1 /*
2  * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3  * Written by Alex Tomas <alex@clusterfs.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public Licens
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-
17  */
18 
19 
20 /*
21  * mballoc.c contains the multiblocks allocation routines
22  */
23 
24 #include "ext4_jbd2.h"
25 #include "mballoc.h"
26 #include <linux/log2.h>
27 #include <linux/module.h>
28 #include <linux/slab.h>
29 #include <linux/backing-dev.h>
30 #include <trace/events/ext4.h>
31 
32 #ifdef CONFIG_EXT4_DEBUG
33 ushort ext4_mballoc_debug __read_mostly;
34 
35 module_param_named(mballoc_debug, ext4_mballoc_debug, ushort, 0644);
36 MODULE_PARM_DESC(mballoc_debug, "Debugging level for ext4's mballoc");
37 #endif
38 
39 /*
40  * MUSTDO:
41  *   - test ext4_ext_search_left() and ext4_ext_search_right()
42  *   - search for metadata in few groups
43  *
44  * TODO v4:
45  *   - normalization should take into account whether file is still open
46  *   - discard preallocations if no free space left (policy?)
47  *   - don't normalize tails
48  *   - quota
49  *   - reservation for superuser
50  *
51  * TODO v3:
52  *   - bitmap read-ahead (proposed by Oleg Drokin aka green)
53  *   - track min/max extents in each group for better group selection
54  *   - mb_mark_used() may allocate chunk right after splitting buddy
55  *   - tree of groups sorted by number of free blocks
56  *   - error handling
57  */
58 
59 /*
60  * The allocation request involve request for multiple number of blocks
61  * near to the goal(block) value specified.
62  *
63  * During initialization phase of the allocator we decide to use the
64  * group preallocation or inode preallocation depending on the size of
65  * the file. The size of the file could be the resulting file size we
66  * would have after allocation, or the current file size, which ever
67  * is larger. If the size is less than sbi->s_mb_stream_request we
68  * select to use the group preallocation. The default value of
69  * s_mb_stream_request is 16 blocks. This can also be tuned via
70  * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in
71  * terms of number of blocks.
72  *
73  * The main motivation for having small file use group preallocation is to
74  * ensure that we have small files closer together on the disk.
75  *
76  * First stage the allocator looks at the inode prealloc list,
77  * ext4_inode_info->i_prealloc_list, which contains list of prealloc
78  * spaces for this particular inode. The inode prealloc space is
79  * represented as:
80  *
81  * pa_lstart -> the logical start block for this prealloc space
82  * pa_pstart -> the physical start block for this prealloc space
83  * pa_len    -> length for this prealloc space (in clusters)
84  * pa_free   ->  free space available in this prealloc space (in clusters)
85  *
86  * The inode preallocation space is used looking at the _logical_ start
87  * block. If only the logical file block falls within the range of prealloc
88  * space we will consume the particular prealloc space. This makes sure that
89  * we have contiguous physical blocks representing the file blocks
90  *
91  * The important thing to be noted in case of inode prealloc space is that
92  * we don't modify the values associated to inode prealloc space except
93  * pa_free.
94  *
95  * If we are not able to find blocks in the inode prealloc space and if we
96  * have the group allocation flag set then we look at the locality group
97  * prealloc space. These are per CPU prealloc list represented as
98  *
99  * ext4_sb_info.s_locality_groups[smp_processor_id()]
100  *
101  * The reason for having a per cpu locality group is to reduce the contention
102  * between CPUs. It is possible to get scheduled at this point.
103  *
104  * The locality group prealloc space is used looking at whether we have
105  * enough free space (pa_free) within the prealloc space.
106  *
107  * If we can't allocate blocks via inode prealloc or/and locality group
108  * prealloc then we look at the buddy cache. The buddy cache is represented
109  * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets
110  * mapped to the buddy and bitmap information regarding different
111  * groups. The buddy information is attached to buddy cache inode so that
112  * we can access them through the page cache. The information regarding
113  * each group is loaded via ext4_mb_load_buddy.  The information involve
114  * block bitmap and buddy information. The information are stored in the
115  * inode as:
116  *
117  *  {                        page                        }
118  *  [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
119  *
120  *
121  * one block each for bitmap and buddy information.  So for each group we
122  * take up 2 blocks. A page can contain blocks_per_page (PAGE_CACHE_SIZE /
123  * blocksize) blocks.  So it can have information regarding groups_per_page
124  * which is blocks_per_page/2
125  *
126  * The buddy cache inode is not stored on disk. The inode is thrown
127  * away when the filesystem is unmounted.
128  *
129  * We look for count number of blocks in the buddy cache. If we were able
130  * to locate that many free blocks we return with additional information
131  * regarding rest of the contiguous physical block available
132  *
133  * Before allocating blocks via buddy cache we normalize the request
134  * blocks. This ensure we ask for more blocks that we needed. The extra
135  * blocks that we get after allocation is added to the respective prealloc
136  * list. In case of inode preallocation we follow a list of heuristics
137  * based on file size. This can be found in ext4_mb_normalize_request. If
138  * we are doing a group prealloc we try to normalize the request to
139  * sbi->s_mb_group_prealloc.  The default value of s_mb_group_prealloc is
140  * dependent on the cluster size; for non-bigalloc file systems, it is
141  * 512 blocks. This can be tuned via
142  * /sys/fs/ext4/<partition>/mb_group_prealloc. The value is represented in
143  * terms of number of blocks. If we have mounted the file system with -O
144  * stripe=<value> option the group prealloc request is normalized to the
145  * the smallest multiple of the stripe value (sbi->s_stripe) which is
146  * greater than the default mb_group_prealloc.
147  *
148  * The regular allocator (using the buddy cache) supports a few tunables.
149  *
150  * /sys/fs/ext4/<partition>/mb_min_to_scan
151  * /sys/fs/ext4/<partition>/mb_max_to_scan
152  * /sys/fs/ext4/<partition>/mb_order2_req
153  *
154  * The regular allocator uses buddy scan only if the request len is power of
155  * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The
156  * value of s_mb_order2_reqs can be tuned via
157  * /sys/fs/ext4/<partition>/mb_order2_req.  If the request len is equal to
158  * stripe size (sbi->s_stripe), we try to search for contiguous block in
159  * stripe size. This should result in better allocation on RAID setups. If
160  * not, we search in the specific group using bitmap for best extents. The
161  * tunable min_to_scan and max_to_scan control the behaviour here.
162  * min_to_scan indicate how long the mballoc __must__ look for a best
163  * extent and max_to_scan indicates how long the mballoc __can__ look for a
164  * best extent in the found extents. Searching for the blocks starts with
165  * the group specified as the goal value in allocation context via
166  * ac_g_ex. Each group is first checked based on the criteria whether it
167  * can be used for allocation. ext4_mb_good_group explains how the groups are
168  * checked.
169  *
170  * Both the prealloc space are getting populated as above. So for the first
171  * request we will hit the buddy cache which will result in this prealloc
172  * space getting filled. The prealloc space is then later used for the
173  * subsequent request.
174  */
175 
176 /*
177  * mballoc operates on the following data:
178  *  - on-disk bitmap
179  *  - in-core buddy (actually includes buddy and bitmap)
180  *  - preallocation descriptors (PAs)
181  *
182  * there are two types of preallocations:
183  *  - inode
184  *    assiged to specific inode and can be used for this inode only.
185  *    it describes part of inode's space preallocated to specific
186  *    physical blocks. any block from that preallocated can be used
187  *    independent. the descriptor just tracks number of blocks left
188  *    unused. so, before taking some block from descriptor, one must
189  *    make sure corresponded logical block isn't allocated yet. this
190  *    also means that freeing any block within descriptor's range
191  *    must discard all preallocated blocks.
192  *  - locality group
193  *    assigned to specific locality group which does not translate to
194  *    permanent set of inodes: inode can join and leave group. space
195  *    from this type of preallocation can be used for any inode. thus
196  *    it's consumed from the beginning to the end.
197  *
198  * relation between them can be expressed as:
199  *    in-core buddy = on-disk bitmap + preallocation descriptors
200  *
201  * this mean blocks mballoc considers used are:
202  *  - allocated blocks (persistent)
203  *  - preallocated blocks (non-persistent)
204  *
205  * consistency in mballoc world means that at any time a block is either
206  * free or used in ALL structures. notice: "any time" should not be read
207  * literally -- time is discrete and delimited by locks.
208  *
209  *  to keep it simple, we don't use block numbers, instead we count number of
210  *  blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA.
211  *
212  * all operations can be expressed as:
213  *  - init buddy:			buddy = on-disk + PAs
214  *  - new PA:				buddy += N; PA = N
215  *  - use inode PA:			on-disk += N; PA -= N
216  *  - discard inode PA			buddy -= on-disk - PA; PA = 0
217  *  - use locality group PA		on-disk += N; PA -= N
218  *  - discard locality group PA		buddy -= PA; PA = 0
219  *  note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap
220  *        is used in real operation because we can't know actual used
221  *        bits from PA, only from on-disk bitmap
222  *
223  * if we follow this strict logic, then all operations above should be atomic.
224  * given some of them can block, we'd have to use something like semaphores
225  * killing performance on high-end SMP hardware. let's try to relax it using
226  * the following knowledge:
227  *  1) if buddy is referenced, it's already initialized
228  *  2) while block is used in buddy and the buddy is referenced,
229  *     nobody can re-allocate that block
230  *  3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has
231  *     bit set and PA claims same block, it's OK. IOW, one can set bit in
232  *     on-disk bitmap if buddy has same bit set or/and PA covers corresponded
233  *     block
234  *
235  * so, now we're building a concurrency table:
236  *  - init buddy vs.
237  *    - new PA
238  *      blocks for PA are allocated in the buddy, buddy must be referenced
239  *      until PA is linked to allocation group to avoid concurrent buddy init
240  *    - use inode PA
241  *      we need to make sure that either on-disk bitmap or PA has uptodate data
242  *      given (3) we care that PA-=N operation doesn't interfere with init
243  *    - discard inode PA
244  *      the simplest way would be to have buddy initialized by the discard
245  *    - use locality group PA
246  *      again PA-=N must be serialized with init
247  *    - discard locality group PA
248  *      the simplest way would be to have buddy initialized by the discard
249  *  - new PA vs.
250  *    - use inode PA
251  *      i_data_sem serializes them
252  *    - discard inode PA
253  *      discard process must wait until PA isn't used by another process
254  *    - use locality group PA
255  *      some mutex should serialize them
256  *    - discard locality group PA
257  *      discard process must wait until PA isn't used by another process
258  *  - use inode PA
259  *    - use inode PA
260  *      i_data_sem or another mutex should serializes them
261  *    - discard inode PA
262  *      discard process must wait until PA isn't used by another process
263  *    - use locality group PA
264  *      nothing wrong here -- they're different PAs covering different blocks
265  *    - discard locality group PA
266  *      discard process must wait until PA isn't used by another process
267  *
268  * now we're ready to make few consequences:
269  *  - PA is referenced and while it is no discard is possible
270  *  - PA is referenced until block isn't marked in on-disk bitmap
271  *  - PA changes only after on-disk bitmap
272  *  - discard must not compete with init. either init is done before
273  *    any discard or they're serialized somehow
274  *  - buddy init as sum of on-disk bitmap and PAs is done atomically
275  *
276  * a special case when we've used PA to emptiness. no need to modify buddy
277  * in this case, but we should care about concurrent init
278  *
279  */
280 
281  /*
282  * Logic in few words:
283  *
284  *  - allocation:
285  *    load group
286  *    find blocks
287  *    mark bits in on-disk bitmap
288  *    release group
289  *
290  *  - use preallocation:
291  *    find proper PA (per-inode or group)
292  *    load group
293  *    mark bits in on-disk bitmap
294  *    release group
295  *    release PA
296  *
297  *  - free:
298  *    load group
299  *    mark bits in on-disk bitmap
300  *    release group
301  *
302  *  - discard preallocations in group:
303  *    mark PAs deleted
304  *    move them onto local list
305  *    load on-disk bitmap
306  *    load group
307  *    remove PA from object (inode or locality group)
308  *    mark free blocks in-core
309  *
310  *  - discard inode's preallocations:
311  */
312 
313 /*
314  * Locking rules
315  *
316  * Locks:
317  *  - bitlock on a group	(group)
318  *  - object (inode/locality)	(object)
319  *  - per-pa lock		(pa)
320  *
321  * Paths:
322  *  - new pa
323  *    object
324  *    group
325  *
326  *  - find and use pa:
327  *    pa
328  *
329  *  - release consumed pa:
330  *    pa
331  *    group
332  *    object
333  *
334  *  - generate in-core bitmap:
335  *    group
336  *        pa
337  *
338  *  - discard all for given object (inode, locality group):
339  *    object
340  *        pa
341  *    group
342  *
343  *  - discard all for given group:
344  *    group
345  *        pa
346  *    group
347  *        object
348  *
349  */
350 static struct kmem_cache *ext4_pspace_cachep;
351 static struct kmem_cache *ext4_ac_cachep;
352 static struct kmem_cache *ext4_free_data_cachep;
353 
354 /* We create slab caches for groupinfo data structures based on the
355  * superblock block size.  There will be one per mounted filesystem for
356  * each unique s_blocksize_bits */
357 #define NR_GRPINFO_CACHES 8
358 static struct kmem_cache *ext4_groupinfo_caches[NR_GRPINFO_CACHES];
359 
360 static const char *ext4_groupinfo_slab_names[NR_GRPINFO_CACHES] = {
361 	"ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k",
362 	"ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k",
363 	"ext4_groupinfo_64k", "ext4_groupinfo_128k"
364 };
365 
366 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
367 					ext4_group_t group);
368 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
369 						ext4_group_t group);
370 static void ext4_free_data_callback(struct super_block *sb,
371 				struct ext4_journal_cb_entry *jce, int rc);
372 
mb_correct_addr_and_bit(int * bit,void * addr)373 static inline void *mb_correct_addr_and_bit(int *bit, void *addr)
374 {
375 #if BITS_PER_LONG == 64
376 	*bit += ((unsigned long) addr & 7UL) << 3;
377 	addr = (void *) ((unsigned long) addr & ~7UL);
378 #elif BITS_PER_LONG == 32
379 	*bit += ((unsigned long) addr & 3UL) << 3;
380 	addr = (void *) ((unsigned long) addr & ~3UL);
381 #else
382 #error "how many bits you are?!"
383 #endif
384 	return addr;
385 }
386 
mb_test_bit(int bit,void * addr)387 static inline int mb_test_bit(int bit, void *addr)
388 {
389 	/*
390 	 * ext4_test_bit on architecture like powerpc
391 	 * needs unsigned long aligned address
392 	 */
393 	addr = mb_correct_addr_and_bit(&bit, addr);
394 	return ext4_test_bit(bit, addr);
395 }
396 
mb_set_bit(int bit,void * addr)397 static inline void mb_set_bit(int bit, void *addr)
398 {
399 	addr = mb_correct_addr_and_bit(&bit, addr);
400 	ext4_set_bit(bit, addr);
401 }
402 
mb_clear_bit(int bit,void * addr)403 static inline void mb_clear_bit(int bit, void *addr)
404 {
405 	addr = mb_correct_addr_and_bit(&bit, addr);
406 	ext4_clear_bit(bit, addr);
407 }
408 
mb_test_and_clear_bit(int bit,void * addr)409 static inline int mb_test_and_clear_bit(int bit, void *addr)
410 {
411 	addr = mb_correct_addr_and_bit(&bit, addr);
412 	return ext4_test_and_clear_bit(bit, addr);
413 }
414 
mb_find_next_zero_bit(void * addr,int max,int start)415 static inline int mb_find_next_zero_bit(void *addr, int max, int start)
416 {
417 	int fix = 0, ret, tmpmax;
418 	addr = mb_correct_addr_and_bit(&fix, addr);
419 	tmpmax = max + fix;
420 	start += fix;
421 
422 	ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix;
423 	if (ret > max)
424 		return max;
425 	return ret;
426 }
427 
mb_find_next_bit(void * addr,int max,int start)428 static inline int mb_find_next_bit(void *addr, int max, int start)
429 {
430 	int fix = 0, ret, tmpmax;
431 	addr = mb_correct_addr_and_bit(&fix, addr);
432 	tmpmax = max + fix;
433 	start += fix;
434 
435 	ret = ext4_find_next_bit(addr, tmpmax, start) - fix;
436 	if (ret > max)
437 		return max;
438 	return ret;
439 }
440 
mb_find_buddy(struct ext4_buddy * e4b,int order,int * max)441 static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max)
442 {
443 	char *bb;
444 
445 	BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
446 	BUG_ON(max == NULL);
447 
448 	if (order > e4b->bd_blkbits + 1) {
449 		*max = 0;
450 		return NULL;
451 	}
452 
453 	/* at order 0 we see each particular block */
454 	if (order == 0) {
455 		*max = 1 << (e4b->bd_blkbits + 3);
456 		return e4b->bd_bitmap;
457 	}
458 
459 	bb = e4b->bd_buddy + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order];
460 	*max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order];
461 
462 	return bb;
463 }
464 
465 #ifdef DOUBLE_CHECK
mb_free_blocks_double(struct inode * inode,struct ext4_buddy * e4b,int first,int count)466 static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b,
467 			   int first, int count)
468 {
469 	int i;
470 	struct super_block *sb = e4b->bd_sb;
471 
472 	if (unlikely(e4b->bd_info->bb_bitmap == NULL))
473 		return;
474 	assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
475 	for (i = 0; i < count; i++) {
476 		if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) {
477 			ext4_fsblk_t blocknr;
478 
479 			blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
480 			blocknr += EXT4_C2B(EXT4_SB(sb), first + i);
481 			ext4_grp_locked_error(sb, e4b->bd_group,
482 					      inode ? inode->i_ino : 0,
483 					      blocknr,
484 					      "freeing block already freed "
485 					      "(bit %u)",
486 					      first + i);
487 		}
488 		mb_clear_bit(first + i, e4b->bd_info->bb_bitmap);
489 	}
490 }
491 
mb_mark_used_double(struct ext4_buddy * e4b,int first,int count)492 static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count)
493 {
494 	int i;
495 
496 	if (unlikely(e4b->bd_info->bb_bitmap == NULL))
497 		return;
498 	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
499 	for (i = 0; i < count; i++) {
500 		BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap));
501 		mb_set_bit(first + i, e4b->bd_info->bb_bitmap);
502 	}
503 }
504 
mb_cmp_bitmaps(struct ext4_buddy * e4b,void * bitmap)505 static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
506 {
507 	if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) {
508 		unsigned char *b1, *b2;
509 		int i;
510 		b1 = (unsigned char *) e4b->bd_info->bb_bitmap;
511 		b2 = (unsigned char *) bitmap;
512 		for (i = 0; i < e4b->bd_sb->s_blocksize; i++) {
513 			if (b1[i] != b2[i]) {
514 				ext4_msg(e4b->bd_sb, KERN_ERR,
515 					 "corruption in group %u "
516 					 "at byte %u(%u): %x in copy != %x "
517 					 "on disk/prealloc",
518 					 e4b->bd_group, i, i * 8, b1[i], b2[i]);
519 				BUG();
520 			}
521 		}
522 	}
523 }
524 
525 #else
mb_free_blocks_double(struct inode * inode,struct ext4_buddy * e4b,int first,int count)526 static inline void mb_free_blocks_double(struct inode *inode,
527 				struct ext4_buddy *e4b, int first, int count)
528 {
529 	return;
530 }
mb_mark_used_double(struct ext4_buddy * e4b,int first,int count)531 static inline void mb_mark_used_double(struct ext4_buddy *e4b,
532 						int first, int count)
533 {
534 	return;
535 }
mb_cmp_bitmaps(struct ext4_buddy * e4b,void * bitmap)536 static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
537 {
538 	return;
539 }
540 #endif
541 
542 #ifdef AGGRESSIVE_CHECK
543 
544 #define MB_CHECK_ASSERT(assert)						\
545 do {									\
546 	if (!(assert)) {						\
547 		printk(KERN_EMERG					\
548 			"Assertion failure in %s() at %s:%d: \"%s\"\n",	\
549 			function, file, line, # assert);		\
550 		BUG();							\
551 	}								\
552 } while (0)
553 
__mb_check_buddy(struct ext4_buddy * e4b,char * file,const char * function,int line)554 static int __mb_check_buddy(struct ext4_buddy *e4b, char *file,
555 				const char *function, int line)
556 {
557 	struct super_block *sb = e4b->bd_sb;
558 	int order = e4b->bd_blkbits + 1;
559 	int max;
560 	int max2;
561 	int i;
562 	int j;
563 	int k;
564 	int count;
565 	struct ext4_group_info *grp;
566 	int fragments = 0;
567 	int fstart;
568 	struct list_head *cur;
569 	void *buddy;
570 	void *buddy2;
571 
572 	{
573 		static int mb_check_counter;
574 		if (mb_check_counter++ % 100 != 0)
575 			return 0;
576 	}
577 
578 	while (order > 1) {
579 		buddy = mb_find_buddy(e4b, order, &max);
580 		MB_CHECK_ASSERT(buddy);
581 		buddy2 = mb_find_buddy(e4b, order - 1, &max2);
582 		MB_CHECK_ASSERT(buddy2);
583 		MB_CHECK_ASSERT(buddy != buddy2);
584 		MB_CHECK_ASSERT(max * 2 == max2);
585 
586 		count = 0;
587 		for (i = 0; i < max; i++) {
588 
589 			if (mb_test_bit(i, buddy)) {
590 				/* only single bit in buddy2 may be 1 */
591 				if (!mb_test_bit(i << 1, buddy2)) {
592 					MB_CHECK_ASSERT(
593 						mb_test_bit((i<<1)+1, buddy2));
594 				} else if (!mb_test_bit((i << 1) + 1, buddy2)) {
595 					MB_CHECK_ASSERT(
596 						mb_test_bit(i << 1, buddy2));
597 				}
598 				continue;
599 			}
600 
601 			/* both bits in buddy2 must be 1 */
602 			MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2));
603 			MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2));
604 
605 			for (j = 0; j < (1 << order); j++) {
606 				k = (i * (1 << order)) + j;
607 				MB_CHECK_ASSERT(
608 					!mb_test_bit(k, e4b->bd_bitmap));
609 			}
610 			count++;
611 		}
612 		MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count);
613 		order--;
614 	}
615 
616 	fstart = -1;
617 	buddy = mb_find_buddy(e4b, 0, &max);
618 	for (i = 0; i < max; i++) {
619 		if (!mb_test_bit(i, buddy)) {
620 			MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free);
621 			if (fstart == -1) {
622 				fragments++;
623 				fstart = i;
624 			}
625 			continue;
626 		}
627 		fstart = -1;
628 		/* check used bits only */
629 		for (j = 0; j < e4b->bd_blkbits + 1; j++) {
630 			buddy2 = mb_find_buddy(e4b, j, &max2);
631 			k = i >> j;
632 			MB_CHECK_ASSERT(k < max2);
633 			MB_CHECK_ASSERT(mb_test_bit(k, buddy2));
634 		}
635 	}
636 	MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info));
637 	MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments);
638 
639 	grp = ext4_get_group_info(sb, e4b->bd_group);
640 	list_for_each(cur, &grp->bb_prealloc_list) {
641 		ext4_group_t groupnr;
642 		struct ext4_prealloc_space *pa;
643 		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
644 		ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k);
645 		MB_CHECK_ASSERT(groupnr == e4b->bd_group);
646 		for (i = 0; i < pa->pa_len; i++)
647 			MB_CHECK_ASSERT(mb_test_bit(k + i, buddy));
648 	}
649 	return 0;
650 }
651 #undef MB_CHECK_ASSERT
652 #define mb_check_buddy(e4b) __mb_check_buddy(e4b,	\
653 					__FILE__, __func__, __LINE__)
654 #else
655 #define mb_check_buddy(e4b)
656 #endif
657 
658 /*
659  * Divide blocks started from @first with length @len into
660  * smaller chunks with power of 2 blocks.
661  * Clear the bits in bitmap which the blocks of the chunk(s) covered,
662  * then increase bb_counters[] for corresponded chunk size.
663  */
ext4_mb_mark_free_simple(struct super_block * sb,void * buddy,ext4_grpblk_t first,ext4_grpblk_t len,struct ext4_group_info * grp)664 static void ext4_mb_mark_free_simple(struct super_block *sb,
665 				void *buddy, ext4_grpblk_t first, ext4_grpblk_t len,
666 					struct ext4_group_info *grp)
667 {
668 	struct ext4_sb_info *sbi = EXT4_SB(sb);
669 	ext4_grpblk_t min;
670 	ext4_grpblk_t max;
671 	ext4_grpblk_t chunk;
672 	unsigned short border;
673 
674 	BUG_ON(len > EXT4_CLUSTERS_PER_GROUP(sb));
675 
676 	border = 2 << sb->s_blocksize_bits;
677 
678 	while (len > 0) {
679 		/* find how many blocks can be covered since this position */
680 		max = ffs(first | border) - 1;
681 
682 		/* find how many blocks of power 2 we need to mark */
683 		min = fls(len) - 1;
684 
685 		if (max < min)
686 			min = max;
687 		chunk = 1 << min;
688 
689 		/* mark multiblock chunks only */
690 		grp->bb_counters[min]++;
691 		if (min > 0)
692 			mb_clear_bit(first >> min,
693 				     buddy + sbi->s_mb_offsets[min]);
694 
695 		len -= chunk;
696 		first += chunk;
697 	}
698 }
699 
700 /*
701  * Cache the order of the largest free extent we have available in this block
702  * group.
