1 /*
2 * linux/fs/ext4/inode.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * 64-bit file support on 64-bit platforms by Jakub Jelinek
16 * (jj@sunsite.ms.mff.cuni.cz)
17 *
18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19 */
20
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/highuid.h>
24 #include <linux/pagemap.h>
25 #include <linux/quotaops.h>
26 #include <linux/string.h>
27 #include <linux/buffer_head.h>
28 #include <linux/writeback.h>
29 #include <linux/pagevec.h>
30 #include <linux/mpage.h>
31 #include <linux/namei.h>
32 #include <linux/uio.h>
33 #include <linux/bio.h>
34 #include <linux/workqueue.h>
35 #include <linux/kernel.h>
36 #include <linux/printk.h>
37 #include <linux/slab.h>
38 #include <linux/bitops.h>
39
40 #include "ext4_jbd2.h"
41 #include "xattr.h"
42 #include "acl.h"
43 #include "truncate.h"
44
45 #include <trace/events/ext4.h>
46
47 #define MPAGE_DA_EXTENT_TAIL 0x01
48
ext4_inode_csum(struct inode * inode,struct ext4_inode * raw,struct ext4_inode_info * ei)49 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
50 struct ext4_inode_info *ei)
51 {
52 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
53 __u16 csum_lo;
54 __u16 csum_hi = 0;
55 __u32 csum;
56
57 csum_lo = le16_to_cpu(raw->i_checksum_lo);
58 raw->i_checksum_lo = 0;
59 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
60 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
61 csum_hi = le16_to_cpu(raw->i_checksum_hi);
62 raw->i_checksum_hi = 0;
63 }
64
65 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
66 EXT4_INODE_SIZE(inode->i_sb));
67
68 raw->i_checksum_lo = cpu_to_le16(csum_lo);
69 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
70 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
71 raw->i_checksum_hi = cpu_to_le16(csum_hi);
72
73 return csum;
74 }
75
ext4_inode_csum_verify(struct inode * inode,struct ext4_inode * raw,struct ext4_inode_info * ei)76 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
77 struct ext4_inode_info *ei)
78 {
79 __u32 provided, calculated;
80
81 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
82 cpu_to_le32(EXT4_OS_LINUX) ||
83 !ext4_has_metadata_csum(inode->i_sb))
84 return 1;
85
86 provided = le16_to_cpu(raw->i_checksum_lo);
87 calculated = ext4_inode_csum(inode, raw, ei);
88 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
89 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
90 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
91 else
92 calculated &= 0xFFFF;
93
94 return provided == calculated;
95 }
96
ext4_inode_csum_set(struct inode * inode,struct ext4_inode * raw,struct ext4_inode_info * ei)97 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
98 struct ext4_inode_info *ei)
99 {
100 __u32 csum;
101
102 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
103 cpu_to_le32(EXT4_OS_LINUX) ||
104 !ext4_has_metadata_csum(inode->i_sb))
105 return;
106
107 csum = ext4_inode_csum(inode, raw, ei);
108 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
109 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
110 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
111 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
112 }
113
ext4_begin_ordered_truncate(struct inode * inode,loff_t new_size)114 static inline int ext4_begin_ordered_truncate(struct inode *inode,
115 loff_t new_size)
116 {
117 trace_ext4_begin_ordered_truncate(inode, new_size);
118 /*
119 * If jinode is zero, then we never opened the file for
120 * writing, so there's no need to call
121 * jbd2_journal_begin_ordered_truncate() since there's no
122 * outstanding writes we need to flush.
123 */
124 if (!EXT4_I(inode)->jinode)
125 return 0;
126 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
127 EXT4_I(inode)->jinode,
128 new_size);
129 }
130
131 static void ext4_invalidatepage(struct page *page, unsigned int offset,
132 unsigned int length);
133 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
134 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
135 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
136 int pextents);
137
138 /*
139 * Test whether an inode is a fast symlink.
140 */
ext4_inode_is_fast_symlink(struct inode * inode)141 int ext4_inode_is_fast_symlink(struct inode *inode)
142 {
143 int ea_blocks = EXT4_I(inode)->i_file_acl ?
144 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
145
146 if (ext4_has_inline_data(inode))
147 return 0;
148
149 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
150 }
151
152 /*
153 * Restart the transaction associated with *handle. This does a commit,
154 * so before we call here everything must be consistently dirtied against
155 * this transaction.
156 */
ext4_truncate_restart_trans(handle_t * handle,struct inode * inode,int nblocks)157 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
158 int nblocks)
159 {
160 int ret;
161
162 /*
163 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
164 * moment, get_block can be called only for blocks inside i_size since
165 * page cache has been already dropped and writes are blocked by
166 * i_mutex. So we can safely drop the i_data_sem here.
167 */
168 BUG_ON(EXT4_JOURNAL(inode) == NULL);
169 jbd_debug(2, "restarting handle %p\n", handle);
170 up_write(&EXT4_I(inode)->i_data_sem);
171 ret = ext4_journal_restart(handle, nblocks);
172 down_write(&EXT4_I(inode)->i_data_sem);
173 ext4_discard_preallocations(inode);
174
175 return ret;
176 }
177
178 /*
179 * Called at the last iput() if i_nlink is zero.
180 */
ext4_evict_inode(struct inode * inode)181 void ext4_evict_inode(struct inode *inode)
182 {
183 handle_t *handle;
184 int err;
185
186 trace_ext4_evict_inode(inode);
187
188 if (inode->i_nlink) {
189 /*
190 * When journalling data dirty buffers are tracked only in the
191 * journal. So although mm thinks everything is clean and
192 * ready for reaping the inode might still have some pages to
193 * write in the running transaction or waiting to be
194 * checkpointed. Thus calling jbd2_journal_invalidatepage()
195 * (via truncate_inode_pages()) to discard these buffers can
196 * cause data loss. Also even if we did not discard these
197 * buffers, we would have no way to find them after the inode
198 * is reaped and thus user could see stale data if he tries to
199 * read them before the transaction is checkpointed. So be
200 * careful and force everything to disk here... We use
201 * ei->i_datasync_tid to store the newest transaction
202 * containing inode's data.
203 *
204 * Note that directories do not have this problem because they
205 * don't use page cache.
206 */
207 if (ext4_should_journal_data(inode) &&
208 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
209 inode->i_ino != EXT4_JOURNAL_INO) {
210 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
211 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
212
213 jbd2_complete_transaction(journal, commit_tid);
214 filemap_write_and_wait(&inode->i_data);
215 }
216 truncate_inode_pages_final(&inode->i_data);
217
218 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
219 goto no_delete;
220 }
221
222 if (is_bad_inode(inode))
223 goto no_delete;
224 dquot_initialize(inode);
225
226 if (ext4_should_order_data(inode))
227 ext4_begin_ordered_truncate(inode, 0);
228 truncate_inode_pages_final(&inode->i_data);
229
230 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
231
232 /*
233 * Protect us against freezing - iput() caller didn't have to have any
234 * protection against it
235 */
236 sb_start_intwrite(inode->i_sb);
237 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
238 ext4_blocks_for_truncate(inode)+3);
239 if (IS_ERR(handle)) {
240 ext4_std_error(inode->i_sb, PTR_ERR(handle));
241 /*
242 * If we're going to skip the normal cleanup, we still need to
243 * make sure that the in-core orphan linked list is properly
244 * cleaned up.
245 */
246 ext4_orphan_del(NULL, inode);
247 sb_end_intwrite(inode->i_sb);
248 goto no_delete;
249 }
250
251 if (IS_SYNC(inode))
252 ext4_handle_sync(handle);
253 inode->i_size = 0;
254 err = ext4_mark_inode_dirty(handle, inode);
255 if (err) {
256 ext4_warning(inode->i_sb,
257 "couldn't mark inode dirty (err %d)", err);
258 goto stop_handle;
259 }
260 if (inode->i_blocks)
261 ext4_truncate(inode);
262
263 /*
264 * ext4_ext_truncate() doesn't reserve any slop when it
265 * restarts journal transactions; therefore there may not be
266 * enough credits left in the handle to remove the inode from
267 * the orphan list and set the dtime field.
268 */
269 if (!ext4_handle_has_enough_credits(handle, 3)) {
270 err = ext4_journal_extend(handle, 3);
271 if (err > 0)
272 err = ext4_journal_restart(handle, 3);
273 if (err != 0) {
274 ext4_warning(inode->i_sb,
275 "couldn't extend journal (err %d)", err);
276 stop_handle:
277 ext4_journal_stop(handle);
278 ext4_orphan_del(NULL, inode);
279 sb_end_intwrite(inode->i_sb);
280 goto no_delete;
281 }
282 }
283
284 /*
285 * Kill off the orphan record which ext4_truncate created.
286 * AKPM: I think this can be inside the above `if'.
287 * Note that ext4_orphan_del() has to be able to cope with the
288 * deletion of a non-existent orphan - this is because we don't
289 * know if ext4_truncate() actually created an orphan record.
290 * (Well, we could do this if we need to, but heck - it works)
291 */
292 ext4_orphan_del(handle, inode);
293 EXT4_I(inode)->i_dtime = get_seconds();
294
295 /*
296 * One subtle ordering requirement: if anything has gone wrong
297 * (transaction abort, IO errors, whatever), then we can still
298 * do these next steps (the fs will already have been marked as
299 * having errors), but we can't free the inode if the mark_dirty
300 * fails.
301 */
302 if (ext4_mark_inode_dirty(handle, inode))
303 /* If that failed, just do the required in-core inode clear. */
304 ext4_clear_inode(inode);
305 else
306 ext4_free_inode(handle, inode);
307 ext4_journal_stop(handle);
308 sb_end_intwrite(inode->i_sb);
309 return;
310 no_delete:
311 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
312 }
313
314 #ifdef CONFIG_QUOTA
ext4_get_reserved_space(struct inode * inode)315 qsize_t *ext4_get_reserved_space(struct inode *inode)
316 {
317 return &EXT4_I(inode)->i_reserved_quota;
318 }
319 #endif
320
321 /*
322 * Called with i_data_sem down, which is important since we can call
323 * ext4_discard_preallocations() from here.
324 */
ext4_da_update_reserve_space(struct inode * inode,int used,int quota_claim)325 void ext4_da_update_reserve_space(struct inode *inode,
326 int used, int quota_claim)
327 {
328 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
329 struct ext4_inode_info *ei = EXT4_I(inode);
330
331 spin_lock(&ei->i_block_reservation_lock);
332 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
333 if (unlikely(used > ei->i_reserved_data_blocks)) {
334 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
335 "with only %d reserved data blocks",
336 __func__, inode->i_ino, used,
337 ei->i_reserved_data_blocks);
338 WARN_ON(1);
339 used = ei->i_reserved_data_blocks;
340 }
341
342 /* Update per-inode reservations */
343 ei->i_reserved_data_blocks -= used;
344 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
345
346 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
347
348 /* Update quota subsystem for data blocks */
349 if (quota_claim)
350 dquot_claim_block(inode, EXT4_C2B(sbi, used));
351 else {
352 /*
353 * We did fallocate with an offset that is already delayed
354 * allocated. So on delayed allocated writeback we should
355 * not re-claim the quota for fallocated blocks.
356 */
357 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
358 }
359
360 /*
361 * If we have done all the pending block allocations and if
362 * there aren't any writers on the inode, we can discard the
363 * inode's preallocations.
364 */
365 if ((ei->i_reserved_data_blocks == 0) &&
366 (atomic_read(&inode->i_writecount) == 0))
367 ext4_discard_preallocations(inode);
368 }
369
__check_block_validity(struct inode * inode,const char * func,unsigned int line,struct ext4_map_blocks * map)370 static int __check_block_validity(struct inode *inode, const char *func,
371 unsigned int line,
372 struct ext4_map_blocks *map)
373 {
374 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
375 map->m_len)) {
376 ext4_error_inode(inode, func, line, map->m_pblk,
377 "lblock %lu mapped to illegal pblock "
378 "(length %d)", (unsigned long) map->m_lblk,
379 map->m_len);
380 return -EIO;
381 }
382 return 0;
383 }
384
385 #define check_block_validity(inode, map) \
386 __check_block_validity((inode), __func__, __LINE__, (map))
387
388 #ifdef ES_AGGRESSIVE_TEST
ext4_map_blocks_es_recheck(handle_t * handle,struct inode * inode,struct ext4_map_blocks * es_map,struct ext4_map_blocks * map,int flags)389 static void ext4_map_blocks_es_recheck(handle_t *handle,
390 struct inode *inode,
391 struct ext4_map_blocks *es_map,
392 struct ext4_map_blocks *map,
393 int flags)
394 {
395 int retval;
396
397 map->m_flags = 0;
398 /*
399 * There is a race window that the result is not the same.
400 * e.g. xfstests #223 when dioread_nolock enables. The reason
401 * is that we lookup a block mapping in extent status tree with
402 * out taking i_data_sem. So at the time the unwritten extent
403 * could be converted.
404 */
405 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
406 down_read(&EXT4_I(inode)->i_data_sem);
407 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
408 retval = ext4_ext_map_blocks(handle, inode, map, flags &
409 EXT4_GET_BLOCKS_KEEP_SIZE);
410 } else {
411 retval = ext4_ind_map_blocks(handle, inode, map, flags &
412 EXT4_GET_BLOCKS_KEEP_SIZE);
413 }
414 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
415 up_read((&EXT4_I(inode)->i_data_sem));
416
417 /*
418 * We don't check m_len because extent will be collpased in status
419 * tree. So the m_len might not equal.
420 */
421 if (es_map->m_lblk != map->m_lblk ||
422 es_map->m_flags != map->m_flags ||
423 es_map->m_pblk != map->m_pblk) {
424 printk("ES cache assertion failed for inode: %lu "
425 "es_cached ex [%d/%d/%llu/%x] != "
426 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
427 inode->i_ino, es_map->m_lblk, es_map->m_len,
428 es_map->m_pblk, es_map->m_flags, map->m_lblk,
429 map->m_len, map->m_pblk, map->m_flags,
430 retval, flags);
431 }
432 }
433 #endif /* ES_AGGRESSIVE_TEST */
434
435 /*
436 * The ext4_map_blocks() function tries to look up the requested blocks,
437 * and returns if the blocks are already mapped.
438 *
439 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
440 * and store the allocated blocks in the result buffer head and mark it
441 * mapped.
442 *
443 * If file type is extents based, it will call ext4_ext_map_blocks(),
444 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
445 * based files
446 *
447 * On success, it returns the number of blocks being mapped or allocated.
448 * if create==0 and the blocks are pre-allocated and unwritten block,
449 * the result buffer head is unmapped. If the create ==1, it will make sure
450 * the buffer head is mapped.
451 *
452 * It returns 0 if plain look up failed (blocks have not been allocated), in
453 * that case, buffer head is unmapped
454 *
455 * It returns the error in case of allocation failure.
456 */
ext4_map_blocks(handle_t * handle,struct inode * inode,struct ext4_map_blocks * map,int flags)457 int ext4_map_blocks(handle_t *handle, struct inode *inode,
458 struct ext4_map_blocks *map, int flags)
459 {
460 struct extent_status es;
461 int retval;
462 int ret = 0;
463 #ifdef ES_AGGRESSIVE_TEST
464 struct ext4_map_blocks orig_map;
465
466 memcpy(&orig_map, map, sizeof(*map));
467 #endif
468
469 map->m_flags = 0;
470 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
471 "logical block %lu\n", inode->i_ino, flags, map->m_len,
472 (unsigned long) map->m_lblk);
473
474 /*
475 * ext4_map_blocks returns an int, and m_len is an unsigned int
476 */
477 if (unlikely(map->m_len > INT_MAX))
478 map->m_len = INT_MAX;
479
480 /* We can handle the block number less than EXT_MAX_BLOCKS */
481 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
482 return -EIO;
483
484 /* Lookup extent status tree firstly */
485 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
486 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
487 map->m_pblk = ext4_es_pblock(&es) +
488 map->m_lblk - es.es_lblk;
489 map->m_flags |= ext4_es_is_written(&es) ?
490 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
491 retval = es.es_len - (map->m_lblk - es.es_lblk);
492 if (retval > map->m_len)
493 retval = map->m_len;
494 map->m_len = retval;
495 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
496 retval = 0;
497 } else {
498 BUG_ON(1);
499 }
500 #ifdef ES_AGGRESSIVE_TEST
501 ext4_map_blocks_es_recheck(handle, inode, map,
502 &orig_map, flags);
503 #endif
504 goto found;
505 }
506
507 /*
508 * Try to see if we can get the block without requesting a new
509 * file system block.
510 */
511 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
512 down_read(&EXT4_I(inode)->i_data_sem);
513 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
514 retval = ext4_ext_map_blocks(handle, inode, map, flags &
515 EXT4_GET_BLOCKS_KEEP_SIZE);
516 } else {
517 retval = ext4_ind_map_blocks(handle, inode, map, flags &
518 EXT4_GET_BLOCKS_KEEP_SIZE);
519 }
520 if (retval > 0) {
521 unsigned int status;
522
523 if (unlikely(retval != map->m_len)) {
524 ext4_warning(inode->i_sb,
525 "ES len assertion failed for inode "
526 "%lu: retval %d != map->m_len %d",
527 inode->i_ino, retval, map->m_len);
528 WARN_ON(1);
529 }
530
531 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
532 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
533 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
534 !(status & EXTENT_STATUS_WRITTEN) &&
535 ext4_find_delalloc_range(inode, map->m_lblk,
536 map->m_lblk + map->m_len - 1))
537 status |= EXTENT_STATUS_DELAYED;
538 ret = ext4_es_insert_extent(inode, map->m_lblk,
539 map->m_len, map->m_pblk, status);
540 if (ret < 0)
541 retval = ret;
542 }
543 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
544 up_read((&EXT4_I(inode)->i_data_sem));
545
546 found:
547 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
548 ret = check_block_validity(inode, map);
549 if (ret != 0)
550 return ret;
551 }
552
553 /* If it is only a block(s) look up */
554 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
555 return retval;
556
557 /*
558 * Returns if the blocks have already allocated
559 *
560 * Note that if blocks have been preallocated
561 * ext4_ext_get_block() returns the create = 0
562 * with buffer head unmapped.
563 */
564 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
565 /*
566 * If we need to convert extent to unwritten
567 * we continue and do the actual work in
568 * ext4_ext_map_blocks()
569 */
570 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
571 return retval;
572
573 /*
574 * Here we clear m_flags because after allocating an new extent,
575 * it will be set again.
576 */
577 map->m_flags &= ~EXT4_MAP_FLAGS;
578
579 /*
580 * New blocks allocate and/or writing to unwritten extent
581 * will possibly result in updating i_data, so we take
582 * the write lock of i_data_sem, and call get_block()
583 * with create == 1 flag.
584 */
585 down_write(&EXT4_I(inode)->i_data_sem);
586
587 /*
588 * We need to check for EXT4 here because migrate
589 * could have changed the inode type in between
590 */
591 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
592 retval = ext4_ext_map_blocks(handle, inode, map, flags);
593 } else {
594 retval = ext4_ind_map_blocks(handle, inode, map, flags);
595
596 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
597 /*
598 * We allocated new blocks which will result in
599 * i_data's format changing. Force the migrate
600 * to fail by clearing migrate flags
601 */
602 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
603 }
604
605 /*
606 * Update reserved blocks/metadata blocks after successful
607 * block allocation which had been deferred till now. We don't
608 * support fallocate for non extent files. So we can update
609 * reserve space here.
610 */
611 if ((retval > 0) &&
612 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
613 ext4_da_update_reserve_space(inode, retval, 1);
614 }
615
616 if (retval > 0) {
617 unsigned int status;
618
619 if (unlikely(retval != map->m_len)) {
620 ext4_warning(inode->i_sb,
621 "ES len assertion failed for inode "
622 "%lu: retval %d != map->m_len %d",
623 inode->i_ino, retval, map->m_len);
624 WARN_ON(1);
625 }
626
627 /*
628 * If the extent has been zeroed out, we don't need to update
629 * extent status tree.
630 */
631 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
632 ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
633 if (ext4_es_is_written(&es))
634 goto has_zeroout;
635 }
636 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
637 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
638 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
639 !(status & EXTENT_STATUS_WRITTEN) &&
640 ext4_find_delalloc_range(inode, map->m_lblk,
641 map->m_lblk + map->m_len - 1))
642 status |= EXTENT_STATUS_DELAYED;
643 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
644 map->m_pblk, status);
645 if (ret < 0)
646 retval = ret;
647 }
648
649 has_zeroout:
650 up_write((&EXT4_I(inode)->i_data_sem));
651 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
652 ret = check_block_validity(inode, map);
653 if (ret != 0)
654 return ret;
655 }
656 return retval;
657 }
658
659 /*
660 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
661 * we have to be careful as someone else may be manipulating b_state as well.
662 */
ext4_update_bh_state(struct buffer_head * bh,unsigned long flags)663 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
664 {
665 unsigned long old_state;
666 unsigned long new_state;
667
668 flags &= EXT4_MAP_FLAGS;
669
670 /* Dummy buffer_head? Set non-atomically. */
671 if (!bh->b_page) {
672 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
673 return;
674 }
675 /*
676 * Someone else may be modifying b_state. Be careful! This is ugly but
677 * once we get rid of using bh as a container for mapping information
678 * to pass to / from get_block functions, this can go away.
679 */
680 do {
681 old_state = READ_ONCE(bh->b_state);
682 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
683 } while (unlikely(
684 cmpxchg(&bh->b_state, old_state, new_state) != old_state));
685 }
686
687 /* Maximum number of blocks we map for direct IO at once. */
688 #define DIO_MAX_BLOCKS 4096
689
_ext4_get_block(struct inode * inode,sector_t iblock,struct buffer_head * bh,int flags)690 static int _ext4_get_block(struct inode *inode, sector_t iblock,
691 struct buffer_head *bh, int flags)
692 {
693 handle_t *handle = ext4_journal_current_handle();
694 struct ext4_map_blocks map;
695 int ret = 0, started = 0;
696 int dio_credits;
697
698 if (ext4_has_inline_data(inode))
699 return -ERANGE;
700
701 map.m_lblk = iblock;
702 map.m_len = bh->b_size >> inode->i_blkbits;
703
704 if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
705 /* Direct IO write... */
706 if (map.m_len > DIO_MAX_BLOCKS)
707 map.m_len = DIO_MAX_BLOCKS;
708 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
709 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
710 dio_credits);
711 if (IS_ERR(handle)) {
712 ret = PTR_ERR(handle);
713 return ret;
714 }
715 started = 1;
716 }
717
718 ret = ext4_map_blocks(handle, inode, &map, flags);
719 if (ret > 0) {
720 ext4_io_end_t *io_end = ext4_inode_aio(inode);
721
722 map_bh(bh, inode->i_sb, map.m_pblk);
723 ext4_update_bh_state(bh, map.m_flags);
724 if (IS_DAX(inode) && buffer_unwritten(bh)) {
725 /*
726 * dgc: I suspect unwritten conversion on ext4+DAX is
727 * fundamentally broken here when there are concurrent
728 * read/write in progress on this inode.
