1 /*
2 * linux/fs/ext4/ialloc.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * BSD ufs-inspired inode and directory allocation by
10 * Stephen Tweedie (sct@redhat.com), 1993
11 * Big-endian to little-endian byte-swapping/bitmaps by
12 * David S. Miller (davem@caip.rutgers.edu), 1995
13 */
14
15 #include <linux/time.h>
16 #include <linux/fs.h>
17 #include <linux/stat.h>
18 #include <linux/string.h>
19 #include <linux/quotaops.h>
20 #include <linux/buffer_head.h>
21 #include <linux/random.h>
22 #include <linux/bitops.h>
23 #include <linux/blkdev.h>
24 #include <asm/byteorder.h>
25
26 #include "ext4.h"
27 #include "ext4_jbd2.h"
28 #include "xattr.h"
29 #include "acl.h"
30
31 #include <trace/events/ext4.h>
32
33 /*
34 * ialloc.c contains the inodes allocation and deallocation routines
35 */
36
37 /*
38 * The free inodes are managed by bitmaps. A file system contains several
39 * blocks groups. Each group contains 1 bitmap block for blocks, 1 bitmap
40 * block for inodes, N blocks for the inode table and data blocks.
41 *
42 * The file system contains group descriptors which are located after the
43 * super block. Each descriptor contains the number of the bitmap block and
44 * the free blocks count in the block.
45 */
46
47 /*
48 * To avoid calling the atomic setbit hundreds or thousands of times, we only
49 * need to use it within a single byte (to ensure we get endianness right).
50 * We can use memset for the rest of the bitmap as there are no other users.
51 */
ext4_mark_bitmap_end(int start_bit,int end_bit,char * bitmap)52 void ext4_mark_bitmap_end(int start_bit, int end_bit, char *bitmap)
53 {
54 int i;
55
56 if (start_bit >= end_bit)
57 return;
58
59 ext4_debug("mark end bits +%d through +%d used\n", start_bit, end_bit);
60 for (i = start_bit; i < ((start_bit + 7) & ~7UL); i++)
61 ext4_set_bit(i, bitmap);
62 if (i < end_bit)
63 memset(bitmap + (i >> 3), 0xff, (end_bit - i) >> 3);
64 }
65
66 /* Initializes an uninitialized inode bitmap */
ext4_init_inode_bitmap(struct super_block * sb,struct buffer_head * bh,ext4_group_t block_group,struct ext4_group_desc * gdp)67 static int ext4_init_inode_bitmap(struct super_block *sb,
68 struct buffer_head *bh,
69 ext4_group_t block_group,
70 struct ext4_group_desc *gdp)
71 {
72 struct ext4_group_info *grp;
73 struct ext4_sb_info *sbi = EXT4_SB(sb);
74 J_ASSERT_BH(bh, buffer_locked(bh));
75
76 /* If checksum is bad mark all blocks and inodes use to prevent
77 * allocation, essentially implementing a per-group read-only flag. */
78 if (!ext4_group_desc_csum_verify(sb, block_group, gdp)) {
79 grp = ext4_get_group_info(sb, block_group);
80 if (!EXT4_MB_GRP_BBITMAP_CORRUPT(grp))
81 percpu_counter_sub(&sbi->s_freeclusters_counter,
82 grp->bb_free);
83 set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT, &grp->bb_state);
84 if (!EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) {
85 int count;
86 count = ext4_free_inodes_count(sb, gdp);
87 percpu_counter_sub(&sbi->s_freeinodes_counter,
88 count);
89 }
90 set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT, &grp->bb_state);
91 return -EFSBADCRC;
92 }
93
94 memset(bh->b_data, 0, (EXT4_INODES_PER_GROUP(sb) + 7) / 8);
95 ext4_mark_bitmap_end(EXT4_INODES_PER_GROUP(sb), sb->s_blocksize * 8,
96 bh->b_data);
97 ext4_inode_bitmap_csum_set(sb, block_group, gdp, bh,
98 EXT4_INODES_PER_GROUP(sb) / 8);
99 ext4_group_desc_csum_set(sb, block_group, gdp);
100
101 return 0;
102 }
103
ext4_end_bitmap_read(struct buffer_head * bh,int uptodate)104 void ext4_end_bitmap_read(struct buffer_head *bh, int uptodate)
105 {
106 if (uptodate) {
107 set_buffer_uptodate(bh);
108 set_bitmap_uptodate(bh);
109 }
110 unlock_buffer(bh);
111 put_bh(bh);
112 }
113
ext4_validate_inode_bitmap(struct super_block * sb,struct ext4_group_desc * desc,ext4_group_t block_group,struct buffer_head * bh)114 static int ext4_validate_inode_bitmap(struct super_block *sb,
115 struct ext4_group_desc *desc,
116 ext4_group_t block_group,
117 struct buffer_head *bh)
118 {
119 ext4_fsblk_t blk;
120 struct ext4_group_info *grp = ext4_get_group_info(sb, block_group);
121 struct ext4_sb_info *sbi = EXT4_SB(sb);
122
123 if (buffer_verified(bh))
124 return 0;
125 if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp))
126 return -EFSCORRUPTED;
127
128 ext4_lock_group(sb, block_group);
129 blk = ext4_inode_bitmap(sb, desc);
130 if (!ext4_inode_bitmap_csum_verify(sb, block_group, desc, bh,
131 EXT4_INODES_PER_GROUP(sb) / 8)) {
132 ext4_unlock_group(sb, block_group);
133 ext4_error(sb, "Corrupt inode bitmap - block_group = %u, "
134 "inode_bitmap = %llu", block_group, blk);
135 grp = ext4_get_group_info(sb, block_group);
136 if (!EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) {
137 int count;
138 count = ext4_free_inodes_count(sb, desc);
139 percpu_counter_sub(&sbi->s_freeinodes_counter,
140 count);
141 }
142 set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT, &grp->bb_state);
143 return -EFSBADCRC;
144 }
145 set_buffer_verified(bh);
146 ext4_unlock_group(sb, block_group);
147 return 0;
148 }
149
150 /*
151 * Read the inode allocation bitmap for a given block_group, reading
152 * into the specified slot in the superblock's bitmap cache.
153 *
154 * Return buffer_head of bitmap on success or NULL.