703  */
704 static void
mb_set_largest_free_order(struct super_block * sb,struct ext4_group_info * grp)705 mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp)
706 {
707 	int i;
708 	int bits;
709 
710 	grp->bb_largest_free_order = -1; /* uninit */
711 
712 	bits = sb->s_blocksize_bits + 1;
713 	for (i = bits; i >= 0; i--) {
714 		if (grp->bb_counters[i] > 0) {
715 			grp->bb_largest_free_order = i;
716 			break;
717 		}
718 	}
719 }
720 
721 static noinline_for_stack
ext4_mb_generate_buddy(struct super_block * sb,void * buddy,void * bitmap,ext4_group_t group)722 void ext4_mb_generate_buddy(struct super_block *sb,
723 				void *buddy, void *bitmap, ext4_group_t group)
724 {
725 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
726 	struct ext4_sb_info *sbi = EXT4_SB(sb);
727 	ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb);
728 	ext4_grpblk_t i = 0;
729 	ext4_grpblk_t first;
730 	ext4_grpblk_t len;
731 	unsigned free = 0;
732 	unsigned fragments = 0;
733 	unsigned long long period = get_cycles();
734 
735 	/* initialize buddy from bitmap which is aggregation
736 	 * of on-disk bitmap and preallocations */
737 	i = mb_find_next_zero_bit(bitmap, max, 0);
738 	grp->bb_first_free = i;
739 	while (i < max) {
740 		fragments++;
741 		first = i;
742 		i = mb_find_next_bit(bitmap, max, i);
743 		len = i - first;
744 		free += len;
745 		if (len > 1)
746 			ext4_mb_mark_free_simple(sb, buddy, first, len, grp);
747 		else
748 			grp->bb_counters[0]++;
749 		if (i < max)
750 			i = mb_find_next_zero_bit(bitmap, max, i);
751 	}
752 	grp->bb_fragments = fragments;
753 
754 	if (free != grp->bb_free) {
755 		ext4_grp_locked_error(sb, group, 0, 0,
756 				      "block bitmap and bg descriptor "
757 				      "inconsistent: %u vs %u free clusters",
758 				      free, grp->bb_free);
759 		/*
760 		 * If we intend to continue, we consider group descriptor
761 		 * corrupt and update bb_free using bitmap value
762 		 */
763 		grp->bb_free = free;
764 		if (!EXT4_MB_GRP_BBITMAP_CORRUPT(grp))
765 			percpu_counter_sub(&sbi->s_freeclusters_counter,
766 					   grp->bb_free);
767 		set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT, &grp->bb_state);
768 	}
769 	mb_set_largest_free_order(sb, grp);
770 
771 	clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state));
772 
773 	period = get_cycles() - period;
774 	spin_lock(&EXT4_SB(sb)->s_bal_lock);
775 	EXT4_SB(sb)->s_mb_buddies_generated++;
776 	EXT4_SB(sb)->s_mb_generation_time += period;
777 	spin_unlock(&EXT4_SB(sb)->s_bal_lock);
778 }
779 
mb_regenerate_buddy(struct ext4_buddy * e4b)780 static void mb_regenerate_buddy(struct ext4_buddy *e4b)
781 {
782 	int count;
783 	int order = 1;
784 	void *buddy;
785 
786 	while ((buddy = mb_find_buddy(e4b, order++, &count))) {
787 		ext4_set_bits(buddy, 0, count);
788 	}
789 	e4b->bd_info->bb_fragments = 0;
790 	memset(e4b->bd_info->bb_counters, 0,
791 		sizeof(*e4b->bd_info->bb_counters) *
792 		(e4b->bd_sb->s_blocksize_bits + 2));
793 
794 	ext4_mb_generate_buddy(e4b->bd_sb, e4b->bd_buddy,
795 		e4b->bd_bitmap, e4b->bd_group);
796 }
797 
798 /* The buddy information is attached the buddy cache inode
799  * for convenience. The information regarding each group
800  * is loaded via ext4_mb_load_buddy. The information involve
801  * block bitmap and buddy information. The information are
802  * stored in the inode as
803  *
804  * {                        page                        }
805  * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
806  *
807  *
808  * one block each for bitmap and buddy information.
809  * So for each group we take up 2 blocks. A page can
810  * contain blocks_per_page (PAGE_CACHE_SIZE / blocksize)  blocks.
811  * So it can have information regarding groups_per_page which
812  * is blocks_per_page/2
813  *
814  * Locking note:  This routine takes the block group lock of all groups
815  * for this page; do not hold this lock when calling this routine!
816  */
817 
ext4_mb_init_cache(struct page * page,char * incore)818 static int ext4_mb_init_cache(struct page *page, char *incore)
819 {
820 	ext4_group_t ngroups;
821 	int blocksize;
822 	int blocks_per_page;
823 	int groups_per_page;
824 	int err = 0;
825 	int i;
826 	ext4_group_t first_group, group;
827 	int first_block;
828 	struct super_block *sb;
829 	struct buffer_head *bhs;
830 	struct buffer_head **bh = NULL;
831 	struct inode *inode;
832 	char *data;
833 	char *bitmap;
834 	struct ext4_group_info *grinfo;
835 
836 	mb_debug(1, "init page %lu\n", page->index);
837 
838 	inode = page->mapping->host;
839 	sb = inode->i_sb;
840 	ngroups = ext4_get_groups_count(sb);
841 	blocksize = 1 << inode->i_blkbits;
842 	blocks_per_page = PAGE_CACHE_SIZE / blocksize;
843 
844 	groups_per_page = blocks_per_page >> 1;
845 	if (groups_per_page == 0)
846 		groups_per_page = 1;
847 
848 	/* allocate buffer_heads to read bitmaps */
849 	if (groups_per_page > 1) {
850 		i = sizeof(struct buffer_head *) * groups_per_page;
851 		bh = kzalloc(i, GFP_NOFS);
852 		if (bh == NULL) {
853 			err = -ENOMEM;
854 			goto out;
855 		}
856 	} else
857 		bh = &bhs;
858 
859 	first_group = page->index * blocks_per_page / 2;
860 
861 	/* read all groups the page covers into the cache */
862 	for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
863 		if (group >= ngroups)
864 			break;
865 
866 		grinfo = ext4_get_group_info(sb, group);
867 		/*
868 		 * If page is uptodate then we came here after online resize
869 		 * which added some new uninitialized group info structs, so
870 		 * we must skip all initialized uptodate buddies on the page,
871 		 * which may be currently in use by an allocating task.
872 		 */
873 		if (PageUptodate(page) && !EXT4_MB_GRP_NEED_INIT(grinfo)) {
874 			bh[i] = NULL;
875 			continue;
876 		}
877 		bh[i] = ext4_read_block_bitmap_nowait(sb, group);
878 		if (IS_ERR(bh[i])) {
879 			err = PTR_ERR(bh[i]);
880 			bh[i] = NULL;
881 			goto out;
882 		}
883 		mb_debug(1, "read bitmap for group %u\n", group);
884 	}
885 
886 	/* wait for I/O completion */
887 	for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
888 		int err2;
889 
890 		if (!bh[i])
891 			continue;
892 		err2 = ext4_wait_block_bitmap(sb, group, bh[i]);
893 		if (!err)
894 			err = err2;
895 	}
896 
897 	first_block = page->index * blocks_per_page;
898 	for (i = 0; i < blocks_per_page; i++) {
899 		group = (first_block + i) >> 1;
900 		if (group >= ngroups)
901 			break;
902 
903 		if (!bh[group - first_group])
904 			/* skip initialized uptodate buddy */
905 			continue;
906 
907 		if (!buffer_verified(bh[group - first_group]))
908 			/* Skip faulty bitmaps */
909 			continue;
910 		err = 0;
911 
912 		/*
913 		 * data carry information regarding this
914 		 * particular group in the format specified
915 		 * above
916 		 *
917 		 */
918 		data = page_address(page) + (i * blocksize);
919 		bitmap = bh[group - first_group]->b_data;
920 
921 		/*
922 		 * We place the buddy block and bitmap block
923 		 * close together
924 		 */
925 		if ((first_block + i) & 1) {
926 			/* this is block of buddy */
927 			BUG_ON(incore == NULL);
928 			mb_debug(1, "put buddy for group %u in page %lu/%x\n",
929 				group, page->index, i * blocksize);
930 			trace_ext4_mb_buddy_bitmap_load(sb, group);
931 			grinfo = ext4_get_group_info(sb, group);
932 			grinfo->bb_fragments = 0;
933 			memset(grinfo->bb_counters, 0,
934 			       sizeof(*grinfo->bb_counters) *
935 				(sb->s_blocksize_bits+2));
936 			/*
937 			 * incore got set to the group block bitmap below
938 			 */
939 			ext4_lock_group(sb, group);
940 			/* init the buddy */
941 			memset(data, 0xff, blocksize);
942 			ext4_mb_generate_buddy(sb, data, incore, group);
943 			ext4_unlock_group(sb, group);
944 			incore = NULL;
945 		} else {
946 			/* this is block of bitmap */
947 			BUG_ON(incore != NULL);
948 			mb_debug(1, "put bitmap for group %u in page %lu/%x\n",
949 				group, page->index, i * blocksize);
950 			trace_ext4_mb_bitmap_load(sb, group);
951 
952 			/* see comments in ext4_mb_put_pa() */
953 			ext4_lock_group(sb, group);
954 			memcpy(data, bitmap, blocksize);
955 
956 			/* mark all preallocated blks used in in-core bitmap */
957 			ext4_mb_generate_from_pa(sb, data, group);
958 			ext4_mb_generate_from_freelist(sb, data, group);
959 			ext4_unlock_group(sb, group);
960 
961 			/* set incore so that the buddy information can be
962 			 * generated using this
963 			 */
964 			incore = data;
965 		}
966 	}
967 	SetPageUptodate(page);
968 
969 out:
970 	if (bh) {
971 		for (i = 0; i < groups_per_page; i++)
972 			brelse(bh[i]);
973 		if (bh != &bhs)
974 			kfree(bh);
975 	}
976 	return err;
977 }
978 
979 /*
980  * Lock the buddy and bitmap pages. This make sure other parallel init_group
981  * on the same buddy page doesn't happen whild holding the buddy page lock.
982  * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap
983  * are on the same page e4b->bd_buddy_page is NULL and return value is 0.
984  */
ext4_mb_get_buddy_page_lock(struct super_block * sb,ext4_group_t group,struct ext4_buddy * e4b)985 static int ext4_mb_get_buddy_page_lock(struct super_block *sb,
986 		ext4_group_t group, struct ext4_buddy *e4b)
987 {
988 	struct inode *inode = EXT4_SB(sb)->s_buddy_cache;
989 	int block, pnum, poff;
990 	int blocks_per_page;
991 	struct page *page;
992 
993 	e4b->bd_buddy_page = NULL;
994 	e4b->bd_bitmap_page = NULL;
995 
996 	blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
997 	/*
998 	 * the buddy cache inode stores the block bitmap
999 	 * and buddy information in consecutive blocks.
1000 	 * So for each group we need two blocks.
1001 	 */
1002 	block = group * 2;
1003 	pnum = block / blocks_per_page;
1004 	poff = block % blocks_per_page;
1005 	page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
1006 	if (!page)
1007 		return -ENOMEM;
1008 	BUG_ON(page->mapping != inode->i_mapping);
1009 	e4b->bd_bitmap_page = page;
1010 	e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1011 
1012 	if (blocks_per_page >= 2) {
1013 		/* buddy and bitmap are on the same page */
1014 		return 0;
1015 	}
1016 
1017 	block++;
1018 	pnum = block / blocks_per_page;
1019 	page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
1020 	if (!page)
1021 		return -ENOMEM;
1022 	BUG_ON(page->mapping != inode->i_mapping);
1023 	e4b->bd_buddy_page = page;
1024 	return 0;
1025 }
1026 
ext4_mb_put_buddy_page_lock(struct ext4_buddy * e4b)1027 static void ext4_mb_put_buddy_page_lock(struct ext4_buddy *e4b)
1028 {
1029 	if (e4b->bd_bitmap_page) {
1030 		unlock_page(e4b->bd_bitmap_page);
1031 		page_cache_release(e4b->bd_bitmap_page);
1032 	}
1033 	if (e4b->bd_buddy_page) {
1034 		unlock_page(e4b->bd_buddy_page);
1035 		page_cache_release(e4b->bd_buddy_page);
1036 	}
1037 }
1038 
1039 /*
1040  * Locking note:  This routine calls ext4_mb_init_cache(), which takes the
1041  * block group lock of all groups for this page; do not hold the BG lock when
1042  * calling this routine!
1043  */
1044 static noinline_for_stack
ext4_mb_init_group(struct super_block * sb,ext4_group_t group)1045 int ext4_mb_init_group(struct super_block *sb, ext4_group_t group)
1046 {
1047 
1048 	struct ext4_group_info *this_grp;
1049 	struct ext4_buddy e4b;
1050 	struct page *page;
1051 	int ret = 0;
1052 
1053 	might_sleep();
1054 	mb_debug(1, "init group %u\n", group);
1055 	this_grp = ext4_get_group_info(sb, group);
1056 	/*
1057 	 * This ensures that we don't reinit the buddy cache
1058 	 * page which map to the group from which we are already
1059 	 * allocating. If we are looking at the buddy cache we would
1060 	 * have taken a reference using ext4_mb_load_buddy and that
1061 	 * would have pinned buddy page to page cache.
1062 	 * The call to ext4_mb_get_buddy_page_lock will mark the
1063 	 * page accessed.
1064 	 */
1065 	ret = ext4_mb_get_buddy_page_lock(sb, group, &e4b);
1066 	if (ret || !EXT4_MB_GRP_NEED_INIT(this_grp)) {
1067 		/*
1068 		 * somebody initialized the group
1069 		 * return without doing anything
1070 		 */
1071 		goto err;
1072 	}
1073 
1074 	page = e4b.bd_bitmap_page;
1075 	ret = ext4_mb_init_cache(page, NULL);
1076 	if (ret)
1077 		goto err;
1078 	if (!PageUptodate(page)) {
1079 		ret = -EIO;
1080 		goto err;
1081 	}
1082 
1083 	if (e4b.bd_buddy_page == NULL) {
1084 		/*
1085 		 * If both the bitmap and buddy are in
1086 		 * the same page we don't need to force
1087 		 * init the buddy
1088 		 */
1089 		ret = 0;
1090 		goto err;
1091 	}
1092 	/* init buddy cache */
1093 	page = e4b.bd_buddy_page;
1094 	ret = ext4_mb_init_cache(page, e4b.bd_bitmap);
1095 	if (ret)
1096 		goto err;
1097 	if (!PageUptodate(page)) {
1098 		ret = -EIO;
1099 		goto err;
1100 	}
1101 err:
1102 	ext4_mb_put_buddy_page_lock(&e4b);
1103 	return ret;
1104 }
1105 
1106 /*
1107  * Locking note:  This routine calls ext4_mb_init_cache(), which takes the
1108  * block group lock of all groups for this page; do not hold the BG lock when
1109  * calling this routine!
1110  */
1111 static noinline_for_stack int
ext4_mb_load_buddy(struct super_block * sb,ext4_group_t group,struct ext4_buddy * e4b)1112 ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group,
1113 					struct ext4_buddy *e4b)
1114 {
1115 	int blocks_per_page;
1116 	int block;
1117 	int pnum;
1118 	int poff;
1119 	struct page *page;
1120 	int ret;
1121 	struct ext4_group_info *grp;
1122 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1123 	struct inode *inode = sbi->s_buddy_cache;
1124 
1125 	might_sleep();
1126 	mb_debug(1, "load group %u\n", group);
1127 
1128 	blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
1129 	grp = ext4_get_group_info(sb, group);
1130 
1131 	e4b->bd_blkbits = sb->s_blocksize_bits;
1132 	e4b->bd_info = grp;
1133 	e4b->bd_sb = sb;
1134 	e4b->bd_group = group;
1135 	e4b->bd_buddy_page = NULL;
1136 	e4b->bd_bitmap_page = NULL;
1137 
1138 	if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
1139 		/*
1140 		 * we need full data about the group
1141 		 * to make a good selection
1142 		 */
1143 		ret = ext4_mb_init_group(sb, group);
1144 		if (ret)
1145 			return ret;
1146 	}
1147 
1148 	/*
1149 	 * the buddy cache inode stores the block bitmap
1150 	 * and buddy information in consecutive blocks.
1151 	 * So for each group we need two blocks.
1152 	 */
1153 	block = group * 2;
1154 	pnum = block / blocks_per_page;
1155 	poff = block % blocks_per_page;
1156 
1157 	/* we could use find_or_create_page(), but it locks page
1158 	 * what we'd like to avoid in fast path ... */
1159 	page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED);
1160 	if (page == NULL || !PageUptodate(page)) {
1161 		if (page)
1162 			/*
1163 			 * drop the page reference and try
1164 			 * to get the page with lock. If we
1165 			 * are not uptodate that implies
1166 			 * somebody just created the page but
1167 			 * is yet to initialize the same. So
1168 			 * wait for it to initialize.
1169 			 */
1170 			page_cache_release(page);
1171 		page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
1172 		if (page) {
1173 			BUG_ON(page->mapping != inode->i_mapping);
1174 			if (!PageUptodate(page)) {
1175 				ret = ext4_mb_init_cache(page, NULL);
1176 				if (ret) {
1177 					unlock_page(page);
1178 					goto err;
1179 				}
1180 				mb_cmp_bitmaps(e4b, page_address(page) +
1181 					       (poff * sb->s_blocksize));
1182 			}
1183 			unlock_page(page);
1184 		}
1185 	}
1186 	if (page == NULL) {
1187 		ret = -ENOMEM;
1188 		goto err;
1189 	}
1190 	if (!PageUptodate(page)) {
1191 		ret = -EIO;
1192 		goto err;
1193 	}
1194 
1195 	/* Pages marked accessed already */
1196 	e4b->bd_bitmap_page = page;
1197 	e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1198 
1199 	block++;
1200 	pnum = block / blocks_per_page;
1201 	poff = block % blocks_per_page;
1202 
1203 	page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED);
1204 	if (page == NULL || !PageUptodate(page)) {
1205 		if (page)
1206 			page_cache_release(page);
1207 		page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
1208 		if (page) {
1209 			BUG_ON(page->mapping != inode->i_mapping);
1210 			if (!PageUptodate(page)) {
1211 				ret = ext4_mb_init_cache(page, e4b->bd_bitmap);
1212 				if (ret) {
1213 					unlock_page(page);
1214 					goto err;
1215 				}
1216 			}
1217 			unlock_page(page);
1218 		}
1219 	}
1220 	if (page == NULL) {
1221 		ret = -ENOMEM;
1222 		goto err;
1223 	}
1224 	if (!PageUptodate(page)) {
1225 		ret = -EIO;
1226 		goto err;
1227 	}
1228 
1229 	/* Pages marked accessed already */
1230 	e4b->bd_buddy_page = page;
1231 	e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize);
1232 
1233 	BUG_ON(e4b->bd_bitmap_page == NULL);
1234 	BUG_ON(e4b->bd_buddy_page == NULL);
1235 
1236 	return 0;
1237 
1238 err:
1239 	if (page)
1240 		page_cache_release(page);
1241 	if (e4b->bd_bitmap_page)
1242 		page_cache_release(e4b->bd_bitmap_page);
1243 	if (e4b->bd_buddy_page)
1244 		page_cache_release(e4b->bd_buddy_page);
1245 	e4b->bd_buddy = NULL;
1246 	e4b->bd_bitmap = NULL;
1247 	return ret;
1248 }
1249 
ext4_mb_unload_buddy(struct ext4_buddy * e4b)1250 static void ext4_mb_unload_buddy(struct ext4_buddy *e4b)
1251 {
1252 	if (e4b->bd_bitmap_page)
1253 		page_cache_release(e4b->bd_bitmap_page);
1254 	if (e4b->bd_buddy_page)
1255 		page_cache_release(e4b->bd_buddy_page);
1256 }
1257 
1258 
mb_find_order_for_block(struct ext4_buddy * e4b,int block)1259 static int mb_find_order_for_block(struct ext4_buddy *e4b, int block)
1260 {
1261 	int order = 1;
1262 	int bb_incr = 1 << (e4b->bd_blkbits - 1);
1263 	void *bb;
1264 
1265 	BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
1266 	BUG_ON(block >= (1 << (e4b->bd_blkbits + 3)));
1267 
1268 	bb = e4b->bd_buddy;
1269 	while (order <= e4b->bd_blkbits + 1) {
1270 		block = block >> 1;
1271 		if (!mb_test_bit(block, bb)) {
1272 			/* this block is part of buddy of order 'order' */
1273 			return order;
1274 		}
1275 		bb += bb_incr;
1276 		bb_incr >>= 1;
1277 		order++;
1278 	}
1279 	return 0;
1280 }
1281 
mb_clear_bits(void * bm,int cur,int len)1282 static void mb_clear_bits(void *bm, int cur, int len)
1283 {
1284 	__u32 *addr;
1285 
1286 	len = cur + len;
1287 	while (cur < len) {
1288 		if ((cur & 31) == 0 && (len - cur) >= 32) {
1289 			/* fast path: clear whole word at once */
1290 			addr = bm + (cur >> 3);
1291 			*addr = 0;
1292 			cur += 32;
1293 			continue;
1294 		}
1295 		mb_clear_bit(cur, bm);
1296 		cur++;
1297 	}
1298 }
1299 
1300 /* clear bits in given range
1301  * will return first found zero bit if any, -1 otherwise
1302  */
mb_test_and_clear_bits(void * bm,int cur,int len)1303 static int mb_test_and_clear_bits(void *bm, int cur, int len)
1304 {
1305 	__u32 *addr;
1306 	int zero_bit = -1;
1307 
1308 	len = cur + len;
1309 	while (cur < len) {
1310 		if ((cur & 31) == 0 && (len - cur) >= 32) {
1311 			/* fast path: clear whole word at once */
1312 			addr = bm + (cur >> 3);
1313 			if (*addr != (__u32)(-1) && zero_bit == -1)
1314 				zero_bit = cur + mb_find_next_zero_bit(addr, 32, 0);
1315 			*addr = 0;
1316 			cur += 32;
1317 			continue;
1318 		}
1319 		if (!mb_test_and_clear_bit(cur, bm) && zero_bit == -1)
1320 			zero_bit = cur;
1321 		cur++;
1322 	}
1323 
1324 	return zero_bit;
1325 }
1326 
ext4_set_bits(void * bm,int cur,int len)1327 void ext4_set_bits(void *bm, int cur, int len)
1328 {
1329 	__u32 *addr;
1330 
1331 	len = cur + len;
1332 	while (cur < len) {
1333 		if ((cur & 31) == 0 && (len - cur) >= 32) {
1334 			/* fast path: set whole word at once */
1335 			addr = bm + (cur >> 3);
1336 			*addr = 0xffffffff;
1337 			cur += 32;
1338 			continue;
1339 		}
1340 		mb_set_bit(cur, bm);
1341 		cur++;
1342 	}
1343 }
1344 
1345 /*
1346  * _________________________________________________________________ */
1347 
mb_buddy_adjust_border(int * bit,void * bitmap,int side)1348 static inline int mb_buddy_adjust_border(int* bit, void* bitmap, int side)
1349 {
1350 	if (mb_test_bit(*bit + side, bitmap)) {
1351 		mb_clear_bit(*bit, bitmap);
1352 		(*bit) -= side;
1353 		return 1;
1354 	}
1355 	else {
1356 		(*bit) += side;
1357 		mb_set_bit(*bit, bitmap);
1358 		return -1;
1359 	}
1360 }
1361 
mb_buddy_mark_free(struct ext4_buddy * e4b,int first,int last)1362 static void mb_buddy_mark_free(struct ext4_buddy *e4b, int first, int last)
1363 {
1364 	int max;
1365 	int order = 1;
1366 	void *buddy = mb_find_buddy(e4b, order, &max);
1367 
1368 	while (buddy) {
1369 		void *buddy2;
1370 
1371 		/* Bits in range [first; last] are known to be set since
1372 		 * corresponding blocks were allocated. Bits in range
1373 		 * (first; last) will stay set because they form buddies on
1374 		 * upper layer. We just deal with borders if they don't
1375 		 * align with upper layer and then go up.
1376 		 * Releasing entire group is all about clearing
1377 		 * single bit of highest order buddy.
1378 		 */
1379 
1380 		/* Example:
1381 		 * ---------------------------------
1382 		 * |   1   |   1   |   1   |   1   |
1383 		 * ---------------------------------
1384 		 * | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
1385 		 * ---------------------------------
1386 		 *   0   1   2   3   4   5   6   7
1387 		 *      \_____________________/
1388 		 *
1389 		 * Neither [1] nor [6] is aligned to above layer.
1390 		 * Left neighbour [0] is free, so mark it busy,
1391 		 * decrease bb_counters and extend range to
1392 		 * [0; 6]
1393 		 * Right neighbour [7] is busy. It can't be coaleasced with [6], so
1394 		 * mark [6] free, increase bb_counters and shrink range to
1395 		 * [0; 5].
1396 		 * Then shift range to [0; 2], go up and do the same.