729 */
730 WARN_ON_ONCE(io_end);
731 bh->b_assoc_map = inode->i_mapping;
732 bh->b_private = (void *)(unsigned long)iblock;
733 }
734 if (io_end && io_end->flag & EXT4_IO_END_UNWRITTEN)
735 set_buffer_defer_completion(bh);
736 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
737 ret = 0;
738 }
739 if (started)
740 ext4_journal_stop(handle);
741 return ret;
742 }
743
ext4_get_block(struct inode * inode,sector_t iblock,struct buffer_head * bh,int create)744 int ext4_get_block(struct inode *inode, sector_t iblock,
745 struct buffer_head *bh, int create)
746 {
747 return _ext4_get_block(inode, iblock, bh,
748 create ? EXT4_GET_BLOCKS_CREATE : 0);
749 }
750
751 /*
752 * `handle' can be NULL if create is zero
753 */
ext4_getblk(handle_t * handle,struct inode * inode,ext4_lblk_t block,int create)754 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
755 ext4_lblk_t block, int create)
756 {
757 struct ext4_map_blocks map;
758 struct buffer_head *bh;
759 int err;
760
761 J_ASSERT(handle != NULL || create == 0);
762
763 map.m_lblk = block;
764 map.m_len = 1;
765 err = ext4_map_blocks(handle, inode, &map,
766 create ? EXT4_GET_BLOCKS_CREATE : 0);
767
768 if (err == 0)
769 return create ? ERR_PTR(-ENOSPC) : NULL;
770 if (err < 0)
771 return ERR_PTR(err);
772
773 bh = sb_getblk(inode->i_sb, map.m_pblk);
774 if (unlikely(!bh))
775 return ERR_PTR(-ENOMEM);
776 if (map.m_flags & EXT4_MAP_NEW) {
777 J_ASSERT(create != 0);
778 J_ASSERT(handle != NULL);
779
780 /*
781 * Now that we do not always journal data, we should
782 * keep in mind whether this should always journal the
783 * new buffer as metadata. For now, regular file
784 * writes use ext4_get_block instead, so it's not a
785 * problem.
786 */
787 lock_buffer(bh);
788 BUFFER_TRACE(bh, "call get_create_access");
789 err = ext4_journal_get_create_access(handle, bh);
790 if (unlikely(err)) {
791 unlock_buffer(bh);
792 goto errout;
793 }
794 if (!buffer_uptodate(bh)) {
795 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
796 set_buffer_uptodate(bh);
797 }
798 unlock_buffer(bh);
799 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
800 err = ext4_handle_dirty_metadata(handle, inode, bh);
801 if (unlikely(err))
802 goto errout;
803 } else
804 BUFFER_TRACE(bh, "not a new buffer");
805 return bh;
806 errout:
807 brelse(bh);
808 return ERR_PTR(err);
809 }
810
ext4_bread(handle_t * handle,struct inode * inode,ext4_lblk_t block,int create)811 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
812 ext4_lblk_t block, int create)
813 {
814 struct buffer_head *bh;
815
816 bh = ext4_getblk(handle, inode, block, create);
817 if (IS_ERR(bh))
818 return bh;
819 if (!bh || buffer_uptodate(bh))
820 return bh;
821 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
822 wait_on_buffer(bh);
823 if (buffer_uptodate(bh))
824 return bh;
825 put_bh(bh);
826 return ERR_PTR(-EIO);
827 }
828
ext4_walk_page_buffers(handle_t * handle,struct buffer_head * head,unsigned from,unsigned to,int * partial,int (* fn)(handle_t * handle,struct buffer_head * bh))829 int ext4_walk_page_buffers(handle_t *handle,
830 struct buffer_head *head,
831 unsigned from,
832 unsigned to,
833 int *partial,
834 int (*fn)(handle_t *handle,
835 struct buffer_head *bh))
836 {
837 struct buffer_head *bh;
838 unsigned block_start, block_end;
839 unsigned blocksize = head->b_size;
840 int err, ret = 0;
841 struct buffer_head *next;
842
843 for (bh = head, block_start = 0;
844 ret == 0 && (bh != head || !block_start);
845 block_start = block_end, bh = next) {
846 next = bh->b_this_page;
847 block_end = block_start + blocksize;
848 if (block_end <= from || block_start >= to) {
849 if (partial && !buffer_uptodate(bh))
850 *partial = 1;
851 continue;
852 }
853 err = (*fn)(handle, bh);
854 if (!ret)
855 ret = err;
856 }
857 return ret;
858 }
859
860 /*
861 * To preserve ordering, it is essential that the hole instantiation and
862 * the data write be encapsulated in a single transaction. We cannot
863 * close off a transaction and start a new one between the ext4_get_block()
864 * and the commit_write(). So doing the jbd2_journal_start at the start of
865 * prepare_write() is the right place.
866 *
867 * Also, this function can nest inside ext4_writepage(). In that case, we
868 * *know* that ext4_writepage() has generated enough buffer credits to do the
869 * whole page. So we won't block on the journal in that case, which is good,
870 * because the caller may be PF_MEMALLOC.
871 *
872 * By accident, ext4 can be reentered when a transaction is open via
873 * quota file writes. If we were to commit the transaction while thus
874 * reentered, there can be a deadlock - we would be holding a quota
875 * lock, and the commit would never complete if another thread had a
876 * transaction open and was blocking on the quota lock - a ranking
877 * violation.
878 *
879 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
880 * will _not_ run commit under these circumstances because handle->h_ref
881 * is elevated. We'll still have enough credits for the tiny quotafile
882 * write.
883 */
do_journal_get_write_access(handle_t * handle,struct buffer_head * bh)884 int do_journal_get_write_access(handle_t *handle,
885 struct buffer_head *bh)
886 {
887 int dirty = buffer_dirty(bh);
888 int ret;
889
890 if (!buffer_mapped(bh) || buffer_freed(bh))
891 return 0;
892 /*
893 * __block_write_begin() could have dirtied some buffers. Clean
894 * the dirty bit as jbd2_journal_get_write_access() could complain
895 * otherwise about fs integrity issues. Setting of the dirty bit
896 * by __block_write_begin() isn't a real problem here as we clear
897 * the bit before releasing a page lock and thus writeback cannot
898 * ever write the buffer.
899 */
900 if (dirty)
901 clear_buffer_dirty(bh);
902 BUFFER_TRACE(bh, "get write access");
903 ret = ext4_journal_get_write_access(handle, bh);
904 if (!ret && dirty)
905 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
906 return ret;
907 }
908
909 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
910 struct buffer_head *bh_result, int create);
911
912 #ifdef CONFIG_EXT4_FS_ENCRYPTION
ext4_block_write_begin(struct page * page,loff_t pos,unsigned len,get_block_t * get_block)913 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
914 get_block_t *get_block)
915 {
916 unsigned from = pos & (PAGE_CACHE_SIZE - 1);
917 unsigned to = from + len;
918 struct inode *inode = page->mapping->host;
919 unsigned block_start, block_end;
920 sector_t block;
921 int err = 0;
922 unsigned blocksize = inode->i_sb->s_blocksize;
923 unsigned bbits;
924 struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
925 bool decrypt = false;
926
927 BUG_ON(!PageLocked(page));
928 BUG_ON(from > PAGE_CACHE_SIZE);
929 BUG_ON(to > PAGE_CACHE_SIZE);
930 BUG_ON(from > to);
931
932 if (!page_has_buffers(page))
933 create_empty_buffers(page, blocksize, 0);
934 head = page_buffers(page);
935 bbits = ilog2(blocksize);
936 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
937
938 for (bh = head, block_start = 0; bh != head || !block_start;
939 block++, block_start = block_end, bh = bh->b_this_page) {
940 block_end = block_start + blocksize;
941 if (block_end <= from || block_start >= to) {
942 if (PageUptodate(page)) {
943 if (!buffer_uptodate(bh))
944 set_buffer_uptodate(bh);
945 }
946 continue;
947 }
948 if (buffer_new(bh))
949 clear_buffer_new(bh);
950 if (!buffer_mapped(bh)) {
951 WARN_ON(bh->b_size != blocksize);
952 err = get_block(inode, block, bh, 1);
953 if (err)
954 break;
955 if (buffer_new(bh)) {
956 unmap_underlying_metadata(bh->b_bdev,
957 bh->b_blocknr);
958 if (PageUptodate(page)) {
959 clear_buffer_new(bh);
960 set_buffer_uptodate(bh);
961 mark_buffer_dirty(bh);
962 continue;
963 }
964 if (block_end > to || block_start < from)
965 zero_user_segments(page, to, block_end,
966 block_start, from);
967 continue;
968 }
969 }
970 if (PageUptodate(page)) {
971 if (!buffer_uptodate(bh))
972 set_buffer_uptodate(bh);
973 continue;
974 }
975 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
976 !buffer_unwritten(bh) &&
977 (block_start < from || block_end > to)) {
978 ll_rw_block(READ, 1, &bh);
979 *wait_bh++ = bh;
980 decrypt = ext4_encrypted_inode(inode) &&
981 S_ISREG(inode->i_mode);
982 }
983 }
984 /*
985 * If we issued read requests, let them complete.
986 */
987 while (wait_bh > wait) {
988 wait_on_buffer(*--wait_bh);
989 if (!buffer_uptodate(*wait_bh))
990 err = -EIO;
991 }
992 if (unlikely(err))
993 page_zero_new_buffers(page, from, to);
994 else if (decrypt)
995 err = ext4_decrypt_one(inode, page);
996 return err;
997 }
998 #endif
999
ext4_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata)1000 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1001 loff_t pos, unsigned len, unsigned flags,
1002 struct page **pagep, void **fsdata)
1003 {
1004 struct inode *inode = mapping->host;
1005 int ret, needed_blocks;
1006 handle_t *handle;
1007 int retries = 0;
1008 struct page *page;
1009 pgoff_t index;
1010 unsigned from, to;
1011
1012 trace_ext4_write_begin(inode, pos, len, flags);
1013 /*
1014 * Reserve one block more for addition to orphan list in case
1015 * we allocate blocks but write fails for some reason
1016 */
1017 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1018 index = pos >> PAGE_CACHE_SHIFT;
1019 from = pos & (PAGE_CACHE_SIZE - 1);
1020 to = from + len;
1021
1022 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1023 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1024 flags, pagep);
1025 if (ret < 0)
1026 return ret;
1027 if (ret == 1)
1028 return 0;
1029 }
1030
1031 /*
1032 * grab_cache_page_write_begin() can take a long time if the
1033 * system is thrashing due to memory pressure, or if the page
1034 * is being written back. So grab it first before we start
1035 * the transaction handle. This also allows us to allocate
1036 * the page (if needed) without using GFP_NOFS.
1037 */
1038 retry_grab:
1039 page = grab_cache_page_write_begin(mapping, index, flags);
1040 if (!page)
1041 return -ENOMEM;
1042 unlock_page(page);
1043
1044 retry_journal:
1045 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1046 if (IS_ERR(handle)) {
1047 page_cache_release(page);
1048 return PTR_ERR(handle);
1049 }
1050
1051 lock_page(page);
1052 if (page->mapping != mapping) {
1053 /* The page got truncated from under us */
1054 unlock_page(page);
1055 page_cache_release(page);
1056 ext4_journal_stop(handle);
1057 goto retry_grab;
1058 }
1059 /* In case writeback began while the page was unlocked */
1060 wait_for_stable_page(page);
1061
1062 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1063 if (ext4_should_dioread_nolock(inode))
1064 ret = ext4_block_write_begin(page, pos, len,
1065 ext4_get_block_write);
1066 else
1067 ret = ext4_block_write_begin(page, pos, len,
1068 ext4_get_block);
1069 #else
1070 if (ext4_should_dioread_nolock(inode))
1071 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
1072 else
1073 ret = __block_write_begin(page, pos, len, ext4_get_block);
1074 #endif
1075 if (!ret && ext4_should_journal_data(inode)) {
1076 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1077 from, to, NULL,
1078 do_journal_get_write_access);
1079 }
1080
1081 if (ret) {
1082 unlock_page(page);
1083 /*
1084 * __block_write_begin may have instantiated a few blocks
1085 * outside i_size. Trim these off again. Don't need
1086 * i_size_read because we hold i_mutex.
1087 *
1088 * Add inode to orphan list in case we crash before
1089 * truncate finishes
1090 */
1091 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1092 ext4_orphan_add(handle, inode);
1093
1094 ext4_journal_stop(handle);
1095 if (pos + len > inode->i_size) {
1096 ext4_truncate_failed_write(inode);
1097 /*
1098 * If truncate failed early the inode might
1099 * still be on the orphan list; we need to
1100 * make sure the inode is removed from the
1101 * orphan list in that case.
1102 */
1103 if (inode->i_nlink)
1104 ext4_orphan_del(NULL, inode);
1105 }
1106
1107 if (ret == -ENOSPC &&
1108 ext4_should_retry_alloc(inode->i_sb, &retries))
1109 goto retry_journal;
1110 page_cache_release(page);
1111 return ret;
1112 }
1113 *pagep = page;
1114 return ret;
1115 }
1116
1117 /* For write_end() in data=journal mode */
write_end_fn(handle_t * handle,struct buffer_head * bh)1118 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1119 {
1120 int ret;
1121 if (!buffer_mapped(bh) || buffer_freed(bh))
1122 return 0;
1123 set_buffer_uptodate(bh);
1124 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1125 clear_buffer_meta(bh);
1126 clear_buffer_prio(bh);
1127 return ret;
1128 }
1129
1130 /*
1131 * We need to pick up the new inode size which generic_commit_write gave us
1132 * `file' can be NULL - eg, when called from page_symlink().
1133 *
1134 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1135 * buffers are managed internally.
1136 */
ext4_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)1137 static int ext4_write_end(struct file *file,
1138 struct address_space *mapping,
1139 loff_t pos, unsigned len, unsigned copied,
1140 struct page *page, void *fsdata)
1141 {
1142 handle_t *handle = ext4_journal_current_handle();
1143 struct inode *inode = mapping->host;
1144 loff_t old_size = inode->i_size;
1145 int ret = 0, ret2;
1146 int i_size_changed = 0;
1147
1148 trace_ext4_write_end(inode, pos, len, copied);
1149 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1150 ret = ext4_jbd2_file_inode(handle, inode);
1151 if (ret) {
1152 unlock_page(page);
1153 page_cache_release(page);
1154 goto errout;
1155 }
1156 }
1157
1158 if (ext4_has_inline_data(inode)) {
1159 ret = ext4_write_inline_data_end(inode, pos, len,
1160 copied, page);
1161 if (ret < 0)
1162 goto errout;
1163 copied = ret;
1164 } else
1165 copied = block_write_end(file, mapping, pos,
1166 len, copied, page, fsdata);
1167 /*
1168 * it's important to update i_size while still holding page lock:
1169 * page writeout could otherwise come in and zero beyond i_size.
1170 */
1171 i_size_changed = ext4_update_inode_size(inode, pos + copied);
1172 unlock_page(page);
1173 page_cache_release(page);
1174
1175 if (old_size < pos)
1176 pagecache_isize_extended(inode, old_size, pos);
1177 /*
1178 * Don't mark the inode dirty under page lock. First, it unnecessarily
1179 * makes the holding time of page lock longer. Second, it forces lock
1180 * ordering of page lock and transaction start for journaling
1181 * filesystems.
1182 */
1183 if (i_size_changed)
1184 ext4_mark_inode_dirty(handle, inode);
1185
1186 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1187 /* if we have allocated more blocks and copied
1188 * less. We will have blocks allocated outside
1189 * inode->i_size. So truncate them
1190 */
1191 ext4_orphan_add(handle, inode);
1192 errout:
1193 ret2 = ext4_journal_stop(handle);
1194 if (!ret)
1195 ret = ret2;
1196
1197 if (pos + len > inode->i_size) {
1198 ext4_truncate_failed_write(inode);
1199 /*
1200 * If truncate failed early the inode might still be
1201 * on the orphan list; we need to make sure the inode
1202 * is removed from the orphan list in that case.
1203 */
1204 if (inode->i_nlink)
1205 ext4_orphan_del(NULL, inode);
1206 }
1207
1208 return ret ? ret : copied;
1209 }
1210
ext4_journalled_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)1211 static int ext4_journalled_write_end(struct file *file,
1212 struct address_space *mapping,
1213 loff_t pos, unsigned len, unsigned copied,
1214 struct page *page, void *fsdata)
1215 {
1216 handle_t *handle = ext4_journal_current_handle();
1217 struct inode *inode = mapping->host;
1218 loff_t old_size = inode->i_size;
1219 int ret = 0, ret2;
1220 int partial = 0;
1221 unsigned from, to;
1222 int size_changed = 0;
1223
1224 trace_ext4_journalled_write_end(inode, pos, len, copied);
1225 from = pos & (PAGE_CACHE_SIZE - 1);
1226 to = from + len;
1227
1228 BUG_ON(!ext4_handle_valid(handle));
1229
1230 if (ext4_has_inline_data(inode))
1231 copied = ext4_write_inline_data_end(inode, pos, len,
1232 copied, page);
1233 else {
1234 if (copied < len) {
1235 if (!PageUptodate(page))
1236 copied = 0;
1237 page_zero_new_buffers(page, from+copied, to);
1238 }
1239
1240 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1241 to, &partial, write_end_fn);
1242 if (!partial)
1243 SetPageUptodate(page);
1244 }
1245 size_changed = ext4_update_inode_size(inode, pos + copied);
1246 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1247 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1248 unlock_page(page);
1249 page_cache_release(page);
1250
1251 if (old_size < pos)
1252 pagecache_isize_extended(inode, old_size, pos);
1253
1254 if (size_changed) {
1255 ret2 = ext4_mark_inode_dirty(handle, inode);
1256 if (!ret)
1257 ret = ret2;
1258 }
1259
1260 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1261 /* if we have allocated more blocks and copied
1262 * less. We will have blocks allocated outside
1263 * inode->i_size. So truncate them
1264 */
1265 ext4_orphan_add(handle, inode);
1266
1267 ret2 = ext4_journal_stop(handle);
1268 if (!ret)
1269 ret = ret2;
1270 if (pos + len > inode->i_size) {
1271 ext4_truncate_failed_write(inode);
1272 /*
1273 * If truncate failed early the inode might still be
1274 * on the orphan list; we need to make sure the inode
1275 * is removed from the orphan list in that case.
1276 */
1277 if (inode->i_nlink)
1278 ext4_orphan_del(NULL, inode);
1279 }
1280
1281 return ret ? ret : copied;
1282 }
1283
1284 /*
1285 * Reserve a single cluster located at lblock
1286 */
ext4_da_reserve_space(struct inode * inode,ext4_lblk_t lblock)1287 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1288 {
1289 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1290 struct ext4_inode_info *ei = EXT4_I(inode);
1291 unsigned int md_needed;
1292 int ret;
1293
1294 /*
1295 * We will charge metadata quota at writeout time; this saves
1296 * us from metadata over-estimation, though we may go over by
1297 * a small amount in the end. Here we just reserve for data.
1298 */
1299 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1300 if (ret)
1301 return ret;
1302
1303 /*
1304 * recalculate the amount of metadata blocks to reserve
1305 * in order to allocate nrblocks
1306 * worse case is one extent per block
1307 */
1308 spin_lock(&ei->i_block_reservation_lock);
1309 /*
1310 * ext4_calc_metadata_amount() has side effects, which we have
1311 * to be prepared undo if we fail to claim space.
1312 */
1313 md_needed = 0;
1314 trace_ext4_da_reserve_space(inode, 0);
1315
1316 if (ext4_claim_free_clusters(sbi, 1, 0)) {
1317 spin_unlock(&ei->i_block_reservation_lock);
1318 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1319 return -ENOSPC;
1320 }
1321 ei->i_reserved_data_blocks++;
1322 spin_unlock(&ei->i_block_reservation_lock);
1323
1324 return 0; /* success */
1325 }
1326
ext4_da_release_space(struct inode * inode,int to_free)1327 static void ext4_da_release_space(struct inode *inode, int to_free)
1328 {
1329 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1330 struct ext4_inode_info *ei = EXT4_I(inode);
1331
1332 if (!to_free)
1333 return; /* Nothing to release, exit */
1334
1335 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1336
1337 trace_ext4_da_release_space(inode, to_free);
1338 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1339 /*
1340 * if there aren't enough reserved blocks, then the
1341 * counter is messed up somewhere. Since this
1342 * function is called from invalidate page, it's
1343 * harmless to return without any action.
1344 */
1345 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1346 "ino %lu, to_free %d with only %d reserved "
1347 "data blocks", inode->i_ino, to_free,
1348 ei->i_reserved_data_blocks);
1349 WARN_ON(1);
1350 to_free = ei->i_reserved_data_blocks;
1351 }
1352 ei->i_reserved_data_blocks -= to_free;
1353
1354 /* update fs dirty data blocks counter */
1355 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1356
1357 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1358
1359 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1360 }
1361
ext4_da_page_release_reservation(struct page * page,unsigned int offset,unsigned int length)1362 static void ext4_da_page_release_reservation(struct page *page,
1363 unsigned int offset,
1364 unsigned int length)
1365 {
1366 int to_release = 0, contiguous_blks = 0;
1367 struct buffer_head *head, *bh;
1368 unsigned int curr_off = 0;
1369 struct inode *inode = page->mapping->host;
1370 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1371 unsigned int stop = offset + length;
1372 int num_clusters;
1373 ext4_fsblk_t lblk;
1374
1375 BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
1376
1377 head = page_buffers(page);
1378 bh = head;
1379 do {
1380 unsigned int next_off = curr_off + bh->b_size;
1381
1382 if (next_off > stop)
1383 break;
1384
1385 if ((offset <= curr_off) && (buffer_delay(bh))) {
1386 to_release++;
1387 contiguous_blks++;
1388 clear_buffer_delay(bh);
1389 } else if (contiguous_blks) {
1390 lblk = page->index <<
1391 (PAGE_CACHE_SHIFT - inode->i_blkbits);
1392 lblk += (curr_off >> inode->i_blkbits) -
1393 contiguous_blks;
1394 ext4_es_remove_extent(inode, lblk, contiguous_blks);
1395 contiguous_blks = 0;
1396 }
1397 curr_off = next_off;
1398 } while ((bh = bh->b_this_page) != head);
1399
1400 if (contiguous_blks) {
1401 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1402 lblk += (curr_off >> inode->i_blkbits) - contiguous_blks;
1403 ext4_es_remove_extent(inode, lblk, contiguous_blks);
1404 }
1405
1406 /* If we have released all the blocks belonging to a cluster, then we
1407 * need to release the reserved space for that cluster. */
1408 num_clusters = EXT4_NUM_B2C(sbi, to_release);
1409 while (num_clusters > 0) {
1410 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1411 ((num_clusters - 1) << sbi->s_cluster_bits);
1412 if (sbi->s_cluster_ratio == 1 ||
1413 !ext4_find_delalloc_cluster(inode, lblk))
1414 ext4_da_release_space(inode, 1);
1415
1416 num_clusters--;
1417 }
1418 }
1419
1420 /*
1421 * Delayed allocation stuff
1422 */
1423
1424 struct mpage_da_data {
1425 struct inode *inode;
1426 struct writeback_control *wbc;
1427
1428 pgoff_t first_page; /* The first page to write */
1429 pgoff_t next_page; /* Current page to examine */
1430 pgoff_t last_page; /* Last page to examine */
1431 /*
1432 * Extent to map - this can be after first_page because that can be
1433 * fully mapped. We somewhat abuse m_flags to store whether the extent
1434 * is delalloc or unwritten.
