1 #ifndef _LINUX_MM_TYPES_H
2 #define _LINUX_MM_TYPES_H
3 
4 #include <linux/auxvec.h>
5 #include <linux/types.h>
6 #include <linux/threads.h>
7 #include <linux/list.h>
8 #include <linux/spinlock.h>
9 #include <linux/rbtree.h>
10 #include <linux/rwsem.h>
11 #include <linux/completion.h>
12 #include <linux/cpumask.h>
13 #include <linux/uprobes.h>
14 #include <linux/page-flags-layout.h>
15 #include <asm/page.h>
16 #include <asm/mmu.h>
17 
18 #ifndef AT_VECTOR_SIZE_ARCH
19 #define AT_VECTOR_SIZE_ARCH 0
20 #endif
21 #define AT_VECTOR_SIZE (2*(AT_VECTOR_SIZE_ARCH + AT_VECTOR_SIZE_BASE + 1))
22 
23 struct address_space;
24 struct mem_cgroup;
25 
26 #define USE_SPLIT_PTE_PTLOCKS	(NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS)
27 #define USE_SPLIT_PMD_PTLOCKS	(USE_SPLIT_PTE_PTLOCKS && \
28 		IS_ENABLED(CONFIG_ARCH_ENABLE_SPLIT_PMD_PTLOCK))
29 #define ALLOC_SPLIT_PTLOCKS	(SPINLOCK_SIZE > BITS_PER_LONG/8)
30 
31 typedef void compound_page_dtor(struct page *);
32 
33 /*
34  * Each physical page in the system has a struct page associated with
35  * it to keep track of whatever it is we are using the page for at the
36  * moment. Note that we have no way to track which tasks are using
37  * a page, though if it is a pagecache page, rmap structures can tell us
38  * who is mapping it.
39  *
40  * The objects in struct page are organized in double word blocks in
41  * order to allows us to use atomic double word operations on portions
42  * of struct page. That is currently only used by slub but the arrangement
43  * allows the use of atomic double word operations on the flags/mapping
44  * and lru list pointers also.
45  */
46 struct page {
47 	/* First double word block */
48 	unsigned long flags;		/* Atomic flags, some possibly
49 					 * updated asynchronously */
50 	union {
51 		struct address_space *mapping;	/* If low bit clear, points to
52 						 * inode address_space, or NULL.
53 						 * If page mapped as anonymous
54 						 * memory, low bit is set, and
55 						 * it points to anon_vma object:
56 						 * see PAGE_MAPPING_ANON below.
57 						 */
58 		void *s_mem;			/* slab first object */
59 	};
60 
61 	/* Second double word */
62 	struct {
63 		union {
64 			pgoff_t index;		/* Our offset within mapping. */
65 			void *freelist;		/* sl[aou]b first free object */
66 		};
67 
68 		union {
69 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
70 	defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
71 			/* Used for cmpxchg_double in slub */
72 			unsigned long counters;
73 #else
74 			/*
75 			 * Keep _count separate from slub cmpxchg_double data.
76 			 * As the rest of the double word is protected by
77 			 * slab_lock but _count is not.
78 			 */
79 			unsigned counters;
80 #endif
81 
82 			struct {
83 
84 				union {
85 					/*
86 					 * Count of ptes mapped in
87 					 * mms, to show when page is
88 					 * mapped & limit reverse map
89 					 * searches.
90 					 *
91 					 * Used also for tail pages
92 					 * refcounting instead of
93 					 * _count. Tail pages cannot
94 					 * be mapped and keeping the
95 					 * tail page _count zero at
96 					 * all times guarantees
97 					 * get_page_unless_zero() will
98 					 * never succeed on tail
99 					 * pages.
100 					 */
101 					atomic_t _mapcount;
102 
103 					struct { /* SLUB */
104 						unsigned inuse:16;
105 						unsigned objects:15;
106 						unsigned frozen:1;
107 					};
108 					int units;	/* SLOB */
109 				};
110 				atomic_t _count;		/* Usage count, see below. */
111 			};
112 			unsigned int active;	/* SLAB */
113 		};
114 	};
115 
116 	/* Third double word block */
117 	union {
118 		struct list_head lru;	/* Pageout list, eg. active_list
119 					 * protected by zone->lru_lock !
