1 /*
2  * NAND Flash Controller Device Driver
3  * Copyright © 2009-2010, Intel Corporation and its suppliers.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  * You should have received a copy of the GNU General Public License along with
15  * this program; if not, write to the Free Software Foundation, Inc.,
16  * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
17  *
18  */
19 #include <linux/interrupt.h>
20 #include <linux/delay.h>
21 #include <linux/dma-mapping.h>
22 #include <linux/wait.h>
23 #include <linux/mutex.h>
24 #include <linux/slab.h>
25 #include <linux/mtd/mtd.h>
26 #include <linux/module.h>
27 
28 #include "denali.h"
29 
30 MODULE_LICENSE("GPL");
31 
32 /*
33  * We define a module parameter that allows the user to override
34  * the hardware and decide what timing mode should be used.
35  */
36 #define NAND_DEFAULT_TIMINGS	-1
37 
38 static int onfi_timing_mode = NAND_DEFAULT_TIMINGS;
39 module_param(onfi_timing_mode, int, S_IRUGO);
40 MODULE_PARM_DESC(onfi_timing_mode,
41 	   "Overrides default ONFI setting. -1 indicates use default timings");
42 
43 #define DENALI_NAND_NAME    "denali-nand"
44 
45 /*
46  * We define a macro here that combines all interrupts this driver uses into
47  * a single constant value, for convenience.
48  */
49 #define DENALI_IRQ_ALL	(INTR_STATUS__DMA_CMD_COMP | \
50 			INTR_STATUS__ECC_TRANSACTION_DONE | \
51 			INTR_STATUS__ECC_ERR | \
52 			INTR_STATUS__PROGRAM_FAIL | \
53 			INTR_STATUS__LOAD_COMP | \
54 			INTR_STATUS__PROGRAM_COMP | \
55 			INTR_STATUS__TIME_OUT | \
56 			INTR_STATUS__ERASE_FAIL | \
57 			INTR_STATUS__RST_COMP | \
58 			INTR_STATUS__ERASE_COMP)
59 
60 /*
61  * indicates whether or not the internal value for the flash bank is
62  * valid or not
63  */
64 #define CHIP_SELECT_INVALID	-1
65 
66 #define SUPPORT_8BITECC		1
67 
68 /*
69  * This macro divides two integers and rounds fractional values up
70  * to the nearest integer value.
71  */
72 #define CEIL_DIV(X, Y) (((X)%(Y)) ? ((X)/(Y)+1) : ((X)/(Y)))
73 
74 /*
75  * this macro allows us to convert from an MTD structure to our own
76  * device context (denali) structure.
77  */
78 #define mtd_to_denali(m) container_of(m, struct denali_nand_info, mtd)
79 
80 /*
81  * These constants are defined by the driver to enable common driver
82  * configuration options.
83  */
84 #define SPARE_ACCESS		0x41
85 #define MAIN_ACCESS		0x42
86 #define MAIN_SPARE_ACCESS	0x43
87 #define PIPELINE_ACCESS		0x2000
88 
89 #define DENALI_READ	0
90 #define DENALI_WRITE	0x100
91 
92 /* types of device accesses. We can issue commands and get status */
93 #define COMMAND_CYCLE	0
94 #define ADDR_CYCLE	1
95 #define STATUS_CYCLE	2
96 
97 /*
98  * this is a helper macro that allows us to
99  * format the bank into the proper bits for the controller
100  */
101 #define BANK(x) ((x) << 24)
102 
103 /* forward declarations */
104 static void clear_interrupts(struct denali_nand_info *denali);
105 static uint32_t wait_for_irq(struct denali_nand_info *denali,
106 							uint32_t irq_mask);
107 static void denali_irq_enable(struct denali_nand_info *denali,
108 							uint32_t int_mask);
109 static uint32_t read_interrupt_status(struct denali_nand_info *denali);
110 
111 /*
112  * Certain operations for the denali NAND controller use an indexed mode to
113  * read/write data. The operation is performed by writing the address value
114  * of the command to the device memory followed by the data. This function
115  * abstracts this common operation.
116  */
index_addr(struct denali_nand_info * denali,uint32_t address,uint32_t data)117 static void index_addr(struct denali_nand_info *denali,
118 				uint32_t address, uint32_t data)
119 {
120 	iowrite32(address, denali->flash_mem);
121 	iowrite32(data, denali->flash_mem + 0x10);
122 }
123 
124 /* Perform an indexed read of the device */
index_addr_read_data(struct denali_nand_info * denali,uint32_t address,uint32_t * pdata)125 static void index_addr_read_data(struct denali_nand_info *denali,
126 				 uint32_t address, uint32_t *pdata)
127 {
128 	iowrite32(address, denali->flash_mem);
129 	*pdata = ioread32(denali->flash_mem + 0x10);
130 }
131 
132 /*
133  * We need to buffer some data for some of the NAND core routines.
134  * The operations manage buffering that data.
135  */
reset_buf(struct denali_nand_info * denali)136 static void reset_buf(struct denali_nand_info *denali)
137 {
138 	denali->buf.head = denali->buf.tail = 0;
139 }
140 
write_byte_to_buf(struct denali_nand_info * denali,uint8_t byte)141 static void write_byte_to_buf(struct denali_nand_info *denali, uint8_t byte)
142 {
143 	denali->buf.buf[denali->buf.tail++] = byte;
144 }
145 
146 /* reads the status of the device */
read_status(struct denali_nand_info * denali)147 static void read_status(struct denali_nand_info *denali)
148 {
149 	uint32_t cmd;
150 
151 	/* initialize the data buffer to store status */
152 	reset_buf(denali);
153 
154 	cmd = ioread32(denali->flash_reg + WRITE_PROTECT);
155 	if (cmd)
156 		write_byte_to_buf(denali, NAND_STATUS_WP);
157 	else
158 		write_byte_to_buf(denali, 0);
159 }
160 
161 /* resets a specific device connected to the core */
reset_bank(struct denali_nand_info * denali)162 static void reset_bank(struct denali_nand_info *denali)
163 {
164 	uint32_t irq_status;
165 	uint32_t irq_mask = INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT;
166 
167 	clear_interrupts(denali);
168 
169 	iowrite32(1 << denali->flash_bank, denali->flash_reg + DEVICE_RESET);
170 
171 	irq_status = wait_for_irq(denali, irq_mask);
172 
173 	if (irq_status & INTR_STATUS__TIME_OUT)
174 		dev_err(denali->dev, "reset bank failed.\n");
175 }
176 
177 /* Reset the flash controller */
denali_nand_reset(struct denali_nand_info * denali)178 static uint16_t denali_nand_reset(struct denali_nand_info *denali)
179 {
180 	int i;
181 
182 	dev_dbg(denali->dev, "%s, Line %d, Function: %s\n",
183 		__FILE__, __LINE__, __func__);
184 
185 	for (i = 0; i < denali->max_banks; i++)
186 		iowrite32(INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT,
187 		denali->flash_reg + INTR_STATUS(i));
188 
189 	for (i = 0; i < denali->max_banks; i++) {
190 		iowrite32(1 << i, denali->flash_reg + DEVICE_RESET);
191 		while (!(ioread32(denali->flash_reg + INTR_STATUS(i)) &
192 			(INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT)))
193 			cpu_relax();
194 		if (ioread32(denali->flash_reg + INTR_STATUS(i)) &
195 			INTR_STATUS__TIME_OUT)
196 			dev_dbg(denali->dev,
197 			"NAND Reset operation timed out on bank %d\n", i);
198 	}
199 
200 	for (i = 0; i < denali->max_banks; i++)
201 		iowrite32(INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT,
202 			  denali->flash_reg + INTR_STATUS(i));
203 
204 	return PASS;
205 }
206 
207 /*
208  * this routine calculates the ONFI timing values for a given mode and
209  * programs the clocking register accordingly. The mode is determined by
210  * the get_onfi_nand_para routine.