1435 */
1436 struct ext4_map_blocks map;
1437 struct ext4_io_submit io_submit; /* IO submission data */
1438 };
1439
mpage_release_unused_pages(struct mpage_da_data * mpd,bool invalidate)1440 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1441 bool invalidate)
1442 {
1443 int nr_pages, i;
1444 pgoff_t index, end;
1445 struct pagevec pvec;
1446 struct inode *inode = mpd->inode;
1447 struct address_space *mapping = inode->i_mapping;
1448
1449 /* This is necessary when next_page == 0. */
1450 if (mpd->first_page >= mpd->next_page)
1451 return;
1452
1453 index = mpd->first_page;
1454 end = mpd->next_page - 1;
1455 if (invalidate) {
1456 ext4_lblk_t start, last;
1457 start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1458 last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1459 ext4_es_remove_extent(inode, start, last - start + 1);
1460 }
1461
1462 pagevec_init(&pvec, 0);
1463 while (index <= end) {
1464 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1465 if (nr_pages == 0)
1466 break;
1467 for (i = 0; i < nr_pages; i++) {
1468 struct page *page = pvec.pages[i];
1469 if (page->index > end)
1470 break;
1471 BUG_ON(!PageLocked(page));
1472 BUG_ON(PageWriteback(page));
1473 if (invalidate) {
1474 block_invalidatepage(page, 0, PAGE_CACHE_SIZE);
1475 ClearPageUptodate(page);
1476 }
1477 unlock_page(page);
1478 }
1479 index = pvec.pages[nr_pages - 1]->index + 1;
1480 pagevec_release(&pvec);
1481 }
1482 }
1483
ext4_print_free_blocks(struct inode * inode)1484 static void ext4_print_free_blocks(struct inode *inode)
1485 {
1486 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1487 struct super_block *sb = inode->i_sb;
1488 struct ext4_inode_info *ei = EXT4_I(inode);
1489
1490 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1491 EXT4_C2B(EXT4_SB(inode->i_sb),
1492 ext4_count_free_clusters(sb)));
1493 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1494 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1495 (long long) EXT4_C2B(EXT4_SB(sb),
1496 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1497 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1498 (long long) EXT4_C2B(EXT4_SB(sb),
1499 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1500 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1501 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1502 ei->i_reserved_data_blocks);
1503 return;
1504 }
1505
ext4_bh_delay_or_unwritten(handle_t * handle,struct buffer_head * bh)1506 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1507 {
1508 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1509 }
1510
1511 /*
1512 * This function is grabs code from the very beginning of
1513 * ext4_map_blocks, but assumes that the caller is from delayed write
1514 * time. This function looks up the requested blocks and sets the
1515 * buffer delay bit under the protection of i_data_sem.
1516 */
ext4_da_map_blocks(struct inode * inode,sector_t iblock,struct ext4_map_blocks * map,struct buffer_head * bh)1517 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1518 struct ext4_map_blocks *map,
1519 struct buffer_head *bh)
1520 {
1521 struct extent_status es;
1522 int retval;
1523 sector_t invalid_block = ~((sector_t) 0xffff);
1524 #ifdef ES_AGGRESSIVE_TEST
1525 struct ext4_map_blocks orig_map;
1526
1527 memcpy(&orig_map, map, sizeof(*map));
1528 #endif
1529
1530 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1531 invalid_block = ~0;
1532
1533 map->m_flags = 0;
1534 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1535 "logical block %lu\n", inode->i_ino, map->m_len,
1536 (unsigned long) map->m_lblk);
1537
1538 /* Lookup extent status tree firstly */
1539 if (ext4_es_lookup_extent(inode, iblock, &es)) {
1540 if (ext4_es_is_hole(&es)) {
1541 retval = 0;
1542 down_read(&EXT4_I(inode)->i_data_sem);
1543 goto add_delayed;
1544 }
1545
1546 /*
1547 * Delayed extent could be allocated by fallocate.
1548 * So we need to check it.
1549 */
1550 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1551 map_bh(bh, inode->i_sb, invalid_block);
1552 set_buffer_new(bh);
1553 set_buffer_delay(bh);
1554 return 0;
1555 }
1556
1557 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1558 retval = es.es_len - (iblock - es.es_lblk);
1559 if (retval > map->m_len)
1560 retval = map->m_len;
1561 map->m_len = retval;
1562 if (ext4_es_is_written(&es))
1563 map->m_flags |= EXT4_MAP_MAPPED;
1564 else if (ext4_es_is_unwritten(&es))
1565 map->m_flags |= EXT4_MAP_UNWRITTEN;
1566 else
1567 BUG_ON(1);
1568
1569 #ifdef ES_AGGRESSIVE_TEST
1570 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1571 #endif
1572 return retval;
1573 }
1574
1575 /*
1576 * Try to see if we can get the block without requesting a new
1577 * file system block.
1578 */
1579 down_read(&EXT4_I(inode)->i_data_sem);
1580 if (ext4_has_inline_data(inode))
1581 retval = 0;
1582 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1583 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1584 else
1585 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1586
1587 add_delayed:
1588 if (retval == 0) {
1589 int ret;
1590 /*
1591 * XXX: __block_prepare_write() unmaps passed block,
1592 * is it OK?
1593 */
1594 /*
1595 * If the block was allocated from previously allocated cluster,
1596 * then we don't need to reserve it again. However we still need
1597 * to reserve metadata for every block we're going to write.
1598 */
1599 if (EXT4_SB(inode->i_sb)->s_cluster_ratio <= 1 ||
1600 !ext4_find_delalloc_cluster(inode, map->m_lblk)) {
1601 ret = ext4_da_reserve_space(inode, iblock);
1602 if (ret) {
1603 /* not enough space to reserve */
1604 retval = ret;
1605 goto out_unlock;
1606 }
1607 }
1608
1609 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1610 ~0, EXTENT_STATUS_DELAYED);
1611 if (ret) {
1612 retval = ret;
1613 goto out_unlock;
1614 }
1615
1616 map_bh(bh, inode->i_sb, invalid_block);
1617 set_buffer_new(bh);
1618 set_buffer_delay(bh);
1619 } else if (retval > 0) {
1620 int ret;
1621 unsigned int status;
1622
1623 if (unlikely(retval != map->m_len)) {
1624 ext4_warning(inode->i_sb,
1625 "ES len assertion failed for inode "
1626 "%lu: retval %d != map->m_len %d",
1627 inode->i_ino, retval, map->m_len);
1628 WARN_ON(1);
1629 }
1630
1631 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1632 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1633 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1634 map->m_pblk, status);
1635 if (ret != 0)
1636 retval = ret;
1637 }
1638
1639 out_unlock:
1640 up_read((&EXT4_I(inode)->i_data_sem));
1641
1642 return retval;
1643 }
1644
1645 /*
1646 * This is a special get_block_t callback which is used by
1647 * ext4_da_write_begin(). It will either return mapped block or
1648 * reserve space for a single block.
1649 *
1650 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1651 * We also have b_blocknr = -1 and b_bdev initialized properly
1652 *
1653 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1654 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1655 * initialized properly.
1656 */
ext4_da_get_block_prep(struct inode * inode,sector_t iblock,struct buffer_head * bh,int create)1657 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1658 struct buffer_head *bh, int create)
1659 {
1660 struct ext4_map_blocks map;
1661 int ret = 0;
1662
1663 BUG_ON(create == 0);
1664 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1665
1666 map.m_lblk = iblock;
1667 map.m_len = 1;
1668
1669 /*
1670 * first, we need to know whether the block is allocated already
1671 * preallocated blocks are unmapped but should treated
1672 * the same as allocated blocks.
1673 */
1674 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1675 if (ret <= 0)
1676 return ret;
1677
1678 map_bh(bh, inode->i_sb, map.m_pblk);
1679 ext4_update_bh_state(bh, map.m_flags);
1680
1681 if (buffer_unwritten(bh)) {
1682 /* A delayed write to unwritten bh should be marked
1683 * new and mapped. Mapped ensures that we don't do
1684 * get_block multiple times when we write to the same
1685 * offset and new ensures that we do proper zero out
1686 * for partial write.
1687 */
1688 set_buffer_new(bh);
1689 set_buffer_mapped(bh);
1690 }
1691 return 0;
1692 }
1693
bget_one(handle_t * handle,struct buffer_head * bh)1694 static int bget_one(handle_t *handle, struct buffer_head *bh)
1695 {
1696 get_bh(bh);
1697 return 0;
1698 }
1699
bput_one(handle_t * handle,struct buffer_head * bh)1700 static int bput_one(handle_t *handle, struct buffer_head *bh)
1701 {
1702 put_bh(bh);
1703 return 0;
1704 }
1705
__ext4_journalled_writepage(struct page * page,unsigned int len)1706 static int __ext4_journalled_writepage(struct page *page,
1707 unsigned int len)
1708 {
1709 struct address_space *mapping = page->mapping;
1710 struct inode *inode = mapping->host;
1711 struct buffer_head *page_bufs = NULL;
1712 handle_t *handle = NULL;
1713 int ret = 0, err = 0;
1714 int inline_data = ext4_has_inline_data(inode);
1715 struct buffer_head *inode_bh = NULL;
1716
1717 ClearPageChecked(page);
1718
1719 if (inline_data) {
1720 BUG_ON(page->index != 0);
1721 BUG_ON(len > ext4_get_max_inline_size(inode));
1722 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1723 if (inode_bh == NULL)
1724 goto out;
1725 } else {
1726 page_bufs = page_buffers(page);
1727 if (!page_bufs) {
1728 BUG();
1729 goto out;
1730 }
1731 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1732 NULL, bget_one);
1733 }
1734 /*
1735 * We need to release the page lock before we start the
1736 * journal, so grab a reference so the page won't disappear
1737 * out from under us.
1738 */
1739 get_page(page);
1740 unlock_page(page);
1741
1742 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1743 ext4_writepage_trans_blocks(inode));
1744 if (IS_ERR(handle)) {
1745 ret = PTR_ERR(handle);
1746 put_page(page);
1747 goto out_no_pagelock;
1748 }
1749 BUG_ON(!ext4_handle_valid(handle));
1750
1751 lock_page(page);
1752 put_page(page);
1753 if (page->mapping != mapping) {
1754 /* The page got truncated from under us */
1755 ext4_journal_stop(handle);
1756 ret = 0;
1757 goto out;
1758 }
1759
1760 if (inline_data) {
1761 BUFFER_TRACE(inode_bh, "get write access");
1762 ret = ext4_journal_get_write_access(handle, inode_bh);
1763
1764 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1765
1766 } else {
1767 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1768 do_journal_get_write_access);
1769
1770 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1771 write_end_fn);
1772 }
1773 if (ret == 0)
1774 ret = err;
1775 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1776 err = ext4_journal_stop(handle);
1777 if (!ret)
1778 ret = err;
1779
1780 if (!ext4_has_inline_data(inode))
1781 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1782 NULL, bput_one);
1783 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1784 out:
1785 unlock_page(page);
1786 out_no_pagelock:
1787 brelse(inode_bh);
1788 return ret;
1789 }
1790
1791 /*
1792 * Note that we don't need to start a transaction unless we're journaling data
1793 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1794 * need to file the inode to the transaction's list in ordered mode because if
1795 * we are writing back data added by write(), the inode is already there and if
1796 * we are writing back data modified via mmap(), no one guarantees in which
1797 * transaction the data will hit the disk. In case we are journaling data, we
1798 * cannot start transaction directly because transaction start ranks above page
1799 * lock so we have to do some magic.
1800 *
1801 * This function can get called via...
1802 * - ext4_writepages after taking page lock (have journal handle)
1803 * - journal_submit_inode_data_buffers (no journal handle)
1804 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1805 * - grab_page_cache when doing write_begin (have journal handle)
1806 *
1807 * We don't do any block allocation in this function. If we have page with
1808 * multiple blocks we need to write those buffer_heads that are mapped. This
1809 * is important for mmaped based write. So if we do with blocksize 1K
1810 * truncate(f, 1024);
1811 * a = mmap(f, 0, 4096);
1812 * a[0] = 'a';
1813 * truncate(f, 4096);
1814 * we have in the page first buffer_head mapped via page_mkwrite call back
1815 * but other buffer_heads would be unmapped but dirty (dirty done via the
1816 * do_wp_page). So writepage should write the first block. If we modify
1817 * the mmap area beyond 1024 we will again get a page_fault and the
1818 * page_mkwrite callback will do the block allocation and mark the
1819 * buffer_heads mapped.
1820 *
1821 * We redirty the page if we have any buffer_heads that is either delay or
1822 * unwritten in the page.
1823 *
1824 * We can get recursively called as show below.
1825 *
1826 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1827 * ext4_writepage()
1828 *
1829 * But since we don't do any block allocation we should not deadlock.
1830 * Page also have the dirty flag cleared so we don't get recurive page_lock.
1831 */
ext4_writepage(struct page * page,struct writeback_control * wbc)1832 static int ext4_writepage(struct page *page,
1833 struct writeback_control *wbc)
1834 {
1835 int ret = 0;
1836 loff_t size;
1837 unsigned int len;
1838 struct buffer_head *page_bufs = NULL;
1839 struct inode *inode = page->mapping->host;
1840 struct ext4_io_submit io_submit;
1841 bool keep_towrite = false;
1842
1843 trace_ext4_writepage(page);
1844 size = i_size_read(inode);
1845 if (page->index == size >> PAGE_CACHE_SHIFT)
1846 len = size & ~PAGE_CACHE_MASK;
1847 else
1848 len = PAGE_CACHE_SIZE;
1849
1850 page_bufs = page_buffers(page);
1851 /*
1852 * We cannot do block allocation or other extent handling in this
1853 * function. If there are buffers needing that, we have to redirty
1854 * the page. But we may reach here when we do a journal commit via
1855 * journal_submit_inode_data_buffers() and in that case we must write
1856 * allocated buffers to achieve data=ordered mode guarantees.
1857 */
1858 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
1859 ext4_bh_delay_or_unwritten)) {
1860 redirty_page_for_writepage(wbc, page);
1861 if (current->flags & PF_MEMALLOC) {
1862 /*
1863 * For memory cleaning there's no point in writing only
1864 * some buffers. So just bail out. Warn if we came here
1865 * from direct reclaim.
1866 */
1867 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
1868 == PF_MEMALLOC);
1869 unlock_page(page);
1870 return 0;
1871 }
1872 keep_towrite = true;
1873 }
1874
1875 if (PageChecked(page) && ext4_should_journal_data(inode))
1876 /*
1877 * It's mmapped pagecache. Add buffers and journal it. There
1878 * doesn't seem much point in redirtying the page here.
1879 */
1880 return __ext4_journalled_writepage(page, len);
1881
1882 ext4_io_submit_init(&io_submit, wbc);
1883 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
1884 if (!io_submit.io_end) {
1885 redirty_page_for_writepage(wbc, page);
1886 unlock_page(page);
1887 return -ENOMEM;
1888 }
1889 ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
1890 ext4_io_submit(&io_submit);
1891 /* Drop io_end reference we got from init */
1892 ext4_put_io_end_defer(io_submit.io_end);
1893 return ret;
1894 }
1895
mpage_submit_page(struct mpage_da_data * mpd,struct page * page)1896 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
1897 {
1898 int len;
1899 loff_t size = i_size_read(mpd->inode);
1900 int err;
1901
1902 BUG_ON(page->index != mpd->first_page);
1903 if (page->index == size >> PAGE_CACHE_SHIFT)
1904 len = size & ~PAGE_CACHE_MASK;
1905 else
1906 len = PAGE_CACHE_SIZE;
1907 clear_page_dirty_for_io(page);
1908 err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
1909 if (!err)
1910 mpd->wbc->nr_to_write--;
1911 mpd->first_page++;
1912
1913 return err;
1914 }
1915
1916 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
1917
1918 /*
1919 * mballoc gives us at most this number of blocks...
1920 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
1921 * The rest of mballoc seems to handle chunks up to full group size.
1922 */
1923 #define MAX_WRITEPAGES_EXTENT_LEN 2048
1924
1925 /*
1926 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
1927 *
1928 * @mpd - extent of blocks
1929 * @lblk - logical number of the block in the file
1930 * @bh - buffer head we want to add to the extent
1931 *
1932 * The function is used to collect contig. blocks in the same state. If the
1933 * buffer doesn't require mapping for writeback and we haven't started the
1934 * extent of buffers to map yet, the function returns 'true' immediately - the
1935 * caller can write the buffer right away. Otherwise the function returns true
1936 * if the block has been added to the extent, false if the block couldn't be
1937 * added.
1938 */
mpage_add_bh_to_extent(struct mpage_da_data * mpd,ext4_lblk_t lblk,struct buffer_head * bh)1939 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
1940 struct buffer_head *bh)
1941 {
1942 struct ext4_map_blocks *map = &mpd->map;
1943
1944 /* Buffer that doesn't need mapping for writeback? */
1945 if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
1946 (!buffer_delay(bh) && !buffer_unwritten(bh))) {
1947 /* So far no extent to map => we write the buffer right away */
1948 if (map->m_len == 0)
1949 return true;
1950 return false;
1951 }
1952
1953 /* First block in the extent? */
1954 if (map->m_len == 0) {
1955 map->m_lblk = lblk;
1956 map->m_len = 1;
1957 map->m_flags = bh->b_state & BH_FLAGS;
1958 return true;
1959 }
1960
1961 /* Don't go larger than mballoc is willing to allocate */
1962 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
1963 return false;
1964
1965 /* Can we merge the block to our big extent? */
1966 if (lblk == map->m_lblk + map->m_len &&
1967 (bh->b_state & BH_FLAGS) == map->m_flags) {
1968 map->m_len++;
1969 return true;
1970 }
1971 return false;
1972 }
1973
1974 /*
1975 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
1976 *
1977 * @mpd - extent of blocks for mapping
1978 * @head - the first buffer in the page
1979 * @bh - buffer we should start processing from
1980 * @lblk - logical number of the block in the file corresponding to @bh
1981 *
1982 * Walk through page buffers from @bh upto @head (exclusive) and either submit
1983 * the page for IO if all buffers in this page were mapped and there's no
1984 * accumulated extent of buffers to map or add buffers in the page to the
1985 * extent of buffers to map. The function returns 1 if the caller can continue
1986 * by processing the next page, 0 if it should stop adding buffers to the
1987 * extent to map because we cannot extend it anymore. It can also return value
1988 * < 0 in case of error during IO submission.
1989 */
mpage_process_page_bufs(struct mpage_da_data * mpd,struct buffer_head * head,struct buffer_head * bh,ext4_lblk_t lblk)1990 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
1991 struct buffer_head *head,
1992 struct buffer_head *bh,
1993 ext4_lblk_t lblk)
1994 {
1995 struct inode *inode = mpd->inode;
1996 int err;
1997 ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
1998 >> inode->i_blkbits;
1999
2000 do {
2001 BUG_ON(buffer_locked(bh));
2002
2003 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2004 /* Found extent to map? */
2005 if (mpd->map.m_len)
2006 return 0;
2007 /* Everything mapped so far and we hit EOF */
2008 break;
2009 }
2010 } while (lblk++, (bh = bh->b_this_page) != head);
2011 /* So far everything mapped? Submit the page for IO. */
2012 if (mpd->map.m_len == 0) {
2013 err = mpage_submit_page(mpd, head->b_page);
2014 if (err < 0)
2015 return err;
2016 }
2017 return lblk < blocks;
2018 }
2019
2020 /*
2021 * mpage_map_buffers - update buffers corresponding to changed extent and
2022 * submit fully mapped pages for IO
2023 *
2024 * @mpd - description of extent to map, on return next extent to map
2025 *
2026 * Scan buffers corresponding to changed extent (we expect corresponding pages
2027 * to be already locked) and update buffer state according to new extent state.
2028 * We map delalloc buffers to their physical location, clear unwritten bits,
2029 * and mark buffers as uninit when we perform writes to unwritten extents
2030 * and do extent conversion after IO is finished. If the last page is not fully
2031 * mapped, we update @map to the next extent in the last page that needs
2032 * mapping. Otherwise we submit the page for IO.
2033 */
mpage_map_and_submit_buffers(struct mpage_da_data * mpd)2034 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2035 {
2036 struct pagevec pvec;
2037 int nr_pages, i;
2038 struct inode *inode = mpd->inode;
2039 struct buffer_head *head, *bh;
2040 int bpp_bits = PAGE_CACHE_SHIFT - inode->i_blkbits;
2041 pgoff_t start, end;
2042 ext4_lblk_t lblk;
2043 sector_t pblock;
2044 int err;
2045
2046 start = mpd->map.m_lblk >> bpp_bits;
2047 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2048 lblk = start << bpp_bits;
2049 pblock = mpd->map.m_pblk;
2050
2051 pagevec_init(&pvec, 0);
2052 while (start <= end) {
2053 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
2054 PAGEVEC_SIZE);
2055 if (nr_pages == 0)
2056 break;
2057 for (i = 0; i < nr_pages; i++) {
2058 struct page *page = pvec.pages[i];
2059
2060 if (page->index > end)
2061 break;
2062 /* Up to 'end' pages must be contiguous */
2063 BUG_ON(page->index != start);
2064 bh = head = page_buffers(page);
2065 do {
2066 if (lblk < mpd->map.m_lblk)
2067 continue;
2068 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2069 /*
2070 * Buffer after end of mapped extent.
2071 * Find next buffer in the page to map.
2072 */
2073 mpd->map.m_len = 0;
2074 mpd->map.m_flags = 0;
2075 /*
2076 * FIXME: If dioread_nolock supports
2077 * blocksize < pagesize, we need to make
2078 * sure we add size mapped so far to
2079 * io_end->size as the following call
2080 * can submit the page for IO.