155 */
156 static struct buffer_head *
ext4_read_inode_bitmap(struct super_block * sb,ext4_group_t block_group)157 ext4_read_inode_bitmap(struct super_block *sb, ext4_group_t block_group)
158 {
159 struct ext4_group_desc *desc;
160 struct buffer_head *bh = NULL;
161 ext4_fsblk_t bitmap_blk;
162 int err;
163
164 desc = ext4_get_group_desc(sb, block_group, NULL);
165 if (!desc)
166 return ERR_PTR(-EFSCORRUPTED);
167
168 bitmap_blk = ext4_inode_bitmap(sb, desc);
169 bh = sb_getblk(sb, bitmap_blk);
170 if (unlikely(!bh)) {
171 ext4_error(sb, "Cannot read inode bitmap - "
172 "block_group = %u, inode_bitmap = %llu",
173 block_group, bitmap_blk);
174 return ERR_PTR(-EIO);
175 }
176 if (bitmap_uptodate(bh))
177 goto verify;
178
179 lock_buffer(bh);
180 if (bitmap_uptodate(bh)) {
181 unlock_buffer(bh);
182 goto verify;
183 }
184
185 ext4_lock_group(sb, block_group);
186 if (desc->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)) {
187 err = ext4_init_inode_bitmap(sb, bh, block_group, desc);
188 set_bitmap_uptodate(bh);
189 set_buffer_uptodate(bh);
190 set_buffer_verified(bh);
191 ext4_unlock_group(sb, block_group);
192 unlock_buffer(bh);
193 if (err) {
194 ext4_error(sb, "Failed to init inode bitmap for group "
195 "%u: %d", block_group, err);
196 goto out;
197 }
198 return bh;
199 }
200 ext4_unlock_group(sb, block_group);
201
202 if (buffer_uptodate(bh)) {
203 /*
204 * if not uninit if bh is uptodate,
205 * bitmap is also uptodate
206 */
207 set_bitmap_uptodate(bh);
208 unlock_buffer(bh);
209 goto verify;
210 }
211 /*
212 * submit the buffer_head for reading
213 */
214 trace_ext4_load_inode_bitmap(sb, block_group);
215 bh->b_end_io = ext4_end_bitmap_read;
216 get_bh(bh);
217 submit_bh(READ | REQ_META | REQ_PRIO, bh);
218 wait_on_buffer(bh);
219 if (!buffer_uptodate(bh)) {
220 put_bh(bh);
221 ext4_error(sb, "Cannot read inode bitmap - "
222 "block_group = %u, inode_bitmap = %llu",
223 block_group, bitmap_blk);
224 return ERR_PTR(-EIO);
225 }
226
227 verify:
228 err = ext4_validate_inode_bitmap(sb, desc, block_group, bh);
229 if (err)
230 goto out;
231 return bh;
232 out:
233 put_bh(bh);
234 return ERR_PTR(err);
235 }
236
237 /*
238 * NOTE! When we get the inode, we're the only people
239 * that have access to it, and as such there are no
240 * race conditions we have to worry about. The inode
241 * is not on the hash-lists, and it cannot be reached
242 * through the filesystem because the directory entry
243 * has been deleted earlier.
244 *
245 * HOWEVER: we must make sure that we get no aliases,
246 * which means that we have to call "clear_inode()"
247 * _before_ we mark the inode not in use in the inode
248 * bitmaps. Otherwise a newly created file might use
249 * the same inode number (not actually the same pointer
250 * though), and then we'd have two inodes sharing the
251 * same inode number and space on the harddisk.
252 */
ext4_free_inode(handle_t * handle,struct inode * inode)253 void ext4_free_inode(handle_t *handle, struct inode *inode)
254 {
255 struct super_block *sb = inode->i_sb;
256 int is_directory;
257 unsigned long ino;
258 struct buffer_head *bitmap_bh = NULL;
259 struct buffer_head *bh2;
260 ext4_group_t block_group;
261 unsigned long bit;
262 struct ext4_group_desc *gdp;
263 struct ext4_super_block *es;
264 struct ext4_sb_info *sbi;
265 int fatal = 0, err, count, cleared;
266 struct ext4_group_info *grp;
267
268 if (!sb) {
269 printk(KERN_ERR "EXT4-fs: %s:%d: inode on "
270 "nonexistent device\n", __func__, __LINE__);
271 return;
272 }
273 if (atomic_read(&inode->i_count) > 1) {
274 ext4_msg(sb, KERN_ERR, "%s:%d: inode #%lu: count=%d",
275 __func__, __LINE__, inode->i_ino,
276 atomic_read(&inode->i_count));
277 return;
278 }
279 if (inode->i_nlink) {
280 ext4_msg(sb, KERN_ERR, "%s:%d: inode #%lu: nlink=%d\n",
281 __func__, __LINE__, inode->i_ino, inode->i_nlink);
282 return;
283 }
284 sbi = EXT4_SB(sb);
285
286 ino = inode->i_ino;
287 ext4_debug("freeing inode %lu\n", ino);
288 trace_ext4_free_inode(inode);
289
290 /*
291 * Note: we must free any quota before locking the superblock,
292 * as writing the quota to disk may need the lock as well.
293 */
294 dquot_initialize(inode);
295 ext4_xattr_delete_inode(handle, inode);
296 dquot_free_inode(inode);
297 dquot_drop(inode);
298
299 is_directory = S_ISDIR(inode->i_mode);
300
301 /* Do this BEFORE marking the inode not in use or returning an error */
302 ext4_clear_inode(inode);
303
304 es = EXT4_SB(sb)->s_es;
305 if (ino < EXT4_FIRST_INO(sb) || ino > le32_to_cpu(es->s_inodes_count)) {
306 ext4_error(sb, "reserved or nonexistent inode %lu", ino);
307 goto error_return;
308 }
309 block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
310 bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb);
311 bitmap_bh = ext4_read_inode_bitmap(sb, block_group);
312 /* Don't bother if the inode bitmap is corrupt. */
313 grp = ext4_get_group_info(sb, block_group);
314 if (IS_ERR(bitmap_bh)) {
315 fatal = PTR_ERR(bitmap_bh);
316 bitmap_bh = NULL;
317 goto error_return;
318 }
319 if (unlikely(EXT4_MB_GRP_IBITMAP_CORRUPT(grp))) {
320 fatal = -EFSCORRUPTED;
321 goto error_return;
322 }
323
324 BUFFER_TRACE(bitmap_bh, "get_write_access");
325 fatal = ext4_journal_get_write_access(handle, bitmap_bh);
326 if (fatal)
327 goto error_return;
328
329 fatal = -ESRCH;
330 gdp = ext4_get_group_desc(sb, block_group, &bh2);
331 if (gdp) {
332 BUFFER_TRACE(bh2, "get_write_access");
333 fatal = ext4_journal_get_write_access(handle, bh2);
334 }
335 ext4_lock_group(sb, block_group);
336 cleared = ext4_test_and_clear_bit(bit, bitmap_bh->b_data);
337 if (fatal || !cleared) {
338 ext4_unlock_group(sb, block_group);
339 goto out;
340 }
341
342 count = ext4_free_inodes_count(sb, gdp) + 1;
343 ext4_free_inodes_set(sb, gdp, count);
344 if (is_directory) {
345 count = ext4_used_dirs_count(sb, gdp) - 1;
346 ext4_used_dirs_set(sb, gdp, count);