120 					 * Can be used as a generic list
121 					 * by the page owner.
122 					 */
123 		struct {		/* slub per cpu partial pages */
124 			struct page *next;	/* Next partial slab */
125 #ifdef CONFIG_64BIT
126 			int pages;	/* Nr of partial slabs left */
127 			int pobjects;	/* Approximate # of objects */
128 #else
129 			short int pages;
130 			short int pobjects;
131 #endif
132 		};
133 
134 		struct slab *slab_page; /* slab fields */
135 		struct rcu_head rcu_head;	/* Used by SLAB
136 						 * when destroying via RCU
137 						 */
138 		/* First tail page of compound page */
139 		struct {
140 			compound_page_dtor *compound_dtor;
141 			unsigned long compound_order;
142 		};
143 
144 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && USE_SPLIT_PMD_PTLOCKS
145 		pgtable_t pmd_huge_pte; /* protected by page->ptl */
146 #endif
147 	};
148 
149 	/* Remainder is not double word aligned */
150 	union {
151 		unsigned long private;		/* Mapping-private opaque data:
152 					 	 * usually used for buffer_heads
153 						 * if PagePrivate set; used for
154 						 * swp_entry_t if PageSwapCache;
155 						 * indicates order in the buddy
156 						 * system if PG_buddy is set.
157 						 */
158 #if USE_SPLIT_PTE_PTLOCKS
159 #if ALLOC_SPLIT_PTLOCKS
160 		spinlock_t *ptl;
161 #else
162 		spinlock_t ptl;
163 #endif
164 #endif
165 		struct kmem_cache *slab_cache;	/* SL[AU]B: Pointer to slab */
166 		struct page *first_page;	/* Compound tail pages */
167 	};
168 
169 #ifdef CONFIG_MEMCG
170 	struct mem_cgroup *mem_cgroup;
171 #endif
172 
173 	/*
174 	 * On machines where all RAM is mapped into kernel address space,
175 	 * we can simply calculate the virtual address. On machines with
176 	 * highmem some memory is mapped into kernel virtual memory
177 	 * dynamically, so we need a place to store that address.
178 	 * Note that this field could be 16 bits on x86 ... ;)
179 	 *
180 	 * Architectures with slow multiplication can define
181 	 * WANT_PAGE_VIRTUAL in asm/page.h
182 	 */
183 #if defined(WANT_PAGE_VIRTUAL)
184 	void *virtual;			/* Kernel virtual address (NULL if
185 					   not kmapped, ie. highmem) */
186 #endif /* WANT_PAGE_VIRTUAL */
187 
188 #ifdef CONFIG_KMEMCHECK
189 	/*
190 	 * kmemcheck wants to track the status of each byte in a page; this
191 	 * is a pointer to such a status block. NULL if not tracked.
192 	 */
193 	void *shadow;
194 #endif
195 
196 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
197 	int _last_cpupid;
198 #endif
199 }
200 /*
201  * The struct page can be forced to be double word aligned so that atomic ops
202  * on double words work. The SLUB allocator can make use of such a feature.
203  */
204 #ifdef CONFIG_HAVE_ALIGNED_STRUCT_PAGE
205 	__aligned(2 * sizeof(unsigned long))
206 #endif
207 ;
208 
209 struct page_frag {
210 	struct page *page;
211 #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
212 	__u32 offset;
213 	__u32 size;
214 #else
215 	__u16 offset;
216 	__u16 size;
217 #endif
218 };
219 
220 typedef unsigned long __nocast vm_flags_t;
221 
222 /*
223  * A region containing a mapping of a non-memory backed file under NOMMU
224  * conditions.  These are held in a global tree and are pinned by the VMAs that
225  * map parts of them.
226  */
227 struct vm_region {
228 	struct rb_node	vm_rb;		/* link in global region tree */
229 	vm_flags_t	vm_flags;	/* VMA vm_flags */
230 	unsigned long	vm_start;	/* start address of region */
231 	unsigned long	vm_end;		/* region initialised to here */
232 	unsigned long	vm_top;		/* region allocated to here */
233 	unsigned long	vm_pgoff;	/* the offset in vm_file corresponding to vm_start */
234 	struct file	*vm_file;	/* the backing file or NULL */
235 
236 	int		vm_usage;	/* region usage count (access under nommu_region_sem) */
237 	bool		vm_icache_flushed : 1; /* true if the icache has been flushed for
238 						* this region */
239 };
240 
241 /*
242  * This struct defines a memory VMM memory area. There is one of these
243  * per VM-area/task.  A VM area is any part of the process virtual memory
244  * space that has a special rule for the page-fault handlers (ie a shared
245  * library, the executable area etc).
