1 /****************************************************************************
2 * Driver for Solarflare network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2006-2013 Solarflare Communications Inc.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
10
11 #include <linux/bitops.h>
12 #include <linux/delay.h>
13 #include <linux/interrupt.h>
14 #include <linux/pci.h>
15 #include <linux/module.h>
16 #include <linux/seq_file.h>
17 #include <linux/crc32.h>
18 #include "net_driver.h"
19 #include "bitfield.h"
20 #include "efx.h"
21 #include "nic.h"
22 #include "farch_regs.h"
23 #include "io.h"
24 #include "workarounds.h"
25
26 /* Falcon-architecture (SFC4000 and SFC9000-family) support */
27
28 /**************************************************************************
29 *
30 * Configurable values
31 *
32 **************************************************************************
33 */
34
35 /* This is set to 16 for a good reason. In summary, if larger than
36 * 16, the descriptor cache holds more than a default socket
37 * buffer's worth of packets (for UDP we can only have at most one
38 * socket buffer's worth outstanding). This combined with the fact
39 * that we only get 1 TX event per descriptor cache means the NIC
40 * goes idle.
41 */
42 #define TX_DC_ENTRIES 16
43 #define TX_DC_ENTRIES_ORDER 1
44
45 #define RX_DC_ENTRIES 64
46 #define RX_DC_ENTRIES_ORDER 3
47
48 /* If EFX_MAX_INT_ERRORS internal errors occur within
49 * EFX_INT_ERROR_EXPIRE seconds, we consider the NIC broken and
50 * disable it.
51 */
52 #define EFX_INT_ERROR_EXPIRE 3600
53 #define EFX_MAX_INT_ERRORS 5
54
55 /* Depth of RX flush request fifo */
56 #define EFX_RX_FLUSH_COUNT 4
57
58 /* Driver generated events */
59 #define _EFX_CHANNEL_MAGIC_TEST 0x000101
60 #define _EFX_CHANNEL_MAGIC_FILL 0x000102
61 #define _EFX_CHANNEL_MAGIC_RX_DRAIN 0x000103
62 #define _EFX_CHANNEL_MAGIC_TX_DRAIN 0x000104
63
64 #define _EFX_CHANNEL_MAGIC(_code, _data) ((_code) << 8 | (_data))
65 #define _EFX_CHANNEL_MAGIC_CODE(_magic) ((_magic) >> 8)
66
67 #define EFX_CHANNEL_MAGIC_TEST(_channel) \
68 _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TEST, (_channel)->channel)
69 #define EFX_CHANNEL_MAGIC_FILL(_rx_queue) \
70 _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_FILL, \
71 efx_rx_queue_index(_rx_queue))
72 #define EFX_CHANNEL_MAGIC_RX_DRAIN(_rx_queue) \
73 _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_RX_DRAIN, \
74 efx_rx_queue_index(_rx_queue))
75 #define EFX_CHANNEL_MAGIC_TX_DRAIN(_tx_queue) \
76 _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TX_DRAIN, \
77 (_tx_queue)->queue)
78
79 static void efx_farch_magic_event(struct efx_channel *channel, u32 magic);
80
81 /**************************************************************************
82 *
83 * Hardware access
84 *
85 **************************************************************************/
86
efx_write_buf_tbl(struct efx_nic * efx,efx_qword_t * value,unsigned int index)87 static inline void efx_write_buf_tbl(struct efx_nic *efx, efx_qword_t *value,
88 unsigned int index)
89 {
90 efx_sram_writeq(efx, efx->membase + efx->type->buf_tbl_base,
91 value, index);
92 }
93
efx_masked_compare_oword(const efx_oword_t * a,const efx_oword_t * b,const efx_oword_t * mask)94 static bool efx_masked_compare_oword(const efx_oword_t *a, const efx_oword_t *b,
95 const efx_oword_t *mask)
96 {
97 return ((a->u64[0] ^ b->u64[0]) & mask->u64[0]) ||
98 ((a->u64[1] ^ b->u64[1]) & mask->u64[1]);
99 }
100
efx_farch_test_registers(struct efx_nic * efx,const struct efx_farch_register_test * regs,size_t n_regs)101 int efx_farch_test_registers(struct efx_nic *efx,
102 const struct efx_farch_register_test *regs,
103 size_t n_regs)
104 {
105 unsigned address = 0, i, j;
106 efx_oword_t mask, imask, original, reg, buf;
107
108 for (i = 0; i < n_regs; ++i) {
109 address = regs[i].address;
110 mask = imask = regs[i].mask;
111 EFX_INVERT_OWORD(imask);
112
113 efx_reado(efx, &original, address);
114
115 /* bit sweep on and off */
116 for (j = 0; j < 128; j++) {
117 if (!EFX_EXTRACT_OWORD32(mask, j, j))
118 continue;
119
120 /* Test this testable bit can be set in isolation */
121 EFX_AND_OWORD(reg, original, mask);
122 EFX_SET_OWORD32(reg, j, j, 1);
123
124 efx_writeo(efx, ®, address);
125 efx_reado(efx, &buf, address);
126
127 if (efx_masked_compare_oword(®, &buf, &mask))
128 goto fail;
129
130 /* Test this testable bit can be cleared in isolation */
131 EFX_OR_OWORD(reg, original, mask);
132 EFX_SET_OWORD32(reg, j, j, 0);
133
134 efx_writeo(efx, ®, address);
135 efx_reado(efx, &buf, address);
136
137 if (efx_masked_compare_oword(®, &buf, &mask))
138 goto fail;
139 }
140
141 efx_writeo(efx, &original, address);
142 }
143
144 return 0;
145
146 fail:
147 netif_err(efx, hw, efx->net_dev,
148 "wrote "EFX_OWORD_FMT" read "EFX_OWORD_FMT
149 " at address 0x%x mask "EFX_OWORD_FMT"\n", EFX_OWORD_VAL(reg),
150 EFX_OWORD_VAL(buf), address, EFX_OWORD_VAL(mask));
151 return -EIO;
152 }
153
154 /**************************************************************************
155 *
156 * Special buffer handling
157 * Special buffers are used for event queues and the TX and RX
158 * descriptor rings.
159 *
160 *************************************************************************/
161
162 /*
163 * Initialise a special buffer
164 *
165 * This will define a buffer (previously allocated via
166 * efx_alloc_special_buffer()) in the buffer table, allowing
167 * it to be used for event queues, descriptor rings etc.
168 */
169 static void
efx_init_special_buffer(struct efx_nic * efx,struct efx_special_buffer * buffer)170 efx_init_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
171 {
172 efx_qword_t buf_desc;
173 unsigned int index;
174 dma_addr_t dma_addr;
175 int i;
176
177 EFX_BUG_ON_PARANOID(!buffer->buf.addr);
178
179 /* Write buffer descriptors to NIC */
180 for (i = 0; i < buffer->entries; i++) {
181 index = buffer->index + i;
182 dma_addr = buffer->buf.dma_addr + (i * EFX_BUF_SIZE);
183 netif_dbg(efx, probe, efx->net_dev,
184 "mapping special buffer %d at %llx\n",
185 index, (unsigned long long)dma_addr);
186 EFX_POPULATE_QWORD_3(buf_desc,
187 FRF_AZ_BUF_ADR_REGION, 0,
188 FRF_AZ_BUF_ADR_FBUF, dma_addr >> 12,
189 FRF_AZ_BUF_OWNER_ID_FBUF, 0);
190 efx_write_buf_tbl(efx, &buf_desc, index);
191 }
192 }
193
194 /* Unmaps a buffer and clears the buffer table entries */
195 static void
efx_fini_special_buffer(struct efx_nic * efx,struct efx_special_buffer * buffer)196 efx_fini_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
197 {
198 efx_oword_t buf_tbl_upd;
199 unsigned int start = buffer->index;
200 unsigned int end = (buffer->index + buffer->entries - 1);
201
202 if (!buffer->entries)
203 return;
204
205 netif_dbg(efx, hw, efx->net_dev, "unmapping special buffers %d-%d\n",
206 buffer->index, buffer->index + buffer->entries - 1);
207
208 EFX_POPULATE_OWORD_4(buf_tbl_upd,
209 FRF_AZ_BUF_UPD_CMD, 0,
210 FRF_AZ_BUF_CLR_CMD, 1,
211 FRF_AZ_BUF_CLR_END_ID, end,
212 FRF_AZ_BUF_CLR_START_ID, start);
213 efx_writeo(efx, &buf_tbl_upd, FR_AZ_BUF_TBL_UPD);
214 }
215
216 /*
217 * Allocate a new special buffer
218 *
219 * This allocates memory for a new buffer, clears it and allocates a
220 * new buffer ID range. It does not write into the buffer table.
