_control *wbc;
1448
1449 pgoff_t first_page; /* The first page to write */
1450 pgoff_t next_page; /* Current page to examine */
1451 pgoff_t last_page; /* Last page to examine */
1452 /*
1453 * Extent to map - this can be after first_page because that can be
1454 * fully mapped. We somewhat abuse m_flags to store whether the extent
1455 * is delalloc or unwritten.
1456 */
1457 struct ext4_map_blocks map;
1458 struct ext4_io_submit io_submit; /* IO submission data */
1459 };
1460
mpage_release_unused_pages(struct mpage_da_data * mpd,bool invalidate)1461 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1462 bool invalidate)
1463 {
1464 int nr_pages, i;
1465 pgoff_t index, end;
1466 struct pagevec pvec;
1467 struct inode *inode = mpd->inode;
1468 struct address_space *mapping = inode->i_mapping;
1469
1470 /* This is necessary when next_page == 0. */
1471 if (mpd->first_page >= mpd->next_page)
1472 return;
1473
1474 index = mpd->first_page;
1475 end = mpd->next_page - 1;
1476 if (invalidate) {
1477 ext4_lblk_t start, last;
1478 start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1479 last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1480 ext4_es_remove_extent(inode, start, last - start + 1);
1481 }
1482
1483 pagevec_init(&pvec, 0);
1484 while (index <= end) {
1485 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1486 if (nr_pages == 0)
1487 break;
1488 for (i = 0; i < nr_pages; i++) {
1489 struct page *page = pvec.pages[i];
1490 if (page->index > end)
1491 break;
1492 BUG_ON(!PageLocked(page));
1493 BUG_ON(PageWriteback(page));
1494 if (invalidate) {
1495 block_invalidatepage(page, 0, PAGE_CACHE_SIZE);
1496 ClearPageUptodate(page);
1497 }
1498 unlock_page(page);
1499 }
1500 index = pvec.pages[nr_pages - 1]->index + 1;
1501 pagevec_release(&pvec);
1502 }
1503 }
1504
ext4_print_free_blocks(struct inode * inode)1505 static void ext4_print_free_blocks(struct inode *inode)
1506 {
1507 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1508 struct super_block *sb = inode->i_sb;
1509 struct ext4_inode_info *ei = EXT4_I(inode);
1510
1511 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1512 EXT4_C2B(EXT4_SB(inode->i_sb),
1513 ext4_count_free_clusters(sb)));
1514 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1515 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1516 (long long) EXT4_C2B(EXT4_SB(sb),
1517 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1518 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1519 (long long) EXT4_C2B(EXT4_SB(sb),
1520 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1521 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1522 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1523 ei->i_reserved_data_blocks);
1524 return;
1525 }
1526
ext4_bh_delay_or_unwritten(handle_t * handle,struct buffer_head * bh)1527 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1528 {
1529 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1530 }
1531
1532 /*
1533 * This function is grabs code from the very beginning of
1534 * ext4_map_blocks, but assumes that the caller is from delayed write
1535 * time. This function looks up the requested blocks and sets the
1536 * buffer delay bit under the protection of i_data_sem.
1537 */
ext4_da_map_blocks(struct inode * inode,sector_t iblock,struct ext4_map_blocks * map,struct buffer_head * bh)1538 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1539 struct ext4_map_blocks *map,
1540 struct buffer_head *bh)
1541 {
1542 struct extent_status es;
1543 int retval;
1544 sector_t invalid_block = ~((sector_t) 0xffff);
1545 #ifdef ES_AGGRESSIVE_TEST
1546 struct ext4_map_blocks orig_map;
1547
1548 memcpy(&orig_map, map, sizeof(*map));
1549 #endif
1550
1551 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1552 invalid_block = ~0;
1553
1554 map->m_flags = 0;
1555 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1556 "logical block %lu\n", inode->i_ino, map->m_len,
1557 (unsigned long) map->m_lblk);
1558
1559 /* Lookup extent status tree firstly */
1560 if (ext4_es_lookup_extent(inode, iblock, &es)) {
1561 if (ext4_es_is_hole(&es)) {
1562 retval = 0;
1563 down_read(&EXT4_I(inode)->i_data_sem);
1564 goto add_delayed;
1565 }
1566
1567 /*
1568 * Delayed extent could be allocated by fallocate.
1569 * So we need to check it.
1570 */
1571 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1572 map_bh(bh, inode->i_sb, invalid_block);
1573 set_buffer_new(bh);
1574 set_buffer_delay(bh);
1575 return 0;
1576 }
1577
1578 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1579 retval = es.es_len - (iblock - es.es_lblk);
1580 if (retval > map->m_len)
1581 retval = map->m_len;
1582 map->m_len = retval;
1583 if (ext4_es_is_written(&es))
1584 map->m_flags |= EXT4_MAP_MAPPED;
1585 else if (ext4_es_is_unwritten(&es))
1586 map->m_flags |= EXT4_MAP_UNWRITTEN;
1587 else
1588 BUG_ON(1);
1589
1590 #ifdef ES_AGGRESSIVE_TEST
1591 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1592 #endif
1593 return retval;
1594 }
1595
1596 /*
1597 * Try to see if we can get the block without requesting a new
1598 * file system block.
1599 */
1600 down_read(&EXT4_I(inode)->i_data_sem);
1601 if (ext4_has_inline_data(inode))
1602 retval = 0;
1603 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1604 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1605 else
1606 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1607
1608 add_delayed:
1609 if (retval == 0) {
1610 int ret;
1611 /*
1612 * XXX: __block_prepare_write() unmaps passed block,
1613 * is it OK?
1614 */
1615 /*
1616 * If the block was allocated from previously allocated cluster,
1617 * then we don't need to reserve it again. However we still need
1618 * to reserve metadata for every block we're going to write.
1619 */
1620 if (EXT4_SB(inode->i_sb)->s_cluster_ratio == 1 ||
1621 !ext4_find_delalloc_cluster(inode, map->m_lblk)) {
1622 ret = ext4_da_reserve_space(inode);
1623 if (ret) {
1624 /* not enough space to reserve */
1625 retval = ret;
1626 goto out_unlock;
1627 }
1628 }
1629
1630 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1631 ~0, EXTENT_STATUS_DELAYED);
1632 if (ret) {
1633 retval = ret;
1634 goto out_unlock;
1635 }
1636
1637 map_bh(bh, inode->i_sb, invalid_block);
1638 set_buffer_new(bh);
1639 set_buffer_delay(bh);
1640 } else if (retval > 0) {
1641 int ret;
1642 unsigned int status;
1643
1644 if (unlikely(retval != map->m_len)) {
1645 ext4_warning(inode->i_sb,
1646 "ES len assertion failed for inode "
1647 "%lu: retval %d != map->m_len %d",
1648 inode->i_ino, retval, map->m_len);
1649 WARN_ON(1);
1650 }
1651
1652 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1653 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1654 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1655 map->m_pblk, status);
1656 if (ret != 0)
1657 retval = ret;
1658 }
1659
1660 out_unlock:
1661 up_read((&EXT4_I(inode)->i_data_sem));
1662
1663 return retval;
1664 }
1665
1666 /*
1667 * This is a special get_block_t callback which is used by
1668 * ext4_da_write_begin(). It will either return mapped block or
1669 * reserve space for a single block.
1670 *
1671 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1672 * We also have b_blocknr = -1 and b_bdev initialized properly
1673 *
1674 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1675 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1676 * initialized properly.
1677 */
ext4_da_get_block_prep(struct inode * inode,sector_t iblock,struct buffer_head * bh,int create)1678 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1679 struct buffer_head *bh, int create)
1680 {
1681 struct ext4_map_blocks map;
1682 int ret = 0;
1683
1684 BUG_ON(create == 0);
1685 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1686
1687 map.m_lblk = iblock;
1688 map.m_len = 1;
1689
1690 /*
1691 * first, we need to know whether the block is allocated already
1692 * preallocated blocks are unmapped but should treated
1693 * the same as allocated blocks.
1694 */
1695 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1696 if (ret <= 0)
1697 return ret;
1698
1699 map_bh(bh, inode->i_sb, map.m_pblk);
1700 ext4_update_bh_state(bh, map.m_flags);
1701
1702 if (buffer_unwritten(bh)) {
1703 /* A delayed write to unwritten bh should be marked
1704 * new and mapped. Mapped ensures that we don't do
1705 * get_block multiple times when we write to the same
1706 * offset and new ensures that we do proper zero out
1707 * for partial write.
1708 */
1709 set_buffer_new(bh);
1710 set_buffer_mapped(bh);
1711 }
1712 return 0;
1713 }
1714
bget_one(handle_t * handle,struct buffer_head * bh)1715 static int bget_one(handle_t *handle, struct buffer_head *bh)
1716 {
1717 get_bh(bh);
1718 return 0;
1719 }
1720
bput_one(handle_t * handle,struct buffer_head * bh)1721 static int bput_one(handle_t *handle, struct buffer_head *bh)
1722 {
1723 put_bh(bh);
1724 return 0;
1725 }
1726
__ext4_journalled_writepage(struct page * page,unsigned int len)1727 static int __ext4_journalled_writepage(struct page *page,
1728 unsigned int len)
1729 {
1730 struct address_space *mapping = page->mapping;
1731 struct inode *inode = mapping->host;
1732 struct buffer_head *page_bufs = NULL;
1733 handle_t *handle = NULL;
1734 int ret = 0, err = 0;
1735 int inline_data = ext4_has_inline_data(inode);
1736 struct buffer_head *inode_bh = NULL;
1737
1738 ClearPageChecked(page);
1739
1740 if (inline_data) {
1741 BUG_ON(page->index != 0);
1742 BUG_ON(len > ext4_get_max_inline_size(inode));
1743 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1744 if (inode_bh == NULL)
1745 goto out;
1746 } else {
1747 page_bufs = page_buffers(page);
1748 if (!page_bufs) {
1749 BUG();
1750 goto out;
1751 }
1752 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1753 NULL, bget_one);
1754 }
1755 /*
1756 * We need to release the page lock before we start the
1757 * journal, so grab a reference so the page won't disappear
1758 * out from under us.
1759 */
1760 get_page(page);
1761 unlock_page(page);
1762
1763 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1764 ext4_writepage_trans_blocks(inode));
1765 if (IS_ERR(handle)) {
1766 ret = PTR_ERR(handle);
1767 put_page(page);
1768 goto out_no_pagelock;
1769 }
1770 BUG_ON(!ext4_handle_valid(handle));
1771
1772 lock_page(page);
1773 put_page(page);
1774 if (page->mapping != mapping) {
1775 /* The page got truncated from under us */
1776 ext4_journal_stop(handle);
1777 ret = 0;
1778 goto out;
1779 }
1780
1781 if (inline_data) {
1782 BUFFER_TRACE(inode_bh, "get write access");
1783 ret = ext4_journal_get_write_access(handle, inode_bh);
1784
1785 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1786
1787 } else {
1788 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1789 do_journal_get_write_access);
1790
1791 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1792 write_end_fn);
1793 }
1794 if (ret == 0)
1795 ret = err;
1796 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1797 err = ext4_journal_stop(handle);
1798 if (!ret)
1799 ret = err;
1800
1801 if (!ext4_has_inline_data(inode))
1802 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1803 NULL, bput_one);
1804 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1805 out:
1806 unlock_page(page);
1807 out_no_pagelock:
1808 brelse(inode_bh);
1809 return ret;
1810 }
1811
1812 /*
1813 * Note that we don't need to start a transaction unless we're journaling data
1814 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1815 * need to file the inode to the transaction's list in ordered mode because if
1816 * we are writing back data added by write(), the inode is already there and if
1817 * we are writing back data modified via mmap(), no one guarantees in which
1818 * transaction the data will hit the disk. In case we are journaling data, we
1819 * cannot start transaction directly because transaction start ranks above page
1820 * lock so we have to do some magic.
1821 *
1822 * This function can get called via...
1823 * - ext4_writepages after taking page lock (have journal handle)
1824 * - journal_submit_inode_data_buffers (no journal handle)
1825 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1826 * - grab_page_cache when doing write_begin (have journal handle)
1827 *
1828 * We don't do any block allocation in this function. If we have page with
1829 * multiple blocks we need to write those buffer_heads that are mapped. This
1830 * is important for mmaped based write. So if we do with blocksize 1K
1831 * truncate(f, 1024);
1832 * a = mmap(f, 0, 4096);
1833 * a[0] = 'a';
1834 * truncate(f, 4096);
1835 * we have in the page first buffer_head mapped via page_mkwrite call back
1836 * but other buffer_heads would be unmapped but dirty (dirty done via the
1837 * do_wp_page). So writepage should write the first block. If we modify
1838 * the mmap area beyond 1024 we will again get a page_fault and the
1839 * page_mkwrite callback will do the block allocation and mark the
1840 * buffer_heads mapped.
1841 *
1842 * We redirty the page if we have any buffer_heads that is either delay or
1843 * unwritten in the page.
1844 *
1845 * We can get recursively called as show below.
1846 *
1847 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1848 * ext4_writepage()
1849 *
1850 * But since we don't do any block allocation we should not deadlock.
1851 * Page also have the dirty flag cleared so we don't get recurive page_lock.
1852 */
ext4_writepage(struct page * page,struct writeback_control * wbc)1853 static int ext4_writepage(struct page *page,
1854 struct writeback_control *wbc)
1855 {
1856 int ret = 0;
1857 loff_t size;
1858 unsigned int len;
1859 struct buffer_head *page_bufs = NULL;
1860 struct inode *inode = page->mapping->host;
1861 struct ext4_io_submit io_submit;
1862 bool keep_towrite = false;
1863
1864 trace_ext4_writepage(page);
1865 size = i_size_read(inode);
1866 if (page->index == size >> PAGE_CACHE_SHIFT)
1867 len = size & ~PAGE_CACHE_MASK;
1868 else
1869 len = PAGE_CACHE_SIZE;
1870
1871 page_bufs = page_buffers(page);
1872 /*
1873 * We cannot do block allocation or other extent handling in this
1874 * function. If there are buffers needing that, we have to redirty
1875 * the page. But we may reach here when we do a journal commit via
1876 * journal_submit_inode_data_buffers() and in that case we must write
1877 * allocated buffers to achieve data=ordered mode guarantees.
1878 *
1879 * Also, if there is only one buffer per page (the fs block
1880 * size == the page size), if one buffer needs block
1881 * allocation or needs to modify the extent tree to clear the
1882 * unwritten flag, we know that the page can't be written at
1883 * all, so we might as well refuse the write immediately.
1884 * Unfortunately if the block size != page size, we can't as
1885 * easily detect this case using ext4_walk_page_buffers(), but
1886 * for the extremely common case, this is an optimization that
1887 * skips a useless round trip through ext4_bio_write_page().
1888 */
1889 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
1890 ext4_bh_delay_or_unwritten)) {
1891 redirty_page_for_writepage(wbc, page);
1892 if ((current->flags & PF_MEMALLOC) ||
1893 (inode->i_sb->s_blocksize == PAGE_CACHE_SIZE)) {
1894 /*
1895 * For memory cleaning there's no point in writing only
1896 * some buffers. So just bail out. Warn if we came here
1897 * from direct reclaim.
1898 */
1899 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
1900 == PF_MEMALLOC);
1901 unlock_page(page);
1902 return 0;
1903 }
1904 keep_towrite = true;
1905 }
1906
1907 if (PageChecked(page) && ext4_should_journal_data(inode))
1908 /*
1909 * It's mmapped pagecache. Add buffers and journal it. There
1910 * doesn't seem much point in redirtying the page here.
1911 */
1912 return __ext4_journalled_writepage(page, len);
1913
1914 ext4_io_submit_init(&io_submit, wbc);
1915 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
1916 if (!io_submit.io_end) {
1917 redirty_page_for_writepage(wbc, page);
1918 unlock_page(page);
1919 return -ENOMEM;
1920 }
1921 ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
1922 ext4_io_submit(&io_submit);
1923 /* Drop io_end reference we got from init */
1924 ext4_put_io_end_defer(io_submit.io_end);
1925 return ret;
1926 }
1927
mpage_submit_page(struct mpage_da_data * mpd,struct page * page)1928 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
1929 {
1930 int len;
1931 loff_t size = i_size_read(mpd->inode);
1932 int err;
1933
1934 BUG_ON(page->index != mpd->first_page);
1935 if (page->index == size >> PAGE_CACHE_SHIFT)
1936 len = size & ~PAGE_CACHE_MASK;
1937 else
1938 len = PAGE_CACHE_SIZE;
1939 clear_page_dirty_for_io(page);
1940 err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
1941 if (!err)
1942 mpd->wbc->nr_to_write--;
1943 mpd->first_page++;
1944
1945 return err;
1946 }
1947
1948 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
1949
1950 /*
1951 * mballoc gives us at most this number of blocks...
1952 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
1953 * The rest of mballoc seems to handle chunks up to full group size.
1954 */
1955 #define MAX_WRITEPAGES_EXTENT_LEN 2048
1956
1957 /*
1958 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
1959 *
1960 * @mpd - extent of blocks
1961 * @lblk - logical number of the block in the file
1962 * @bh - buffer head we want to add to the extent
1963 *
1964 * The function is used to collect contig. blocks in the same state. If the
1965 * buffer doesn't require mapping for writeback and we haven't started the
1966 * extent of buffers to map yet, the function returns 'true' immediately - the
1967 * caller can write the buffer right away. Otherwise the function returns true
1968 * if the block has been added to the extent, false if the block couldn't be
1969 * added.