347 percpu_counter_dec(&sbi->s_dirs_counter);
348 }
349 ext4_inode_bitmap_csum_set(sb, block_group, gdp, bitmap_bh,
350 EXT4_INODES_PER_GROUP(sb) / 8);
351 ext4_group_desc_csum_set(sb, block_group, gdp);
352 ext4_unlock_group(sb, block_group);
353
354 percpu_counter_inc(&sbi->s_freeinodes_counter);
355 if (sbi->s_log_groups_per_flex) {
356 ext4_group_t f = ext4_flex_group(sbi, block_group);
357
358 atomic_inc(&sbi->s_flex_groups[f].free_inodes);
359 if (is_directory)
360 atomic_dec(&sbi->s_flex_groups[f].used_dirs);
361 }
362 BUFFER_TRACE(bh2, "call ext4_handle_dirty_metadata");
363 fatal = ext4_handle_dirty_metadata(handle, NULL, bh2);
364 out:
365 if (cleared) {
366 BUFFER_TRACE(bitmap_bh, "call ext4_handle_dirty_metadata");
367 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
368 if (!fatal)
369 fatal = err;
370 } else {
371 ext4_error(sb, "bit already cleared for inode %lu", ino);
372 if (gdp && !EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) {
373 int count;
374 count = ext4_free_inodes_count(sb, gdp);
375 percpu_counter_sub(&sbi->s_freeinodes_counter,
376 count);
377 }
378 set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT, &grp->bb_state);
379 }
380
381 error_return:
382 brelse(bitmap_bh);
383 ext4_std_error(sb, fatal);
384 }
385
386 struct orlov_stats {
387 __u64 free_clusters;
388 __u32 free_inodes;
389 __u32 used_dirs;
390 };
391
392 /*
393 * Helper function for Orlov's allocator; returns critical information
394 * for a particular block group or flex_bg. If flex_size is 1, then g
395 * is a block group number; otherwise it is flex_bg number.
396 */
get_orlov_stats(struct super_block * sb,ext4_group_t g,int flex_size,struct orlov_stats * stats)397 static void get_orlov_stats(struct super_block *sb, ext4_group_t g,
398 int flex_size, struct orlov_stats *stats)
399 {
400 struct ext4_group_desc *desc;
401 struct flex_groups *flex_group = EXT4_SB(sb)->s_flex_groups;
402
403 if (flex_size > 1) {
404 stats->free_inodes = atomic_read(&flex_group[g].free_inodes);
405 stats->free_clusters = atomic64_read(&flex_group[g].free_clusters);
406 stats->used_dirs = atomic_read(&flex_group[g].used_dirs);
407 return;
408 }
409
410 desc = ext4_get_group_desc(sb, g, NULL);
411 if (desc) {
412 stats->free_inodes = ext4_free_inodes_count(sb, desc);
413 stats->free_clusters = ext4_free_group_clusters(sb, desc);
414 stats->used_dirs = ext4_used_dirs_count(sb, desc);
415 } else {
416 stats->free_inodes = 0;
417 stats->free_clusters = 0;
418 stats->used_dirs = 0;
419 }
420 }
421
422 /*
423 * Orlov's allocator for directories.
424 *
425 * We always try to spread first-level directories.
426 *
427 * If there are blockgroups with both free inodes and free blocks counts
428 * not worse than average we return one with smallest directory count.
429 * Otherwise we simply return a random group.
430 *
431 * For the rest rules look so:
432 *
433 * It's OK to put directory into a group unless
434 * it has too many directories already (max_dirs) or
435 * it has too few free inodes left (min_inodes) or
436 * it has too few free blocks left (min_blocks) or
437 * Parent's group is preferred, if it doesn't satisfy these
438 * conditions we search cyclically through the rest. If none
439 * of the groups look good we just look for a group with more
440 * free inodes than average (starting at parent's group).
441 */
442
find_group_orlov(struct super_block * sb,struct inode * parent,ext4_group_t * group,umode_t mode,const struct qstr * qstr)443 static int find_group_orlov(struct super_block *sb, struct inode *parent,
444 ext4_group_t *group, umode_t mode,
445 const struct qstr *qstr)
446 {
447 ext4_group_t parent_group = EXT4_I(parent)->i_block_group;
448 struct ext4_sb_info *sbi = EXT4_SB(sb);
449 ext4_group_t real_ngroups = ext4_get_groups_count(sb);
450 int inodes_per_group = EXT4_INODES_PER_GROUP(sb);
451 unsigned int freei, avefreei, grp_free;
452 ext4_fsblk_t freeb, avefreec;
453 unsigned int ndirs;
454 int max_dirs, min_inodes;
455 ext4_grpblk_t min_clusters;
456 ext4_group_t i, grp, g, ngroups;
457 struct ext4_group_desc *desc;
458 struct orlov_stats stats;
459 int flex_size = ext4_flex_bg_size(sbi);
460 struct dx_hash_info hinfo;
461
462 ngroups = real_ngroups;
463 if (flex_size > 1) {
464 ngroups = (real_ngroups + flex_size - 1) >>
465 sbi->s_log_groups_per_flex;
466 parent_group >>= sbi->s_log_groups_per_flex;
467 }
468
469 freei = percpu_counter_read_positive(&sbi->s_freeinodes_counter);
470 avefreei = freei / ngroups;
471 freeb = EXT4_C2B(sbi,
472 percpu_counter_read_positive(&sbi->s_freeclusters_counter));
473 avefreec = freeb;
474 do_div(avefreec, ngroups);
475 ndirs = percpu_counter_read_positive(&sbi->s_dirs_counter);
476
477 if (S_ISDIR(mode) &&
478 ((parent == d_inode(sb->s_root)) ||
479 (ext4_test_inode_flag(parent, EXT4_INODE_TOPDIR)))) {
480 int best_ndir = inodes_per_group;
481 int ret = -1;
482
483 if (qstr) {
484 hinfo.hash_version = DX_HASH_HALF_MD4;
485 hinfo.seed = sbi->s_hash_seed;
486 ext4fs_dirhash(qstr->name, qstr->len, &hinfo);
487 grp = hinfo.hash;
488 } else
489 grp = prandom_u32();
490 parent_group = (unsigned)grp % ngroups;
491 for (i = 0; i < ngroups; i++) {
492 g = (parent_group + i) % ngroups;
493 get_orlov_stats(sb, g, flex_size, &stats);
494 if (!stats.free_inodes)
495 continue;
496 if (stats.used_dirs >= best_ndir)
497 continue;
498 if (stats.free_inodes < avefreei)
499 continue;
500 if (stats.free_clusters < avefreec)
501 continue;
502 grp = g;
503 ret = 0;
504 best_ndir = stats.used_dirs;
505 }
506 if (ret)
507 goto fallback;
508 found_flex_bg:
509 if (flex_size == 1) {
510 *group = grp;
511 return 0;
512 }
513
514 /*
515 * We pack inodes at the beginning of the flexgroup's
516 * inode tables. Block allocation decisions will do
517 * something similar, although regular files will
518 * start at 2nd block group of the flexgroup. See
519 * ext4_ext_find_goal() and ext4_find_near().