1397 		 */
1398 
1399 
1400 		if (first & 1)
1401 			e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&first, buddy, -1);
1402 		if (!(last & 1))
1403 			e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&last, buddy, 1);
1404 		if (first > last)
1405 			break;
1406 		order++;
1407 
1408 		if (first == last || !(buddy2 = mb_find_buddy(e4b, order, &max))) {
1409 			mb_clear_bits(buddy, first, last - first + 1);
1410 			e4b->bd_info->bb_counters[order - 1] += last - first + 1;
1411 			break;
1412 		}
1413 		first >>= 1;
1414 		last >>= 1;
1415 		buddy = buddy2;
1416 	}
1417 }
1418 
mb_free_blocks(struct inode * inode,struct ext4_buddy * e4b,int first,int count)1419 static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b,
1420 			   int first, int count)
1421 {
1422 	int left_is_free = 0;
1423 	int right_is_free = 0;
1424 	int block;
1425 	int last = first + count - 1;
1426 	struct super_block *sb = e4b->bd_sb;
1427 
1428 	if (WARN_ON(count == 0))
1429 		return;
1430 	BUG_ON(last >= (sb->s_blocksize << 3));
1431 	assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
1432 	/* Don't bother if the block group is corrupt. */
1433 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info)))
1434 		return;
1435 
1436 	mb_check_buddy(e4b);
1437 	mb_free_blocks_double(inode, e4b, first, count);
1438 
1439 	e4b->bd_info->bb_free += count;
1440 	if (first < e4b->bd_info->bb_first_free)
1441 		e4b->bd_info->bb_first_free = first;
1442 
1443 	/* access memory sequentially: check left neighbour,
1444 	 * clear range and then check right neighbour
1445 	 */
1446 	if (first != 0)
1447 		left_is_free = !mb_test_bit(first - 1, e4b->bd_bitmap);
1448 	block = mb_test_and_clear_bits(e4b->bd_bitmap, first, count);
1449 	if (last + 1 < EXT4_SB(sb)->s_mb_maxs[0])
1450 		right_is_free = !mb_test_bit(last + 1, e4b->bd_bitmap);
1451 
1452 	if (unlikely(block != -1)) {
1453 		struct ext4_sb_info *sbi = EXT4_SB(sb);
1454 		ext4_fsblk_t blocknr;
1455 
1456 		blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
1457 		blocknr += EXT4_C2B(EXT4_SB(sb), block);
1458 		ext4_grp_locked_error(sb, e4b->bd_group,
1459 				      inode ? inode->i_ino : 0,
1460 				      blocknr,
1461 				      "freeing already freed block "
1462 				      "(bit %u); block bitmap corrupt.",
1463 				      block);
1464 		if (!EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))
1465 			percpu_counter_sub(&sbi->s_freeclusters_counter,
1466 					   e4b->bd_info->bb_free);
1467 		/* Mark the block group as corrupt. */
1468 		set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT,
1469 			&e4b->bd_info->bb_state);
1470 		mb_regenerate_buddy(e4b);
1471 		goto done;
1472 	}
1473 
1474 	/* let's maintain fragments counter */
1475 	if (left_is_free && right_is_free)
1476 		e4b->bd_info->bb_fragments--;
1477 	else if (!left_is_free && !right_is_free)
1478 		e4b->bd_info->bb_fragments++;
1479 
1480 	/* buddy[0] == bd_bitmap is a special case, so handle
1481 	 * it right away and let mb_buddy_mark_free stay free of
1482 	 * zero order checks.
1483 	 * Check if neighbours are to be coaleasced,
1484 	 * adjust bitmap bb_counters and borders appropriately.
1485 	 */
1486 	if (first & 1) {
1487 		first += !left_is_free;
1488 		e4b->bd_info->bb_counters[0] += left_is_free ? -1 : 1;
1489 	}
1490 	if (!(last & 1)) {
1491 		last -= !right_is_free;
1492 		e4b->bd_info->bb_counters[0] += right_is_free ? -1 : 1;
1493 	}
1494 
1495 	if (first <= last)
1496 		mb_buddy_mark_free(e4b, first >> 1, last >> 1);
1497 
1498 done:
1499 	mb_set_largest_free_order(sb, e4b->bd_info);
1500 	mb_check_buddy(e4b);
1501 }
1502 
mb_find_extent(struct ext4_buddy * e4b,int block,int needed,struct ext4_free_extent * ex)1503 static int mb_find_extent(struct ext4_buddy *e4b, int block,
1504 				int needed, struct ext4_free_extent *ex)
1505 {
1506 	int next = block;
1507 	int max, order;
1508 	void *buddy;
1509 
1510 	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1511 	BUG_ON(ex == NULL);
1512 
1513 	buddy = mb_find_buddy(e4b, 0, &max);
1514 	BUG_ON(buddy == NULL);
1515 	BUG_ON(block >= max);
1516 	if (mb_test_bit(block, buddy)) {
1517 		ex->fe_len = 0;
1518 		ex->fe_start = 0;
1519 		ex->fe_group = 0;
1520 		return 0;
1521 	}
1522 
1523 	/* find actual order */
1524 	order = mb_find_order_for_block(e4b, block);
1525 	block = block >> order;
1526 
1527 	ex->fe_len = 1 << order;
1528 	ex->fe_start = block << order;
1529 	ex->fe_group = e4b->bd_group;
1530 
1531 	/* calc difference from given start */
1532 	next = next - ex->fe_start;
1533 	ex->fe_len -= next;
1534 	ex->fe_start += next;
1535 
1536 	while (needed > ex->fe_len &&
1537 	       mb_find_buddy(e4b, order, &max)) {
1538 
1539 		if (block + 1 >= max)
1540 			break;
1541 
1542 		next = (block + 1) * (1 << order);
1543 		if (mb_test_bit(next, e4b->bd_bitmap))
1544 			break;
1545 
1546 		order = mb_find_order_for_block(e4b, next);
1547 
1548 		block = next >> order;
1549 		ex->fe_len += 1 << order;
1550 	}
1551 
1552 	BUG_ON(ex->fe_start + ex->fe_len > (1 << (e4b->bd_blkbits + 3)));
1553 	return ex->fe_len;
1554 }
1555 
mb_mark_used(struct ext4_buddy * e4b,struct ext4_free_extent * ex)1556 static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex)
1557 {
1558 	int ord;
1559 	int mlen = 0;
1560 	int max = 0;
1561 	int cur;
1562 	int start = ex->fe_start;
1563 	int len = ex->fe_len;
1564 	unsigned ret = 0;
1565 	int len0 = len;
1566 	void *buddy;
1567 
1568 	BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3));
1569 	BUG_ON(e4b->bd_group != ex->fe_group);
1570 	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1571 	mb_check_buddy(e4b);
1572 	mb_mark_used_double(e4b, start, len);
1573 
1574 	e4b->bd_info->bb_free -= len;
1575 	if (e4b->bd_info->bb_first_free == start)
1576 		e4b->bd_info->bb_first_free += len;
1577 
1578 	/* let's maintain fragments counter */
1579 	if (start != 0)
1580 		mlen = !mb_test_bit(start - 1, e4b->bd_bitmap);
1581 	if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0])
1582 		max = !mb_test_bit(start + len, e4b->bd_bitmap);
1583 	if (mlen && max)
1584 		e4b->bd_info->bb_fragments++;
1585 	else if (!mlen && !max)
1586 		e4b->bd_info->bb_fragments--;
1587 
1588 	/* let's maintain buddy itself */
1589 	while (len) {
1590 		ord = mb_find_order_for_block(e4b, start);
1591 
1592 		if (((start >> ord) << ord) == start && len >= (1 << ord)) {
1593 			/* the whole chunk may be allocated at once! */
1594 			mlen = 1 << ord;
1595 			buddy = mb_find_buddy(e4b, ord, &max);
1596 			BUG_ON((start >> ord) >= max);
1597 			mb_set_bit(start >> ord, buddy);
1598 			e4b->bd_info->bb_counters[ord]--;
1599 			start += mlen;
1600 			len -= mlen;
1601 			BUG_ON(len < 0);
1602 			continue;
1603 		}
1604 
1605 		/* store for history */
1606 		if (ret == 0)
1607 			ret = len | (ord << 16);
1608 
1609 		/* we have to split large buddy */
1610 		BUG_ON(ord <= 0);
1611 		buddy = mb_find_buddy(e4b, ord, &max);
1612 		mb_set_bit(start >> ord, buddy);
1613 		e4b->bd_info->bb_counters[ord]--;
1614 
1615 		ord--;
1616 		cur = (start >> ord) & ~1U;
1617 		buddy = mb_find_buddy(e4b, ord, &max);
1618 		mb_clear_bit(cur, buddy);
1619 		mb_clear_bit(cur + 1, buddy);
1620 		e4b->bd_info->bb_counters[ord]++;
1621 		e4b->bd_info->bb_counters[ord]++;
1622 	}
1623 	mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info);
1624 
1625 	ext4_set_bits(e4b->bd_bitmap, ex->fe_start, len0);
1626 	mb_check_buddy(e4b);
1627 
1628 	return ret;
1629 }
1630 
1631 /*
1632  * Must be called under group lock!
1633  */
ext4_mb_use_best_found(struct ext4_allocation_context * ac,struct ext4_buddy * e4b)1634 static void ext4_mb_use_best_found(struct ext4_allocation_context *ac,
1635 					struct ext4_buddy *e4b)
1636 {
1637 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1638 	int ret;
1639 
1640 	BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group);
1641 	BUG_ON(ac->ac_status == AC_STATUS_FOUND);
1642 
1643 	ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len);
1644 	ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical;
1645 	ret = mb_mark_used(e4b, &ac->ac_b_ex);
1646 
1647 	/* preallocation can change ac_b_ex, thus we store actually
1648 	 * allocated blocks for history */
1649 	ac->ac_f_ex = ac->ac_b_ex;
1650 
1651 	ac->ac_status = AC_STATUS_FOUND;
1652 	ac->ac_tail = ret & 0xffff;
1653 	ac->ac_buddy = ret >> 16;
1654 
1655 	/*
1656 	 * take the page reference. We want the page to be pinned
1657 	 * so that we don't get a ext4_mb_init_cache_call for this
1658 	 * group until we update the bitmap. That would mean we
1659 	 * double allocate blocks. The reference is dropped
1660 	 * in ext4_mb_release_context
1661 	 */
1662 	ac->ac_bitmap_page = e4b->bd_bitmap_page;
1663 	get_page(ac->ac_bitmap_page);
1664 	ac->ac_buddy_page = e4b->bd_buddy_page;
1665 	get_page(ac->ac_buddy_page);
1666 	/* store last allocated for subsequent stream allocation */
1667 	if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
1668 		spin_lock(&sbi->s_md_lock);
1669 		sbi->s_mb_last_group = ac->ac_f_ex.fe_group;
1670 		sbi->s_mb_last_start = ac->ac_f_ex.fe_start;
1671 		spin_unlock(&sbi->s_md_lock);
1672 	}
1673 }
1674 
1675 /*
1676  * regular allocator, for general purposes allocation
1677  */
1678 
ext4_mb_check_limits(struct ext4_allocation_context * ac,struct ext4_buddy * e4b,int finish_group)1679 static void ext4_mb_check_limits(struct ext4_allocation_context *ac,
1680 					struct ext4_buddy *e4b,
1681 					int finish_group)
1682 {
1683 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1684 	struct ext4_free_extent *bex = &ac->ac_b_ex;
1685 	struct ext4_free_extent *gex = &ac->ac_g_ex;
1686 	struct ext4_free_extent ex;
1687 	int max;
1688 
1689 	if (ac->ac_status == AC_STATUS_FOUND)
1690 		return;
1691 	/*
1692 	 * We don't want to scan for a whole year
1693 	 */
1694 	if (ac->ac_found > sbi->s_mb_max_to_scan &&
1695 			!(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1696 		ac->ac_status = AC_STATUS_BREAK;
1697 		return;
1698 	}
1699 
1700 	/*
1701 	 * Haven't found good chunk so far, let's continue
1702 	 */
1703 	if (bex->fe_len < gex->fe_len)
1704 		return;
1705 
1706 	if ((finish_group || ac->ac_found > sbi->s_mb_min_to_scan)
1707 			&& bex->fe_group == e4b->bd_group) {
1708 		/* recheck chunk's availability - we don't know
1709 		 * when it was found (within this lock-unlock
1710 		 * period or not) */
1711 		max = mb_find_extent(e4b, bex->fe_start, gex->fe_len, &ex);
1712 		if (max >= gex->fe_len) {
1713 			ext4_mb_use_best_found(ac, e4b);
1714 			return;
1715 		}
1716 	}
1717 }
1718 
1719 /*
1720  * The routine checks whether found extent is good enough. If it is,
1721  * then the extent gets marked used and flag is set to the context
1722  * to stop scanning. Otherwise, the extent is compared with the
1723  * previous found extent and if new one is better, then it's stored
1724  * in the context. Later, the best found extent will be used, if
1725  * mballoc can't find good enough extent.
1726  *
1727  * FIXME: real allocation policy is to be designed yet!
1728  */
ext4_mb_measure_extent(struct ext4_allocation_context * ac,struct ext4_free_extent * ex,struct ext4_buddy * e4b)1729 static void ext4_mb_measure_extent(struct ext4_allocation_context *ac,
1730 					struct ext4_free_extent *ex,
1731 					struct ext4_buddy *e4b)
1732 {
1733 	struct ext4_free_extent *bex = &ac->ac_b_ex;
1734 	struct ext4_free_extent *gex = &ac->ac_g_ex;
1735 
1736 	BUG_ON(ex->fe_len <= 0);
1737 	BUG_ON(ex->fe_len > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
1738 	BUG_ON(ex->fe_start >= EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
1739 	BUG_ON(ac->ac_status != AC_STATUS_CONTINUE);
1740 
1741 	ac->ac_found++;
1742 
1743 	/*
1744 	 * The special case - take what you catch first
1745 	 */
1746 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1747 		*bex = *ex;
1748 		ext4_mb_use_best_found(ac, e4b);
1749 		return;
1750 	}
1751 
1752 	/*
1753 	 * Let's check whether the chuck is good enough
1754 	 */
1755 	if (ex->fe_len == gex->fe_len) {
1756 		*bex = *ex;
1757 		ext4_mb_use_best_found(ac, e4b);
1758 		return;
1759 	}
1760 
1761 	/*
1762 	 * If this is first found extent, just store it in the context
1763 	 */
1764 	if (bex->fe_len == 0) {
1765 		*bex = *ex;
1766 		return;
1767 	}
1768 
1769 	/*
1770 	 * If new found extent is better, store it in the context
1771 	 */
1772 	if (bex->fe_len < gex->fe_len) {
1773 		/* if the request isn't satisfied, any found extent
1774 		 * larger than previous best one is better */
1775 		if (ex->fe_len > bex->fe_len)
1776 			*bex = *ex;
1777 	} else if (ex->fe_len > gex->fe_len) {
1778 		/* if the request is satisfied, then we try to find
1779 		 * an extent that still satisfy the request, but is
1780 		 * smaller than previous one */
1781 		if (ex->fe_len < bex->fe_len)
1782 			*bex = *ex;
1783 	}
1784 
1785 	ext4_mb_check_limits(ac, e4b, 0);
1786 }
1787 
1788 static noinline_for_stack
ext4_mb_try_best_found(struct ext4_allocation_context * ac,struct ext4_buddy * e4b)1789 int ext4_mb_try_best_found(struct ext4_allocation_context *ac,
1790 					struct ext4_buddy *e4b)
1791 {
1792 	struct ext4_free_extent ex = ac->ac_b_ex;
1793 	ext4_group_t group = ex.fe_group;
1794 	int max;
1795 	int err;
1796 
1797 	BUG_ON(ex.fe_len <= 0);
1798 	err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1799 	if (err)
1800 		return err;
1801 
1802 	ext4_lock_group(ac->ac_sb, group);
1803 	max = mb_find_extent(e4b, ex.fe_start, ex.fe_len, &ex);
1804 
1805 	if (max > 0) {
1806 		ac->ac_b_ex = ex;
1807 		ext4_mb_use_best_found(ac, e4b);
1808 	}
1809 
1810 	ext4_unlock_group(ac->ac_sb, group);
1811 	ext4_mb_unload_buddy(e4b);
1812 
1813 	return 0;
1814 }
1815 
1816 static noinline_for_stack
ext4_mb_find_by_goal(struct ext4_allocation_context * ac,struct ext4_buddy * e4b)1817 int ext4_mb_find_by_goal(struct ext4_allocation_context *ac,
1818 				struct ext4_buddy *e4b)
1819 {
1820 	ext4_group_t group = ac->ac_g_ex.fe_group;
1821 	int max;
1822 	int err;
1823 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1824 	struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
1825 	struct ext4_free_extent ex;
1826 
1827 	if (!(ac->ac_flags & EXT4_MB_HINT_TRY_GOAL))
1828 		return 0;
1829 	if (grp->bb_free == 0)
1830 		return 0;
1831 
1832 	err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1833 	if (err)
1834 		return err;
1835 
1836 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))) {
1837 		ext4_mb_unload_buddy(e4b);
1838 		return 0;
1839 	}
1840 
1841 	ext4_lock_group(ac->ac_sb, group);
1842 	max = mb_find_extent(e4b, ac->ac_g_ex.fe_start,
1843 			     ac->ac_g_ex.fe_len, &ex);
1844 	ex.fe_logical = 0xDEADFA11; /* debug value */
1845 
1846 	if (max >= ac->ac_g_ex.fe_len && ac->ac_g_ex.fe_len == sbi->s_stripe) {
1847 		ext4_fsblk_t start;
1848 
1849 		start = ext4_group_first_block_no(ac->ac_sb, e4b->bd_group) +
1850 			ex.fe_start;
1851 		/* use do_div to get remainder (would be 64-bit modulo) */
1852 		if (do_div(start, sbi->s_stripe) == 0) {
1853 			ac->ac_found++;
1854 			ac->ac_b_ex = ex;
1855 			ext4_mb_use_best_found(ac, e4b);
1856 		}
1857 	} else if (max >= ac->ac_g_ex.fe_len) {
1858 		BUG_ON(ex.fe_len <= 0);
1859 		BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1860 		BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1861 		ac->ac_found++;
1862 		ac->ac_b_ex = ex;
1863 		ext4_mb_use_best_found(ac, e4b);
1864 	} else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) {
1865 		/* Sometimes, caller may want to merge even small
1866 		 * number of blocks to an existing extent */
1867 		BUG_ON(ex.fe_len <= 0);
1868 		BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1869 		BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1870 		ac->ac_found++;
1871 		ac->ac_b_ex = ex;
1872 		ext4_mb_use_best_found(ac, e4b);
1873 	}
1874 	ext4_unlock_group(ac->ac_sb, group);
1875 	ext4_mb_unload_buddy(e4b);
1876 
1877 	return 0;
1878 }
1879 
1880 /*
1881  * The routine scans buddy structures (not bitmap!) from given order
1882  * to max order and tries to find big enough chunk to satisfy the req
1883  */
1884 static noinline_for_stack
ext4_mb_simple_scan_group(struct ext4_allocation_context * ac,struct ext4_buddy * e4b)1885 void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac,
1886 					struct ext4_buddy *e4b)
1887 {
1888 	struct super_block *sb = ac->ac_sb;
1889 	struct ext4_group_info *grp = e4b->bd_info;
1890 	void *buddy;
1891 	int i;
1892 	int k;
1893 	int max;
1894 
1895 	BUG_ON(ac->ac_2order <= 0);
1896 	for (i = ac->ac_2order; i <= sb->s_blocksize_bits + 1; i++) {
1897 		if (grp->bb_counters[i] == 0)
1898 			continue;
1899 
1900 		buddy = mb_find_buddy(e4b, i, &max);
1901 		BUG_ON(buddy == NULL);
1902 
1903 		k = mb_find_next_zero_bit(buddy, max, 0);
1904 		BUG_ON(k >= max);
1905 
1906 		ac->ac_found++;
1907 
1908 		ac->ac_b_ex.fe_len = 1 << i;
1909 		ac->ac_b_ex.fe_start = k << i;
1910 		ac->ac_b_ex.fe_group = e4b->bd_group;
1911 
1912 		ext4_mb_use_best_found(ac, e4b);
1913 
1914 		BUG_ON(ac->ac_b_ex.fe_len != ac->ac_g_ex.fe_len);
1915 
1916 		if (EXT4_SB(sb)->s_mb_stats)
1917 			atomic_inc(&EXT4_SB(sb)->s_bal_2orders);
1918 
1919 		break;
1920 	}
1921 }
1922 
1923 /*
1924  * The routine scans the group and measures all found extents.
1925  * In order to optimize scanning, caller must pass number of
1926  * free blocks in the group, so the routine can know upper limit.
1927  */
1928 static noinline_for_stack
ext4_mb_complex_scan_group(struct ext4_allocation_context * ac,struct ext4_buddy * e4b)1929 void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac,
1930 					struct ext4_buddy *e4b)
1931 {
1932 	struct super_block *sb = ac->ac_sb;
1933 	void *bitmap = e4b->bd_bitmap;
1934 	struct ext4_free_extent ex;
1935 	int i;
1936 	int free;
1937 
1938 	free = e4b->bd_info->bb_free;
1939 	BUG_ON(free <= 0);
1940 
1941 	i = e4b->bd_info->bb_first_free;
1942 
1943 	while (free && ac->ac_status == AC_STATUS_CONTINUE) {
1944 		i = mb_find_next_zero_bit(bitmap,
1945 						EXT4_CLUSTERS_PER_GROUP(sb), i);
1946 		if (i >= EXT4_CLUSTERS_PER_GROUP(sb)) {
1947 			/*
1948 			 * IF we have corrupt bitmap, we won't find any
1949 			 * free blocks even though group info says we
1950 			 * we have free blocks
1951 			 */
1952 			ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
1953 					"%d free clusters as per "
1954 					"group info. But bitmap says 0",
1955 					free);
1956 			break;
1957 		}
1958 
1959 		mb_find_extent(e4b, i, ac->ac_g_ex.fe_len, &ex);
1960 		BUG_ON(ex.fe_len <= 0);
1961 		if (free < ex.fe_len) {
1962 			ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
1963 					"%d free clusters as per "
1964 					"group info. But got %d blocks",
1965 					free, ex.fe_len);
1966 			/*
1967 			 * The number of free blocks differs. This mostly
1968 			 * indicate that the bitmap is corrupt. So exit
1969 			 * without claiming the space.
1970 			 */
1971 			break;
1972 		}
1973 		ex.fe_logical = 0xDEADC0DE; /* debug value */
1974 		ext4_mb_measure_extent(ac, &ex, e4b);
1975 
1976 		i += ex.fe_len;
1977 		free -= ex.fe_len;
1978 	}
1979 
1980 	ext4_mb_check_limits(ac, e4b, 1);
1981 }
1982 
1983 /*
1984  * This is a special case for storages like raid5
1985  * we try to find stripe-aligned chunks for stripe-size-multiple requests
1986  */
1987 static noinline_for_stack
ext4_mb_scan_aligned(struct ext4_allocation_context * ac,struct ext4_buddy * e4b)1988 void ext4_mb_scan_aligned(struct ext4_allocation_context *ac,
1989 				 struct ext4_buddy *e4b)
1990 {
1991 	struct super_block *sb = ac->ac_sb;
1992 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1993 	void *bitmap = e4b->bd_bitmap;
1994 	struct ext4_free_extent ex;
1995 	ext4_fsblk_t first_group_block;
1996 	ext4_fsblk_t a;
1997 	ext4_grpblk_t i;
1998 	int max;
1999 
2000 	BUG_ON(sbi->s_stripe == 0);
2001 
2002 	/* find first stripe-aligned block in group */
2003 	first_group_block = ext4_group_first_block_no(sb, e4b->bd_group);
2004 
2005 	a = first_group_block + sbi->s_stripe - 1;
2006 	do_div(a, sbi->s_stripe);
2007 	i = (a * sbi->s_stripe) - first_group_block;
2008 
2009 	while (i < EXT4_CLUSTERS_PER_GROUP(sb)) {
2010 		if (!mb_test_bit(i, bitmap)) {
2011 			max = mb_find_extent(e4b, i, sbi->s_stripe, &ex);
2012 			if (max >= sbi->s_stripe) {
2013 				ac->ac_found++;
2014 				ex.fe_logical = 0xDEADF00D; /* debug value */
2015 				ac->ac_b_ex = ex;
2016 				ext4_mb_use_best_found(ac, e4b);
2017 				break;
2018 			}
2019 		}
2020 		i += sbi->s_stripe;
2021 	}
2022 }
2023 
2024 /*
2025  * This is now called BEFORE we load the buddy bitmap.
2026  * Returns either 1 or 0 indicating that the group is either suitable
2027  * for the allocation or not. In addition it can also return negative
2028  * error code when something goes wrong.