1970 */
mpage_add_bh_to_extent(struct mpage_da_data * mpd,ext4_lblk_t lblk,struct buffer_head * bh)1971 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
1972 struct buffer_head *bh)
1973 {
1974 struct ext4_map_blocks *map = &mpd->map;
1975
1976 /* Buffer that doesn't need mapping for writeback? */
1977 if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
1978 (!buffer_delay(bh) && !buffer_unwritten(bh))) {
1979 /* So far no extent to map => we write the buffer right away */
1980 if (map->m_len == 0)
1981 return true;
1982 return false;
1983 }
1984
1985 /* First block in the extent? */
1986 if (map->m_len == 0) {
1987 map->m_lblk = lblk;
1988 map->m_len = 1;
1989 map->m_flags = bh->b_state & BH_FLAGS;
1990 return true;
1991 }
1992
1993 /* Don't go larger than mballoc is willing to allocate */
1994 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
1995 return false;
1996
1997 /* Can we merge the block to our big extent? */
1998 if (lblk == map->m_lblk + map->m_len &&
1999 (bh->b_state & BH_FLAGS) == map->m_flags) {
2000 map->m_len++;
2001 return true;
2002 }
2003 return false;
2004 }
2005
2006 /*
2007 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2008 *
2009 * @mpd - extent of blocks for mapping
2010 * @head - the first buffer in the page
2011 * @bh - buffer we should start processing from
2012 * @lblk - logical number of the block in the file corresponding to @bh
2013 *
2014 * Walk through page buffers from @bh upto @head (exclusive) and either submit
2015 * the page for IO if all buffers in this page were mapped and there's no
2016 * accumulated extent of buffers to map or add buffers in the page to the
2017 * extent of buffers to map. The function returns 1 if the caller can continue
2018 * by processing the next page, 0 if it should stop adding buffers to the
2019 * extent to map because we cannot extend it anymore. It can also return value
2020 * < 0 in case of error during IO submission.
2021 */
mpage_process_page_bufs(struct mpage_da_data * mpd,struct buffer_head * head,struct buffer_head * bh,ext4_lblk_t lblk)2022 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2023 struct buffer_head *head,
2024 struct buffer_head *bh,
2025 ext4_lblk_t lblk)
2026 {
2027 struct inode *inode = mpd->inode;
2028 int err;
2029 ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
2030 >> inode->i_blkbits;
2031
2032 do {
2033 BUG_ON(buffer_locked(bh));
2034
2035 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2036 /* Found extent to map? */
2037 if (mpd->map.m_len)
2038 return 0;
2039 /* Everything mapped so far and we hit EOF */
2040 break;
2041 }
2042 } while (lblk++, (bh = bh->b_this_page) != head);
2043 /* So far everything mapped? Submit the page for IO. */
2044 if (mpd->map.m_len == 0) {
2045 err = mpage_submit_page(mpd, head->b_page);
2046 if (err < 0)
2047 return err;
2048 }
2049 return lblk < blocks;
2050 }
2051
2052 /*
2053 * mpage_map_buffers - update buffers corresponding to changed extent and
2054 * submit fully mapped pages for IO
2055 *
2056 * @mpd - description of extent to map, on return next extent to map
2057 *
2058 * Scan buffers corresponding to changed extent (we expect corresponding pages
2059 * to be already locked) and update buffer state according to new extent state.
2060 * We map delalloc buffers to their physical location, clear unwritten bits,
2061 * and mark buffers as uninit when we perform writes to unwritten extents
2062 * and do extent conversion after IO is finished. If the last page is not fully
2063 * mapped, we update @map to the next extent in the last page that needs
2064 * mapping. Otherwise we submit the page for IO.
2065 */
mpage_map_and_submit_buffers(struct mpage_da_data * mpd)2066 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2067 {
2068 struct pagevec pvec;
2069 int nr_pages, i;
2070 struct inode *inode = mpd->inode;
2071 struct buffer_head *head, *bh;
2072 int bpp_bits = PAGE_CACHE_SHIFT - inode->i_blkbits;
2073 pgoff_t start, end;
2074 ext4_lblk_t lblk;
2075 sector_t pblock;
2076 int err;
2077
2078 start = mpd->map.m_lblk >> bpp_bits;
2079 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2080 lblk = start << bpp_bits;
2081 pblock = mpd->map.m_pblk;
2082
2083 pagevec_init(&pvec, 0);
2084 while (start <= end) {
2085 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
2086 PAGEVEC_SIZE);
2087 if (nr_pages == 0)
2088 break;
2089 for (i = 0; i < nr_pages; i++) {
2090 struct page *page = pvec.pages[i];
2091
2092 if (page->index > end)
2093 break;
2094 /* Up to 'end' pages must be contiguous */
2095 BUG_ON(page->index != start);
2096 bh = head = page_buffers(page);
2097 do {
2098 if (lblk < mpd->map.m_lblk)
2099 continue;
2100 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2101 /*
2102 * Buffer after end of mapped extent.
2103 * Find next buffer in the page to map.
2104 */
2105 mpd->map.m_len = 0;
2106 mpd->map.m_flags = 0;
2107 /*
2108 * FIXME: If dioread_nolock supports
2109 * blocksize < pagesize, we need to make
2110 * sure we add size mapped so far to
2111 * io_end->size as the following call
2112 * can submit the page for IO.
2113 */
2114 err = mpage_process_page_bufs(mpd, head,
2115 bh, lblk);
2116 pagevec_release(&pvec);
2117 if (err > 0)
2118 err = 0;
2119 return err;
2120 }
2121 if (buffer_delay(bh)) {
2122 clear_buffer_delay(bh);
2123 bh->b_blocknr = pblock++;
2124 }
2125 clear_buffer_unwritten(bh);
2126 } while (lblk++, (bh = bh->b_this_page) != head);
2127
2128 /*
2129 * FIXME: This is going to break if dioread_nolock
2130 * supports blocksize < pagesize as we will try to
2131 * convert potentially unmapped parts of inode.
2132 */
2133 mpd->io_submit.io_end->size += PAGE_CACHE_SIZE;
2134 /* Page fully mapped - let IO run! */
2135 err = mpage_submit_page(mpd, page);
2136 if (err < 0) {
2137 pagevec_release(&pvec);
2138 return err;
2139 }
2140 start++;
2141 }
2142 pagevec_release(&pvec);
2143 }
2144 /* Extent fully mapped and matches with page boundary. We are done. */
2145 mpd->map.m_len = 0;
2146 mpd->map.m_flags = 0;
2147 return 0;
2148 }
2149
mpage_map_one_extent(handle_t * handle,struct mpage_da_data * mpd)2150 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2151 {
2152 struct inode *inode = mpd->inode;
2153 struct ext4_map_blocks *map = &mpd->map;
2154 int get_blocks_flags;
2155 int err, dioread_nolock;
2156
2157 trace_ext4_da_write_pages_extent(inode, map);
2158 /*
2159 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2160 * to convert an unwritten extent to be initialized (in the case
2161 * where we have written into one or more preallocated blocks). It is
2162 * possible that we're going to need more metadata blocks than
2163 * previously reserved. However we must not fail because we're in
2164 * writeback and there is nothing we can do about it so it might result
2165 * in data loss. So use reserved blocks to allocate metadata if
2166 * possible.
2167 *
2168 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2169 * the blocks in question are delalloc blocks. This indicates
2170 * that the blocks and quotas has already been checked when
2171 * the data was copied into the page cache.
2172 */
2173 get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2174 EXT4_GET_BLOCKS_METADATA_NOFAIL;
2175 dioread_nolock = ext4_should_dioread_nolock(inode);
2176 if (dioread_nolock)
2177 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2178 if (map->m_flags & (1 << BH_Delay))
2179 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2180
2181 err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2182 if (err < 0)
2183 return err;
2184 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2185 if (!mpd->io_submit.io_end->handle &&
2186 ext4_handle_valid(handle)) {
2187 mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2188 handle->h_rsv_handle = NULL;
2189 }
2190 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2191 }
2192
2193 BUG_ON(map->m_len == 0);
2194 if (map->m_flags & EXT4_MAP_NEW) {
2195 struct block_device *bdev = inode->i_sb->s_bdev;
2196 int i;
2197
2198 for (i = 0; i < map->m_len; i++)
2199 unmap_underlying_metadata(bdev, map->m_pblk + i);
2200 }
2201 return 0;
2202 }
2203
2204 /*
2205 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2206 * mpd->len and submit pages underlying it for IO
2207 *
2208 * @handle - handle for journal operations
2209 * @mpd - extent to map
2210 * @give_up_on_write - we set this to true iff there is a fatal error and there
2211 * is no hope of writing the data. The caller should discard
2212 * dirty pages to avoid infinite loops.
2213 *
2214 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2215 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2216 * them to initialized or split the described range from larger unwritten
2217 * extent. Note that we need not map all the described range since allocation
2218 * can return less blocks or the range is covered by more unwritten extents. We
2219 * cannot map more because we are limited by reserved transaction credits. On
2220 * the other hand we always make sure that the last touched page is fully
2221 * mapped so that it can be written out (and thus forward progress is
2222 * guaranteed). After mapping we submit all mapped pages for IO.
2223 */
mpage_map_and_submit_extent(handle_t * handle,struct mpage_da_data * mpd,bool * give_up_on_write)2224 static int mpage_map_and_submit_extent(handle_t *handle,
2225 struct mpage_da_data *mpd,
2226 bool *give_up_on_write)
2227 {
2228 struct inode *inode = mpd->inode;
2229 struct ext4_map_blocks *map = &mpd->map;
2230 int err;
2231 loff_t disksize;
2232 int progress = 0;
2233
2234 mpd->io_submit.io_end->offset =
2235 ((loff_t)map->m_lblk) << inode->i_blkbits;
2236 do {
2237 err = mpage_map_one_extent(handle, mpd);
2238 if (err < 0) {
2239 struct super_block *sb = inode->i_sb;
2240
2241 if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2242 goto invalidate_dirty_pages;
2243 /*
2244 * Let the uper layers retry transient errors.
2245 * In the case of ENOSPC, if ext4_count_free_blocks()
2246 * is non-zero, a commit should free up blocks.
2247 */
2248 if ((err == -ENOMEM) ||
2249 (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2250 if (progress)
2251 goto update_disksize;
2252 return err;
2253 }
2254 ext4_msg(sb, KERN_CRIT,
2255 "Delayed block allocation failed for "
2256 "inode %lu at logical offset %llu with"
2257 " max blocks %u with error %d",
2258 inode->i_ino,
2259 (unsigned long long)map->m_lblk,
2260 (unsigned)map->m_len, -err);
2261 ext4_msg(sb, KERN_CRIT,
2262 "This should not happen!! Data will "
2263 "be lost\n");
2264 if (err == -ENOSPC)
2265 ext4_print_free_blocks(inode);
2266 invalidate_dirty_pages:
2267 *give_up_on_write = true;
2268 return err;
2269 }
2270 progress = 1;
2271 /*
2272 * Update buffer state, submit mapped pages, and get us new
2273 * extent to map
2274 */
2275 err = mpage_map_and_submit_buffers(mpd);
2276 if (err < 0)
2277 goto update_disksize;
2278 } while (map->m_len);
2279
2280 update_disksize:
2281 /*
2282 * Update on-disk size after IO is submitted. Races with
2283 * truncate are avoided by checking i_size under i_data_sem.
2284 */
2285 disksize = ((loff_t)mpd->first_page) << PAGE_CACHE_SHIFT;
2286 if (disksize > EXT4_I(inode)->i_disksize) {
2287 int err2;
2288 loff_t i_size;
2289
2290 down_write(&EXT4_I(inode)->i_data_sem);
2291 i_size = i_size_read(inode);
2292 if (disksize > i_size)
2293 disksize = i_size;
2294 if (disksize > EXT4_I(inode)->i_disksize)
2295 EXT4_I(inode)->i_disksize = disksize;
2296 err2 = ext4_mark_inode_dirty(handle, inode);
2297 up_write(&EXT4_I(inode)->i_data_sem);
2298 if (err2)
2299 ext4_error(inode->i_sb,
2300 "Failed to mark inode %lu dirty",
2301 inode->i_ino);
2302 if (!err)
2303 err = err2;
2304 }
2305 return err;
2306 }
2307
2308 /*
2309 * Calculate the total number of credits to reserve for one writepages
2310 * iteration. This is called from ext4_writepages(). We map an extent of
2311 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2312 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2313 * bpp - 1 blocks in bpp different extents.
2314 */
ext4_da_writepages_trans_blocks(struct inode * inode)2315 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2316 {
2317 int bpp = ext4_journal_blocks_per_page(inode);
2318
2319 return ext4_meta_trans_blocks(inode,
2320 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2321 }
2322
2323 /*
2324 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2325 * and underlying extent to map
2326 *
2327 * @mpd - where to look for pages
2328 *
2329 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2330 * IO immediately. When we find a page which isn't mapped we start accumulating
2331 * extent of buffers underlying these pages that needs mapping (formed by
2332 * either delayed or unwritten buffers). We also lock the pages containing
2333 * these buffers. The extent found is returned in @mpd structure (starting at
2334 * mpd->lblk with length mpd->len blocks).
2335 *
2336 * Note that this function can attach bios to one io_end structure which are
2337 * neither logically nor physically contiguous. Although it may seem as an
2338 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2339 * case as we need to track IO to all buffers underlying a page in one io_end.
2340 */
mpage_prepare_extent_to_map(struct mpage_da_data * mpd)2341 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2342 {
2343 struct address_space *mapping = mpd->inode->i_mapping;
2344 struct pagevec pvec;
2345 unsigned int nr_pages;
2346 long left = mpd->wbc->nr_to_write;
2347 pgoff_t index = mpd->first_page;
2348 pgoff_t end = mpd->last_page;
2349 int tag;
2350 int i, err = 0;
2351 int blkbits = mpd->inode->i_blkbits;
2352 ext4_lblk_t lblk;
2353 struct buffer_head *head;
2354
2355 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2356 tag = PAGECACHE_TAG_TOWRITE;
2357 else
2358 tag = PAGECACHE_TAG_DIRTY;
2359
2360 pagevec_init(&pvec, 0);
2361 mpd->map.m_len = 0;
2362 mpd->next_page = index;
2363 while (index <= end) {
2364 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2365 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2366 if (nr_pages == 0)
2367 goto out;
2368
2369 for (i = 0; i < nr_pages; i++) {
2370 struct page *page = pvec.pages[i];
2371
2372 /*
2373 * At this point, the page may be truncated or
2374 * invalidated (changing page->mapping to NULL), or
2375 * even swizzled back from swapper_space to tmpfs file
2376 * mapping. However, page->index will not change
2377 * because we have a reference on the page.
2378 */
2379 if (page->index > end)
2380 goto out;
2381
2382 /*
2383 * Accumulated enough dirty pages? This doesn't apply
2384 * to WB_SYNC_ALL mode. For integrity sync we have to
2385 * keep going because someone may be concurrently
2386 * dirtying pages, and we might have synced a lot of
2387 * newly appeared dirty pages, but have not synced all
2388 * of the old dirty pages.
2389 */
2390 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2391 goto out;
2392
2393 /* If we can't merge this page, we are done. */
2394 if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2395 goto out;
2396
2397 lock_page(page);
2398 /*
2399 * If the page is no longer dirty, or its mapping no
2400 * longer corresponds to inode we are writing (which
2401 * means it has been truncated or invalidated), or the
2402 * page is already under writeback and we are not doing
2403 * a data integrity writeback, skip the page
2404 */
2405 if (!PageDirty(page) ||
2406 (PageWriteback(page) &&
2407 (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2408 unlikely(page->mapping != mapping)) {
2409 unlock_page(page);
2410 continue;
2411 }
2412
2413 wait_on_page_writeback(page);
2414 BUG_ON(PageWriteback(page));
2415
2416 if (mpd->map.m_len == 0)
2417 mpd->first_page = page->index;
2418 mpd->next_page = page->index + 1;
2419 /* Add all dirty buffers to mpd */
2420 lblk = ((ext4_lblk_t)page->index) <<
2421 (PAGE_CACHE_SHIFT - blkbits);
2422 head = page_buffers(page);
2423 err = mpage_process_page_bufs(mpd, head, head, lblk);
2424 if (err <= 0)
2425 goto out;
2426 err = 0;
2427 left--;
2428 }
2429 pagevec_release(&pvec);
2430 cond_resched();
2431 }
2432 return 0;
2433 out:
2434 pagevec_release(&pvec);
2435 return err;
2436 }
2437
__writepage(struct page * page,struct writeback_control * wbc,void * data)2438 static int __writepage(struct page *page, struct writeback_control *wbc,
2439 void *data)
2440 {
2441 struct address_space *mapping = data;
2442 int ret = ext4_writepage(page, wbc);
2443 mapping_set_error(mapping, ret);
2444 return ret;
2445 }
2446
ext4_writepages(struct address_space * mapping,struct writeback_control * wbc)2447 static int ext4_writepages(struct address_space *mapping,
2448 struct writeback_control *wbc)
2449 {
2450 pgoff_t writeback_index = 0;
2451 long nr_to_write = wbc->nr_to_write;
2452 int range_whole = 0;
2453 int cycled = 1;
2454 handle_t *handle = NULL;
2455 struct mpage_da_data mpd;
2456 struct inode *inode = mapping->host;
2457 int needed_blocks, rsv_blocks = 0, ret = 0;
2458 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2459 bool done;
2460 struct blk_plug plug;
2461 bool give_up_on_write = false;
2462
2463 trace_ext4_writepages(inode, wbc);
2464
2465 /*
2466 * No pages to write? This is mainly a kludge to avoid starting
2467 * a transaction for special inodes like journal inode on last iput()
2468 * because that could violate lock ordering on umount
2469 */
2470 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2471 goto out_writepages;
2472
2473 if (ext4_should_journal_data(inode)) {
2474 struct blk_plug plug;
2475
2476 blk_start_plug(&plug);
2477 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2478 blk_finish_plug(&plug);
2479 goto out_writepages;
2480 }
2481
2482 /*
2483 * If the filesystem has aborted, it is read-only, so return
2484 * right away instead of dumping stack traces later on that
2485 * will obscure the real source of the problem. We test
2486 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2487 * the latter could be true if the filesystem is mounted
2488 * read-only, and in that case, ext4_writepages should
2489 * *never* be called, so if that ever happens, we would want
2490 * the stack trace.