520 */
521 grp *= flex_size;
522 for (i = 0; i < flex_size; i++) {
523 if (grp+i >= real_ngroups)
524 break;
525 desc = ext4_get_group_desc(sb, grp+i, NULL);
526 if (desc && ext4_free_inodes_count(sb, desc)) {
527 *group = grp+i;
528 return 0;
529 }
530 }
531 goto fallback;
532 }
533
534 max_dirs = ndirs / ngroups + inodes_per_group / 16;
535 min_inodes = avefreei - inodes_per_group*flex_size / 4;
536 if (min_inodes < 1)
537 min_inodes = 1;
538 min_clusters = avefreec - EXT4_CLUSTERS_PER_GROUP(sb)*flex_size / 4;
539
540 /*
541 * Start looking in the flex group where we last allocated an
542 * inode for this parent directory
543 */
544 if (EXT4_I(parent)->i_last_alloc_group != ~0) {
545 parent_group = EXT4_I(parent)->i_last_alloc_group;
546 if (flex_size > 1)
547 parent_group >>= sbi->s_log_groups_per_flex;
548 }
549
550 for (i = 0; i < ngroups; i++) {
551 grp = (parent_group + i) % ngroups;
552 get_orlov_stats(sb, grp, flex_size, &stats);
553 if (stats.used_dirs >= max_dirs)
554 continue;
555 if (stats.free_inodes < min_inodes)
556 continue;
557 if (stats.free_clusters < min_clusters)
558 continue;
559 goto found_flex_bg;
560 }
561
562 fallback:
563 ngroups = real_ngroups;
564 avefreei = freei / ngroups;
565 fallback_retry:
566 parent_group = EXT4_I(parent)->i_block_group;
567 for (i = 0; i < ngroups; i++) {
568 grp = (parent_group + i) % ngroups;
569 desc = ext4_get_group_desc(sb, grp, NULL);
570 if (desc) {
571 grp_free = ext4_free_inodes_count(sb, desc);
572 if (grp_free && grp_free >= avefreei) {
573 *group = grp;
574 return 0;
575 }
576 }
577 }
578
579 if (avefreei) {
580 /*
581 * The free-inodes counter is approximate, and for really small
582 * filesystems the above test can fail to find any blockgroups
583 */
584 avefreei = 0;
585 goto fallback_retry;
586 }
587
588 return -1;
589 }
590
find_group_other(struct super_block * sb,struct inode * parent,ext4_group_t * group,umode_t mode)591 static int find_group_other(struct super_block *sb, struct inode *parent,
592 ext4_group_t *group, umode_t mode)
593 {
594 ext4_group_t parent_group = EXT4_I(parent)->i_block_group;
595 ext4_group_t i, last, ngroups = ext4_get_groups_count(sb);
596 struct ext4_group_desc *desc;
597 int flex_size = ext4_flex_bg_size(EXT4_SB(sb));
598
599 /*
600 * Try to place the inode is the same flex group as its
601 * parent. If we can't find space, use the Orlov algorithm to
602 * find another flex group, and store that information in the
603 * parent directory's inode information so that use that flex
604 * group for future allocations.
605 */
606 if (flex_size > 1) {
607 int retry = 0;
608
609 try_again:
610 parent_group &= ~(flex_size-1);
611 last = parent_group + flex_size;
612 if (last > ngroups)
613 last = ngroups;
614 for (i = parent_group; i < last; i++) {
615 desc = ext4_get_group_desc(sb, i, NULL);
616 if (desc && ext4_free_inodes_count(sb, desc)) {
617 *group = i;
618 return 0;
619 }
620 }
621 if (!retry && EXT4_I(parent)->i_last_alloc_group != ~0) {
622 retry = 1;
623 parent_group = EXT4_I(parent)->i_last_alloc_group;
624 goto try_again;
625 }
626 /*
627 * If this didn't work, use the Orlov search algorithm
628 * to find a new flex group; we pass in the mode to
629 * avoid the topdir algorithms.
630 */
631 *group = parent_group + flex_size;
632 if (*group > ngroups)
633 *group = 0;
634 return find_group_orlov(sb, parent, group, mode, NULL);
635 }
636
637 /*
638 * Try to place the inode in its parent directory
639 */
640 *group = parent_group;
641 desc = ext4_get_group_desc(sb, *group, NULL);
642 if (desc && ext4_free_inodes_count(sb, desc) &&
643 ext4_free_group_clusters(sb, desc))
644 return 0;
645
646 /*
647 * We're going to place this inode in a different blockgroup from its
648 * parent. We want to cause files in a common directory to all land in
649 * the same blockgroup. But we want files which are in a different
650 * directory which shares a blockgroup with our parent to land in a
651 * different blockgroup.
652 *
653 * So add our directory's i_ino into the starting point for the hash.
654 */
655 *group = (*group + parent->i_ino) % ngroups;
656
657 /*
658 * Use a quadratic hash to find a group with a free inode and some free
659 * blocks.
660 */
661 for (i = 1; i < ngroups; i <<= 1) {
662 *group += i;
663 if (*group >= ngroups)
664 *group -= ngroups;
665 desc = ext4_get_group_desc(sb, *group, NULL);
666 if (desc && ext4_free_inodes_count(sb, desc) &&
667 ext4_free_group_clusters(sb, desc))
668 return 0;
669 }
670
671 /*
672 * That failed: try linear search for a free inode, even if that group
673 * has no free blocks.
674 */
675 *group = parent_group;
676 for (i = 0; i < ngroups; i++) {
677 if (++*group >= ngroups)
678 *group = 0;
679 desc = ext4_get_group_desc(sb, *group, NULL);
680 if (desc && ext4_free_inodes_count(sb, desc))
681 return 0;
682 }
683
684 return -1;
685 }
686
687 /*
688 * In no journal mode, if an inode has recently been deleted, we want
689 * to avoid reusing it until we're reasonably sure the inode table
690 * block has been written back to disk. (Yes, these values are
691 * somewhat arbitrary...)