221 *
222 * This call will allocate 4KB buffers, since 8KB buffers can't be
223 * used for event queues and descriptor rings.
224 */
efx_alloc_special_buffer(struct efx_nic * efx,struct efx_special_buffer * buffer,unsigned int len)225 static int efx_alloc_special_buffer(struct efx_nic *efx,
226 struct efx_special_buffer *buffer,
227 unsigned int len)
228 {
229 #ifdef CONFIG_SFC_SRIOV
230 struct siena_nic_data *nic_data = efx->nic_data;
231 #endif
232 len = ALIGN(len, EFX_BUF_SIZE);
233
234 if (efx_nic_alloc_buffer(efx, &buffer->buf, len, GFP_KERNEL))
235 return -ENOMEM;
236 buffer->entries = len / EFX_BUF_SIZE;
237 BUG_ON(buffer->buf.dma_addr & (EFX_BUF_SIZE - 1));
238
239 /* Select new buffer ID */
240 buffer->index = efx->next_buffer_table;
241 efx->next_buffer_table += buffer->entries;
242 #ifdef CONFIG_SFC_SRIOV
243 BUG_ON(efx_siena_sriov_enabled(efx) &&
244 nic_data->vf_buftbl_base < efx->next_buffer_table);
245 #endif
246
247 netif_dbg(efx, probe, efx->net_dev,
248 "allocating special buffers %d-%d at %llx+%x "
249 "(virt %p phys %llx)\n", buffer->index,
250 buffer->index + buffer->entries - 1,
251 (u64)buffer->buf.dma_addr, len,
252 buffer->buf.addr, (u64)virt_to_phys(buffer->buf.addr));
253
254 return 0;
255 }
256
257 static void
efx_free_special_buffer(struct efx_nic * efx,struct efx_special_buffer * buffer)258 efx_free_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
259 {
260 if (!buffer->buf.addr)
261 return;
262
263 netif_dbg(efx, hw, efx->net_dev,
264 "deallocating special buffers %d-%d at %llx+%x "
265 "(virt %p phys %llx)\n", buffer->index,
266 buffer->index + buffer->entries - 1,
267 (u64)buffer->buf.dma_addr, buffer->buf.len,
268 buffer->buf.addr, (u64)virt_to_phys(buffer->buf.addr));
269
270 efx_nic_free_buffer(efx, &buffer->buf);
271 buffer->entries = 0;
272 }
273
274 /**************************************************************************
275 *
276 * TX path
277 *
278 **************************************************************************/
279
280 /* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
efx_farch_notify_tx_desc(struct efx_tx_queue * tx_queue)281 static inline void efx_farch_notify_tx_desc(struct efx_tx_queue *tx_queue)
282 {
283 unsigned write_ptr;
284 efx_dword_t reg;
285
286 write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
287 EFX_POPULATE_DWORD_1(reg, FRF_AZ_TX_DESC_WPTR_DWORD, write_ptr);
288 efx_writed_page(tx_queue->efx, ®,
289 FR_AZ_TX_DESC_UPD_DWORD_P0, tx_queue->queue);
290 }
291
292 /* Write pointer and first descriptor for TX descriptor ring */
efx_farch_push_tx_desc(struct efx_tx_queue * tx_queue,const efx_qword_t * txd)293 static inline void efx_farch_push_tx_desc(struct efx_tx_queue *tx_queue,
294 const efx_qword_t *txd)
295 {
296 unsigned write_ptr;
297 efx_oword_t reg;
298
299 BUILD_BUG_ON(FRF_AZ_TX_DESC_LBN != 0);
300 BUILD_BUG_ON(FR_AA_TX_DESC_UPD_KER != FR_BZ_TX_DESC_UPD_P0);
301
302 write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
303 EFX_POPULATE_OWORD_2(reg, FRF_AZ_TX_DESC_PUSH_CMD, true,
304 FRF_AZ_TX_DESC_WPTR, write_ptr);
305 reg.qword[0] = *txd;
306 efx_writeo_page(tx_queue->efx, ®,
307 FR_BZ_TX_DESC_UPD_P0, tx_queue->queue);
308 }
309
310
311 /* For each entry inserted into the software descriptor ring, create a
312 * descriptor in the hardware TX descriptor ring (in host memory), and
313 * write a doorbell.
314 */
efx_farch_tx_write(struct efx_tx_queue * tx_queue)315 void efx_farch_tx_write(struct efx_tx_queue *tx_queue)
316 {
317 struct efx_tx_buffer *buffer;
318 efx_qword_t *txd;
319 unsigned write_ptr;
320 unsigned old_write_count = tx_queue->write_count;
321
322 tx_queue->xmit_more_available = false;
323 if (unlikely(tx_queue->write_count == tx_queue->insert_count))
324 return;
325
326 do {
327 write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
328 buffer = &tx_queue->buffer[write_ptr];
329 txd = efx_tx_desc(tx_queue, write_ptr);
330 ++tx_queue->write_count;
331
332 EFX_BUG_ON_PARANOID(buffer->flags & EFX_TX_BUF_OPTION);
333
334 /* Create TX descriptor ring entry */
335 BUILD_BUG_ON(EFX_TX_BUF_CONT != 1);
336 EFX_POPULATE_QWORD_4(*txd,
337 FSF_AZ_TX_KER_CONT,
338 buffer->flags & EFX_TX_BUF_CONT,
339 FSF_AZ_TX_KER_BYTE_COUNT, buffer->len,
340 FSF_AZ_TX_KER_BUF_REGION, 0,
341 FSF_AZ_TX_KER_BUF_ADDR, buffer->dma_addr);
342 } while (tx_queue->write_count != tx_queue->insert_count);
343
344 wmb(); /* Ensure descriptors are written before they are fetched */
345
346 if (efx_nic_may_push_tx_desc(tx_queue, old_write_count)) {
347 txd = efx_tx_desc(tx_queue,
348 old_write_count & tx_queue->ptr_mask);
349 efx_farch_push_tx_desc(tx_queue, txd);
350 ++tx_queue->pushes;
351 } else {
352 efx_farch_notify_tx_desc(tx_queue);
353 }
354 }
355
356 /* Allocate hardware resources for a TX queue */
efx_farch_tx_probe(struct efx_tx_queue * tx_queue)357 int efx_farch_tx_probe(struct efx_tx_queue *tx_queue)
358 {
359 struct efx_nic *efx = tx_queue->efx;
360 unsigned entries;
361
362 entries = tx_queue->ptr_mask + 1;
363 return efx_alloc_special_buffer(efx, &tx_queue->txd,
364 entries * sizeof(efx_qword_t));
365 }
366
efx_farch_tx_init(struct efx_tx_queue * tx_queue)367 void efx_farch_tx_init(struct efx_tx_queue *tx_queue)
368 {
369 struct efx_nic *efx = tx_queue->efx;
370 efx_oword_t reg;
371
372 /* Pin TX descriptor ring */
373 efx_init_special_buffer(efx, &tx_queue->txd);
374
375 /* Push TX descriptor ring to card */
376 EFX_POPULATE_OWORD_10(reg,
377 FRF_AZ_TX_DESCQ_EN, 1,
378 FRF_AZ_TX_ISCSI_DDIG_EN, 0,
379 FRF_AZ_TX_ISCSI_HDIG_EN, 0,
380 FRF_AZ_TX_DESCQ_BUF_BASE_ID, tx_queue->txd.index,
381 FRF_AZ_TX_DESCQ_EVQ_ID,
382 tx_queue->channel->channel,
383 FRF_AZ_TX_DESCQ_OWNER_ID, 0,
384 FRF_AZ_TX_DESCQ_LABEL, tx_queue->queue,
385 FRF_AZ_TX_DESCQ_SIZE,
386 __ffs(tx_queue->txd.entries),
387 FRF_AZ_TX_DESCQ_TYPE, 0,
388 FRF_BZ_TX_NON_IP_DROP_DIS, 1);
389
390 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
391 int csum = tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD;
392 EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_IP_CHKSM_DIS, !csum);
393 EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_TCP_CHKSM_DIS,
394 !csum);
395 }
396
397 efx_writeo_table(efx, ®, efx->type->txd_ptr_tbl_base,
398 tx_queue->queue);
399
400 if (efx_nic_rev(efx) < EFX_REV_FALCON_B0) {
401 /* Only 128 bits in this register */
402 BUILD_BUG_ON(EFX_MAX_TX_QUEUES > 128);
403
404 efx_reado(efx, ®, FR_AA_TX_CHKSM_CFG);
405 if (tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD)
406 __clear_bit_le(tx_queue->queue, ®);
407 else
408 __set_bit_le(tx_queue->queue, ®);
409 efx_writeo(efx, ®, FR_AA_TX_CHKSM_CFG);
410 }
411
412 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
413 EFX_POPULATE_OWORD_1(reg,
414 FRF_BZ_TX_PACE,
415 (tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI) ?