211  */
nand_onfi_timing_set(struct denali_nand_info * denali,uint16_t mode)212 static void nand_onfi_timing_set(struct denali_nand_info *denali,
213 								uint16_t mode)
214 {
215 	uint16_t Trea[6] = {40, 30, 25, 20, 20, 16};
216 	uint16_t Trp[6] = {50, 25, 17, 15, 12, 10};
217 	uint16_t Treh[6] = {30, 15, 15, 10, 10, 7};
218 	uint16_t Trc[6] = {100, 50, 35, 30, 25, 20};
219 	uint16_t Trhoh[6] = {0, 15, 15, 15, 15, 15};
220 	uint16_t Trloh[6] = {0, 0, 0, 0, 5, 5};
221 	uint16_t Tcea[6] = {100, 45, 30, 25, 25, 25};
222 	uint16_t Tadl[6] = {200, 100, 100, 100, 70, 70};
223 	uint16_t Trhw[6] = {200, 100, 100, 100, 100, 100};
224 	uint16_t Trhz[6] = {200, 100, 100, 100, 100, 100};
225 	uint16_t Twhr[6] = {120, 80, 80, 60, 60, 60};
226 	uint16_t Tcs[6] = {70, 35, 25, 25, 20, 15};
227 
228 	uint16_t data_invalid_rhoh, data_invalid_rloh, data_invalid;
229 	uint16_t dv_window = 0;
230 	uint16_t en_lo, en_hi;
231 	uint16_t acc_clks;
232 	uint16_t addr_2_data, re_2_we, re_2_re, we_2_re, cs_cnt;
233 
234 	dev_dbg(denali->dev, "%s, Line %d, Function: %s\n",
235 		__FILE__, __LINE__, __func__);
236 
237 	en_lo = CEIL_DIV(Trp[mode], CLK_X);
238 	en_hi = CEIL_DIV(Treh[mode], CLK_X);
239 #if ONFI_BLOOM_TIME
240 	if ((en_hi * CLK_X) < (Treh[mode] + 2))
241 		en_hi++;
242 #endif
243 
244 	if ((en_lo + en_hi) * CLK_X < Trc[mode])
245 		en_lo += CEIL_DIV((Trc[mode] - (en_lo + en_hi) * CLK_X), CLK_X);
246 
247 	if ((en_lo + en_hi) < CLK_MULTI)
248 		en_lo += CLK_MULTI - en_lo - en_hi;
249 
250 	while (dv_window < 8) {
251 		data_invalid_rhoh = en_lo * CLK_X + Trhoh[mode];
252 
253 		data_invalid_rloh = (en_lo + en_hi) * CLK_X + Trloh[mode];
254 
255 		data_invalid = data_invalid_rhoh < data_invalid_rloh ?
256 					data_invalid_rhoh : data_invalid_rloh;
257 
258 		dv_window = data_invalid - Trea[mode];
259 
260 		if (dv_window < 8)
261 			en_lo++;
262 	}
263 
264 	acc_clks = CEIL_DIV(Trea[mode], CLK_X);
265 
266 	while (acc_clks * CLK_X - Trea[mode] < 3)
267 		acc_clks++;
268 
269 	if (data_invalid - acc_clks * CLK_X < 2)
270 		dev_warn(denali->dev, "%s, Line %d: Warning!\n",
271 			 __FILE__, __LINE__);
272 
273 	addr_2_data = CEIL_DIV(Tadl[mode], CLK_X);
274 	re_2_we = CEIL_DIV(Trhw[mode], CLK_X);
275 	re_2_re = CEIL_DIV(Trhz[mode], CLK_X);
276 	we_2_re = CEIL_DIV(Twhr[mode], CLK_X);
277 	cs_cnt = CEIL_DIV((Tcs[mode] - Trp[mode]), CLK_X);
278 	if (cs_cnt == 0)
279 		cs_cnt = 1;
280 
281 	if (Tcea[mode]) {
282 		while (cs_cnt * CLK_X + Trea[mode] < Tcea[mode])
283 			cs_cnt++;
284 	}
285 
286 #if MODE5_WORKAROUND
287 	if (mode == 5)
288 		acc_clks = 5;
289 #endif
290 
291 	/* Sighting 3462430: Temporary hack for MT29F128G08CJABAWP:B */
292 	if (ioread32(denali->flash_reg + MANUFACTURER_ID) == 0 &&
293 		ioread32(denali->flash_reg + DEVICE_ID) == 0x88)
294 		acc_clks = 6;
295 
296 	iowrite32(acc_clks, denali->flash_reg + ACC_CLKS);
297 	iowrite32(re_2_we, denali->flash_reg + RE_2_WE);
298 	iowrite32(re_2_re, denali->flash_reg + RE_2_RE);
299 	iowrite32(we_2_re, denali->flash_reg + WE_2_RE);
300 	iowrite32(addr_2_data, denali->flash_reg + ADDR_2_DATA);
301 	iowrite32(en_lo, denali->flash_reg + RDWR_EN_LO_CNT);
302 	iowrite32(en_hi, denali->flash_reg + RDWR_EN_HI_CNT);
303 	iowrite32(cs_cnt, denali->flash_reg + CS_SETUP_CNT);
304 }
305 
306 /* queries the NAND device to see what ONFI modes it supports. */
get_onfi_nand_para(struct denali_nand_info * denali)307 static uint16_t get_onfi_nand_para(struct denali_nand_info *denali)
308 {
309 	int i;
310 
311 	/*
312 	 * we needn't to do a reset here because driver has already
313 	 * reset all the banks before
314 	 */
315 	if (!(ioread32(denali->flash_reg + ONFI_TIMING_MODE) &
316 		ONFI_TIMING_MODE__VALUE))
317 		return FAIL;
318 
319 	for (i = 5; i > 0; i--) {
320 		if (ioread32(denali->flash_reg + ONFI_TIMING_MODE) &
321 			(0x01 << i))
322 			break;
323 	}
324 
325 	nand_onfi_timing_set(denali, i);
326 
327 	/*
328 	 * By now, all the ONFI devices we know support the page cache
329 	 * rw feature. So here we enable the pipeline_rw_ahead feature
330 	 */
331 	/* iowrite32(1, denali->flash_reg + CACHE_WRITE_ENABLE); */
332 	/* iowrite32(1, denali->flash_reg + CACHE_READ_ENABLE);  */
333 
334 	return PASS;
335 }
336 
get_samsung_nand_para(struct denali_nand_info * denali,uint8_t device_id)337 static void get_samsung_nand_para(struct denali_nand_info *denali,
338 							uint8_t device_id)
339 {
340 	if (device_id == 0xd3) { /* Samsung K9WAG08U1A */
341 		/* Set timing register values according to datasheet */
342 		iowrite32(5, denali->flash_reg + ACC_CLKS);
343 		iowrite32(20, denali->flash_reg + RE_2_WE);
344 		iowrite32(12, denali->flash_reg + WE_2_RE);
345 		iowrite32(14, denali->flash_reg + ADDR_2_DATA);
346 		iowrite32(3, denali->flash_reg + RDWR_EN_LO_CNT);
347 		iowrite32(2, denali->flash_reg + RDWR_EN_HI_CNT);
348 		iowrite32(2, denali->flash_reg + CS_SETUP_CNT);
349 	}
350 }
351 
get_toshiba_nand_para(struct denali_nand_info * denali)352 static void get_toshiba_nand_para(struct denali_nand_info *denali)
353 {
354 	uint32_t tmp;
355 
356 	/*
357 	 * Workaround to fix a controller bug which reports a wrong
358 	 * spare area size for some kind of Toshiba NAND device
359 	 */
360 	if ((ioread32(denali->flash_reg + DEVICE_MAIN_AREA_SIZE) == 4096) &&
361 		(ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE) == 64)) {
362 		iowrite32(216, denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
363 		tmp = ioread32(denali->flash_reg + DEVICES_CONNECTED) *
364 			ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
365 		iowrite32(tmp,
366 				denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE);
367 #if SUPPORT_15BITECC
368 		iowrite32(15, denali->flash_reg + ECC_CORRECTION);
369 #elif SUPPORT_8BITECC
370 		iowrite32(8, denali->flash_reg + ECC_CORRECTION);
371 #endif
372 	}
373 }
374 
get_hynix_nand_para(struct denali_nand_info * denali,uint8_t device_id)375 static void get_hynix_nand_para(struct denali_nand_info *denali,
376 							uint8_t device_id)
377 {
378 	uint32_t main_size, spare_size;
379 
380 	switch (device_id) {
381 	case 0xD5: /* Hynix H27UAG8T2A, H27UBG8U5A or H27UCG8VFA */
382 	case 0xD7: /* Hynix H27UDG8VEM, H27UCG8UDM or H27UCG8V5A */
383 		iowrite32(128, denali->flash_reg + PAGES_PER_BLOCK);
384 		iowrite32(4096, denali->flash_reg + DEVICE_MAIN_AREA_SIZE);
385 		iowrite32(224, denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
386 		main_size = 4096 *
387 			ioread32(denali->flash_reg + DEVICES_CONNECTED);
388 		spare_size = 224 *
389 			ioread32(denali->flash_reg + DEVICES_CONNECTED);
390 		iowrite32(main_size,
391 				denali->flash_reg + LOGICAL_PAGE_DATA_SIZE);
392 		iowrite32(spare_size,
393 				denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE);
394 		iowrite32(0, denali->flash_reg + DEVICE_WIDTH);
395 #if SUPPORT_15BITECC
396 		iowrite32(15, denali->flash_reg + ECC_CORRECTION);
397 #elif SUPPORT_8BITECC
398 		iowrite32(8, denali->flash_reg + ECC_CORRECTION);
399 #endif
400 		break;
401 	default:
402 		dev_warn(denali->dev,
403 			 "Spectra: Unknown Hynix NAND (Device ID: 0x%x).\n"
404 			 "Will use default parameter values instead.\n",
405 			 device_id);
406 	}
407 }
408 
409 /*
410  * determines how many NAND chips are connected to the controller. Note for
411  * Intel CE4100 devices we don't support more than one device.