692 */
693 #define RECENTCY_MIN 5
694 #define RECENTCY_DIRTY 30
695
recently_deleted(struct super_block * sb,ext4_group_t group,int ino)696 static int recently_deleted(struct super_block *sb, ext4_group_t group, int ino)
697 {
698 struct ext4_group_desc *gdp;
699 struct ext4_inode *raw_inode;
700 struct buffer_head *bh;
701 unsigned long dtime, now;
702 int inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
703 int offset, ret = 0, recentcy = RECENTCY_MIN;
704
705 gdp = ext4_get_group_desc(sb, group, NULL);
706 if (unlikely(!gdp))
707 return 0;
708
709 bh = sb_getblk(sb, ext4_inode_table(sb, gdp) +
710 (ino / inodes_per_block));
711 if (unlikely(!bh) || !buffer_uptodate(bh))
712 /*
713 * If the block is not in the buffer cache, then it
714 * must have been written out.
715 */
716 goto out;
717
718 offset = (ino % inodes_per_block) * EXT4_INODE_SIZE(sb);
719 raw_inode = (struct ext4_inode *) (bh->b_data + offset);
720 dtime = le32_to_cpu(raw_inode->i_dtime);
721 now = get_seconds();
722 if (buffer_dirty(bh))
723 recentcy += RECENTCY_DIRTY;
724
725 if (dtime && (dtime < now) && (now < dtime + recentcy))
726 ret = 1;
727 out:
728 brelse(bh);
729 return ret;
730 }
731
732 /*
733 * There are two policies for allocating an inode. If the new inode is
734 * a directory, then a forward search is made for a block group with both
735 * free space and a low directory-to-inode ratio; if that fails, then of
736 * the groups with above-average free space, that group with the fewest
737 * directories already is chosen.
738 *
739 * For other inodes, search forward from the parent directory's block
740 * group to find a free inode.
741 */
__ext4_new_inode(handle_t * handle,struct inode * dir,umode_t mode,const struct qstr * qstr,__u32 goal,uid_t * owner,int handle_type,unsigned int line_no,int nblocks)742 struct inode *__ext4_new_inode(handle_t *handle, struct inode *dir,
743 umode_t mode, const struct qstr *qstr,
744 __u32 goal, uid_t *owner, int handle_type,
745 unsigned int line_no, int nblocks)
746 {
747 struct super_block *sb;
748 struct buffer_head *inode_bitmap_bh = NULL;
749 struct buffer_head *group_desc_bh;
750 ext4_group_t ngroups, group = 0;
751 unsigned long ino = 0;
752 struct inode *inode;
753 struct ext4_group_desc *gdp = NULL;
754 struct ext4_inode_info *ei;
755 struct ext4_sb_info *sbi;
756 int ret2, err;
757 struct inode *ret;
758 ext4_group_t i;
759 ext4_group_t flex_group;
760 struct ext4_group_info *grp;
761 int encrypt = 0;
762
763 /* Cannot create files in a deleted directory */
764 if (!dir || !dir->i_nlink)
765 return ERR_PTR(-EPERM);
766
767 if ((ext4_encrypted_inode(dir) ||
768 DUMMY_ENCRYPTION_ENABLED(EXT4_SB(dir->i_sb))) &&
769 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
770 err = ext4_get_encryption_info(dir);
771 if (err)
772 return ERR_PTR(err);
773 if (ext4_encryption_info(dir) == NULL)
774 return ERR_PTR(-EPERM);
775 if (!handle)
776 nblocks += EXT4_DATA_TRANS_BLOCKS(dir->i_sb);
777 encrypt = 1;
778 }
779
780 sb = dir->i_sb;
781 ngroups = ext4_get_groups_count(sb);
782 trace_ext4_request_inode(dir, mode);
783 inode = new_inode(sb);
784 if (!inode)
785 return ERR_PTR(-ENOMEM);
786 ei = EXT4_I(inode);
787 sbi = EXT4_SB(sb);
788
789 /*
790 * Initalize owners and quota early so that we don't have to account
791 * for quota initialization worst case in standard inode creating
792 * transaction
793 */
794 if (owner) {
795 inode->i_mode = mode;
796 i_uid_write(inode, owner[0]);
797 i_gid_write(inode, owner[1]);
798 } else if (test_opt(sb, GRPID)) {
799 inode->i_mode = mode;
800 inode->i_uid = current_fsuid();
801 inode->i_gid = dir->i_gid;
802 } else
803 inode_init_owner(inode, dir, mode);
804 err = dquot_initialize(inode);
805 if (err)
806 goto out;
807
808 if (!goal)
809 goal = sbi->s_inode_goal;
810
811 if (goal && goal <= le32_to_cpu(sbi->s_es->s_inodes_count)) {
812 group = (goal - 1) / EXT4_INODES_PER_GROUP(sb);
813 ino = (goal - 1) % EXT4_INODES_PER_GROUP(sb);
814 ret2 = 0;
815 goto got_group;
816 }
817
818 if (S_ISDIR(mode))
819 ret2 = find_group_orlov(sb, dir, &group, mode, qstr);
820 else
821 ret2 = find_group_other(sb, dir, &group, mode);
822
823 got_group:
824 EXT4_I(dir)->i_last_alloc_group = group;
825 err = -ENOSPC;
826 if (ret2 == -1)
827 goto out;
828
829 /*
830 * Normally we will only go through one pass of this loop,
831 * unless we get unlucky and it turns out the group we selected
832 * had its last inode grabbed by someone else.
833 */
834 for (i = 0; i < ngroups; i++, ino = 0) {
835 err = -EIO;
836
837 gdp = ext4_get_group_desc(sb, group, &group_desc_bh);
838 if (!gdp)
839 goto out;
840
841 /*
842 * Check free inodes count before loading bitmap.