2029  */
ext4_mb_good_group(struct ext4_allocation_context * ac,ext4_group_t group,int cr)2030 static int ext4_mb_good_group(struct ext4_allocation_context *ac,
2031 				ext4_group_t group, int cr)
2032 {
2033 	unsigned free, fragments;
2034 	int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb));
2035 	struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
2036 
2037 	BUG_ON(cr < 0 || cr >= 4);
2038 
2039 	free = grp->bb_free;
2040 	if (free == 0)
2041 		return 0;
2042 	if (cr <= 2 && free < ac->ac_g_ex.fe_len)
2043 		return 0;
2044 
2045 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(grp)))
2046 		return 0;
2047 
2048 	/* We only do this if the grp has never been initialized */
2049 	if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
2050 		int ret = ext4_mb_init_group(ac->ac_sb, group);
2051 		if (ret)
2052 			return ret;
2053 	}
2054 
2055 	fragments = grp->bb_fragments;
2056 	if (fragments == 0)
2057 		return 0;
2058 
2059 	switch (cr) {
2060 	case 0:
2061 		BUG_ON(ac->ac_2order == 0);
2062 
2063 		/* Avoid using the first bg of a flexgroup for data files */
2064 		if ((ac->ac_flags & EXT4_MB_HINT_DATA) &&
2065 		    (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) &&
2066 		    ((group % flex_size) == 0))
2067 			return 0;
2068 
2069 		if ((ac->ac_2order > ac->ac_sb->s_blocksize_bits+1) ||
2070 		    (free / fragments) >= ac->ac_g_ex.fe_len)
2071 			return 1;
2072 
2073 		if (grp->bb_largest_free_order < ac->ac_2order)
2074 			return 0;
2075 
2076 		return 1;
2077 	case 1:
2078 		if ((free / fragments) >= ac->ac_g_ex.fe_len)
2079 			return 1;
2080 		break;
2081 	case 2:
2082 		if (free >= ac->ac_g_ex.fe_len)
2083 			return 1;
2084 		break;
2085 	case 3:
2086 		return 1;
2087 	default:
2088 		BUG();
2089 	}
2090 
2091 	return 0;
2092 }
2093 
2094 static noinline_for_stack int
ext4_mb_regular_allocator(struct ext4_allocation_context * ac)2095 ext4_mb_regular_allocator(struct ext4_allocation_context *ac)
2096 {
2097 	ext4_group_t ngroups, group, i;
2098 	int cr;
2099 	int err = 0, first_err = 0;
2100 	struct ext4_sb_info *sbi;
2101 	struct super_block *sb;
2102 	struct ext4_buddy e4b;
2103 
2104 	sb = ac->ac_sb;
2105 	sbi = EXT4_SB(sb);
2106 	ngroups = ext4_get_groups_count(sb);
2107 	/* non-extent files are limited to low blocks/groups */
2108 	if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)))
2109 		ngroups = sbi->s_blockfile_groups;
2110 
2111 	BUG_ON(ac->ac_status == AC_STATUS_FOUND);
2112 
2113 	/* first, try the goal */
2114 	err = ext4_mb_find_by_goal(ac, &e4b);
2115 	if (err || ac->ac_status == AC_STATUS_FOUND)
2116 		goto out;
2117 
2118 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
2119 		goto out;
2120 
2121 	/*
2122 	 * ac->ac2_order is set only if the fe_len is a power of 2
2123 	 * if ac2_order is set we also set criteria to 0 so that we
2124 	 * try exact allocation using buddy.
2125 	 */
2126 	i = fls(ac->ac_g_ex.fe_len);
2127 	ac->ac_2order = 0;
2128 	/*
2129 	 * We search using buddy data only if the order of the request
2130 	 * is greater than equal to the sbi_s_mb_order2_reqs
2131 	 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req
2132 	 */
2133 	if (i >= sbi->s_mb_order2_reqs) {
2134 		/*
2135 		 * This should tell if fe_len is exactly power of 2
2136 		 */
2137 		if ((ac->ac_g_ex.fe_len & (~(1 << (i - 1)))) == 0)
2138 			ac->ac_2order = i - 1;
2139 	}
2140 
2141 	/* if stream allocation is enabled, use global goal */
2142 	if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
2143 		/* TBD: may be hot point */
2144 		spin_lock(&sbi->s_md_lock);
2145 		ac->ac_g_ex.fe_group = sbi->s_mb_last_group;
2146 		ac->ac_g_ex.fe_start = sbi->s_mb_last_start;
2147 		spin_unlock(&sbi->s_md_lock);
2148 	}
2149 
2150 	/* Let's just scan groups to find more-less suitable blocks */
2151 	cr = ac->ac_2order ? 0 : 1;
2152 	/*
2153 	 * cr == 0 try to get exact allocation,
2154 	 * cr == 3  try to get anything
2155 	 */
2156 repeat:
2157 	for (; cr < 4 && ac->ac_status == AC_STATUS_CONTINUE; cr++) {
2158 		ac->ac_criteria = cr;
2159 		/*
2160 		 * searching for the right group start
2161 		 * from the goal value specified
2162 		 */
2163 		group = ac->ac_g_ex.fe_group;
2164 
2165 		for (i = 0; i < ngroups; group++, i++) {
2166 			int ret = 0;
2167 			cond_resched();
2168 			/*
2169 			 * Artificially restricted ngroups for non-extent
2170 			 * files makes group > ngroups possible on first loop.
2171 			 */
2172 			if (group >= ngroups)
2173 				group = 0;
2174 
2175 			/* This now checks without needing the buddy page */
2176 			ret = ext4_mb_good_group(ac, group, cr);
2177 			if (ret <= 0) {
2178 				if (!first_err)
2179 					first_err = ret;
2180 				continue;
2181 			}
2182 
2183 			err = ext4_mb_load_buddy(sb, group, &e4b);
2184 			if (err)
2185 				goto out;
2186 
2187 			ext4_lock_group(sb, group);
2188 
2189 			/*
2190 			 * We need to check again after locking the
2191 			 * block group
2192 			 */
2193 			ret = ext4_mb_good_group(ac, group, cr);
2194 			if (ret <= 0) {
2195 				ext4_unlock_group(sb, group);
2196 				ext4_mb_unload_buddy(&e4b);
2197 				if (!first_err)
2198 					first_err = ret;
2199 				continue;
2200 			}
2201 
2202 			ac->ac_groups_scanned++;
2203 			if (cr == 0 && ac->ac_2order < sb->s_blocksize_bits+2)
2204 				ext4_mb_simple_scan_group(ac, &e4b);
2205 			else if (cr == 1 && sbi->s_stripe &&
2206 					!(ac->ac_g_ex.fe_len % sbi->s_stripe))
2207 				ext4_mb_scan_aligned(ac, &e4b);
2208 			else
2209 				ext4_mb_complex_scan_group(ac, &e4b);
2210 
2211 			ext4_unlock_group(sb, group);
2212 			ext4_mb_unload_buddy(&e4b);
2213 
2214 			if (ac->ac_status != AC_STATUS_CONTINUE)
2215 				break;
2216 		}
2217 	}
2218 
2219 	if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND &&
2220 	    !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2221 		/*
2222 		 * We've been searching too long. Let's try to allocate
2223 		 * the best chunk we've found so far
2224 		 */
2225 
2226 		ext4_mb_try_best_found(ac, &e4b);
2227 		if (ac->ac_status != AC_STATUS_FOUND) {
2228 			/*
2229 			 * Someone more lucky has already allocated it.
2230 			 * The only thing we can do is just take first
2231 			 * found block(s)
2232 			printk(KERN_DEBUG "EXT4-fs: someone won our chunk\n");
2233 			 */
2234 			ac->ac_b_ex.fe_group = 0;
2235 			ac->ac_b_ex.fe_start = 0;
2236 			ac->ac_b_ex.fe_len = 0;
2237 			ac->ac_status = AC_STATUS_CONTINUE;
2238 			ac->ac_flags |= EXT4_MB_HINT_FIRST;
2239 			cr = 3;
2240 			atomic_inc(&sbi->s_mb_lost_chunks);
2241 			goto repeat;
2242 		}
2243 	}
2244 out:
2245 	if (!err && ac->ac_status != AC_STATUS_FOUND && first_err)
2246 		err = first_err;
2247 	return err;
2248 }
2249 
ext4_mb_seq_groups_start(struct seq_file * seq,loff_t * pos)2250 static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos)
2251 {
2252 	struct super_block *sb = seq->private;
2253 	ext4_group_t group;
2254 
2255 	if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2256 		return NULL;
2257 	group = *pos + 1;
2258 	return (void *) ((unsigned long) group);
2259 }
2260 
ext4_mb_seq_groups_next(struct seq_file * seq,void * v,loff_t * pos)2261 static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos)
2262 {
2263 	struct super_block *sb = seq->private;
2264 	ext4_group_t group;
2265 
2266 	++*pos;
2267 	if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2268 		return NULL;
2269 	group = *pos + 1;
2270 	return (void *) ((unsigned long) group);
2271 }
2272 
ext4_mb_seq_groups_show(struct seq_file * seq,void * v)2273 static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v)
2274 {
2275 	struct super_block *sb = seq->private;
2276 	ext4_group_t group = (ext4_group_t) ((unsigned long) v);
2277 	int i;
2278 	int err, buddy_loaded = 0;
2279 	struct ext4_buddy e4b;
2280 	struct ext4_group_info *grinfo;
2281 	struct sg {
2282 		struct ext4_group_info info;
2283 		ext4_grpblk_t counters[16];
2284 	} sg;
2285 
2286 	group--;
2287 	if (group == 0)
2288 		seq_puts(seq, "#group: free  frags first ["
2289 			      " 2^0   2^1   2^2   2^3   2^4   2^5   2^6  "
2290 			      " 2^7   2^8   2^9   2^10  2^11  2^12  2^13  ]");
2291 
2292 	i = (sb->s_blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) +
2293 		sizeof(struct ext4_group_info);
2294 	grinfo = ext4_get_group_info(sb, group);
2295 	/* Load the group info in memory only if not already loaded. */
2296 	if (unlikely(EXT4_MB_GRP_NEED_INIT(grinfo))) {
2297 		err = ext4_mb_load_buddy(sb, group, &e4b);
2298 		if (err) {
2299 			seq_printf(seq, "#%-5u: I/O error\n", group);
2300 			return 0;
2301 		}
2302 		buddy_loaded = 1;
2303 	}
2304 
2305 	memcpy(&sg, ext4_get_group_info(sb, group), i);
2306 
2307 	if (buddy_loaded)
2308 		ext4_mb_unload_buddy(&e4b);
2309 
2310 	seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free,
2311 			sg.info.bb_fragments, sg.info.bb_first_free);
2312 	for (i = 0; i <= 13; i++)
2313 		seq_printf(seq, " %-5u", i <= sb->s_blocksize_bits + 1 ?
2314 				sg.info.bb_counters[i] : 0);
2315 	seq_printf(seq, " ]\n");
2316 
2317 	return 0;
2318 }
2319 
ext4_mb_seq_groups_stop(struct seq_file * seq,void * v)2320 static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v)
2321 {
2322 }
2323 
2324 static const struct seq_operations ext4_mb_seq_groups_ops = {
2325 	.start  = ext4_mb_seq_groups_start,
2326 	.next   = ext4_mb_seq_groups_next,
2327 	.stop   = ext4_mb_seq_groups_stop,
2328 	.show   = ext4_mb_seq_groups_show,
2329 };
2330 
ext4_mb_seq_groups_open(struct inode * inode,struct file * file)2331 static int ext4_mb_seq_groups_open(struct inode *inode, struct file *file)
2332 {
2333 	struct super_block *sb = PDE_DATA(inode);
2334 	int rc;
2335 
2336 	rc = seq_open(file, &ext4_mb_seq_groups_ops);
2337 	if (rc == 0) {
2338 		struct seq_file *m = file->private_data;
2339 		m->private = sb;
2340 	}
2341 	return rc;
2342 
2343 }
2344 
2345 const struct file_operations ext4_seq_mb_groups_fops = {
2346 	.owner		= THIS_MODULE,
2347 	.open		= ext4_mb_seq_groups_open,
2348 	.read		= seq_read,
2349 	.llseek		= seq_lseek,
2350 	.release	= seq_release,
2351 };
2352 
get_groupinfo_cache(int blocksize_bits)2353 static struct kmem_cache *get_groupinfo_cache(int blocksize_bits)
2354 {
2355 	int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
2356 	struct kmem_cache *cachep = ext4_groupinfo_caches[cache_index];
2357 
2358 	BUG_ON(!cachep);
2359 	return cachep;
2360 }
2361 
2362 /*
2363  * Allocate the top-level s_group_info array for the specified number
2364  * of groups
2365  */
ext4_mb_alloc_groupinfo(struct super_block * sb,ext4_group_t ngroups)2366 int ext4_mb_alloc_groupinfo(struct super_block *sb, ext4_group_t ngroups)
2367 {
2368 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2369 	unsigned size;
2370 	struct ext4_group_info ***new_groupinfo;
2371 
2372 	size = (ngroups + EXT4_DESC_PER_BLOCK(sb) - 1) >>
2373 		EXT4_DESC_PER_BLOCK_BITS(sb);
2374 	if (size <= sbi->s_group_info_size)
2375 		return 0;
2376 
2377 	size = roundup_pow_of_two(sizeof(*sbi->s_group_info) * size);
2378 	new_groupinfo = ext4_kvzalloc(size, GFP_KERNEL);
2379 	if (!new_groupinfo) {
2380 		ext4_msg(sb, KERN_ERR, "can't allocate buddy meta group");
2381 		return -ENOMEM;
2382 	}
2383 	if (sbi->s_group_info) {
2384 		memcpy(new_groupinfo, sbi->s_group_info,
2385 		       sbi->s_group_info_size * sizeof(*sbi->s_group_info));
2386 		kvfree(sbi->s_group_info);
2387 	}
2388 	sbi->s_group_info = new_groupinfo;
2389 	sbi->s_group_info_size = size / sizeof(*sbi->s_group_info);
2390 	ext4_debug("allocated s_groupinfo array for %d meta_bg's\n",
2391 		   sbi->s_group_info_size);
2392 	return 0;
2393 }
2394 
2395 /* Create and initialize ext4_group_info data for the given group. */
ext4_mb_add_groupinfo(struct super_block * sb,ext4_group_t group,struct ext4_group_desc * desc)2396 int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group,
2397 			  struct ext4_group_desc *desc)
2398 {
2399 	int i;
2400 	int metalen = 0;
2401 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2402 	struct ext4_group_info **meta_group_info;
2403 	struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2404 
2405 	/*
2406 	 * First check if this group is the first of a reserved block.
2407 	 * If it's true, we have to allocate a new table of pointers
2408 	 * to ext4_group_info structures
2409 	 */
2410 	if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2411 		metalen = sizeof(*meta_group_info) <<
2412 			EXT4_DESC_PER_BLOCK_BITS(sb);
2413 		meta_group_info = kmalloc(metalen, GFP_NOFS);
2414 		if (meta_group_info == NULL) {
2415 			ext4_msg(sb, KERN_ERR, "can't allocate mem "
2416 				 "for a buddy group");
2417 			goto exit_meta_group_info;
2418 		}
2419 		sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] =
2420 			meta_group_info;
2421 	}
2422 
2423 	meta_group_info =
2424 		sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)];
2425 	i = group & (EXT4_DESC_PER_BLOCK(sb) - 1);
2426 
2427 	meta_group_info[i] = kmem_cache_zalloc(cachep, GFP_NOFS);
2428 	if (meta_group_info[i] == NULL) {
2429 		ext4_msg(sb, KERN_ERR, "can't allocate buddy mem");
2430 		goto exit_group_info;
2431 	}
2432 	set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT,
2433 		&(meta_group_info[i]->bb_state));
2434 
2435 	/*
2436 	 * initialize bb_free to be able to skip
2437 	 * empty groups without initialization
2438 	 */
2439 	if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
2440 		meta_group_info[i]->bb_free =
2441 			ext4_free_clusters_after_init(sb, group, desc);
2442 	} else {
2443 		meta_group_info[i]->bb_free =
2444 			ext4_free_group_clusters(sb, desc);
2445 	}
2446 
2447 	INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list);
2448 	init_rwsem(&meta_group_info[i]->alloc_sem);
2449 	meta_group_info[i]->bb_free_root = RB_ROOT;
2450 	meta_group_info[i]->bb_largest_free_order = -1;  /* uninit */
2451 
2452 #ifdef DOUBLE_CHECK
2453 	{
2454 		struct buffer_head *bh;
2455 		meta_group_info[i]->bb_bitmap =
2456 			kmalloc(sb->s_blocksize, GFP_NOFS);
2457 		BUG_ON(meta_group_info[i]->bb_bitmap == NULL);
2458 		bh = ext4_read_block_bitmap(sb, group);
2459 		BUG_ON(IS_ERR_OR_NULL(bh));
2460 		memcpy(meta_group_info[i]->bb_bitmap, bh->b_data,
2461 			sb->s_blocksize);
2462 		put_bh(bh);
2463 	}
2464 #endif
2465 
2466 	return 0;
2467 
2468 exit_group_info:
2469 	/* If a meta_group_info table has been allocated, release it now */
2470 	if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2471 		kfree(sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)]);
2472 		sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] = NULL;
2473 	}
2474 exit_meta_group_info:
2475 	return -ENOMEM;
2476 } /* ext4_mb_add_groupinfo */
2477 
ext4_mb_init_backend(struct super_block * sb)2478 static int ext4_mb_init_backend(struct super_block *sb)
2479 {
2480 	ext4_group_t ngroups = ext4_get_groups_count(sb);
2481 	ext4_group_t i;
2482 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2483 	int err;
2484 	struct ext4_group_desc *desc;
2485 	struct kmem_cache *cachep;
2486 
2487 	err = ext4_mb_alloc_groupinfo(sb, ngroups);
2488 	if (err)
2489 		return err;
2490 
2491 	sbi->s_buddy_cache = new_inode(sb);
2492 	if (sbi->s_buddy_cache == NULL) {
2493 		ext4_msg(sb, KERN_ERR, "can't get new inode");
2494 		goto err_freesgi;
2495 	}
2496 	/* To avoid potentially colliding with an valid on-disk inode number,
2497 	 * use EXT4_BAD_INO for the buddy cache inode number.  This inode is
2498 	 * not in the inode hash, so it should never be found by iget(), but
2499 	 * this will avoid confusion if it ever shows up during debugging. */
2500 	sbi->s_buddy_cache->i_ino = EXT4_BAD_INO;
2501 	EXT4_I(sbi->s_buddy_cache)->i_disksize = 0;
2502 	for (i = 0; i < ngroups; i++) {
2503 		desc = ext4_get_group_desc(sb, i, NULL);
2504 		if (desc == NULL) {
2505 			ext4_msg(sb, KERN_ERR, "can't read descriptor %u", i);
2506 			goto err_freebuddy;
2507 		}
2508 		if (ext4_mb_add_groupinfo(sb, i, desc) != 0)
2509 			goto err_freebuddy;
2510 	}
2511 
2512 	return 0;
2513 
2514 err_freebuddy:
2515 	cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2516 	while (i-- > 0)
2517 		kmem_cache_free(cachep, ext4_get_group_info(sb, i));
2518 	i = sbi->s_group_info_size;
2519 	while (i-- > 0)
2520 		kfree(sbi->s_group_info[i]);
2521 	iput(sbi->s_buddy_cache);
2522 err_freesgi:
2523 	kvfree(sbi->s_group_info);
2524 	return -ENOMEM;
2525 }
2526 
ext4_groupinfo_destroy_slabs(void)2527 static void ext4_groupinfo_destroy_slabs(void)
2528 {
2529 	int i;
2530 
2531 	for (i = 0; i < NR_GRPINFO_CACHES; i++) {
2532 		if (ext4_groupinfo_caches[i])
2533 			kmem_cache_destroy(ext4_groupinfo_caches[i]);
2534 		ext4_groupinfo_caches[i] = NULL;
2535 	}
2536 }
2537 
ext4_groupinfo_create_slab(size_t size)2538 static int ext4_groupinfo_create_slab(size_t size)
2539 {
2540 	static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex);
2541 	int slab_size;
2542 	int blocksize_bits = order_base_2(size);
2543 	int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
2544 	struct kmem_cache *cachep;
2545 
2546 	if (cache_index >= NR_GRPINFO_CACHES)
2547 		return -EINVAL;
2548 
2549 	if (unlikely(cache_index < 0))
2550 		cache_index = 0;
2551 
2552 	mutex_lock(&ext4_grpinfo_slab_create_mutex);
2553 	if (ext4_groupinfo_caches[cache_index]) {
2554 		mutex_unlock(&ext4_grpinfo_slab_create_mutex);
2555 		return 0;	/* Already created */
2556 	}
2557 
2558 	slab_size = offsetof(struct ext4_group_info,
2559 				bb_counters[blocksize_bits + 2]);
2560 
2561 	cachep = kmem_cache_create(ext4_groupinfo_slab_names[cache_index],
2562 					slab_size, 0, SLAB_RECLAIM_ACCOUNT,
2563 					NULL);
2564 
2565 	ext4_groupinfo_caches[cache_index] = cachep;
2566 
2567 	mutex_unlock(&ext4_grpinfo_slab_create_mutex);
2568 	if (!cachep) {
2569 		printk(KERN_EMERG
2570 		       "EXT4-fs: no memory for groupinfo slab cache\n");
2571 		return -ENOMEM;
2572 	}
2573 
2574 	return 0;
2575 }
2576 
ext4_mb_init(struct super_block * sb)2577 int ext4_mb_init(struct super_block *sb)
2578 {
2579 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2580 	unsigned i, j;
2581 	unsigned offset, offset_incr;
2582 	unsigned max;
2583 	int ret;
2584 
2585 	i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_offsets);
2586 
2587 	sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL);
2588 	if (sbi->s_mb_offsets == NULL) {
2589 		ret = -ENOMEM;
2590 		goto out;
2591 	}
2592 
2593 	i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_maxs);
2594 	sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL);
2595 	if (sbi->s_mb_maxs == NULL) {
2596 		ret = -ENOMEM;
2597 		goto out;
2598 	}
2599 
2600 	ret = ext4_groupinfo_create_slab(sb->s_blocksize);
2601 	if (ret < 0)
2602 		goto out;
2603 
2604 	/* order 0 is regular bitmap */
2605 	sbi->s_mb_maxs[0] = sb->s_blocksize << 3;
2606 	sbi->s_mb_offsets[0] = 0;
2607 
2608 	i = 1;
2609 	offset = 0;
2610 	offset_incr = 1 << (sb->s_blocksize_bits - 1);
2611 	max = sb->s_blocksize << 2;
2612 	do {
2613 		sbi->s_mb_offsets[i] = offset;
2614 		sbi->s_mb_maxs[i] = max;
2615 		offset += offset_incr;
2616 		offset_incr = offset_incr >> 1;
2617 		max = max >> 1;
2618 		i++;
2619 	} while (i <= sb->s_blocksize_bits + 1);
2620 
2621 	spin_lock_init(&sbi->s_md_lock);
2622 	spin_lock_init(&sbi->s_bal_lock);
2623 
2624 	sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN;
2625 	sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN;
2626 	sbi->s_mb_stats = MB_DEFAULT_STATS;
2627 	sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD;
2628 	sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS;
2629 	/*
2630 	 * The default group preallocation is 512, which for 4k block
2631 	 * sizes translates to 2 megabytes.  However for bigalloc file
2632 	 * systems, this is probably too big (i.e, if the cluster size
2633 	 * is 1 megabyte, then group preallocation size becomes half a
2634 	 * gigabyte!).  As a default, we will keep a two megabyte
2635 	 * group pralloc size for cluster sizes up to 64k, and after
2636 	 * that, we will force a minimum group preallocation size of
2637 	 * 32 clusters.  This translates to 8 megs when the cluster
2638 	 * size is 256k, and 32 megs when the cluster size is 1 meg,
2639 	 * which seems reasonable as a default.
2640 	 */
2641 	sbi->s_mb_group_prealloc = max(MB_DEFAULT_GROUP_PREALLOC >>
2642 				       sbi->s_cluster_bits, 32);
2643 	/*
2644 	 * If there is a s_stripe > 1, then we set the s_mb_group_prealloc
2645 	 * to the lowest multiple of s_stripe which is bigger than
2646 	 * the s_mb_group_prealloc as determined above. We want
2647 	 * the preallocation size to be an exact multiple of the
2648 	 * RAID stripe size so that preallocations don't fragment
2649 	 * the stripes.