416 FFE_BZ_TX_PACE_OFF :
417 FFE_BZ_TX_PACE_RESERVED);
418 efx_writeo_table(efx, ®, FR_BZ_TX_PACE_TBL,
419 tx_queue->queue);
420 }
421 }
422
efx_farch_flush_tx_queue(struct efx_tx_queue * tx_queue)423 static void efx_farch_flush_tx_queue(struct efx_tx_queue *tx_queue)
424 {
425 struct efx_nic *efx = tx_queue->efx;
426 efx_oword_t tx_flush_descq;
427
428 WARN_ON(atomic_read(&tx_queue->flush_outstanding));
429 atomic_set(&tx_queue->flush_outstanding, 1);
430
431 EFX_POPULATE_OWORD_2(tx_flush_descq,
432 FRF_AZ_TX_FLUSH_DESCQ_CMD, 1,
433 FRF_AZ_TX_FLUSH_DESCQ, tx_queue->queue);
434 efx_writeo(efx, &tx_flush_descq, FR_AZ_TX_FLUSH_DESCQ);
435 }
436
efx_farch_tx_fini(struct efx_tx_queue * tx_queue)437 void efx_farch_tx_fini(struct efx_tx_queue *tx_queue)
438 {
439 struct efx_nic *efx = tx_queue->efx;
440 efx_oword_t tx_desc_ptr;
441
442 /* Remove TX descriptor ring from card */
443 EFX_ZERO_OWORD(tx_desc_ptr);
444 efx_writeo_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
445 tx_queue->queue);
446
447 /* Unpin TX descriptor ring */
448 efx_fini_special_buffer(efx, &tx_queue->txd);
449 }
450
451 /* Free buffers backing TX queue */
efx_farch_tx_remove(struct efx_tx_queue * tx_queue)452 void efx_farch_tx_remove(struct efx_tx_queue *tx_queue)
453 {
454 efx_free_special_buffer(tx_queue->efx, &tx_queue->txd);
455 }
456
457 /**************************************************************************
458 *
459 * RX path
460 *
461 **************************************************************************/
462
463 /* This creates an entry in the RX descriptor queue */
464 static inline void
efx_farch_build_rx_desc(struct efx_rx_queue * rx_queue,unsigned index)465 efx_farch_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned index)
466 {
467 struct efx_rx_buffer *rx_buf;
468 efx_qword_t *rxd;
469
470 rxd = efx_rx_desc(rx_queue, index);
471 rx_buf = efx_rx_buffer(rx_queue, index);
472 EFX_POPULATE_QWORD_3(*rxd,
473 FSF_AZ_RX_KER_BUF_SIZE,
474 rx_buf->len -
475 rx_queue->efx->type->rx_buffer_padding,
476 FSF_AZ_RX_KER_BUF_REGION, 0,
477 FSF_AZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
478 }
479
480 /* This writes to the RX_DESC_WPTR register for the specified receive
481 * descriptor ring.
482 */
efx_farch_rx_write(struct efx_rx_queue * rx_queue)483 void efx_farch_rx_write(struct efx_rx_queue *rx_queue)
484 {
485 struct efx_nic *efx = rx_queue->efx;
486 efx_dword_t reg;
487 unsigned write_ptr;
488
489 while (rx_queue->notified_count != rx_queue->added_count) {
490 efx_farch_build_rx_desc(
491 rx_queue,
492 rx_queue->notified_count & rx_queue->ptr_mask);
493 ++rx_queue->notified_count;
494 }
495
496 wmb();
497 write_ptr = rx_queue->added_count & rx_queue->ptr_mask;
498 EFX_POPULATE_DWORD_1(reg, FRF_AZ_RX_DESC_WPTR_DWORD, write_ptr);
499 efx_writed_page(efx, ®, FR_AZ_RX_DESC_UPD_DWORD_P0,
500 efx_rx_queue_index(rx_queue));
501 }
502
efx_farch_rx_probe(struct efx_rx_queue * rx_queue)503 int efx_farch_rx_probe(struct efx_rx_queue *rx_queue)
504 {
505 struct efx_nic *efx = rx_queue->efx;
506 unsigned entries;
507
508 entries = rx_queue->ptr_mask + 1;
509 return efx_alloc_special_buffer(efx, &rx_queue->rxd,
510 entries * sizeof(efx_qword_t));
511 }
512
efx_farch_rx_init(struct efx_rx_queue * rx_queue)513 void efx_farch_rx_init(struct efx_rx_queue *rx_queue)
514 {
515 efx_oword_t rx_desc_ptr;
516 struct efx_nic *efx = rx_queue->efx;
517 bool is_b0 = efx_nic_rev(efx) >= EFX_REV_FALCON_B0;
518 bool iscsi_digest_en = is_b0;
519 bool jumbo_en;
520
521 /* For kernel-mode queues in Falcon A1, the JUMBO flag enables
522 * DMA to continue after a PCIe page boundary (and scattering
523 * is not possible). In Falcon B0 and Siena, it enables
524 * scatter.
525 */
526 jumbo_en = !is_b0 || efx->rx_scatter;
527
528 netif_dbg(efx, hw, efx->net_dev,
529 "RX queue %d ring in special buffers %d-%d\n",
530 efx_rx_queue_index(rx_queue), rx_queue->rxd.index,
531 rx_queue->rxd.index + rx_queue->rxd.entries - 1);
532
533 rx_queue->scatter_n = 0;
534
535 /* Pin RX descriptor ring */
536 efx_init_special_buffer(efx, &rx_queue->rxd);
537
538 /* Push RX descriptor ring to card */
539 EFX_POPULATE_OWORD_10(rx_desc_ptr,
540 FRF_AZ_RX_ISCSI_DDIG_EN, iscsi_digest_en,
541 FRF_AZ_RX_ISCSI_HDIG_EN, iscsi_digest_en,
542 FRF_AZ_RX_DESCQ_BUF_BASE_ID, rx_queue->rxd.index,
543 FRF_AZ_RX_DESCQ_EVQ_ID,
544 efx_rx_queue_channel(rx_queue)->channel,
545 FRF_AZ_RX_DESCQ_OWNER_ID, 0,
546 FRF_AZ_RX_DESCQ_LABEL,
547 efx_rx_queue_index(rx_queue),
548 FRF_AZ_RX_DESCQ_SIZE,
549 __ffs(rx_queue->rxd.entries),
550 FRF_AZ_RX_DESCQ_TYPE, 0 /* kernel queue */ ,
551 FRF_AZ_RX_DESCQ_JUMBO, jumbo_en,
552 FRF_AZ_RX_DESCQ_EN, 1);
553 efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
554 efx_rx_queue_index(rx_queue));
555 }
556
efx_farch_flush_rx_queue(struct efx_rx_queue * rx_queue)557 static void efx_farch_flush_rx_queue(struct efx_rx_queue *rx_queue)
558 {
559 struct efx_nic *efx = rx_queue->efx;
560 efx_oword_t rx_flush_descq;
561
562 EFX_POPULATE_OWORD_2(rx_flush_descq,
563 FRF_AZ_RX_FLUSH_DESCQ_CMD, 1,
564 FRF_AZ_RX_FLUSH_DESCQ,
565 efx_rx_queue_index(rx_queue));
566 efx_writeo(efx, &rx_flush_descq, FR_AZ_RX_FLUSH_DESCQ);
567 }
568
efx_farch_rx_fini(struct efx_rx_queue * rx_queue)569 void efx_farch_rx_fini(struct efx_rx_queue *rx_queue)
570 {
571 efx_oword_t rx_desc_ptr;
572 struct efx_nic *efx = rx_queue->efx;
573
574 /* Remove RX descriptor ring from card */
575 EFX_ZERO_OWORD(rx_desc_ptr);
576 efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
577 efx_rx_queue_index(rx_queue));
578
579 /* Unpin RX descriptor ring */
580 efx_fini_special_buffer(efx, &rx_queue->rxd);
581 }
582
583 /* Free buffers backing RX queue */
efx_farch_rx_remove(struct efx_rx_queue * rx_queue)584 void efx_farch_rx_remove(struct efx_rx_queue *rx_queue)
585 {
586 efx_free_special_buffer(rx_queue->efx, &rx_queue->rxd);
587 }
588
589 /**************************************************************************
590 *
591 * Flush handling
592 *
593 **************************************************************************/
594
595 /* efx_farch_flush_queues() must be woken up when all flushes are completed,
596 * or more RX flushes can be kicked off.