2081 */
2082 err = mpage_process_page_bufs(mpd, head,
2083 bh, lblk);
2084 pagevec_release(&pvec);
2085 if (err > 0)
2086 err = 0;
2087 return err;
2088 }
2089 if (buffer_delay(bh)) {
2090 clear_buffer_delay(bh);
2091 bh->b_blocknr = pblock++;
2092 }
2093 clear_buffer_unwritten(bh);
2094 } while (lblk++, (bh = bh->b_this_page) != head);
2095
2096 /*
2097 * FIXME: This is going to break if dioread_nolock
2098 * supports blocksize < pagesize as we will try to
2099 * convert potentially unmapped parts of inode.
2100 */
2101 mpd->io_submit.io_end->size += PAGE_CACHE_SIZE;
2102 /* Page fully mapped - let IO run! */
2103 err = mpage_submit_page(mpd, page);
2104 if (err < 0) {
2105 pagevec_release(&pvec);
2106 return err;
2107 }
2108 start++;
2109 }
2110 pagevec_release(&pvec);
2111 }
2112 /* Extent fully mapped and matches with page boundary. We are done. */
2113 mpd->map.m_len = 0;
2114 mpd->map.m_flags = 0;
2115 return 0;
2116 }
2117
mpage_map_one_extent(handle_t * handle,struct mpage_da_data * mpd)2118 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2119 {
2120 struct inode *inode = mpd->inode;
2121 struct ext4_map_blocks *map = &mpd->map;
2122 int get_blocks_flags;
2123 int err, dioread_nolock;
2124
2125 trace_ext4_da_write_pages_extent(inode, map);
2126 /*
2127 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2128 * to convert an unwritten extent to be initialized (in the case
2129 * where we have written into one or more preallocated blocks). It is
2130 * possible that we're going to need more metadata blocks than
2131 * previously reserved. However we must not fail because we're in
2132 * writeback and there is nothing we can do about it so it might result
2133 * in data loss. So use reserved blocks to allocate metadata if
2134 * possible.
2135 *
2136 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2137 * the blocks in question are delalloc blocks. This indicates
2138 * that the blocks and quotas has already been checked when
2139 * the data was copied into the page cache.
2140 */
2141 get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2142 EXT4_GET_BLOCKS_METADATA_NOFAIL;
2143 dioread_nolock = ext4_should_dioread_nolock(inode);
2144 if (dioread_nolock)
2145 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2146 if (map->m_flags & (1 << BH_Delay))
2147 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2148
2149 err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2150 if (err < 0)
2151 return err;
2152 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2153 if (!mpd->io_submit.io_end->handle &&
2154 ext4_handle_valid(handle)) {
2155 mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2156 handle->h_rsv_handle = NULL;
2157 }
2158 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2159 }
2160
2161 BUG_ON(map->m_len == 0);
2162 if (map->m_flags & EXT4_MAP_NEW) {
2163 struct block_device *bdev = inode->i_sb->s_bdev;
2164 int i;
2165
2166 for (i = 0; i < map->m_len; i++)
2167 unmap_underlying_metadata(bdev, map->m_pblk + i);
2168 }
2169 return 0;
2170 }
2171
2172 /*
2173 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2174 * mpd->len and submit pages underlying it for IO
2175 *
2176 * @handle - handle for journal operations
2177 * @mpd - extent to map
2178 * @give_up_on_write - we set this to true iff there is a fatal error and there
2179 * is no hope of writing the data. The caller should discard
2180 * dirty pages to avoid infinite loops.
2181 *
2182 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2183 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2184 * them to initialized or split the described range from larger unwritten
2185 * extent. Note that we need not map all the described range since allocation
2186 * can return less blocks or the range is covered by more unwritten extents. We
2187 * cannot map more because we are limited by reserved transaction credits. On
2188 * the other hand we always make sure that the last touched page is fully
2189 * mapped so that it can be written out (and thus forward progress is
2190 * guaranteed). After mapping we submit all mapped pages for IO.
2191 */
mpage_map_and_submit_extent(handle_t * handle,struct mpage_da_data * mpd,bool * give_up_on_write)2192 static int mpage_map_and_submit_extent(handle_t *handle,
2193 struct mpage_da_data *mpd,
2194 bool *give_up_on_write)
2195 {
2196 struct inode *inode = mpd->inode;
2197 struct ext4_map_blocks *map = &mpd->map;
2198 int err;
2199 loff_t disksize;
2200 int progress = 0;
2201
2202 mpd->io_submit.io_end->offset =
2203 ((loff_t)map->m_lblk) << inode->i_blkbits;
2204 do {
2205 err = mpage_map_one_extent(handle, mpd);
2206 if (err < 0) {
2207 struct super_block *sb = inode->i_sb;
2208
2209 if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2210 goto invalidate_dirty_pages;
2211 /*
2212 * Let the uper layers retry transient errors.
2213 * In the case of ENOSPC, if ext4_count_free_blocks()
2214 * is non-zero, a commit should free up blocks.
2215 */
2216 if ((err == -ENOMEM) ||
2217 (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2218 if (progress)
2219 goto update_disksize;
2220 return err;
2221 }
2222 ext4_msg(sb, KERN_CRIT,
2223 "Delayed block allocation failed for "
2224 "inode %lu at logical offset %llu with"
2225 " max blocks %u with error %d",
2226 inode->i_ino,
2227 (unsigned long long)map->m_lblk,
2228 (unsigned)map->m_len, -err);
2229 ext4_msg(sb, KERN_CRIT,
2230 "This should not happen!! Data will "
2231 "be lost\n");
2232 if (err == -ENOSPC)
2233 ext4_print_free_blocks(inode);
2234 invalidate_dirty_pages:
2235 *give_up_on_write = true;
2236 return err;
2237 }
2238 progress = 1;
2239 /*
2240 * Update buffer state, submit mapped pages, and get us new
2241 * extent to map
2242 */
2243 err = mpage_map_and_submit_buffers(mpd);
2244 if (err < 0)
2245 goto update_disksize;
2246 } while (map->m_len);
2247
2248 update_disksize:
2249 /*
2250 * Update on-disk size after IO is submitted. Races with
2251 * truncate are avoided by checking i_size under i_data_sem.
2252 */
2253 disksize = ((loff_t)mpd->first_page) << PAGE_CACHE_SHIFT;
2254 if (disksize > EXT4_I(inode)->i_disksize) {
2255 int err2;
2256 loff_t i_size;
2257
2258 down_write(&EXT4_I(inode)->i_data_sem);
2259 i_size = i_size_read(inode);
2260 if (disksize > i_size)
2261 disksize = i_size;
2262 if (disksize > EXT4_I(inode)->i_disksize)
2263 EXT4_I(inode)->i_disksize = disksize;
2264 err2 = ext4_mark_inode_dirty(handle, inode);
2265 up_write(&EXT4_I(inode)->i_data_sem);
2266 if (err2)
2267 ext4_error(inode->i_sb,
2268 "Failed to mark inode %lu dirty",
2269 inode->i_ino);
2270 if (!err)
2271 err = err2;
2272 }
2273 return err;
2274 }
2275
2276 /*
2277 * Calculate the total number of credits to reserve for one writepages
2278 * iteration. This is called from ext4_writepages(). We map an extent of
2279 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2280 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2281 * bpp - 1 blocks in bpp different extents.
2282 */
ext4_da_writepages_trans_blocks(struct inode * inode)2283 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2284 {
2285 int bpp = ext4_journal_blocks_per_page(inode);
2286
2287 return ext4_meta_trans_blocks(inode,
2288 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2289 }
2290
2291 /*
2292 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2293 * and underlying extent to map
2294 *
2295 * @mpd - where to look for pages
2296 *
2297 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2298 * IO immediately. When we find a page which isn't mapped we start accumulating
2299 * extent of buffers underlying these pages that needs mapping (formed by
2300 * either delayed or unwritten buffers). We also lock the pages containing
2301 * these buffers. The extent found is returned in @mpd structure (starting at
2302 * mpd->lblk with length mpd->len blocks).
2303 *
2304 * Note that this function can attach bios to one io_end structure which are
2305 * neither logically nor physically contiguous. Although it may seem as an
2306 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2307 * case as we need to track IO to all buffers underlying a page in one io_end.
2308 */
mpage_prepare_extent_to_map(struct mpage_da_data * mpd)2309 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2310 {
2311 struct address_space *mapping = mpd->inode->i_mapping;
2312 struct pagevec pvec;
2313 unsigned int nr_pages;
2314 long left = mpd->wbc->nr_to_write;
2315 pgoff_t index = mpd->first_page;
2316 pgoff_t end = mpd->last_page;
2317 int tag;
2318 int i, err = 0;
2319 int blkbits = mpd->inode->i_blkbits;
2320 ext4_lblk_t lblk;
2321 struct buffer_head *head;
2322
2323 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2324 tag = PAGECACHE_TAG_TOWRITE;
2325 else
2326 tag = PAGECACHE_TAG_DIRTY;
2327
2328 pagevec_init(&pvec, 0);
2329 mpd->map.m_len = 0;
2330 mpd->next_page = index;
2331 while (index <= end) {
2332 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2333 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2334 if (nr_pages == 0)
2335 goto out;
2336
2337 for (i = 0; i < nr_pages; i++) {
2338 struct page *page = pvec.pages[i];
2339
2340 /*
2341 * At this point, the page may be truncated or
2342 * invalidated (changing page->mapping to NULL), or
2343 * even swizzled back from swapper_space to tmpfs file
2344 * mapping. However, page->index will not change
2345 * because we have a reference on the page.
2346 */
2347 if (page->index > end)
2348 goto out;
2349
2350 /*
2351 * Accumulated enough dirty pages? This doesn't apply
2352 * to WB_SYNC_ALL mode. For integrity sync we have to
2353 * keep going because someone may be concurrently
2354 * dirtying pages, and we might have synced a lot of
2355 * newly appeared dirty pages, but have not synced all
2356 * of the old dirty pages.
2357 */
2358 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2359 goto out;
2360
2361 /* If we can't merge this page, we are done. */
2362 if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2363 goto out;
2364
2365 lock_page(page);
2366 /*
2367 * If the page is no longer dirty, or its mapping no
2368 * longer corresponds to inode we are writing (which
2369 * means it has been truncated or invalidated), or the
2370 * page is already under writeback and we are not doing
2371 * a data integrity writeback, skip the page
2372 */
2373 if (!PageDirty(page) ||
2374 (PageWriteback(page) &&
2375 (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2376 unlikely(page->mapping != mapping)) {
2377 unlock_page(page);
2378 continue;
2379 }
2380
2381 wait_on_page_writeback(page);
2382 BUG_ON(PageWriteback(page));
2383
2384 if (mpd->map.m_len == 0)
2385 mpd->first_page = page->index;
2386 mpd->next_page = page->index + 1;
2387 /* Add all dirty buffers to mpd */
2388 lblk = ((ext4_lblk_t)page->index) <<
2389 (PAGE_CACHE_SHIFT - blkbits);
2390 head = page_buffers(page);
2391 err = mpage_process_page_bufs(mpd, head, head, lblk);
2392 if (err <= 0)
2393 goto out;
2394 err = 0;
2395 left--;
2396 }
2397 pagevec_release(&pvec);
2398 cond_resched();
2399 }
2400 return 0;
2401 out:
2402 pagevec_release(&pvec);
2403 return err;
2404 }
2405
__writepage(struct page * page,struct writeback_control * wbc,void * data)2406 static int __writepage(struct page *page, struct writeback_control *wbc,
2407 void *data)
2408 {
2409 struct address_space *mapping = data;
2410 int ret = ext4_writepage(page, wbc);
2411 mapping_set_error(mapping, ret);
2412 return ret;
2413 }
2414
ext4_writepages(struct address_space * mapping,struct writeback_control * wbc)2415 static int ext4_writepages(struct address_space *mapping,
2416 struct writeback_control *wbc)
2417 {
2418 pgoff_t writeback_index = 0;
2419 long nr_to_write = wbc->nr_to_write;
2420 int range_whole = 0;
2421 int cycled = 1;
2422 handle_t *handle = NULL;
2423 struct mpage_da_data mpd;
2424 struct inode *inode = mapping->host;
2425 int needed_blocks, rsv_blocks = 0, ret = 0;
2426 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2427 bool done;
2428 struct blk_plug plug;
2429 bool give_up_on_write = false;
2430
2431 trace_ext4_writepages(inode, wbc);
2432
2433 /*
2434 * No pages to write? This is mainly a kludge to avoid starting
2435 * a transaction for special inodes like journal inode on last iput()
2436 * because that could violate lock ordering on umount
2437 */
2438 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2439 goto out_writepages;
2440
2441 if (ext4_should_journal_data(inode)) {
2442 struct blk_plug plug;
2443
2444 blk_start_plug(&plug);
2445 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2446 blk_finish_plug(&plug);
2447 goto out_writepages;
2448 }
2449
2450 /*
2451 * If the filesystem has aborted, it is read-only, so return
2452 * right away instead of dumping stack traces later on that
2453 * will obscure the real source of the problem. We test
2454 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2455 * the latter could be true if the filesystem is mounted
2456 * read-only, and in that case, ext4_writepages should
2457 * *never* be called, so if that ever happens, we would want
2458 * the stack trace.
2459 */
2460 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2461 ret = -EROFS;
2462 goto out_writepages;
2463 }
2464
2465 if (ext4_should_dioread_nolock(inode)) {
2466 /*
2467 * We may need to convert up to one extent per block in
2468 * the page and we may dirty the inode.
2469 */
2470 rsv_blocks = 1 + (PAGE_CACHE_SIZE >> inode->i_blkbits);
2471 }
2472
2473 /*
2474 * If we have inline data and arrive here, it means that
2475 * we will soon create the block for the 1st page, so
2476 * we'd better clear the inline data here.
2477 */
2478 if (ext4_has_inline_data(inode)) {
2479 /* Just inode will be modified... */
2480 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2481 if (IS_ERR(handle)) {
2482 ret = PTR_ERR(handle);
2483 goto out_writepages;
2484 }
2485 BUG_ON(ext4_test_inode_state(inode,
2486 EXT4_STATE_MAY_INLINE_DATA));
2487 ext4_destroy_inline_data(handle, inode);
2488 ext4_journal_stop(handle);
2489 }
2490
2491 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2492 range_whole = 1;
2493
2494 if (wbc->range_cyclic) {
2495 writeback_index = mapping->writeback_index;
2496 if (writeback_index)
2497 cycled = 0;
2498 mpd.first_page = writeback_index;
2499 mpd.last_page = -1;
2500 } else {
2501 mpd.first_page = wbc->range_start >> PAGE_CACHE_SHIFT;
2502 mpd.last_page = wbc->range_end >> PAGE_CACHE_SHIFT;
2503 }
2504
2505 mpd.inode = inode;
2506 mpd.wbc = wbc;
2507 ext4_io_submit_init(&mpd.io_submit, wbc);
2508 retry:
2509 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2510 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2511 done = false;
2512 blk_start_plug(&plug);
2513 while (!done && mpd.first_page <= mpd.last_page) {
2514 /* For each extent of pages we use new io_end */
2515 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2516 if (!mpd.io_submit.io_end) {
2517 ret = -ENOMEM;
2518 break;
2519 }
2520
2521 /*
2522 * We have two constraints: We find one extent to map and we
2523 * must always write out whole page (makes a difference when
2524 * blocksize < pagesize) so that we don't block on IO when we
2525 * try to write out the rest of the page. Journalled mode is
2526 * not supported by delalloc.
2527 */
2528 BUG_ON(ext4_should_journal_data(inode));
2529 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2530
2531 /* start a new transaction */
2532 handle = ext4_journal_start_with_reserve(inode,
2533 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2534 if (IS_ERR(handle)) {
2535 ret = PTR_ERR(handle);
2536 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2537 "%ld pages, ino %lu; err %d", __func__,
2538 wbc->nr_to_write, inode->i_ino, ret);
2539 /* Release allocated io_end */
2540 ext4_put_io_end(mpd.io_submit.io_end);
2541 break;
2542 }
2543
2544 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2545 ret = mpage_prepare_extent_to_map(&mpd);
2546 if (!ret) {
2547 if (mpd.map.m_len)
2548 ret = mpage_map_and_submit_extent(handle, &mpd,
2549 &give_up_on_write);
2550 else {
2551 /*
2552 * We scanned the whole range (or exhausted
2553 * nr_to_write), submitted what was mapped and
2554 * didn't find anything needing mapping. We are
2555 * done.
2556 */
2557 done = true;
2558 }
2559 }
2560 ext4_journal_stop(handle);
2561 /* Submit prepared bio */
2562 ext4_io_submit(&mpd.io_submit);
2563 /* Unlock pages we didn't use */
2564 mpage_release_unused_pages(&mpd, give_up_on_write);
2565 /* Drop our io_end reference we got from init */
2566 ext4_put_io_end(mpd.io_submit.io_end);
2567
2568 if (ret == -ENOSPC && sbi->s_journal) {
2569 /*
2570 * Commit the transaction which would
2571 * free blocks released in the transaction
2572 * and try again
2573 */
2574 jbd2_journal_force_commit_nested(sbi->s_journal);
2575 ret = 0;
2576 continue;
2577 }
2578 /* Fatal error - ENOMEM, EIO... */
2579 if (ret)
2580 break;
2581 }
2582 blk_finish_plug(&plug);
2583 if (!ret && !cycled && wbc->nr_to_write > 0) {
2584 cycled = 1;
2585 mpd.last_page = writeback_index - 1;
2586 mpd.first_page = 0;
2587 goto retry;
2588 }
2589
2590 /* Update index */
2591 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2592 /*
2593 * Set the writeback_index so that range_cyclic
2594 * mode will write it back later
2595 */
2596 mapping->writeback_index = mpd.first_page;
2597
2598 out_writepages:
2599 trace_ext4_writepages_result(inode, wbc, ret,
2600 nr_to_write - wbc->nr_to_write);
2601 return ret;
2602 }
2603
ext4_nonda_switch(struct super_block * sb)2604 static int ext4_nonda_switch(struct super_block *sb)
2605 {
2606 s64 free_clusters, dirty_clusters;
2607 struct ext4_sb_info *sbi = EXT4_SB(sb);
2608
2609 /*
2610 * switch to non delalloc mode if we are running low
2611 * on free block. The free block accounting via percpu
2612 * counters can get slightly wrong with percpu_counter_batch getting
2613 * accumulated on each CPU without updating global counters
2614 * Delalloc need an accurate free block accounting. So switch
2615 * to non delalloc when we are near to error range.
2616 */
2617 free_clusters =
2618 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2619 dirty_clusters =
2620 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2621 /*
2622 * Start pushing delalloc when 1/2 of free blocks are dirty.
2623 */
2624 if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2625 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2626
2627 if (2 * free_clusters < 3 * dirty_clusters ||
2628 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2629 /*
2630 * free block count is less than 150% of dirty blocks
2631 * or free blocks is less than watermark
2632 */
2633 return 1;
2634 }
2635 return 0;
2636 }
2637
2638 /* We always reserve for an inode update; the superblock could be there too */
ext4_da_write_credits(struct inode * inode,loff_t pos,unsigned len)2639 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2640 {
2641 if (likely(EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
2642 EXT4_FEATURE_RO_COMPAT_LARGE_FILE)))
2643 return 1;
2644
2645 if (pos + len <= 0x7fffffffULL)
2646 return 1;
2647
2648 /* We might need to update the superblock to set LARGE_FILE */
2649 return 2;
2650 }
2651
ext4_da_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata)2652 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2653 loff_t pos, unsigned len, unsigned flags,
2654 struct page **pagep, void **fsdata)
2655 {
2656 int ret, retries = 0;
2657 struct page *page;
2658 pgoff_t index;
2659 struct inode *inode = mapping->host;
2660 handle_t *handle;
2661
2662 index = pos >> PAGE_CACHE_SHIFT;
2663
2664 if (ext4_nonda_switch(inode->i_sb)) {
2665 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2666 return ext4_write_begin(file, mapping, pos,
2667 len, flags, pagep, fsdata);
2668 }
2669 *fsdata = (void *)0;
2670 trace_ext4_da_write_begin(inode, pos, len, flags);
2671
2672 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2673 ret = ext4_da_write_inline_data_begin(mapping, inode,
2674 pos, len, flags,
2675 pagep, fsdata);
2676 if (ret < 0)
2677 return ret;
2678 if (ret == 1)
2679 return 0;
2680 }
2681
2682 /*
2683 * grab_cache_page_write_begin() can take a long time if the
2684 * system is thrashing due to memory pressure, or if the page
2685 * is being written back. So grab it first before we start
2686 * the transaction handle. This also allows us to allocate
2687 * the page (if needed) without using GFP_NOFS.
2688 */
2689 retry_grab:
2690 page = grab_cache_page_write_begin(mapping, index, flags);
2691 if (!page)
2692 return -ENOMEM;
2693 unlock_page(page);
2694
2695 /*
2696 * With delayed allocation, we don't log the i_disksize update
2697 * if there is delayed block allocation. But we still need
2698 * to journalling the i_disksize update if writes to the end
2699 * of file which has an already mapped buffer.
2700 */
2701 retry_journal:
2702 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2703 ext4_da_write_credits(inode, pos, len));
2704 if (IS_ERR(handle)) {
2705 page_cache_release(page);
2706 return PTR_ERR(handle);
2707 }
2708
2709 lock_page(page);
2710 if (page->mapping != mapping) {
2711 /* The page got truncated from under us */
2712 unlock_page(page);
2713 page_cache_release(page);
2714 ext4_journal_stop(handle);
2715 goto retry_grab;
2716 }
2717 /* In case writeback began while the page was unlocked */
2718 wait_for_stable_page(page);
2719
2720 #ifdef CONFIG_EXT4_FS_ENCRYPTION
2721 ret = ext4_block_write_begin(page, pos, len,
2722 ext4_da_get_block_prep);
2723 #else
2724 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2725 #endif
2726 if (ret < 0) {
2727 unlock_page(page);
2728 ext4_journal_stop(handle);
2729 /*
2730 * block_write_begin may have instantiated a few blocks
2731 * outside i_size. Trim these off again. Don't need
2732 * i_size_read because we hold i_mutex.