246  */
247 struct vm_area_struct {
248 	/* The first cache line has the info for VMA tree walking. */
249 
250 	unsigned long vm_start;		/* Our start address within vm_mm. */
251 	unsigned long vm_end;		/* The first byte after our end address
252 					   within vm_mm. */
253 
254 	/* linked list of VM areas per task, sorted by address */
255 	struct vm_area_struct *vm_next, *vm_prev;
256 
257 	struct rb_node vm_rb;
258 
259 	/*
260 	 * Largest free memory gap in bytes to the left of this VMA.
261 	 * Either between this VMA and vma->vm_prev, or between one of the
262 	 * VMAs below us in the VMA rbtree and its ->vm_prev. This helps
263 	 * get_unmapped_area find a free area of the right size.
264 	 */
265 	unsigned long rb_subtree_gap;
266 
267 	/* Second cache line starts here. */
268 
269 	struct mm_struct *vm_mm;	/* The address space we belong to. */
270 	pgprot_t vm_page_prot;		/* Access permissions of this VMA. */
271 	unsigned long vm_flags;		/* Flags, see mm.h. */
272 
273 	/*
274 	 * For areas with an address space and backing store,
275 	 * linkage into the address_space->i_mmap interval tree.
276 	 */
277 	struct {
278 		struct rb_node rb;
279 		unsigned long rb_subtree_last;
280 	} shared;
281 
282 	/*
283 	 * A file's MAP_PRIVATE vma can be in both i_mmap tree and anon_vma
284 	 * list, after a COW of one of the file pages.	A MAP_SHARED vma
285 	 * can only be in the i_mmap tree.  An anonymous MAP_PRIVATE, stack
286 	 * or brk vma (with NULL file) can only be in an anon_vma list.
287 	 */
288 	struct list_head anon_vma_chain; /* Serialized by mmap_sem &
289 					  * page_table_lock */
290 	struct anon_vma *anon_vma;	/* Serialized by page_table_lock */
291 
292 	/* Function pointers to deal with this struct. */
293 	const struct vm_operations_struct *vm_ops;
294 
295 	/* Information about our backing store: */
296 	unsigned long vm_pgoff;		/* Offset (within vm_file) in PAGE_SIZE
297 					   units, *not* PAGE_CACHE_SIZE */
298 	struct file * vm_file;		/* File we map to (can be NULL). */
299 	void * vm_private_data;		/* was vm_pte (shared mem) */
300 
301 #ifndef CONFIG_MMU
302 	struct vm_region *vm_region;	/* NOMMU mapping region */
303 #endif
304 #ifdef CONFIG_NUMA
305 	struct mempolicy *vm_policy;	/* NUMA policy for the VMA */
306 #endif
307 };
308 
309 struct core_thread {
310 	struct task_struct *task;
311 	struct core_thread *next;
312 };
313 
314 struct core_state {
315 	atomic_t nr_threads;
316 	struct core_thread dumper;
317 	struct completion startup;
318 };
319 
320 enum {
321 	MM_FILEPAGES,
322 	MM_ANONPAGES,
323 	MM_SWAPENTS,
324 	NR_MM_COUNTERS
325 };
326 
327 #if USE_SPLIT_PTE_PTLOCKS && defined(CONFIG_MMU)
328 #define SPLIT_RSS_COUNTING
329 /* per-thread cached information, */
330 struct task_rss_stat {
331 	int events;	/* for synchronization threshold */
332 	int count[NR_MM_COUNTERS];
333 };
334 #endif /* USE_SPLIT_PTE_PTLOCKS */
335 
336 struct mm_rss_stat {
337 	atomic_long_t count[NR_MM_COUNTERS];
338 };
339 
340 struct kioctx_table;
341 struct mm_struct {
342 	struct vm_area_struct *mmap;		/* list of VMAs */
343 	struct rb_root mm_rb;
344 	u32 vmacache_seqnum;                   /* per-thread vmacache */
345 #ifdef CONFIG_MMU
346 	unsigned long (*get_unmapped_area) (struct file *filp,
347 				unsigned long addr, unsigned long len,
348 				unsigned long pgoff, unsigned long flags);