2491 */
2492 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2493 ret = -EROFS;
2494 goto out_writepages;
2495 }
2496
2497 if (ext4_should_dioread_nolock(inode)) {
2498 /*
2499 * We may need to convert up to one extent per block in
2500 * the page and we may dirty the inode.
2501 */
2502 rsv_blocks = 1 + (PAGE_CACHE_SIZE >> inode->i_blkbits);
2503 }
2504
2505 /*
2506 * If we have inline data and arrive here, it means that
2507 * we will soon create the block for the 1st page, so
2508 * we'd better clear the inline data here.
2509 */
2510 if (ext4_has_inline_data(inode)) {
2511 /* Just inode will be modified... */
2512 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2513 if (IS_ERR(handle)) {
2514 ret = PTR_ERR(handle);
2515 goto out_writepages;
2516 }
2517 BUG_ON(ext4_test_inode_state(inode,
2518 EXT4_STATE_MAY_INLINE_DATA));
2519 ext4_destroy_inline_data(handle, inode);
2520 ext4_journal_stop(handle);
2521 }
2522
2523 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2524 range_whole = 1;
2525
2526 if (wbc->range_cyclic) {
2527 writeback_index = mapping->writeback_index;
2528 if (writeback_index)
2529 cycled = 0;
2530 mpd.first_page = writeback_index;
2531 mpd.last_page = -1;
2532 } else {
2533 mpd.first_page = wbc->range_start >> PAGE_CACHE_SHIFT;
2534 mpd.last_page = wbc->range_end >> PAGE_CACHE_SHIFT;
2535 }
2536
2537 mpd.inode = inode;
2538 mpd.wbc = wbc;
2539 ext4_io_submit_init(&mpd.io_submit, wbc);
2540 retry:
2541 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2542 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2543 done = false;
2544 blk_start_plug(&plug);
2545 while (!done && mpd.first_page <= mpd.last_page) {
2546 /* For each extent of pages we use new io_end */
2547 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2548 if (!mpd.io_submit.io_end) {
2549 ret = -ENOMEM;
2550 break;
2551 }
2552
2553 /*
2554 * We have two constraints: We find one extent to map and we
2555 * must always write out whole page (makes a difference when
2556 * blocksize < pagesize) so that we don't block on IO when we
2557 * try to write out the rest of the page. Journalled mode is
2558 * not supported by delalloc.
2559 */
2560 BUG_ON(ext4_should_journal_data(inode));
2561 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2562
2563 /* start a new transaction */
2564 handle = ext4_journal_start_with_reserve(inode,
2565 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2566 if (IS_ERR(handle)) {
2567 ret = PTR_ERR(handle);
2568 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2569 "%ld pages, ino %lu; err %d", __func__,
2570 wbc->nr_to_write, inode->i_ino, ret);
2571 /* Release allocated io_end */
2572 ext4_put_io_end(mpd.io_submit.io_end);
2573 break;
2574 }
2575
2576 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2577 ret = mpage_prepare_extent_to_map(&mpd);
2578 if (!ret) {
2579 if (mpd.map.m_len)
2580 ret = mpage_map_and_submit_extent(handle, &mpd,
2581 &give_up_on_write);
2582 else {
2583 /*
2584 * We scanned the whole range (or exhausted
2585 * nr_to_write), submitted what was mapped and
2586 * didn't find anything needing mapping. We are
2587 * done.
2588 */
2589 done = true;
2590 }
2591 }
2592 ext4_journal_stop(handle);
2593 /* Submit prepared bio */
2594 ext4_io_submit(&mpd.io_submit);
2595 /* Unlock pages we didn't use */
2596 mpage_release_unused_pages(&mpd, give_up_on_write);
2597 /* Drop our io_end reference we got from init */
2598 ext4_put_io_end(mpd.io_submit.io_end);
2599
2600 if (ret == -ENOSPC && sbi->s_journal) {
2601 /*
2602 * Commit the transaction which would
2603 * free blocks released in the transaction
2604 * and try again
2605 */
2606 jbd2_journal_force_commit_nested(sbi->s_journal);
2607 ret = 0;
2608 continue;
2609 }
2610 /* Fatal error - ENOMEM, EIO... */
2611 if (ret)
2612 break;
2613 }
2614 blk_finish_plug(&plug);
2615 if (!ret && !cycled && wbc->nr_to_write > 0) {
2616 cycled = 1;
2617 mpd.last_page = writeback_index - 1;
2618 mpd.first_page = 0;
2619 goto retry;
2620 }
2621
2622 /* Update index */
2623 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2624 /*
2625 * Set the writeback_index so that range_cyclic
2626 * mode will write it back later
2627 */
2628 mapping->writeback_index = mpd.first_page;
2629
2630 out_writepages:
2631 trace_ext4_writepages_result(inode, wbc, ret,
2632 nr_to_write - wbc->nr_to_write);
2633 return ret;
2634 }
2635
ext4_nonda_switch(struct super_block * sb)2636 static int ext4_nonda_switch(struct super_block *sb)
2637 {
2638 s64 free_clusters, dirty_clusters;
2639 struct ext4_sb_info *sbi = EXT4_SB(sb);
2640
2641 /*
2642 * switch to non delalloc mode if we are running low
2643 * on free block. The free block accounting via percpu
2644 * counters can get slightly wrong with percpu_counter_batch getting
2645 * accumulated on each CPU without updating global counters
2646 * Delalloc need an accurate free block accounting. So switch
2647 * to non delalloc when we are near to error range.
2648 */
2649 free_clusters =
2650 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2651 dirty_clusters =
2652 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2653 /*
2654 * Start pushing delalloc when 1/2 of free blocks are dirty.
2655 */
2656 if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2657 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2658
2659 if (2 * free_clusters < 3 * dirty_clusters ||
2660 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2661 /*
2662 * free block count is less than 150% of dirty blocks
2663 * or free blocks is less than watermark
2664 */
2665 return 1;
2666 }
2667 return 0;
2668 }
2669
2670 /* We always reserve for an inode update; the superblock could be there too */
ext4_da_write_credits(struct inode * inode,loff_t pos,unsigned len)2671 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2672 {
2673 if (likely(ext4_has_feature_large_file(inode->i_sb)))
2674 return 1;
2675
2676 if (pos + len <= 0x7fffffffULL)
2677 return 1;
2678
2679 /* We might need to update the superblock to set LARGE_FILE */
2680 return 2;
2681 }
2682
ext4_da_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata)2683 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2684 loff_t pos, unsigned len, unsigned flags,
2685 struct page **pagep, void **fsdata)
2686 {
2687 int ret, retries = 0;
2688 struct page *page;
2689 pgoff_t index;
2690 struct inode *inode = mapping->host;
2691 handle_t *handle;
2692
2693 index = pos >> PAGE_CACHE_SHIFT;
2694
2695 if (ext4_nonda_switch(inode->i_sb)) {
2696 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2697 return ext4_write_begin(file, mapping, pos,
2698 len, flags, pagep, fsdata);
2699 }
2700 *fsdata = (void *)0;
2701 trace_ext4_da_write_begin(inode, pos, len, flags);
2702
2703 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2704 ret = ext4_da_write_inline_data_begin(mapping, inode,
2705 pos, len, flags,
2706 pagep, fsdata);
2707 if (ret < 0)
2708 return ret;
2709 if (ret == 1)
2710 return 0;
2711 }
2712
2713 /*
2714 * grab_cache_page_write_begin() can take a long time if the
2715 * system is thrashing due to memory pressure, or if the page
2716 * is being written back. So grab it first before we start
2717 * the transaction handle. This also allows us to allocate
2718 * the page (if needed) without using GFP_NOFS.
2719 */
2720 retry_grab:
2721 page = grab_cache_page_write_begin(mapping, index, flags);
2722 if (!page)
2723 return -ENOMEM;
2724 unlock_page(page);
2725
2726 /*
2727 * With delayed allocation, we don't log the i_disksize update
2728 * if there is delayed block allocation. But we still need
2729 * to journalling the i_disksize update if writes to the end
2730 * of file which has an already mapped buffer.
2731 */
2732 retry_journal:
2733 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2734 ext4_da_write_credits(inode, pos, len));
2735 if (IS_ERR(handle)) {
2736 page_cache_release(page);
2737 return PTR_ERR(handle);
2738 }
2739
2740 lock_page(page);
2741 if (page->mapping != mapping) {
2742 /* The page got truncated from under us */
2743 unlock_page(page);
2744 page_cache_release(page);
2745 ext4_journal_stop(handle);
2746 goto retry_grab;
2747 }
2748 /* In case writeback began while the page was unlocked */
2749 wait_for_stable_page(page);
2750
2751 #ifdef CONFIG_EXT4_FS_ENCRYPTION
2752 ret = ext4_block_write_begin(page, pos, len,
2753 ext4_da_get_block_prep);
2754 #else
2755 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2756 #endif
2757 if (ret < 0) {
2758 unlock_page(page);
2759 ext4_journal_stop(handle);
2760 /*
2761 * block_write_begin may have instantiated a few blocks
2762 * outside i_size. Trim these off again. Don't need
2763 * i_size_read because we hold i_mutex.
2764 */
2765 if (pos + len > inode->i_size)
2766 ext4_truncate_failed_write(inode);
2767
2768 if (ret == -ENOSPC &&
2769 ext4_should_retry_alloc(inode->i_sb, &retries))
2770 goto retry_journal;
2771
2772 page_cache_release(page);
2773 return ret;
2774 }
2775
2776 *pagep = page;
2777 return ret;
2778 }
2779
2780 /*
2781 * Check if we should update i_disksize
2782 * when write to the end of file but not require block allocation
2783 */
ext4_da_should_update_i_disksize(struct page * page,unsigned long offset)2784 static int ext4_da_should_update_i_disksize(struct page *page,
2785 unsigned long offset)
2786 {
2787 struct buffer_head *bh;
2788 struct inode *inode = page->mapping->host;
2789 unsigned int idx;
2790 int i;
2791
2792 bh = page_buffers(page);
2793 idx = offset >> inode->i_blkbits;
2794
2795 for (i = 0; i < idx; i++)
2796 bh = bh->b_this_page;
2797
2798 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2799 return 0;
2800 return 1;
2801 }
2802
ext4_da_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)2803 static int ext4_da_write_end(struct file *file,
2804 struct address_space *mapping,
2805 loff_t pos, unsigned len, unsigned copied,
2806 struct page *page, void *fsdata)
2807 {
2808 struct inode *inode = mapping->host;
2809 int ret = 0, ret2;
2810 handle_t *handle = ext4_journal_current_handle();
2811 loff_t new_i_size;
2812 unsigned long start, end;
2813 int write_mode = (int)(unsigned long)fsdata;
2814
2815 if (write_mode == FALL_BACK_TO_NONDELALLOC)
2816 return ext4_write_end(file, mapping, pos,
2817 len, copied, page, fsdata);
2818
2819 trace_ext4_da_write_end(inode, pos, len, copied);
2820 start = pos & (PAGE_CACHE_SIZE - 1);
2821 end = start + copied - 1;
2822
2823 /*
2824 * generic_write_end() will run mark_inode_dirty() if i_size
2825 * changes. So let's piggyback the i_disksize mark_inode_dirty
2826 * into that.
2827 */
2828 new_i_size = pos + copied;
2829 if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2830 if (ext4_has_inline_data(inode) ||
2831 ext4_da_should_update_i_disksize(page, end)) {
2832 ext4_update_i_disksize(inode, new_i_size);
2833 /* We need to mark inode dirty even if
2834 * new_i_size is less that inode->i_size
2835 * bu greater than i_disksize.(hint delalloc)
2836 */
2837 ext4_mark_inode_dirty(handle, inode);
2838 }
2839 }
2840
2841 if (write_mode != CONVERT_INLINE_DATA &&
2842 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2843 ext4_has_inline_data(inode))
2844 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2845 page);
2846 else
2847 ret2 = generic_write_end(file, mapping, pos, len, copied,
2848 page, fsdata);
2849
2850 copied = ret2;
2851 if (ret2 < 0)
2852 ret = ret2;
2853 ret2 = ext4_journal_stop(handle);
2854 if (!ret)
2855 ret = ret2;
2856
2857 return ret ? ret : copied;
2858 }
2859
ext4_da_invalidatepage(struct page * page,unsigned int offset,unsigned int length)2860 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
2861 unsigned int length)
2862 {
2863 /*
2864 * Drop reserved blocks
2865 */
2866 BUG_ON(!PageLocked(page));
2867 if (!page_has_buffers(page))
2868 goto out;
2869
2870 ext4_da_page_release_reservation(page, offset, length);
2871
2872 out:
2873 ext4_invalidatepage(page, offset, length);
2874
2875 return;
2876 }
2877
2878 /*
2879 * Force all delayed allocation blocks to be allocated for a given inode.
2880 */
ext4_alloc_da_blocks(struct inode * inode)2881 int ext4_alloc_da_blocks(struct inode *inode)
2882 {
2883 trace_ext4_alloc_da_blocks(inode);
2884
2885 if (!EXT4_I(inode)->i_reserved_data_blocks)
2886 return 0;
2887
2888 /*
2889 * We do something simple for now. The filemap_flush() will
2890 * also start triggering a write of the data blocks, which is
2891 * not strictly speaking necessary (and for users of
2892 * laptop_mode, not even desirable). However, to do otherwise
2893 * would require replicating code paths in:
2894 *
2895 * ext4_writepages() ->
2896 * write_cache_pages() ---> (via passed in callback function)
2897 * __mpage_da_writepage() -->
2898 * mpage_add_bh_to_extent()
2899 * mpage_da_map_blocks()
2900 *
2901 * The problem is that write_cache_pages(), located in
2902 * mm/page-writeback.c, marks pages clean in preparation for
2903 * doing I/O, which is not desirable if we're not planning on
2904 * doing I/O at all.
2905 *
2906 * We could call write_cache_pages(), and then redirty all of
2907 * the pages by calling redirty_page_for_writepage() but that
2908 * would be ugly in the extreme. So instead we would need to
2909 * replicate parts of the code in the above functions,
2910 * simplifying them because we wouldn't actually intend to
2911 * write out the pages, but rather only collect contiguous
2912 * logical block extents, call the multi-block allocator, and
2913 * then update the buffer heads with the block allocations.
2914 *
2915 * For now, though, we'll cheat by calling filemap_flush(),
2916 * which will map the blocks, and start the I/O, but not
2917 * actually wait for the I/O to complete.
2918 */
2919 return filemap_flush(inode->i_mapping);
2920 }
2921
2922 /*
2923 * bmap() is special. It gets used by applications such as lilo and by
2924 * the swapper to find the on-disk block of a specific piece of data.
2925 *
2926 * Naturally, this is dangerous if the block concerned is still in the
2927 * journal. If somebody makes a swapfile on an ext4 data-journaling
2928 * filesystem and enables swap, then they may get a nasty shock when the
2929 * data getting swapped to that swapfile suddenly gets overwritten by
2930 * the original zero's written out previously to the journal and
2931 * awaiting writeback in the kernel's buffer cache.
2932 *
2933 * So, if we see any bmap calls here on a modified, data-journaled file,
2934 * take extra steps to flush any blocks which might be in the cache.
2935 */
ext4_bmap(struct address_space * mapping,sector_t block)2936 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2937 {
2938 struct inode *inode = mapping->host;
2939 journal_t *journal;
2940 int err;
2941
2942 /*
2943 * We can get here for an inline file via the FIBMAP ioctl
2944 */
2945 if (ext4_has_inline_data(inode))
2946 return 0;
2947
2948 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2949 test_opt(inode->i_sb, DELALLOC)) {
2950 /*
2951 * With delalloc we want to sync the file
2952 * so that we can make sure we allocate
2953 * blocks for file
2954 */
2955 filemap_write_and_wait(mapping);
2956 }
2957
2958 if (EXT4_JOURNAL(inode) &&
2959 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2960 /*
2961 * This is a REALLY heavyweight approach, but the use of
2962 * bmap on dirty files is expected to be extremely rare:
2963 * only if we run lilo or swapon on a freshly made file
2964 * do we expect this to happen.