412  */
find_valid_banks(struct denali_nand_info * denali)413 static void find_valid_banks(struct denali_nand_info *denali)
414 {
415 	uint32_t id[denali->max_banks];
416 	int i;
417 
418 	denali->total_used_banks = 1;
419 	for (i = 0; i < denali->max_banks; i++) {
420 		index_addr(denali, MODE_11 | (i << 24) | 0, 0x90);
421 		index_addr(denali, MODE_11 | (i << 24) | 1, 0);
422 		index_addr_read_data(denali, MODE_11 | (i << 24) | 2, &id[i]);
423 
424 		dev_dbg(denali->dev,
425 			"Return 1st ID for bank[%d]: %x\n", i, id[i]);
426 
427 		if (i == 0) {
428 			if (!(id[i] & 0x0ff))
429 				break; /* WTF? */
430 		} else {
431 			if ((id[i] & 0x0ff) == (id[0] & 0x0ff))
432 				denali->total_used_banks++;
433 			else
434 				break;
435 		}
436 	}
437 
438 	if (denali->platform == INTEL_CE4100) {
439 		/*
440 		 * Platform limitations of the CE4100 device limit
441 		 * users to a single chip solution for NAND.
442 		 * Multichip support is not enabled.
443 		 */
444 		if (denali->total_used_banks != 1) {
445 			dev_err(denali->dev,
446 				"Sorry, Intel CE4100 only supports a single NAND device.\n");
447 			BUG();
448 		}
449 	}
450 	dev_dbg(denali->dev,
451 		"denali->total_used_banks: %d\n", denali->total_used_banks);
452 }
453 
454 /*
455  * Use the configuration feature register to determine the maximum number of
456  * banks that the hardware supports.
457  */
detect_max_banks(struct denali_nand_info * denali)458 static void detect_max_banks(struct denali_nand_info *denali)
459 {
460 	uint32_t features = ioread32(denali->flash_reg + FEATURES);
461 
462 	denali->max_banks = 2 << (features & FEATURES__N_BANKS);
463 }
464 
detect_partition_feature(struct denali_nand_info * denali)465 static void detect_partition_feature(struct denali_nand_info *denali)
466 {
467 	/*
468 	 * For MRST platform, denali->fwblks represent the
469 	 * number of blocks firmware is taken,
470 	 * FW is in protect partition and MTD driver has no
471 	 * permission to access it. So let driver know how many
472 	 * blocks it can't touch.
473 	 */
474 	if (ioread32(denali->flash_reg + FEATURES) & FEATURES__PARTITION) {
475 		if ((ioread32(denali->flash_reg + PERM_SRC_ID(1)) &
476 			PERM_SRC_ID__SRCID) == SPECTRA_PARTITION_ID) {
477 			denali->fwblks =
478 			    ((ioread32(denali->flash_reg + MIN_MAX_BANK(1)) &
479 			      MIN_MAX_BANK__MIN_VALUE) *
480 			     denali->blksperchip)
481 			    +
482 			    (ioread32(denali->flash_reg + MIN_BLK_ADDR(1)) &
483 			    MIN_BLK_ADDR__VALUE);
484 		} else {
485 			denali->fwblks = SPECTRA_START_BLOCK;
486 		}
487 	} else {
488 		denali->fwblks = SPECTRA_START_BLOCK;
489 	}
490 }
491 
denali_nand_timing_set(struct denali_nand_info * denali)492 static uint16_t denali_nand_timing_set(struct denali_nand_info *denali)
493 {
494 	uint16_t status = PASS;
495 	uint32_t id_bytes[8], addr;
496 	uint8_t maf_id, device_id;
497 	int i;
498 
499 	dev_dbg(denali->dev, "%s, Line %d, Function: %s\n",
500 			__FILE__, __LINE__, __func__);
501 
502 	/*
503 	 * Use read id method to get device ID and other params.
504 	 * For some NAND chips, controller can't report the correct
505 	 * device ID by reading from DEVICE_ID register
506 	 */
507 	addr = MODE_11 | BANK(denali->flash_bank);
508 	index_addr(denali, addr | 0, 0x90);
509 	index_addr(denali, addr | 1, 0);
510 	for (i = 0; i < 8; i++)
511 		index_addr_read_data(denali, addr | 2, &id_bytes[i]);
512 	maf_id = id_bytes[0];
513 	device_id = id_bytes[1];
514 
515 	if (ioread32(denali->flash_reg + ONFI_DEVICE_NO_OF_LUNS) &
516 		ONFI_DEVICE_NO_OF_LUNS__ONFI_DEVICE) { /* ONFI 1.0 NAND */
517 		if (FAIL == get_onfi_nand_para(denali))
518 			return FAIL;
519 	} else if (maf_id == 0xEC) { /* Samsung NAND */
520 		get_samsung_nand_para(denali, device_id);
521 	} else if (maf_id == 0x98) { /* Toshiba NAND */
522 		get_toshiba_nand_para(denali);
523 	} else if (maf_id == 0xAD) { /* Hynix NAND */
524 		get_hynix_nand_para(denali, device_id);
525 	}
526 
527 	dev_info(denali->dev,
528 			"Dump timing register values:\n"
529 			"acc_clks: %d, re_2_we: %d, re_2_re: %d\n"
530 			"we_2_re: %d, addr_2_data: %d, rdwr_en_lo_cnt: %d\n"
531 			"rdwr_en_hi_cnt: %d, cs_setup_cnt: %d\n",
532 			ioread32(denali->flash_reg + ACC_CLKS),
533 			ioread32(denali->flash_reg + RE_2_WE),
534 			ioread32(denali->flash_reg + RE_2_RE),
535 			ioread32(denali->flash_reg + WE_2_RE),
536 			ioread32(denali->flash_reg + ADDR_2_DATA),
537 			ioread32(denali->flash_reg + RDWR_EN_LO_CNT),
538 			ioread32(denali->flash_reg + RDWR_EN_HI_CNT),
539 			ioread32(denali->flash_reg + CS_SETUP_CNT));
540 
541 	find_valid_banks(denali);
542 
543 	detect_partition_feature(denali);
544 
545 	/*
546 	 * If the user specified to override the default timings
547 	 * with a specific ONFI mode, we apply those changes here.
548 	 */
549 	if (onfi_timing_mode != NAND_DEFAULT_TIMINGS)
550 		nand_onfi_timing_set(denali, onfi_timing_mode);
551 
552 	return status;
553 }
554 
denali_set_intr_modes(struct denali_nand_info * denali,uint16_t INT_ENABLE)555 static void denali_set_intr_modes(struct denali_nand_info *denali,
556 					uint16_t INT_ENABLE)
557 {
558 	dev_dbg(denali->dev, "%s, Line %d, Function: %s\n",
559 		__FILE__, __LINE__, __func__);
560 
561 	if (INT_ENABLE)
562 		iowrite32(1, denali->flash_reg + GLOBAL_INT_ENABLE);
563 	else
564 		iowrite32(0, denali->flash_reg + GLOBAL_INT_ENABLE);
565 }
566 
567 /*
568  * validation function to verify that the controlling software is making
569  * a valid request
570  */
is_flash_bank_valid(int flash_bank)571 static inline bool is_flash_bank_valid(int flash_bank)
572 {
573 	return flash_bank >= 0 && flash_bank < 4;
574 }
575 
denali_irq_init(struct denali_nand_info * denali)576 static void denali_irq_init(struct denali_nand_info *denali)
577 {
578 	uint32_t int_mask;
579 	int i;
580 
581 	/* Disable global interrupts */
582 	denali_set_intr_modes(denali, false);
583 
584 	int_mask = DENALI_IRQ_ALL;
585 
586 	/* Clear all status bits */
587 	for (i = 0; i < denali->max_banks; ++i)
588 		iowrite32(0xFFFF, denali->flash_reg + INTR_STATUS(i));
589 
590 	denali_irq_enable(denali, int_mask);
591 }
592 
denali_irq_cleanup(int irqnum,struct denali_nand_info * denali)593 static void denali_irq_cleanup(int irqnum, struct denali_nand_info *denali)
594 {
595 	denali_set_intr_modes(denali, false);
596 	free_irq(irqnum, denali);
597 }
598 
denali_irq_enable(struct denali_nand_info * denali,uint32_t int_mask)599 static void denali_irq_enable(struct denali_nand_info *denali,
600 							uint32_t int_mask)
601 {
602 	int i;
603 
604 	for (i = 0; i < denali->max_banks; ++i)
605 		iowrite32(int_mask, denali->flash_reg + INTR_EN(i));
606 }
607 
608 /*
609  * This function only returns when an interrupt that this driver cares about
610  * occurs. This is to reduce the overhead of servicing interrupts
611  */
denali_irq_detected(struct denali_nand_info * denali)612 static inline uint32_t denali_irq_detected(struct denali_nand_info *denali)
613 {
614 	return read_interrupt_status(denali) & DENALI_IRQ_ALL;
615 }
616 
617 /* Interrupts are cleared by writing a 1 to the appropriate status bit */
clear_interrupt(struct denali_nand_info * denali,uint32_t irq_mask)618 static inline void clear_interrupt(struct denali_nand_info *denali,
619 							uint32_t irq_mask)
620 {
621 	uint32_t intr_status_reg;
622 
623 	intr_status_reg = INTR_STATUS(denali->flash_bank);
624 
625 	iowrite32(irq_mask, denali->flash_reg + intr_status_reg);
626 }
627 
clear_interrupts(struct denali_nand_info * denali)628 static void clear_interrupts(struct denali_nand_info *denali)
629 {
630 	uint32_t status;
631 
632 	spin_lock_irq(&denali->irq_lock);
633 
634 	status = read_interrupt_status(denali);
635 	clear_interrupt(denali, status);
636 
637 	denali->irq_status = 0x0;
638 	spin_unlock_irq(&denali->irq_lock);
639 }
640 
read_interrupt_status(struct denali_nand_info * denali)641 static uint32_t read_interrupt_status(struct denali_nand_info *denali)
642 {
643 	uint32_t intr_status_reg;
644 
645 	intr_status_reg = INTR_STATUS(denali->flash_bank);
646 
647 	return ioread32(denali->flash_reg + intr_status_reg);
648 }
649 
650 /*
651  * This is the interrupt service routine. It handles all interrupts
652  * sent to this device. Note that on CE4100, this is a shared interrupt.