843 */
844 if (ext4_free_inodes_count(sb, gdp) == 0) {
845 if (++group == ngroups)
846 group = 0;
847 continue;
848 }
849
850 grp = ext4_get_group_info(sb, group);
851 /* Skip groups with already-known suspicious inode tables */
852 if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) {
853 if (++group == ngroups)
854 group = 0;
855 continue;
856 }
857
858 brelse(inode_bitmap_bh);
859 inode_bitmap_bh = ext4_read_inode_bitmap(sb, group);
860 /* Skip groups with suspicious inode tables */
861 if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp) ||
862 IS_ERR(inode_bitmap_bh)) {
863 inode_bitmap_bh = NULL;
864 if (++group == ngroups)
865 group = 0;
866 continue;
867 }
868
869 repeat_in_this_group:
870 ino = ext4_find_next_zero_bit((unsigned long *)
871 inode_bitmap_bh->b_data,
872 EXT4_INODES_PER_GROUP(sb), ino);
873 if (ino >= EXT4_INODES_PER_GROUP(sb))
874 goto next_group;
875 if (group == 0 && (ino+1) < EXT4_FIRST_INO(sb)) {
876 ext4_error(sb, "reserved inode found cleared - "
877 "inode=%lu", ino + 1);
878 continue;
879 }
880 if ((EXT4_SB(sb)->s_journal == NULL) &&
881 recently_deleted(sb, group, ino)) {
882 ino++;
883 goto next_inode;
884 }
885 if (!handle) {
886 BUG_ON(nblocks <= 0);
887 handle = __ext4_journal_start_sb(dir->i_sb, line_no,
888 handle_type, nblocks,
889 0);
890 if (IS_ERR(handle)) {
891 err = PTR_ERR(handle);
892 ext4_std_error(sb, err);
893 goto out;
894 }
895 }
896 BUFFER_TRACE(inode_bitmap_bh, "get_write_access");
897 err = ext4_journal_get_write_access(handle, inode_bitmap_bh);
898 if (err) {
899 ext4_std_error(sb, err);
900 goto out;
901 }
902 ext4_lock_group(sb, group);
903 ret2 = ext4_test_and_set_bit(ino, inode_bitmap_bh->b_data);
904 ext4_unlock_group(sb, group);
905 ino++; /* the inode bitmap is zero-based */
906 if (!ret2)
907 goto got; /* we grabbed the inode! */
908 next_inode:
909 if (ino < EXT4_INODES_PER_GROUP(sb))
910 goto repeat_in_this_group;
911 next_group:
912 if (++group == ngroups)
913 group = 0;
914 }
915 err = -ENOSPC;
916 goto out;
917
918 got:
919 BUFFER_TRACE(inode_bitmap_bh, "call ext4_handle_dirty_metadata");
920 err = ext4_handle_dirty_metadata(handle, NULL, inode_bitmap_bh);
921 if (err) {
922 ext4_std_error(sb, err);
923 goto out;
924 }
925
926 BUFFER_TRACE(group_desc_bh, "get_write_access");
927 err = ext4_journal_get_write_access(handle, group_desc_bh);
928 if (err) {
929 ext4_std_error(sb, err);
930 goto out;
931 }
932
933 /* We may have to initialize the block bitmap if it isn't already */
934 if (ext4_has_group_desc_csum(sb) &&
935 gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
936 struct buffer_head *block_bitmap_bh;
937
938 block_bitmap_bh = ext4_read_block_bitmap(sb, group);
939 if (IS_ERR(block_bitmap_bh)) {
940 err = PTR_ERR(block_bitmap_bh);
941 goto out;
942 }
943 BUFFER_TRACE(block_bitmap_bh, "get block bitmap access");
944 err = ext4_journal_get_write_access(handle, block_bitmap_bh);
945 if (err) {
946 brelse(block_bitmap_bh);
947 ext4_std_error(sb, err);
948 goto out;
949 }
950
951 BUFFER_TRACE(block_bitmap_bh, "dirty block bitmap");
952 err = ext4_handle_dirty_metadata(handle, NULL, block_bitmap_bh);
953
954 /* recheck and clear flag under lock if we still need to */
955 ext4_lock_group(sb, group);
956 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
957 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
958 ext4_free_group_clusters_set(sb, gdp,
959 ext4_free_clusters_after_init(sb, group, gdp));
960 ext4_block_bitmap_csum_set(sb, group, gdp,
961 block_bitmap_bh);
962 ext4_group_desc_csum_set(sb, group, gdp);
963 }
964 ext4_unlock_group(sb, group);
965 brelse(block_bitmap_bh);
966
967 if (err) {
968 ext4_std_error(sb, err);
969 goto out;
970 }
971 }
972
973 /* Update the relevant bg descriptor fields */
974 if (ext4_has_group_desc_csum(sb)) {
975 int free;
976 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
977
978 down_read(&grp->alloc_sem); /* protect vs itable lazyinit */
979 ext4_lock_group(sb, group); /* while we modify the bg desc */
980 free = EXT4_INODES_PER_GROUP(sb) -
981 ext4_itable_unused_count(sb, gdp);
982 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)) {
983 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_INODE_UNINIT);
984 free = 0;
985 }
986 /*
987 * Check the relative inode number against the last used
988 * relative inode number in this group. if it is greater
989 * we need to update the bg_itable_unused count
990 */
991 if (ino > free)
992 ext4_itable_unused_set(sb, gdp,
993 (EXT4_INODES_PER_GROUP(sb) - ino));
994 up_read(&grp->alloc_sem);
995 } else {
996 ext4_lock_group(sb, group);
997 }
998
999 ext4_free_inodes_set(sb, gdp, ext4_free_inodes_count(sb, gdp) - 1);
1000 if (S_ISDIR(mode)) {
1001 ext4_used_dirs_set(sb, gdp, ext4_used_dirs_count(sb, gdp) + 1);
1002 if (sbi->s_log_groups_per_flex) {
1003 ext4_group_t f = ext4_flex_group(sbi, group);
1004
1005 atomic_inc(&sbi->s_flex_groups[f].used_dirs);
1006 }
1007 }
1008 if (ext4_has_group_desc_csum(sb)) {
1009 ext4_inode_bitmap_csum_set(sb, group, gdp, inode_bitmap_bh,
1010 EXT4_INODES_PER_GROUP(sb) / 8);
1011 ext4_group_desc_csum_set(sb, group, gdp);
1012 }
1013 ext4_unlock_group(sb, group);
1014
1015 BUFFER_TRACE(group_desc_bh, "call ext4_handle_dirty_metadata");
1016 err = ext4_handle_dirty_metadata(handle, NULL, group_desc_bh);
1017 if (err) {
1018 ext4_std_error(sb, err);
1019 goto out;
1020 }
1021
1022 percpu_counter_dec(&sbi->s_freeinodes_counter);
1023 if (S_ISDIR(mode))
1024 percpu_counter_inc(&sbi->s_dirs_counter);
1025
1026 if (sbi->s_log_groups_per_flex) {
1027 flex_group = ext4_flex_group(sbi, group);
1028 atomic_dec(&sbi->s_flex_groups[flex_group].free_inodes);
1029 }
1030
1031 inode->i_ino = ino + group * EXT4_INODES_PER_GROUP(sb);
1032 /* This is the optimal IO size (for stat), not the fs block size */
1033 inode->i_blocks = 0;
1034 inode->i_mtime = inode->i_atime = inode->i_ctime = ei->i_crtime =
1035 ext4_current_time(inode);
1036
1037 memset(ei->i_data, 0, sizeof(ei->i_data));
1038 ei->i_dir_start_lookup = 0;
1039 ei->i_disksize = 0;
1040
1041 /* Don't inherit extent flag from directory, amongst others. */
1042 ei->i_flags =
1043 ext4_mask_flags(mode, EXT4_I(dir)->i_flags & EXT4_FL_INHERITED);
1044 ei->i_file_acl = 0;
1045 ei->i_dtime = 0;
1046 ei->i_block_group = group;
1047 ei->i_last_alloc_group = ~0;
1048
1049 ext4_set_inode_flags(inode);
1050 if (IS_DIRSYNC(inode))
1051 ext4_handle_sync(handle);
1052 if (insert_inode_locked(inode) < 0) {
1053 /*
1054 * Likely a bitmap corruption causing inode to be allocated
1055 * twice.