2733 */
2734 if (pos + len > inode->i_size)
2735 ext4_truncate_failed_write(inode);
2736
2737 if (ret == -ENOSPC &&
2738 ext4_should_retry_alloc(inode->i_sb, &retries))
2739 goto retry_journal;
2740
2741 page_cache_release(page);
2742 return ret;
2743 }
2744
2745 *pagep = page;
2746 return ret;
2747 }
2748
2749 /*
2750 * Check if we should update i_disksize
2751 * when write to the end of file but not require block allocation
2752 */
ext4_da_should_update_i_disksize(struct page * page,unsigned long offset)2753 static int ext4_da_should_update_i_disksize(struct page *page,
2754 unsigned long offset)
2755 {
2756 struct buffer_head *bh;
2757 struct inode *inode = page->mapping->host;
2758 unsigned int idx;
2759 int i;
2760
2761 bh = page_buffers(page);
2762 idx = offset >> inode->i_blkbits;
2763
2764 for (i = 0; i < idx; i++)
2765 bh = bh->b_this_page;
2766
2767 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2768 return 0;
2769 return 1;
2770 }
2771
ext4_da_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)2772 static int ext4_da_write_end(struct file *file,
2773 struct address_space *mapping,
2774 loff_t pos, unsigned len, unsigned copied,
2775 struct page *page, void *fsdata)
2776 {
2777 struct inode *inode = mapping->host;
2778 int ret = 0, ret2;
2779 handle_t *handle = ext4_journal_current_handle();
2780 loff_t new_i_size;
2781 unsigned long start, end;
2782 int write_mode = (int)(unsigned long)fsdata;
2783
2784 if (write_mode == FALL_BACK_TO_NONDELALLOC)
2785 return ext4_write_end(file, mapping, pos,
2786 len, copied, page, fsdata);
2787
2788 trace_ext4_da_write_end(inode, pos, len, copied);
2789 start = pos & (PAGE_CACHE_SIZE - 1);
2790 end = start + copied - 1;
2791
2792 /*
2793 * generic_write_end() will run mark_inode_dirty() if i_size
2794 * changes. So let's piggyback the i_disksize mark_inode_dirty
2795 * into that.
2796 */
2797 new_i_size = pos + copied;
2798 if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2799 if (ext4_has_inline_data(inode) ||
2800 ext4_da_should_update_i_disksize(page, end)) {
2801 ext4_update_i_disksize(inode, new_i_size);
2802 /* We need to mark inode dirty even if
2803 * new_i_size is less that inode->i_size
2804 * bu greater than i_disksize.(hint delalloc)
2805 */
2806 ext4_mark_inode_dirty(handle, inode);
2807 }
2808 }
2809
2810 if (write_mode != CONVERT_INLINE_DATA &&
2811 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2812 ext4_has_inline_data(inode))
2813 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2814 page);
2815 else
2816 ret2 = generic_write_end(file, mapping, pos, len, copied,
2817 page, fsdata);
2818
2819 copied = ret2;
2820 if (ret2 < 0)
2821 ret = ret2;
2822 ret2 = ext4_journal_stop(handle);
2823 if (!ret)
2824 ret = ret2;
2825
2826 return ret ? ret : copied;
2827 }
2828
ext4_da_invalidatepage(struct page * page,unsigned int offset,unsigned int length)2829 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
2830 unsigned int length)
2831 {
2832 /*
2833 * Drop reserved blocks
2834 */
2835 BUG_ON(!PageLocked(page));
2836 if (!page_has_buffers(page))
2837 goto out;
2838
2839 ext4_da_page_release_reservation(page, offset, length);
2840
2841 out:
2842 ext4_invalidatepage(page, offset, length);
2843
2844 return;
2845 }
2846
2847 /*
2848 * Force all delayed allocation blocks to be allocated for a given inode.
2849 */
ext4_alloc_da_blocks(struct inode * inode)2850 int ext4_alloc_da_blocks(struct inode *inode)
2851 {
2852 trace_ext4_alloc_da_blocks(inode);
2853
2854 if (!EXT4_I(inode)->i_reserved_data_blocks)
2855 return 0;
2856
2857 /*
2858 * We do something simple for now. The filemap_flush() will
2859 * also start triggering a write of the data blocks, which is
2860 * not strictly speaking necessary (and for users of
2861 * laptop_mode, not even desirable). However, to do otherwise
2862 * would require replicating code paths in:
2863 *
2864 * ext4_writepages() ->
2865 * write_cache_pages() ---> (via passed in callback function)
2866 * __mpage_da_writepage() -->
2867 * mpage_add_bh_to_extent()
2868 * mpage_da_map_blocks()
2869 *
2870 * The problem is that write_cache_pages(), located in
2871 * mm/page-writeback.c, marks pages clean in preparation for
2872 * doing I/O, which is not desirable if we're not planning on
2873 * doing I/O at all.
2874 *
2875 * We could call write_cache_pages(), and then redirty all of
2876 * the pages by calling redirty_page_for_writepage() but that
2877 * would be ugly in the extreme. So instead we would need to
2878 * replicate parts of the code in the above functions,
2879 * simplifying them because we wouldn't actually intend to
2880 * write out the pages, but rather only collect contiguous
2881 * logical block extents, call the multi-block allocator, and
2882 * then update the buffer heads with the block allocations.
2883 *
2884 * For now, though, we'll cheat by calling filemap_flush(),
2885 * which will map the blocks, and start the I/O, but not
2886 * actually wait for the I/O to complete.
2887 */
2888 return filemap_flush(inode->i_mapping);
2889 }
2890
2891 /*
2892 * bmap() is special. It gets used by applications such as lilo and by
2893 * the swapper to find the on-disk block of a specific piece of data.
2894 *
2895 * Naturally, this is dangerous if the block concerned is still in the
2896 * journal. If somebody makes a swapfile on an ext4 data-journaling
2897 * filesystem and enables swap, then they may get a nasty shock when the
2898 * data getting swapped to that swapfile suddenly gets overwritten by
2899 * the original zero's written out previously to the journal and
2900 * awaiting writeback in the kernel's buffer cache.
2901 *
2902 * So, if we see any bmap calls here on a modified, data-journaled file,
2903 * take extra steps to flush any blocks which might be in the cache.
2904 */
ext4_bmap(struct address_space * mapping,sector_t block)2905 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2906 {
2907 struct inode *inode = mapping->host;
2908 journal_t *journal;
2909 int err;
2910
2911 /*
2912 * We can get here for an inline file via the FIBMAP ioctl
2913 */
2914 if (ext4_has_inline_data(inode))
2915 return 0;
2916
2917 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2918 test_opt(inode->i_sb, DELALLOC)) {
2919 /*
2920 * With delalloc we want to sync the file
2921 * so that we can make sure we allocate
2922 * blocks for file
2923 */
2924 filemap_write_and_wait(mapping);
2925 }
2926
2927 if (EXT4_JOURNAL(inode) &&
2928 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2929 /*
2930 * This is a REALLY heavyweight approach, but the use of
2931 * bmap on dirty files is expected to be extremely rare:
2932 * only if we run lilo or swapon on a freshly made file
2933 * do we expect this to happen.
2934 *
2935 * (bmap requires CAP_SYS_RAWIO so this does not
2936 * represent an unprivileged user DOS attack --- we'd be
2937 * in trouble if mortal users could trigger this path at
2938 * will.)
2939 *
2940 * NB. EXT4_STATE_JDATA is not set on files other than
2941 * regular files. If somebody wants to bmap a directory
2942 * or symlink and gets confused because the buffer
2943 * hasn't yet been flushed to disk, they deserve
2944 * everything they get.
2945 */
2946
2947 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2948 journal = EXT4_JOURNAL(inode);
2949 jbd2_journal_lock_updates(journal);
2950 err = jbd2_journal_flush(journal);
2951 jbd2_journal_unlock_updates(journal);
2952
2953 if (err)
2954 return 0;
2955 }
2956
2957 return generic_block_bmap(mapping, block, ext4_get_block);
2958 }
2959
ext4_readpage(struct file * file,struct page * page)2960 static int ext4_readpage(struct file *file, struct page *page)
2961 {
2962 int ret = -EAGAIN;
2963 struct inode *inode = page->mapping->host;
2964
2965 trace_ext4_readpage(page);
2966
2967 if (ext4_has_inline_data(inode))
2968 ret = ext4_readpage_inline(inode, page);
2969
2970 if (ret == -EAGAIN)
2971 return ext4_mpage_readpages(page->mapping, NULL, page, 1);
2972
2973 return ret;
2974 }
2975
2976 static int
ext4_readpages(struct file * file,struct address_space * mapping,struct list_head * pages,unsigned nr_pages)2977 ext4_readpages(struct file *file, struct address_space *mapping,
2978 struct list_head *pages, unsigned nr_pages)
2979 {
2980 struct inode *inode = mapping->host;
2981
2982 /* If the file has inline data, no need to do readpages. */
2983 if (ext4_has_inline_data(inode))
2984 return 0;
2985
2986 return ext4_mpage_readpages(mapping, pages, NULL, nr_pages);
2987 }
2988
ext4_invalidatepage(struct page * page,unsigned int offset,unsigned int length)2989 static void ext4_invalidatepage(struct page *page, unsigned int offset,
2990 unsigned int length)
2991 {
2992 trace_ext4_invalidatepage(page, offset, length);
2993
2994 /* No journalling happens on data buffers when this function is used */
2995 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
2996
2997 block_invalidatepage(page, offset, length);
2998 }
2999
__ext4_journalled_invalidatepage(struct page * page,unsigned int offset,unsigned int length)3000 static int __ext4_journalled_invalidatepage(struct page *page,
3001 unsigned int offset,
3002 unsigned int length)
3003 {
3004 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3005
3006 trace_ext4_journalled_invalidatepage(page, offset, length);
3007
3008 /*
3009 * If it's a full truncate we just forget about the pending dirtying
3010 */
3011 if (offset == 0 && length == PAGE_CACHE_SIZE)
3012 ClearPageChecked(page);
3013
3014 return jbd2_journal_invalidatepage(journal, page, offset, length);
3015 }
3016
3017 /* Wrapper for aops... */
ext4_journalled_invalidatepage(struct page * page,unsigned int offset,unsigned int length)3018 static void ext4_journalled_invalidatepage(struct page *page,
3019 unsigned int offset,
3020 unsigned int length)
3021 {
3022 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3023 }
3024
ext4_releasepage(struct page * page,gfp_t wait)3025 static int ext4_releasepage(struct page *page, gfp_t wait)
3026 {
3027 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3028
3029 trace_ext4_releasepage(page);
3030
3031 /* Page has dirty journalled data -> cannot release */
3032 if (PageChecked(page))
3033 return 0;
3034 if (journal)
3035 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3036 else
3037 return try_to_free_buffers(page);
3038 }
3039
3040 /*
3041 * ext4_get_block used when preparing for a DIO write or buffer write.
3042 * We allocate an uinitialized extent if blocks haven't been allocated.
3043 * The extent will be converted to initialized after the IO is complete.
3044 */
ext4_get_block_write(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create)3045 int ext4_get_block_write(struct inode *inode, sector_t iblock,
3046 struct buffer_head *bh_result, int create)
3047 {
3048 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3049 inode->i_ino, create);
3050 return _ext4_get_block(inode, iblock, bh_result,
3051 EXT4_GET_BLOCKS_IO_CREATE_EXT);
3052 }
3053
ext4_get_block_write_nolock(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create)3054 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
3055 struct buffer_head *bh_result, int create)
3056 {
3057 ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
3058 inode->i_ino, create);
3059 return _ext4_get_block(inode, iblock, bh_result,
3060 EXT4_GET_BLOCKS_NO_LOCK);
3061 }
3062
ext4_end_io_dio(struct kiocb * iocb,loff_t offset,ssize_t size,void * private)3063 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3064 ssize_t size, void *private)
3065 {
3066 ext4_io_end_t *io_end = iocb->private;
3067
3068 /* if not async direct IO just return */
3069 if (!io_end)
3070 return;
3071
3072 ext_debug("ext4_end_io_dio(): io_end 0x%p "
3073 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3074 iocb->private, io_end->inode->i_ino, iocb, offset,
3075 size);
3076
3077 iocb->private = NULL;
3078 io_end->offset = offset;
3079 io_end->size = size;
3080 ext4_put_io_end(io_end);
3081 }
3082
3083 /*
3084 * For ext4 extent files, ext4 will do direct-io write to holes,
3085 * preallocated extents, and those write extend the file, no need to
3086 * fall back to buffered IO.
3087 *
3088 * For holes, we fallocate those blocks, mark them as unwritten
3089 * If those blocks were preallocated, we mark sure they are split, but
3090 * still keep the range to write as unwritten.
3091 *
3092 * The unwritten extents will be converted to written when DIO is completed.
3093 * For async direct IO, since the IO may still pending when return, we
3094 * set up an end_io call back function, which will do the conversion
3095 * when async direct IO completed.
3096 *
3097 * If the O_DIRECT write will extend the file then add this inode to the
3098 * orphan list. So recovery will truncate it back to the original size
3099 * if the machine crashes during the write.
3100 *
3101 */
ext4_ext_direct_IO(struct kiocb * iocb,struct iov_iter * iter,loff_t offset)3102 static ssize_t ext4_ext_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
3103 loff_t offset)
3104 {
3105 struct file *file = iocb->ki_filp;
3106 struct inode *inode = file->f_mapping->host;
3107 ssize_t ret;
3108 size_t count = iov_iter_count(iter);
3109 int overwrite = 0;
3110 get_block_t *get_block_func = NULL;
3111 int dio_flags = 0;
3112 loff_t final_size = offset + count;
3113 ext4_io_end_t *io_end = NULL;
3114
3115 /* Use the old path for reads and writes beyond i_size. */
3116 if (iov_iter_rw(iter) != WRITE || final_size > inode->i_size)
3117 return ext4_ind_direct_IO(iocb, iter, offset);
3118
3119 BUG_ON(iocb->private == NULL);
3120
3121 /*
3122 * Make all waiters for direct IO properly wait also for extent
3123 * conversion. This also disallows race between truncate() and
3124 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3125 */
3126 if (iov_iter_rw(iter) == WRITE)
3127 inode_dio_begin(inode);
3128
3129 /* If we do a overwrite dio, i_mutex locking can be released */
3130 overwrite = *((int *)iocb->private);
3131
3132 if (overwrite) {
3133 down_read(&EXT4_I(inode)->i_data_sem);
3134 mutex_unlock(&inode->i_mutex);
3135 }
3136
3137 /*
3138 * We could direct write to holes and fallocate.
3139 *
3140 * Allocated blocks to fill the hole are marked as
3141 * unwritten to prevent parallel buffered read to expose
3142 * the stale data before DIO complete the data IO.
3143 *
3144 * As to previously fallocated extents, ext4 get_block will
3145 * just simply mark the buffer mapped but still keep the
3146 * extents unwritten.
3147 *
3148 * For non AIO case, we will convert those unwritten extents
3149 * to written after return back from blockdev_direct_IO.
3150 *
3151 * For async DIO, the conversion needs to be deferred when the
3152 * IO is completed. The ext4 end_io callback function will be
3153 * called to take care of the conversion work. Here for async
3154 * case, we allocate an io_end structure to hook to the iocb.
3155 */
3156 iocb->private = NULL;
3157 if (overwrite) {
3158 get_block_func = ext4_get_block_write_nolock;
3159 } else {
3160 ext4_inode_aio_set(inode, NULL);
3161 if (!is_sync_kiocb(iocb)) {
3162 io_end = ext4_init_io_end(inode, GFP_NOFS);
3163 if (!io_end) {
3164 ret = -ENOMEM;
3165 goto retake_lock;
3166 }
3167 /*
3168 * Grab reference for DIO. Will be dropped in
3169 * ext4_end_io_dio()
3170 */
3171 iocb->private = ext4_get_io_end(io_end);
3172 /*
3173 * we save the io structure for current async direct
3174 * IO, so that later ext4_map_blocks() could flag the
3175 * io structure whether there is a unwritten extents
3176 * needs to be converted when IO is completed.
3177 */
3178 ext4_inode_aio_set(inode, io_end);
3179 }
3180 get_block_func = ext4_get_block_write;
3181 dio_flags = DIO_LOCKING;
3182 }
3183 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3184 BUG_ON(ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode));
3185 #endif
3186 if (IS_DAX(inode))
3187 ret = dax_do_io(iocb, inode, iter, offset, get_block_func,
3188 ext4_end_io_dio, dio_flags);
3189 else
3190 ret = __blockdev_direct_IO(iocb, inode,
3191 inode->i_sb->s_bdev, iter, offset,
3192 get_block_func,
3193 ext4_end_io_dio, NULL, dio_flags);
3194
3195 /*
3196 * Put our reference to io_end. This can free the io_end structure e.g.
3197 * in sync IO case or in case of error. It can even perform extent
3198 * conversion if all bios we submitted finished before we got here.
3199 * Note that in that case iocb->private can be already set to NULL
3200 * here.
3201 */
3202 if (io_end) {
3203 ext4_inode_aio_set(inode, NULL);
3204 ext4_put_io_end(io_end);
3205 /*
3206 * When no IO was submitted ext4_end_io_dio() was not
3207 * called so we have to put iocb's reference.
3208 */
3209 if (ret <= 0 && ret != -EIOCBQUEUED && iocb->private) {
3210 WARN_ON(iocb->private != io_end);
3211 WARN_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
3212 ext4_put_io_end(io_end);
3213 iocb->private = NULL;
3214 }
3215 }
3216 if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3217 EXT4_STATE_DIO_UNWRITTEN)) {
3218 int err;
3219 /*
3220 * for non AIO case, since the IO is already
3221 * completed, we could do the conversion right here
3222 */
3223 err = ext4_convert_unwritten_extents(NULL, inode,
3224 offset, ret);
3225 if (err < 0)
3226 ret = err;
3227 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3228 }
3229
3230 retake_lock:
3231 if (iov_iter_rw(iter) == WRITE)
3232 inode_dio_end(inode);
3233 /* take i_mutex locking again if we do a ovewrite dio */
3234 if (overwrite) {
3235 up_read(&EXT4_I(inode)->i_data_sem);
3236 mutex_lock(&inode->i_mutex);
3237 }
3238
3239 return ret;
3240 }
3241
ext4_direct_IO(struct kiocb * iocb,struct iov_iter * iter,loff_t offset)3242 static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
3243 loff_t offset)
3244 {
3245 struct file *file = iocb->ki_filp;
3246 struct inode *inode = file->f_mapping->host;
3247 size_t count = iov_iter_count(iter);
3248 ssize_t ret;
3249
3250 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3251 if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode))
3252 return 0;
3253 #endif
3254
3255 /*
3256 * If we are doing data journalling we don't support O_DIRECT
3257 */
3258 if (ext4_should_journal_data(inode))
3259 return 0;
3260
3261 /* Let buffer I/O handle the inline data case. */
3262 if (ext4_has_inline_data(inode))
3263 return 0;
3264
3265 trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
3266 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3267 ret = ext4_ext_direct_IO(iocb, iter, offset);
3268 else
3269 ret = ext4_ind_direct_IO(iocb, iter, offset);
3270 trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
3271 return ret;
3272 }
3273
3274 /*
3275 * Pages can be marked dirty completely asynchronously from ext4's journalling
3276 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3277 * much here because ->set_page_dirty is called under VFS locks. The page is
3278 * not necessarily locked.
3279 *
3280 * We cannot just dirty the page and leave attached buffers clean, because the
3281 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3282 * or jbddirty because all the journalling code will explode.
3283 *
3284 * So what we do is to mark the page "pending dirty" and next time writepage
3285 * is called, propagate that into the buffers appropriately.