597 */
efx_farch_flush_wake(struct efx_nic * efx)598 static bool efx_farch_flush_wake(struct efx_nic *efx)
599 {
600 /* Ensure that all updates are visible to efx_farch_flush_queues() */
601 smp_mb();
602
603 return (atomic_read(&efx->active_queues) == 0 ||
604 (atomic_read(&efx->rxq_flush_outstanding) < EFX_RX_FLUSH_COUNT
605 && atomic_read(&efx->rxq_flush_pending) > 0));
606 }
607
efx_check_tx_flush_complete(struct efx_nic * efx)608 static bool efx_check_tx_flush_complete(struct efx_nic *efx)
609 {
610 bool i = true;
611 efx_oword_t txd_ptr_tbl;
612 struct efx_channel *channel;
613 struct efx_tx_queue *tx_queue;
614
615 efx_for_each_channel(channel, efx) {
616 efx_for_each_channel_tx_queue(tx_queue, channel) {
617 efx_reado_table(efx, &txd_ptr_tbl,
618 FR_BZ_TX_DESC_PTR_TBL, tx_queue->queue);
619 if (EFX_OWORD_FIELD(txd_ptr_tbl,
620 FRF_AZ_TX_DESCQ_FLUSH) ||
621 EFX_OWORD_FIELD(txd_ptr_tbl,
622 FRF_AZ_TX_DESCQ_EN)) {
623 netif_dbg(efx, hw, efx->net_dev,
624 "flush did not complete on TXQ %d\n",
625 tx_queue->queue);
626 i = false;
627 } else if (atomic_cmpxchg(&tx_queue->flush_outstanding,
628 1, 0)) {
629 /* The flush is complete, but we didn't
630 * receive a flush completion event
631 */
632 netif_dbg(efx, hw, efx->net_dev,
633 "flush complete on TXQ %d, so drain "
634 "the queue\n", tx_queue->queue);
635 /* Don't need to increment active_queues as it
636 * has already been incremented for the queues
637 * which did not drain
638 */
639 efx_farch_magic_event(channel,
640 EFX_CHANNEL_MAGIC_TX_DRAIN(
641 tx_queue));
642 }
643 }
644 }
645
646 return i;
647 }
648
649 /* Flush all the transmit queues, and continue flushing receive queues until
650 * they're all flushed. Wait for the DRAIN events to be received so that there
651 * are no more RX and TX events left on any channel. */
efx_farch_do_flush(struct efx_nic * efx)652 static int efx_farch_do_flush(struct efx_nic *efx)
653 {
654 unsigned timeout = msecs_to_jiffies(5000); /* 5s for all flushes and drains */
655 struct efx_channel *channel;
656 struct efx_rx_queue *rx_queue;
657 struct efx_tx_queue *tx_queue;
658 int rc = 0;
659
660 efx_for_each_channel(channel, efx) {
661 efx_for_each_channel_tx_queue(tx_queue, channel) {
662 efx_farch_flush_tx_queue(tx_queue);
663 }
664 efx_for_each_channel_rx_queue(rx_queue, channel) {
665 rx_queue->flush_pending = true;
666 atomic_inc(&efx->rxq_flush_pending);
667 }
668 }
669
670 while (timeout && atomic_read(&efx->active_queues) > 0) {
671 /* If SRIOV is enabled, then offload receive queue flushing to
672 * the firmware (though we will still have to poll for
673 * completion). If that fails, fall back to the old scheme.
674 */
675 if (efx_siena_sriov_enabled(efx)) {
676 rc = efx_mcdi_flush_rxqs(efx);
677 if (!rc)
678 goto wait;
679 }
680
681 /* The hardware supports four concurrent rx flushes, each of
682 * which may need to be retried if there is an outstanding
683 * descriptor fetch
684 */
685 efx_for_each_channel(channel, efx) {
686 efx_for_each_channel_rx_queue(rx_queue, channel) {
687 if (atomic_read(&efx->rxq_flush_outstanding) >=
688 EFX_RX_FLUSH_COUNT)
689 break;
690
691 if (rx_queue->flush_pending) {
692 rx_queue->flush_pending = false;
693 atomic_dec(&efx->rxq_flush_pending);
694 atomic_inc(&efx->rxq_flush_outstanding);
695 efx_farch_flush_rx_queue(rx_queue);
696 }
697 }
698 }
699
700 wait:
701 timeout = wait_event_timeout(efx->flush_wq,
702 efx_farch_flush_wake(efx),
703 timeout);
704 }
705
706 if (atomic_read(&efx->active_queues) &&
707 !efx_check_tx_flush_complete(efx)) {
708 netif_err(efx, hw, efx->net_dev, "failed to flush %d queues "
709 "(rx %d+%d)\n", atomic_read(&efx->active_queues),
710 atomic_read(&efx->rxq_flush_outstanding),
711 atomic_read(&efx->rxq_flush_pending));
712 rc = -ETIMEDOUT;
713
714 atomic_set(&efx->active_queues, 0);
715 atomic_set(&efx->rxq_flush_pending, 0);
716 atomic_set(&efx->rxq_flush_outstanding, 0);
717 }
718
719 return rc;
720 }
721
efx_farch_fini_dmaq(struct efx_nic * efx)722 int efx_farch_fini_dmaq(struct efx_nic *efx)
723 {
724 struct efx_channel *channel;
725 struct efx_tx_queue *tx_queue;
726 struct efx_rx_queue *rx_queue;
727 int rc = 0;
728
729 /* Do not attempt to write to the NIC during EEH recovery */
730 if (efx->state != STATE_RECOVERY) {
731 /* Only perform flush if DMA is enabled */
732 if (efx->pci_dev->is_busmaster) {
733 efx->type->prepare_flush(efx);
734 rc = efx_farch_do_flush(efx);
735 efx->type->finish_flush(efx);
736 }
737
738 efx_for_each_channel(channel, efx) {
739 efx_for_each_channel_rx_queue(rx_queue, channel)
740 efx_farch_rx_fini(rx_queue);
741 efx_for_each_channel_tx_queue(tx_queue, channel)
742 efx_farch_tx_fini(tx_queue);
743 }
744 }
745
746 return rc;
747 }
748
749 /* Reset queue and flush accounting after FLR
750 *
751 * One possible cause of FLR recovery is that DMA may be failing (eg. if bus
752 * mastering was disabled), in which case we don't receive (RXQ) flush
753 * completion events. This means that efx->rxq_flush_outstanding remained at 4
754 * after the FLR; also, efx->active_queues was non-zero (as no flush completion
755 * events were received, and we didn't go through efx_check_tx_flush_complete())
756 * If we don't fix this up, on the next call to efx_realloc_channels() we won't
757 * flush any RX queues because efx->rxq_flush_outstanding is at the limit of 4
758 * for batched flush requests; and the efx->active_queues gets messed up because
759 * we keep incrementing for the newly initialised queues, but it never went to
760 * zero previously. Then we get a timeout every time we try to restart the
761 * queues, as it doesn't go back to zero when we should be flushing the queues.
762 */
efx_farch_finish_flr(struct efx_nic * efx)763 void efx_farch_finish_flr(struct efx_nic *efx)
764 {
765 atomic_set(&efx->rxq_flush_pending, 0);
766 atomic_set(&efx->rxq_flush_outstanding, 0);
767 atomic_set(&efx->active_queues, 0);
768 }
769
770
771 /**************************************************************************
772 *
773 * Event queue processing
774 * Event queues are processed by per-channel tasklets.
775 *
776 **************************************************************************/
777
778 /* Update a channel's event queue's read pointer (RPTR) register
779 *
780 * This writes the EVQ_RPTR_REG register for the specified channel's
781 * event queue.
782 */
efx_farch_ev_read_ack(struct efx_channel * channel)783 void efx_farch_ev_read_ack(struct efx_channel *channel)
784 {
785 efx_dword_t reg;
786 struct efx_nic *efx = channel->efx;
787
788 EFX_POPULATE_DWORD_1(reg, FRF_AZ_EVQ_RPTR,
789 channel->eventq_read_ptr & channel->eventq_mask);
790
791 /* For Falcon A1, EVQ_RPTR_KER is documented as having a step size
792 * of 4 bytes, but it is really 16 bytes just like later revisions.