653  */
denali_isr(int irq,void * dev_id)654 static irqreturn_t denali_isr(int irq, void *dev_id)
655 {
656 	struct denali_nand_info *denali = dev_id;
657 	uint32_t irq_status;
658 	irqreturn_t result = IRQ_NONE;
659 
660 	spin_lock(&denali->irq_lock);
661 
662 	/* check to see if a valid NAND chip has been selected. */
663 	if (is_flash_bank_valid(denali->flash_bank)) {
664 		/*
665 		 * check to see if controller generated the interrupt,
666 		 * since this is a shared interrupt
667 		 */
668 		irq_status = denali_irq_detected(denali);
669 		if (irq_status != 0) {
670 			/* handle interrupt */
671 			/* first acknowledge it */
672 			clear_interrupt(denali, irq_status);
673 			/*
674 			 * store the status in the device context for someone
675 			 * to read
676 			 */
677 			denali->irq_status |= irq_status;
678 			/* notify anyone who cares that it happened */
679 			complete(&denali->complete);
680 			/* tell the OS that we've handled this */
681 			result = IRQ_HANDLED;
682 		}
683 	}
684 	spin_unlock(&denali->irq_lock);
685 	return result;
686 }
687 #define BANK(x) ((x) << 24)
688 
wait_for_irq(struct denali_nand_info * denali,uint32_t irq_mask)689 static uint32_t wait_for_irq(struct denali_nand_info *denali, uint32_t irq_mask)
690 {
691 	unsigned long comp_res;
692 	uint32_t intr_status;
693 	unsigned long timeout = msecs_to_jiffies(1000);
694 
695 	do {
696 		comp_res =
697 			wait_for_completion_timeout(&denali->complete, timeout);
698 		spin_lock_irq(&denali->irq_lock);
699 		intr_status = denali->irq_status;
700 
701 		if (intr_status & irq_mask) {
702 			denali->irq_status &= ~irq_mask;
703 			spin_unlock_irq(&denali->irq_lock);
704 			/* our interrupt was detected */
705 			break;
706 		}
707 
708 		/*
709 		 * these are not the interrupts you are looking for -
710 		 * need to wait again
711 		 */
712 		spin_unlock_irq(&denali->irq_lock);
713 	} while (comp_res != 0);
714 
715 	if (comp_res == 0) {
716 		/* timeout */
717 		pr_err("timeout occurred, status = 0x%x, mask = 0x%x\n",
718 				intr_status, irq_mask);
719 
720 		intr_status = 0;
721 	}
722 	return intr_status;
723 }
724 
725 /*
726  * This helper function setups the registers for ECC and whether or not
727  * the spare area will be transferred.
728  */
setup_ecc_for_xfer(struct denali_nand_info * denali,bool ecc_en,bool transfer_spare)729 static void setup_ecc_for_xfer(struct denali_nand_info *denali, bool ecc_en,
730 				bool transfer_spare)
731 {
732 	int ecc_en_flag, transfer_spare_flag;
733 
734 	/* set ECC, transfer spare bits if needed */
735 	ecc_en_flag = ecc_en ? ECC_ENABLE__FLAG : 0;
736 	transfer_spare_flag = transfer_spare ? TRANSFER_SPARE_REG__FLAG : 0;
737 
738 	/* Enable spare area/ECC per user's request. */
739 	iowrite32(ecc_en_flag, denali->flash_reg + ECC_ENABLE);
740 	iowrite32(transfer_spare_flag, denali->flash_reg + TRANSFER_SPARE_REG);
741 }
742 
743 /*
744  * sends a pipeline command operation to the controller. See the Denali NAND
745  * controller's user guide for more information (section 4.2.3.6).
746  */
denali_send_pipeline_cmd(struct denali_nand_info * denali,bool ecc_en,bool transfer_spare,int access_type,int op)747 static int denali_send_pipeline_cmd(struct denali_nand_info *denali,
748 				    bool ecc_en, bool transfer_spare,
749 				    int access_type, int op)
750 {
751 	int status = PASS;
752 	uint32_t page_count = 1;
753 	uint32_t addr, cmd, irq_status, irq_mask;
754 
755 	if (op == DENALI_READ)
756 		irq_mask = INTR_STATUS__LOAD_COMP;
757 	else if (op == DENALI_WRITE)
758 		irq_mask = 0;
759 	else
760 		BUG();
761 
762 	setup_ecc_for_xfer(denali, ecc_en, transfer_spare);
763 
764 	clear_interrupts(denali);
765 
766 	addr = BANK(denali->flash_bank) | denali->page;
767 
768 	if (op == DENALI_WRITE && access_type != SPARE_ACCESS) {
769 		cmd = MODE_01 | addr;
770 		iowrite32(cmd, denali->flash_mem);
771 	} else if (op == DENALI_WRITE && access_type == SPARE_ACCESS) {
772 		/* read spare area */
773 		cmd = MODE_10 | addr;
774 		index_addr(denali, cmd, access_type);
775 
776 		cmd = MODE_01 | addr;
777 		iowrite32(cmd, denali->flash_mem);
778 	} else if (op == DENALI_READ) {
779 		/* setup page read request for access type */
780 		cmd = MODE_10 | addr;
781 		index_addr(denali, cmd, access_type);
782 
783 		/*
784 		 * page 33 of the NAND controller spec indicates we should not
785 		 * use the pipeline commands in Spare area only mode.
786 		 * So we don't.
787 		 */
788 		if (access_type == SPARE_ACCESS) {
789 			cmd = MODE_01 | addr;
790 			iowrite32(cmd, denali->flash_mem);
791 		} else {
792 			index_addr(denali, cmd,
793 					PIPELINE_ACCESS | op | page_count);
794 
795 			/*
796 			 * wait for command to be accepted
797 			 * can always use status0 bit as the
798 			 * mask is identical for each bank.
799 			 */
800 			irq_status = wait_for_irq(denali, irq_mask);
801 
802 			if (irq_status == 0) {
803 				dev_err(denali->dev,
804 					"cmd, page, addr on timeout (0x%x, 0x%x, 0x%x)\n",
805 					cmd, denali->page, addr);
806 				status = FAIL;
807 			} else {
808 				cmd = MODE_01 | addr;
809 				iowrite32(cmd, denali->flash_mem);
810 			}
811 		}
812 	}
813 	return status;
814 }
815 
816 /* helper function that simply writes a buffer to the flash */
write_data_to_flash_mem(struct denali_nand_info * denali,const uint8_t * buf,int len)817 static int write_data_to_flash_mem(struct denali_nand_info *denali,
818 				   const uint8_t *buf, int len)
819 {
820 	uint32_t *buf32;
821 	int i;
822 
823 	/*
824 	 * verify that the len is a multiple of 4.