3286 */
ext4_journalled_set_page_dirty(struct page * page)3287 static int ext4_journalled_set_page_dirty(struct page *page)
3288 {
3289 SetPageChecked(page);
3290 return __set_page_dirty_nobuffers(page);
3291 }
3292
3293 static const struct address_space_operations ext4_aops = {
3294 .readpage = ext4_readpage,
3295 .readpages = ext4_readpages,
3296 .writepage = ext4_writepage,
3297 .writepages = ext4_writepages,
3298 .write_begin = ext4_write_begin,
3299 .write_end = ext4_write_end,
3300 .bmap = ext4_bmap,
3301 .invalidatepage = ext4_invalidatepage,
3302 .releasepage = ext4_releasepage,
3303 .direct_IO = ext4_direct_IO,
3304 .migratepage = buffer_migrate_page,
3305 .is_partially_uptodate = block_is_partially_uptodate,
3306 .error_remove_page = generic_error_remove_page,
3307 };
3308
3309 static const struct address_space_operations ext4_journalled_aops = {
3310 .readpage = ext4_readpage,
3311 .readpages = ext4_readpages,
3312 .writepage = ext4_writepage,
3313 .writepages = ext4_writepages,
3314 .write_begin = ext4_write_begin,
3315 .write_end = ext4_journalled_write_end,
3316 .set_page_dirty = ext4_journalled_set_page_dirty,
3317 .bmap = ext4_bmap,
3318 .invalidatepage = ext4_journalled_invalidatepage,
3319 .releasepage = ext4_releasepage,
3320 .direct_IO = ext4_direct_IO,
3321 .is_partially_uptodate = block_is_partially_uptodate,
3322 .error_remove_page = generic_error_remove_page,
3323 };
3324
3325 static const struct address_space_operations ext4_da_aops = {
3326 .readpage = ext4_readpage,
3327 .readpages = ext4_readpages,
3328 .writepage = ext4_writepage,
3329 .writepages = ext4_writepages,
3330 .write_begin = ext4_da_write_begin,
3331 .write_end = ext4_da_write_end,
3332 .bmap = ext4_bmap,
3333 .invalidatepage = ext4_da_invalidatepage,
3334 .releasepage = ext4_releasepage,
3335 .direct_IO = ext4_direct_IO,
3336 .migratepage = buffer_migrate_page,
3337 .is_partially_uptodate = block_is_partially_uptodate,
3338 .error_remove_page = generic_error_remove_page,
3339 };
3340
ext4_set_aops(struct inode * inode)3341 void ext4_set_aops(struct inode *inode)
3342 {
3343 switch (ext4_inode_journal_mode(inode)) {
3344 case EXT4_INODE_ORDERED_DATA_MODE:
3345 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3346 break;
3347 case EXT4_INODE_WRITEBACK_DATA_MODE:
3348 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3349 break;
3350 case EXT4_INODE_JOURNAL_DATA_MODE:
3351 inode->i_mapping->a_ops = &ext4_journalled_aops;
3352 return;
3353 default:
3354 BUG();
3355 }
3356 if (test_opt(inode->i_sb, DELALLOC))
3357 inode->i_mapping->a_ops = &ext4_da_aops;
3358 else
3359 inode->i_mapping->a_ops = &ext4_aops;
3360 }
3361
__ext4_block_zero_page_range(handle_t * handle,struct address_space * mapping,loff_t from,loff_t length)3362 static int __ext4_block_zero_page_range(handle_t *handle,
3363 struct address_space *mapping, loff_t from, loff_t length)
3364 {
3365 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3366 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3367 unsigned blocksize, pos;
3368 ext4_lblk_t iblock;
3369 struct inode *inode = mapping->host;
3370 struct buffer_head *bh;
3371 struct page *page;
3372 int err = 0;
3373
3374 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3375 mapping_gfp_mask(mapping) & ~__GFP_FS);
3376 if (!page)
3377 return -ENOMEM;
3378
3379 blocksize = inode->i_sb->s_blocksize;
3380
3381 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3382
3383 if (!page_has_buffers(page))
3384 create_empty_buffers(page, blocksize, 0);
3385
3386 /* Find the buffer that contains "offset" */
3387 bh = page_buffers(page);
3388 pos = blocksize;
3389 while (offset >= pos) {
3390 bh = bh->b_this_page;
3391 iblock++;
3392 pos += blocksize;
3393 }
3394 if (buffer_freed(bh)) {
3395 BUFFER_TRACE(bh, "freed: skip");
3396 goto unlock;
3397 }
3398 if (!buffer_mapped(bh)) {
3399 BUFFER_TRACE(bh, "unmapped");
3400 ext4_get_block(inode, iblock, bh, 0);
3401 /* unmapped? It's a hole - nothing to do */
3402 if (!buffer_mapped(bh)) {
3403 BUFFER_TRACE(bh, "still unmapped");
3404 goto unlock;
3405 }
3406 }
3407
3408 /* Ok, it's mapped. Make sure it's up-to-date */
3409 if (PageUptodate(page))
3410 set_buffer_uptodate(bh);
3411
3412 if (!buffer_uptodate(bh)) {
3413 err = -EIO;
3414 ll_rw_block(READ, 1, &bh);
3415 wait_on_buffer(bh);
3416 /* Uhhuh. Read error. Complain and punt. */
3417 if (!buffer_uptodate(bh))
3418 goto unlock;
3419 if (S_ISREG(inode->i_mode) &&
3420 ext4_encrypted_inode(inode)) {
3421 /* We expect the key to be set. */
3422 BUG_ON(!ext4_has_encryption_key(inode));
3423 BUG_ON(blocksize != PAGE_CACHE_SIZE);
3424 WARN_ON_ONCE(ext4_decrypt_one(inode, page));
3425 }
3426 }
3427 if (ext4_should_journal_data(inode)) {
3428 BUFFER_TRACE(bh, "get write access");
3429 err = ext4_journal_get_write_access(handle, bh);
3430 if (err)
3431 goto unlock;
3432 }
3433 zero_user(page, offset, length);
3434 BUFFER_TRACE(bh, "zeroed end of block");
3435
3436 if (ext4_should_journal_data(inode)) {
3437 err = ext4_handle_dirty_metadata(handle, inode, bh);
3438 } else {
3439 err = 0;
3440 mark_buffer_dirty(bh);
3441 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE))
3442 err = ext4_jbd2_file_inode(handle, inode);
3443 }
3444
3445 unlock:
3446 unlock_page(page);
3447 page_cache_release(page);
3448 return err;
3449 }
3450
3451 /*
3452 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3453 * starting from file offset 'from'. The range to be zero'd must
3454 * be contained with in one block. If the specified range exceeds
3455 * the end of the block it will be shortened to end of the block
3456 * that cooresponds to 'from'
3457 */
ext4_block_zero_page_range(handle_t * handle,struct address_space * mapping,loff_t from,loff_t length)3458 static int ext4_block_zero_page_range(handle_t *handle,
3459 struct address_space *mapping, loff_t from, loff_t length)
3460 {
3461 struct inode *inode = mapping->host;
3462 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3463 unsigned blocksize = inode->i_sb->s_blocksize;
3464 unsigned max = blocksize - (offset & (blocksize - 1));
3465
3466 /*
3467 * correct length if it does not fall between
3468 * 'from' and the end of the block
3469 */
3470 if (length > max || length < 0)
3471 length = max;
3472
3473 if (IS_DAX(inode))
3474 return dax_zero_page_range(inode, from, length, ext4_get_block);
3475 return __ext4_block_zero_page_range(handle, mapping, from, length);
3476 }
3477
3478 /*
3479 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3480 * up to the end of the block which corresponds to `from'.
3481 * This required during truncate. We need to physically zero the tail end
3482 * of that block so it doesn't yield old data if the file is later grown.
3483 */
ext4_block_truncate_page(handle_t * handle,struct address_space * mapping,loff_t from)3484 static int ext4_block_truncate_page(handle_t *handle,
3485 struct address_space *mapping, loff_t from)
3486 {
3487 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3488 unsigned length;
3489 unsigned blocksize;
3490 struct inode *inode = mapping->host;
3491
3492 blocksize = inode->i_sb->s_blocksize;
3493 length = blocksize - (offset & (blocksize - 1));
3494
3495 return ext4_block_zero_page_range(handle, mapping, from, length);
3496 }
3497
ext4_zero_partial_blocks(handle_t * handle,struct inode * inode,loff_t lstart,loff_t length)3498 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3499 loff_t lstart, loff_t length)
3500 {
3501 struct super_block *sb = inode->i_sb;
3502 struct address_space *mapping = inode->i_mapping;
3503 unsigned partial_start, partial_end;
3504 ext4_fsblk_t start, end;
3505 loff_t byte_end = (lstart + length - 1);
3506 int err = 0;
3507
3508 partial_start = lstart & (sb->s_blocksize - 1);
3509 partial_end = byte_end & (sb->s_blocksize - 1);
3510
3511 start = lstart >> sb->s_blocksize_bits;
3512 end = byte_end >> sb->s_blocksize_bits;
3513
3514 /* Handle partial zero within the single block */
3515 if (start == end &&
3516 (partial_start || (partial_end != sb->s_blocksize - 1))) {
3517 err = ext4_block_zero_page_range(handle, mapping,
3518 lstart, length);
3519 return err;
3520 }
3521 /* Handle partial zero out on the start of the range */
3522 if (partial_start) {
3523 err = ext4_block_zero_page_range(handle, mapping,
3524 lstart, sb->s_blocksize);
3525 if (err)
3526 return err;
3527 }
3528 /* Handle partial zero out on the end of the range */
3529 if (partial_end != sb->s_blocksize - 1)
3530 err = ext4_block_zero_page_range(handle, mapping,
3531 byte_end - partial_end,
3532 partial_end + 1);
3533 return err;
3534 }
3535
ext4_can_truncate(struct inode * inode)3536 int ext4_can_truncate(struct inode *inode)
3537 {
3538 if (S_ISREG(inode->i_mode))
3539 return 1;
3540 if (S_ISDIR(inode->i_mode))
3541 return 1;
3542 if (S_ISLNK(inode->i_mode))
3543 return !ext4_inode_is_fast_symlink(inode);
3544 return 0;
3545 }
3546
3547 /*
3548 * We have to make sure i_disksize gets properly updated before we truncate
3549 * page cache due to hole punching or zero range. Otherwise i_disksize update
3550 * can get lost as it may have been postponed to submission of writeback but
3551 * that will never happen after we truncate page cache.
3552 */
ext4_update_disksize_before_punch(struct inode * inode,loff_t offset,loff_t len)3553 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3554 loff_t len)
3555 {
3556 handle_t *handle;
3557 loff_t size = i_size_read(inode);
3558
3559 WARN_ON(!mutex_is_locked(&inode->i_mutex));
3560 if (offset > size || offset + len < size)
3561 return 0;
3562
3563 if (EXT4_I(inode)->i_disksize >= size)
3564 return 0;
3565
3566 handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3567 if (IS_ERR(handle))
3568 return PTR_ERR(handle);
3569 ext4_update_i_disksize(inode, size);
3570 ext4_mark_inode_dirty(handle, inode);
3571 ext4_journal_stop(handle);
3572
3573 return 0;
3574 }
3575
3576 /*
3577 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3578 * associated with the given offset and length
3579 *
3580 * @inode: File inode
3581 * @offset: The offset where the hole will begin
3582 * @len: The length of the hole
3583 *
3584 * Returns: 0 on success or negative on failure
3585 */
3586
ext4_punch_hole(struct inode * inode,loff_t offset,loff_t length)3587 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
3588 {
3589 struct super_block *sb = inode->i_sb;
3590 ext4_lblk_t first_block, stop_block;
3591 struct address_space *mapping = inode->i_mapping;
3592 loff_t first_block_offset, last_block_offset;
3593 handle_t *handle;
3594 unsigned int credits;
3595 int ret = 0;
3596
3597 if (!S_ISREG(inode->i_mode))
3598 return -EOPNOTSUPP;
3599
3600 trace_ext4_punch_hole(inode, offset, length, 0);
3601
3602 /*
3603 * Write out all dirty pages to avoid race conditions
3604 * Then release them.
3605 */
3606 if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3607 ret = filemap_write_and_wait_range(mapping, offset,
3608 offset + length - 1);
3609 if (ret)
3610 return ret;
3611 }
3612
3613 mutex_lock(&inode->i_mutex);
3614
3615 /* No need to punch hole beyond i_size */
3616 if (offset >= inode->i_size)
3617 goto out_mutex;
3618
3619 /*
3620 * If the hole extends beyond i_size, set the hole
3621 * to end after the page that contains i_size
3622 */
3623 if (offset + length > inode->i_size) {
3624 length = inode->i_size +
3625 PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
3626 offset;
3627 }
3628
3629 if (offset & (sb->s_blocksize - 1) ||
3630 (offset + length) & (sb->s_blocksize - 1)) {
3631 /*
3632 * Attach jinode to inode for jbd2 if we do any zeroing of
3633 * partial block
3634 */
3635 ret = ext4_inode_attach_jinode(inode);
3636 if (ret < 0)
3637 goto out_mutex;
3638
3639 }
3640
3641 /* Wait all existing dio workers, newcomers will block on i_mutex */
3642 ext4_inode_block_unlocked_dio(inode);
3643 inode_dio_wait(inode);
3644
3645 /*
3646 * Prevent page faults from reinstantiating pages we have released from
3647 * page cache.
3648 */
3649 down_write(&EXT4_I(inode)->i_mmap_sem);
3650 first_block_offset = round_up(offset, sb->s_blocksize);
3651 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
3652
3653 /* Now release the pages and zero block aligned part of pages*/
3654 if (last_block_offset > first_block_offset) {
3655 ret = ext4_update_disksize_before_punch(inode, offset, length);
3656 if (ret)
3657 goto out_dio;
3658 truncate_pagecache_range(inode, first_block_offset,
3659 last_block_offset);
3660 }
3661
3662 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3663 credits = ext4_writepage_trans_blocks(inode);
3664 else
3665 credits = ext4_blocks_for_truncate(inode);
3666 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3667 if (IS_ERR(handle)) {
3668 ret = PTR_ERR(handle);
3669 ext4_std_error(sb, ret);
3670 goto out_dio;
3671 }
3672
3673 ret = ext4_zero_partial_blocks(handle, inode, offset,
3674 length);
3675 if (ret)
3676 goto out_stop;
3677
3678 first_block = (offset + sb->s_blocksize - 1) >>
3679 EXT4_BLOCK_SIZE_BITS(sb);
3680 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3681
3682 /* If there are no blocks to remove, return now */
3683 if (first_block >= stop_block)
3684 goto out_stop;
3685
3686 down_write(&EXT4_I(inode)->i_data_sem);
3687 ext4_discard_preallocations(inode);
3688
3689 ret = ext4_es_remove_extent(inode, first_block,
3690 stop_block - first_block);
3691 if (ret) {
3692 up_write(&EXT4_I(inode)->i_data_sem);
3693 goto out_stop;
3694 }
3695
3696 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3697 ret = ext4_ext_remove_space(inode, first_block,
3698 stop_block - 1);
3699 else
3700 ret = ext4_ind_remove_space(handle, inode, first_block,
3701 stop_block);
3702
3703 up_write(&EXT4_I(inode)->i_data_sem);
3704 if (IS_SYNC(inode))
3705 ext4_handle_sync(handle);
3706
3707 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3708 ext4_mark_inode_dirty(handle, inode);
3709 out_stop:
3710 ext4_journal_stop(handle);
3711 out_dio:
3712 up_write(&EXT4_I(inode)->i_mmap_sem);
3713 ext4_inode_resume_unlocked_dio(inode);
3714 out_mutex:
3715 mutex_unlock(&inode->i_mutex);
3716 return ret;
3717 }
3718
ext4_inode_attach_jinode(struct inode * inode)3719 int ext4_inode_attach_jinode(struct inode *inode)
3720 {
3721 struct ext4_inode_info *ei = EXT4_I(inode);
3722 struct jbd2_inode *jinode;
3723
3724 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
3725 return 0;
3726
3727 jinode = jbd2_alloc_inode(GFP_KERNEL);
3728 spin_lock(&inode->i_lock);
3729 if (!ei->jinode) {
3730 if (!jinode) {
3731 spin_unlock(&inode->i_lock);
3732 return -ENOMEM;
3733 }
3734 ei->jinode = jinode;
3735 jbd2_journal_init_jbd_inode(ei->jinode, inode);
3736 jinode = NULL;
3737 }
3738 spin_unlock(&inode->i_lock);
3739 if (unlikely(jinode != NULL))
3740 jbd2_free_inode(jinode);
3741 return 0;
3742 }
3743
3744 /*
3745 * ext4_truncate()
3746 *
3747 * We block out ext4_get_block() block instantiations across the entire
3748 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3749 * simultaneously on behalf of the same inode.
3750 *
3751 * As we work through the truncate and commit bits of it to the journal there
3752 * is one core, guiding principle: the file's tree must always be consistent on
3753 * disk. We must be able to restart the truncate after a crash.
3754 *
3755 * The file's tree may be transiently inconsistent in memory (although it
3756 * probably isn't), but whenever we close off and commit a journal transaction,
3757 * the contents of (the filesystem + the journal) must be consistent and
3758 * restartable. It's pretty simple, really: bottom up, right to left (although
3759 * left-to-right works OK too).
3760 *
3761 * Note that at recovery time, journal replay occurs *before* the restart of
3762 * truncate against the orphan inode list.
3763 *
3764 * The committed inode has the new, desired i_size (which is the same as
3765 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
3766 * that this inode's truncate did not complete and it will again call
3767 * ext4_truncate() to have another go. So there will be instantiated blocks
3768 * to the right of the truncation point in a crashed ext4 filesystem. But
3769 * that's fine - as long as they are linked from the inode, the post-crash
3770 * ext4_truncate() run will find them and release them.
3771 */
ext4_truncate(struct inode * inode)3772 void ext4_truncate(struct inode *inode)
3773 {
3774 struct ext4_inode_info *ei = EXT4_I(inode);
3775 unsigned int credits;
3776 handle_t *handle;
3777 struct address_space *mapping = inode->i_mapping;
3778
3779 /*
3780 * There is a possibility that we're either freeing the inode
3781 * or it's a completely new inode. In those cases we might not
3782 * have i_mutex locked because it's not necessary.
3783 */
3784 if (!(inode->i_state & (I_NEW|I_FREEING)))
3785 WARN_ON(!mutex_is_locked(&inode->i_mutex));
3786 trace_ext4_truncate_enter(inode);
3787
3788 if (!ext4_can_truncate(inode))
3789 return;
3790
3791 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3792
3793 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3794 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3795
3796 if (ext4_has_inline_data(inode)) {
3797 int has_inline = 1;
3798
3799 ext4_inline_data_truncate(inode, &has_inline);
3800 if (has_inline)
3801 return;
3802 }
3803
3804 /* If we zero-out tail of the page, we have to create jinode for jbd2 */
3805 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
3806 if (ext4_inode_attach_jinode(inode) < 0)
3807 return;
3808 }
3809
3810 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3811 credits = ext4_writepage_trans_blocks(inode);
3812 else
3813 credits = ext4_blocks_for_truncate(inode);
3814
3815 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3816 if (IS_ERR(handle)) {
3817 ext4_std_error(inode->i_sb, PTR_ERR(handle));
3818 return;
3819 }
3820
3821 if (inode->i_size & (inode->i_sb->s_blocksize - 1))
3822 ext4_block_truncate_page(handle, mapping, inode->i_size);
3823
3824 /*
3825 * We add the inode to the orphan list, so that if this
3826 * truncate spans multiple transactions, and we crash, we will
3827 * resume the truncate when the filesystem recovers. It also
3828 * marks the inode dirty, to catch the new size.
3829 *
3830 * Implication: the file must always be in a sane, consistent
3831 * truncatable state while each transaction commits.
3832 */
3833 if (ext4_orphan_add(handle, inode))
3834 goto out_stop;
3835
3836 down_write(&EXT4_I(inode)->i_data_sem);
3837
3838 ext4_discard_preallocations(inode);
3839
3840 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3841 ext4_ext_truncate(handle, inode);
3842 else
3843 ext4_ind_truncate(handle, inode);
3844
3845 up_write(&ei->i_data_sem);
3846
3847 if (IS_SYNC(inode))
3848 ext4_handle_sync(handle);
3849
3850 out_stop:
3851 /*
3852 * If this was a simple ftruncate() and the file will remain alive,
3853 * then we need to clear up the orphan record which we created above.
3854 * However, if this was a real unlink then we were called by
3855 * ext4_evict_inode(), and we allow that function to clean up the
3856 * orphan info for us.
3857 */
3858 if (inode->i_nlink)
3859 ext4_orphan_del(handle, inode);
3860
3861 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3862 ext4_mark_inode_dirty(handle, inode);
3863 ext4_journal_stop(handle);
3864
3865 trace_ext4_truncate_exit(inode);
3866 }
3867
3868 /*
3869 * ext4_get_inode_loc returns with an extra refcount against the inode's
3870 * underlying buffer_head on success. If 'in_mem' is true, we have all
3871 * data in memory that is needed to recreate the on-disk version of this
3872 * inode.
3873 */
__ext4_get_inode_loc(struct inode * inode,struct ext4_iloc * iloc,int in_mem)3874 static int __ext4_get_inode_loc(struct inode *inode,
3875 struct ext4_iloc *iloc, int in_mem)
3876 {
3877 struct ext4_group_desc *gdp;
3878 struct buffer_head *bh;
3879 struct super_block *sb = inode->i_sb;
3880 ext4_fsblk_t block;
3881 int inodes_per_block, inode_offset;
3882
3883 iloc->bh = NULL;
3884 if (!ext4_valid_inum(sb, inode->i_ino))
3885 return -EIO;
3886
3887 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3888 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3889 if (!gdp)
3890 return -EIO;
3891
3892 /*
3893 * Figure out the offset within the block group inode table
3894 */
3895 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3896 inode_offset = ((inode->i_ino - 1) %
3897 EXT4_INODES_PER_GROUP(sb));
3898 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3899 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3900
3901 bh = sb_getblk(sb, block);
3902 if (unlikely(!bh))
3903 return -ENOMEM;
3904 if (!buffer_uptodate(bh)) {
3905 lock_buffer(bh);
3906
3907 /*
3908 * If the buffer has the write error flag, we have failed
3909 * to write out another inode in the same block. In this
3910 * case, we don't have to read the block because we may
3911 * read the old inode data successfully.
3912 */
3913 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3914 set_buffer_uptodate(bh);
3915
3916 if (buffer_uptodate(bh)) {
3917 /* someone brought it uptodate while we waited */
3918 unlock_buffer(bh);
3919 goto has_buffer;
3920 }
3921
3922 /*
3923 * If we have all information of the inode in memory and this
3924 * is the only valid inode in the block, we need not read the
3925 * block.
3926 */
3927 if (in_mem) {
3928 struct buffer_head *bitmap_bh;
3929 int i, start;
3930
3931 start = inode_offset & ~(inodes_per_block - 1);
3932
3933 /* Is the inode bitmap in cache? */
3934 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3935 if (unlikely(!bitmap_bh))
3936 goto make_io;
3937
3938 /*
3939 * If the inode bitmap isn't in cache then the
3940 * optimisation may end up performing two reads instead
3941 * of one, so skip it.
3942 */
3943 if (!buffer_uptodate(bitmap_bh)) {
3944 brelse(bitmap_bh);
3945 goto make_io;
3946 }
3947 for (i = start; i < start + inodes_per_block; i++) {
3948 if (i == inode_offset)
3949 continue;
3950 if (ext4_test_bit(i, bitmap_bh->b_data))
3951 break;
3952 }
3953 brelse(bitmap_bh);
3954 if (i == start + inodes_per_block) {
3955 /* all other inodes are free, so skip I/O */
3956 memset(bh->b_data, 0, bh->b_size);
3957 set_buffer_uptodate(bh);
3958 unlock_buffer(bh);
3959 goto has_buffer;
3960 }
3961 }
3962
3963 make_io:
3964 /*
3965 * If we need to do any I/O, try to pre-readahead extra
3966 * blocks from the inode table.
3967 */
3968 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3969 ext4_fsblk_t b, end, table;
3970 unsigned num;
3971 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
3972
3973 table = ext4_inode_table(sb, gdp);
3974 /* s_inode_readahead_blks is always a power of 2 */
3975 b = block & ~((ext4_fsblk_t) ra_blks - 1);
3976 if (table > b)
3977 b = table;
3978 end = b + ra_blks;
3979 num = EXT4_INODES_PER_GROUP(sb);
3980 if (ext4_has_group_desc_csum(sb))
3981 num -= ext4_itable_unused_count(sb, gdp);
3982 table += num / inodes_per_block;
3983 if (end > table)
3984 end = table;
3985 while (b <= end)
3986 sb_breadahead(sb, b++);
3987 }
3988
3989 /*
3990 * There are other valid inodes in the buffer, this inode
3991 * has in-inode xattrs, or we don't have this inode in memory.
3992 * Read the block from disk.
