1 #ifndef _LINUX_MM_TYPES_H
2 #define _LINUX_MM_TYPES_H
3
4 #include <linux/auxvec.h>
5 #include <linux/types.h>
6 #include <linux/threads.h>
7 #include <linux/list.h>
8 #include <linux/spinlock.h>
9 #include <linux/rbtree.h>
10 #include <linux/rwsem.h>
11 #include <linux/completion.h>
12 #include <linux/cpumask.h>
13 #include <linux/uprobes.h>
14 #include <linux/page-flags-layout.h>
15 #include <asm/page.h>
16 #include <asm/mmu.h>
17
18 #ifndef AT_VECTOR_SIZE_ARCH
19 #define AT_VECTOR_SIZE_ARCH 0
20 #endif
21 #define AT_VECTOR_SIZE (2*(AT_VECTOR_SIZE_ARCH + AT_VECTOR_SIZE_BASE + 1))
22
23 struct address_space;
24 struct mem_cgroup;
25
26 #define USE_SPLIT_PTE_PTLOCKS (NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS)
27 #define USE_SPLIT_PMD_PTLOCKS (USE_SPLIT_PTE_PTLOCKS && \
28 IS_ENABLED(CONFIG_ARCH_ENABLE_SPLIT_PMD_PTLOCK))
29 #define ALLOC_SPLIT_PTLOCKS (SPINLOCK_SIZE > BITS_PER_LONG/8)
30
31 typedef void compound_page_dtor(struct page *);
32
33 /*
34 * Each physical page in the system has a struct page associated with
35 * it to keep track of whatever it is we are using the page for at the
36 * moment. Note that we have no way to track which tasks are using
37 * a page, though if it is a pagecache page, rmap structures can tell us
38 * who is mapping it.
39 *
40 * The objects in struct page are organized in double word blocks in
41 * order to allows us to use atomic double word operations on portions
42 * of struct page. That is currently only used by slub but the arrangement
43 * allows the use of atomic double word operations on the flags/mapping
44 * and lru list pointers also.
45 */
46 struct page {
47 /* First double word block */
48 unsigned long flags; /* Atomic flags, some possibly
49 * updated asynchronously */
50 union {
51 struct address_space *mapping; /* If low bit clear, points to
52 * inode address_space, or NULL.
53 * If page mapped as anonymous
54 * memory, low bit is set, and
55 * it points to anon_vma object:
56 * see PAGE_MAPPING_ANON below.
57 */
58 void *s_mem; /* slab first object */
59 };
60
61 /* Second double word */
62 struct {
63 union {
64 pgoff_t index; /* Our offset within mapping. */
65 void *freelist; /* sl[aou]b first free object */
66 };
67
68 union {
69 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
70 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
71 /* Used for cmpxchg_double in slub */
72 unsigned long counters;
73 #else
74 /*
75 * Keep _count separate from slub cmpxchg_double data.
76 * As the rest of the double word is protected by
77 * slab_lock but _count is not.
78 */
79 unsigned counters;
80 #endif
81
82 struct {
83
84 union {
85 /*
86 * Count of ptes mapped in
87 * mms, to show when page is
88 * mapped & limit reverse map
89 * searches.
90 *
91 * Used also for tail pages
92 * refcounting instead of
93 * _count. Tail pages cannot
94 * be mapped and keeping the
95 * tail page _count zero at
96 * all times guarantees
97 * get_page_unless_zero() will
98 * never succeed on tail
99 * pages.
100 */
101 atomic_t _mapcount;
102
103 struct { /* SLUB */
104 unsigned inuse:16;
105 unsigned objects:15;
106 unsigned frozen:1;
107 };
108 int units; /* SLOB */
109 };
110 atomic_t _count; /* Usage count, see below. */
111 };
112 unsigned int active; /* SLAB */
113 };
114 };
115
116 /* Third double word block */
117 union {
118 struct list_head lru; /* Pageout list, eg. active_list
119 * protected by zone->lru_lock !