349 #endif
350 	unsigned long mmap_base;		/* base of mmap area */
351 	unsigned long mmap_legacy_base;         /* base of mmap area in bottom-up allocations */
352 	unsigned long task_size;		/* size of task vm space */
353 	unsigned long highest_vm_end;		/* highest vma end address */
354 	pgd_t * pgd;
355 	atomic_t mm_users;			/* How many users with user space? */
356 	atomic_t mm_count;			/* How many references to "struct mm_struct" (users count as 1) */
357 	atomic_long_t nr_ptes;			/* PTE page table pages */
358 #if CONFIG_PGTABLE_LEVELS > 2
359 	atomic_long_t nr_pmds;			/* PMD page table pages */
360 #endif
361 	int map_count;				/* number of VMAs */
362 
363 	spinlock_t page_table_lock;		/* Protects page tables and some counters */
364 	struct rw_semaphore mmap_sem;
365 
366 	struct list_head mmlist;		/* List of maybe swapped mm's.	These are globally strung
367 						 * together off init_mm.mmlist, and are protected
368 						 * by mmlist_lock
369 						 */
370 
371 
372 	unsigned long hiwater_rss;	/* High-watermark of RSS usage */
373 	unsigned long hiwater_vm;	/* High-water virtual memory usage */
374 
375 	unsigned long total_vm;		/* Total pages mapped */
376 	unsigned long locked_vm;	/* Pages that have PG_mlocked set */
377 	unsigned long pinned_vm;	/* Refcount permanently increased */
378 	unsigned long shared_vm;	/* Shared pages (files) */
379 	unsigned long exec_vm;		/* VM_EXEC & ~VM_WRITE */
380 	unsigned long stack_vm;		/* VM_GROWSUP/DOWN */
381 	unsigned long def_flags;
382 	unsigned long start_code, end_code, start_data, end_data;
383 	unsigned long start_brk, brk, start_stack;
384 	unsigned long arg_start, arg_end, env_start, env_end;
385 
386 	unsigned long saved_auxv[AT_VECTOR_SIZE]; /* for /proc/PID/auxv */
387 
388 	/*
389 	 * Special counters, in some configurations protected by the
390 	 * page_table_lock, in other configurations by being atomic.
391 	 */
392 	struct mm_rss_stat rss_stat;
393 
394 	struct linux_binfmt *binfmt;
395 
396 	cpumask_var_t cpu_vm_mask_var;
397 
398 	/* Architecture-specific MM context */
399 	mm_context_t context;
400 
401 	unsigned long flags; /* Must use atomic bitops to access the bits */
402 
403 	struct core_state *core_state; /* coredumping support */
404 #ifdef CONFIG_AIO
405 	spinlock_t			ioctx_lock;
406 	struct kioctx_table __rcu	*ioctx_table;
407 #endif
408 #ifdef CONFIG_MEMCG
409 	/*
410 	 * "owner" points to a task that is regarded as the canonical
411 	 * user/owner of this mm. All of the following must be true in
412 	 * order for it to be changed:
413 	 *
414 	 * current == mm->owner
415 	 * current->mm != mm
416 	 * new_owner->mm == mm
417 	 * new_owner->alloc_lock is held
418 	 */
419 	struct task_struct __rcu *owner;
420 #endif
421 
422 	/* store ref to file /proc/<pid>/exe symlink points to */
423 	struct file __rcu *exe_file;
424 #ifdef CONFIG_MMU_NOTIFIER
425 	struct mmu_notifier_mm *mmu_notifier_mm;
426 #endif
427 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
428 	pgtable_t pmd_huge_pte; /* protected by page_table_lock */
429 #endif
430 #ifdef CONFIG_CPUMASK_OFFSTACK
431 	struct cpumask cpumask_allocation;
432 #endif
433 #ifdef CONFIG_NUMA_BALANCING
434 	/*
435 	 * numa_next_scan is the next time that the PTEs will be marked
436 	 * pte_numa. NUMA hinting faults will gather statistics and migrate
437 	 * pages to new nodes if necessary.