825 	 * see comment in read_data_from_flash_mem()
826 	 */
827 	BUG_ON((len % 4) != 0);
828 
829 	/* write the data to the flash memory */
830 	buf32 = (uint32_t *)buf;
831 	for (i = 0; i < len / 4; i++)
832 		iowrite32(*buf32++, denali->flash_mem + 0x10);
833 	return i * 4; /* intent is to return the number of bytes read */
834 }
835 
836 /* helper function that simply reads a buffer from the flash */
read_data_from_flash_mem(struct denali_nand_info * denali,uint8_t * buf,int len)837 static int read_data_from_flash_mem(struct denali_nand_info *denali,
838 				    uint8_t *buf, int len)
839 {
840 	uint32_t *buf32;
841 	int i;
842 
843 	/*
844 	 * we assume that len will be a multiple of 4, if not it would be nice
845 	 * to know about it ASAP rather than have random failures...
846 	 * This assumption is based on the fact that this function is designed
847 	 * to be used to read flash pages, which are typically multiples of 4.
848 	 */
849 	BUG_ON((len % 4) != 0);
850 
851 	/* transfer the data from the flash */
852 	buf32 = (uint32_t *)buf;
853 	for (i = 0; i < len / 4; i++)
854 		*buf32++ = ioread32(denali->flash_mem + 0x10);
855 	return i * 4; /* intent is to return the number of bytes read */
856 }
857 
858 /* writes OOB data to the device */
write_oob_data(struct mtd_info * mtd,uint8_t * buf,int page)859 static int write_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
860 {
861 	struct denali_nand_info *denali = mtd_to_denali(mtd);
862 	uint32_t irq_status;
863 	uint32_t irq_mask = INTR_STATUS__PROGRAM_COMP |
864 						INTR_STATUS__PROGRAM_FAIL;
865 	int status = 0;
866 
867 	denali->page = page;
868 
869 	if (denali_send_pipeline_cmd(denali, false, false, SPARE_ACCESS,
870 							DENALI_WRITE) == PASS) {
871 		write_data_to_flash_mem(denali, buf, mtd->oobsize);
872 
873 		/* wait for operation to complete */
874 		irq_status = wait_for_irq(denali, irq_mask);
875 
876 		if (irq_status == 0) {
877 			dev_err(denali->dev, "OOB write failed\n");
878 			status = -EIO;
879 		}
880 	} else {
881 		dev_err(denali->dev, "unable to send pipeline command\n");
882 		status = -EIO;
883 	}
884 	return status;
885 }
886 
887 /* reads OOB data from the device */
read_oob_data(struct mtd_info * mtd,uint8_t * buf,int page)888 static void read_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
889 {
890 	struct denali_nand_info *denali = mtd_to_denali(mtd);
891 	uint32_t irq_mask = INTR_STATUS__LOAD_COMP;
892 	uint32_t irq_status, addr, cmd;
893 
894 	denali->page = page;
895 
896 	if (denali_send_pipeline_cmd(denali, false, true, SPARE_ACCESS,
897 							DENALI_READ) == PASS) {
898 		read_data_from_flash_mem(denali, buf, mtd->oobsize);
899 
900 		/*
901 		 * wait for command to be accepted
902 		 * can always use status0 bit as the
903 		 * mask is identical for each bank.
904 		 */
905 		irq_status = wait_for_irq(denali, irq_mask);
906 
907 		if (irq_status == 0)
908 			dev_err(denali->dev, "page on OOB timeout %d\n",
909 					denali->page);
910 
911 		/*
912 		 * We set the device back to MAIN_ACCESS here as I observed
913 		 * instability with the controller if you do a block erase
914 		 * and the last transaction was a SPARE_ACCESS. Block erase
915 		 * is reliable (according to the MTD test infrastructure)
916 		 * if you are in MAIN_ACCESS.
917 		 */
918 		addr = BANK(denali->flash_bank) | denali->page;
919 		cmd = MODE_10 | addr;
920 		index_addr(denali, cmd, MAIN_ACCESS);
921 	}
922 }
923 
924 /*
925  * this function examines buffers to see if they contain data that
926  * indicate that the buffer is part of an erased region of flash.
927  */
is_erased(uint8_t * buf,int len)928 static bool is_erased(uint8_t *buf, int len)
929 {
930 	int i;
931 
932 	for (i = 0; i < len; i++)
933 		if (buf[i] != 0xFF)
934 			return false;
935 	return true;
936 }
937 #define ECC_SECTOR_SIZE 512
938 
939 #define ECC_SECTOR(x)	(((x) & ECC_ERROR_ADDRESS__SECTOR_NR) >> 12)
940 #define ECC_BYTE(x)	(((x) & ECC_ERROR_ADDRESS__OFFSET))
941 #define ECC_CORRECTION_VALUE(x) ((x) & ERR_CORRECTION_INFO__BYTEMASK)
942 #define ECC_ERROR_CORRECTABLE(x) (!((x) & ERR_CORRECTION_INFO__ERROR_TYPE))
943 #define ECC_ERR_DEVICE(x)	(((x) & ERR_CORRECTION_INFO__DEVICE_NR) >> 8)
944 #define ECC_LAST_ERR(x)		((x) & ERR_CORRECTION_INFO__LAST_ERR_INFO)
945 
handle_ecc(struct denali_nand_info * denali,uint8_t * buf,uint32_t irq_status,unsigned int * max_bitflips)946 static bool handle_ecc(struct denali_nand_info *denali, uint8_t *buf,
947 		       uint32_t irq_status, unsigned int *max_bitflips)
948 {
949 	bool check_erased_page = false;
950 	unsigned int bitflips = 0;
951 
952 	if (irq_status & INTR_STATUS__ECC_ERR) {
953 		/* read the ECC errors. we'll ignore them for now */
954 		uint32_t err_address, err_correction_info, err_byte,
955 			 err_sector, err_device, err_correction_value;
956 		denali_set_intr_modes(denali, false);
957 
958 		do {
959 			err_address = ioread32(denali->flash_reg +
960 						ECC_ERROR_ADDRESS);
961 			err_sector = ECC_SECTOR(err_address);
962 			err_byte = ECC_BYTE(err_address);
963 
964 			err_correction_info = ioread32(denali->flash_reg +
965 						ERR_CORRECTION_INFO);
966 			err_correction_value =
967 				ECC_CORRECTION_VALUE(err_correction_info);
968 			err_device = ECC_ERR_DEVICE(err_correction_info);
969 
970 			if (ECC_ERROR_CORRECTABLE(err_correction_info)) {
971 				/*
972 				 * If err_byte is larger than ECC_SECTOR_SIZE,
973 				 * means error happened in OOB, so we ignore
974 				 * it. It's no need for us to correct it
975 				 * err_device is represented the NAND error
976 				 * bits are happened in if there are more
977 				 * than one NAND connected.
978 				 */
979 				if (err_byte < ECC_SECTOR_SIZE) {
980 					int offset;
981 
982 					offset = (err_sector *
983 							ECC_SECTOR_SIZE +
984 							err_byte) *
985 							denali->devnum +
986 							err_device;
987 					/* correct the ECC error */
988 					buf[offset] ^= err_correction_value;
989 					denali->mtd.ecc_stats.corrected++;
990 					bitflips++;
991 				}
992 			} else {
993 				/*
994 				 * if the error is not correctable, need to
995 				 * look at the page to see if it is an erased
996 				 * page. if so, then it's not a real ECC error
997 				 */
998 				check_erased_page = true;
999 			}
1000 		} while (!ECC_LAST_ERR(err_correction_info));
1001 		/*
1002 		 * Once handle all ecc errors, controller will triger
1003 		 * a ECC_TRANSACTION_DONE interrupt, so here just wait
1004 		 * for a while for this interrupt
1005 		 */
1006 		while (!(read_interrupt_status(denali) &
1007 				INTR_STATUS__ECC_TRANSACTION_DONE))
1008 			cpu_relax();
1009 		clear_interrupts(denali);
1010 		denali_set_intr_modes(denali, true);
1011 	}
1012 	*max_bitflips = bitflips;
1013 	return check_erased_page;
1014 }
1015 
1016 /* programs the controller to either enable/disable DMA transfers */
denali_enable_dma(struct denali_nand_info * denali,bool en)1017 static void denali_enable_dma(struct denali_nand_info *denali, bool en)
1018 {
1019 	iowrite32(en ? DMA_ENABLE__FLAG : 0, denali->flash_reg + DMA_ENABLE);
1020 	ioread32(denali->flash_reg + DMA_ENABLE);
1021 }
1022 
1023 /* setups the HW to perform the data DMA */
denali_setup_dma(struct denali_nand_info * denali,int op)1024 static void denali_setup_dma(struct denali_nand_info *denali, int op)
1025 {
1026 	uint32_t mode;
1027 	const int page_count = 1;
1028 	uint32_t addr = denali->buf.dma_buf;
1029 
1030 	mode = MODE_10 | BANK(denali->flash_bank);
1031 
1032 	/* DMA is a four step process */
1033 
1034 	/* 1. setup transfer type and # of pages */
1035 	index_addr(denali, mode | denali->page, 0x2000 | op | page_count);
1036 
1037 	/* 2. set memory high address bits 23:8 */
1038 	index_addr(denali, mode | ((addr >> 16) << 8), 0x2200);
1039 
1040 	/* 3. set memory low address bits 23:8 */
1041 	index_addr(denali, mode | ((addr & 0xffff) << 8), 0x2300);
1042 
1043 	/* 4. interrupt when complete, burst len = 64 bytes */
1044 	index_addr(denali, mode | 0x14000, 0x2400);
1045 }
1046 
1047 /*
1048  * writes a page. user specifies type, and this function handles the
1049  * configuration details.