793 */
794 efx_writed(efx, ®,
795 efx->type->evq_rptr_tbl_base +
796 FR_BZ_EVQ_RPTR_STEP * channel->channel);
797 }
798
799 /* Use HW to insert a SW defined event */
efx_farch_generate_event(struct efx_nic * efx,unsigned int evq,efx_qword_t * event)800 void efx_farch_generate_event(struct efx_nic *efx, unsigned int evq,
801 efx_qword_t *event)
802 {
803 efx_oword_t drv_ev_reg;
804
805 BUILD_BUG_ON(FRF_AZ_DRV_EV_DATA_LBN != 0 ||
806 FRF_AZ_DRV_EV_DATA_WIDTH != 64);
807 drv_ev_reg.u32[0] = event->u32[0];
808 drv_ev_reg.u32[1] = event->u32[1];
809 drv_ev_reg.u32[2] = 0;
810 drv_ev_reg.u32[3] = 0;
811 EFX_SET_OWORD_FIELD(drv_ev_reg, FRF_AZ_DRV_EV_QID, evq);
812 efx_writeo(efx, &drv_ev_reg, FR_AZ_DRV_EV);
813 }
814
efx_farch_magic_event(struct efx_channel * channel,u32 magic)815 static void efx_farch_magic_event(struct efx_channel *channel, u32 magic)
816 {
817 efx_qword_t event;
818
819 EFX_POPULATE_QWORD_2(event, FSF_AZ_EV_CODE,
820 FSE_AZ_EV_CODE_DRV_GEN_EV,
821 FSF_AZ_DRV_GEN_EV_MAGIC, magic);
822 efx_farch_generate_event(channel->efx, channel->channel, &event);
823 }
824
825 /* Handle a transmit completion event
826 *
827 * The NIC batches TX completion events; the message we receive is of
828 * the form "complete all TX events up to this index".
829 */
830 static int
efx_farch_handle_tx_event(struct efx_channel * channel,efx_qword_t * event)831 efx_farch_handle_tx_event(struct efx_channel *channel, efx_qword_t *event)
832 {
833 unsigned int tx_ev_desc_ptr;
834 unsigned int tx_ev_q_label;
835 struct efx_tx_queue *tx_queue;
836 struct efx_nic *efx = channel->efx;
837 int tx_packets = 0;
838
839 if (unlikely(ACCESS_ONCE(efx->reset_pending)))
840 return 0;
841
842 if (likely(EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_COMP))) {
843 /* Transmit completion */
844 tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_DESC_PTR);
845 tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
846 tx_queue = efx_channel_get_tx_queue(
847 channel, tx_ev_q_label % EFX_TXQ_TYPES);
848 tx_packets = ((tx_ev_desc_ptr - tx_queue->read_count) &
849 tx_queue->ptr_mask);
850 efx_xmit_done(tx_queue, tx_ev_desc_ptr);
851 } else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_WQ_FF_FULL)) {
852 /* Rewrite the FIFO write pointer */
853 tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
854 tx_queue = efx_channel_get_tx_queue(
855 channel, tx_ev_q_label % EFX_TXQ_TYPES);
856
857 netif_tx_lock(efx->net_dev);
858 efx_farch_notify_tx_desc(tx_queue);
859 netif_tx_unlock(efx->net_dev);
860 } else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_PKT_ERR)) {
861 efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
862 } else {
863 netif_err(efx, tx_err, efx->net_dev,
864 "channel %d unexpected TX event "
865 EFX_QWORD_FMT"\n", channel->channel,
866 EFX_QWORD_VAL(*event));
867 }
868
869 return tx_packets;
870 }
871
872 /* Detect errors included in the rx_evt_pkt_ok bit. */
efx_farch_handle_rx_not_ok(struct efx_rx_queue * rx_queue,const efx_qword_t * event)873 static u16 efx_farch_handle_rx_not_ok(struct efx_rx_queue *rx_queue,
874 const efx_qword_t *event)
875 {
876 struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
877 struct efx_nic *efx = rx_queue->efx;
878 bool rx_ev_buf_owner_id_err, rx_ev_ip_hdr_chksum_err;
879 bool rx_ev_tcp_udp_chksum_err, rx_ev_eth_crc_err;
880 bool rx_ev_frm_trunc, rx_ev_drib_nib, rx_ev_tobe_disc;
881 bool rx_ev_other_err, rx_ev_pause_frm;
882 bool rx_ev_hdr_type, rx_ev_mcast_pkt;
883 unsigned rx_ev_pkt_type;
884
885 rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
886 rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
887 rx_ev_tobe_disc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_TOBE_DISC);
888 rx_ev_pkt_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_TYPE);
889 rx_ev_buf_owner_id_err = EFX_QWORD_FIELD(*event,
890 FSF_AZ_RX_EV_BUF_OWNER_ID_ERR);
891 rx_ev_ip_hdr_chksum_err = EFX_QWORD_FIELD(*event,
892 FSF_AZ_RX_EV_IP_HDR_CHKSUM_ERR);
893 rx_ev_tcp_udp_chksum_err = EFX_QWORD_FIELD(*event,
894 FSF_AZ_RX_EV_TCP_UDP_CHKSUM_ERR);
895 rx_ev_eth_crc_err = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_ETH_CRC_ERR);
896 rx_ev_frm_trunc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_FRM_TRUNC);
897 rx_ev_drib_nib = ((efx_nic_rev(efx) >= EFX_REV_FALCON_B0) ?
898 0 : EFX_QWORD_FIELD(*event, FSF_AA_RX_EV_DRIB_NIB));
899 rx_ev_pause_frm = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PAUSE_FRM_ERR);
900
901 /* Every error apart from tobe_disc and pause_frm */
902 rx_ev_other_err = (rx_ev_drib_nib | rx_ev_tcp_udp_chksum_err |
903 rx_ev_buf_owner_id_err | rx_ev_eth_crc_err |
904 rx_ev_frm_trunc | rx_ev_ip_hdr_chksum_err);
905
906 /* Count errors that are not in MAC stats. Ignore expected
907 * checksum errors during self-test. */
908 if (rx_ev_frm_trunc)
909 ++channel->n_rx_frm_trunc;
910 else if (rx_ev_tobe_disc)
911 ++channel->n_rx_tobe_disc;
912 else if (!efx->loopback_selftest) {
913 if (rx_ev_ip_hdr_chksum_err)
914 ++channel->n_rx_ip_hdr_chksum_err;
915 else if (rx_ev_tcp_udp_chksum_err)
916 ++channel->n_rx_tcp_udp_chksum_err;
917 }
918
919 /* TOBE_DISC is expected on unicast mismatches; don't print out an
920 * error message. FRM_TRUNC indicates RXDP dropped the packet due
921 * to a FIFO overflow.
922 */
923 #ifdef DEBUG
924 if (rx_ev_other_err && net_ratelimit()) {
925 netif_dbg(efx, rx_err, efx->net_dev,
926 " RX queue %d unexpected RX event "
927 EFX_QWORD_FMT "%s%s%s%s%s%s%s%s\n",
928 efx_rx_queue_index(rx_queue), EFX_QWORD_VAL(*event),
929 rx_ev_buf_owner_id_err ? " [OWNER_ID_ERR]" : "",
930 rx_ev_ip_hdr_chksum_err ?
931 " [IP_HDR_CHKSUM_ERR]" : "",
932 rx_ev_tcp_udp_chksum_err ?
933 " [TCP_UDP_CHKSUM_ERR]" : "",
934 rx_ev_eth_crc_err ? " [ETH_CRC_ERR]" : "",
935 rx_ev_frm_trunc ? " [FRM_TRUNC]" : "",
936 rx_ev_drib_nib ? " [DRIB_NIB]" : "",
937 rx_ev_tobe_disc ? " [TOBE_DISC]" : "",
938 rx_ev_pause_frm ? " [PAUSE]" : "");
939 }
940 #endif
941
942 /* The frame must be discarded if any of these are true. */
943 return (rx_ev_eth_crc_err | rx_ev_frm_trunc | rx_ev_drib_nib |
944 rx_ev_tobe_disc | rx_ev_pause_frm) ?
945 EFX_RX_PKT_DISCARD : 0;
946 }
947
948 /* Handle receive events that are not in-order. Return true if this
949 * can be handled as a partial packet discard, false if it's more
950 * serious.