120 * Can be used as a generic list
121 * by the page owner.
122 */
123 struct { /* slub per cpu partial pages */
124 struct page *next; /* Next partial slab */
125 #ifdef CONFIG_64BIT
126 int pages; /* Nr of partial slabs left */
127 int pobjects; /* Approximate # of objects */
128 #else
129 short int pages;
130 short int pobjects;
131 #endif
132 };
133
134 struct slab *slab_page; /* slab fields */
135 struct rcu_head rcu_head; /* Used by SLAB
136 * when destroying via RCU
137 */
138 /* First tail page of compound page */
139 struct {
140 compound_page_dtor *compound_dtor;
141 unsigned long compound_order;
142 };
143
144 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && USE_SPLIT_PMD_PTLOCKS
145 pgtable_t pmd_huge_pte; /* protected by page->ptl */
146 #endif
147 };
148
149 /* Remainder is not double word aligned */
150 union {
151 unsigned long private; /* Mapping-private opaque data:
152 * usually used for buffer_heads
153 * if PagePrivate set; used for
154 * swp_entry_t if PageSwapCache;
155 * indicates order in the buddy
156 * system if PG_buddy is set.
157 */
158 #if USE_SPLIT_PTE_PTLOCKS
159 #if ALLOC_SPLIT_PTLOCKS
160 spinlock_t *ptl;
161 #else
162 spinlock_t ptl;
163 #endif
164 #endif
165 struct kmem_cache *slab_cache; /* SL[AU]B: Pointer to slab */
166 struct page *first_page; /* Compound tail pages */
167 };
168
169 #ifdef CONFIG_MEMCG
170 struct mem_cgroup *mem_cgroup;
171 #endif
172
173 /*
174 * On machines where all RAM is mapped into kernel address space,
175 * we can simply calculate the virtual address. On machines with
176 * highmem some memory is mapped into kernel virtual memory
177 * dynamically, so we need a place to store that address.
178 * Note that this field could be 16 bits on x86 ... ;)
179 *
180 * Architectures with slow multiplication can define
181 * WANT_PAGE_VIRTUAL in asm/page.h
182 */
183 #if defined(WANT_PAGE_VIRTUAL)
184 void *virtual; /* Kernel virtual address (NULL if
185 not kmapped, ie. highmem) */
186 #endif /* WANT_PAGE_VIRTUAL */
187
188 #ifdef CONFIG_KMEMCHECK
189 /*
190 * kmemcheck wants to track the status of each byte in a page; this
191 * is a pointer to such a status block. NULL if not tracked.
192 */
193 void *shadow;
194 #endif
195
196 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
197 int _last_cpupid;
198 #endif
199 }
200 /*
201 * The struct page can be forced to be double word aligned so that atomic ops
202 * on double words work. The SLUB allocator can make use of such a feature.
203 */
204 #ifdef CONFIG_HAVE_ALIGNED_STRUCT_PAGE
205 __aligned(2 * sizeof(unsigned long))
206 #endif
207 ;
208
209 struct page_frag {
210 struct page *page;
211 #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
212 __u32 offset;
213 __u32 size;
214 #else
215 __u16 offset;
216 __u16 size;
217 #endif
218 };
219
220 typedef unsigned long __nocast vm_flags_t;
221
222 /*
223 * A region containing a mapping of a non-memory backed file under NOMMU
224 * conditions. These are held in a global tree and are pinned by the VMAs that
225 * map parts of them.
226 */
227 struct vm_region {
228 struct rb_node vm_rb; /* link in global region tree */
229 vm_flags_t vm_flags; /* VMA vm_flags */
230 unsigned long vm_start; /* start address of region */
231 unsigned long vm_end; /* region initialised to here */
232 unsigned long vm_top; /* region allocated to here */
233 unsigned long vm_pgoff; /* the offset in vm_file corresponding to vm_start */
234 struct file *vm_file; /* the backing file or NULL */
235
236 int vm_usage; /* region usage count (access under nommu_region_sem) */
237 bool vm_icache_flushed : 1; /* true if the icache has been flushed for
238 * this region */
239 };
240
241 /*
242 * This struct defines a memory VMM memory area. There is one of these
243 * per VM-area/task. A VM area is any part of the process virtual memory
244 * space that has a special rule for the page-fault handlers (ie a shared
245 * library, the executable area etc).