2965 *
2966 * (bmap requires CAP_SYS_RAWIO so this does not
2967 * represent an unprivileged user DOS attack --- we'd be
2968 * in trouble if mortal users could trigger this path at
2969 * will.)
2970 *
2971 * NB. EXT4_STATE_JDATA is not set on files other than
2972 * regular files. If somebody wants to bmap a directory
2973 * or symlink and gets confused because the buffer
2974 * hasn't yet been flushed to disk, they deserve
2975 * everything they get.
2976 */
2977
2978 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2979 journal = EXT4_JOURNAL(inode);
2980 jbd2_journal_lock_updates(journal);
2981 err = jbd2_journal_flush(journal);
2982 jbd2_journal_unlock_updates(journal);
2983
2984 if (err)
2985 return 0;
2986 }
2987
2988 return generic_block_bmap(mapping, block, ext4_get_block);
2989 }
2990
ext4_readpage(struct file * file,struct page * page)2991 static int ext4_readpage(struct file *file, struct page *page)
2992 {
2993 int ret = -EAGAIN;
2994 struct inode *inode = page->mapping->host;
2995
2996 trace_ext4_readpage(page);
2997
2998 if (ext4_has_inline_data(inode))
2999 ret = ext4_readpage_inline(inode, page);
3000
3001 if (ret == -EAGAIN)
3002 return ext4_mpage_readpages(page->mapping, NULL, page, 1);
3003
3004 return ret;
3005 }
3006
3007 static int
ext4_readpages(struct file * file,struct address_space * mapping,struct list_head * pages,unsigned nr_pages)3008 ext4_readpages(struct file *file, struct address_space *mapping,
3009 struct list_head *pages, unsigned nr_pages)
3010 {
3011 struct inode *inode = mapping->host;
3012
3013 /* If the file has inline data, no need to do readpages. */
3014 if (ext4_has_inline_data(inode))
3015 return 0;
3016
3017 return ext4_mpage_readpages(mapping, pages, NULL, nr_pages);
3018 }
3019
ext4_invalidatepage(struct page * page,unsigned int offset,unsigned int length)3020 static void ext4_invalidatepage(struct page *page, unsigned int offset,
3021 unsigned int length)
3022 {
3023 trace_ext4_invalidatepage(page, offset, length);
3024
3025 /* No journalling happens on data buffers when this function is used */
3026 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3027
3028 block_invalidatepage(page, offset, length);
3029 }
3030
__ext4_journalled_invalidatepage(struct page * page,unsigned int offset,unsigned int length)3031 static int __ext4_journalled_invalidatepage(struct page *page,
3032 unsigned int offset,
3033 unsigned int length)
3034 {
3035 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3036
3037 trace_ext4_journalled_invalidatepage(page, offset, length);
3038
3039 /*
3040 * If it's a full truncate we just forget about the pending dirtying
3041 */
3042 if (offset == 0 && length == PAGE_CACHE_SIZE)
3043 ClearPageChecked(page);
3044
3045 return jbd2_journal_invalidatepage(journal, page, offset, length);
3046 }
3047
3048 /* Wrapper for aops... */
ext4_journalled_invalidatepage(struct page * page,unsigned int offset,unsigned int length)3049 static void ext4_journalled_invalidatepage(struct page *page,
3050 unsigned int offset,
3051 unsigned int length)
3052 {
3053 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3054 }
3055
ext4_releasepage(struct page * page,gfp_t wait)3056 static int ext4_releasepage(struct page *page, gfp_t wait)
3057 {
3058 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3059
3060 trace_ext4_releasepage(page);
3061
3062 /* Page has dirty journalled data -> cannot release */
3063 if (PageChecked(page))
3064 return 0;
3065 if (journal)
3066 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3067 else
3068 return try_to_free_buffers(page);
3069 }
3070
3071 /*
3072 * ext4_get_block used when preparing for a DIO write or buffer write.
3073 * We allocate an uinitialized extent if blocks haven't been allocated.
3074 * The extent will be converted to initialized after the IO is complete.
3075 */
ext4_get_block_write(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create)3076 int ext4_get_block_write(struct inode *inode, sector_t iblock,
3077 struct buffer_head *bh_result, int create)
3078 {
3079 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3080 inode->i_ino, create);
3081 return _ext4_get_block(inode, iblock, bh_result,
3082 EXT4_GET_BLOCKS_IO_CREATE_EXT);
3083 }
3084
ext4_get_block_write_nolock(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create)3085 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
3086 struct buffer_head *bh_result, int create)
3087 {
3088 ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
3089 inode->i_ino, create);
3090 return _ext4_get_block(inode, iblock, bh_result,
3091 EXT4_GET_BLOCKS_NO_LOCK);
3092 }
3093
ext4_get_block_dax(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create)3094 int ext4_get_block_dax(struct inode *inode, sector_t iblock,
3095 struct buffer_head *bh_result, int create)
3096 {
3097 int flags = EXT4_GET_BLOCKS_PRE_IO | EXT4_GET_BLOCKS_UNWRIT_EXT;
3098 if (create)
3099 flags |= EXT4_GET_BLOCKS_CREATE;
3100 ext4_debug("ext4_get_block_dax: inode %lu, create flag %d\n",
3101 inode->i_ino, create);
3102 return _ext4_get_block(inode, iblock, bh_result, flags);
3103 }
3104
ext4_end_io_dio(struct kiocb * iocb,loff_t offset,ssize_t size,void * private)3105 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3106 ssize_t size, void *private)
3107 {
3108 ext4_io_end_t *io_end = iocb->private;
3109
3110 /* if not async direct IO just return */
3111 if (!io_end)
3112 return;
3113
3114 ext_debug("ext4_end_io_dio(): io_end 0x%p "
3115 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3116 iocb->private, io_end->inode->i_ino, iocb, offset,
3117 size);
3118
3119 iocb->private = NULL;
3120 io_end->offset = offset;
3121 io_end->size = size;
3122 ext4_put_io_end(io_end);
3123 }
3124
3125 /*
3126 * For ext4 extent files, ext4 will do direct-io write to holes,
3127 * preallocated extents, and those write extend the file, no need to
3128 * fall back to buffered IO.
3129 *
3130 * For holes, we fallocate those blocks, mark them as unwritten
3131 * If those blocks were preallocated, we mark sure they are split, but
3132 * still keep the range to write as unwritten.
3133 *
3134 * The unwritten extents will be converted to written when DIO is completed.
3135 * For async direct IO, since the IO may still pending when return, we
3136 * set up an end_io call back function, which will do the conversion
3137 * when async direct IO completed.
3138 *
3139 * If the O_DIRECT write will extend the file then add this inode to the
3140 * orphan list. So recovery will truncate it back to the original size
3141 * if the machine crashes during the write.
3142 *
3143 */
ext4_ext_direct_IO(struct kiocb * iocb,struct iov_iter * iter,loff_t offset)3144 static ssize_t ext4_ext_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
3145 loff_t offset)
3146 {
3147 struct file *file = iocb->ki_filp;
3148 struct inode *inode = file->f_mapping->host;
3149 ssize_t ret;
3150 size_t count = iov_iter_count(iter);
3151 int overwrite = 0;
3152 get_block_t *get_block_func = NULL;
3153 int dio_flags = 0;
3154 loff_t final_size = offset + count;
3155 ext4_io_end_t *io_end = NULL;
3156
3157 /* Use the old path for reads and writes beyond i_size. */
3158 if (iov_iter_rw(iter) != WRITE || final_size > inode->i_size)
3159 return ext4_ind_direct_IO(iocb, iter, offset);
3160
3161 BUG_ON(iocb->private == NULL);
3162
3163 /*
3164 * Make all waiters for direct IO properly wait also for extent
3165 * conversion. This also disallows race between truncate() and
3166 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3167 */
3168 if (iov_iter_rw(iter) == WRITE)
3169 inode_dio_begin(inode);
3170
3171 /* If we do a overwrite dio, i_mutex locking can be released */
3172 overwrite = *((int *)iocb->private);
3173
3174 if (overwrite) {
3175 down_read(&EXT4_I(inode)->i_data_sem);
3176 mutex_unlock(&inode->i_mutex);
3177 }
3178
3179 /*
3180 * We could direct write to holes and fallocate.
3181 *
3182 * Allocated blocks to fill the hole are marked as
3183 * unwritten to prevent parallel buffered read to expose
3184 * the stale data before DIO complete the data IO.
3185 *
3186 * As to previously fallocated extents, ext4 get_block will
3187 * just simply mark the buffer mapped but still keep the
3188 * extents unwritten.
3189 *
3190 * For non AIO case, we will convert those unwritten extents
3191 * to written after return back from blockdev_direct_IO.
3192 *
3193 * For async DIO, the conversion needs to be deferred when the
3194 * IO is completed. The ext4 end_io callback function will be
3195 * called to take care of the conversion work. Here for async
3196 * case, we allocate an io_end structure to hook to the iocb.
3197 */
3198 iocb->private = NULL;
3199 ext4_inode_aio_set(inode, NULL);
3200 if (!is_sync_kiocb(iocb)) {
3201 io_end = ext4_init_io_end(inode, GFP_NOFS);
3202 if (!io_end) {
3203 ret = -ENOMEM;
3204 goto retake_lock;
3205 }
3206 /*
3207 * Grab reference for DIO. Will be dropped in ext4_end_io_dio()
3208 */
3209 iocb->private = ext4_get_io_end(io_end);
3210 /*
3211 * we save the io structure for current async direct
3212 * IO, so that later ext4_map_blocks() could flag the
3213 * io structure whether there is a unwritten extents
3214 * needs to be converted when IO is completed.
3215 */
3216 ext4_inode_aio_set(inode, io_end);
3217 }
3218
3219 if (overwrite) {
3220 get_block_func = ext4_get_block_write_nolock;
3221 } else {
3222 get_block_func = ext4_get_block_write;
3223 dio_flags = DIO_LOCKING;
3224 }
3225 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3226 BUG_ON(ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode));
3227 #endif
3228 if (IS_DAX(inode))
3229 ret = dax_do_io(iocb, inode, iter, offset, get_block_func,
3230 ext4_end_io_dio, dio_flags);
3231 else
3232 ret = __blockdev_direct_IO(iocb, inode,
3233 inode->i_sb->s_bdev, iter, offset,
3234 get_block_func,
3235 ext4_end_io_dio, NULL, dio_flags);
3236
3237 /*
3238 * Put our reference to io_end. This can free the io_end structure e.g.
3239 * in sync IO case or in case of error. It can even perform extent
3240 * conversion if all bios we submitted finished before we got here.
3241 * Note that in that case iocb->private can be already set to NULL
3242 * here.
3243 */
3244 if (io_end) {
3245 ext4_inode_aio_set(inode, NULL);
3246 ext4_put_io_end(io_end);
3247 /*
3248 * When no IO was submitted ext4_end_io_dio() was not
3249 * called so we have to put iocb's reference.
3250 */
3251 if (ret <= 0 && ret != -EIOCBQUEUED && iocb->private) {
3252 WARN_ON(iocb->private != io_end);
3253 WARN_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
3254 ext4_put_io_end(io_end);
3255 iocb->private = NULL;
3256 }
3257 }
3258 if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3259 EXT4_STATE_DIO_UNWRITTEN)) {
3260 int err;
3261 /*
3262 * for non AIO case, since the IO is already
3263 * completed, we could do the conversion right here
3264 */
3265 err = ext4_convert_unwritten_extents(NULL, inode,
3266 offset, ret);
3267 if (err < 0)
3268 ret = err;
3269 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3270 }
3271
3272 retake_lock:
3273 if (iov_iter_rw(iter) == WRITE)
3274 inode_dio_end(inode);
3275 /* take i_mutex locking again if we do a ovewrite dio */
3276 if (overwrite) {
3277 up_read(&EXT4_I(inode)->i_data_sem);
3278 mutex_lock(&inode->i_mutex);
3279 }
3280
3281 return ret;
3282 }
3283
ext4_direct_IO(struct kiocb * iocb,struct iov_iter * iter,loff_t offset)3284 static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
3285 loff_t offset)
3286 {
3287 struct file *file = iocb->ki_filp;
3288 struct inode *inode = file->f_mapping->host;
3289 size_t count = iov_iter_count(iter);
3290 ssize_t ret;
3291
3292 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3293 if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode))
3294 return 0;
3295 #endif
3296
3297 /*
3298 * If we are doing data journalling we don't support O_DIRECT
3299 */
3300 if (ext4_should_journal_data(inode))
3301 return 0;
3302
3303 /* Let buffer I/O handle the inline data case. */
3304 if (ext4_has_inline_data(inode))
3305 return 0;
3306
3307 trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
3308 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3309 ret = ext4_ext_direct_IO(iocb, iter, offset);
3310 else
3311 ret = ext4_ind_direct_IO(iocb, iter, offset);
3312 trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
3313 return ret;
3314 }
3315
3316 /*
3317 * Pages can be marked dirty completely asynchronously from ext4's journalling
3318 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3319 * much here because ->set_page_dirty is called under VFS locks. The page is
3320 * not necessarily locked.
3321 *
3322 * We cannot just dirty the page and leave attached buffers clean, because the
3323 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3324 * or jbddirty because all the journalling code will explode.
3325 *
3326 * So what we do is to mark the page "pending dirty" and next time writepage
3327 * is called, propagate that into the buffers appropriately.