951 */
952 static bool
efx_farch_handle_rx_bad_index(struct efx_rx_queue * rx_queue,unsigned index)953 efx_farch_handle_rx_bad_index(struct efx_rx_queue *rx_queue, unsigned index)
954 {
955 struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
956 struct efx_nic *efx = rx_queue->efx;
957 unsigned expected, dropped;
958
959 if (rx_queue->scatter_n &&
960 index == ((rx_queue->removed_count + rx_queue->scatter_n - 1) &
961 rx_queue->ptr_mask)) {
962 ++channel->n_rx_nodesc_trunc;
963 return true;
964 }
965
966 expected = rx_queue->removed_count & rx_queue->ptr_mask;
967 dropped = (index - expected) & rx_queue->ptr_mask;
968 netif_info(efx, rx_err, efx->net_dev,
969 "dropped %d events (index=%d expected=%d)\n",
970 dropped, index, expected);
971
972 efx_schedule_reset(efx, EFX_WORKAROUND_5676(efx) ?
973 RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
974 return false;
975 }
976
977 /* Handle a packet received event
978 *
979 * The NIC gives a "discard" flag if it's a unicast packet with the
980 * wrong destination address
981 * Also "is multicast" and "matches multicast filter" flags can be used to
982 * discard non-matching multicast packets.
983 */
984 static void
efx_farch_handle_rx_event(struct efx_channel * channel,const efx_qword_t * event)985 efx_farch_handle_rx_event(struct efx_channel *channel, const efx_qword_t *event)
986 {
987 unsigned int rx_ev_desc_ptr, rx_ev_byte_cnt;
988 unsigned int rx_ev_hdr_type, rx_ev_mcast_pkt;
989 unsigned expected_ptr;
990 bool rx_ev_pkt_ok, rx_ev_sop, rx_ev_cont;
991 u16 flags;
992 struct efx_rx_queue *rx_queue;
993 struct efx_nic *efx = channel->efx;
994
995 if (unlikely(ACCESS_ONCE(efx->reset_pending)))
996 return;
997
998 rx_ev_cont = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_JUMBO_CONT);
999 rx_ev_sop = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_SOP);
1000 WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_Q_LABEL) !=
1001 channel->channel);
1002
1003 rx_queue = efx_channel_get_rx_queue(channel);
1004
1005 rx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_DESC_PTR);
1006 expected_ptr = ((rx_queue->removed_count + rx_queue->scatter_n) &
1007 rx_queue->ptr_mask);
1008
1009 /* Check for partial drops and other errors */
1010 if (unlikely(rx_ev_desc_ptr != expected_ptr) ||
1011 unlikely(rx_ev_sop != (rx_queue->scatter_n == 0))) {
1012 if (rx_ev_desc_ptr != expected_ptr &&
1013 !efx_farch_handle_rx_bad_index(rx_queue, rx_ev_desc_ptr))
1014 return;
1015
1016 /* Discard all pending fragments */
1017 if (rx_queue->scatter_n) {
1018 efx_rx_packet(
1019 rx_queue,
1020 rx_queue->removed_count & rx_queue->ptr_mask,
1021 rx_queue->scatter_n, 0, EFX_RX_PKT_DISCARD);
1022 rx_queue->removed_count += rx_queue->scatter_n;
1023 rx_queue->scatter_n = 0;
1024 }
1025
1026 /* Return if there is no new fragment */
1027 if (rx_ev_desc_ptr != expected_ptr)
1028 return;
1029
1030 /* Discard new fragment if not SOP */
1031 if (!rx_ev_sop) {
1032 efx_rx_packet(
1033 rx_queue,
1034 rx_queue->removed_count & rx_queue->ptr_mask,
1035 1, 0, EFX_RX_PKT_DISCARD);
1036 ++rx_queue->removed_count;
1037 return;
1038 }
1039 }
1040
1041 ++rx_queue->scatter_n;
1042 if (rx_ev_cont)
1043 return;
1044
1045 rx_ev_byte_cnt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_BYTE_CNT);
1046 rx_ev_pkt_ok = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_OK);
1047 rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
1048
1049 if (likely(rx_ev_pkt_ok)) {
1050 /* If packet is marked as OK then we can rely on the
1051 * hardware checksum and classification.
1052 */
1053 flags = 0;
1054 switch (rx_ev_hdr_type) {
1055 case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_TCP:
1056 flags |= EFX_RX_PKT_TCP;
1057 /* fall through */
1058 case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_UDP:
1059 flags |= EFX_RX_PKT_CSUMMED;
1060 /* fall through */
1061 case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_OTHER:
1062 case FSE_AZ_RX_EV_HDR_TYPE_OTHER:
1063 break;
1064 }
1065 } else {
1066 flags = efx_farch_handle_rx_not_ok(rx_queue, event);
1067 }
1068
1069 /* Detect multicast packets that didn't match the filter */
1070 rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
1071 if (rx_ev_mcast_pkt) {
1072 unsigned int rx_ev_mcast_hash_match =
1073 EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_HASH_MATCH);
1074
1075 if (unlikely(!rx_ev_mcast_hash_match)) {
1076 ++channel->n_rx_mcast_mismatch;
1077 flags |= EFX_RX_PKT_DISCARD;
1078 }
1079 }
1080
1081 channel->irq_mod_score += 2;
1082
1083 /* Handle received packet */
1084 efx_rx_packet(rx_queue,
1085 rx_queue->removed_count & rx_queue->ptr_mask,
1086 rx_queue->scatter_n, rx_ev_byte_cnt, flags);
1087 rx_queue->removed_count += rx_queue->scatter_n;
1088 rx_queue->scatter_n = 0;
1089 }
1090
1091 /* If this flush done event corresponds to a &struct efx_tx_queue, then
1092 * send an %EFX_CHANNEL_MAGIC_TX_DRAIN event to drain the event queue
1093 * of all transmit completions.
1094 */
1095 static void
efx_farch_handle_tx_flush_done(struct efx_nic * efx,efx_qword_t * event)1096 efx_farch_handle_tx_flush_done(struct efx_nic *efx, efx_qword_t *event)
1097 {
1098 struct efx_tx_queue *tx_queue;
1099 int qid;
1100
1101 qid = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
1102 if (qid < EFX_TXQ_TYPES * efx->n_tx_channels) {
1103 tx_queue = efx_get_tx_queue(efx, qid / EFX_TXQ_TYPES,
1104 qid % EFX_TXQ_TYPES);
1105 if (atomic_cmpxchg(&tx_queue->flush_outstanding, 1, 0)) {
1106 efx_farch_magic_event(tx_queue->channel,
1107 EFX_CHANNEL_MAGIC_TX_DRAIN(tx_queue));
1108 }
1109 }
1110 }
1111
1112 /* If this flush done event corresponds to a &struct efx_rx_queue: If the flush
1113 * was successful then send an %EFX_CHANNEL_MAGIC_RX_DRAIN, otherwise add
1114 * the RX queue back to the mask of RX queues in need of flushing.
1115 */
1116 static void
efx_farch_handle_rx_flush_done(struct efx_nic * efx,efx_qword_t * event)1117 efx_farch_handle_rx_flush_done(struct efx_nic *efx, efx_qword_t *event)
1118 {
1119 struct efx_channel *channel;
1120 struct efx_rx_queue *rx_queue;
1121 int qid;
1122 bool failed;
1123
1124 qid = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_DESCQ_ID);
1125 failed = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL);
1126 if (qid >= efx->n_channels)
1127 return;
1128 channel = efx_get_channel(efx, qid);
1129 if (!efx_channel_has_rx_queue(channel))
1130 return;
1131 rx_queue = efx_channel_get_rx_queue(channel);
1132
1133 if (failed) {
1134 netif_info(efx, hw, efx->net_dev,
1135 "RXQ %d flush retry\n", qid);
1136 rx_queue->flush_pending = true;
1137 atomic_inc(&efx->rxq_flush_pending);
1138 } else {
1139 efx_farch_magic_event(efx_rx_queue_channel(rx_queue),
1140 EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue));
1141 }
1142 atomic_dec(&efx->rxq_flush_outstanding);
1143 if (efx_farch_flush_wake(efx))
1144 wake_up(&efx->flush_wq);
1145 }
1146
1147 static void
efx_farch_handle_drain_event(struct efx_channel * channel)1148 efx_farch_handle_drain_event(struct efx_channel *channel)
1149 {
1150 struct efx_nic *efx = channel->efx;
1151
1152 WARN_ON(atomic_read(&efx->active_queues) == 0);
1153 atomic_dec(&efx->active_queues);
1154 if (efx_farch_flush_wake(efx))
1155 wake_up(&efx->flush_wq);
1156 }
1157
efx_farch_handle_generated_event(struct efx_channel * channel,efx_qword_t * event)1158 static void efx_farch_handle_generated_event(struct efx_channel *channel,
1159 efx_qword_t *event)
1160 {
1161 struct efx_nic *efx = channel->efx;
1162 struct efx_rx_queue *rx_queue =
1163 efx_channel_has_rx_queue(channel) ?