1050  */
write_page(struct mtd_info * mtd,struct nand_chip * chip,const uint8_t * buf,bool raw_xfer)1051 static int write_page(struct mtd_info *mtd, struct nand_chip *chip,
1052 			const uint8_t *buf, bool raw_xfer)
1053 {
1054 	struct denali_nand_info *denali = mtd_to_denali(mtd);
1055 	dma_addr_t addr = denali->buf.dma_buf;
1056 	size_t size = denali->mtd.writesize + denali->mtd.oobsize;
1057 	uint32_t irq_status;
1058 	uint32_t irq_mask = INTR_STATUS__DMA_CMD_COMP |
1059 						INTR_STATUS__PROGRAM_FAIL;
1060 
1061 	/*
1062 	 * if it is a raw xfer, we want to disable ecc and send the spare area.
1063 	 * !raw_xfer - enable ecc
1064 	 * raw_xfer - transfer spare
1065 	 */
1066 	setup_ecc_for_xfer(denali, !raw_xfer, raw_xfer);
1067 
1068 	/* copy buffer into DMA buffer */
1069 	memcpy(denali->buf.buf, buf, mtd->writesize);
1070 
1071 	if (raw_xfer) {
1072 		/* transfer the data to the spare area */
1073 		memcpy(denali->buf.buf + mtd->writesize,
1074 			chip->oob_poi,
1075 			mtd->oobsize);
1076 	}
1077 
1078 	dma_sync_single_for_device(denali->dev, addr, size, DMA_TO_DEVICE);
1079 
1080 	clear_interrupts(denali);
1081 	denali_enable_dma(denali, true);
1082 
1083 	denali_setup_dma(denali, DENALI_WRITE);
1084 
1085 	/* wait for operation to complete */
1086 	irq_status = wait_for_irq(denali, irq_mask);
1087 
1088 	if (irq_status == 0) {
1089 		dev_err(denali->dev, "timeout on write_page (type = %d)\n",
1090 			raw_xfer);
1091 		denali->status = NAND_STATUS_FAIL;
1092 	}
1093 
1094 	denali_enable_dma(denali, false);
1095 	dma_sync_single_for_cpu(denali->dev, addr, size, DMA_TO_DEVICE);
1096 
1097 	return 0;
1098 }
1099 
1100 /* NAND core entry points */
1101 
1102 /*
1103  * this is the callback that the NAND core calls to write a page. Since
1104  * writing a page with ECC or without is similar, all the work is done
1105  * by write_page above.
1106  */
denali_write_page(struct mtd_info * mtd,struct nand_chip * chip,const uint8_t * buf,int oob_required)1107 static int denali_write_page(struct mtd_info *mtd, struct nand_chip *chip,
1108 				const uint8_t *buf, int oob_required)
1109 {
1110 	/*
1111 	 * for regular page writes, we let HW handle all the ECC
1112 	 * data written to the device.
1113 	 */
1114 	return write_page(mtd, chip, buf, false);
1115 }
1116 
1117 /*
1118  * This is the callback that the NAND core calls to write a page without ECC.
1119  * raw access is similar to ECC page writes, so all the work is done in the
1120  * write_page() function above.
1121  */
denali_write_page_raw(struct mtd_info * mtd,struct nand_chip * chip,const uint8_t * buf,int oob_required)1122 static int denali_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1123 					const uint8_t *buf, int oob_required)
1124 {
1125 	/*
1126 	 * for raw page writes, we want to disable ECC and simply write
1127 	 * whatever data is in the buffer.
1128 	 */
1129 	return write_page(mtd, chip, buf, true);
1130 }
1131 
denali_write_oob(struct mtd_info * mtd,struct nand_chip * chip,int page)1132 static int denali_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
1133 			    int page)
1134 {
1135 	return write_oob_data(mtd, chip->oob_poi, page);
1136 }
1137 
denali_read_oob(struct mtd_info * mtd,struct nand_chip * chip,int page)1138 static int denali_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
1139 			   int page)
1140 {
1141 	read_oob_data(mtd, chip->oob_poi, page);
1142 
1143 	return 0;
1144 }
1145 
denali_read_page(struct mtd_info * mtd,struct nand_chip * chip,uint8_t * buf,int oob_required,int page)1146 static int denali_read_page(struct mtd_info *mtd, struct nand_chip *chip,
1147 			    uint8_t *buf, int oob_required, int page)
1148 {
1149 	unsigned int max_bitflips;
1150 	struct denali_nand_info *denali = mtd_to_denali(mtd);
1151 
1152 	dma_addr_t addr = denali->buf.dma_buf;
1153 	size_t size = denali->mtd.writesize + denali->mtd.oobsize;
1154 
1155 	uint32_t irq_status;
1156 	uint32_t irq_mask = INTR_STATUS__ECC_TRANSACTION_DONE |
1157 			    INTR_STATUS__ECC_ERR;
1158 	bool check_erased_page = false;
1159 
1160 	if (page != denali->page) {
1161 		dev_err(denali->dev,
1162 			"IN %s: page %d is not equal to denali->page %d",
1163 			__func__, page, denali->page);
1164 		BUG();
1165 	}
1166 
1167 	setup_ecc_for_xfer(denali, true, false);
1168 
1169 	denali_enable_dma(denali, true);
1170 	dma_sync_single_for_device(denali->dev, addr, size, DMA_FROM_DEVICE);
1171 
1172 	clear_interrupts(denali);
1173 	denali_setup_dma(denali, DENALI_READ);
1174 
1175 	/* wait for operation to complete */
1176 	irq_status = wait_for_irq(denali, irq_mask);
1177 
1178 	dma_sync_single_for_cpu(denali->dev, addr, size, DMA_FROM_DEVICE);
1179 
1180 	memcpy(buf, denali->buf.buf, mtd->writesize);
1181 
1182 	check_erased_page = handle_ecc(denali, buf, irq_status, &max_bitflips);
1183 	denali_enable_dma(denali, false);
1184 
1185 	if (check_erased_page) {
1186 		read_oob_data(&denali->mtd, chip->oob_poi, denali->page);
1187 
1188 		/* check ECC failures that may have occurred on erased pages */
1189 		if (check_erased_page) {
1190 			if (!is_erased(buf, denali->mtd.writesize))
1191 				denali->mtd.ecc_stats.failed++;
1192 			if (!is_erased(buf, denali->mtd.oobsize))
1193 				denali->mtd.ecc_stats.failed++;
1194 		}
1195 	}
1196 	return max_bitflips;
1197 }
1198 
denali_read_page_raw(struct mtd_info * mtd,struct nand_chip * chip,uint8_t * buf,int oob_required,int page)1199 static int denali_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1200 				uint8_t *buf, int oob_required, int page)
1201 {
1202 	struct denali_nand_info *denali = mtd_to_denali(mtd);
1203 	dma_addr_t addr = denali->buf.dma_buf;
1204 	size_t size = denali->mtd.writesize + denali->mtd.oobsize;
1205 	uint32_t irq_mask = INTR_STATUS__DMA_CMD_COMP;
1206 
1207 	if (page != denali->page) {
1208 		dev_err(denali->dev,
1209 			"IN %s: page %d is not equal to denali->page %d",
1210 			__func__, page, denali->page);
1211 		BUG();
1212 	}
1213 
1214 	setup_ecc_for_xfer(denali, false, true);
1215 	denali_enable_dma(denali, true);
1216 
1217 	dma_sync_single_for_device(denali->dev, addr, size, DMA_FROM_DEVICE);
1218 
1219 	clear_interrupts(denali);
1220 	denali_setup_dma(denali, DENALI_READ);
1221 
1222 	/* wait for operation to complete */
1223 	wait_for_irq(denali, irq_mask);
1224 
1225 	dma_sync_single_for_cpu(denali->dev, addr, size, DMA_FROM_DEVICE);
1226 
1227 	denali_enable_dma(denali, false);
1228 