1056 */
1057 err = -EIO;
1058 ext4_error(sb, "failed to insert inode %lu: doubly allocated?",
1059 inode->i_ino);
1060 goto out;
1061 }
1062 spin_lock(&sbi->s_next_gen_lock);
1063 inode->i_generation = sbi->s_next_generation++;
1064 spin_unlock(&sbi->s_next_gen_lock);
1065
1066 /* Precompute checksum seed for inode metadata */
1067 if (ext4_has_metadata_csum(sb)) {
1068 __u32 csum;
1069 __le32 inum = cpu_to_le32(inode->i_ino);
1070 __le32 gen = cpu_to_le32(inode->i_generation);
1071 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
1072 sizeof(inum));
1073 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
1074 sizeof(gen));
1075 }
1076
1077 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
1078 ext4_set_inode_state(inode, EXT4_STATE_NEW);
1079
1080 ei->i_extra_isize = EXT4_SB(sb)->s_want_extra_isize;
1081 ei->i_inline_off = 0;
1082 if (ext4_has_feature_inline_data(sb))
1083 ext4_set_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
1084 ret = inode;
1085 err = dquot_alloc_inode(inode);
1086 if (err)
1087 goto fail_drop;
1088
1089 err = ext4_init_acl(handle, inode, dir);
1090 if (err)
1091 goto fail_free_drop;
1092
1093 err = ext4_init_security(handle, inode, dir, qstr);
1094 if (err)
1095 goto fail_free_drop;
1096
1097 if (ext4_has_feature_extents(sb)) {
1098 /* set extent flag only for directory, file and normal symlink*/
1099 if (S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode)) {
1100 ext4_set_inode_flag(inode, EXT4_INODE_EXTENTS);
1101 ext4_ext_tree_init(handle, inode);
1102 }
1103 }
1104
1105 if (ext4_handle_valid(handle)) {
1106 ei->i_sync_tid = handle->h_transaction->t_tid;
1107 ei->i_datasync_tid = handle->h_transaction->t_tid;
1108 }
1109
1110 if (encrypt) {
1111 err = ext4_inherit_context(dir, inode);
1112 if (err)
1113 goto fail_free_drop;
1114 }
1115
1116 err = ext4_mark_inode_dirty(handle, inode);
1117 if (err) {
1118 ext4_std_error(sb, err);
1119 goto fail_free_drop;
1120 }
1121
1122 ext4_debug("allocating inode %lu\n", inode->i_ino);
1123 trace_ext4_allocate_inode(inode, dir, mode);
1124 brelse(inode_bitmap_bh);
1125 return ret;
1126
1127 fail_free_drop:
1128 dquot_free_inode(inode);
1129 fail_drop:
1130 clear_nlink(inode);
1131 unlock_new_inode(inode);
1132 out:
1133 dquot_drop(inode);
1134 inode->i_flags |= S_NOQUOTA;
1135 iput(inode);
1136 brelse(inode_bitmap_bh);
1137 return ERR_PTR(err);
1138 }
1139
1140 /* Verify that we are loading a valid orphan from disk */
ext4_orphan_get(struct super_block * sb,unsigned long ino)1141 struct inode *ext4_orphan_get(struct super_block *sb, unsigned long ino)
1142 {
1143 unsigned long max_ino = le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count);
1144 ext4_group_t block_group;
1145 int bit;
1146 struct buffer_head *bitmap_bh = NULL;
1147 struct inode *inode = NULL;
1148 int err = -EFSCORRUPTED;
1149
1150 if (ino < EXT4_FIRST_INO(sb) || ino > max_ino)
1151 goto bad_orphan;
1152
1153 block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
1154 bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb);
1155 bitmap_bh = ext4_read_inode_bitmap(sb, block_group);
1156 if (IS_ERR(bitmap_bh)) {
1157 ext4_error(sb, "inode bitmap error %ld for orphan %lu",
1158 ino, PTR_ERR(bitmap_bh));
1159 return (struct inode *) bitmap_bh;
1160 }
1161
1162 /* Having the inode bit set should be a 100% indicator that this
1163 * is a valid orphan (no e2fsck run on fs). Orphans also include
1164 * inodes that were being truncated, so we can't check i_nlink==0.
1165 */
1166 if (!ext4_test_bit(bit, bitmap_bh->b_data))
1167 goto bad_orphan;
1168
1169 inode = ext4_iget(sb, ino);
1170 if (IS_ERR(inode)) {
1171 err = PTR_ERR(inode);
1172 ext4_error(sb, "couldn't read orphan inode %lu (err %d)",
1173 ino, err);
1174 return inode;
1175 }
1176
1177 /*
1178 * If the orphans has i_nlinks > 0 then it should be able to
1179 * be truncated, otherwise it won't be removed from the orphan
1180 * list during processing and an infinite loop will result.
1181 * Similarly, it must not be a bad inode.