3993 */
3994 trace_ext4_load_inode(inode);
3995 get_bh(bh);
3996 bh->b_end_io = end_buffer_read_sync;
3997 submit_bh(READ | REQ_META | REQ_PRIO, bh);
3998 wait_on_buffer(bh);
3999 if (!buffer_uptodate(bh)) {
4000 EXT4_ERROR_INODE_BLOCK(inode, block,
4001 "unable to read itable block");
4002 brelse(bh);
4003 return -EIO;
4004 }
4005 }
4006 has_buffer:
4007 iloc->bh = bh;
4008 return 0;
4009 }
4010
ext4_get_inode_loc(struct inode * inode,struct ext4_iloc * iloc)4011 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4012 {
4013 /* We have all inode data except xattrs in memory here. */
4014 return __ext4_get_inode_loc(inode, iloc,
4015 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4016 }
4017
ext4_set_inode_flags(struct inode * inode)4018 void ext4_set_inode_flags(struct inode *inode)
4019 {
4020 unsigned int flags = EXT4_I(inode)->i_flags;
4021 unsigned int new_fl = 0;
4022
4023 if (flags & EXT4_SYNC_FL)
4024 new_fl |= S_SYNC;
4025 if (flags & EXT4_APPEND_FL)
4026 new_fl |= S_APPEND;
4027 if (flags & EXT4_IMMUTABLE_FL)
4028 new_fl |= S_IMMUTABLE;
4029 if (flags & EXT4_NOATIME_FL)
4030 new_fl |= S_NOATIME;
4031 if (flags & EXT4_DIRSYNC_FL)
4032 new_fl |= S_DIRSYNC;
4033 if (test_opt(inode->i_sb, DAX))
4034 new_fl |= S_DAX;
4035 inode_set_flags(inode, new_fl,
4036 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX);
4037 }
4038
4039 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
ext4_get_inode_flags(struct ext4_inode_info * ei)4040 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4041 {
4042 unsigned int vfs_fl;
4043 unsigned long old_fl, new_fl;
4044
4045 do {
4046 vfs_fl = ei->vfs_inode.i_flags;
4047 old_fl = ei->i_flags;
4048 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4049 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
4050 EXT4_DIRSYNC_FL);
4051 if (vfs_fl & S_SYNC)
4052 new_fl |= EXT4_SYNC_FL;
4053 if (vfs_fl & S_APPEND)
4054 new_fl |= EXT4_APPEND_FL;
4055 if (vfs_fl & S_IMMUTABLE)
4056 new_fl |= EXT4_IMMUTABLE_FL;
4057 if (vfs_fl & S_NOATIME)
4058 new_fl |= EXT4_NOATIME_FL;
4059 if (vfs_fl & S_DIRSYNC)
4060 new_fl |= EXT4_DIRSYNC_FL;
4061 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
4062 }
4063
ext4_inode_blocks(struct ext4_inode * raw_inode,struct ext4_inode_info * ei)4064 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4065 struct ext4_inode_info *ei)
4066 {
4067 blkcnt_t i_blocks ;
4068 struct inode *inode = &(ei->vfs_inode);
4069 struct super_block *sb = inode->i_sb;
4070
4071 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4072 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4073 /* we are using combined 48 bit field */
4074 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4075 le32_to_cpu(raw_inode->i_blocks_lo);
4076 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4077 /* i_blocks represent file system block size */
4078 return i_blocks << (inode->i_blkbits - 9);
4079 } else {
4080 return i_blocks;
4081 }
4082 } else {
4083 return le32_to_cpu(raw_inode->i_blocks_lo);
4084 }
4085 }
4086
ext4_iget_extra_inode(struct inode * inode,struct ext4_inode * raw_inode,struct ext4_inode_info * ei)4087 static inline void ext4_iget_extra_inode(struct inode *inode,
4088 struct ext4_inode *raw_inode,
4089 struct ext4_inode_info *ei)
4090 {
4091 __le32 *magic = (void *)raw_inode +
4092 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4093 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4094 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4095 ext4_find_inline_data_nolock(inode);
4096 } else
4097 EXT4_I(inode)->i_inline_off = 0;
4098 }
4099
ext4_iget(struct super_block * sb,unsigned long ino)4100 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4101 {
4102 struct ext4_iloc iloc;
4103 struct ext4_inode *raw_inode;
4104 struct ext4_inode_info *ei;
4105 struct inode *inode;
4106 journal_t *journal = EXT4_SB(sb)->s_journal;
4107 long ret;
4108 int block;
4109 uid_t i_uid;
4110 gid_t i_gid;
4111
4112 inode = iget_locked(sb, ino);
4113 if (!inode)
4114 return ERR_PTR(-ENOMEM);
4115 if (!(inode->i_state & I_NEW))
4116 return inode;
4117
4118 ei = EXT4_I(inode);
4119 iloc.bh = NULL;
4120
4121 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4122 if (ret < 0)
4123 goto bad_inode;
4124 raw_inode = ext4_raw_inode(&iloc);
4125
4126 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4127 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4128 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4129 EXT4_INODE_SIZE(inode->i_sb)) {
4130 EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
4131 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
4132 EXT4_INODE_SIZE(inode->i_sb));
4133 ret = -EIO;
4134 goto bad_inode;
4135 }
4136 } else
4137 ei->i_extra_isize = 0;
4138
4139 /* Precompute checksum seed for inode metadata */
4140 if (ext4_has_metadata_csum(sb)) {
4141 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4142 __u32 csum;
4143 __le32 inum = cpu_to_le32(inode->i_ino);
4144 __le32 gen = raw_inode->i_generation;
4145 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4146 sizeof(inum));
4147 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4148 sizeof(gen));
4149 }
4150
4151 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4152 EXT4_ERROR_INODE(inode, "checksum invalid");
4153 ret = -EIO;
4154 goto bad_inode;
4155 }
4156
4157 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4158 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4159 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4160 if (!(test_opt(inode->i_sb, NO_UID32))) {
4161 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4162 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4163 }
4164 i_uid_write(inode, i_uid);
4165 i_gid_write(inode, i_gid);
4166 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4167
4168 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
4169 ei->i_inline_off = 0;
4170 ei->i_dir_start_lookup = 0;
4171 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4172 /* We now have enough fields to check if the inode was active or not.
4173 * This is needed because nfsd might try to access dead inodes
4174 * the test is that same one that e2fsck uses
4175 * NeilBrown 1999oct15
4176 */
4177 if (inode->i_nlink == 0) {
4178 if ((inode->i_mode == 0 ||
4179 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4180 ino != EXT4_BOOT_LOADER_INO) {
4181 /* this inode is deleted */
4182 ret = -ESTALE;
4183 goto bad_inode;
4184 }
4185 /* The only unlinked inodes we let through here have
4186 * valid i_mode and are being read by the orphan
4187 * recovery code: that's fine, we're about to complete
4188 * the process of deleting those.
4189 * OR it is the EXT4_BOOT_LOADER_INO which is
4190 * not initialized on a new filesystem. */
4191 }
4192 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4193 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4194 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4195 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4196 ei->i_file_acl |=
4197 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4198 inode->i_size = ext4_isize(raw_inode);
4199 ei->i_disksize = inode->i_size;
4200 #ifdef CONFIG_QUOTA
4201 ei->i_reserved_quota = 0;
4202 #endif
4203 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4204 ei->i_block_group = iloc.block_group;
4205 ei->i_last_alloc_group = ~0;
4206 /*
4207 * NOTE! The in-memory inode i_data array is in little-endian order
4208 * even on big-endian machines: we do NOT byteswap the block numbers!
4209 */
4210 for (block = 0; block < EXT4_N_BLOCKS; block++)
4211 ei->i_data[block] = raw_inode->i_block[block];
4212 INIT_LIST_HEAD(&ei->i_orphan);
4213
4214 /*
4215 * Set transaction id's of transactions that have to be committed
4216 * to finish f[data]sync. We set them to currently running transaction
4217 * as we cannot be sure that the inode or some of its metadata isn't
4218 * part of the transaction - the inode could have been reclaimed and
4219 * now it is reread from disk.
4220 */
4221 if (journal) {
4222 transaction_t *transaction;
4223 tid_t tid;
4224
4225 read_lock(&journal->j_state_lock);
4226 if (journal->j_running_transaction)
4227 transaction = journal->j_running_transaction;
4228 else
4229 transaction = journal->j_committing_transaction;
4230 if (transaction)
4231 tid = transaction->t_tid;
4232 else
4233 tid = journal->j_commit_sequence;
4234 read_unlock(&journal->j_state_lock);
4235 ei->i_sync_tid = tid;
4236 ei->i_datasync_tid = tid;
4237 }
4238
4239 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4240 if (ei->i_extra_isize == 0) {
4241 /* The extra space is currently unused. Use it. */
4242 ei->i_extra_isize = sizeof(struct ext4_inode) -
4243 EXT4_GOOD_OLD_INODE_SIZE;
4244 } else {
4245 ext4_iget_extra_inode(inode, raw_inode, ei);
4246 }
4247 }
4248
4249 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4250 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4251 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4252 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4253
4254 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4255 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4256 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4257 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4258 inode->i_version |=
4259 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4260 }
4261 }
4262
4263 ret = 0;
4264 if (ei->i_file_acl &&
4265 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4266 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4267 ei->i_file_acl);
4268 ret = -EIO;
4269 goto bad_inode;
4270 } else if (!ext4_has_inline_data(inode)) {
4271 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4272 if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4273 (S_ISLNK(inode->i_mode) &&
4274 !ext4_inode_is_fast_symlink(inode))))
4275 /* Validate extent which is part of inode */
4276 ret = ext4_ext_check_inode(inode);
4277 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4278 (S_ISLNK(inode->i_mode) &&
4279 !ext4_inode_is_fast_symlink(inode))) {
4280 /* Validate block references which are part of inode */
4281 ret = ext4_ind_check_inode(inode);
4282 }
4283 }
4284 if (ret)
4285 goto bad_inode;
4286
4287 if (S_ISREG(inode->i_mode)) {
4288 inode->i_op = &ext4_file_inode_operations;
4289 inode->i_fop = &ext4_file_operations;
4290 ext4_set_aops(inode);
4291 } else if (S_ISDIR(inode->i_mode)) {
4292 inode->i_op = &ext4_dir_inode_operations;
4293 inode->i_fop = &ext4_dir_operations;
4294 } else if (S_ISLNK(inode->i_mode)) {
4295 if (ext4_inode_is_fast_symlink(inode) &&
4296 !ext4_encrypted_inode(inode)) {
4297 inode->i_op = &ext4_fast_symlink_inode_operations;
4298 nd_terminate_link(ei->i_data, inode->i_size,
4299 sizeof(ei->i_data) - 1);
4300 } else {
4301 inode->i_op = &ext4_symlink_inode_operations;
4302 ext4_set_aops(inode);
4303 }
4304 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4305 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4306 inode->i_op = &ext4_special_inode_operations;
4307 if (raw_inode->i_block[0])
4308 init_special_inode(inode, inode->i_mode,
4309 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4310 else
4311 init_special_inode(inode, inode->i_mode,
4312 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4313 } else if (ino == EXT4_BOOT_LOADER_INO) {
4314 make_bad_inode(inode);
4315 } else {
4316 ret = -EIO;
4317 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4318 goto bad_inode;
4319 }
4320 brelse(iloc.bh);
4321 ext4_set_inode_flags(inode);
4322 unlock_new_inode(inode);
4323 return inode;
4324
4325 bad_inode:
4326 brelse(iloc.bh);
4327 iget_failed(inode);
4328 return ERR_PTR(ret);
4329 }
4330
ext4_iget_normal(struct super_block * sb,unsigned long ino)4331 struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
4332 {
4333 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
4334 return ERR_PTR(-EIO);
4335 return ext4_iget(sb, ino);
4336 }
4337
ext4_inode_blocks_set(handle_t * handle,struct ext4_inode * raw_inode,struct ext4_inode_info * ei)4338 static int ext4_inode_blocks_set(handle_t *handle,
4339 struct ext4_inode *raw_inode,
4340 struct ext4_inode_info *ei)
4341 {
4342 struct inode *inode = &(ei->vfs_inode);
4343 u64 i_blocks = inode->i_blocks;
4344 struct super_block *sb = inode->i_sb;
4345
4346 if (i_blocks <= ~0U) {
4347 /*
4348 * i_blocks can be represented in a 32 bit variable
4349 * as multiple of 512 bytes
4350 */
4351 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4352 raw_inode->i_blocks_high = 0;
4353 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4354 return 0;
4355 }
4356 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4357 return -EFBIG;
4358
4359 if (i_blocks <= 0xffffffffffffULL) {
4360 /*
4361 * i_blocks can be represented in a 48 bit variable
4362 * as multiple of 512 bytes
4363 */
4364 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4365 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4366 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4367 } else {
4368 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4369 /* i_block is stored in file system block size */
4370 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4371 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4372 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4373 }
4374 return 0;
4375 }
4376
4377 struct other_inode {
4378 unsigned long orig_ino;
4379 struct ext4_inode *raw_inode;
4380 };
4381
other_inode_match(struct inode * inode,unsigned long ino,void * data)4382 static int other_inode_match(struct inode * inode, unsigned long ino,
4383 void *data)
4384 {
4385 struct other_inode *oi = (struct other_inode *) data;
4386
4387 if ((inode->i_ino != ino) ||
4388 (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4389 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
4390 ((inode->i_state & I_DIRTY_TIME) == 0))
4391 return 0;
4392 spin_lock(&inode->i_lock);
4393 if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4394 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) == 0) &&
4395 (inode->i_state & I_DIRTY_TIME)) {
4396 struct ext4_inode_info *ei = EXT4_I(inode);
4397
4398 inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
4399 spin_unlock(&inode->i_lock);
4400
4401 spin_lock(&ei->i_raw_lock);
4402 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
4403 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
4404 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
4405 ext4_inode_csum_set(inode, oi->raw_inode, ei);
4406 spin_unlock(&ei->i_raw_lock);
4407 trace_ext4_other_inode_update_time(inode, oi->orig_ino);
4408 return -1;
4409 }
4410 spin_unlock(&inode->i_lock);
4411 return -1;
4412 }
4413
4414 /*
4415 * Opportunistically update the other time fields for other inodes in
4416 * the same inode table block.
4417 */
ext4_update_other_inodes_time(struct super_block * sb,unsigned long orig_ino,char * buf)4418 static void ext4_update_other_inodes_time(struct super_block *sb,
4419 unsigned long orig_ino, char *buf)
4420 {
4421 struct other_inode oi;
4422 unsigned long ino;
4423 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4424 int inode_size = EXT4_INODE_SIZE(sb);
4425
4426 oi.orig_ino = orig_ino;
4427 /*
4428 * Calculate the first inode in the inode table block. Inode
4429 * numbers are one-based. That is, the first inode in a block
4430 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
4431 */
4432 ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
4433 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
4434 if (ino == orig_ino)
4435 continue;
4436 oi.raw_inode = (struct ext4_inode *) buf;
4437 (void) find_inode_nowait(sb, ino, other_inode_match, &oi);
4438 }
4439 }
4440
4441 /*
4442 * Post the struct inode info into an on-disk inode location in the
4443 * buffer-cache. This gobbles the caller's reference to the
4444 * buffer_head in the inode location struct.
4445 *
4446 * The caller must have write access to iloc->bh.
4447 */
ext4_do_update_inode(handle_t * handle,struct inode * inode,struct ext4_iloc * iloc)4448 static int ext4_do_update_inode(handle_t *handle,
4449 struct inode *inode,
4450 struct ext4_iloc *iloc)
4451 {
4452 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4453 struct ext4_inode_info *ei = EXT4_I(inode);
4454 struct buffer_head *bh = iloc->bh;
4455 struct super_block *sb = inode->i_sb;
4456 int err = 0, rc, block;
4457 int need_datasync = 0, set_large_file = 0;
4458 uid_t i_uid;
4459 gid_t i_gid;
4460
4461 spin_lock(&ei->i_raw_lock);
4462
4463 /* For fields not tracked in the in-memory inode,
4464 * initialise them to zero for new inodes. */
4465 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4466 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4467
4468 ext4_get_inode_flags(ei);
4469 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4470 i_uid = i_uid_read(inode);
4471 i_gid = i_gid_read(inode);
4472 if (!(test_opt(inode->i_sb, NO_UID32))) {
4473 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4474 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4475 /*
4476 * Fix up interoperability with old kernels. Otherwise, old inodes get
4477 * re-used with the upper 16 bits of the uid/gid intact
4478 */
4479 if (!ei->i_dtime) {
4480 raw_inode->i_uid_high =
4481 cpu_to_le16(high_16_bits(i_uid));
4482 raw_inode->i_gid_high =
4483 cpu_to_le16(high_16_bits(i_gid));
4484 } else {
4485 raw_inode->i_uid_high = 0;
4486 raw_inode->i_gid_high = 0;
4487 }
4488 } else {
4489 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4490 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4491 raw_inode->i_uid_high = 0;
4492 raw_inode->i_gid_high = 0;
4493 }
4494 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4495
4496 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4497 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4498 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4499 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4500
4501 err = ext4_inode_blocks_set(handle, raw_inode, ei);
4502 if (err) {
4503 spin_unlock(&ei->i_raw_lock);
4504 goto out_brelse;
4505 }
4506 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4507 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4508 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4509 raw_inode->i_file_acl_high =
4510 cpu_to_le16(ei->i_file_acl >> 32);
4511 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4512 if (ei->i_disksize != ext4_isize(raw_inode)) {
4513 ext4_isize_set(raw_inode, ei->i_disksize);
4514 need_datasync = 1;
4515 }
4516 if (ei->i_disksize > 0x7fffffffULL) {
4517 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4518 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4519 EXT4_SB(sb)->s_es->s_rev_level ==
4520 cpu_to_le32(EXT4_GOOD_OLD_REV))
4521 set_large_file = 1;
4522 }
4523 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4524 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4525 if (old_valid_dev(inode->i_rdev)) {
4526 raw_inode->i_block[0] =
4527 cpu_to_le32(old_encode_dev(inode->i_rdev));
4528 raw_inode->i_block[1] = 0;
4529 } else {
4530 raw_inode->i_block[0] = 0;
4531 raw_inode->i_block[1] =
4532 cpu_to_le32(new_encode_dev(inode->i_rdev));
4533 raw_inode->i_block[2] = 0;
4534 }
4535 } else if (!ext4_has_inline_data(inode)) {
4536 for (block = 0; block < EXT4_N_BLOCKS; block++)
4537 raw_inode->i_block[block] = ei->i_data[block];
4538 }
4539
4540 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4541 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4542 if (ei->i_extra_isize) {
4543 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4544 raw_inode->i_version_hi =
4545 cpu_to_le32(inode->i_version >> 32);
4546 raw_inode->i_extra_isize =
4547 cpu_to_le16(ei->i_extra_isize);
4548 }
4549 }
4550 ext4_inode_csum_set(inode, raw_inode, ei);
4551 spin_unlock(&ei->i_raw_lock);
4552 if (inode->i_sb->s_flags & MS_LAZYTIME)
4553 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
4554 bh->b_data);
4555
4556 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4557 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4558 if (!err)
4559 err = rc;
4560 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4561 if (set_large_file) {
4562 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
4563 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
4564 if (err)
4565 goto out_brelse;
4566 ext4_update_dynamic_rev(sb);
4567 EXT4_SET_RO_COMPAT_FEATURE(sb,
4568 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4569 ext4_handle_sync(handle);
4570 err = ext4_handle_dirty_super(handle, sb);
4571 }
4572 ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4573 out_brelse:
4574 brelse(bh);
4575 ext4_std_error(inode->i_sb, err);
4576 return err;
4577 }
4578
4579 /*
4580 * ext4_write_inode()
4581 *
4582 * We are called from a few places:
4583 *
4584 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
4585 * Here, there will be no transaction running. We wait for any running
4586 * transaction to commit.
4587 *
4588 * - Within flush work (sys_sync(), kupdate and such).
4589 * We wait on commit, if told to.
4590 *
4591 * - Within iput_final() -> write_inode_now()
4592 * We wait on commit, if told to.
4593 *
4594 * In all cases it is actually safe for us to return without doing anything,
4595 * because the inode has been copied into a raw inode buffer in
4596 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL
4597 * writeback.
4598 *
4599 * Note that we are absolutely dependent upon all inode dirtiers doing the
4600 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4601 * which we are interested.
4602 *
4603 * It would be a bug for them to not do this. The code:
4604 *
4605 * mark_inode_dirty(inode)
4606 * stuff();
4607 * inode->i_size = expr;
4608 *
4609 * is in error because write_inode() could occur while `stuff()' is running,
4610 * and the new i_size will be lost. Plus the inode will no longer be on the
4611 * superblock's dirty inode list.
4612 */
ext4_write_inode(struct inode * inode,struct writeback_control * wbc)4613 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4614 {
4615 int err;
4616
4617 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
4618 return 0;
4619
4620 if (EXT4_SB(inode->i_sb)->s_journal) {
4621 if (ext4_journal_current_handle()) {
4622 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4623 dump_stack();
4624 return -EIO;
4625 }
4626
4627 /*
4628 * No need to force transaction in WB_SYNC_NONE mode. Also
4629 * ext4_sync_fs() will force the commit after everything is
4630 * written.
4631 */
4632 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
4633 return 0;
4634
4635 err = ext4_force_commit(inode->i_sb);
4636 } else {
4637 struct ext4_iloc iloc;
4638
4639 err = __ext4_get_inode_loc(inode, &iloc, 0);
4640 if (err)
4641 return err;
4642 /*
4643 * sync(2) will flush the whole buffer cache. No need to do
4644 * it here separately for each inode.
4645 */
4646 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
4647 sync_dirty_buffer(iloc.bh);
4648 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4649 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4650 "IO error syncing inode");
4651 err = -EIO;
4652 }
4653 brelse(iloc.bh);
4654 }
4655 return err;
4656 }
4657
4658 /*
4659 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4660 * buffers that are attached to a page stradding i_size and are undergoing
4661 * commit. In that case we have to wait for commit to finish and try again.
4662 */
ext4_wait_for_tail_page_commit(struct inode * inode)4663 static void ext4_wait_for_tail_page_commit(struct inode *inode)
4664 {
4665 struct page *page;
4666 unsigned offset;
4667 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4668 tid_t commit_tid = 0;
4669 int ret;
4670
4671 offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4672 /*
4673 * All buffers in the last page remain valid? Then there's nothing to
4674 * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4675 * blocksize case
4676 */
4677 if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4678 return;
4679 while (1) {
4680 page = find_lock_page(inode->i_mapping,
4681 inode->i_size >> PAGE_CACHE_SHIFT);
4682 if (!page)
4683 return;
4684 ret = __ext4_journalled_invalidatepage(page, offset,
4685 PAGE_CACHE_SIZE - offset);
4686 unlock_page(page);
4687 page_cache_release(page);
4688 if (ret != -EBUSY)
4689 return;
4690 commit_tid = 0;
4691 read_lock(&journal->j_state_lock);
4692 if (journal->j_committing_transaction)
4693 commit_tid = journal->j_committing_transaction->t_tid;
4694 read_unlock(&journal->j_state_lock);
4695 if (commit_tid)
4696 jbd2_log_wait_commit(journal, commit_tid);
4697 }
4698 }
4699
4700 /*
4701 * ext4_setattr()
4702 *
4703 * Called from notify_change.
4704 *
4705 * We want to trap VFS attempts to truncate the file as soon as
4706 * possible. In particular, we want to make sure that when the VFS
4707 * shrinks i_size, we put the inode on the orphan list and modify
4708 * i_disksize immediately, so that during the subsequent flushing of
4709 * dirty pages and freeing of disk blocks, we can guarantee that any
4710 * commit will leave the blocks being flushed in an unused state on
4711 * disk. (On recovery, the inode will get truncated and the blocks will
4712 * be freed, so we have a strong guarantee that no future commit will
4713 * leave these blocks visible to the user.)