1229 	memcpy(buf, denali->buf.buf, mtd->writesize);
1230 	memcpy(chip->oob_poi, denali->buf.buf + mtd->writesize, mtd->oobsize);
1231 
1232 	return 0;
1233 }
1234 
denali_read_byte(struct mtd_info * mtd)1235 static uint8_t denali_read_byte(struct mtd_info *mtd)
1236 {
1237 	struct denali_nand_info *denali = mtd_to_denali(mtd);
1238 	uint8_t result = 0xff;
1239 
1240 	if (denali->buf.head < denali->buf.tail)
1241 		result = denali->buf.buf[denali->buf.head++];
1242 
1243 	return result;
1244 }
1245 
denali_select_chip(struct mtd_info * mtd,int chip)1246 static void denali_select_chip(struct mtd_info *mtd, int chip)
1247 {
1248 	struct denali_nand_info *denali = mtd_to_denali(mtd);
1249 
1250 	spin_lock_irq(&denali->irq_lock);
1251 	denali->flash_bank = chip;
1252 	spin_unlock_irq(&denali->irq_lock);
1253 }
1254 
denali_waitfunc(struct mtd_info * mtd,struct nand_chip * chip)1255 static int denali_waitfunc(struct mtd_info *mtd, struct nand_chip *chip)
1256 {
1257 	struct denali_nand_info *denali = mtd_to_denali(mtd);
1258 	int status = denali->status;
1259 
1260 	denali->status = 0;
1261 
1262 	return status;
1263 }
1264 
denali_erase(struct mtd_info * mtd,int page)1265 static int denali_erase(struct mtd_info *mtd, int page)
1266 {
1267 	struct denali_nand_info *denali = mtd_to_denali(mtd);
1268 
1269 	uint32_t cmd, irq_status;
1270 
1271 	clear_interrupts(denali);
1272 
1273 	/* setup page read request for access type */
1274 	cmd = MODE_10 | BANK(denali->flash_bank) | page;
1275 	index_addr(denali, cmd, 0x1);
1276 
1277 	/* wait for erase to complete or failure to occur */
1278 	irq_status = wait_for_irq(denali, INTR_STATUS__ERASE_COMP |
1279 					INTR_STATUS__ERASE_FAIL);
1280 
1281 	return irq_status & INTR_STATUS__ERASE_FAIL ? NAND_STATUS_FAIL : PASS;
1282 }
1283 
denali_cmdfunc(struct mtd_info * mtd,unsigned int cmd,int col,int page)1284 static void denali_cmdfunc(struct mtd_info *mtd, unsigned int cmd, int col,
1285 			   int page)
1286 {
1287 	struct denali_nand_info *denali = mtd_to_denali(mtd);
1288 	uint32_t addr, id;
1289 	int i;
1290 
1291 	switch (cmd) {
1292 	case NAND_CMD_PAGEPROG:
1293 		break;
1294 	case NAND_CMD_STATUS:
1295 		read_status(denali);
1296 		break;
1297 	case NAND_CMD_READID:
1298 	case NAND_CMD_PARAM:
1299 		reset_buf(denali);
1300 		/*
1301 		 * sometimes ManufactureId read from register is not right
1302 		 * e.g. some of Micron MT29F32G08QAA MLC NAND chips
1303 		 * So here we send READID cmd to NAND insteand
1304 		 */
1305 		addr = MODE_11 | BANK(denali->flash_bank);
1306 		index_addr(denali, addr | 0, 0x90);
1307 		index_addr(denali, addr | 1, 0);
1308 		for (i = 0; i < 8; i++) {
1309 			index_addr_read_data(denali, addr | 2, &id);
1310 			write_byte_to_buf(denali, id);
1311 		}
1312 		break;
1313 	case NAND_CMD_READ0:
1314 	case NAND_CMD_SEQIN:
1315 		denali->page = page;
1316 		break;
1317 	case NAND_CMD_RESET:
1318 		reset_bank(denali);
1319 		break;
1320 	case NAND_CMD_READOOB:
1321 		/* TODO: Read OOB data */
1322 		break;
1323 	default:
1324 		pr_err(": unsupported command received 0x%x\n", cmd);
1325 		break;
1326 	}
1327 }
1328 /* end NAND core entry points */
1329 
1330 /* Initialization code to bring the device up to a known good state */
denali_hw_init(struct denali_nand_info * denali)1331 static void denali_hw_init(struct denali_nand_info *denali)
1332 {
1333 	/*
1334 	 * tell driver how many bit controller will skip before
1335 	 * writing ECC code in OOB, this register may be already
1336 	 * set by firmware. So we read this value out.
1337 	 * if this value is 0, just let it be.
1338 	 */
1339 	denali->bbtskipbytes = ioread32(denali->flash_reg +
1340 						SPARE_AREA_SKIP_BYTES);
1341 	detect_max_banks(denali);
1342 	denali_nand_reset(denali);
1343 	iowrite32(0x0F, denali->flash_reg + RB_PIN_ENABLED);
1344 	iowrite32(CHIP_EN_DONT_CARE__FLAG,
1345 			denali->flash_reg + CHIP_ENABLE_DONT_CARE);
1346 
1347 	iowrite32(0xffff, denali->flash_reg + SPARE_AREA_MARKER);
1348 
1349 	/* Should set value for these registers when init */
1350 	iowrite32(0, denali->flash_reg + TWO_ROW_ADDR_CYCLES);
1351 	iowrite32(1, denali->flash_reg + ECC_ENABLE);
1352 	denali_nand_timing_set(denali);
1353 	denali_irq_init(denali);
1354 }
1355 
1356 /*
1357  * Althogh controller spec said SLC ECC is forceb to be 4bit,
1358  * but denali controller in MRST only support 15bit and 8bit ECC
1359  * correction
1360  */
1361 #define ECC_8BITS	14
1362 static struct nand_ecclayout nand_8bit_oob = {
1363 	.eccbytes = 14,
1364 };
1365 
1366 #define ECC_15BITS	26
1367 static struct nand_ecclayout nand_15bit_oob = {
1368 	.eccbytes = 26,
1369 };
1370 
1371 static uint8_t bbt_pattern[] = {'B', 'b', 't', '0' };
1372 static uint8_t mirror_pattern[] = {'1', 't', 'b', 'B' };
1373 
1374 static struct nand_bbt_descr bbt_main_descr = {
1375 	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
1376 		| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
1377 	.offs =	8,
1378 	.len = 4,
1379 	.veroffs = 12,
1380 	.maxblocks = 4,
1381 	.pattern = bbt_pattern,
1382 };
1383 
1384 static struct nand_bbt_descr bbt_mirror_descr = {
1385 	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
1386 		| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
1387 	.offs =	8,
1388 	.len = 4,
1389 	.veroffs = 12,
1390 	.maxblocks = 4,
1391 	.pattern = mirror_pattern,
1392 };
1393 
1394 /* initialize driver data structures */
denali_drv_init(struct denali_nand_info * denali)1395 static void denali_drv_init(struct denali_nand_info *denali)
1396 {
1397 	denali->idx = 0;
1398 
1399 	/* setup interrupt handler */
1400 	/*
1401 	 * the completion object will be used to notify
1402 	 * the callee that the interrupt is done
1403 	 */
1404 	init_completion(&denali->complete);
1405 
1406 	/*
1407 	 * the spinlock will be used to synchronize the ISR with any
1408 	 * element that might be access shared data (interrupt status)
1409 	 */
1410 	spin_lock_init(&denali->irq_lock);
1411 
1412 	/* indicate that MTD has not selected a valid bank yet */
1413 	denali->flash_bank = CHIP_SELECT_INVALID;
1414 
1415 	/* initialize our irq_status variable to indicate no interrupts */
1416 	denali->irq_status = 0;
1417 }
1418 
denali_init(struct denali_nand_info * denali)1419 int denali_init(struct denali_nand_info *denali)
1420 {
1421 	int ret;
1422 
1423 	if (denali->platform == INTEL_CE4100) {
1424 		/*
1425 		 * Due to a silicon limitation, we can only support
1426 		 * ONFI timing mode 1 and below.