438 	 */
439 	unsigned long numa_next_scan;
440 
441 	/* Restart point for scanning and setting pte_numa */
442 	unsigned long numa_scan_offset;
443 
444 	/* numa_scan_seq prevents two threads setting pte_numa */
445 	int numa_scan_seq;
446 #endif
447 #if defined(CONFIG_NUMA_BALANCING) || defined(CONFIG_COMPACTION)
448 	/*
449 	 * An operation with batched TLB flushing is going on. Anything that
450 	 * can move process memory needs to flush the TLB when moving a
451 	 * PROT_NONE or PROT_NUMA mapped page.
452 	 */
453 	bool tlb_flush_pending;
454 #endif
455 	struct uprobes_state uprobes_state;
456 #ifdef CONFIG_X86_INTEL_MPX
457 	/* address of the bounds directory */
458 	void __user *bd_addr;
459 #endif
460 };
461 
mm_init_cpumask(struct mm_struct * mm)462 static inline void mm_init_cpumask(struct mm_struct *mm)
463 {
464 #ifdef CONFIG_CPUMASK_OFFSTACK
465 	mm->cpu_vm_mask_var = &mm->cpumask_allocation;
466 #endif
467 	cpumask_clear(mm->cpu_vm_mask_var);
468 }
469 
470 /* Future-safe accessor for struct mm_struct's cpu_vm_mask. */
mm_cpumask(struct mm_struct * mm)471 static inline cpumask_t *mm_cpumask(struct mm_struct *mm)
472 {
473 	return mm->cpu_vm_mask_var;
474 }
475 
476 #if defined(CONFIG_NUMA_BALANCING) || defined(CONFIG_COMPACTION)
477 /*
478  * Memory barriers to keep this state in sync are graciously provided by
479  * the page table locks, outside of which no page table modifications happen.
480  * The barriers below prevent the compiler from re-ordering the instructions
481  * around the memory barriers that are already present in the code.
482  */
mm_tlb_flush_pending(struct mm_struct * mm)483 static inline bool mm_tlb_flush_pending(struct mm_struct *mm)
484 {
485 	barrier();
486 	return mm->tlb_flush_pending;
487 }
set_tlb_flush_pending(struct mm_struct * mm)488 static inline void set_tlb_flush_pending(struct mm_struct *mm)
489 {
490 	mm->tlb_flush_pending = true;
491 
492 	/*
493 	 * Guarantee that the tlb_flush_pending store does not leak into the
494 	 * critical section updating the page tables
495 	 */
496 	smp_mb__before_spinlock();
497 }
498 /* Clearing is done after a TLB flush, which also provides a barrier. */
clear_tlb_flush_pending(struct mm_struct * mm)499 static inline void clear_tlb_flush_pending(struct mm_struct *mm)
500 {
501 	barrier();
502 	mm->tlb_flush_pending = false;
503 }
504 #else
mm_tlb_flush_pending(struct mm_struct * mm)505 static inline bool mm_tlb_flush_pending(struct mm_struct *mm)
506 {
507 	return false;
508 }
set_tlb_flush_pending(struct mm_struct * mm)509 static inline void set_tlb_flush_pending(struct mm_struct *mm)
510 {
511 }
clear_tlb_flush_pending(struct mm_struct * mm)512 static inline void clear_tlb_flush_pending(struct mm_struct *mm)
513 {
514 }
515 #endif
516 
517 struct vm_special_mapping
518 {
519 	const char *name;
520 	struct page **pages;
521 };
522 
523 enum tlb_flush_reason {
524 	TLB_FLUSH_ON_TASK_SWITCH,
525 	TLB_REMOTE_SHOOTDOWN,
526 	TLB_LOCAL_SHOOTDOWN,
527 	TLB_LOCAL_MM_SHOOTDOWN,
528 	NR_TLB_FLUSH_REASONS,
529 };
530 
531  /*
532   * A swap entry has to fit into a "unsigned long", as the entry is hidden
533   * in the "index" field of the swapper address space.
534   */
535 typedef struct {
536 	unsigned long val;
537 } swp_entry_t;
538 
539 #endif /* _LINUX_MM_TYPES_H */
540