3328 */
ext4_journalled_set_page_dirty(struct page * page)3329 static int ext4_journalled_set_page_dirty(struct page *page)
3330 {
3331 SetPageChecked(page);
3332 return __set_page_dirty_nobuffers(page);
3333 }
3334
3335 static const struct address_space_operations ext4_aops = {
3336 .readpage = ext4_readpage,
3337 .readpages = ext4_readpages,
3338 .writepage = ext4_writepage,
3339 .writepages = ext4_writepages,
3340 .write_begin = ext4_write_begin,
3341 .write_end = ext4_write_end,
3342 .bmap = ext4_bmap,
3343 .invalidatepage = ext4_invalidatepage,
3344 .releasepage = ext4_releasepage,
3345 .direct_IO = ext4_direct_IO,
3346 .migratepage = buffer_migrate_page,
3347 .is_partially_uptodate = block_is_partially_uptodate,
3348 .error_remove_page = generic_error_remove_page,
3349 };
3350
3351 static const struct address_space_operations ext4_journalled_aops = {
3352 .readpage = ext4_readpage,
3353 .readpages = ext4_readpages,
3354 .writepage = ext4_writepage,
3355 .writepages = ext4_writepages,
3356 .write_begin = ext4_write_begin,
3357 .write_end = ext4_journalled_write_end,
3358 .set_page_dirty = ext4_journalled_set_page_dirty,
3359 .bmap = ext4_bmap,
3360 .invalidatepage = ext4_journalled_invalidatepage,
3361 .releasepage = ext4_releasepage,
3362 .direct_IO = ext4_direct_IO,
3363 .is_partially_uptodate = block_is_partially_uptodate,
3364 .error_remove_page = generic_error_remove_page,
3365 };
3366
3367 static const struct address_space_operations ext4_da_aops = {
3368 .readpage = ext4_readpage,
3369 .readpages = ext4_readpages,
3370 .writepage = ext4_writepage,
3371 .writepages = ext4_writepages,
3372 .write_begin = ext4_da_write_begin,
3373 .write_end = ext4_da_write_end,
3374 .bmap = ext4_bmap,
3375 .invalidatepage = ext4_da_invalidatepage,
3376 .releasepage = ext4_releasepage,
3377 .direct_IO = ext4_direct_IO,
3378 .migratepage = buffer_migrate_page,
3379 .is_partially_uptodate = block_is_partially_uptodate,
3380 .error_remove_page = generic_error_remove_page,
3381 };
3382
ext4_set_aops(struct inode * inode)3383 void ext4_set_aops(struct inode *inode)
3384 {
3385 switch (ext4_inode_journal_mode(inode)) {
3386 case EXT4_INODE_ORDERED_DATA_MODE:
3387 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3388 break;
3389 case EXT4_INODE_WRITEBACK_DATA_MODE:
3390 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3391 break;
3392 case EXT4_INODE_JOURNAL_DATA_MODE:
3393 inode->i_mapping->a_ops = &ext4_journalled_aops;
3394 return;
3395 default:
3396 BUG();
3397 }
3398 if (test_opt(inode->i_sb, DELALLOC))
3399 inode->i_mapping->a_ops = &ext4_da_aops;
3400 else
3401 inode->i_mapping->a_ops = &ext4_aops;
3402 }
3403
__ext4_block_zero_page_range(handle_t * handle,struct address_space * mapping,loff_t from,loff_t length)3404 static int __ext4_block_zero_page_range(handle_t *handle,
3405 struct address_space *mapping, loff_t from, loff_t length)
3406 {
3407 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3408 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3409 unsigned blocksize, pos;
3410 ext4_lblk_t iblock;
3411 struct inode *inode = mapping->host;
3412 struct buffer_head *bh;
3413 struct page *page;
3414 int err = 0;
3415
3416 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3417 mapping_gfp_constraint(mapping, ~__GFP_FS));
3418 if (!page)
3419 return -ENOMEM;
3420
3421 blocksize = inode->i_sb->s_blocksize;
3422
3423 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3424
3425 if (!page_has_buffers(page))
3426 create_empty_buffers(page, blocksize, 0);
3427
3428 /* Find the buffer that contains "offset" */
3429 bh = page_buffers(page);
3430 pos = blocksize;
3431 while (offset >= pos) {
3432 bh = bh->b_this_page;
3433 iblock++;
3434 pos += blocksize;
3435 }
3436 if (buffer_freed(bh)) {
3437 BUFFER_TRACE(bh, "freed: skip");
3438 goto unlock;
3439 }
3440 if (!buffer_mapped(bh)) {
3441 BUFFER_TRACE(bh, "unmapped");
3442 ext4_get_block(inode, iblock, bh, 0);
3443 /* unmapped? It's a hole - nothing to do */
3444 if (!buffer_mapped(bh)) {
3445 BUFFER_TRACE(bh, "still unmapped");
3446 goto unlock;
3447 }
3448 }
3449
3450 /* Ok, it's mapped. Make sure it's up-to-date */
3451 if (PageUptodate(page))
3452 set_buffer_uptodate(bh);
3453
3454 if (!buffer_uptodate(bh)) {
3455 err = -EIO;
3456 ll_rw_block(READ, 1, &bh);
3457 wait_on_buffer(bh);
3458 /* Uhhuh. Read error. Complain and punt. */
3459 if (!buffer_uptodate(bh))
3460 goto unlock;
3461 if (S_ISREG(inode->i_mode) &&
3462 ext4_encrypted_inode(inode)) {
3463 /* We expect the key to be set. */
3464 BUG_ON(!ext4_has_encryption_key(inode));
3465 BUG_ON(blocksize != PAGE_CACHE_SIZE);
3466 WARN_ON_ONCE(ext4_decrypt(page));
3467 }
3468 }
3469 if (ext4_should_journal_data(inode)) {
3470 BUFFER_TRACE(bh, "get write access");
3471 err = ext4_journal_get_write_access(handle, bh);
3472 if (err)
3473 goto unlock;
3474 }
3475 zero_user(page, offset, length);
3476 BUFFER_TRACE(bh, "zeroed end of block");
3477
3478 if (ext4_should_journal_data(inode)) {
3479 err = ext4_handle_dirty_metadata(handle, inode, bh);
3480 } else {
3481 err = 0;
3482 mark_buffer_dirty(bh);
3483 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE))
3484 err = ext4_jbd2_file_inode(handle, inode);
3485 }
3486
3487 unlock:
3488 unlock_page(page);
3489 page_cache_release(page);
3490 return err;
3491 }
3492
3493 /*
3494 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3495 * starting from file offset 'from'. The range to be zero'd must
3496 * be contained with in one block. If the specified range exceeds
3497 * the end of the block it will be shortened to end of the block
3498 * that cooresponds to 'from'
3499 */
ext4_block_zero_page_range(handle_t * handle,struct address_space * mapping,loff_t from,loff_t length)3500 static int ext4_block_zero_page_range(handle_t *handle,
3501 struct address_space *mapping, loff_t from, loff_t length)
3502 {
3503 struct inode *inode = mapping->host;
3504 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3505 unsigned blocksize = inode->i_sb->s_blocksize;
3506 unsigned max = blocksize - (offset & (blocksize - 1));
3507
3508 /*
3509 * correct length if it does not fall between
3510 * 'from' and the end of the block
3511 */
3512 if (length > max || length < 0)
3513 length = max;
3514
3515 if (IS_DAX(inode))
3516 return dax_zero_page_range(inode, from, length, ext4_get_block);
3517 return __ext4_block_zero_page_range(handle, mapping, from, length);
3518 }
3519
3520 /*
3521 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3522 * up to the end of the block which corresponds to `from'.
3523 * This required during truncate. We need to physically zero the tail end
3524 * of that block so it doesn't yield old data if the file is later grown.
3525 */
ext4_block_truncate_page(handle_t * handle,struct address_space * mapping,loff_t from)3526 static int ext4_block_truncate_page(handle_t *handle,
3527 struct address_space *mapping, loff_t from)
3528 {
3529 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3530 unsigned length;
3531 unsigned blocksize;
3532 struct inode *inode = mapping->host;
3533
3534 blocksize = inode->i_sb->s_blocksize;
3535 length = blocksize - (offset & (blocksize - 1));
3536
3537 return ext4_block_zero_page_range(handle, mapping, from, length);
3538 }
3539
ext4_zero_partial_blocks(handle_t * handle,struct inode * inode,loff_t lstart,loff_t length)3540 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3541 loff_t lstart, loff_t length)
3542 {
3543 struct super_block *sb = inode->i_sb;
3544 struct address_space *mapping = inode->i_mapping;
3545 unsigned partial_start, partial_end;
3546 ext4_fsblk_t start, end;
3547 loff_t byte_end = (lstart + length - 1);
3548 int err = 0;
3549
3550 partial_start = lstart & (sb->s_blocksize - 1);
3551 partial_end = byte_end & (sb->s_blocksize - 1);
3552
3553 start = lstart >> sb->s_blocksize_bits;
3554 end = byte_end >> sb->s_blocksize_bits;
3555
3556 /* Handle partial zero within the single block */
3557 if (start == end &&
3558 (partial_start || (partial_end != sb->s_blocksize - 1))) {
3559 err = ext4_block_zero_page_range(handle, mapping,
3560 lstart, length);
3561 return err;
3562 }
3563 /* Handle partial zero out on the start of the range */
3564 if (partial_start) {
3565 err = ext4_block_zero_page_range(handle, mapping,
3566 lstart, sb->s_blocksize);
3567 if (err)
3568 return err;
3569 }
3570 /* Handle partial zero out on the end of the range */
3571 if (partial_end != sb->s_blocksize - 1)
3572 err = ext4_block_zero_page_range(handle, mapping,
3573 byte_end - partial_end,
3574 partial_end + 1);
3575 return err;
3576 }
3577
ext4_can_truncate(struct inode * inode)3578 int ext4_can_truncate(struct inode *inode)
3579 {
3580 if (S_ISREG(inode->i_mode))
3581 return 1;
3582 if (S_ISDIR(inode->i_mode))
3583 return 1;
3584 if (S_ISLNK(inode->i_mode))
3585 return !ext4_inode_is_fast_symlink(inode);
3586 return 0;
3587 }
3588
3589 /*
3590 * We have to make sure i_disksize gets properly updated before we truncate
3591 * page cache due to hole punching or zero range. Otherwise i_disksize update
3592 * can get lost as it may have been postponed to submission of writeback but
3593 * that will never happen after we truncate page cache.
3594 */
ext4_update_disksize_before_punch(struct inode * inode,loff_t offset,loff_t len)3595 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3596 loff_t len)
3597 {
3598 handle_t *handle;
3599 loff_t size = i_size_read(inode);
3600
3601 WARN_ON(!mutex_is_locked(&inode->i_mutex));
3602 if (offset > size || offset + len < size)
3603 return 0;
3604
3605 if (EXT4_I(inode)->i_disksize >= size)
3606 return 0;
3607
3608 handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3609 if (IS_ERR(handle))
3610 return PTR_ERR(handle);
3611 ext4_update_i_disksize(inode, size);
3612 ext4_mark_inode_dirty(handle, inode);
3613 ext4_journal_stop(handle);
3614
3615 return 0;
3616 }
3617
3618 /*
3619 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3620 * associated with the given offset and length
3621 *
3622 * @inode: File inode
3623 * @offset: The offset where the hole will begin
3624 * @len: The length of the hole
3625 *
3626 * Returns: 0 on success or negative on failure
3627 */
3628
ext4_punch_hole(struct inode * inode,loff_t offset,loff_t length)3629 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
3630 {
3631 struct super_block *sb = inode->i_sb;
3632 ext4_lblk_t first_block, stop_block;
3633 struct address_space *mapping = inode->i_mapping;
3634 loff_t first_block_offset, last_block_offset;
3635 handle_t *handle;
3636 unsigned int credits;
3637 int ret = 0;
3638
3639 if (!S_ISREG(inode->i_mode))
3640 return -EOPNOTSUPP;
3641
3642 trace_ext4_punch_hole(inode, offset, length, 0);
3643
3644 /*
3645 * Write out all dirty pages to avoid race conditions
3646 * Then release them.
3647 */
3648 if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3649 ret = filemap_write_and_wait_range(mapping, offset,
3650 offset + length - 1);
3651 if (ret)
3652 return ret;
3653 }
3654
3655 mutex_lock(&inode->i_mutex);
3656
3657 /* No need to punch hole beyond i_size */
3658 if (offset >= inode->i_size)
3659 goto out_mutex;
3660
3661 /*
3662 * If the hole extends beyond i_size, set the hole
3663 * to end after the page that contains i_size
3664 */
3665 if (offset + length > inode->i_size) {
3666 length = inode->i_size +
3667 PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
3668 offset;
3669 }
3670
3671 if (offset & (sb->s_blocksize - 1) ||
3672 (offset + length) & (sb->s_blocksize - 1)) {
3673 /*
3674 * Attach jinode to inode for jbd2 if we do any zeroing of
3675 * partial block
3676 */
3677 ret = ext4_inode_attach_jinode(inode);
3678 if (ret < 0)
3679 goto out_mutex;
3680
3681 }
3682
3683 /* Wait all existing dio workers, newcomers will block on i_mutex */
3684 ext4_inode_block_unlocked_dio(inode);
3685 inode_dio_wait(inode);
3686
3687 /*
3688 * Prevent page faults from reinstantiating pages we have released from
3689 * page cache.
3690 */
3691 down_write(&EXT4_I(inode)->i_mmap_sem);
3692 first_block_offset = round_up(offset, sb->s_blocksize);
3693 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
3694
3695 /* Now release the pages and zero block aligned part of pages*/
3696 if (last_block_offset > first_block_offset) {
3697 ret = ext4_update_disksize_before_punch(inode, offset, length);
3698 if (ret)
3699 goto out_dio;
3700 truncate_pagecache_range(inode, first_block_offset,
3701 last_block_offset);
3702 }
3703
3704 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3705 credits = ext4_writepage_trans_blocks(inode);
3706 else
3707 credits = ext4_blocks_for_truncate(inode);
3708 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3709 if (IS_ERR(handle)) {
3710 ret = PTR_ERR(handle);
3711 ext4_std_error(sb, ret);
3712 goto out_dio;
3713 }
3714
3715 ret = ext4_zero_partial_blocks(handle, inode, offset,
3716 length);
3717 if (ret)
3718 goto out_stop;
3719
3720 first_block = (offset + sb->s_blocksize - 1) >>
3721 EXT4_BLOCK_SIZE_BITS(sb);
3722 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3723
3724 /* If there are no blocks to remove, return now */
3725 if (first_block >= stop_block)
3726 goto out_stop;
3727
3728 down_write(&EXT4_I(inode)->i_data_sem);
3729 ext4_discard_preallocations(inode);
3730
3731 ret = ext4_es_remove_extent(inode, first_block,
3732 stop_block - first_block);
3733 if (ret) {
3734 up_write(&EXT4_I(inode)->i_data_sem);
3735 goto out_stop;
3736 }
3737
3738 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3739 ret = ext4_ext_remove_space(inode, first_block,
3740 stop_block - 1);
3741 else
3742 ret = ext4_ind_remove_space(handle, inode, first_block,
3743 stop_block);
3744
3745 up_write(&EXT4_I(inode)->i_data_sem);
3746 if (IS_SYNC(inode))
3747 ext4_handle_sync(handle);
3748
3749 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3750 ext4_mark_inode_dirty(handle, inode);
3751 out_stop:
3752 ext4_journal_stop(handle);
3753 out_dio:
3754 up_write(&EXT4_I(inode)->i_mmap_sem);
3755 ext4_inode_resume_unlocked_dio(inode);
3756 out_mutex:
3757 mutex_unlock(&inode->i_mutex);
3758 return ret;
3759 }
3760
ext4_inode_attach_jinode(struct inode * inode)3761 int ext4_inode_attach_jinode(struct inode *inode)
3762 {
3763 struct ext4_inode_info *ei = EXT4_I(inode);
3764 struct jbd2_inode *jinode;
3765
3766 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
3767 return 0;
3768
3769 jinode = jbd2_alloc_inode(GFP_KERNEL);
3770 spin_lock(&inode->i_lock);
3771 if (!ei->jinode) {
3772 if (!jinode) {
3773 spin_unlock(&inode->i_lock);
3774 return -ENOMEM;
3775 }
3776 ei->jinode = jinode;
3777 jbd2_journal_init_jbd_inode(ei->jinode, inode);
3778 jinode = NULL;
3779 }
3780 spin_unlock(&inode->i_lock);
3781 if (unlikely(jinode != NULL))
3782 jbd2_free_inode(jinode);
3783 return 0;
3784 }
3785
3786 /*
3787 * ext4_truncate()
3788 *
3789 * We block out ext4_get_block() block instantiations across the entire
3790 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3791 * simultaneously on behalf of the same inode.
3792 *
3793 * As we work through the truncate and commit bits of it to the journal there
3794 * is one core, guiding principle: the file's tree must always be consistent on
3795 * disk. We must be able to restart the truncate after a crash.
3796 *
3797 * The file's tree may be transiently inconsistent in memory (although it
3798 * probably isn't), but whenever we close off and commit a journal transaction,
3799 * the contents of (the filesystem + the journal) must be consistent and
3800 * restartable. It's pretty simple, really: bottom up, right to left (although
3801 * left-to-right works OK too).
3802 *
3803 * Note that at recovery time, journal replay occurs *before* the restart of
3804 * truncate against the orphan inode list.
3805 *
3806 * The committed inode has the new, desired i_size (which is the same as
3807 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
3808 * that this inode's truncate did not complete and it will again call
3809 * ext4_truncate() to have another go. So there will be instantiated blocks
3810 * to the right of the truncation point in a crashed ext4 filesystem. But
3811 * that's fine - as long as they are linked from the inode, the post-crash
3812 * ext4_truncate() run will find them and release them.
3813 */
ext4_truncate(struct inode * inode)3814 void ext4_truncate(struct inode *inode)
3815 {
3816 struct ext4_inode_info *ei = EXT4_I(inode);
3817 unsigned int credits;
3818 handle_t *handle;
3819 struct address_space *mapping = inode->i_mapping;
3820
3821 /*
3822 * There is a possibility that we're either freeing the inode
3823 * or it's a completely new inode. In those cases we might not
3824 * have i_mutex locked because it's not necessary.
3825 */
3826 if (!(inode->i_state & (I_NEW|I_FREEING)))
3827 WARN_ON(!mutex_is_locked(&inode->i_mutex));
3828 trace_ext4_truncate_enter(inode);
3829
3830 if (!ext4_can_truncate(inode))
3831 return;
3832
3833 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3834
3835 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3836 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3837
3838 if (ext4_has_inline_data(inode)) {
3839 int has_inline = 1;
3840
3841 ext4_inline_data_truncate(inode, &has_inline);
3842 if (has_inline)
3843 return;
3844 }
3845
3846 /* If we zero-out tail of the page, we have to create jinode for jbd2 */
3847 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
3848 if (ext4_inode_attach_jinode(inode) < 0)
3849 return;
3850 }
3851
3852 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3853 credits = ext4_writepage_trans_blocks(inode);
3854 else
3855 credits = ext4_blocks_for_truncate(inode);
3856
3857 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3858 if (IS_ERR(handle)) {
3859 ext4_std_error(inode->i_sb, PTR_ERR(handle));
3860 return;
3861 }
3862
3863 if (inode->i_size & (inode->i_sb->s_blocksize - 1))
3864 ext4_block_truncate_page(handle, mapping, inode->i_size);
3865
3866 /*
3867 * We add the inode to the orphan list, so that if this
3868 * truncate spans multiple transactions, and we crash, we will
3869 * resume the truncate when the filesystem recovers. It also
3870 * marks the inode dirty, to catch the new size.
3871 *
3872 * Implication: the file must always be in a sane, consistent
3873 * truncatable state while each transaction commits.
3874 */
3875 if (ext4_orphan_add(handle, inode))
3876 goto out_stop;
3877
3878 down_write(&EXT4_I(inode)->i_data_sem);
3879
3880 ext4_discard_preallocations(inode);
3881
3882 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3883 ext4_ext_truncate(handle, inode);
3884 else
3885 ext4_ind_truncate(handle, inode);
3886
3887 up_write(&ei->i_data_sem);
3888
3889 if (IS_SYNC(inode))
3890 ext4_handle_sync(handle);
3891
3892 out_stop:
3893 /*
3894 * If this was a simple ftruncate() and the file will remain alive,
3895 * then we need to clear up the orphan record which we created above.
3896 * However, if this was a real unlink then we were called by
3897 * ext4_evict_inode(), and we allow that function to clean up the
3898 * orphan info for us.