246 */
247 struct vm_area_struct {
248 /* The first cache line has the info for VMA tree walking. */
249
250 unsigned long vm_start; /* Our start address within vm_mm. */
251 unsigned long vm_end; /* The first byte after our end address
252 within vm_mm. */
253
254 /* linked list of VM areas per task, sorted by address */
255 struct vm_area_struct *vm_next, *vm_prev;
256
257 struct rb_node vm_rb;
258
259 /*
260 * Largest free memory gap in bytes to the left of this VMA.
261 * Either between this VMA and vma->vm_prev, or between one of the
262 * VMAs below us in the VMA rbtree and its ->vm_prev. This helps
263 * get_unmapped_area find a free area of the right size.
264 */
265 unsigned long rb_subtree_gap;
266
267 /* Second cache line starts here. */
268
269 struct mm_struct *vm_mm; /* The address space we belong to. */
270 pgprot_t vm_page_prot; /* Access permissions of this VMA. */
271 unsigned long vm_flags; /* Flags, see mm.h. */
272
273 /*
274 * For areas with an address space and backing store,
275 * linkage into the address_space->i_mmap interval tree.
276 */
277 struct {
278 struct rb_node rb;
279 unsigned long rb_subtree_last;
280 } shared;
281
282 /*
283 * A file's MAP_PRIVATE vma can be in both i_mmap tree and anon_vma
284 * list, after a COW of one of the file pages. A MAP_SHARED vma
285 * can only be in the i_mmap tree. An anonymous MAP_PRIVATE, stack
286 * or brk vma (with NULL file) can only be in an anon_vma list.
287 */
288 struct list_head anon_vma_chain; /* Serialized by mmap_sem &
289 * page_table_lock */
290 struct anon_vma *anon_vma; /* Serialized by page_table_lock */
291
292 /* Function pointers to deal with this struct. */
293 const struct vm_operations_struct *vm_ops;
294
295 /* Information about our backing store: */
296 unsigned long vm_pgoff; /* Offset (within vm_file) in PAGE_SIZE
297 units, *not* PAGE_CACHE_SIZE */
298 struct file * vm_file; /* File we map to (can be NULL). */
299 void * vm_private_data; /* was vm_pte (shared mem) */
300
301 #ifndef CONFIG_MMU
302 struct vm_region *vm_region; /* NOMMU mapping region */
303 #endif
304 #ifdef CONFIG_NUMA
305 struct mempolicy *vm_policy; /* NUMA policy for the VMA */
306 #endif
307 };
308
309 struct core_thread {
310 struct task_struct *task;
311 struct core_thread *next;
312 };
313
314 struct core_state {
315 atomic_t nr_threads;
316 struct core_thread dumper;
317 struct completion startup;
318 };
319
320 enum {
321 MM_FILEPAGES,
322 MM_ANONPAGES,
323 MM_SWAPENTS,
324 NR_MM_COUNTERS
325 };
326
327 #if USE_SPLIT_PTE_PTLOCKS && defined(CONFIG_MMU)
328 #define SPLIT_RSS_COUNTING
329 /* per-thread cached information, */
330 struct task_rss_stat {
331 int events; /* for synchronization threshold */
332 int count[NR_MM_COUNTERS];
333 };
334 #endif /* USE_SPLIT_PTE_PTLOCKS */
335
336 struct mm_rss_stat {
337 atomic_long_t count[NR_MM_COUNTERS];
338 };
339
340 struct kioctx_table;
341 struct mm_struct {
342 struct vm_area_struct *mmap; /* list of VMAs */
343 struct rb_root mm_rb;
344 u32 vmacache_seqnum; /* per-thread vmacache */
345 #ifdef CONFIG_MMU
346 unsigned long (*get_unmapped_area) (struct file *filp,
347 unsigned long addr, unsigned long len,
348 unsigned long pgoff, unsigned long flags);
349 #endif