2650 	 */
2651 	if (sbi->s_stripe > 1) {
2652 		sbi->s_mb_group_prealloc = roundup(
2653 			sbi->s_mb_group_prealloc, sbi->s_stripe);
2654 	}
2655 
2656 	sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group);
2657 	if (sbi->s_locality_groups == NULL) {
2658 		ret = -ENOMEM;
2659 		goto out;
2660 	}
2661 	for_each_possible_cpu(i) {
2662 		struct ext4_locality_group *lg;
2663 		lg = per_cpu_ptr(sbi->s_locality_groups, i);
2664 		mutex_init(&lg->lg_mutex);
2665 		for (j = 0; j < PREALLOC_TB_SIZE; j++)
2666 			INIT_LIST_HEAD(&lg->lg_prealloc_list[j]);
2667 		spin_lock_init(&lg->lg_prealloc_lock);
2668 	}
2669 
2670 	/* init file for buddy data */
2671 	ret = ext4_mb_init_backend(sb);
2672 	if (ret != 0)
2673 		goto out_free_locality_groups;
2674 
2675 	return 0;
2676 
2677 out_free_locality_groups:
2678 	free_percpu(sbi->s_locality_groups);
2679 	sbi->s_locality_groups = NULL;
2680 out:
2681 	kfree(sbi->s_mb_offsets);
2682 	sbi->s_mb_offsets = NULL;
2683 	kfree(sbi->s_mb_maxs);
2684 	sbi->s_mb_maxs = NULL;
2685 	return ret;
2686 }
2687 
2688 /* need to called with the ext4 group lock held */
ext4_mb_cleanup_pa(struct ext4_group_info * grp)2689 static void ext4_mb_cleanup_pa(struct ext4_group_info *grp)
2690 {
2691 	struct ext4_prealloc_space *pa;
2692 	struct list_head *cur, *tmp;
2693 	int count = 0;
2694 
2695 	list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) {
2696 		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
2697 		list_del(&pa->pa_group_list);
2698 		count++;
2699 		kmem_cache_free(ext4_pspace_cachep, pa);
2700 	}
2701 	if (count)
2702 		mb_debug(1, "mballoc: %u PAs left\n", count);
2703 
2704 }
2705 
ext4_mb_release(struct super_block * sb)2706 int ext4_mb_release(struct super_block *sb)
2707 {
2708 	ext4_group_t ngroups = ext4_get_groups_count(sb);
2709 	ext4_group_t i;
2710 	int num_meta_group_infos;
2711 	struct ext4_group_info *grinfo;
2712 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2713 	struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2714 
2715 	if (sbi->s_group_info) {
2716 		for (i = 0; i < ngroups; i++) {
2717 			grinfo = ext4_get_group_info(sb, i);
2718 #ifdef DOUBLE_CHECK
2719 			kfree(grinfo->bb_bitmap);
2720 #endif
2721 			ext4_lock_group(sb, i);
2722 			ext4_mb_cleanup_pa(grinfo);
2723 			ext4_unlock_group(sb, i);
2724 			kmem_cache_free(cachep, grinfo);
2725 		}
2726 		num_meta_group_infos = (ngroups +
2727 				EXT4_DESC_PER_BLOCK(sb) - 1) >>
2728 			EXT4_DESC_PER_BLOCK_BITS(sb);
2729 		for (i = 0; i < num_meta_group_infos; i++)
2730 			kfree(sbi->s_group_info[i]);
2731 		kvfree(sbi->s_group_info);
2732 	}
2733 	kfree(sbi->s_mb_offsets);
2734 	kfree(sbi->s_mb_maxs);
2735 	iput(sbi->s_buddy_cache);
2736 	if (sbi->s_mb_stats) {
2737 		ext4_msg(sb, KERN_INFO,
2738 		       "mballoc: %u blocks %u reqs (%u success)",
2739 				atomic_read(&sbi->s_bal_allocated),
2740 				atomic_read(&sbi->s_bal_reqs),
2741 				atomic_read(&sbi->s_bal_success));
2742 		ext4_msg(sb, KERN_INFO,
2743 		      "mballoc: %u extents scanned, %u goal hits, "
2744 				"%u 2^N hits, %u breaks, %u lost",
2745 				atomic_read(&sbi->s_bal_ex_scanned),
2746 				atomic_read(&sbi->s_bal_goals),
2747 				atomic_read(&sbi->s_bal_2orders),
2748 				atomic_read(&sbi->s_bal_breaks),
2749 				atomic_read(&sbi->s_mb_lost_chunks));
2750 		ext4_msg(sb, KERN_INFO,
2751 		       "mballoc: %lu generated and it took %Lu",
2752 				sbi->s_mb_buddies_generated,
2753 				sbi->s_mb_generation_time);
2754 		ext4_msg(sb, KERN_INFO,
2755 		       "mballoc: %u preallocated, %u discarded",
2756 				atomic_read(&sbi->s_mb_preallocated),
2757 				atomic_read(&sbi->s_mb_discarded));
2758 	}
2759 
2760 	free_percpu(sbi->s_locality_groups);
2761 
2762 	return 0;
2763 }
2764 
ext4_issue_discard(struct super_block * sb,ext4_group_t block_group,ext4_grpblk_t cluster,int count)2765 static inline int ext4_issue_discard(struct super_block *sb,
2766 		ext4_group_t block_group, ext4_grpblk_t cluster, int count)
2767 {
2768 	ext4_fsblk_t discard_block;
2769 
2770 	discard_block = (EXT4_C2B(EXT4_SB(sb), cluster) +
2771 			 ext4_group_first_block_no(sb, block_group));
2772 	count = EXT4_C2B(EXT4_SB(sb), count);
2773 	trace_ext4_discard_blocks(sb,
2774 			(unsigned long long) discard_block, count);
2775 	return sb_issue_discard(sb, discard_block, count, GFP_NOFS, 0);
2776 }
2777 
2778 /*
2779  * This function is called by the jbd2 layer once the commit has finished,
2780  * so we know we can free the blocks that were released with that commit.
2781  */
ext4_free_data_callback(struct super_block * sb,struct ext4_journal_cb_entry * jce,int rc)2782 static void ext4_free_data_callback(struct super_block *sb,
2783 				    struct ext4_journal_cb_entry *jce,
2784 				    int rc)
2785 {
2786 	struct ext4_free_data *entry = (struct ext4_free_data *)jce;
2787 	struct ext4_buddy e4b;
2788 	struct ext4_group_info *db;
2789 	int err, count = 0, count2 = 0;
2790 
2791 	mb_debug(1, "gonna free %u blocks in group %u (0x%p):",
2792 		 entry->efd_count, entry->efd_group, entry);
2793 
2794 	if (test_opt(sb, DISCARD)) {
2795 		err = ext4_issue_discard(sb, entry->efd_group,
2796 					 entry->efd_start_cluster,
2797 					 entry->efd_count);
2798 		if (err && err != -EOPNOTSUPP)
2799 			ext4_msg(sb, KERN_WARNING, "discard request in"
2800 				 " group:%d block:%d count:%d failed"
2801 				 " with %d", entry->efd_group,
2802 				 entry->efd_start_cluster,
2803 				 entry->efd_count, err);
2804 	}
2805 
2806 	err = ext4_mb_load_buddy(sb, entry->efd_group, &e4b);
2807 	/* we expect to find existing buddy because it's pinned */
2808 	BUG_ON(err != 0);
2809 
2810 
2811 	db = e4b.bd_info;
2812 	/* there are blocks to put in buddy to make them really free */
2813 	count += entry->efd_count;
2814 	count2++;
2815 	ext4_lock_group(sb, entry->efd_group);
2816 	/* Take it out of per group rb tree */
2817 	rb_erase(&entry->efd_node, &(db->bb_free_root));
2818 	mb_free_blocks(NULL, &e4b, entry->efd_start_cluster, entry->efd_count);
2819 
2820 	/*
2821 	 * Clear the trimmed flag for the group so that the next
2822 	 * ext4_trim_fs can trim it.
2823 	 * If the volume is mounted with -o discard, online discard
2824 	 * is supported and the free blocks will be trimmed online.
2825 	 */
2826 	if (!test_opt(sb, DISCARD))
2827 		EXT4_MB_GRP_CLEAR_TRIMMED(db);
2828 
2829 	if (!db->bb_free_root.rb_node) {
2830 		/* No more items in the per group rb tree
2831 		 * balance refcounts from ext4_mb_free_metadata()
2832 		 */
2833 		page_cache_release(e4b.bd_buddy_page);
2834 		page_cache_release(e4b.bd_bitmap_page);
2835 	}
2836 	ext4_unlock_group(sb, entry->efd_group);
2837 	kmem_cache_free(ext4_free_data_cachep, entry);
2838 	ext4_mb_unload_buddy(&e4b);
2839 
2840 	mb_debug(1, "freed %u blocks in %u structures\n", count, count2);
2841 }
2842 
ext4_init_mballoc(void)2843 int __init ext4_init_mballoc(void)
2844 {
2845 	ext4_pspace_cachep = KMEM_CACHE(ext4_prealloc_space,
2846 					SLAB_RECLAIM_ACCOUNT);
2847 	if (ext4_pspace_cachep == NULL)
2848 		return -ENOMEM;
2849 
2850 	ext4_ac_cachep = KMEM_CACHE(ext4_allocation_context,
2851 				    SLAB_RECLAIM_ACCOUNT);
2852 	if (ext4_ac_cachep == NULL) {
2853 		kmem_cache_destroy(ext4_pspace_cachep);
2854 		return -ENOMEM;
2855 	}
2856 
2857 	ext4_free_data_cachep = KMEM_CACHE(ext4_free_data,
2858 					   SLAB_RECLAIM_ACCOUNT);
2859 	if (ext4_free_data_cachep == NULL) {
2860 		kmem_cache_destroy(ext4_pspace_cachep);
2861 		kmem_cache_destroy(ext4_ac_cachep);
2862 		return -ENOMEM;
2863 	}
2864 	return 0;
2865 }
2866 
ext4_exit_mballoc(void)2867 void ext4_exit_mballoc(void)
2868 {
2869 	/*
2870 	 * Wait for completion of call_rcu()'s on ext4_pspace_cachep
2871 	 * before destroying the slab cache.
2872 	 */
2873 	rcu_barrier();
2874 	kmem_cache_destroy(ext4_pspace_cachep);
2875 	kmem_cache_destroy(ext4_ac_cachep);
2876 	kmem_cache_destroy(ext4_free_data_cachep);
2877 	ext4_groupinfo_destroy_slabs();
2878 }
2879 
2880 
2881 /*
2882  * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps
2883  * Returns 0 if success or error code
2884  */
2885 static noinline_for_stack int
ext4_mb_mark_diskspace_used(struct ext4_allocation_context * ac,handle_t * handle,unsigned int reserv_clstrs)2886 ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac,
2887 				handle_t *handle, unsigned int reserv_clstrs)
2888 {
2889 	struct buffer_head *bitmap_bh = NULL;
2890 	struct ext4_group_desc *gdp;
2891 	struct buffer_head *gdp_bh;
2892 	struct ext4_sb_info *sbi;
2893 	struct super_block *sb;
2894 	ext4_fsblk_t block;
2895 	int err, len;
2896 
2897 	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
2898 	BUG_ON(ac->ac_b_ex.fe_len <= 0);
2899 
2900 	sb = ac->ac_sb;
2901 	sbi = EXT4_SB(sb);
2902 
2903 	bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group);
2904 	if (IS_ERR(bitmap_bh)) {
2905 		err = PTR_ERR(bitmap_bh);
2906 		bitmap_bh = NULL;
2907 		goto out_err;
2908 	}
2909 
2910 	BUFFER_TRACE(bitmap_bh, "getting write access");
2911 	err = ext4_journal_get_write_access(handle, bitmap_bh);
2912 	if (err)
2913 		goto out_err;
2914 
2915 	err = -EIO;
2916 	gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh);
2917 	if (!gdp)
2918 		goto out_err;
2919 
2920 	ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group,
2921 			ext4_free_group_clusters(sb, gdp));
2922 
2923 	BUFFER_TRACE(gdp_bh, "get_write_access");
2924 	err = ext4_journal_get_write_access(handle, gdp_bh);
2925 	if (err)
2926 		goto out_err;
2927 
2928 	block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
2929 
2930 	len = EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
2931 	if (!ext4_data_block_valid(sbi, block, len)) {
2932 		ext4_error(sb, "Allocating blocks %llu-%llu which overlap "
2933 			   "fs metadata", block, block+len);
2934 		/* File system mounted not to panic on error
2935 		 * Fix the bitmap and repeat the block allocation
2936 		 * We leak some of the blocks here.
2937 		 */
2938 		ext4_lock_group(sb, ac->ac_b_ex.fe_group);
2939 		ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
2940 			      ac->ac_b_ex.fe_len);
2941 		ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
2942 		err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
2943 		if (!err)
2944 			err = -EAGAIN;
2945 		goto out_err;
2946 	}
2947 
2948 	ext4_lock_group(sb, ac->ac_b_ex.fe_group);
2949 #ifdef AGGRESSIVE_CHECK
2950 	{
2951 		int i;
2952 		for (i = 0; i < ac->ac_b_ex.fe_len; i++) {
2953 			BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i,
2954 						bitmap_bh->b_data));
2955 		}
2956 	}
2957 #endif
2958 	ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
2959 		      ac->ac_b_ex.fe_len);
2960 	if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
2961 		gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
2962 		ext4_free_group_clusters_set(sb, gdp,
2963 					     ext4_free_clusters_after_init(sb,
2964 						ac->ac_b_ex.fe_group, gdp));
2965 	}
2966 	len = ext4_free_group_clusters(sb, gdp) - ac->ac_b_ex.fe_len;
2967 	ext4_free_group_clusters_set(sb, gdp, len);
2968 	ext4_block_bitmap_csum_set(sb, ac->ac_b_ex.fe_group, gdp, bitmap_bh);
2969 	ext4_group_desc_csum_set(sb, ac->ac_b_ex.fe_group, gdp);
2970 
2971 	ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
2972 	percpu_counter_sub(&sbi->s_freeclusters_counter, ac->ac_b_ex.fe_len);
2973 	/*
2974 	 * Now reduce the dirty block count also. Should not go negative
2975 	 */
2976 	if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED))
2977 		/* release all the reserved blocks if non delalloc */
2978 		percpu_counter_sub(&sbi->s_dirtyclusters_counter,
2979 				   reserv_clstrs);
2980 
2981 	if (sbi->s_log_groups_per_flex) {
2982 		ext4_group_t flex_group = ext4_flex_group(sbi,
2983 							  ac->ac_b_ex.fe_group);
2984 		atomic64_sub(ac->ac_b_ex.fe_len,
2985 			     &sbi->s_flex_groups[flex_group].free_clusters);
2986 	}
2987 
2988 	err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
2989 	if (err)
2990 		goto out_err;
2991 	err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh);
2992 
2993 out_err:
2994 	brelse(bitmap_bh);
2995 	return err;
2996 }
2997 
2998 /*
2999  * here we normalize request for locality group
3000  * Group request are normalized to s_mb_group_prealloc, which goes to
3001  * s_strip if we set the same via mount option.
3002  * s_mb_group_prealloc can be configured via
3003  * /sys/fs/ext4/<partition>/mb_group_prealloc
3004  *
3005  * XXX: should we try to preallocate more than the group has now?
3006  */
ext4_mb_normalize_group_request(struct ext4_allocation_context * ac)3007 static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac)
3008 {
3009 	struct super_block *sb = ac->ac_sb;
3010 	struct ext4_locality_group *lg = ac->ac_lg;
3011 
3012 	BUG_ON(lg == NULL);
3013 	ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc;
3014 	mb_debug(1, "#%u: goal %u blocks for locality group\n",
3015 		current->pid, ac->ac_g_ex.fe_len);
3016 }
3017 
3018 /*
3019  * Normalization means making request better in terms of
3020  * size and alignment
3021  */
3022 static noinline_for_stack void
ext4_mb_normalize_request(struct ext4_allocation_context * ac,struct ext4_allocation_request * ar)3023 ext4_mb_normalize_request(struct ext4_allocation_context *ac,
3024 				struct ext4_allocation_request *ar)
3025 {
3026 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3027 	int bsbits, max;
3028 	ext4_lblk_t end;
3029 	loff_t size, start_off;
3030 	loff_t orig_size __maybe_unused;
3031 	ext4_lblk_t start;
3032 	struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3033 	struct ext4_prealloc_space *pa;
3034 
3035 	/* do normalize only data requests, metadata requests
3036 	   do not need preallocation */
3037 	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3038 		return;
3039 
3040 	/* sometime caller may want exact blocks */
3041 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
3042 		return;
3043 
3044 	/* caller may indicate that preallocation isn't
3045 	 * required (it's a tail, for example) */
3046 	if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC)
3047 		return;
3048 
3049 	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) {
3050 		ext4_mb_normalize_group_request(ac);
3051 		return ;
3052 	}
3053 
3054 	bsbits = ac->ac_sb->s_blocksize_bits;
3055 
3056 	/* first, let's learn actual file size
3057 	 * given current request is allocated */
3058 	size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
3059 	size = size << bsbits;
3060 	if (size < i_size_read(ac->ac_inode))
3061 		size = i_size_read(ac->ac_inode);
3062 	orig_size = size;
3063 
3064 	/* max size of free chunks */
3065 	max = 2 << bsbits;
3066 
3067 #define NRL_CHECK_SIZE(req, size, max, chunk_size)	\
3068 		(req <= (size) || max <= (chunk_size))
3069 
3070 	/* first, try to predict filesize */
3071 	/* XXX: should this table be tunable? */
3072 	start_off = 0;
3073 	if (size <= 16 * 1024) {
3074 		size = 16 * 1024;
3075 	} else if (size <= 32 * 1024) {
3076 		size = 32 * 1024;
3077 	} else if (size <= 64 * 1024) {
3078 		size = 64 * 1024;
3079 	} else if (size <= 128 * 1024) {
3080 		size = 128 * 1024;
3081 	} else if (size <= 256 * 1024) {
3082 		size = 256 * 1024;
3083 	} else if (size <= 512 * 1024) {
3084 		size = 512 * 1024;
3085 	} else if (size <= 1024 * 1024) {
3086 		size = 1024 * 1024;
3087 	} else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) {
3088 		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3089 						(21 - bsbits)) << 21;
3090 		size = 2 * 1024 * 1024;
3091 	} else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) {
3092 		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3093 							(22 - bsbits)) << 22;
3094 		size = 4 * 1024 * 1024;
3095 	} else if (NRL_CHECK_SIZE(ac->ac_o_ex.fe_len,
3096 					(8<<20)>>bsbits, max, 8 * 1024)) {
3097 		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3098 							(23 - bsbits)) << 23;
3099 		size = 8 * 1024 * 1024;
3100 	} else {
3101 		start_off = (loff_t) ac->ac_o_ex.fe_logical << bsbits;
3102 		size	  = (loff_t) EXT4_C2B(EXT4_SB(ac->ac_sb),
3103 					      ac->ac_o_ex.fe_len) << bsbits;
3104 	}
3105 	size = size >> bsbits;
3106 	start = start_off >> bsbits;
3107 
3108 	/* don't cover already allocated blocks in selected range */
3109 	if (ar->pleft && start <= ar->lleft) {
3110 		size -= ar->lleft + 1 - start;
3111 		start = ar->lleft + 1;
3112 	}
3113 	if (ar->pright && start + size - 1 >= ar->lright)
3114 		size -= start + size - ar->lright;
3115 
3116 	end = start + size;
3117 
3118 	/* check we don't cross already preallocated blocks */
3119 	rcu_read_lock();
3120 	list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3121 		ext4_lblk_t pa_end;
3122 
3123 		if (pa->pa_deleted)
3124 			continue;
3125 		spin_lock(&pa->pa_lock);
3126 		if (pa->pa_deleted) {
3127 			spin_unlock(&pa->pa_lock);
3128 			continue;
3129 		}
3130 
3131 		pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb),
3132 						  pa->pa_len);
3133 
3134 		/* PA must not overlap original request */
3135 		BUG_ON(!(ac->ac_o_ex.fe_logical >= pa_end ||
3136 			ac->ac_o_ex.fe_logical < pa->pa_lstart));
3137 
3138 		/* skip PAs this normalized request doesn't overlap with */
3139 		if (pa->pa_lstart >= end || pa_end <= start) {
3140 			spin_unlock(&pa->pa_lock);
3141 			continue;
3142 		}
3143 		BUG_ON(pa->pa_lstart <= start && pa_end >= end);
3144 
3145 		/* adjust start or end to be adjacent to this pa */
3146 		if (pa_end <= ac->ac_o_ex.fe_logical) {
3147 			BUG_ON(pa_end < start);
3148 			start = pa_end;
3149 		} else if (pa->pa_lstart > ac->ac_o_ex.fe_logical) {
3150 			BUG_ON(pa->pa_lstart > end);
3151 			end = pa->pa_lstart;
3152 		}
3153 		spin_unlock(&pa->pa_lock);
3154 	}
3155 	rcu_read_unlock();
3156 	size = end - start;
3157 
3158 	/* XXX: extra loop to check we really don't overlap preallocations */
3159 	rcu_read_lock();
3160 	list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3161 		ext4_lblk_t pa_end;
3162 
3163 		spin_lock(&pa->pa_lock);
3164 		if (pa->pa_deleted == 0) {
3165 			pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb),
3166 							  pa->pa_len);
3167 			BUG_ON(!(start >= pa_end || end <= pa->pa_lstart));
3168 		}
3169 		spin_unlock(&pa->pa_lock);
3170 	}
3171 	rcu_read_unlock();
3172 
3173 	if (start + size <= ac->ac_o_ex.fe_logical &&
3174 			start > ac->ac_o_ex.fe_logical) {
3175 		ext4_msg(ac->ac_sb, KERN_ERR,
3176 			 "start %lu, size %lu, fe_logical %lu",
3177 			 (unsigned long) start, (unsigned long) size,
3178 			 (unsigned long) ac->ac_o_ex.fe_logical);
3179 		BUG();
3180 	}
3181 	BUG_ON(size <= 0 || size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
3182 
3183 	/* now prepare goal request */
3184 
3185 	/* XXX: is it better to align blocks WRT to logical
3186 	 * placement or satisfy big request as is */
3187 	ac->ac_g_ex.fe_logical = start;
3188 	ac->ac_g_ex.fe_len = EXT4_NUM_B2C(sbi, size);
3189 
3190 	/* define goal start in order to merge */
3191 	if (ar->pright && (ar->lright == (start + size))) {
3192 		/* merge to the right */
3193 		ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size,
3194 						&ac->ac_f_ex.fe_group,
3195 						&ac->ac_f_ex.fe_start);
3196 		ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3197 	}
3198 	if (ar->pleft && (ar->lleft + 1 == start)) {
3199 		/* merge to the left */
3200 		ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1,
3201 						&ac->ac_f_ex.fe_group,
3202 						&ac->ac_f_ex.fe_start);
3203 		ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3204 	}
3205 
3206 	mb_debug(1, "goal: %u(was %u) blocks at %u\n", (unsigned) size,
3207 		(unsigned) orig_size, (unsigned) start);
3208 }
3209 
ext4_mb_collect_stats(struct ext4_allocation_context * ac)3210 static void ext4_mb_collect_stats(struct ext4_allocation_context *ac)
3211 {
3212 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3213 
3214 	if (sbi->s_mb_stats && ac->ac_g_ex.fe_len > 1) {
3215 		atomic_inc(&sbi->s_bal_reqs);
3216 		atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated);
3217 		if (ac->ac_b_ex.fe_len >= ac->ac_o_ex.fe_len)
3218 			atomic_inc(&sbi->s_bal_success);
3219 		atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned);
3220 		if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
3221 				ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
3222 			atomic_inc(&sbi->s_bal_goals);
3223 		if (ac->ac_found > sbi->s_mb_max_to_scan)
3224 			atomic_inc(&sbi->s_bal_breaks);
3225 	}
3226 
3227 	if (ac->ac_op == EXT4_MB_HISTORY_ALLOC)
3228 		trace_ext4_mballoc_alloc(ac);
3229 	else
3230 		trace_ext4_mballoc_prealloc(ac);
3231 }
3232 
3233 /*
3234  * Called on failure; free up any blocks from the inode PA for this
3235  * context.  We don't need this for MB_GROUP_PA because we only change
3236  * pa_free in ext4_mb_release_context(), but on failure, we've already
3237  * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed.
3238  */
ext4_discard_allocated_blocks(struct ext4_allocation_context * ac)3239 static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac)
3240 {
3241 	struct ext4_prealloc_space *pa = ac->ac_pa;
3242 	struct ext4_buddy e4b;
3243 	int err;
3244 
3245 	if (pa == NULL) {
3246 		if (ac->ac_f_ex.fe_len == 0)
3247 			return;
3248 		err = ext4_mb_load_buddy(ac->ac_sb, ac->ac_f_ex.fe_group, &e4b);
3249 		if (err) {
3250 			/*
3251 			 * This should never happen since we pin the
3252 			 * pages in the ext4_allocation_context so
3253 			 * ext4_mb_load_buddy() should never fail.
3254 			 */
3255 			WARN(1, "mb_load_buddy failed (%d)", err);
3256 			return;
3257 		}
3258 		ext4_lock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
3259 		mb_free_blocks(ac->ac_inode, &e4b, ac->ac_f_ex.fe_start,
3260 			       ac->ac_f_ex.fe_len);
3261 		ext4_unlock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
3262 		ext4_mb_unload_buddy(&e4b);
3263 		return;
3264 	}
3265 	if (pa->pa_type == MB_INODE_PA)
3266 		pa->pa_free += ac->ac_b_ex.fe_len;
3267 }
3268 
3269 /*
3270  * use blocks preallocated to inode
3271  */
ext4_mb_use_inode_pa(struct ext4_allocation_context * ac,struct ext4_prealloc_space * pa)3272 static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac,
3273 				struct ext4_prealloc_space *pa)
3274 {
3275 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3276 	ext4_fsblk_t start;
3277 	ext4_fsblk_t end;
3278 	int len;
3279 
3280 	/* found preallocated blocks, use them */
3281 	start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart);
3282 	end = min(pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len),
3283 		  start + EXT4_C2B(sbi, ac->ac_o_ex.fe_len));
3284 	len = EXT4_NUM_B2C(sbi, end - start);
3285 	ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group,
3286 					&ac->ac_b_ex.fe_start);
3287 	ac->ac_b_ex.fe_len = len;
3288 	ac->ac_status = AC_STATUS_FOUND;
3289 	ac->ac_pa = pa;
3290 
3291 	BUG_ON(start < pa->pa_pstart);
3292 	BUG_ON(end > pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len));
3293 	BUG_ON(pa->pa_free < len);
3294 	pa->pa_free -= len;
3295 
3296 	mb_debug(1, "use %llu/%u from inode pa %p\n", start, len, pa);
3297 }
3298 
3299 /*
3300  * use blocks preallocated to locality group
3301  */
ext4_mb_use_group_pa(struct ext4_allocation_context * ac,struct ext4_prealloc_space * pa)3302 static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac,
3303 				struct ext4_prealloc_space *pa)
3304 {
3305 	unsigned int len = ac->ac_o_ex.fe_len;
3306 
3307 	ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart,
3308 					&ac->ac_b_ex.fe_group,
3309 					&ac->ac_b_ex.fe_start);
3310 	ac->ac_b_ex.fe_len = len;
3311 	ac->ac_status = AC_STATUS_FOUND;
3312 	ac->ac_pa = pa;
3313 
3314 	/* we don't correct pa_pstart or pa_plen here to avoid
3315 	 * possible race when the group is being loaded concurrently
3316 	 * instead we correct pa later, after blocks are marked
3317 	 * in on-disk bitmap -- see ext4_mb_release_context()
3318 	 * Other CPUs are prevented from allocating from this pa by lg_mutex
3319 	 */
3320 	mb_debug(1, "use %u/%u from group pa %p\n", pa->pa_lstart-len, len, pa);
3321 }
3322 
3323 /*
3324  * Return the prealloc space that have minimal distance
3325  * from the goal block. @cpa is the prealloc
3326  * space that is having currently known minimal distance
3327  * from the goal block.