4714 *
4715 * Another thing we have to assure is that if we are in ordered mode
4716 * and inode is still attached to the committing transaction, we must
4717 * we start writeout of all the dirty pages which are being truncated.
4718 * This way we are sure that all the data written in the previous
4719 * transaction are already on disk (truncate waits for pages under
4720 * writeback).
4721 *
4722 * Called with inode->i_mutex down.
4723 */
ext4_setattr(struct dentry * dentry,struct iattr * attr)4724 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4725 {
4726 struct inode *inode = d_inode(dentry);
4727 int error, rc = 0;
4728 int orphan = 0;
4729 const unsigned int ia_valid = attr->ia_valid;
4730
4731 error = inode_change_ok(inode, attr);
4732 if (error)
4733 return error;
4734
4735 if (is_quota_modification(inode, attr))
4736 dquot_initialize(inode);
4737 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4738 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4739 handle_t *handle;
4740
4741 /* (user+group)*(old+new) structure, inode write (sb,
4742 * inode block, ? - but truncate inode update has it) */
4743 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4744 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4745 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
4746 if (IS_ERR(handle)) {
4747 error = PTR_ERR(handle);
4748 goto err_out;
4749 }
4750 error = dquot_transfer(inode, attr);
4751 if (error) {
4752 ext4_journal_stop(handle);
4753 return error;
4754 }
4755 /* Update corresponding info in inode so that everything is in
4756 * one transaction */
4757 if (attr->ia_valid & ATTR_UID)
4758 inode->i_uid = attr->ia_uid;
4759 if (attr->ia_valid & ATTR_GID)
4760 inode->i_gid = attr->ia_gid;
4761 error = ext4_mark_inode_dirty(handle, inode);
4762 ext4_journal_stop(handle);
4763 }
4764
4765 if (attr->ia_valid & ATTR_SIZE && attr->ia_size != inode->i_size) {
4766 handle_t *handle;
4767
4768 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4769 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4770
4771 if (attr->ia_size > sbi->s_bitmap_maxbytes)
4772 return -EFBIG;
4773 }
4774
4775 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
4776 inode_inc_iversion(inode);
4777
4778 if (S_ISREG(inode->i_mode) &&
4779 (attr->ia_size < inode->i_size)) {
4780 if (ext4_should_order_data(inode)) {
4781 error = ext4_begin_ordered_truncate(inode,
4782 attr->ia_size);
4783 if (error)
4784 goto err_out;
4785 }
4786 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4787 if (IS_ERR(handle)) {
4788 error = PTR_ERR(handle);
4789 goto err_out;
4790 }
4791 if (ext4_handle_valid(handle)) {
4792 error = ext4_orphan_add(handle, inode);
4793 orphan = 1;
4794 }
4795 down_write(&EXT4_I(inode)->i_data_sem);
4796 EXT4_I(inode)->i_disksize = attr->ia_size;
4797 rc = ext4_mark_inode_dirty(handle, inode);
4798 if (!error)
4799 error = rc;
4800 /*
4801 * We have to update i_size under i_data_sem together
4802 * with i_disksize to avoid races with writeback code
4803 * running ext4_wb_update_i_disksize().
4804 */
4805 if (!error)
4806 i_size_write(inode, attr->ia_size);
4807 up_write(&EXT4_I(inode)->i_data_sem);
4808 ext4_journal_stop(handle);
4809 if (error) {
4810 ext4_orphan_del(NULL, inode);
4811 goto err_out;
4812 }
4813 } else {
4814 loff_t oldsize = inode->i_size;
4815
4816 i_size_write(inode, attr->ia_size);
4817 pagecache_isize_extended(inode, oldsize, inode->i_size);
4818 }
4819
4820 /*
4821 * Blocks are going to be removed from the inode. Wait
4822 * for dio in flight. Temporarily disable
4823 * dioread_nolock to prevent livelock.
4824 */
4825 if (orphan) {
4826 if (!ext4_should_journal_data(inode)) {
4827 ext4_inode_block_unlocked_dio(inode);
4828 inode_dio_wait(inode);
4829 ext4_inode_resume_unlocked_dio(inode);
4830 } else
4831 ext4_wait_for_tail_page_commit(inode);
4832 }
4833 down_write(&EXT4_I(inode)->i_mmap_sem);
4834 /*
4835 * Truncate pagecache after we've waited for commit
4836 * in data=journal mode to make pages freeable.
4837 */
4838 truncate_pagecache(inode, inode->i_size);
4839 up_write(&EXT4_I(inode)->i_mmap_sem);
4840 }
4841 /*
4842 * We want to call ext4_truncate() even if attr->ia_size ==
4843 * inode->i_size for cases like truncation of fallocated space
4844 */
4845 if (attr->ia_valid & ATTR_SIZE)
4846 ext4_truncate(inode);
4847
4848 if (!rc) {
4849 setattr_copy(inode, attr);
4850 mark_inode_dirty(inode);
4851 }
4852
4853 /*
4854 * If the call to ext4_truncate failed to get a transaction handle at
4855 * all, we need to clean up the in-core orphan list manually.
4856 */
4857 if (orphan && inode->i_nlink)
4858 ext4_orphan_del(NULL, inode);
4859
4860 if (!rc && (ia_valid & ATTR_MODE))
4861 rc = posix_acl_chmod(inode, inode->i_mode);
4862
4863 err_out:
4864 ext4_std_error(inode->i_sb, error);
4865 if (!error)
4866 error = rc;
4867 return error;
4868 }
4869
ext4_getattr(struct vfsmount * mnt,struct dentry * dentry,struct kstat * stat)4870 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4871 struct kstat *stat)
4872 {
4873 struct inode *inode;
4874 unsigned long long delalloc_blocks;
4875
4876 inode = d_inode(dentry);
4877 generic_fillattr(inode, stat);
4878
4879 /*
4880 * If there is inline data in the inode, the inode will normally not
4881 * have data blocks allocated (it may have an external xattr block).
4882 * Report at least one sector for such files, so tools like tar, rsync,
4883 * others doen't incorrectly think the file is completely sparse.
4884 */
4885 if (unlikely(ext4_has_inline_data(inode)))
4886 stat->blocks += (stat->size + 511) >> 9;
4887
4888 /*
4889 * We can't update i_blocks if the block allocation is delayed
4890 * otherwise in the case of system crash before the real block
4891 * allocation is done, we will have i_blocks inconsistent with
4892 * on-disk file blocks.
4893 * We always keep i_blocks updated together with real
4894 * allocation. But to not confuse with user, stat
4895 * will return the blocks that include the delayed allocation
4896 * blocks for this file.
4897 */
4898 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4899 EXT4_I(inode)->i_reserved_data_blocks);
4900 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
4901 return 0;
4902 }
4903
ext4_index_trans_blocks(struct inode * inode,int lblocks,int pextents)4904 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
4905 int pextents)
4906 {
4907 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4908 return ext4_ind_trans_blocks(inode, lblocks);
4909 return ext4_ext_index_trans_blocks(inode, pextents);
4910 }
4911
4912 /*
4913 * Account for index blocks, block groups bitmaps and block group
4914 * descriptor blocks if modify datablocks and index blocks
4915 * worse case, the indexs blocks spread over different block groups
4916 *
4917 * If datablocks are discontiguous, they are possible to spread over
4918 * different block groups too. If they are contiguous, with flexbg,
4919 * they could still across block group boundary.
4920 *
4921 * Also account for superblock, inode, quota and xattr blocks
4922 */
ext4_meta_trans_blocks(struct inode * inode,int lblocks,int pextents)4923 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
4924 int pextents)
4925 {
4926 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4927 int gdpblocks;
4928 int idxblocks;
4929 int ret = 0;
4930
4931 /*
4932 * How many index blocks need to touch to map @lblocks logical blocks
4933 * to @pextents physical extents?
4934 */
4935 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
4936
4937 ret = idxblocks;
4938
4939 /*
4940 * Now let's see how many group bitmaps and group descriptors need
4941 * to account
4942 */
4943 groups = idxblocks + pextents;
4944 gdpblocks = groups;
4945 if (groups > ngroups)
4946 groups = ngroups;
4947 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4948 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4949
4950 /* bitmaps and block group descriptor blocks */
4951 ret += groups + gdpblocks;
4952
4953 /* Blocks for super block, inode, quota and xattr blocks */
4954 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4955
4956 return ret;
4957 }
4958
4959 /*
4960 * Calculate the total number of credits to reserve to fit
4961 * the modification of a single pages into a single transaction,
4962 * which may include multiple chunks of block allocations.
4963 *
4964 * This could be called via ext4_write_begin()
4965 *
4966 * We need to consider the worse case, when
4967 * one new block per extent.
4968 */
ext4_writepage_trans_blocks(struct inode * inode)4969 int ext4_writepage_trans_blocks(struct inode *inode)
4970 {
4971 int bpp = ext4_journal_blocks_per_page(inode);
4972 int ret;
4973
4974 ret = ext4_meta_trans_blocks(inode, bpp, bpp);
4975
4976 /* Account for data blocks for journalled mode */
4977 if (ext4_should_journal_data(inode))
4978 ret += bpp;
4979 return ret;
4980 }
4981
4982 /*
4983 * Calculate the journal credits for a chunk of data modification.
4984 *
4985 * This is called from DIO, fallocate or whoever calling
4986 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4987 *
4988 * journal buffers for data blocks are not included here, as DIO
4989 * and fallocate do no need to journal data buffers.
4990 */
ext4_chunk_trans_blocks(struct inode * inode,int nrblocks)4991 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4992 {
4993 return ext4_meta_trans_blocks(inode, nrblocks, 1);
4994 }
4995
4996 /*
4997 * The caller must have previously called ext4_reserve_inode_write().
4998 * Give this, we know that the caller already has write access to iloc->bh.
4999 */
ext4_mark_iloc_dirty(handle_t * handle,struct inode * inode,struct ext4_iloc * iloc)5000 int ext4_mark_iloc_dirty(handle_t *handle,
5001 struct inode *inode, struct ext4_iloc *iloc)
5002 {
5003 int err = 0;
5004
5005 if (IS_I_VERSION(inode))
5006 inode_inc_iversion(inode);
5007
5008 /* the do_update_inode consumes one bh->b_count */
5009 get_bh(iloc->bh);
5010
5011 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5012 err = ext4_do_update_inode(handle, inode, iloc);
5013 put_bh(iloc->bh);
5014 return err;
5015 }
5016
5017 /*
5018 * On success, We end up with an outstanding reference count against
5019 * iloc->bh. This _must_ be cleaned up later.
5020 */
5021
5022 int
ext4_reserve_inode_write(handle_t * handle,struct inode * inode,struct ext4_iloc * iloc)5023 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5024 struct ext4_iloc *iloc)
5025 {
5026 int err;
5027
5028 err = ext4_get_inode_loc(inode, iloc);
5029 if (!err) {
5030 BUFFER_TRACE(iloc->bh, "get_write_access");
5031 err = ext4_journal_get_write_access(handle, iloc->bh);
5032 if (err) {
5033 brelse(iloc->bh);
5034 iloc->bh = NULL;
5035 }
5036 }
5037 ext4_std_error(inode->i_sb, err);
5038 return err;
5039 }
5040
5041 /*
5042 * Expand an inode by new_extra_isize bytes.
5043 * Returns 0 on success or negative error number on failure.
5044 */
ext4_expand_extra_isize(struct inode * inode,unsigned int new_extra_isize,struct ext4_iloc iloc,handle_t * handle)5045 static int ext4_expand_extra_isize(struct inode *inode,
5046 unsigned int new_extra_isize,
5047 struct ext4_iloc iloc,
5048 handle_t *handle)
5049 {
5050 struct ext4_inode *raw_inode;
5051 struct ext4_xattr_ibody_header *header;
5052
5053 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5054 return 0;
5055
5056 raw_inode = ext4_raw_inode(&iloc);
5057
5058 header = IHDR(inode, raw_inode);
5059
5060 /* No extended attributes present */
5061 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5062 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5063 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5064 new_extra_isize);
5065 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5066 return 0;
5067 }
5068
5069 /* try to expand with EAs present */
5070 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5071 raw_inode, handle);
5072 }
5073
5074 /*
5075 * What we do here is to mark the in-core inode as clean with respect to inode
5076 * dirtiness (it may still be data-dirty).
5077 * This means that the in-core inode may be reaped by prune_icache
5078 * without having to perform any I/O. This is a very good thing,
5079 * because *any* task may call prune_icache - even ones which
5080 * have a transaction open against a different journal.
5081 *
5082 * Is this cheating? Not really. Sure, we haven't written the
5083 * inode out, but prune_icache isn't a user-visible syncing function.
5084 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5085 * we start and wait on commits.
5086 */
ext4_mark_inode_dirty(handle_t * handle,struct inode * inode)5087 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5088 {
5089 struct ext4_iloc iloc;
5090 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5091 static unsigned int mnt_count;
5092 int err, ret;
5093
5094 might_sleep();
5095 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5096 err = ext4_reserve_inode_write(handle, inode, &iloc);
5097 if (ext4_handle_valid(handle) &&
5098 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5099 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5100 /*
5101 * We need extra buffer credits since we may write into EA block
5102 * with this same handle. If journal_extend fails, then it will
5103 * only result in a minor loss of functionality for that inode.
5104 * If this is felt to be critical, then e2fsck should be run to
5105 * force a large enough s_min_extra_isize.
5106 */
5107 if ((jbd2_journal_extend(handle,
5108 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5109 ret = ext4_expand_extra_isize(inode,
5110 sbi->s_want_extra_isize,
5111 iloc, handle);
5112 if (ret) {
5113 ext4_set_inode_state(inode,
5114 EXT4_STATE_NO_EXPAND);
5115 if (mnt_count !=
5116 le16_to_cpu(sbi->s_es->s_mnt_count)) {
5117 ext4_warning(inode->i_sb,
5118 "Unable to expand inode %lu. Delete"
5119 " some EAs or run e2fsck.",
5120 inode->i_ino);
5121 mnt_count =
5122 le16_to_cpu(sbi->s_es->s_mnt_count);
5123 }
5124 }
5125 }
5126 }
5127 if (!err)
5128 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5129 return err;
5130 }
5131
5132 /*
5133 * ext4_dirty_inode() is called from __mark_inode_dirty()
5134 *
5135 * We're really interested in the case where a file is being extended.
5136 * i_size has been changed by generic_commit_write() and we thus need
5137 * to include the updated inode in the current transaction.
5138 *
5139 * Also, dquot_alloc_block() will always dirty the inode when blocks
5140 * are allocated to the file.
5141 *
5142 * If the inode is marked synchronous, we don't honour that here - doing
5143 * so would cause a commit on atime updates, which we don't bother doing.
5144 * We handle synchronous inodes at the highest possible level.
5145 *
5146 * If only the I_DIRTY_TIME flag is set, we can skip everything. If
5147 * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5148 * to copy into the on-disk inode structure are the timestamp files.
5149 */
ext4_dirty_inode(struct inode * inode,int flags)5150 void ext4_dirty_inode(struct inode *inode, int flags)
5151 {
5152 handle_t *handle;
5153
5154 if (flags == I_DIRTY_TIME)
5155 return;
5156 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5157 if (IS_ERR(handle))
5158 goto out;
5159
5160 ext4_mark_inode_dirty(handle, inode);
5161
5162 ext4_journal_stop(handle);
5163 out:
5164 return;
5165 }
5166
5167 #if 0
5168 /*
5169 * Bind an inode's backing buffer_head into this transaction, to prevent
5170 * it from being flushed to disk early. Unlike
5171 * ext4_reserve_inode_write, this leaves behind no bh reference and
5172 * returns no iloc structure, so the caller needs to repeat the iloc
5173 * lookup to mark the inode dirty later.
5174 */
5175 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5176 {
5177 struct ext4_iloc iloc;
5178
5179 int err = 0;
5180 if (handle) {
5181 err = ext4_get_inode_loc(inode, &iloc);
5182 if (!err) {
5183 BUFFER_TRACE(iloc.bh, "get_write_access");
5184 err = jbd2_journal_get_write_access(handle, iloc.bh);
5185 if (!err)
5186 err = ext4_handle_dirty_metadata(handle,
5187 NULL,
5188 iloc.bh);
5189 brelse(iloc.bh);
5190 }
5191 }
5192 ext4_std_error(inode->i_sb, err);
5193 return err;
5194 }
5195 #endif
5196
ext4_change_inode_journal_flag(struct inode * inode,int val)5197 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5198 {
5199 journal_t *journal;
5200 handle_t *handle;
5201 int err;
5202
5203 /*
5204 * We have to be very careful here: changing a data block's
5205 * journaling status dynamically is dangerous. If we write a
5206 * data block to the journal, change the status and then delete
5207 * that block, we risk forgetting to revoke the old log record
5208 * from the journal and so a subsequent replay can corrupt data.
5209 * So, first we make sure that the journal is empty and that
5210 * nobody is changing anything.
5211 */
5212
5213 journal = EXT4_JOURNAL(inode);
5214 if (!journal)
5215 return 0;
5216 if (is_journal_aborted(journal))
5217 return -EROFS;
5218 /* We have to allocate physical blocks for delalloc blocks
5219 * before flushing journal. otherwise delalloc blocks can not
5220 * be allocated any more. even more truncate on delalloc blocks
5221 * could trigger BUG by flushing delalloc blocks in journal.
5222 * There is no delalloc block in non-journal data mode.
5223 */
5224 if (val && test_opt(inode->i_sb, DELALLOC)) {
5225 err = ext4_alloc_da_blocks(inode);
5226 if (err < 0)
5227 return err;
5228 }
5229
5230 /* Wait for all existing dio workers */
5231 ext4_inode_block_unlocked_dio(inode);
5232 inode_dio_wait(inode);
5233
5234 jbd2_journal_lock_updates(journal);
5235
5236 /*
5237 * OK, there are no updates running now, and all cached data is
5238 * synced to disk. We are now in a completely consistent state
5239 * which doesn't have anything in the journal, and we know that
5240 * no filesystem updates are running, so it is safe to modify
5241 * the inode's in-core data-journaling state flag now.
5242 */
5243
5244 if (val)
5245 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5246 else {
5247 err = jbd2_journal_flush(journal);
5248 if (err < 0) {
5249 jbd2_journal_unlock_updates(journal);
5250 ext4_inode_resume_unlocked_dio(inode);
5251 return err;
5252 }
5253 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5254 }
5255 ext4_set_aops(inode);
5256
5257 jbd2_journal_unlock_updates(journal);
5258 ext4_inode_resume_unlocked_dio(inode);
5259
5260 /* Finally we can mark the inode as dirty. */
5261
5262 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5263 if (IS_ERR(handle))
5264 return PTR_ERR(handle);
5265
5266 err = ext4_mark_inode_dirty(handle, inode);
5267 ext4_handle_sync(handle);
5268 ext4_journal_stop(handle);
5269 ext4_std_error(inode->i_sb, err);
5270
5271 return err;
5272 }
5273
ext4_bh_unmapped(handle_t * handle,struct buffer_head * bh)5274 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5275 {
5276 return !buffer_mapped(bh);
5277 }
5278
ext4_page_mkwrite(struct vm_area_struct * vma,struct vm_fault * vmf)5279 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5280 {
5281 struct page *page = vmf->page;
5282 loff_t size;
5283 unsigned long len;
5284 int ret;
5285 struct file *file = vma->vm_file;
5286 struct inode *inode = file_inode(file);
5287 struct address_space *mapping = inode->i_mapping;
5288 handle_t *handle;
5289 get_block_t *get_block;
5290 int retries = 0;
5291
5292 sb_start_pagefault(inode->i_sb);
5293 file_update_time(vma->vm_file);
5294
5295 down_read(&EXT4_I(inode)->i_mmap_sem);
5296 /* Delalloc case is easy... */
5297 if (test_opt(inode->i_sb, DELALLOC) &&
5298 !ext4_should_journal_data(inode) &&
5299 !ext4_nonda_switch(inode->i_sb)) {
5300 do {
5301 ret = __block_page_mkwrite(vma, vmf,
5302 ext4_da_get_block_prep);
5303 } while (ret == -ENOSPC &&
5304 ext4_should_retry_alloc(inode->i_sb, &retries));
5305 goto out_ret;
5306 }
5307
5308 lock_page(page);
5309 size = i_size_read(inode);
5310 /* Page got truncated from under us? */
5311 if (page->mapping != mapping || page_offset(page) > size) {
5312 unlock_page(page);
5313 ret = VM_FAULT_NOPAGE;
5314 goto out;
5315 }
5316
5317 if (page->index == size >> PAGE_CACHE_SHIFT)
5318 len = size & ~PAGE_CACHE_MASK;
5319 else
5320 len = PAGE_CACHE_SIZE;
5321 /*
5322 * Return if we have all the buffers mapped. This avoids the need to do
5323 * journal_start/journal_stop which can block and take a long time
5324 */
5325 if (page_has_buffers(page)) {
5326 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5327 0, len, NULL,
5328 ext4_bh_unmapped)) {
5329 /* Wait so that we don't change page under IO */
5330 wait_for_stable_page(page);
5331 ret = VM_FAULT_LOCKED;
5332 goto out;
5333 }
5334 }
5335 unlock_page(page);
5336 /* OK, we need to fill the hole... */
5337 if (ext4_should_dioread_nolock(inode))
5338 get_block = ext4_get_block_write;
5339 else
5340 get_block = ext4_get_block;
5341 retry_alloc:
5342 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5343 ext4_writepage_trans_blocks(inode));
5344 if (IS_ERR(handle)) {
5345 ret = VM_FAULT_SIGBUS;
5346 goto out;
5347 }
5348 ret = __block_page_mkwrite(vma, vmf, get_block);
5349 if (!ret && ext4_should_journal_data(inode)) {
5350 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5351 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5352 unlock_page(page);
5353 ret = VM_FAULT_SIGBUS;
5354 ext4_journal_stop(handle);
5355 goto out;
5356 }
5357 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5358 }
5359 ext4_journal_stop(handle);
5360 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5361 goto retry_alloc;
5362 out_ret:
5363 ret = block_page_mkwrite_return(ret);
5364 out:
5365 up_read(&EXT4_I(inode)->i_mmap_sem);
5366 sb_end_pagefault(inode->i_sb);
5367 return ret;
5368 }
5369
ext4_filemap_fault(struct vm_area_struct * vma,struct vm_fault * vmf)5370 int ext4_filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
5371 {
5372 struct inode *inode = file_inode(vma->vm_file);
5373 int err;
5374
5375 down_read(&EXT4_I(inode)->i_mmap_sem);
5376 err = filemap_fault(vma, vmf);
5377 up_read(&EXT4_I(inode)->i_mmap_sem);
5378
5379 return err;
5380 }
5381