350 unsigned long mmap_base; /* base of mmap area */
351 unsigned long mmap_legacy_base; /* base of mmap area in bottom-up allocations */
352 unsigned long task_size; /* size of task vm space */
353 unsigned long highest_vm_end; /* highest vma end address */
354 pgd_t * pgd;
355 atomic_t mm_users; /* How many users with user space? */
356 atomic_t mm_count; /* How many references to "struct mm_struct" (users count as 1) */
357 atomic_long_t nr_ptes; /* PTE page table pages */
358 #if CONFIG_PGTABLE_LEVELS > 2
359 atomic_long_t nr_pmds; /* PMD page table pages */
360 #endif
361 int map_count; /* number of VMAs */
362
363 spinlock_t page_table_lock; /* Protects page tables and some counters */
364 struct rw_semaphore mmap_sem;
365
366 struct list_head mmlist; /* List of maybe swapped mm's. These are globally strung
367 * together off init_mm.mmlist, and are protected
368 * by mmlist_lock
369 */
370
371
372 unsigned long hiwater_rss; /* High-watermark of RSS usage */
373 unsigned long hiwater_vm; /* High-water virtual memory usage */
374
375 unsigned long total_vm; /* Total pages mapped */
376 unsigned long locked_vm; /* Pages that have PG_mlocked set */
377 unsigned long pinned_vm; /* Refcount permanently increased */
378 unsigned long shared_vm; /* Shared pages (files) */
379 unsigned long exec_vm; /* VM_EXEC & ~VM_WRITE */
380 unsigned long stack_vm; /* VM_GROWSUP/DOWN */
381 unsigned long def_flags;
382 unsigned long start_code, end_code, start_data, end_data;
383 unsigned long start_brk, brk, start_stack;
384 unsigned long arg_start, arg_end, env_start, env_end;
385
386 unsigned long saved_auxv[AT_VECTOR_SIZE]; /* for /proc/PID/auxv */
387
388 /*
389 * Special counters, in some configurations protected by the
390 * page_table_lock, in other configurations by being atomic.
391 */
392 struct mm_rss_stat rss_stat;
393
394 struct linux_binfmt *binfmt;
395
396 cpumask_var_t cpu_vm_mask_var;
397
398 /* Architecture-specific MM context */
399 mm_context_t context;
400
401 unsigned long flags; /* Must use atomic bitops to access the bits */
402
403 struct core_state *core_state; /* coredumping support */
404 #ifdef CONFIG_AIO
405 spinlock_t ioctx_lock;
406 struct kioctx_table __rcu *ioctx_table;
407 #endif
408 #ifdef CONFIG_MEMCG
409 /*
410 * "owner" points to a task that is regarded as the canonical
411 * user/owner of this mm. All of the following must be true in
412 * order for it to be changed:
413 *
414 * current == mm->owner
415 * current->mm != mm
416 * new_owner->mm == mm
417 * new_owner->alloc_lock is held
418 */
419 struct task_struct __rcu *owner;
420 #endif
421
422 /* store ref to file /proc/<pid>/exe symlink points to */
423 struct file __rcu *exe_file;
424 #ifdef CONFIG_MMU_NOTIFIER
425 struct mmu_notifier_mm *mmu_notifier_mm;
426 #endif
427 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
428 pgtable_t pmd_huge_pte; /* protected by page_table_lock */
429 #endif
430 #ifdef CONFIG_CPUMASK_OFFSTACK
431 struct cpumask cpumask_allocation;
432 #endif
433 #ifdef CONFIG_NUMA_BALANCING
434 /*
435 * numa_next_scan is the next time that the PTEs will be marked
436 * pte_numa. NUMA hinting faults will gather statistics and migrate
437 * pages to new nodes if necessary.