3328  */
3329 static struct ext4_prealloc_space *
ext4_mb_check_group_pa(ext4_fsblk_t goal_block,struct ext4_prealloc_space * pa,struct ext4_prealloc_space * cpa)3330 ext4_mb_check_group_pa(ext4_fsblk_t goal_block,
3331 			struct ext4_prealloc_space *pa,
3332 			struct ext4_prealloc_space *cpa)
3333 {
3334 	ext4_fsblk_t cur_distance, new_distance;
3335 
3336 	if (cpa == NULL) {
3337 		atomic_inc(&pa->pa_count);
3338 		return pa;
3339 	}
3340 	cur_distance = abs(goal_block - cpa->pa_pstart);
3341 	new_distance = abs(goal_block - pa->pa_pstart);
3342 
3343 	if (cur_distance <= new_distance)
3344 		return cpa;
3345 
3346 	/* drop the previous reference */
3347 	atomic_dec(&cpa->pa_count);
3348 	atomic_inc(&pa->pa_count);
3349 	return pa;
3350 }
3351 
3352 /*
3353  * search goal blocks in preallocated space
3354  */
3355 static noinline_for_stack int
ext4_mb_use_preallocated(struct ext4_allocation_context * ac)3356 ext4_mb_use_preallocated(struct ext4_allocation_context *ac)
3357 {
3358 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3359 	int order, i;
3360 	struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3361 	struct ext4_locality_group *lg;
3362 	struct ext4_prealloc_space *pa, *cpa = NULL;
3363 	ext4_fsblk_t goal_block;
3364 
3365 	/* only data can be preallocated */
3366 	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3367 		return 0;
3368 
3369 	/* first, try per-file preallocation */
3370 	rcu_read_lock();
3371 	list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3372 
3373 		/* all fields in this condition don't change,
3374 		 * so we can skip locking for them */
3375 		if (ac->ac_o_ex.fe_logical < pa->pa_lstart ||
3376 		    ac->ac_o_ex.fe_logical >= (pa->pa_lstart +
3377 					       EXT4_C2B(sbi, pa->pa_len)))
3378 			continue;
3379 
3380 		/* non-extent files can't have physical blocks past 2^32 */
3381 		if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) &&
3382 		    (pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len) >
3383 		     EXT4_MAX_BLOCK_FILE_PHYS))
3384 			continue;
3385 
3386 		/* found preallocated blocks, use them */
3387 		spin_lock(&pa->pa_lock);
3388 		if (pa->pa_deleted == 0 && pa->pa_free) {
3389 			atomic_inc(&pa->pa_count);
3390 			ext4_mb_use_inode_pa(ac, pa);
3391 			spin_unlock(&pa->pa_lock);
3392 			ac->ac_criteria = 10;
3393 			rcu_read_unlock();
3394 			return 1;
3395 		}
3396 		spin_unlock(&pa->pa_lock);
3397 	}
3398 	rcu_read_unlock();
3399 
3400 	/* can we use group allocation? */
3401 	if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC))
3402 		return 0;
3403 
3404 	/* inode may have no locality group for some reason */
3405 	lg = ac->ac_lg;
3406 	if (lg == NULL)
3407 		return 0;
3408 	order  = fls(ac->ac_o_ex.fe_len) - 1;
3409 	if (order > PREALLOC_TB_SIZE - 1)
3410 		/* The max size of hash table is PREALLOC_TB_SIZE */
3411 		order = PREALLOC_TB_SIZE - 1;
3412 
3413 	goal_block = ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex);
3414 	/*
3415 	 * search for the prealloc space that is having
3416 	 * minimal distance from the goal block.
3417 	 */
3418 	for (i = order; i < PREALLOC_TB_SIZE; i++) {
3419 		rcu_read_lock();
3420 		list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[i],
3421 					pa_inode_list) {
3422 			spin_lock(&pa->pa_lock);
3423 			if (pa->pa_deleted == 0 &&
3424 					pa->pa_free >= ac->ac_o_ex.fe_len) {
3425 
3426 				cpa = ext4_mb_check_group_pa(goal_block,
3427 								pa, cpa);
3428 			}
3429 			spin_unlock(&pa->pa_lock);
3430 		}
3431 		rcu_read_unlock();
3432 	}
3433 	if (cpa) {
3434 		ext4_mb_use_group_pa(ac, cpa);
3435 		ac->ac_criteria = 20;
3436 		return 1;
3437 	}
3438 	return 0;
3439 }
3440 
3441 /*
3442  * the function goes through all block freed in the group
3443  * but not yet committed and marks them used in in-core bitmap.
3444  * buddy must be generated from this bitmap
3445  * Need to be called with the ext4 group lock held
3446  */
ext4_mb_generate_from_freelist(struct super_block * sb,void * bitmap,ext4_group_t group)3447 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
3448 						ext4_group_t group)
3449 {
3450 	struct rb_node *n;
3451 	struct ext4_group_info *grp;
3452 	struct ext4_free_data *entry;
3453 
3454 	grp = ext4_get_group_info(sb, group);
3455 	n = rb_first(&(grp->bb_free_root));
3456 
3457 	while (n) {
3458 		entry = rb_entry(n, struct ext4_free_data, efd_node);
3459 		ext4_set_bits(bitmap, entry->efd_start_cluster, entry->efd_count);
3460 		n = rb_next(n);
3461 	}
3462 	return;
3463 }
3464 
3465 /*
3466  * the function goes through all preallocation in this group and marks them
3467  * used in in-core bitmap. buddy must be generated from this bitmap
3468  * Need to be called with ext4 group lock held
3469  */
3470 static noinline_for_stack
ext4_mb_generate_from_pa(struct super_block * sb,void * bitmap,ext4_group_t group)3471 void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
3472 					ext4_group_t group)
3473 {
3474 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3475 	struct ext4_prealloc_space *pa;
3476 	struct list_head *cur;
3477 	ext4_group_t groupnr;
3478 	ext4_grpblk_t start;
3479 	int preallocated = 0;
3480 	int len;
3481 
3482 	/* all form of preallocation discards first load group,
3483 	 * so the only competing code is preallocation use.
3484 	 * we don't need any locking here
3485 	 * notice we do NOT ignore preallocations with pa_deleted
3486 	 * otherwise we could leave used blocks available for
3487 	 * allocation in buddy when concurrent ext4_mb_put_pa()
3488 	 * is dropping preallocation
3489 	 */
3490 	list_for_each(cur, &grp->bb_prealloc_list) {
3491 		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
3492 		spin_lock(&pa->pa_lock);
3493 		ext4_get_group_no_and_offset(sb, pa->pa_pstart,
3494 					     &groupnr, &start);
3495 		len = pa->pa_len;
3496 		spin_unlock(&pa->pa_lock);
3497 		if (unlikely(len == 0))
3498 			continue;
3499 		BUG_ON(groupnr != group);
3500 		ext4_set_bits(bitmap, start, len);
3501 		preallocated += len;
3502 	}
3503 	mb_debug(1, "prellocated %u for group %u\n", preallocated, group);
3504 }
3505 
ext4_mb_pa_callback(struct rcu_head * head)3506 static void ext4_mb_pa_callback(struct rcu_head *head)
3507 {
3508 	struct ext4_prealloc_space *pa;
3509 	pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu);
3510 
3511 	BUG_ON(atomic_read(&pa->pa_count));
3512 	BUG_ON(pa->pa_deleted == 0);
3513 	kmem_cache_free(ext4_pspace_cachep, pa);
3514 }
3515 
3516 /*
3517  * drops a reference to preallocated space descriptor
3518  * if this was the last reference and the space is consumed
3519  */
ext4_mb_put_pa(struct ext4_allocation_context * ac,struct super_block * sb,struct ext4_prealloc_space * pa)3520 static void ext4_mb_put_pa(struct ext4_allocation_context *ac,
3521 			struct super_block *sb, struct ext4_prealloc_space *pa)
3522 {
3523 	ext4_group_t grp;
3524 	ext4_fsblk_t grp_blk;
3525 
3526 	/* in this short window concurrent discard can set pa_deleted */
3527 	spin_lock(&pa->pa_lock);
3528 	if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0) {
3529 		spin_unlock(&pa->pa_lock);
3530 		return;
3531 	}
3532 
3533 	if (pa->pa_deleted == 1) {
3534 		spin_unlock(&pa->pa_lock);
3535 		return;
3536 	}
3537 
3538 	pa->pa_deleted = 1;
3539 	spin_unlock(&pa->pa_lock);
3540 
3541 	grp_blk = pa->pa_pstart;
3542 	/*
3543 	 * If doing group-based preallocation, pa_pstart may be in the
3544 	 * next group when pa is used up
3545 	 */
3546 	if (pa->pa_type == MB_GROUP_PA)
3547 		grp_blk--;
3548 
3549 	grp = ext4_get_group_number(sb, grp_blk);
3550 
3551 	/*
3552 	 * possible race:
3553 	 *
3554 	 *  P1 (buddy init)			P2 (regular allocation)
3555 	 *					find block B in PA
3556 	 *  copy on-disk bitmap to buddy
3557 	 *  					mark B in on-disk bitmap
3558 	 *					drop PA from group
3559 	 *  mark all PAs in buddy
3560 	 *
3561 	 * thus, P1 initializes buddy with B available. to prevent this
3562 	 * we make "copy" and "mark all PAs" atomic and serialize "drop PA"
3563 	 * against that pair
3564 	 */
3565 	ext4_lock_group(sb, grp);
3566 	list_del(&pa->pa_group_list);
3567 	ext4_unlock_group(sb, grp);
3568 
3569 	spin_lock(pa->pa_obj_lock);
3570 	list_del_rcu(&pa->pa_inode_list);
3571 	spin_unlock(pa->pa_obj_lock);
3572 
3573 	call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3574 }
3575 
3576 /*
3577  * creates new preallocated space for given inode
3578  */
3579 static noinline_for_stack int
ext4_mb_new_inode_pa(struct ext4_allocation_context * ac)3580 ext4_mb_new_inode_pa(struct ext4_allocation_context *ac)
3581 {
3582 	struct super_block *sb = ac->ac_sb;
3583 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3584 	struct ext4_prealloc_space *pa;
3585 	struct ext4_group_info *grp;
3586 	struct ext4_inode_info *ei;
3587 
3588 	/* preallocate only when found space is larger then requested */
3589 	BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3590 	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3591 	BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3592 
3593 	pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3594 	if (pa == NULL)
3595 		return -ENOMEM;
3596 
3597 	if (ac->ac_b_ex.fe_len < ac->ac_g_ex.fe_len) {
3598 		int winl;
3599 		int wins;
3600 		int win;
3601 		int offs;
3602 
3603 		/* we can't allocate as much as normalizer wants.
3604 		 * so, found space must get proper lstart
3605 		 * to cover original request */
3606 		BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical);
3607 		BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len);
3608 
3609 		/* we're limited by original request in that
3610 		 * logical block must be covered any way
3611 		 * winl is window we can move our chunk within */
3612 		winl = ac->ac_o_ex.fe_logical - ac->ac_g_ex.fe_logical;
3613 
3614 		/* also, we should cover whole original request */
3615 		wins = EXT4_C2B(sbi, ac->ac_b_ex.fe_len - ac->ac_o_ex.fe_len);
3616 
3617 		/* the smallest one defines real window */
3618 		win = min(winl, wins);
3619 
3620 		offs = ac->ac_o_ex.fe_logical %
3621 			EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
3622 		if (offs && offs < win)
3623 			win = offs;
3624 
3625 		ac->ac_b_ex.fe_logical = ac->ac_o_ex.fe_logical -
3626 			EXT4_NUM_B2C(sbi, win);
3627 		BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical);
3628 		BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len);
3629 	}
3630 
3631 	/* preallocation can change ac_b_ex, thus we store actually
3632 	 * allocated blocks for history */
3633 	ac->ac_f_ex = ac->ac_b_ex;
3634 
3635 	pa->pa_lstart = ac->ac_b_ex.fe_logical;
3636 	pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3637 	pa->pa_len = ac->ac_b_ex.fe_len;
3638 	pa->pa_free = pa->pa_len;
3639 	atomic_set(&pa->pa_count, 1);
3640 	spin_lock_init(&pa->pa_lock);
3641 	INIT_LIST_HEAD(&pa->pa_inode_list);
3642 	INIT_LIST_HEAD(&pa->pa_group_list);
3643 	pa->pa_deleted = 0;
3644 	pa->pa_type = MB_INODE_PA;
3645 
3646 	mb_debug(1, "new inode pa %p: %llu/%u for %u\n", pa,
3647 			pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3648 	trace_ext4_mb_new_inode_pa(ac, pa);
3649 
3650 	ext4_mb_use_inode_pa(ac, pa);
3651 	atomic_add(pa->pa_free, &sbi->s_mb_preallocated);
3652 
3653 	ei = EXT4_I(ac->ac_inode);
3654 	grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3655 
3656 	pa->pa_obj_lock = &ei->i_prealloc_lock;
3657 	pa->pa_inode = ac->ac_inode;
3658 
3659 	ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3660 	list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3661 	ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3662 
3663 	spin_lock(pa->pa_obj_lock);
3664 	list_add_rcu(&pa->pa_inode_list, &ei->i_prealloc_list);
3665 	spin_unlock(pa->pa_obj_lock);
3666 
3667 	return 0;
3668 }
3669 
3670 /*
3671  * creates new preallocated space for locality group inodes belongs to
3672  */
3673 static noinline_for_stack int
ext4_mb_new_group_pa(struct ext4_allocation_context * ac)3674 ext4_mb_new_group_pa(struct ext4_allocation_context *ac)
3675 {
3676 	struct super_block *sb = ac->ac_sb;
3677 	struct ext4_locality_group *lg;
3678 	struct ext4_prealloc_space *pa;
3679 	struct ext4_group_info *grp;
3680 
3681 	/* preallocate only when found space is larger then requested */
3682 	BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3683 	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3684 	BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3685 
3686 	BUG_ON(ext4_pspace_cachep == NULL);
3687 	pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3688 	if (pa == NULL)
3689 		return -ENOMEM;
3690 
3691 	/* preallocation can change ac_b_ex, thus we store actually
3692 	 * allocated blocks for history */
3693 	ac->ac_f_ex = ac->ac_b_ex;
3694 
3695 	pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3696 	pa->pa_lstart = pa->pa_pstart;
3697 	pa->pa_len = ac->ac_b_ex.fe_len;
3698 	pa->pa_free = pa->pa_len;
3699 	atomic_set(&pa->pa_count, 1);
3700 	spin_lock_init(&pa->pa_lock);
3701 	INIT_LIST_HEAD(&pa->pa_inode_list);
3702 	INIT_LIST_HEAD(&pa->pa_group_list);
3703 	pa->pa_deleted = 0;
3704 	pa->pa_type = MB_GROUP_PA;
3705 
3706 	mb_debug(1, "new group pa %p: %llu/%u for %u\n", pa,
3707 			pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3708 	trace_ext4_mb_new_group_pa(ac, pa);
3709 
3710 	ext4_mb_use_group_pa(ac, pa);
3711 	atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);
3712 
3713 	grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3714 	lg = ac->ac_lg;
3715 	BUG_ON(lg == NULL);
3716 
3717 	pa->pa_obj_lock = &lg->lg_prealloc_lock;
3718 	pa->pa_inode = NULL;
3719 
3720 	ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3721 	list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3722 	ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3723 
3724 	/*
3725 	 * We will later add the new pa to the right bucket
3726 	 * after updating the pa_free in ext4_mb_release_context
3727 	 */
3728 	return 0;
3729 }
3730 
ext4_mb_new_preallocation(struct ext4_allocation_context * ac)3731 static int ext4_mb_new_preallocation(struct ext4_allocation_context *ac)
3732 {
3733 	int err;
3734 
3735 	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
3736 		err = ext4_mb_new_group_pa(ac);
3737 	else
3738 		err = ext4_mb_new_inode_pa(ac);
3739 	return err;
3740 }
3741 
3742 /*
3743  * finds all unused blocks in on-disk bitmap, frees them in
3744  * in-core bitmap and buddy.
3745  * @pa must be unlinked from inode and group lists, so that
3746  * nobody else can find/use it.
3747  * the caller MUST hold group/inode locks.
3748  * TODO: optimize the case when there are no in-core structures yet
3749  */
3750 static noinline_for_stack int
ext4_mb_release_inode_pa(struct ext4_buddy * e4b,struct buffer_head * bitmap_bh,struct ext4_prealloc_space * pa)3751 ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh,
3752 			struct ext4_prealloc_space *pa)
3753 {
3754 	struct super_block *sb = e4b->bd_sb;
3755 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3756 	unsigned int end;
3757 	unsigned int next;
3758 	ext4_group_t group;
3759 	ext4_grpblk_t bit;
3760 	unsigned long long grp_blk_start;
3761 	int err = 0;
3762 	int free = 0;
3763 
3764 	BUG_ON(pa->pa_deleted == 0);
3765 	ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3766 	grp_blk_start = pa->pa_pstart - EXT4_C2B(sbi, bit);
3767 	BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3768 	end = bit + pa->pa_len;
3769 
3770 	while (bit < end) {
3771 		bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit);
3772 		if (bit >= end)
3773 			break;
3774 		next = mb_find_next_bit(bitmap_bh->b_data, end, bit);
3775 		mb_debug(1, "    free preallocated %u/%u in group %u\n",
3776 			 (unsigned) ext4_group_first_block_no(sb, group) + bit,
3777 			 (unsigned) next - bit, (unsigned) group);
3778 		free += next - bit;
3779 
3780 		trace_ext4_mballoc_discard(sb, NULL, group, bit, next - bit);
3781 		trace_ext4_mb_release_inode_pa(pa, (grp_blk_start +
3782 						    EXT4_C2B(sbi, bit)),
3783 					       next - bit);
3784 		mb_free_blocks(pa->pa_inode, e4b, bit, next - bit);
3785 		bit = next + 1;
3786 	}
3787 	if (free != pa->pa_free) {
3788 		ext4_msg(e4b->bd_sb, KERN_CRIT,
3789 			 "pa %p: logic %lu, phys. %lu, len %lu",
3790 			 pa, (unsigned long) pa->pa_lstart,
3791 			 (unsigned long) pa->pa_pstart,
3792 			 (unsigned long) pa->pa_len);
3793 		ext4_grp_locked_error(sb, group, 0, 0, "free %u, pa_free %u",
3794 					free, pa->pa_free);
3795 		/*
3796 		 * pa is already deleted so we use the value obtained
3797 		 * from the bitmap and continue.
3798 		 */
3799 	}
3800 	atomic_add(free, &sbi->s_mb_discarded);
3801 
3802 	return err;
3803 }
3804 
3805 static noinline_for_stack int
ext4_mb_release_group_pa(struct ext4_buddy * e4b,struct ext4_prealloc_space * pa)3806 ext4_mb_release_group_pa(struct ext4_buddy *e4b,
3807 				struct ext4_prealloc_space *pa)
3808 {
3809 	struct super_block *sb = e4b->bd_sb;
3810 	ext4_group_t group;
3811 	ext4_grpblk_t bit;
3812 
3813 	trace_ext4_mb_release_group_pa(sb, pa);
3814 	BUG_ON(pa->pa_deleted == 0);
3815 	ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3816 	BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3817 	mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len);
3818 	atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded);
3819 	trace_ext4_mballoc_discard(sb, NULL, group, bit, pa->pa_len);
3820 
3821 	return 0;
3822 }
3823 
3824 /*
3825  * releases all preallocations in given group
3826  *
3827  * first, we need to decide discard policy:
3828  * - when do we discard
3829  *   1) ENOSPC
3830  * - how many do we discard
3831  *   1) how many requested
3832  */
3833 static noinline_for_stack int
ext4_mb_discard_group_preallocations(struct super_block * sb,ext4_group_t group,int needed)3834 ext4_mb_discard_group_preallocations(struct super_block *sb,
3835 					ext4_group_t group, int needed)
3836 {
3837 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3838 	struct buffer_head *bitmap_bh = NULL;
3839 	struct ext4_prealloc_space *pa, *tmp;
3840 	struct list_head list;
3841 	struct ext4_buddy e4b;
3842 	int err;
3843 	int busy = 0;
3844 	int free = 0;
3845 
3846 	mb_debug(1, "discard preallocation for group %u\n", group);
3847 
3848 	if (list_empty(&grp->bb_prealloc_list))
3849 		return 0;
3850 
3851 	bitmap_bh = ext4_read_block_bitmap(sb, group);
3852 	if (IS_ERR(bitmap_bh)) {
3853 		err = PTR_ERR(bitmap_bh);
3854 		ext4_error(sb, "Error %d reading block bitmap for %u",
3855 			   err, group);
3856 		return 0;
3857 	}
3858 
3859 	err = ext4_mb_load_buddy(sb, group, &e4b);
3860 	if (err) {
3861 		ext4_error(sb, "Error loading buddy information for %u", group);
3862 		put_bh(bitmap_bh);
3863 		return 0;
3864 	}
3865 
3866 	if (needed == 0)
3867 		needed = EXT4_CLUSTERS_PER_GROUP(sb) + 1;
3868 
3869 	INIT_LIST_HEAD(&list);
3870 repeat:
3871 	ext4_lock_group(sb, group);
3872 	list_for_each_entry_safe(pa, tmp,
3873 				&grp->bb_prealloc_list, pa_group_list) {
3874 		spin_lock(&pa->pa_lock);
3875 		if (atomic_read(&pa->pa_count)) {
3876 			spin_unlock(&pa->pa_lock);
3877 			busy = 1;
3878 			continue;
3879 		}
3880 		if (pa->pa_deleted) {
3881 			spin_unlock(&pa->pa_lock);
3882 			continue;
3883 		}
3884 
3885 		/* seems this one can be freed ... */
3886 		pa->pa_deleted = 1;
3887 
3888 		/* we can trust pa_free ... */
3889 		free += pa->pa_free;
3890 
3891 		spin_unlock(&pa->pa_lock);
3892 
3893 		list_del(&pa->pa_group_list);
3894 		list_add(&pa->u.pa_tmp_list, &list);
3895 	}
3896 
3897 	/* if we still need more blocks and some PAs were used, try again */
3898 	if (free < needed && busy) {
3899 		busy = 0;
3900 		ext4_unlock_group(sb, group);
3901 		cond_resched();
3902 		goto repeat;
3903 	}
3904 
3905 	/* found anything to free? */
3906 	if (list_empty(&list)) {
3907 		BUG_ON(free != 0);
3908 		goto out;
3909 	}
3910 
3911 	/* now free all selected PAs */
3912 	list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
3913 
3914 		/* remove from object (inode or locality group) */
3915 		spin_lock(pa->pa_obj_lock);
3916 		list_del_rcu(&pa->pa_inode_list);
3917 		spin_unlock(pa->pa_obj_lock);
3918 
3919 		if (pa->pa_type == MB_GROUP_PA)
3920 			ext4_mb_release_group_pa(&e4b, pa);
3921 		else
3922 			ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
3923 
3924 		list_del(&pa->u.pa_tmp_list);
3925 		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3926 	}
3927 
3928 out:
3929 	ext4_unlock_group(sb, group);
3930 	ext4_mb_unload_buddy(&e4b);
3931 	put_bh(bitmap_bh);
3932 	return free;
3933 }
3934 
3935 /*
3936  * releases all non-used preallocated blocks for given inode
3937  *
3938  * It's important to discard preallocations under i_data_sem
3939  * We don't want another block to be served from the prealloc
3940  * space when we are discarding the inode prealloc space.