3899 */
3900 if (inode->i_nlink)
3901 ext4_orphan_del(handle, inode);
3902
3903 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3904 ext4_mark_inode_dirty(handle, inode);
3905 ext4_journal_stop(handle);
3906
3907 trace_ext4_truncate_exit(inode);
3908 }
3909
3910 /*
3911 * ext4_get_inode_loc returns with an extra refcount against the inode's
3912 * underlying buffer_head on success. If 'in_mem' is true, we have all
3913 * data in memory that is needed to recreate the on-disk version of this
3914 * inode.
3915 */
__ext4_get_inode_loc(struct inode * inode,struct ext4_iloc * iloc,int in_mem)3916 static int __ext4_get_inode_loc(struct inode *inode,
3917 struct ext4_iloc *iloc, int in_mem)
3918 {
3919 struct ext4_group_desc *gdp;
3920 struct buffer_head *bh;
3921 struct super_block *sb = inode->i_sb;
3922 ext4_fsblk_t block;
3923 int inodes_per_block, inode_offset;
3924
3925 iloc->bh = NULL;
3926 if (!ext4_valid_inum(sb, inode->i_ino))
3927 return -EFSCORRUPTED;
3928
3929 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3930 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3931 if (!gdp)
3932 return -EIO;
3933
3934 /*
3935 * Figure out the offset within the block group inode table
3936 */
3937 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3938 inode_offset = ((inode->i_ino - 1) %
3939 EXT4_INODES_PER_GROUP(sb));
3940 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3941 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3942
3943 bh = sb_getblk(sb, block);
3944 if (unlikely(!bh))
3945 return -ENOMEM;
3946 if (!buffer_uptodate(bh)) {
3947 lock_buffer(bh);
3948
3949 /*
3950 * If the buffer has the write error flag, we have failed
3951 * to write out another inode in the same block. In this
3952 * case, we don't have to read the block because we may
3953 * read the old inode data successfully.
3954 */
3955 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3956 set_buffer_uptodate(bh);
3957
3958 if (buffer_uptodate(bh)) {
3959 /* someone brought it uptodate while we waited */
3960 unlock_buffer(bh);
3961 goto has_buffer;
3962 }
3963
3964 /*
3965 * If we have all information of the inode in memory and this
3966 * is the only valid inode in the block, we need not read the
3967 * block.
3968 */
3969 if (in_mem) {
3970 struct buffer_head *bitmap_bh;
3971 int i, start;
3972
3973 start = inode_offset & ~(inodes_per_block - 1);
3974
3975 /* Is the inode bitmap in cache? */
3976 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3977 if (unlikely(!bitmap_bh))
3978 goto make_io;
3979
3980 /*
3981 * If the inode bitmap isn't in cache then the
3982 * optimisation may end up performing two reads instead
3983 * of one, so skip it.
3984 */
3985 if (!buffer_uptodate(bitmap_bh)) {
3986 brelse(bitmap_bh);
3987 goto make_io;
3988 }
3989 for (i = start; i < start + inodes_per_block; i++) {
3990 if (i == inode_offset)
3991 continue;
3992 if (ext4_test_bit(i, bitmap_bh->b_data))
3993 break;
3994 }
3995 brelse(bitmap_bh);
3996 if (i == start + inodes_per_block) {
3997 /* all other inodes are free, so skip I/O */
3998 memset(bh->b_data, 0, bh->b_size);
3999 set_buffer_uptodate(bh);
4000 unlock_buffer(bh);
4001 goto has_buffer;
4002 }
4003 }
4004
4005 make_io:
4006 /*
4007 * If we need to do any I/O, try to pre-readahead extra
4008 * blocks from the inode table.
4009 */
4010 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4011 ext4_fsblk_t b, end, table;
4012 unsigned num;
4013 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4014
4015 table = ext4_inode_table(sb, gdp);
4016 /* s_inode_readahead_blks is always a power of 2 */
4017 b = block & ~((ext4_fsblk_t) ra_blks - 1);
4018 if (table > b)
4019 b = table;
4020 end = b + ra_blks;
4021 num = EXT4_INODES_PER_GROUP(sb);
4022 if (ext4_has_group_desc_csum(sb))
4023 num -= ext4_itable_unused_count(sb, gdp);
4024 table += num / inodes_per_block;
4025 if (end > table)
4026 end = table;
4027 while (b <= end)
4028 sb_breadahead(sb, b++);
4029 }
4030
4031 /*
4032 * There are other valid inodes in the buffer, this inode
4033 * has in-inode xattrs, or we don't have this inode in memory.
4034 * Read the block from disk.
4035 */
4036 trace_ext4_load_inode(inode);
4037 get_bh(bh);
4038 bh->b_end_io = end_buffer_read_sync;
4039 submit_bh(READ | REQ_META | REQ_PRIO, bh);
4040 wait_on_buffer(bh);
4041 if (!buffer_uptodate(bh)) {
4042 EXT4_ERROR_INODE_BLOCK(inode, block,
4043 "unable to read itable block");
4044 brelse(bh);
4045 return -EIO;
4046 }
4047 }
4048 has_buffer:
4049 iloc->bh = bh;
4050 return 0;
4051 }
4052
ext4_get_inode_loc(struct inode * inode,struct ext4_iloc * iloc)4053 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4054 {
4055 /* We have all inode data except xattrs in memory here. */
4056 return __ext4_get_inode_loc(inode, iloc,
4057 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4058 }
4059
ext4_set_inode_flags(struct inode * inode)4060 void ext4_set_inode_flags(struct inode *inode)
4061 {
4062 unsigned int flags = EXT4_I(inode)->i_flags;
4063 unsigned int new_fl = 0;
4064
4065 if (flags & EXT4_SYNC_FL)
4066 new_fl |= S_SYNC;
4067 if (flags & EXT4_APPEND_FL)
4068 new_fl |= S_APPEND;
4069 if (flags & EXT4_IMMUTABLE_FL)
4070 new_fl |= S_IMMUTABLE;
4071 if (flags & EXT4_NOATIME_FL)
4072 new_fl |= S_NOATIME;
4073 if (flags & EXT4_DIRSYNC_FL)
4074 new_fl |= S_DIRSYNC;
4075 if (test_opt(inode->i_sb, DAX))
4076 new_fl |= S_DAX;
4077 inode_set_flags(inode, new_fl,
4078 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX);
4079 }
4080
4081 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
ext4_get_inode_flags(struct ext4_inode_info * ei)4082 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4083 {
4084 unsigned int vfs_fl;
4085 unsigned long old_fl, new_fl;
4086
4087 do {
4088 vfs_fl = ei->vfs_inode.i_flags;
4089 old_fl = ei->i_flags;
4090 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4091 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
4092 EXT4_DIRSYNC_FL);
4093 if (vfs_fl & S_SYNC)
4094 new_fl |= EXT4_SYNC_FL;
4095 if (vfs_fl & S_APPEND)
4096 new_fl |= EXT4_APPEND_FL;
4097 if (vfs_fl & S_IMMUTABLE)
4098 new_fl |= EXT4_IMMUTABLE_FL;
4099 if (vfs_fl & S_NOATIME)
4100 new_fl |= EXT4_NOATIME_FL;
4101 if (vfs_fl & S_DIRSYNC)
4102 new_fl |= EXT4_DIRSYNC_FL;
4103 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
4104 }
4105
ext4_inode_blocks(struct ext4_inode * raw_inode,struct ext4_inode_info * ei)4106 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4107 struct ext4_inode_info *ei)
4108 {
4109 blkcnt_t i_blocks ;
4110 struct inode *inode = &(ei->vfs_inode);
4111 struct super_block *sb = inode->i_sb;
4112
4113 if (ext4_has_feature_huge_file(sb)) {
4114 /* we are using combined 48 bit field */
4115 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4116 le32_to_cpu(raw_inode->i_blocks_lo);
4117 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4118 /* i_blocks represent file system block size */
4119 return i_blocks << (inode->i_blkbits - 9);
4120 } else {
4121 return i_blocks;
4122 }
4123 } else {
4124 return le32_to_cpu(raw_inode->i_blocks_lo);
4125 }
4126 }
4127
ext4_iget_extra_inode(struct inode * inode,struct ext4_inode * raw_inode,struct ext4_inode_info * ei)4128 static inline void ext4_iget_extra_inode(struct inode *inode,
4129 struct ext4_inode *raw_inode,
4130 struct ext4_inode_info *ei)
4131 {
4132 __le32 *magic = (void *)raw_inode +
4133 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4134 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4135 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4136 ext4_find_inline_data_nolock(inode);
4137 } else
4138 EXT4_I(inode)->i_inline_off = 0;
4139 }
4140
ext4_iget(struct super_block * sb,unsigned long ino)4141 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4142 {
4143 struct ext4_iloc iloc;
4144 struct ext4_inode *raw_inode;
4145 struct ext4_inode_info *ei;
4146 struct inode *inode;
4147 journal_t *journal = EXT4_SB(sb)->s_journal;
4148 long ret;
4149 int block;
4150 uid_t i_uid;
4151 gid_t i_gid;
4152
4153 inode = iget_locked(sb, ino);
4154 if (!inode)
4155 return ERR_PTR(-ENOMEM);
4156 if (!(inode->i_state & I_NEW))
4157 return inode;
4158
4159 ei = EXT4_I(inode);
4160 iloc.bh = NULL;
4161
4162 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4163 if (ret < 0)
4164 goto bad_inode;
4165 raw_inode = ext4_raw_inode(&iloc);
4166
4167 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4168 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4169 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4170 EXT4_INODE_SIZE(inode->i_sb)) {
4171 EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
4172 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
4173 EXT4_INODE_SIZE(inode->i_sb));
4174 ret = -EFSCORRUPTED;
4175 goto bad_inode;
4176 }
4177 } else
4178 ei->i_extra_isize = 0;
4179
4180 /* Precompute checksum seed for inode metadata */
4181 if (ext4_has_metadata_csum(sb)) {
4182 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4183 __u32 csum;
4184 __le32 inum = cpu_to_le32(inode->i_ino);
4185 __le32 gen = raw_inode->i_generation;
4186 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4187 sizeof(inum));
4188 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4189 sizeof(gen));
4190 }
4191
4192 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4193 EXT4_ERROR_INODE(inode, "checksum invalid");
4194 ret = -EFSBADCRC;
4195 goto bad_inode;
4196 }
4197
4198 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4199 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4200 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4201 if (!(test_opt(inode->i_sb, NO_UID32))) {
4202 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4203 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4204 }
4205 i_uid_write(inode, i_uid);
4206 i_gid_write(inode, i_gid);
4207 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4208
4209 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
4210 ei->i_inline_off = 0;
4211 ei->i_dir_start_lookup = 0;
4212 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4213 /* We now have enough fields to check if the inode was active or not.
4214 * This is needed because nfsd might try to access dead inodes
4215 * the test is that same one that e2fsck uses
4216 * NeilBrown 1999oct15
4217 */
4218 if (inode->i_nlink == 0) {
4219 if ((inode->i_mode == 0 ||
4220 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4221 ino != EXT4_BOOT_LOADER_INO) {
4222 /* this inode is deleted */
4223 ret = -ESTALE;
4224 goto bad_inode;
4225 }
4226 /* The only unlinked inodes we let through here have
4227 * valid i_mode and are being read by the orphan
4228 * recovery code: that's fine, we're about to complete
4229 * the process of deleting those.
4230 * OR it is the EXT4_BOOT_LOADER_INO which is
4231 * not initialized on a new filesystem. */
4232 }
4233 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4234 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4235 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4236 if (ext4_has_feature_64bit(sb))
4237 ei->i_file_acl |=
4238 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4239 inode->i_size = ext4_isize(raw_inode);
4240 ei->i_disksize = inode->i_size;
4241 #ifdef CONFIG_QUOTA
4242 ei->i_reserved_quota = 0;
4243 #endif
4244 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4245 ei->i_block_group = iloc.block_group;
4246 ei->i_last_alloc_group = ~0;
4247 /*
4248 * NOTE! The in-memory inode i_data array is in little-endian order
4249 * even on big-endian machines: we do NOT byteswap the block numbers!
4250 */
4251 for (block = 0; block < EXT4_N_BLOCKS; block++)
4252 ei->i_data[block] = raw_inode->i_block[block];
4253 INIT_LIST_HEAD(&ei->i_orphan);
4254
4255 /*
4256 * Set transaction id's of transactions that have to be committed
4257 * to finish f[data]sync. We set them to currently running transaction
4258 * as we cannot be sure that the inode or some of its metadata isn't
4259 * part of the transaction - the inode could have been reclaimed and
4260 * now it is reread from disk.
4261 */
4262 if (journal) {
4263 transaction_t *transaction;
4264 tid_t tid;
4265
4266 read_lock(&journal->j_state_lock);
4267 if (journal->j_running_transaction)
4268 transaction = journal->j_running_transaction;
4269 else
4270 transaction = journal->j_committing_transaction;
4271 if (transaction)
4272 tid = transaction->t_tid;
4273 else
4274 tid = journal->j_commit_sequence;
4275 read_unlock(&journal->j_state_lock);
4276 ei->i_sync_tid = tid;
4277 ei->i_datasync_tid = tid;
4278 }
4279
4280 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4281 if (ei->i_extra_isize == 0) {
4282 /* The extra space is currently unused. Use it. */
4283 ei->i_extra_isize = sizeof(struct ext4_inode) -
4284 EXT4_GOOD_OLD_INODE_SIZE;
4285 } else {
4286 ext4_iget_extra_inode(inode, raw_inode, ei);
4287 }
4288 }
4289
4290 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4291 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4292 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4293 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4294
4295 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4296 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4297 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4298 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4299 inode->i_version |=
4300 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4301 }
4302 }
4303
4304 ret = 0;
4305 if (ei->i_file_acl &&
4306 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4307 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4308 ei->i_file_acl);
4309 ret = -EFSCORRUPTED;
4310 goto bad_inode;
4311 } else if (!ext4_has_inline_data(inode)) {
4312 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4313 if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4314 (S_ISLNK(inode->i_mode) &&
4315 !ext4_inode_is_fast_symlink(inode))))
4316 /* Validate extent which is part of inode */
4317 ret = ext4_ext_check_inode(inode);
4318 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4319 (S_ISLNK(inode->i_mode) &&
4320 !ext4_inode_is_fast_symlink(inode))) {
4321 /* Validate block references which are part of inode */
4322 ret = ext4_ind_check_inode(inode);
4323 }
4324 }
4325 if (ret)
4326 goto bad_inode;
4327
4328 if (S_ISREG(inode->i_mode)) {
4329 inode->i_op = &ext4_file_inode_operations;
4330 inode->i_fop = &ext4_file_operations;
4331 ext4_set_aops(inode);
4332 } else if (S_ISDIR(inode->i_mode)) {
4333 inode->i_op = &ext4_dir_inode_operations;
4334 inode->i_fop = &ext4_dir_operations;
4335 } else if (S_ISLNK(inode->i_mode)) {
4336 if (ext4_encrypted_inode(inode)) {
4337 inode->i_op = &ext4_encrypted_symlink_inode_operations;
4338 ext4_set_aops(inode);
4339 } else if (ext4_inode_is_fast_symlink(inode)) {
4340 inode->i_link = (char *)ei->i_data;
4341 inode->i_op = &ext4_fast_symlink_inode_operations;
4342 nd_terminate_link(ei->i_data, inode->i_size,
4343 sizeof(ei->i_data) - 1);
4344 } else {
4345 inode->i_op = &ext4_symlink_inode_operations;
4346 ext4_set_aops(inode);
4347 }
4348 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4349 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4350 inode->i_op = &ext4_special_inode_operations;
4351 if (raw_inode->i_block[0])
4352 init_special_inode(inode, inode->i_mode,
4353 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4354 else
4355 init_special_inode(inode, inode->i_mode,
4356 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4357 } else if (ino == EXT4_BOOT_LOADER_INO) {
4358 make_bad_inode(inode);
4359 } else {
4360 ret = -EFSCORRUPTED;
4361 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4362 goto bad_inode;
4363 }
4364 brelse(iloc.bh);
4365 ext4_set_inode_flags(inode);
4366 unlock_new_inode(inode);
4367 return inode;
4368
4369 bad_inode:
4370 brelse(iloc.bh);
4371 iget_failed(inode);
4372 return ERR_PTR(ret);
4373 }
4374
ext4_iget_normal(struct super_block * sb,unsigned long ino)4375 struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
4376 {
4377 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
4378 return ERR_PTR(-EFSCORRUPTED);
4379 return ext4_iget(sb, ino);
4380 }
4381
ext4_inode_blocks_set(handle_t * handle,struct ext4_inode * raw_inode,struct ext4_inode_info * ei)4382 static int ext4_inode_blocks_set(handle_t *handle,
4383 struct ext4_inode *raw_inode,
4384 struct ext4_inode_info *ei)
4385 {
4386 struct inode *inode = &(ei->vfs_inode);
4387 u64 i_blocks = inode->i_blocks;
4388 struct super_block *sb = inode->i_sb;
4389
4390 if (i_blocks <= ~0U) {
4391 /*
4392 * i_blocks can be represented in a 32 bit variable
4393 * as multiple of 512 bytes
4394 */
4395 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4396 raw_inode->i_blocks_high = 0;
4397 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4398 return 0;
4399 }
4400 if (!ext4_has_feature_huge_file(sb))
4401 return -EFBIG;
4402
4403 if (i_blocks <= 0xffffffffffffULL) {
4404 /*
4405 * i_blocks can be represented in a 48 bit variable
4406 * as multiple of 512 bytes
4407 */
4408 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4409 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4410 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4411 } else {
4412 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4413 /* i_block is stored in file system block size */
4414 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4415 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4416 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4417 }
4418 return 0;
4419 }
4420
4421 struct other_inode {
4422 unsigned long orig_ino;
4423 struct ext4_inode *raw_inode;
4424 };
4425
other_inode_match(struct inode * inode,unsigned long ino,void * data)4426 static int other_inode_match(struct inode * inode, unsigned long ino,
4427 void *data)
4428 {
4429 struct other_inode *oi = (struct other_inode *) data;
4430
4431 if ((inode->i_ino != ino) ||
4432 (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4433 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
4434 ((inode->i_state & I_DIRTY_TIME) == 0))
4435 return 0;
4436 spin_lock(&inode->i_lock);
4437 if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4438 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) == 0) &&
4439 (inode->i_state & I_DIRTY_TIME)) {
4440 struct ext4_inode_info *ei = EXT4_I(inode);
4441
4442 inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
4443 spin_unlock(&inode->i_lock);
4444
4445 spin_lock(&ei->i_raw_lock);
4446 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
4447 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
4448 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
4449 ext4_inode_csum_set(inode, oi->raw_inode, ei);
4450 spin_unlock(&ei->i_raw_lock);
4451 trace_ext4_other_inode_update_time(inode, oi->orig_ino);
4452 return -1;
4453 }
4454 spin_unlock(&inode->i_lock);
4455 return -1;
4456 }
4457
4458 /*
4459 * Opportunistically update the other time fields for other inodes in
4460 * the same inode table block.