1164 efx_channel_get_rx_queue(channel) : NULL;
1165 unsigned magic, code;
1166
1167 magic = EFX_QWORD_FIELD(*event, FSF_AZ_DRV_GEN_EV_MAGIC);
1168 code = _EFX_CHANNEL_MAGIC_CODE(magic);
1169
1170 if (magic == EFX_CHANNEL_MAGIC_TEST(channel)) {
1171 channel->event_test_cpu = raw_smp_processor_id();
1172 } else if (rx_queue && magic == EFX_CHANNEL_MAGIC_FILL(rx_queue)) {
1173 /* The queue must be empty, so we won't receive any rx
1174 * events, so efx_process_channel() won't refill the
1175 * queue. Refill it here */
1176 efx_fast_push_rx_descriptors(rx_queue, true);
1177 } else if (rx_queue && magic == EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue)) {
1178 efx_farch_handle_drain_event(channel);
1179 } else if (code == _EFX_CHANNEL_MAGIC_TX_DRAIN) {
1180 efx_farch_handle_drain_event(channel);
1181 } else {
1182 netif_dbg(efx, hw, efx->net_dev, "channel %d received "
1183 "generated event "EFX_QWORD_FMT"\n",
1184 channel->channel, EFX_QWORD_VAL(*event));
1185 }
1186 }
1187
1188 static void
efx_farch_handle_driver_event(struct efx_channel * channel,efx_qword_t * event)1189 efx_farch_handle_driver_event(struct efx_channel *channel, efx_qword_t *event)
1190 {
1191 struct efx_nic *efx = channel->efx;
1192 unsigned int ev_sub_code;
1193 unsigned int ev_sub_data;
1194
1195 ev_sub_code = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBCODE);
1196 ev_sub_data = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
1197
1198 switch (ev_sub_code) {
1199 case FSE_AZ_TX_DESCQ_FLS_DONE_EV:
1200 netif_vdbg(efx, hw, efx->net_dev, "channel %d TXQ %d flushed\n",
1201 channel->channel, ev_sub_data);
1202 efx_farch_handle_tx_flush_done(efx, event);
1203 efx_siena_sriov_tx_flush_done(efx, event);
1204 break;
1205 case FSE_AZ_RX_DESCQ_FLS_DONE_EV:
1206 netif_vdbg(efx, hw, efx->net_dev, "channel %d RXQ %d flushed\n",
1207 channel->channel, ev_sub_data);
1208 efx_farch_handle_rx_flush_done(efx, event);
1209 efx_siena_sriov_rx_flush_done(efx, event);
1210 break;
1211 case FSE_AZ_EVQ_INIT_DONE_EV:
1212 netif_dbg(efx, hw, efx->net_dev,
1213 "channel %d EVQ %d initialised\n",
1214 channel->channel, ev_sub_data);
1215 break;
1216 case FSE_AZ_SRM_UPD_DONE_EV:
1217 netif_vdbg(efx, hw, efx->net_dev,
1218 "channel %d SRAM update done\n", channel->channel);
1219 break;
1220 case FSE_AZ_WAKE_UP_EV:
1221 netif_vdbg(efx, hw, efx->net_dev,
1222 "channel %d RXQ %d wakeup event\n",
1223 channel->channel, ev_sub_data);
1224 break;
1225 case FSE_AZ_TIMER_EV:
1226 netif_vdbg(efx, hw, efx->net_dev,
1227 "channel %d RX queue %d timer expired\n",
1228 channel->channel, ev_sub_data);
1229 break;
1230 case FSE_AA_RX_RECOVER_EV:
1231 netif_err(efx, rx_err, efx->net_dev,
1232 "channel %d seen DRIVER RX_RESET event. "
1233 "Resetting.\n", channel->channel);
1234 atomic_inc(&efx->rx_reset);
1235 efx_schedule_reset(efx,
1236 EFX_WORKAROUND_6555(efx) ?
1237 RESET_TYPE_RX_RECOVERY :
1238 RESET_TYPE_DISABLE);
1239 break;
1240 case FSE_BZ_RX_DSC_ERROR_EV:
1241 if (ev_sub_data < EFX_VI_BASE) {
1242 netif_err(efx, rx_err, efx->net_dev,
1243 "RX DMA Q %d reports descriptor fetch error."
1244 " RX Q %d is disabled.\n", ev_sub_data,
1245 ev_sub_data);
1246 efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
1247 } else
1248 efx_siena_sriov_desc_fetch_err(efx, ev_sub_data);
1249 break;
1250 case FSE_BZ_TX_DSC_ERROR_EV:
1251 if (ev_sub_data < EFX_VI_BASE) {
1252 netif_err(efx, tx_err, efx->net_dev,
1253 "TX DMA Q %d reports descriptor fetch error."
1254 " TX Q %d is disabled.\n", ev_sub_data,
1255 ev_sub_data);
1256 efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
1257 } else
1258 efx_siena_sriov_desc_fetch_err(efx, ev_sub_data);
1259 break;
1260 default:
1261 netif_vdbg(efx, hw, efx->net_dev,
1262 "channel %d unknown driver event code %d "
1263 "data %04x\n", channel->channel, ev_sub_code,
1264 ev_sub_data);
1265 break;
1266 }
1267 }
1268
efx_farch_ev_process(struct efx_channel * channel,int budget)1269 int efx_farch_ev_process(struct efx_channel *channel, int budget)
1270 {
1271 struct efx_nic *efx = channel->efx;
1272 unsigned int read_ptr;
1273 efx_qword_t event, *p_event;
1274 int ev_code;
1275 int tx_packets = 0;
1276 int spent = 0;
1277
1278 if (budget <= 0)
1279 return spent;
1280
1281 read_ptr = channel->eventq_read_ptr;
1282
1283 for (;;) {
1284 p_event = efx_event(channel, read_ptr);
1285 event = *p_event;
1286
1287 if (!efx_event_present(&event))
1288 /* End of events */
1289 break;
1290
1291 netif_vdbg(channel->efx, intr, channel->efx->net_dev,
1292 "channel %d event is "EFX_QWORD_FMT"\n",
1293 channel->channel, EFX_QWORD_VAL(event));
1294
1295 /* Clear this event by marking it all ones */
1296 EFX_SET_QWORD(*p_event);
1297
1298 ++read_ptr;
1299
1300 ev_code = EFX_QWORD_FIELD(event, FSF_AZ_EV_CODE);
1301
1302 switch (ev_code) {
1303 case FSE_AZ_EV_CODE_RX_EV:
1304 efx_farch_handle_rx_event(channel, &event);
1305 if (++spent == budget)
1306 goto out;
1307 break;
1308 case FSE_AZ_EV_CODE_TX_EV:
1309 tx_packets += efx_farch_handle_tx_event(channel,
1310 &event);
1311 if (tx_packets > efx->txq_entries) {
1312 spent = budget;
1313 goto out;
1314 }
1315 break;
1316 case FSE_AZ_EV_CODE_DRV_GEN_EV:
1317 efx_farch_handle_generated_event(channel, &event);
1318 break;
1319 case FSE_AZ_EV_CODE_DRIVER_EV:
1320 efx_farch_handle_driver_event(channel, &event);
1321 break;
1322 case FSE_CZ_EV_CODE_USER_EV:
1323 efx_siena_sriov_event(channel, &event);
1324 break;
1325 case FSE_CZ_EV_CODE_MCDI_EV:
1326 efx_mcdi_process_event(channel, &event);
1327 break;
1328 case FSE_AZ_EV_CODE_GLOBAL_EV:
1329 if (efx->type->handle_global_event &&
1330 efx->type->handle_global_event(channel, &event))
1331 break;
1332 /* else fall through */
1333 default:
1334 netif_err(channel->efx, hw, channel->efx->net_dev,
1335 "channel %d unknown event type %d (data "
1336 EFX_QWORD_FMT ")\n", channel->channel,
1337 ev_code, EFX_QWORD_VAL(event));
1338 }
1339 }
1340
1341 out:
1342 channel->eventq_read_ptr = read_ptr;
1343 return spent;
1344 }
1345
1346 /* Allocate buffer table entries for event queue */
efx_farch_ev_probe(struct efx_channel * channel)1347 int efx_farch_ev_probe(struct efx_channel *channel)
1348 {
1349 struct efx_nic *efx = channel->efx;
1350 unsigned entries;
1351
1352 entries = channel->eventq_mask + 1;
1353 return efx_alloc_special_buffer(efx, &channel->eventq,