3941  *
3942  * FIXME!! Make sure it is valid at all the call sites
3943  */
ext4_discard_preallocations(struct inode * inode)3944 void ext4_discard_preallocations(struct inode *inode)
3945 {
3946 	struct ext4_inode_info *ei = EXT4_I(inode);
3947 	struct super_block *sb = inode->i_sb;
3948 	struct buffer_head *bitmap_bh = NULL;
3949 	struct ext4_prealloc_space *pa, *tmp;
3950 	ext4_group_t group = 0;
3951 	struct list_head list;
3952 	struct ext4_buddy e4b;
3953 	int err;
3954 
3955 	if (!S_ISREG(inode->i_mode)) {
3956 		/*BUG_ON(!list_empty(&ei->i_prealloc_list));*/
3957 		return;
3958 	}
3959 
3960 	mb_debug(1, "discard preallocation for inode %lu\n", inode->i_ino);
3961 	trace_ext4_discard_preallocations(inode);
3962 
3963 	INIT_LIST_HEAD(&list);
3964 
3965 repeat:
3966 	/* first, collect all pa's in the inode */
3967 	spin_lock(&ei->i_prealloc_lock);
3968 	while (!list_empty(&ei->i_prealloc_list)) {
3969 		pa = list_entry(ei->i_prealloc_list.next,
3970 				struct ext4_prealloc_space, pa_inode_list);
3971 		BUG_ON(pa->pa_obj_lock != &ei->i_prealloc_lock);
3972 		spin_lock(&pa->pa_lock);
3973 		if (atomic_read(&pa->pa_count)) {
3974 			/* this shouldn't happen often - nobody should
3975 			 * use preallocation while we're discarding it */
3976 			spin_unlock(&pa->pa_lock);
3977 			spin_unlock(&ei->i_prealloc_lock);
3978 			ext4_msg(sb, KERN_ERR,
3979 				 "uh-oh! used pa while discarding");
3980 			WARN_ON(1);
3981 			schedule_timeout_uninterruptible(HZ);
3982 			goto repeat;
3983 
3984 		}
3985 		if (pa->pa_deleted == 0) {
3986 			pa->pa_deleted = 1;
3987 			spin_unlock(&pa->pa_lock);
3988 			list_del_rcu(&pa->pa_inode_list);
3989 			list_add(&pa->u.pa_tmp_list, &list);
3990 			continue;
3991 		}
3992 
3993 		/* someone is deleting pa right now */
3994 		spin_unlock(&pa->pa_lock);
3995 		spin_unlock(&ei->i_prealloc_lock);
3996 
3997 		/* we have to wait here because pa_deleted
3998 		 * doesn't mean pa is already unlinked from
3999 		 * the list. as we might be called from
4000 		 * ->clear_inode() the inode will get freed
4001 		 * and concurrent thread which is unlinking
4002 		 * pa from inode's list may access already
4003 		 * freed memory, bad-bad-bad */
4004 
4005 		/* XXX: if this happens too often, we can
4006 		 * add a flag to force wait only in case
4007 		 * of ->clear_inode(), but not in case of
4008 		 * regular truncate */
4009 		schedule_timeout_uninterruptible(HZ);
4010 		goto repeat;
4011 	}
4012 	spin_unlock(&ei->i_prealloc_lock);
4013 
4014 	list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
4015 		BUG_ON(pa->pa_type != MB_INODE_PA);
4016 		group = ext4_get_group_number(sb, pa->pa_pstart);
4017 
4018 		err = ext4_mb_load_buddy(sb, group, &e4b);
4019 		if (err) {
4020 			ext4_error(sb, "Error loading buddy information for %u",
4021 					group);
4022 			continue;
4023 		}
4024 
4025 		bitmap_bh = ext4_read_block_bitmap(sb, group);
4026 		if (IS_ERR(bitmap_bh)) {
4027 			err = PTR_ERR(bitmap_bh);
4028 			ext4_error(sb, "Error %d reading block bitmap for %u",
4029 					err, group);
4030 			ext4_mb_unload_buddy(&e4b);
4031 			continue;
4032 		}
4033 
4034 		ext4_lock_group(sb, group);
4035 		list_del(&pa->pa_group_list);
4036 		ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
4037 		ext4_unlock_group(sb, group);
4038 
4039 		ext4_mb_unload_buddy(&e4b);
4040 		put_bh(bitmap_bh);
4041 
4042 		list_del(&pa->u.pa_tmp_list);
4043 		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4044 	}
4045 }
4046 
4047 #ifdef CONFIG_EXT4_DEBUG
ext4_mb_show_ac(struct ext4_allocation_context * ac)4048 static void ext4_mb_show_ac(struct ext4_allocation_context *ac)
4049 {
4050 	struct super_block *sb = ac->ac_sb;
4051 	ext4_group_t ngroups, i;
4052 
4053 	if (!ext4_mballoc_debug ||
4054 	    (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED))
4055 		return;
4056 
4057 	ext4_msg(ac->ac_sb, KERN_ERR, "Can't allocate:"
4058 			" Allocation context details:");
4059 	ext4_msg(ac->ac_sb, KERN_ERR, "status %d flags %d",
4060 			ac->ac_status, ac->ac_flags);
4061 	ext4_msg(ac->ac_sb, KERN_ERR, "orig %lu/%lu/%lu@%lu, "
4062 		 	"goal %lu/%lu/%lu@%lu, "
4063 			"best %lu/%lu/%lu@%lu cr %d",
4064 			(unsigned long)ac->ac_o_ex.fe_group,
4065 			(unsigned long)ac->ac_o_ex.fe_start,
4066 			(unsigned long)ac->ac_o_ex.fe_len,
4067 			(unsigned long)ac->ac_o_ex.fe_logical,
4068 			(unsigned long)ac->ac_g_ex.fe_group,
4069 			(unsigned long)ac->ac_g_ex.fe_start,
4070 			(unsigned long)ac->ac_g_ex.fe_len,
4071 			(unsigned long)ac->ac_g_ex.fe_logical,
4072 			(unsigned long)ac->ac_b_ex.fe_group,
4073 			(unsigned long)ac->ac_b_ex.fe_start,
4074 			(unsigned long)ac->ac_b_ex.fe_len,
4075 			(unsigned long)ac->ac_b_ex.fe_logical,
4076 			(int)ac->ac_criteria);
4077 	ext4_msg(ac->ac_sb, KERN_ERR, "%d found", ac->ac_found);
4078 	ext4_msg(ac->ac_sb, KERN_ERR, "groups: ");
4079 	ngroups = ext4_get_groups_count(sb);
4080 	for (i = 0; i < ngroups; i++) {
4081 		struct ext4_group_info *grp = ext4_get_group_info(sb, i);
4082 		struct ext4_prealloc_space *pa;
4083 		ext4_grpblk_t start;
4084 		struct list_head *cur;
4085 		ext4_lock_group(sb, i);
4086 		list_for_each(cur, &grp->bb_prealloc_list) {
4087 			pa = list_entry(cur, struct ext4_prealloc_space,
4088 					pa_group_list);
4089 			spin_lock(&pa->pa_lock);
4090 			ext4_get_group_no_and_offset(sb, pa->pa_pstart,
4091 						     NULL, &start);
4092 			spin_unlock(&pa->pa_lock);
4093 			printk(KERN_ERR "PA:%u:%d:%u \n", i,
4094 			       start, pa->pa_len);
4095 		}
4096 		ext4_unlock_group(sb, i);
4097 
4098 		if (grp->bb_free == 0)
4099 			continue;
4100 		printk(KERN_ERR "%u: %d/%d \n",
4101 		       i, grp->bb_free, grp->bb_fragments);
4102 	}
4103 	printk(KERN_ERR "\n");
4104 }
4105 #else
ext4_mb_show_ac(struct ext4_allocation_context * ac)4106 static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac)
4107 {
4108 	return;
4109 }
4110 #endif
4111 
4112 /*
4113  * We use locality group preallocation for small size file. The size of the
4114  * file is determined by the current size or the resulting size after
4115  * allocation which ever is larger
4116  *
4117  * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req
4118  */
ext4_mb_group_or_file(struct ext4_allocation_context * ac)4119 static void ext4_mb_group_or_file(struct ext4_allocation_context *ac)
4120 {
4121 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4122 	int bsbits = ac->ac_sb->s_blocksize_bits;
4123 	loff_t size, isize;
4124 
4125 	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
4126 		return;
4127 
4128 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
4129 		return;
4130 
4131 	size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
4132 	isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1)
4133 		>> bsbits;
4134 
4135 	if ((size == isize) &&
4136 	    !ext4_fs_is_busy(sbi) &&
4137 	    (atomic_read(&ac->ac_inode->i_writecount) == 0)) {
4138 		ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC;
4139 		return;
4140 	}
4141 
4142 	if (sbi->s_mb_group_prealloc <= 0) {
4143 		ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
4144 		return;
4145 	}
4146 
4147 	/* don't use group allocation for large files */
4148 	size = max(size, isize);
4149 	if (size > sbi->s_mb_stream_request) {
4150 		ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
4151 		return;
4152 	}
4153 
4154 	BUG_ON(ac->ac_lg != NULL);
4155 	/*
4156 	 * locality group prealloc space are per cpu. The reason for having
4157 	 * per cpu locality group is to reduce the contention between block
4158 	 * request from multiple CPUs.
4159 	 */
4160 	ac->ac_lg = raw_cpu_ptr(sbi->s_locality_groups);
4161 
4162 	/* we're going to use group allocation */
4163 	ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC;
4164 
4165 	/* serialize all allocations in the group */
4166 	mutex_lock(&ac->ac_lg->lg_mutex);
4167 }
4168 
4169 static noinline_for_stack int
ext4_mb_initialize_context(struct ext4_allocation_context * ac,struct ext4_allocation_request * ar)4170 ext4_mb_initialize_context(struct ext4_allocation_context *ac,
4171 				struct ext4_allocation_request *ar)
4172 {
4173 	struct super_block *sb = ar->inode->i_sb;
4174 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4175 	struct ext4_super_block *es = sbi->s_es;
4176 	ext4_group_t group;
4177 	unsigned int len;
4178 	ext4_fsblk_t goal;
4179 	ext4_grpblk_t block;
4180 
4181 	/* we can't allocate > group size */
4182 	len = ar->len;
4183 
4184 	/* just a dirty hack to filter too big requests  */
4185 	if (len >= EXT4_CLUSTERS_PER_GROUP(sb))
4186 		len = EXT4_CLUSTERS_PER_GROUP(sb);
4187 
4188 	/* start searching from the goal */
4189 	goal = ar->goal;
4190 	if (goal < le32_to_cpu(es->s_first_data_block) ||
4191 			goal >= ext4_blocks_count(es))
4192 		goal = le32_to_cpu(es->s_first_data_block);
4193 	ext4_get_group_no_and_offset(sb, goal, &group, &block);
4194 
4195 	/* set up allocation goals */
4196 	ac->ac_b_ex.fe_logical = EXT4_LBLK_CMASK(sbi, ar->logical);
4197 	ac->ac_status = AC_STATUS_CONTINUE;
4198 	ac->ac_sb = sb;
4199 	ac->ac_inode = ar->inode;
4200 	ac->ac_o_ex.fe_logical = ac->ac_b_ex.fe_logical;
4201 	ac->ac_o_ex.fe_group = group;
4202 	ac->ac_o_ex.fe_start = block;
4203 	ac->ac_o_ex.fe_len = len;
4204 	ac->ac_g_ex = ac->ac_o_ex;
4205 	ac->ac_flags = ar->flags;
4206 
4207 	/* we have to define context: we'll we work with a file or
4208 	 * locality group. this is a policy, actually */
4209 	ext4_mb_group_or_file(ac);
4210 
4211 	mb_debug(1, "init ac: %u blocks @ %u, goal %u, flags %x, 2^%d, "
4212 			"left: %u/%u, right %u/%u to %swritable\n",
4213 			(unsigned) ar->len, (unsigned) ar->logical,
4214 			(unsigned) ar->goal, ac->ac_flags, ac->ac_2order,
4215 			(unsigned) ar->lleft, (unsigned) ar->pleft,
4216 			(unsigned) ar->lright, (unsigned) ar->pright,
4217 			atomic_read(&ar->inode->i_writecount) ? "" : "non-");
4218 	return 0;
4219 
4220 }
4221 
4222 static noinline_for_stack void
ext4_mb_discard_lg_preallocations(struct super_block * sb,struct ext4_locality_group * lg,int order,int total_entries)4223 ext4_mb_discard_lg_preallocations(struct super_block *sb,
4224 					struct ext4_locality_group *lg,
4225 					int order, int total_entries)
4226 {
4227 	ext4_group_t group = 0;
4228 	struct ext4_buddy e4b;
4229 	struct list_head discard_list;
4230 	struct ext4_prealloc_space *pa, *tmp;
4231 
4232 	mb_debug(1, "discard locality group preallocation\n");
4233 
4234 	INIT_LIST_HEAD(&discard_list);
4235 
4236 	spin_lock(&lg->lg_prealloc_lock);
4237 	list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order],
4238 						pa_inode_list) {
4239 		spin_lock(&pa->pa_lock);
4240 		if (atomic_read(&pa->pa_count)) {
4241 			/*
4242 			 * This is the pa that we just used
4243 			 * for block allocation. So don't
4244 			 * free that
4245 			 */
4246 			spin_unlock(&pa->pa_lock);
4247 			continue;
4248 		}
4249 		if (pa->pa_deleted) {
4250 			spin_unlock(&pa->pa_lock);
4251 			continue;
4252 		}
4253 		/* only lg prealloc space */
4254 		BUG_ON(pa->pa_type != MB_GROUP_PA);
4255 
4256 		/* seems this one can be freed ... */
4257 		pa->pa_deleted = 1;
4258 		spin_unlock(&pa->pa_lock);
4259 
4260 		list_del_rcu(&pa->pa_inode_list);
4261 		list_add(&pa->u.pa_tmp_list, &discard_list);
4262 
4263 		total_entries--;
4264 		if (total_entries <= 5) {
4265 			/*
4266 			 * we want to keep only 5 entries
4267 			 * allowing it to grow to 8. This
4268 			 * mak sure we don't call discard
4269 			 * soon for this list.
4270 			 */
4271 			break;
4272 		}
4273 	}
4274 	spin_unlock(&lg->lg_prealloc_lock);
4275 
4276 	list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) {
4277 
4278 		group = ext4_get_group_number(sb, pa->pa_pstart);
4279 		if (ext4_mb_load_buddy(sb, group, &e4b)) {
4280 			ext4_error(sb, "Error loading buddy information for %u",
4281 					group);
4282 			continue;
4283 		}
4284 		ext4_lock_group(sb, group);
4285 		list_del(&pa->pa_group_list);
4286 		ext4_mb_release_group_pa(&e4b, pa);
4287 		ext4_unlock_group(sb, group);
4288 
4289 		ext4_mb_unload_buddy(&e4b);
4290 		list_del(&pa->u.pa_tmp_list);
4291 		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4292 	}
4293 }
4294 
4295 /*
4296  * We have incremented pa_count. So it cannot be freed at this
4297  * point. Also we hold lg_mutex. So no parallel allocation is
4298  * possible from this lg. That means pa_free cannot be updated.
4299  *
4300  * A parallel ext4_mb_discard_group_preallocations is possible.
4301  * which can cause the lg_prealloc_list to be updated.
4302  */
4303 
ext4_mb_add_n_trim(struct ext4_allocation_context * ac)4304 static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac)
4305 {
4306 	int order, added = 0, lg_prealloc_count = 1;
4307 	struct super_block *sb = ac->ac_sb;
4308 	struct ext4_locality_group *lg = ac->ac_lg;
4309 	struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa;
4310 
4311 	order = fls(pa->pa_free) - 1;
4312 	if (order > PREALLOC_TB_SIZE - 1)
4313 		/* The max size of hash table is PREALLOC_TB_SIZE */
4314 		order = PREALLOC_TB_SIZE - 1;
4315 	/* Add the prealloc space to lg */
4316 	spin_lock(&lg->lg_prealloc_lock);
4317 	list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order],
4318 						pa_inode_list) {
4319 		spin_lock(&tmp_pa->pa_lock);
4320 		if (tmp_pa->pa_deleted) {
4321 			spin_unlock(&tmp_pa->pa_lock);
4322 			continue;
4323 		}
4324 		if (!added && pa->pa_free < tmp_pa->pa_free) {
4325 			/* Add to the tail of the previous entry */
4326 			list_add_tail_rcu(&pa->pa_inode_list,
4327 						&tmp_pa->pa_inode_list);
4328 			added = 1;
4329 			/*
4330 			 * we want to count the total
4331 			 * number of entries in the list
4332 			 */
4333 		}
4334 		spin_unlock(&tmp_pa->pa_lock);
4335 		lg_prealloc_count++;
4336 	}
4337 	if (!added)
4338 		list_add_tail_rcu(&pa->pa_inode_list,
4339 					&lg->lg_prealloc_list[order]);
4340 	spin_unlock(&lg->lg_prealloc_lock);
4341 
4342 	/* Now trim the list to be not more than 8 elements */
4343 	if (lg_prealloc_count > 8) {
4344 		ext4_mb_discard_lg_preallocations(sb, lg,
4345 						  order, lg_prealloc_count);
4346 		return;
4347 	}
4348 	return ;
4349 }
4350 
4351 /*
4352  * release all resource we used in allocation
4353  */
ext4_mb_release_context(struct ext4_allocation_context * ac)4354 static int ext4_mb_release_context(struct ext4_allocation_context *ac)
4355 {
4356 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4357 	struct ext4_prealloc_space *pa = ac->ac_pa;
4358 	if (pa) {
4359 		if (pa->pa_type == MB_GROUP_PA) {
4360 			/* see comment in ext4_mb_use_group_pa() */
4361 			spin_lock(&pa->pa_lock);
4362 			pa->pa_pstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4363 			pa->pa_lstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4364 			pa->pa_free -= ac->ac_b_ex.fe_len;
4365 			pa->pa_len -= ac->ac_b_ex.fe_len;
4366 			spin_unlock(&pa->pa_lock);
4367 		}
4368 	}
4369 	if (pa) {
4370 		/*
4371 		 * We want to add the pa to the right bucket.
4372 		 * Remove it from the list and while adding
4373 		 * make sure the list to which we are adding
4374 		 * doesn't grow big.
4375 		 */
4376 		if ((pa->pa_type == MB_GROUP_PA) && likely(pa->pa_free)) {
4377 			spin_lock(pa->pa_obj_lock);
4378 			list_del_rcu(&pa->pa_inode_list);
4379 			spin_unlock(pa->pa_obj_lock);
4380 			ext4_mb_add_n_trim(ac);
4381 		}
4382 		ext4_mb_put_pa(ac, ac->ac_sb, pa);
4383 	}
4384 	if (ac->ac_bitmap_page)
4385 		page_cache_release(ac->ac_bitmap_page);
4386 	if (ac->ac_buddy_page)
4387 		page_cache_release(ac->ac_buddy_page);
4388 	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
4389 		mutex_unlock(&ac->ac_lg->lg_mutex);
4390 	ext4_mb_collect_stats(ac);
4391 	return 0;
4392 }
4393 
ext4_mb_discard_preallocations(struct super_block * sb,int needed)4394 static int ext4_mb_discard_preallocations(struct super_block *sb, int needed)
4395 {
4396 	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4397 	int ret;
4398 	int freed = 0;
4399 
4400 	trace_ext4_mb_discard_preallocations(sb, needed);
4401 	for (i = 0; i < ngroups && needed > 0; i++) {
4402 		ret = ext4_mb_discard_group_preallocations(sb, i, needed);
4403 		freed += ret;
4404 		needed -= ret;
4405 	}
4406 
4407 	return freed;
4408 }
4409 
4410 /*
4411  * Main entry point into mballoc to allocate blocks
4412  * it tries to use preallocation first, then falls back
4413  * to usual allocation
4414  */
ext4_mb_new_blocks(handle_t * handle,struct ext4_allocation_request * ar,int * errp)4415 ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle,
4416 				struct ext4_allocation_request *ar, int *errp)
4417 {
4418 	int freed;
4419 	struct ext4_allocation_context *ac = NULL;
4420 	struct ext4_sb_info *sbi;
4421 	struct super_block *sb;
4422 	ext4_fsblk_t block = 0;
4423 	unsigned int inquota = 0;
4424 	unsigned int reserv_clstrs = 0;
4425 
4426 	might_sleep();
4427 	sb = ar->inode->i_sb;
4428 	sbi = EXT4_SB(sb);
4429 
4430 	trace_ext4_request_blocks(ar);
4431 
4432 	/* Allow to use superuser reservation for quota file */
4433 	if (IS_NOQUOTA(ar->inode))
4434 		ar->flags |= EXT4_MB_USE_ROOT_BLOCKS;
4435 
4436 	if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0) {
4437 		/* Without delayed allocation we need to verify
4438 		 * there is enough free blocks to do block allocation
4439 		 * and verify allocation doesn't exceed the quota limits.
4440 		 */
4441 		while (ar->len &&
4442 			ext4_claim_free_clusters(sbi, ar->len, ar->flags)) {
4443 
4444 			/* let others to free the space */
4445 			cond_resched();
4446 			ar->len = ar->len >> 1;
4447 		}
4448 		if (!ar->len) {
4449 			*errp = -ENOSPC;
4450 			return 0;
4451 		}
4452 		reserv_clstrs = ar->len;
4453 		if (ar->flags & EXT4_MB_USE_ROOT_BLOCKS) {
4454 			dquot_alloc_block_nofail(ar->inode,
4455 						 EXT4_C2B(sbi, ar->len));
4456 		} else {
4457 			while (ar->len &&
4458 				dquot_alloc_block(ar->inode,
4459 						  EXT4_C2B(sbi, ar->len))) {
4460 
4461 				ar->flags |= EXT4_MB_HINT_NOPREALLOC;
4462 				ar->len--;
4463 			}
4464 		}
4465 		inquota = ar->len;
4466 		if (ar->len == 0) {
4467 			*errp = -EDQUOT;
4468 			goto out;
4469 		}
4470 	}
4471 
4472 	ac = kmem_cache_zalloc(ext4_ac_cachep, GFP_NOFS);
4473 	if (!ac) {
4474 		ar->len = 0;
4475 		*errp = -ENOMEM;
4476 		goto out;
4477 	}
4478 
4479 	*errp = ext4_mb_initialize_context(ac, ar);
4480 	if (*errp) {
4481 		ar->len = 0;
4482 		goto out;
4483 	}
4484 
4485 	ac->ac_op = EXT4_MB_HISTORY_PREALLOC;
4486 	if (!ext4_mb_use_preallocated(ac)) {
4487 		ac->ac_op = EXT4_MB_HISTORY_ALLOC;
4488 		ext4_mb_normalize_request(ac, ar);
4489 repeat:
4490 		/* allocate space in core */
4491 		*errp = ext4_mb_regular_allocator(ac);
4492 		if (*errp)
4493 			goto discard_and_exit;
4494 
4495 		/* as we've just preallocated more space than
4496 		 * user requested originally, we store allocated
4497 		 * space in a special descriptor */
4498 		if (ac->ac_status == AC_STATUS_FOUND &&
4499 		    ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len)
4500 			*errp = ext4_mb_new_preallocation(ac);
4501 		if (*errp) {
4502 		discard_and_exit:
4503 			ext4_discard_allocated_blocks(ac);
4504 			goto errout;
4505 		}
4506 	}
4507 	if (likely(ac->ac_status == AC_STATUS_FOUND)) {
4508 		*errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_clstrs);
4509 		if (*errp == -EAGAIN) {
4510 			/*
4511 			 * drop the reference that we took
4512 			 * in ext4_mb_use_best_found
4513 			 */
4514 			ext4_mb_release_context(ac);
4515 			ac->ac_b_ex.fe_group = 0;
4516 			ac->ac_b_ex.fe_start = 0;
4517 			ac->ac_b_ex.fe_len = 0;
4518 			ac->ac_status = AC_STATUS_CONTINUE;
4519 			goto repeat;
4520 		} else if (*errp) {
4521 			ext4_discard_allocated_blocks(ac);
4522 			goto errout;
4523 		} else {
4524 			block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
4525 			ar->len = ac->ac_b_ex.fe_len;
4526 		}
4527 	} else {
4528 		freed  = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len);
4529 		if (freed)
4530 			goto repeat;
4531 		*errp = -ENOSPC;
4532 	}
4533 
4534 errout:
4535 	if (*errp) {
4536 		ac->ac_b_ex.fe_len = 0;
4537 		ar->len = 0;
4538 		ext4_mb_show_ac(ac);
4539 	}
4540 	ext4_mb_release_context(ac);
4541 out:
4542 	if (ac)
4543 		kmem_cache_free(ext4_ac_cachep, ac);
4544 	if (inquota && ar->len < inquota)
4545 		dquot_free_block(ar->inode, EXT4_C2B(sbi, inquota - ar->len));
4546 	if (!ar->len) {
4547 		if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0)
4548 			/* release all the reserved blocks if non delalloc */
4549 			percpu_counter_sub(&sbi->s_dirtyclusters_counter,
4550 						reserv_clstrs);
4551 	}
4552 
4553 	trace_ext4_allocate_blocks(ar, (unsigned long long)block);
4554 
4555 	return block;
4556 }
4557 
4558 /*
4559  * We can merge two free data extents only if the physical blocks
4560  * are contiguous, AND the extents were freed by the same transaction,
4561  * AND the blocks are associated with the same group.