1182 */
1183 if ((inode->i_nlink && !ext4_can_truncate(inode)) ||
1184 is_bad_inode(inode))
1185 goto bad_orphan;
1186
1187 if (NEXT_ORPHAN(inode) > max_ino)
1188 goto bad_orphan;
1189 brelse(bitmap_bh);
1190 return inode;
1191
1192 bad_orphan:
1193 ext4_error(sb, "bad orphan inode %lu", ino);
1194 if (bitmap_bh)
1195 printk(KERN_ERR "ext4_test_bit(bit=%d, block=%llu) = %d\n",
1196 bit, (unsigned long long)bitmap_bh->b_blocknr,
1197 ext4_test_bit(bit, bitmap_bh->b_data));
1198 if (inode) {
1199 printk(KERN_ERR "is_bad_inode(inode)=%d\n",
1200 is_bad_inode(inode));
1201 printk(KERN_ERR "NEXT_ORPHAN(inode)=%u\n",
1202 NEXT_ORPHAN(inode));
1203 printk(KERN_ERR "max_ino=%lu\n", max_ino);
1204 printk(KERN_ERR "i_nlink=%u\n", inode->i_nlink);
1205 /* Avoid freeing blocks if we got a bad deleted inode */
1206 if (inode->i_nlink == 0)
1207 inode->i_blocks = 0;
1208 iput(inode);
1209 }
1210 brelse(bitmap_bh);
1211 return ERR_PTR(err);
1212 }
1213
ext4_count_free_inodes(struct super_block * sb)1214 unsigned long ext4_count_free_inodes(struct super_block *sb)
1215 {
1216 unsigned long desc_count;
1217 struct ext4_group_desc *gdp;
1218 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
1219 #ifdef EXT4FS_DEBUG
1220 struct ext4_super_block *es;
1221 unsigned long bitmap_count, x;
1222 struct buffer_head *bitmap_bh = NULL;
1223
1224 es = EXT4_SB(sb)->s_es;
1225 desc_count = 0;
1226 bitmap_count = 0;
1227 gdp = NULL;
1228 for (i = 0; i < ngroups; i++) {
1229 gdp = ext4_get_group_desc(sb, i, NULL);
1230 if (!gdp)
1231 continue;
1232 desc_count += ext4_free_inodes_count(sb, gdp);
1233 brelse(bitmap_bh);
1234 bitmap_bh = ext4_read_inode_bitmap(sb, i);
1235 if (IS_ERR(bitmap_bh)) {
1236 bitmap_bh = NULL;
1237 continue;
1238 }
1239
1240 x = ext4_count_free(bitmap_bh->b_data,
1241 EXT4_INODES_PER_GROUP(sb) / 8);
1242 printk(KERN_DEBUG "group %lu: stored = %d, counted = %lu\n",
1243 (unsigned long) i, ext4_free_inodes_count(sb, gdp), x);
1244 bitmap_count += x;
1245 }
1246 brelse(bitmap_bh);
1247 printk(KERN_DEBUG "ext4_count_free_inodes: "
1248 "stored = %u, computed = %lu, %lu\n",
1249 le32_to_cpu(es->s_free_inodes_count), desc_count, bitmap_count);
1250 return desc_count;
1251 #else
1252 desc_count = 0;
1253 for (i = 0; i < ngroups; i++) {
1254 gdp = ext4_get_group_desc(sb, i, NULL);
1255 if (!gdp)
1256 continue;
1257 desc_count += ext4_free_inodes_count(sb, gdp);
1258 cond_resched();
1259 }
1260 return desc_count;
1261 #endif
1262 }
1263
1264 /* Called at mount-time, super-block is locked */
ext4_count_dirs(struct super_block * sb)1265 unsigned long ext4_count_dirs(struct super_block * sb)
1266 {
1267 unsigned long count = 0;
1268 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
1269
1270 for (i = 0; i < ngroups; i++) {
1271 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
1272 if (!gdp)
1273 continue;
1274 count += ext4_used_dirs_count(sb, gdp);
1275 }
1276 return count;
1277 }
1278
1279 /*
1280 * Zeroes not yet zeroed inode table - just write zeroes through the whole
1281 * inode table. Must be called without any spinlock held. The only place
1282 * where it is called from on active part of filesystem is ext4lazyinit
1283 * thread, so we do not need any special locks, however we have to prevent
1284 * inode allocation from the current group, so we take alloc_sem lock, to
1285 * block ext4_new_inode() until we are finished.
1286 */
ext4_init_inode_table(struct super_block * sb,ext4_group_t group,int barrier)1287 int ext4_init_inode_table(struct super_block *sb, ext4_group_t group,
1288 int barrier)
1289 {
1290 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
1291 struct ext4_sb_info *sbi = EXT4_SB(sb);
1292 struct ext4_group_desc *gdp = NULL;
1293 struct buffer_head *group_desc_bh;
1294 handle_t *handle;
1295 ext4_fsblk_t blk;
1296 int num, ret = 0, used_blks = 0;
1297
1298 /* This should not happen, but just to be sure check this */
1299 if (sb->s_flags & MS_RDONLY) {
1300 ret = 1;
1301 goto out;
1302 }
1303
1304 gdp = ext4_get_group_desc(sb, group, &group_desc_bh);
1305 if (!gdp)
1306 goto out;
1307
1308 /*
1309 * We do not need to lock this, because we are the only one
1310 * handling this flag.
1311 */
1312 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))
1313 goto out;
1314
1315 handle = ext4_journal_start_sb(sb, EXT4_HT_MISC, 1);
1316 if (IS_ERR(handle)) {
1317 ret = PTR_ERR(handle);
1318 goto out;
1319 }
1320
1321 down_write(&grp->alloc_sem);
1322 /*
1323 * If inode bitmap was already initialized there may be some
1324 * used inodes so we need to skip blocks with used inodes in
1325 * inode table.
1326 */
1327 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)))
1328 used_blks = DIV_ROUND_UP((EXT4_INODES_PER_GROUP(sb) -
1329 ext4_itable_unused_count(sb, gdp)),
1330 sbi->s_inodes_per_block);
1331
1332 if ((used_blks < 0) || (used_blks > sbi->s_itb_per_group)) {
1333 ext4_error(sb, "Something is wrong with group %u: "
1334 "used itable blocks: %d; "
1335 "itable unused count: %u",
1336 group, used_blks,
1337 ext4_itable_unused_count(sb, gdp));
1338 ret = 1;
1339 goto err_out;
1340 }
1341
1342 blk = ext4_inode_table(sb, gdp) + used_blks;
1343 num = sbi->s_itb_per_group - used_blks;
1344
1345 BUFFER_TRACE(group_desc_bh, "get_write_access");
1346 ret = ext4_journal_get_write_access(handle,
1347 group_desc_bh);
1348 if (ret)
1349 goto err_out;
1350
1351 /*
1352 * Skip zeroout if the inode table is full. But we set the ZEROED
1353 * flag anyway, because obviously, when it is full it does not need
1354 * further zeroing.
1355 */
1356 if (unlikely(num == 0))
1357 goto skip_zeroout;
1358
1359 ext4_debug("going to zero out inode table in group %d\n",
1360 group);
1361 ret = sb_issue_zeroout(sb, blk, num, GFP_NOFS);
1362 if (ret < 0)
1363 goto err_out;
1364 if (barrier)
1365 blkdev_issue_flush(sb->s_bdev, GFP_NOFS, NULL);
1366
1367 skip_zeroout:
1368 ext4_lock_group(sb, group);
1369 gdp->bg_flags |= cpu_to_le16(EXT4_BG_INODE_ZEROED);
1370 ext4_group_desc_csum_set(sb, group, gdp);
1371 ext4_unlock_group(sb, group);
1372
1373 BUFFER_TRACE(group_desc_bh,
1374 "call ext4_handle_dirty_metadata");
1375 ret = ext4_handle_dirty_metadata(handle, NULL,
1376 group_desc_bh);
1377
1378 err_out:
1379 up_write(&grp->alloc_sem);
1380 ext4_journal_stop(handle);
1381 out:
1382 return ret;
1383 }
1384