4461 */
ext4_update_other_inodes_time(struct super_block * sb,unsigned long orig_ino,char * buf)4462 static void ext4_update_other_inodes_time(struct super_block *sb,
4463 unsigned long orig_ino, char *buf)
4464 {
4465 struct other_inode oi;
4466 unsigned long ino;
4467 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4468 int inode_size = EXT4_INODE_SIZE(sb);
4469
4470 oi.orig_ino = orig_ino;
4471 /*
4472 * Calculate the first inode in the inode table block. Inode
4473 * numbers are one-based. That is, the first inode in a block
4474 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
4475 */
4476 ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
4477 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
4478 if (ino == orig_ino)
4479 continue;
4480 oi.raw_inode = (struct ext4_inode *) buf;
4481 (void) find_inode_nowait(sb, ino, other_inode_match, &oi);
4482 }
4483 }
4484
4485 /*
4486 * Post the struct inode info into an on-disk inode location in the
4487 * buffer-cache. This gobbles the caller's reference to the
4488 * buffer_head in the inode location struct.
4489 *
4490 * The caller must have write access to iloc->bh.
4491 */
ext4_do_update_inode(handle_t * handle,struct inode * inode,struct ext4_iloc * iloc)4492 static int ext4_do_update_inode(handle_t *handle,
4493 struct inode *inode,
4494 struct ext4_iloc *iloc)
4495 {
4496 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4497 struct ext4_inode_info *ei = EXT4_I(inode);
4498 struct buffer_head *bh = iloc->bh;
4499 struct super_block *sb = inode->i_sb;
4500 int err = 0, rc, block;
4501 int need_datasync = 0, set_large_file = 0;
4502 uid_t i_uid;
4503 gid_t i_gid;
4504
4505 spin_lock(&ei->i_raw_lock);
4506
4507 /* For fields not tracked in the in-memory inode,
4508 * initialise them to zero for new inodes. */
4509 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4510 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4511
4512 ext4_get_inode_flags(ei);
4513 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4514 i_uid = i_uid_read(inode);
4515 i_gid = i_gid_read(inode);
4516 if (!(test_opt(inode->i_sb, NO_UID32))) {
4517 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4518 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4519 /*
4520 * Fix up interoperability with old kernels. Otherwise, old inodes get
4521 * re-used with the upper 16 bits of the uid/gid intact
4522 */
4523 if (!ei->i_dtime) {
4524 raw_inode->i_uid_high =
4525 cpu_to_le16(high_16_bits(i_uid));
4526 raw_inode->i_gid_high =
4527 cpu_to_le16(high_16_bits(i_gid));
4528 } else {
4529 raw_inode->i_uid_high = 0;
4530 raw_inode->i_gid_high = 0;
4531 }
4532 } else {
4533 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4534 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4535 raw_inode->i_uid_high = 0;
4536 raw_inode->i_gid_high = 0;
4537 }
4538 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4539
4540 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4541 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4542 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4543 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4544
4545 err = ext4_inode_blocks_set(handle, raw_inode, ei);
4546 if (err) {
4547 spin_unlock(&ei->i_raw_lock);
4548 goto out_brelse;
4549 }
4550 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4551 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4552 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4553 raw_inode->i_file_acl_high =
4554 cpu_to_le16(ei->i_file_acl >> 32);
4555 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4556 if (ei->i_disksize != ext4_isize(raw_inode)) {
4557 ext4_isize_set(raw_inode, ei->i_disksize);
4558 need_datasync = 1;
4559 }
4560 if (ei->i_disksize > 0x7fffffffULL) {
4561 if (!ext4_has_feature_large_file(sb) ||
4562 EXT4_SB(sb)->s_es->s_rev_level ==
4563 cpu_to_le32(EXT4_GOOD_OLD_REV))
4564 set_large_file = 1;
4565 }
4566 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4567 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4568 if (old_valid_dev(inode->i_rdev)) {
4569 raw_inode->i_block[0] =
4570 cpu_to_le32(old_encode_dev(inode->i_rdev));
4571 raw_inode->i_block[1] = 0;
4572 } else {
4573 raw_inode->i_block[0] = 0;
4574 raw_inode->i_block[1] =
4575 cpu_to_le32(new_encode_dev(inode->i_rdev));
4576 raw_inode->i_block[2] = 0;
4577 }
4578 } else if (!ext4_has_inline_data(inode)) {
4579 for (block = 0; block < EXT4_N_BLOCKS; block++)
4580 raw_inode->i_block[block] = ei->i_data[block];
4581 }
4582
4583 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4584 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4585 if (ei->i_extra_isize) {
4586 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4587 raw_inode->i_version_hi =
4588 cpu_to_le32(inode->i_version >> 32);
4589 raw_inode->i_extra_isize =
4590 cpu_to_le16(ei->i_extra_isize);
4591 }
4592 }
4593 ext4_inode_csum_set(inode, raw_inode, ei);
4594 spin_unlock(&ei->i_raw_lock);
4595 if (inode->i_sb->s_flags & MS_LAZYTIME)
4596 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
4597 bh->b_data);
4598
4599 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4600 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4601 if (!err)
4602 err = rc;
4603 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4604 if (set_large_file) {
4605 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
4606 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
4607 if (err)
4608 goto out_brelse;
4609 ext4_update_dynamic_rev(sb);
4610 ext4_set_feature_large_file(sb);
4611 ext4_handle_sync(handle);
4612 err = ext4_handle_dirty_super(handle, sb);
4613 }
4614 ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4615 out_brelse:
4616 brelse(bh);
4617 ext4_std_error(inode->i_sb, err);
4618 return err;
4619 }
4620
4621 /*
4622 * ext4_write_inode()
4623 *
4624 * We are called from a few places:
4625 *
4626 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
4627 * Here, there will be no transaction running. We wait for any running
4628 * transaction to commit.
4629 *
4630 * - Within flush work (sys_sync(), kupdate and such).
4631 * We wait on commit, if told to.
4632 *
4633 * - Within iput_final() -> write_inode_now()
4634 * We wait on commit, if told to.
4635 *
4636 * In all cases it is actually safe for us to return without doing anything,
4637 * because the inode has been copied into a raw inode buffer in
4638 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL
4639 * writeback.
4640 *
4641 * Note that we are absolutely dependent upon all inode dirtiers doing the
4642 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4643 * which we are interested.
4644 *
4645 * It would be a bug for them to not do this. The code:
4646 *
4647 * mark_inode_dirty(inode)
4648 * stuff();
4649 * inode->i_size = expr;
4650 *
4651 * is in error because write_inode() could occur while `stuff()' is running,
4652 * and the new i_size will be lost. Plus the inode will no longer be on the
4653 * superblock's dirty inode list.
4654 */
ext4_write_inode(struct inode * inode,struct writeback_control * wbc)4655 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4656 {
4657 int err;
4658
4659 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
4660 return 0;
4661
4662 if (EXT4_SB(inode->i_sb)->s_journal) {
4663 if (ext4_journal_current_handle()) {
4664 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4665 dump_stack();
4666 return -EIO;
4667 }
4668
4669 /*
4670 * No need to force transaction in WB_SYNC_NONE mode. Also
4671 * ext4_sync_fs() will force the commit after everything is
4672 * written.
4673 */
4674 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
4675 return 0;
4676
4677 err = ext4_force_commit(inode->i_sb);
4678 } else {
4679 struct ext4_iloc iloc;
4680
4681 err = __ext4_get_inode_loc(inode, &iloc, 0);
4682 if (err)
4683 return err;
4684 /*
4685 * sync(2) will flush the whole buffer cache. No need to do
4686 * it here separately for each inode.
4687 */
4688 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
4689 sync_dirty_buffer(iloc.bh);
4690 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4691 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4692 "IO error syncing inode");
4693 err = -EIO;
4694 }
4695 brelse(iloc.bh);
4696 }
4697 return err;
4698 }
4699
4700 /*
4701 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4702 * buffers that are attached to a page stradding i_size and are undergoing
4703 * commit. In that case we have to wait for commit to finish and try again.
4704 */
ext4_wait_for_tail_page_commit(struct inode * inode)4705 static void ext4_wait_for_tail_page_commit(struct inode *inode)
4706 {
4707 struct page *page;
4708 unsigned offset;
4709 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4710 tid_t commit_tid = 0;
4711 int ret;
4712
4713 offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4714 /*
4715 * All buffers in the last page remain valid? Then there's nothing to
4716 * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4717 * blocksize case
4718 */
4719 if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4720 return;
4721 while (1) {
4722 page = find_lock_page(inode->i_mapping,
4723 inode->i_size >> PAGE_CACHE_SHIFT);
4724 if (!page)
4725 return;
4726 ret = __ext4_journalled_invalidatepage(page, offset,
4727 PAGE_CACHE_SIZE - offset);
4728 unlock_page(page);
4729 page_cache_release(page);
4730 if (ret != -EBUSY)
4731 return;
4732 commit_tid = 0;
4733 read_lock(&journal->j_state_lock);
4734 if (journal->j_committing_transaction)
4735 commit_tid = journal->j_committing_transaction->t_tid;
4736 read_unlock(&journal->j_state_lock);
4737 if (commit_tid)
4738 jbd2_log_wait_commit(journal, commit_tid);
4739 }
4740 }
4741
4742 /*
4743 * ext4_setattr()
4744 *
4745 * Called from notify_change.
4746 *
4747 * We want to trap VFS attempts to truncate the file as soon as
4748 * possible. In particular, we want to make sure that when the VFS
4749 * shrinks i_size, we put the inode on the orphan list and modify
4750 * i_disksize immediately, so that during the subsequent flushing of
4751 * dirty pages and freeing of disk blocks, we can guarantee that any
4752 * commit will leave the blocks being flushed in an unused state on
4753 * disk. (On recovery, the inode will get truncated and the blocks will
4754 * be freed, so we have a strong guarantee that no future commit will
4755 * leave these blocks visible to the user.)
4756 *
4757 * Another thing we have to assure is that if we are in ordered mode
4758 * and inode is still attached to the committing transaction, we must
4759 * we start writeout of all the dirty pages which are being truncated.
4760 * This way we are sure that all the data written in the previous
4761 * transaction are already on disk (truncate waits for pages under
4762 * writeback).
4763 *
4764 * Called with inode->i_mutex down.
4765 */
ext4_setattr(struct dentry * dentry,struct iattr * attr)4766 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4767 {
4768 struct inode *inode = d_inode(dentry);
4769 int error, rc = 0;
4770 int orphan = 0;
4771 const unsigned int ia_valid = attr->ia_valid;
4772
4773 error = inode_change_ok(inode, attr);
4774 if (error)
4775 return error;
4776
4777 if (is_quota_modification(inode, attr)) {
4778 error = dquot_initialize(inode);
4779 if (error)
4780 return error;
4781 }
4782 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4783 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4784 handle_t *handle;
4785
4786 /* (user+group)*(old+new) structure, inode write (sb,
4787 * inode block, ? - but truncate inode update has it) */
4788 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4789 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4790 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
4791 if (IS_ERR(handle)) {
4792 error = PTR_ERR(handle);
4793 goto err_out;
4794 }
4795 error = dquot_transfer(inode, attr);
4796 if (error) {
4797 ext4_journal_stop(handle);
4798 return error;
4799 }
4800 /* Update corresponding info in inode so that everything is in
4801 * one transaction */
4802 if (attr->ia_valid & ATTR_UID)
4803 inode->i_uid = attr->ia_uid;
4804 if (attr->ia_valid & ATTR_GID)
4805 inode->i_gid = attr->ia_gid;
4806 error = ext4_mark_inode_dirty(handle, inode);
4807 ext4_journal_stop(handle);
4808 }
4809
4810 if (attr->ia_valid & ATTR_SIZE) {
4811 handle_t *handle;
4812 loff_t oldsize = inode->i_size;
4813 int shrink = (attr->ia_size <= inode->i_size);
4814
4815 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4816 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4817
4818 if (attr->ia_size > sbi->s_bitmap_maxbytes)
4819 return -EFBIG;
4820 }
4821 if (!S_ISREG(inode->i_mode))
4822 return -EINVAL;
4823
4824 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
4825 inode_inc_iversion(inode);
4826
4827 if (ext4_should_order_data(inode) &&
4828 (attr->ia_size < inode->i_size)) {
4829 error = ext4_begin_ordered_truncate(inode,
4830 attr->ia_size);
4831 if (error)
4832 goto err_out;
4833 }
4834 if (attr->ia_size != inode->i_size) {
4835 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4836 if (IS_ERR(handle)) {
4837 error = PTR_ERR(handle);
4838 goto err_out;
4839 }
4840 if (ext4_handle_valid(handle) && shrink) {
4841 error = ext4_orphan_add(handle, inode);
4842 orphan = 1;
4843 }
4844 /*
4845 * Update c/mtime on truncate up, ext4_truncate() will
4846 * update c/mtime in shrink case below
4847 */
4848 if (!shrink) {
4849 inode->i_mtime = ext4_current_time(inode);
4850 inode->i_ctime = inode->i_mtime;
4851 }
4852 down_write(&EXT4_I(inode)->i_data_sem);
4853 EXT4_I(inode)->i_disksize = attr->ia_size;
4854 rc = ext4_mark_inode_dirty(handle, inode);
4855 if (!error)
4856 error = rc;
4857 /*
4858 * We have to update i_size under i_data_sem together
4859 * with i_disksize to avoid races with writeback code
4860 * running ext4_wb_update_i_disksize().
4861 */
4862 if (!error)
4863 i_size_write(inode, attr->ia_size);
4864 up_write(&EXT4_I(inode)->i_data_sem);
4865 ext4_journal_stop(handle);
4866 if (error) {
4867 if (orphan)
4868 ext4_orphan_del(NULL, inode);
4869 goto err_out;
4870 }
4871 }
4872 if (!shrink)
4873 pagecache_isize_extended(inode, oldsize, inode->i_size);
4874
4875 /*
4876 * Blocks are going to be removed from the inode. Wait
4877 * for dio in flight. Temporarily disable
4878 * dioread_nolock to prevent livelock.
4879 */
4880 if (orphan) {
4881 if (!ext4_should_journal_data(inode)) {
4882 ext4_inode_block_unlocked_dio(inode);
4883 inode_dio_wait(inode);
4884 ext4_inode_resume_unlocked_dio(inode);
4885 } else
4886 ext4_wait_for_tail_page_commit(inode);
4887 }
4888 down_write(&EXT4_I(inode)->i_mmap_sem);
4889 /*
4890 * Truncate pagecache after we've waited for commit
4891 * in data=journal mode to make pages freeable.
4892 */
4893 truncate_pagecache(inode, inode->i_size);
4894 if (shrink)
4895 ext4_truncate(inode);
4896 up_write(&EXT4_I(inode)->i_mmap_sem);
4897 }
4898
4899 if (!rc) {
4900 setattr_copy(inode, attr);
4901 mark_inode_dirty(inode);
4902 }
4903
4904 /*
4905 * If the call to ext4_truncate failed to get a transaction handle at
4906 * all, we need to clean up the in-core orphan list manually.
4907 */
4908 if (orphan && inode->i_nlink)
4909 ext4_orphan_del(NULL, inode);
4910
4911 if (!rc && (ia_valid & ATTR_MODE))
4912 rc = posix_acl_chmod(inode, inode->i_mode);
4913
4914 err_out:
4915 ext4_std_error(inode->i_sb, error);
4916 if (!error)
4917 error = rc;
4918 return error;
4919 }
4920
ext4_getattr(struct vfsmount * mnt,struct dentry * dentry,struct kstat * stat)4921 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4922 struct kstat *stat)
4923 {
4924 struct inode *inode;
4925 unsigned long long delalloc_blocks;
4926
4927 inode = d_inode(dentry);
4928 generic_fillattr(inode, stat);
4929
4930 /*
4931 * If there is inline data in the inode, the inode will normally not
4932 * have data blocks allocated (it may have an external xattr block).