1427 		 */
1428 		if (onfi_timing_mode < -1 || onfi_timing_mode > 1) {
1429 			pr_err("Intel CE4100 only supports ONFI timing mode 1 or below\n");
1430 			return -EINVAL;
1431 		}
1432 	}
1433 
1434 	/* allocate a temporary buffer for nand_scan_ident() */
1435 	denali->buf.buf = devm_kzalloc(denali->dev, PAGE_SIZE,
1436 					GFP_DMA | GFP_KERNEL);
1437 	if (!denali->buf.buf)
1438 		return -ENOMEM;
1439 
1440 	denali->mtd.dev.parent = denali->dev;
1441 	denali_hw_init(denali);
1442 	denali_drv_init(denali);
1443 
1444 	/*
1445 	 * denali_isr register is done after all the hardware
1446 	 * initilization is finished
1447 	 */
1448 	if (request_irq(denali->irq, denali_isr, IRQF_SHARED,
1449 			DENALI_NAND_NAME, denali)) {
1450 		pr_err("Spectra: Unable to allocate IRQ\n");
1451 		return -ENODEV;
1452 	}
1453 
1454 	/* now that our ISR is registered, we can enable interrupts */
1455 	denali_set_intr_modes(denali, true);
1456 	denali->mtd.name = "denali-nand";
1457 	denali->mtd.owner = THIS_MODULE;
1458 	denali->mtd.priv = &denali->nand;
1459 
1460 	/* register the driver with the NAND core subsystem */
1461 	denali->nand.select_chip = denali_select_chip;
1462 	denali->nand.cmdfunc = denali_cmdfunc;
1463 	denali->nand.read_byte = denali_read_byte;
1464 	denali->nand.waitfunc = denali_waitfunc;
1465 
1466 	/*
1467 	 * scan for NAND devices attached to the controller
1468 	 * this is the first stage in a two step process to register
1469 	 * with the nand subsystem
1470 	 */
1471 	if (nand_scan_ident(&denali->mtd, denali->max_banks, NULL)) {
1472 		ret = -ENXIO;
1473 		goto failed_req_irq;
1474 	}
1475 
1476 	/* allocate the right size buffer now */
1477 	devm_kfree(denali->dev, denali->buf.buf);
1478 	denali->buf.buf = devm_kzalloc(denali->dev,
1479 			     denali->mtd.writesize + denali->mtd.oobsize,
1480 			     GFP_KERNEL);
1481 	if (!denali->buf.buf) {
1482 		ret = -ENOMEM;
1483 		goto failed_req_irq;
1484 	}
1485 
1486 	/* Is 32-bit DMA supported? */
1487 	ret = dma_set_mask(denali->dev, DMA_BIT_MASK(32));
1488 	if (ret) {
1489 		pr_err("Spectra: no usable DMA configuration\n");
1490 		goto failed_req_irq;
1491 	}
1492 
1493 	denali->buf.dma_buf = dma_map_single(denali->dev, denali->buf.buf,
1494 			     denali->mtd.writesize + denali->mtd.oobsize,
1495 			     DMA_BIDIRECTIONAL);
1496 	if (dma_mapping_error(denali->dev, denali->buf.dma_buf)) {
1497 		dev_err(denali->dev, "Spectra: failed to map DMA buffer\n");
1498 		ret = -EIO;
1499 		goto failed_req_irq;
1500 	}
1501 
1502 	/*
1503 	 * support for multi nand
1504 	 * MTD known nothing about multi nand, so we should tell it
1505 	 * the real pagesize and anything necessery
1506 	 */
1507 	denali->devnum = ioread32(denali->flash_reg + DEVICES_CONNECTED);
1508 	denali->nand.chipsize <<= (denali->devnum - 1);
1509 	denali->nand.page_shift += (denali->devnum - 1);
1510 	denali->nand.pagemask = (denali->nand.chipsize >>
1511 						denali->nand.page_shift) - 1;
1512 	denali->nand.bbt_erase_shift += (denali->devnum - 1);
1513 	denali->nand.phys_erase_shift = denali->nand.bbt_erase_shift;
1514 	denali->nand.chip_shift += (denali->devnum - 1);
1515 	denali->mtd.writesize <<= (denali->devnum - 1);
1516 	denali->mtd.oobsize <<= (denali->devnum - 1);
1517 	denali->mtd.erasesize <<= (denali->devnum - 1);
1518 	denali->mtd.size = denali->nand.numchips * denali->nand.chipsize;
1519 	denali->bbtskipbytes *= denali->devnum;
1520 
1521 	/*
1522 	 * second stage of the NAND scan
1523 	 * this stage requires information regarding ECC and
1524 	 * bad block management.
1525 	 */
1526 
1527 	/* Bad block management */
1528 	denali->nand.bbt_td = &bbt_main_descr;
1529 	denali->nand.bbt_md = &bbt_mirror_descr;
1530 
1531 	/* skip the scan for now until we have OOB read and write support */
1532 	denali->nand.bbt_options |= NAND_BBT_USE_FLASH;
1533 	denali->nand.options |= NAND_SKIP_BBTSCAN;
1534 	denali->nand.ecc.mode = NAND_ECC_HW_SYNDROME;
1535 
1536 	/* no subpage writes on denali */
1537 	denali->nand.options |= NAND_NO_SUBPAGE_WRITE;
1538 
1539 	/*
1540 	 * Denali Controller only support 15bit and 8bit ECC in MRST,
1541 	 * so just let controller do 15bit ECC for MLC and 8bit ECC for
1542 	 * SLC if possible.
1543 	 * */
1544 	if (!nand_is_slc(&denali->nand) &&
1545 			(denali->mtd.oobsize > (denali->bbtskipbytes +
1546 			ECC_15BITS * (denali->mtd.writesize /
1547 			ECC_SECTOR_SIZE)))) {
1548 		/* if MLC OOB size is large enough, use 15bit ECC*/
1549 		denali->nand.ecc.strength = 15;
1550 		denali->nand.ecc.layout = &nand_15bit_oob;
1551 		denali->nand.ecc.bytes = ECC_15BITS;
1552 		iowrite32(15, denali->flash_reg + ECC_CORRECTION);
1553 	} else if (denali->mtd.oobsize < (denali->bbtskipbytes +
1554 			ECC_8BITS * (denali->mtd.writesize /
1555 			ECC_SECTOR_SIZE))) {
1556 		pr_err("Your NAND chip OOB is not large enough to contain 8bit ECC correction codes");
1557 		goto failed_req_irq;
1558 	} else {
1559 		denali->nand.ecc.strength = 8;
1560 		denali->nand.ecc.layout = &nand_8bit_oob;
1561 		denali->nand.ecc.bytes = ECC_8BITS;
1562 		iowrite32(8, denali->flash_reg + ECC_CORRECTION);
1563 	}
1564 
1565 	denali->nand.ecc.bytes *= denali->devnum;
1566 	denali->nand.ecc.strength *= denali->devnum;
1567 	denali->nand.ecc.layout->eccbytes *=
1568 		denali->mtd.writesize / ECC_SECTOR_SIZE;
1569 	denali->nand.ecc.layout->oobfree[0].offset =
1570 		denali->bbtskipbytes + denali->nand.ecc.layout->eccbytes;
1571 	denali->nand.ecc.layout->oobfree[0].length =
1572 		denali->mtd.oobsize - denali->nand.ecc.layout->eccbytes -
1573 		denali->bbtskipbytes;
1574 
1575 	/*
1576 	 * Let driver know the total blocks number and how many blocks
1577 	 * contained by each nand chip. blksperchip will help driver to
1578 	 * know how many blocks is taken by FW.
1579 	 */
1580 	denali->totalblks = denali->mtd.size >> denali->nand.phys_erase_shift;
1581 	denali->blksperchip = denali->totalblks / denali->nand.numchips;
1582 
1583 	/* override the default read operations */
1584 	denali->nand.ecc.size = ECC_SECTOR_SIZE * denali->devnum;
1585 	denali->nand.ecc.read_page = denali_read_page;
1586 	denali->nand.ecc.read_page_raw = denali_read_page_raw;
1587 	denali->nand.ecc.write_page = denali_write_page;
1588 	denali->nand.ecc.write_page_raw = denali_write_page_raw;
1589 	denali->nand.ecc.read_oob = denali_read_oob;
1590 	denali->nand.ecc.write_oob = denali_write_oob;
1591 	denali->nand.erase = denali_erase;
1592 
1593 	if (nand_scan_tail(&denali->mtd)) {
1594 		ret = -ENXIO;
1595 		goto failed_req_irq;
1596 	}
1597 
1598 	ret = mtd_device_register(&denali->mtd, NULL, 0);
1599 	if (ret) {
1600 		dev_err(denali->dev, "Spectra: Failed to register MTD: %d\n",
1601 				ret);
1602 		goto failed_req_irq;
1603 	}
1604 	return 0;
1605 
1606 failed_req_irq:
1607 	denali_irq_cleanup(denali->irq, denali);
1608 
1609 	return ret;
1610 }
1611 EXPORT_SYMBOL(denali_init);
1612 
1613 /* driver exit point */
denali_remove(struct denali_nand_info * denali)1614 void denali_remove(struct denali_nand_info *denali)
1615 {
1616 	denali_irq_cleanup(denali->irq, denali);
1617 	dma_unmap_single(denali->dev, denali->buf.dma_buf,
1618 			 denali->mtd.writesize + denali->mtd.oobsize,
1619 			 DMA_BIDIRECTIONAL);
1620 }
1621 EXPORT_SYMBOL(denali_remove);
1622