4562  */
can_merge(struct ext4_free_data * entry1,struct ext4_free_data * entry2)4563 static int can_merge(struct ext4_free_data *entry1,
4564 			struct ext4_free_data *entry2)
4565 {
4566 	if ((entry1->efd_tid == entry2->efd_tid) &&
4567 	    (entry1->efd_group == entry2->efd_group) &&
4568 	    ((entry1->efd_start_cluster + entry1->efd_count) == entry2->efd_start_cluster))
4569 		return 1;
4570 	return 0;
4571 }
4572 
4573 static noinline_for_stack int
ext4_mb_free_metadata(handle_t * handle,struct ext4_buddy * e4b,struct ext4_free_data * new_entry)4574 ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b,
4575 		      struct ext4_free_data *new_entry)
4576 {
4577 	ext4_group_t group = e4b->bd_group;
4578 	ext4_grpblk_t cluster;
4579 	struct ext4_free_data *entry;
4580 	struct ext4_group_info *db = e4b->bd_info;
4581 	struct super_block *sb = e4b->bd_sb;
4582 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4583 	struct rb_node **n = &db->bb_free_root.rb_node, *node;
4584 	struct rb_node *parent = NULL, *new_node;
4585 
4586 	BUG_ON(!ext4_handle_valid(handle));
4587 	BUG_ON(e4b->bd_bitmap_page == NULL);
4588 	BUG_ON(e4b->bd_buddy_page == NULL);
4589 
4590 	new_node = &new_entry->efd_node;
4591 	cluster = new_entry->efd_start_cluster;
4592 
4593 	if (!*n) {
4594 		/* first free block exent. We need to
4595 		   protect buddy cache from being freed,
4596 		 * otherwise we'll refresh it from
4597 		 * on-disk bitmap and lose not-yet-available
4598 		 * blocks */
4599 		page_cache_get(e4b->bd_buddy_page);
4600 		page_cache_get(e4b->bd_bitmap_page);
4601 	}
4602 	while (*n) {
4603 		parent = *n;
4604 		entry = rb_entry(parent, struct ext4_free_data, efd_node);
4605 		if (cluster < entry->efd_start_cluster)
4606 			n = &(*n)->rb_left;
4607 		else if (cluster >= (entry->efd_start_cluster + entry->efd_count))
4608 			n = &(*n)->rb_right;
4609 		else {
4610 			ext4_grp_locked_error(sb, group, 0,
4611 				ext4_group_first_block_no(sb, group) +
4612 				EXT4_C2B(sbi, cluster),
4613 				"Block already on to-be-freed list");
4614 			return 0;
4615 		}
4616 	}
4617 
4618 	rb_link_node(new_node, parent, n);
4619 	rb_insert_color(new_node, &db->bb_free_root);
4620 
4621 	/* Now try to see the extent can be merged to left and right */
4622 	node = rb_prev(new_node);
4623 	if (node) {
4624 		entry = rb_entry(node, struct ext4_free_data, efd_node);
4625 		if (can_merge(entry, new_entry) &&
4626 		    ext4_journal_callback_try_del(handle, &entry->efd_jce)) {
4627 			new_entry->efd_start_cluster = entry->efd_start_cluster;
4628 			new_entry->efd_count += entry->efd_count;
4629 			rb_erase(node, &(db->bb_free_root));
4630 			kmem_cache_free(ext4_free_data_cachep, entry);
4631 		}
4632 	}
4633 
4634 	node = rb_next(new_node);
4635 	if (node) {
4636 		entry = rb_entry(node, struct ext4_free_data, efd_node);
4637 		if (can_merge(new_entry, entry) &&
4638 		    ext4_journal_callback_try_del(handle, &entry->efd_jce)) {
4639 			new_entry->efd_count += entry->efd_count;
4640 			rb_erase(node, &(db->bb_free_root));
4641 			kmem_cache_free(ext4_free_data_cachep, entry);
4642 		}
4643 	}
4644 	/* Add the extent to transaction's private list */
4645 	ext4_journal_callback_add(handle, ext4_free_data_callback,
4646 				  &new_entry->efd_jce);
4647 	return 0;
4648 }
4649 
4650 /**
4651  * ext4_free_blocks() -- Free given blocks and update quota
4652  * @handle:		handle for this transaction
4653  * @inode:		inode
4654  * @block:		start physical block to free
4655  * @count:		number of blocks to count
4656  * @flags:		flags used by ext4_free_blocks
4657  */
ext4_free_blocks(handle_t * handle,struct inode * inode,struct buffer_head * bh,ext4_fsblk_t block,unsigned long count,int flags)4658 void ext4_free_blocks(handle_t *handle, struct inode *inode,
4659 		      struct buffer_head *bh, ext4_fsblk_t block,
4660 		      unsigned long count, int flags)
4661 {
4662 	struct buffer_head *bitmap_bh = NULL;
4663 	struct super_block *sb = inode->i_sb;
4664 	struct ext4_group_desc *gdp;
4665 	unsigned int overflow;
4666 	ext4_grpblk_t bit;
4667 	struct buffer_head *gd_bh;
4668 	ext4_group_t block_group;
4669 	struct ext4_sb_info *sbi;
4670 	struct ext4_buddy e4b;
4671 	unsigned int count_clusters;
4672 	int err = 0;
4673 	int ret;
4674 
4675 	might_sleep();
4676 	if (bh) {
4677 		if (block)
4678 			BUG_ON(block != bh->b_blocknr);
4679 		else
4680 			block = bh->b_blocknr;
4681 	}
4682 
4683 	sbi = EXT4_SB(sb);
4684 	if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
4685 	    !ext4_data_block_valid(sbi, block, count)) {
4686 		ext4_error(sb, "Freeing blocks not in datazone - "
4687 			   "block = %llu, count = %lu", block, count);
4688 		goto error_return;
4689 	}
4690 
4691 	ext4_debug("freeing block %llu\n", block);
4692 	trace_ext4_free_blocks(inode, block, count, flags);
4693 
4694 	if (bh && (flags & EXT4_FREE_BLOCKS_FORGET)) {
4695 		BUG_ON(count > 1);
4696 
4697 		ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA,
4698 			    inode, bh, block);
4699 	}
4700 
4701 	/*
4702 	 * We need to make sure we don't reuse the freed block until
4703 	 * after the transaction is committed, which we can do by
4704 	 * treating the block as metadata, below.  We make an
4705 	 * exception if the inode is to be written in writeback mode
4706 	 * since writeback mode has weak data consistency guarantees.
4707 	 */
4708 	if (!ext4_should_writeback_data(inode))
4709 		flags |= EXT4_FREE_BLOCKS_METADATA;
4710 
4711 	/*
4712 	 * If the extent to be freed does not begin on a cluster
4713 	 * boundary, we need to deal with partial clusters at the
4714 	 * beginning and end of the extent.  Normally we will free
4715 	 * blocks at the beginning or the end unless we are explicitly
4716 	 * requested to avoid doing so.
4717 	 */
4718 	overflow = EXT4_PBLK_COFF(sbi, block);
4719 	if (overflow) {
4720 		if (flags & EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER) {
4721 			overflow = sbi->s_cluster_ratio - overflow;
4722 			block += overflow;
4723 			if (count > overflow)
4724 				count -= overflow;
4725 			else
4726 				return;
4727 		} else {
4728 			block -= overflow;
4729 			count += overflow;
4730 		}
4731 	}
4732 	overflow = EXT4_LBLK_COFF(sbi, count);
4733 	if (overflow) {
4734 		if (flags & EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER) {
4735 			if (count > overflow)
4736 				count -= overflow;
4737 			else
4738 				return;
4739 		} else
4740 			count += sbi->s_cluster_ratio - overflow;
4741 	}
4742 
4743 	if (!bh && (flags & EXT4_FREE_BLOCKS_FORGET)) {
4744 		int i;
4745 
4746 		for (i = 0; i < count; i++) {
4747 			cond_resched();
4748 			bh = sb_find_get_block(inode->i_sb, block + i);
4749 			if (!bh)
4750 				continue;
4751 			ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA,
4752 				    inode, bh, block + i);
4753 		}
4754 	}
4755 
4756 do_more:
4757 	overflow = 0;
4758 	ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
4759 
4760 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(
4761 			ext4_get_group_info(sb, block_group))))
4762 		return;
4763 
4764 	/*
4765 	 * Check to see if we are freeing blocks across a group
4766 	 * boundary.
4767 	 */
4768 	if (EXT4_C2B(sbi, bit) + count > EXT4_BLOCKS_PER_GROUP(sb)) {
4769 		overflow = EXT4_C2B(sbi, bit) + count -
4770 			EXT4_BLOCKS_PER_GROUP(sb);
4771 		count -= overflow;
4772 	}
4773 	count_clusters = EXT4_NUM_B2C(sbi, count);
4774 	bitmap_bh = ext4_read_block_bitmap(sb, block_group);
4775 	if (IS_ERR(bitmap_bh)) {
4776 		err = PTR_ERR(bitmap_bh);
4777 		bitmap_bh = NULL;
4778 		goto error_return;
4779 	}
4780 	gdp = ext4_get_group_desc(sb, block_group, &gd_bh);
4781 	if (!gdp) {
4782 		err = -EIO;
4783 		goto error_return;
4784 	}
4785 
4786 	if (in_range(ext4_block_bitmap(sb, gdp), block, count) ||
4787 	    in_range(ext4_inode_bitmap(sb, gdp), block, count) ||
4788 	    in_range(block, ext4_inode_table(sb, gdp),
4789 		     EXT4_SB(sb)->s_itb_per_group) ||
4790 	    in_range(block + count - 1, ext4_inode_table(sb, gdp),
4791 		     EXT4_SB(sb)->s_itb_per_group)) {
4792 
4793 		ext4_error(sb, "Freeing blocks in system zone - "
4794 			   "Block = %llu, count = %lu", block, count);
4795 		/* err = 0. ext4_std_error should be a no op */
4796 		goto error_return;
4797 	}
4798 
4799 	BUFFER_TRACE(bitmap_bh, "getting write access");
4800 	err = ext4_journal_get_write_access(handle, bitmap_bh);
4801 	if (err)
4802 		goto error_return;
4803 
4804 	/*
4805 	 * We are about to modify some metadata.  Call the journal APIs
4806 	 * to unshare ->b_data if a currently-committing transaction is
4807 	 * using it
4808 	 */
4809 	BUFFER_TRACE(gd_bh, "get_write_access");
4810 	err = ext4_journal_get_write_access(handle, gd_bh);
4811 	if (err)
4812 		goto error_return;
4813 #ifdef AGGRESSIVE_CHECK
4814 	{
4815 		int i;
4816 		for (i = 0; i < count_clusters; i++)
4817 			BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data));
4818 	}
4819 #endif
4820 	trace_ext4_mballoc_free(sb, inode, block_group, bit, count_clusters);
4821 
4822 	err = ext4_mb_load_buddy(sb, block_group, &e4b);
4823 	if (err)
4824 		goto error_return;
4825 
4826 	if ((flags & EXT4_FREE_BLOCKS_METADATA) && ext4_handle_valid(handle)) {
4827 		struct ext4_free_data *new_entry;
4828 		/*
4829 		 * blocks being freed are metadata. these blocks shouldn't
4830 		 * be used until this transaction is committed
4831 		 *
4832 		 * We use __GFP_NOFAIL because ext4_free_blocks() is not allowed
4833 		 * to fail.
4834 		 */
4835 		new_entry = kmem_cache_alloc(ext4_free_data_cachep,
4836 				GFP_NOFS|__GFP_NOFAIL);
4837 		new_entry->efd_start_cluster = bit;
4838 		new_entry->efd_group = block_group;
4839 		new_entry->efd_count = count_clusters;
4840 		new_entry->efd_tid = handle->h_transaction->t_tid;
4841 
4842 		ext4_lock_group(sb, block_group);
4843 		mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
4844 		ext4_mb_free_metadata(handle, &e4b, new_entry);
4845 	} else {
4846 		/* need to update group_info->bb_free and bitmap
4847 		 * with group lock held. generate_buddy look at
4848 		 * them with group lock_held
4849 		 */
4850 		if (test_opt(sb, DISCARD)) {
4851 			err = ext4_issue_discard(sb, block_group, bit, count);
4852 			if (err && err != -EOPNOTSUPP)
4853 				ext4_msg(sb, KERN_WARNING, "discard request in"
4854 					 " group:%d block:%d count:%lu failed"
4855 					 " with %d", block_group, bit, count,
4856 					 err);
4857 		} else
4858 			EXT4_MB_GRP_CLEAR_TRIMMED(e4b.bd_info);
4859 
4860 		ext4_lock_group(sb, block_group);
4861 		mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
4862 		mb_free_blocks(inode, &e4b, bit, count_clusters);
4863 	}
4864 
4865 	ret = ext4_free_group_clusters(sb, gdp) + count_clusters;
4866 	ext4_free_group_clusters_set(sb, gdp, ret);
4867 	ext4_block_bitmap_csum_set(sb, block_group, gdp, bitmap_bh);
4868 	ext4_group_desc_csum_set(sb, block_group, gdp);
4869 	ext4_unlock_group(sb, block_group);
4870 
4871 	if (sbi->s_log_groups_per_flex) {
4872 		ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
4873 		atomic64_add(count_clusters,
4874 			     &sbi->s_flex_groups[flex_group].free_clusters);
4875 	}
4876 
4877 	if (!(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE))
4878 		dquot_free_block(inode, EXT4_C2B(sbi, count_clusters));
4879 	percpu_counter_add(&sbi->s_freeclusters_counter, count_clusters);
4880 
4881 	ext4_mb_unload_buddy(&e4b);
4882 
4883 	/* We dirtied the bitmap block */
4884 	BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
4885 	err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
4886 
4887 	/* And the group descriptor block */
4888 	BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
4889 	ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
4890 	if (!err)
4891 		err = ret;
4892 
4893 	if (overflow && !err) {
4894 		block += count;
4895 		count = overflow;
4896 		put_bh(bitmap_bh);
4897 		goto do_more;
4898 	}
4899 error_return:
4900 	brelse(bitmap_bh);
4901 	ext4_std_error(sb, err);
4902 	return;
4903 }
4904 
4905 /**
4906  * ext4_group_add_blocks() -- Add given blocks to an existing group
4907  * @handle:			handle to this transaction
4908  * @sb:				super block
4909  * @block:			start physical block to add to the block group
4910  * @count:			number of blocks to free
4911  *
4912  * This marks the blocks as free in the bitmap and buddy.
4913  */
ext4_group_add_blocks(handle_t * handle,struct super_block * sb,ext4_fsblk_t block,unsigned long count)4914 int ext4_group_add_blocks(handle_t *handle, struct super_block *sb,
4915 			 ext4_fsblk_t block, unsigned long count)
4916 {
4917 	struct buffer_head *bitmap_bh = NULL;
4918 	struct buffer_head *gd_bh;
4919 	ext4_group_t block_group;
4920 	ext4_grpblk_t bit;
4921 	unsigned int i;
4922 	struct ext4_group_desc *desc;
4923 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4924 	struct ext4_buddy e4b;
4925 	int err = 0, ret, blk_free_count;
4926 	ext4_grpblk_t blocks_freed;
4927 
4928 	ext4_debug("Adding block(s) %llu-%llu\n", block, block + count - 1);
4929 
4930 	if (count == 0)
4931 		return 0;
4932 
4933 	ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
4934 	/*
4935 	 * Check to see if we are freeing blocks across a group
4936 	 * boundary.
4937 	 */
4938 	if (bit + count > EXT4_BLOCKS_PER_GROUP(sb)) {
4939 		ext4_warning(sb, "too much blocks added to group %u\n",
4940 			     block_group);
4941 		err = -EINVAL;
4942 		goto error_return;
4943 	}
4944 
4945 	bitmap_bh = ext4_read_block_bitmap(sb, block_group);
4946 	if (IS_ERR(bitmap_bh)) {
4947 		err = PTR_ERR(bitmap_bh);
4948 		bitmap_bh = NULL;
4949 		goto error_return;
4950 	}
4951 
4952 	desc = ext4_get_group_desc(sb, block_group, &gd_bh);
4953 	if (!desc) {
4954 		err = -EIO;
4955 		goto error_return;
4956 	}
4957 
4958 	if (in_range(ext4_block_bitmap(sb, desc), block, count) ||
4959 	    in_range(ext4_inode_bitmap(sb, desc), block, count) ||
4960 	    in_range(block, ext4_inode_table(sb, desc), sbi->s_itb_per_group) ||
4961 	    in_range(block + count - 1, ext4_inode_table(sb, desc),
4962 		     sbi->s_itb_per_group)) {
4963 		ext4_error(sb, "Adding blocks in system zones - "
4964 			   "Block = %llu, count = %lu",
4965 			   block, count);
4966 		err = -EINVAL;
4967 		goto error_return;
4968 	}
4969 
4970 	BUFFER_TRACE(bitmap_bh, "getting write access");
4971 	err = ext4_journal_get_write_access(handle, bitmap_bh);
4972 	if (err)
4973 		goto error_return;
4974 
4975 	/*
4976 	 * We are about to modify some metadata.  Call the journal APIs
4977 	 * to unshare ->b_data if a currently-committing transaction is
4978 	 * using it
4979 	 */
4980 	BUFFER_TRACE(gd_bh, "get_write_access");
4981 	err = ext4_journal_get_write_access(handle, gd_bh);
4982 	if (err)
4983 		goto error_return;
4984 
4985 	for (i = 0, blocks_freed = 0; i < count; i++) {
4986 		BUFFER_TRACE(bitmap_bh, "clear bit");
4987 		if (!mb_test_bit(bit + i, bitmap_bh->b_data)) {
4988 			ext4_error(sb, "bit already cleared for block %llu",
4989 				   (ext4_fsblk_t)(block + i));
4990 			BUFFER_TRACE(bitmap_bh, "bit already cleared");
4991 		} else {
4992 			blocks_freed++;
4993 		}
4994 	}
4995 
4996 	err = ext4_mb_load_buddy(sb, block_group, &e4b);
4997 	if (err)
4998 		goto error_return;
4999 
5000 	/*
5001 	 * need to update group_info->bb_free and bitmap
5002 	 * with group lock held. generate_buddy look at
5003 	 * them with group lock_held
5004 	 */
5005 	ext4_lock_group(sb, block_group);
5006 	mb_clear_bits(bitmap_bh->b_data, bit, count);
5007 	mb_free_blocks(NULL, &e4b, bit, count);
5008 	blk_free_count = blocks_freed + ext4_free_group_clusters(sb, desc);
5009 	ext4_free_group_clusters_set(sb, desc, blk_free_count);
5010 	ext4_block_bitmap_csum_set(sb, block_group, desc, bitmap_bh);
5011 	ext4_group_desc_csum_set(sb, block_group, desc);
5012 	ext4_unlock_group(sb, block_group);
5013 	percpu_counter_add(&sbi->s_freeclusters_counter,
5014 			   EXT4_NUM_B2C(sbi, blocks_freed));
5015 
5016 	if (sbi->s_log_groups_per_flex) {
5017 		ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
5018 		atomic64_add(EXT4_NUM_B2C(sbi, blocks_freed),
5019 			     &sbi->s_flex_groups[flex_group].free_clusters);
5020 	}
5021 
5022 	ext4_mb_unload_buddy(&e4b);
5023 
5024 	/* We dirtied the bitmap block */
5025 	BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
5026 	err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
5027 
5028 	/* And the group descriptor block */
5029 	BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
5030 	ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
5031 	if (!err)
5032 		err = ret;
5033 
5034 error_return:
5035 	brelse(bitmap_bh);
5036 	ext4_std_error(sb, err);
5037 	return err;
5038 }
5039 
5040 /**
5041  * ext4_trim_extent -- function to TRIM one single free extent in the group
5042  * @sb:		super block for the file system
5043  * @start:	starting block of the free extent in the alloc. group
5044  * @count:	number of blocks to TRIM
5045  * @group:	alloc. group we are working with
5046  * @e4b:	ext4 buddy for the group
5047  *
5048  * Trim "count" blocks starting at "start" in the "group". To assure that no
5049  * one will allocate those blocks, mark it as used in buddy bitmap. This must
5050  * be called with under the group lock.
5051  */
ext4_trim_extent(struct super_block * sb,int start,int count,ext4_group_t group,struct ext4_buddy * e4b)5052 static int ext4_trim_extent(struct super_block *sb, int start, int count,
5053 			     ext4_group_t group, struct ext4_buddy *e4b)
5054 __releases(bitlock)
5055 __acquires(bitlock)
5056 {
5057 	struct ext4_free_extent ex;
5058 	int ret = 0;
5059 
5060 	trace_ext4_trim_extent(sb, group, start, count);
5061 
5062 	assert_spin_locked(ext4_group_lock_ptr(sb, group));
5063 
5064 	ex.fe_start = start;
5065 	ex.fe_group = group;
5066 	ex.fe_len = count;
5067 
5068 	/*
5069 	 * Mark blocks used, so no one can reuse them while
5070 	 * being trimmed.
5071 	 */
5072 	mb_mark_used(e4b, &ex);
5073 	ext4_unlock_group(sb, group);
5074 	ret = ext4_issue_discard(sb, group, start, count);
5075 	ext4_lock_group(sb, group);
5076 	mb_free_blocks(NULL, e4b, start, ex.fe_len);
5077 	return ret;
5078 }
5079 
5080 /**
5081  * ext4_trim_all_free -- function to trim all free space in alloc. group
5082  * @sb:			super block for file system
5083  * @group:		group to be trimmed
5084  * @start:		first group block to examine
5085  * @max:		last group block to examine
5086  * @minblocks:		minimum extent block count
5087  *
5088  * ext4_trim_all_free walks through group's buddy bitmap searching for free
5089  * extents. When the free block is found, ext4_trim_extent is called to TRIM
5090  * the extent.
5091  *
5092  *
5093  * ext4_trim_all_free walks through group's block bitmap searching for free
5094  * extents. When the free extent is found, mark it as used in group buddy
5095  * bitmap. Then issue a TRIM command on this extent and free the extent in
5096  * the group buddy bitmap. This is done until whole group is scanned.
5097  */
5098 static ext4_grpblk_t
ext4_trim_all_free(struct super_block * sb,ext4_group_t group,ext4_grpblk_t start,ext4_grpblk_t max,ext4_grpblk_t minblocks)5099 ext4_trim_all_free(struct super_block *sb, ext4_group_t group,
5100 		   ext4_grpblk_t start, ext4_grpblk_t max,
5101 		   ext4_grpblk_t minblocks)
5102 {
5103 	void *bitmap;
5104 	ext4_grpblk_t next, count = 0, free_count = 0;
5105 	struct ext4_buddy e4b;
5106 	int ret = 0;
5107 
5108 	trace_ext4_trim_all_free(sb, group, start, max);
5109 
5110 	ret = ext4_mb_load_buddy(sb, group, &e4b);
5111 	if (ret) {
5112 		ext4_error(sb, "Error in loading buddy "
5113 				"information for %u", group);
5114 		return ret;
5115 	}
5116 	bitmap = e4b.bd_bitmap;
5117 
5118 	ext4_lock_group(sb, group);
5119 	if (EXT4_MB_GRP_WAS_TRIMMED(e4b.bd_info) &&
5120 	    minblocks >= atomic_read(&EXT4_SB(sb)->s_last_trim_minblks))
5121 		goto out;
5122 
5123 	start = (e4b.bd_info->bb_first_free > start) ?
5124 		e4b.bd_info->bb_first_free : start;
5125 
5126 	while (start <= max) {
5127 		start = mb_find_next_zero_bit(bitmap, max + 1, start);
5128 		if (start > max)
5129 			break;
5130 		next = mb_find_next_bit(bitmap, max + 1, start);
5131 
5132 		if ((next - start) >= minblocks) {
5133 			ret = ext4_trim_extent(sb, start,
5134 					       next - start, group, &e4b);
5135 			if (ret && ret != -EOPNOTSUPP)
5136 				break;
5137 			ret = 0;
5138 			count += next - start;
5139 		}
5140 		free_count += next - start;
5141 		start = next + 1;
5142 
5143 		if (fatal_signal_pending(current)) {
5144 			count = -ERESTARTSYS;
5145 			break;
5146 		}
5147 
5148 		if (need_resched()) {
5149 			ext4_unlock_group(sb, group);
5150 			cond_resched();
5151 			ext4_lock_group(sb, group);
5152 		}
5153 
5154 		if ((e4b.bd_info->bb_free - free_count) < minblocks)
5155 			break;
5156 	}
5157 
5158 	if (!ret) {
5159 		ret = count;
5160 		EXT4_MB_GRP_SET_TRIMMED(e4b.bd_info);
5161 	}
5162 out:
5163 	ext4_unlock_group(sb, group);
5164 	ext4_mb_unload_buddy(&e4b);
5165 
5166 	ext4_debug("trimmed %d blocks in the group %d\n",
5167 		count, group);
5168 
5169 	return ret;
5170 }
5171 
5172 /**
5173  * ext4_trim_fs() -- trim ioctl handle function
5174  * @sb:			superblock for filesystem
5175  * @range:		fstrim_range structure
5176  *
5177  * start:	First Byte to trim
5178  * len:		number of Bytes to trim from start
5179  * minlen:	minimum extent length in Bytes
5180  * ext4_trim_fs goes through all allocation groups containing Bytes from
5181  * start to start+len. For each such a group ext4_trim_all_free function
5182  * is invoked to trim all free space.
5183  */
ext4_trim_fs(struct super_block * sb,struct fstrim_range * range)5184 int ext4_trim_fs(struct super_block *sb, struct fstrim_range *range)
5185 {
5186 	struct ext4_group_info *grp;
5187 	ext4_group_t group, first_group, last_group;
5188 	ext4_grpblk_t cnt = 0, first_cluster, last_cluster;
5189 	uint64_t start, end, minlen, trimmed = 0;
5190 	ext4_fsblk_t first_data_blk =
5191 			le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
5192 	ext4_fsblk_t max_blks = ext4_blocks_count(EXT4_SB(sb)->s_es);
5193 	int ret = 0;
5194 
5195 	start = range->start >> sb->s_blocksize_bits;
5196 	end = start + (range->len >> sb->s_blocksize_bits) - 1;
5197 	minlen = EXT4_NUM_B2C(EXT4_SB(sb),
5198 			      range->minlen >> sb->s_blocksize_bits);
5199 
5200 	if (minlen > EXT4_CLUSTERS_PER_GROUP(sb) ||
5201 	    start >= max_blks ||
5202 	    range->len < sb->s_blocksize)
5203 		return -EINVAL;
5204 	if (end >= max_blks)
5205 		end = max_blks - 1;
5206 	if (end <= first_data_blk)
5207 		goto out;
5208 	if (start < first_data_blk)
5209 		start = first_data_blk;
5210 
5211 	/* Determine first and last group to examine based on start and end */
5212 	ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) start,
5213 				     &first_group, &first_cluster);
5214 	ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) end,
5215 				     &last_group, &last_cluster);
5216 
5217 	/* end now represents the last cluster to discard in this group */
5218 	end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
5219 
5220 	for (group = first_group; group <= last_group; group++) {
5221 		grp = ext4_get_group_info(sb, group);
5222 		/* We only do this if the grp has never been initialized */
5223 		if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
5224 			ret = ext4_mb_init_group(sb, group);
5225 			if (ret)
5226 				break;
5227 		}
5228 
5229 		/*
5230 		 * For all the groups except the last one, last cluster will
5231 		 * always be EXT4_CLUSTERS_PER_GROUP(sb)-1, so we only need to
5232 		 * change it for the last group, note that last_cluster is
5233 		 * already computed earlier by ext4_get_group_no_and_offset()
5234 		 */
5235 		if (group == last_group)
5236 			end = last_cluster;
5237 
5238 		if (grp->bb_free >= minlen) {
5239 			cnt = ext4_trim_all_free(sb, group, first_cluster,
5240 						end, minlen);
5241 			if (cnt < 0) {
5242 				ret = cnt;
5243 				break;
5244 			}
5245 			trimmed += cnt;
5246 		}
5247 
5248 		/*
5249 		 * For every group except the first one, we are sure
5250 		 * that the first cluster to discard will be cluster #0.
5251 		 */
5252 		first_cluster = 0;
5253 	}
5254 
5255 	if (!ret)
5256 		atomic_set(&EXT4_SB(sb)->s_last_trim_minblks, minlen);
5257 
5258 out:
5259 	range->len = EXT4_C2B(EXT4_SB(sb), trimmed) << sb->s_blocksize_bits;
5260 	return ret;
5261 }
5262