4933 * Report at least one sector for such files, so tools like tar, rsync,
4934 * others doen't incorrectly think the file is completely sparse.
4935 */
4936 if (unlikely(ext4_has_inline_data(inode)))
4937 stat->blocks += (stat->size + 511) >> 9;
4938
4939 /*
4940 * We can't update i_blocks if the block allocation is delayed
4941 * otherwise in the case of system crash before the real block
4942 * allocation is done, we will have i_blocks inconsistent with
4943 * on-disk file blocks.
4944 * We always keep i_blocks updated together with real
4945 * allocation. But to not confuse with user, stat
4946 * will return the blocks that include the delayed allocation
4947 * blocks for this file.
4948 */
4949 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4950 EXT4_I(inode)->i_reserved_data_blocks);
4951 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
4952 return 0;
4953 }
4954
ext4_index_trans_blocks(struct inode * inode,int lblocks,int pextents)4955 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
4956 int pextents)
4957 {
4958 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4959 return ext4_ind_trans_blocks(inode, lblocks);
4960 return ext4_ext_index_trans_blocks(inode, pextents);
4961 }
4962
4963 /*
4964 * Account for index blocks, block groups bitmaps and block group
4965 * descriptor blocks if modify datablocks and index blocks
4966 * worse case, the indexs blocks spread over different block groups
4967 *
4968 * If datablocks are discontiguous, they are possible to spread over
4969 * different block groups too. If they are contiguous, with flexbg,
4970 * they could still across block group boundary.
4971 *
4972 * Also account for superblock, inode, quota and xattr blocks
4973 */
ext4_meta_trans_blocks(struct inode * inode,int lblocks,int pextents)4974 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
4975 int pextents)
4976 {
4977 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4978 int gdpblocks;
4979 int idxblocks;
4980 int ret = 0;
4981
4982 /*
4983 * How many index blocks need to touch to map @lblocks logical blocks
4984 * to @pextents physical extents?
4985 */
4986 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
4987
4988 ret = idxblocks;
4989
4990 /*
4991 * Now let's see how many group bitmaps and group descriptors need
4992 * to account
4993 */
4994 groups = idxblocks + pextents;
4995 gdpblocks = groups;
4996 if (groups > ngroups)
4997 groups = ngroups;
4998 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4999 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5000
5001 /* bitmaps and block group descriptor blocks */
5002 ret += groups + gdpblocks;
5003
5004 /* Blocks for super block, inode, quota and xattr blocks */
5005 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5006
5007 return ret;
5008 }
5009
5010 /*
5011 * Calculate the total number of credits to reserve to fit
5012 * the modification of a single pages into a single transaction,
5013 * which may include multiple chunks of block allocations.
5014 *
5015 * This could be called via ext4_write_begin()
5016 *
5017 * We need to consider the worse case, when
5018 * one new block per extent.
5019 */
ext4_writepage_trans_blocks(struct inode * inode)5020 int ext4_writepage_trans_blocks(struct inode *inode)
5021 {
5022 int bpp = ext4_journal_blocks_per_page(inode);
5023 int ret;
5024
5025 ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5026
5027 /* Account for data blocks for journalled mode */
5028 if (ext4_should_journal_data(inode))
5029 ret += bpp;
5030 return ret;
5031 }
5032
5033 /*
5034 * Calculate the journal credits for a chunk of data modification.
5035 *
5036 * This is called from DIO, fallocate or whoever calling
5037 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5038 *
5039 * journal buffers for data blocks are not included here, as DIO
5040 * and fallocate do no need to journal data buffers.
5041 */
ext4_chunk_trans_blocks(struct inode * inode,int nrblocks)5042 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5043 {
5044 return ext4_meta_trans_blocks(inode, nrblocks, 1);
5045 }
5046
5047 /*
5048 * The caller must have previously called ext4_reserve_inode_write().
5049 * Give this, we know that the caller already has write access to iloc->bh.
5050 */
ext4_mark_iloc_dirty(handle_t * handle,struct inode * inode,struct ext4_iloc * iloc)5051 int ext4_mark_iloc_dirty(handle_t *handle,
5052 struct inode *inode, struct ext4_iloc *iloc)
5053 {
5054 int err = 0;
5055
5056 if (IS_I_VERSION(inode))
5057 inode_inc_iversion(inode);
5058
5059 /* the do_update_inode consumes one bh->b_count */
5060 get_bh(iloc->bh);
5061
5062 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5063 err = ext4_do_update_inode(handle, inode, iloc);
5064 put_bh(iloc->bh);
5065 return err;
5066 }
5067
5068 /*
5069 * On success, We end up with an outstanding reference count against
5070 * iloc->bh. This _must_ be cleaned up later.
5071 */
5072
5073 int
ext4_reserve_inode_write(handle_t * handle,struct inode * inode,struct ext4_iloc * iloc)5074 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5075 struct ext4_iloc *iloc)
5076 {
5077 int err;
5078
5079 err = ext4_get_inode_loc(inode, iloc);
5080 if (!err) {
5081 BUFFER_TRACE(iloc->bh, "get_write_access");
5082 err = ext4_journal_get_write_access(handle, iloc->bh);
5083 if (err) {
5084 brelse(iloc->bh);
5085 iloc->bh = NULL;
5086 }
5087 }
5088 ext4_std_error(inode->i_sb, err);
5089 return err;
5090 }
5091
5092 /*
5093 * Expand an inode by new_extra_isize bytes.
5094 * Returns 0 on success or negative error number on failure.
5095 */
ext4_expand_extra_isize(struct inode * inode,unsigned int new_extra_isize,struct ext4_iloc iloc,handle_t * handle)5096 static int ext4_expand_extra_isize(struct inode *inode,
5097 unsigned int new_extra_isize,
5098 struct ext4_iloc iloc,
5099 handle_t *handle)
5100 {
5101 struct ext4_inode *raw_inode;
5102 struct ext4_xattr_ibody_header *header;
5103
5104 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5105 return 0;
5106
5107 raw_inode = ext4_raw_inode(&iloc);
5108
5109 header = IHDR(inode, raw_inode);
5110
5111 /* No extended attributes present */
5112 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5113 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5114 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5115 new_extra_isize);
5116 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5117 return 0;
5118 }
5119
5120 /* try to expand with EAs present */
5121 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5122 raw_inode, handle);
5123 }
5124
5125 /*
5126 * What we do here is to mark the in-core inode as clean with respect to inode
5127 * dirtiness (it may still be data-dirty).
5128 * This means that the in-core inode may be reaped by prune_icache
5129 * without having to perform any I/O. This is a very good thing,
5130 * because *any* task may call prune_icache - even ones which
5131 * have a transaction open against a different journal.
5132 *
5133 * Is this cheating? Not really. Sure, we haven't written the
5134 * inode out, but prune_icache isn't a user-visible syncing function.
5135 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5136 * we start and wait on commits.
5137 */
ext4_mark_inode_dirty(handle_t * handle,struct inode * inode)5138 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5139 {
5140 struct ext4_iloc iloc;
5141 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5142 static unsigned int mnt_count;
5143 int err, ret;
5144
5145 might_sleep();
5146 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5147 err = ext4_reserve_inode_write(handle, inode, &iloc);
5148 if (err)
5149 return err;
5150 if (ext4_handle_valid(handle) &&
5151 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5152 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5153 /*
5154 * We need extra buffer credits since we may write into EA block
5155 * with this same handle. If journal_extend fails, then it will
5156 * only result in a minor loss of functionality for that inode.
5157 * If this is felt to be critical, then e2fsck should be run to
5158 * force a large enough s_min_extra_isize.
5159 */
5160 if ((jbd2_journal_extend(handle,
5161 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5162 ret = ext4_expand_extra_isize(inode,
5163 sbi->s_want_extra_isize,
5164 iloc, handle);
5165 if (ret) {
5166 ext4_set_inode_state(inode,
5167 EXT4_STATE_NO_EXPAND);
5168 if (mnt_count !=
5169 le16_to_cpu(sbi->s_es->s_mnt_count)) {
5170 ext4_warning(inode->i_sb,
5171 "Unable to expand inode %lu. Delete"
5172 " some EAs or run e2fsck.",
5173 inode->i_ino);
5174 mnt_count =
5175 le16_to_cpu(sbi->s_es->s_mnt_count);
5176 }
5177 }
5178 }
5179 }
5180 return ext4_mark_iloc_dirty(handle, inode, &iloc);
5181 }
5182
5183 /*
5184 * ext4_dirty_inode() is called from __mark_inode_dirty()
5185 *
5186 * We're really interested in the case where a file is being extended.
5187 * i_size has been changed by generic_commit_write() and we thus need
5188 * to include the updated inode in the current transaction.
5189 *
5190 * Also, dquot_alloc_block() will always dirty the inode when blocks
5191 * are allocated to the file.
5192 *
5193 * If the inode is marked synchronous, we don't honour that here - doing
5194 * so would cause a commit on atime updates, which we don't bother doing.
5195 * We handle synchronous inodes at the highest possible level.
5196 *
5197 * If only the I_DIRTY_TIME flag is set, we can skip everything. If
5198 * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5199 * to copy into the on-disk inode structure are the timestamp files.
5200 */
ext4_dirty_inode(struct inode * inode,int flags)5201 void ext4_dirty_inode(struct inode *inode, int flags)
5202 {
5203 handle_t *handle;
5204
5205 if (flags == I_DIRTY_TIME)
5206 return;
5207 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5208 if (IS_ERR(handle))
5209 goto out;
5210
5211 ext4_mark_inode_dirty(handle, inode);
5212
5213 ext4_journal_stop(handle);
5214 out:
5215 return;
5216 }
5217
5218 #if 0
5219 /*
5220 * Bind an inode's backing buffer_head into this transaction, to prevent
5221 * it from being flushed to disk early. Unlike
5222 * ext4_reserve_inode_write, this leaves behind no bh reference and
5223 * returns no iloc structure, so the caller needs to repeat the iloc
5224 * lookup to mark the inode dirty later.
5225 */
5226 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5227 {
5228 struct ext4_iloc iloc;
5229
5230 int err = 0;
5231 if (handle) {
5232 err = ext4_get_inode_loc(inode, &iloc);
5233 if (!err) {
5234 BUFFER_TRACE(iloc.bh, "get_write_access");
5235 err = jbd2_journal_get_write_access(handle, iloc.bh);
5236 if (!err)
5237 err = ext4_handle_dirty_metadata(handle,
5238 NULL,
5239 iloc.bh);
5240 brelse(iloc.bh);
5241 }
5242 }
5243 ext4_std_error(inode->i_sb, err);
5244 return err;
5245 }
5246 #endif
5247
ext4_change_inode_journal_flag(struct inode * inode,int val)5248 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5249 {
5250 journal_t *journal;
5251 handle_t *handle;
5252 int err;
5253
5254 /*
5255 * We have to be very careful here: changing a data block's
5256 * journaling status dynamically is dangerous. If we write a
5257 * data block to the journal, change the status and then delete
5258 * that block, we risk forgetting to revoke the old log record
5259 * from the journal and so a subsequent replay can corrupt data.
5260 * So, first we make sure that the journal is empty and that
5261 * nobody is changing anything.
5262 */
5263
5264 journal = EXT4_JOURNAL(inode);
5265 if (!journal)
5266 return 0;
5267 if (is_journal_aborted(journal))
5268 return -EROFS;
5269 /* We have to allocate physical blocks for delalloc blocks
5270 * before flushing journal. otherwise delalloc blocks can not
5271 * be allocated any more. even more truncate on delalloc blocks
5272 * could trigger BUG by flushing delalloc blocks in journal.
5273 * There is no delalloc block in non-journal data mode.
5274 */
5275 if (val && test_opt(inode->i_sb, DELALLOC)) {
5276 err = ext4_alloc_da_blocks(inode);
5277 if (err < 0)
5278 return err;
5279 }
5280
5281 /* Wait for all existing dio workers */
5282 ext4_inode_block_unlocked_dio(inode);
5283 inode_dio_wait(inode);
5284
5285 jbd2_journal_lock_updates(journal);
5286
5287 /*
5288 * OK, there are no updates running now, and all cached data is
5289 * synced to disk. We are now in a completely consistent state
5290 * which doesn't have anything in the journal, and we know that
5291 * no filesystem updates are running, so it is safe to modify
5292 * the inode's in-core data-journaling state flag now.
5293 */
5294
5295 if (val)
5296 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5297 else {
5298 err = jbd2_journal_flush(journal);
5299 if (err < 0) {
5300 jbd2_journal_unlock_updates(journal);
5301 ext4_inode_resume_unlocked_dio(inode);
5302 return err;
5303 }
5304 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5305 }
5306 ext4_set_aops(inode);
5307
5308 jbd2_journal_unlock_updates(journal);
5309 ext4_inode_resume_unlocked_dio(inode);
5310
5311 /* Finally we can mark the inode as dirty. */
5312
5313 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5314 if (IS_ERR(handle))
5315 return PTR_ERR(handle);
5316
5317 err = ext4_mark_inode_dirty(handle, inode);
5318 ext4_handle_sync(handle);
5319 ext4_journal_stop(handle);
5320 ext4_std_error(inode->i_sb, err);
5321
5322 return err;
5323 }
5324
ext4_bh_unmapped(handle_t * handle,struct buffer_head * bh)5325 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5326 {
5327 return !buffer_mapped(bh);
5328 }
5329
ext4_page_mkwrite(struct vm_area_struct * vma,struct vm_fault * vmf)5330 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5331 {
5332 struct page *page = vmf->page;
5333 loff_t size;
5334 unsigned long len;
5335 int ret;
5336 struct file *file = vma->vm_file;
5337 struct inode *inode = file_inode(file);
5338 struct address_space *mapping = inode->i_mapping;
5339 handle_t *handle;
5340 get_block_t *get_block;
5341 int retries = 0;
5342
5343 sb_start_pagefault(inode->i_sb);
5344 file_update_time(vma->vm_file);
5345
5346 down_read(&EXT4_I(inode)->i_mmap_sem);
5347 /* Delalloc case is easy... */
5348 if (test_opt(inode->i_sb, DELALLOC) &&
5349 !ext4_should_journal_data(inode) &&
5350 !ext4_nonda_switch(inode->i_sb)) {
5351 do {
5352 ret = block_page_mkwrite(vma, vmf,
5353 ext4_da_get_block_prep);
5354 } while (ret == -ENOSPC &&
5355 ext4_should_retry_alloc(inode->i_sb, &retries));
5356 goto out_ret;
5357 }
5358
5359 lock_page(page);
5360 size = i_size_read(inode);
5361 /* Page got truncated from under us? */
5362 if (page->mapping != mapping || page_offset(page) > size) {
5363 unlock_page(page);
5364 ret = VM_FAULT_NOPAGE;
5365 goto out;
5366 }
5367
5368 if (page->index == size >> PAGE_CACHE_SHIFT)
5369 len = size & ~PAGE_CACHE_MASK;
5370 else
5371 len = PAGE_CACHE_SIZE;
5372 /*
5373 * Return if we have all the buffers mapped. This avoids the need to do
5374 * journal_start/journal_stop which can block and take a long time
5375 */
5376 if (page_has_buffers(page)) {
5377 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5378 0, len, NULL,
5379 ext4_bh_unmapped)) {
5380 /* Wait so that we don't change page under IO */
5381 wait_for_stable_page(page);
5382 ret = VM_FAULT_LOCKED;
5383 goto out;
5384 }
5385 }
5386 unlock_page(page);
5387 /* OK, we need to fill the hole... */
5388 if (ext4_should_dioread_nolock(inode))
5389 get_block = ext4_get_block_write;
5390 else
5391 get_block = ext4_get_block;
5392 retry_alloc:
5393 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5394 ext4_writepage_trans_blocks(inode));
5395 if (IS_ERR(handle)) {
5396 ret = VM_FAULT_SIGBUS;
5397 goto out;
5398 }
5399 ret = block_page_mkwrite(vma, vmf, get_block);
5400 if (!ret && ext4_should_journal_data(inode)) {
5401 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5402 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5403 unlock_page(page);
5404 ret = VM_FAULT_SIGBUS;
5405 ext4_journal_stop(handle);
5406 goto out;
5407 }
5408 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5409 }
5410 ext4_journal_stop(handle);
5411 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5412 goto retry_alloc;
5413 out_ret:
5414 ret = block_page_mkwrite_return(ret);
5415 out:
5416 up_read(&EXT4_I(inode)->i_mmap_sem);
5417 sb_end_pagefault(inode->i_sb);
5418 return ret;
5419 }
5420
ext4_filemap_fault(struct vm_area_struct * vma,struct vm_fault * vmf)5421 int ext4_filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
5422 {
5423 struct inode *inode = file_inode(vma->vm_file);
5424 int err;
5425
5426 down_read(&EXT4_I(inode)->i_mmap_sem);
5427 err = filemap_fault(vma, vmf);
5428 up_read(&EXT4_I(inode)->i_mmap_sem);
5429
5430 return err;
5431 }
5432