438 */
439 unsigned long numa_next_scan;
440
441 /* Restart point for scanning and setting pte_numa */
442 unsigned long numa_scan_offset;
443
444 /* numa_scan_seq prevents two threads setting pte_numa */
445 int numa_scan_seq;
446 #endif
447 #if defined(CONFIG_NUMA_BALANCING) || defined(CONFIG_COMPACTION)
448 /*
449 * An operation with batched TLB flushing is going on. Anything that
450 * can move process memory needs to flush the TLB when moving a
451 * PROT_NONE or PROT_NUMA mapped page.
452 */
453 bool tlb_flush_pending;
454 #endif
455 struct uprobes_state uprobes_state;
456 #ifdef CONFIG_X86_INTEL_MPX
457 /* address of the bounds directory */
458 void __user *bd_addr;
459 #endif
460 };
461
mm_init_cpumask(struct mm_struct * mm)462 static inline void mm_init_cpumask(struct mm_struct *mm)
463 {
464 #ifdef CONFIG_CPUMASK_OFFSTACK
465 mm->cpu_vm_mask_var = &mm->cpumask_allocation;
466 #endif
467 cpumask_clear(mm->cpu_vm_mask_var);
468 }
469
470 /* Future-safe accessor for struct mm_struct's cpu_vm_mask. */
mm_cpumask(struct mm_struct * mm)471 static inline cpumask_t *mm_cpumask(struct mm_struct *mm)
472 {
473 return mm->cpu_vm_mask_var;
474 }
475
476 #if defined(CONFIG_NUMA_BALANCING) || defined(CONFIG_COMPACTION)
477 /*
478 * Memory barriers to keep this state in sync are graciously provided by
479 * the page table locks, outside of which no page table modifications happen.
480 * The barriers below prevent the compiler from re-ordering the instructions
481 * around the memory barriers that are already present in the code.
482 */
mm_tlb_flush_pending(struct mm_struct * mm)483 static inline bool mm_tlb_flush_pending(struct mm_struct *mm)
484 {
485 barrier();
486 return mm->tlb_flush_pending;
487 }
set_tlb_flush_pending(struct mm_struct * mm)488 static inline void set_tlb_flush_pending(struct mm_struct *mm)
489 {
490 mm->tlb_flush_pending = true;
491
492 /*
493 * Guarantee that the tlb_flush_pending store does not leak into the
494 * critical section updating the page tables
495 */
496 smp_mb__before_spinlock();
497 }
498 /* Clearing is done after a TLB flush, which also provides a barrier. */
clear_tlb_flush_pending(struct mm_struct * mm)499 static inline void clear_tlb_flush_pending(struct mm_struct *mm)
500 {
501 barrier();
502 mm->tlb_flush_pending = false;
503 }
504 #else
mm_tlb_flush_pending(struct mm_struct * mm)505 static inline bool mm_tlb_flush_pending(struct mm_struct *mm)
506 {
507 return false;
508 }
set_tlb_flush_pending(struct mm_struct * mm)509 static inline void set_tlb_flush_pending(struct mm_struct *mm)
510 {
511 }
clear_tlb_flush_pending(struct mm_struct * mm)512 static inline void clear_tlb_flush_pending(struct mm_struct *mm)
513 {
514 }
515 #endif
516
517 struct vm_special_mapping
518 {
519 const char *name;
520 struct page **pages;
521 };
522
523 enum tlb_flush_reason {
524 TLB_FLUSH_ON_TASK_SWITCH,
525 TLB_REMOTE_SHOOTDOWN,
526 TLB_LOCAL_SHOOTDOWN,
527 TLB_LOCAL_MM_SHOOTDOWN,
528 NR_TLB_FLUSH_REASONS,
529 };
530
531 /*
532 * A swap entry has to fit into a "unsigned long", as the entry is hidden
533 * in the "index" field of the swapper address space.
534 */
535 typedef struct {
536 unsigned long val;
537 } swp_entry_t;
538
539 #endif /* _LINUX_MM_TYPES_H */
540