1354 entries * sizeof(efx_qword_t));
1355 }
1356
efx_farch_ev_init(struct efx_channel * channel)1357 int efx_farch_ev_init(struct efx_channel *channel)
1358 {
1359 efx_oword_t reg;
1360 struct efx_nic *efx = channel->efx;
1361
1362 netif_dbg(efx, hw, efx->net_dev,
1363 "channel %d event queue in special buffers %d-%d\n",
1364 channel->channel, channel->eventq.index,
1365 channel->eventq.index + channel->eventq.entries - 1);
1366
1367 if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) {
1368 EFX_POPULATE_OWORD_3(reg,
1369 FRF_CZ_TIMER_Q_EN, 1,
1370 FRF_CZ_HOST_NOTIFY_MODE, 0,
1371 FRF_CZ_TIMER_MODE, FFE_CZ_TIMER_MODE_DIS);
1372 efx_writeo_table(efx, ®, FR_BZ_TIMER_TBL, channel->channel);
1373 }
1374
1375 /* Pin event queue buffer */
1376 efx_init_special_buffer(efx, &channel->eventq);
1377
1378 /* Fill event queue with all ones (i.e. empty events) */
1379 memset(channel->eventq.buf.addr, 0xff, channel->eventq.buf.len);
1380
1381 /* Push event queue to card */
1382 EFX_POPULATE_OWORD_3(reg,
1383 FRF_AZ_EVQ_EN, 1,
1384 FRF_AZ_EVQ_SIZE, __ffs(channel->eventq.entries),
1385 FRF_AZ_EVQ_BUF_BASE_ID, channel->eventq.index);
1386 efx_writeo_table(efx, ®, efx->type->evq_ptr_tbl_base,
1387 channel->channel);
1388
1389 return 0;
1390 }
1391
efx_farch_ev_fini(struct efx_channel * channel)1392 void efx_farch_ev_fini(struct efx_channel *channel)
1393 {
1394 efx_oword_t reg;
1395 struct efx_nic *efx = channel->efx;
1396
1397 /* Remove event queue from card */
1398 EFX_ZERO_OWORD(reg);
1399 efx_writeo_table(efx, ®, efx->type->evq_ptr_tbl_base,
1400 channel->channel);
1401 if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0)
1402 efx_writeo_table(efx, ®, FR_BZ_TIMER_TBL, channel->channel);
1403
1404 /* Unpin event queue */
1405 efx_fini_special_buffer(efx, &channel->eventq);
1406 }
1407
1408 /* Free buffers backing event queue */
efx_farch_ev_remove(struct efx_channel * channel)1409 void efx_farch_ev_remove(struct efx_channel *channel)
1410 {
1411 efx_free_special_buffer(channel->efx, &channel->eventq);
1412 }
1413
1414
efx_farch_ev_test_generate(struct efx_channel * channel)1415 void efx_farch_ev_test_generate(struct efx_channel *channel)
1416 {
1417 efx_farch_magic_event(channel, EFX_CHANNEL_MAGIC_TEST(channel));
1418 }
1419
efx_farch_rx_defer_refill(struct efx_rx_queue * rx_queue)1420 void efx_farch_rx_defer_refill(struct efx_rx_queue *rx_queue)
1421 {
1422 efx_farch_magic_event(efx_rx_queue_channel(rx_queue),
1423 EFX_CHANNEL_MAGIC_FILL(rx_queue));
1424 }
1425
1426 /**************************************************************************
1427 *
1428 * Hardware interrupts
1429 * The hardware interrupt handler does very little work; all the event
1430 * queue processing is carried out by per-channel tasklets.
1431 *
1432 **************************************************************************/
1433
1434 /* Enable/disable/generate interrupts */
efx_farch_interrupts(struct efx_nic * efx,bool enabled,bool force)1435 static inline void efx_farch_interrupts(struct efx_nic *efx,
1436 bool enabled, bool force)
1437 {
1438 efx_oword_t int_en_reg_ker;
1439
1440 EFX_POPULATE_OWORD_3(int_en_reg_ker,
1441 FRF_AZ_KER_INT_LEVE_SEL, efx->irq_level,
1442 FRF_AZ_KER_INT_KER, force,
1443 FRF_AZ_DRV_INT_EN_KER, enabled);
1444 efx_writeo(efx, &int_en_reg_ker, FR_AZ_INT_EN_KER);
1445 }
1446
efx_farch_irq_enable_master(struct efx_nic * efx)1447 void efx_farch_irq_enable_master(struct efx_nic *efx)
1448 {
1449 EFX_ZERO_OWORD(*((efx_oword_t *) efx->irq_status.addr));
1450 wmb(); /* Ensure interrupt vector is clear before interrupts enabled */
1451
1452 efx_farch_interrupts(efx, true, false);
1453 }
1454
efx_farch_irq_disable_master(struct efx_nic * efx)1455 void efx_farch_irq_disable_master(struct efx_nic *efx)
1456 {
1457 /* Disable interrupts */
1458 efx_farch_interrupts(efx, false, false);
1459 }
1460
1461 /* Generate a test interrupt
1462 * Interrupt must already have been enabled, otherwise nasty things
1463 * may happen.
1464 */
efx_farch_irq_test_generate(struct efx_nic * efx)1465 void efx_farch_irq_test_generate(struct efx_nic *efx)
1466 {
1467 efx_farch_interrupts(efx, true, true);
1468 }
1469
1470 /* Process a fatal interrupt
1471 * Disable bus mastering ASAP and schedule a reset
1472 */
efx_farch_fatal_interrupt(struct efx_nic * efx)1473 irqreturn_t efx_farch_fatal_interrupt(struct efx_nic *efx)
1474 {
1475 struct falcon_nic_data *nic_data = efx->nic_data;
1476 efx_oword_t *int_ker = efx->irq_status.addr;
1477 efx_oword_t fatal_intr;
1478 int error, mem_perr;
1479
1480 efx_reado(efx, &fatal_intr, FR_AZ_FATAL_INTR_KER);
1481 error = EFX_OWORD_FIELD(fatal_intr, FRF_AZ_FATAL_INTR);
1482
1483 netif_err(efx, hw, efx->net_dev, "SYSTEM ERROR "EFX_OWORD_FMT" status "
1484 EFX_OWORD_FMT ": %s\n", EFX_OWORD_VAL(*int_ker),
1485 EFX_OWORD_VAL(fatal_intr),
1486 error ? "disabling bus mastering" : "no recognised error");
1487
1488 /* If this is a memory parity error dump which blocks are offending */
1489 mem_perr = (EFX_OWORD_FIELD(fatal_intr, FRF_AZ_MEM_PERR_INT_KER) ||
1490 EFX_OWORD_FIELD(fatal_intr, FRF_AZ_SRM_PERR_INT_KER));
1491 if (mem_perr) {
1492 efx_oword_t reg;
1493 efx_reado(efx, ®, FR_AZ_MEM_STAT);
1494 netif_err(efx, hw, efx->net_dev,
1495 "SYSTEM ERROR: memory parity error "EFX_OWORD_FMT"\n",
1496 EFX_OWORD_VAL(reg));
1497 }
1498
1499 /* Disable both devices */
1500 pci_clear_master(efx->pci_dev);
1501 if (efx_nic_is_dual_func(efx))
1502 pci_clear_master(nic_data->pci_dev2);
1503 efx_farch_irq_disable_master(efx);
1504
1505 /* Count errors and reset or disable the NIC accordingly */
1506 if (efx->int_error_count == 0 ||
1507 time_after(jiffies, efx->int_error_expire)) {
1508 efx->int_error_count = 0;
1509 efx->int_error_expire =
1510 jiffies + EFX_INT_ERROR_EXPIRE * HZ;
1511 }
1512 if (++efx->int_error_count < EFX_MAX_INT_ERRORS) {
1513 netif_err(efx, hw, efx->net_dev,
1514 "SYSTEM ERROR - reset scheduled\n");
1515 efx_schedule_reset(efx, RESET_TYPE_INT_ERROR);
1516 } else {
1517 netif_err(efx, hw, efx->net_dev,
1518 "SYSTEM ERROR - max number of errors seen."
1519 "NIC will be disabled\n");
1520 efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1521 }
1522
1523 return IRQ_HANDLED;
1524 }
1525
1526 /* Handle a legacy interrupt
1527 * Acknowledges the interrupt and schedule event queue processing.
1528 */
efx_farch_legacy_interrupt(int irq,void * dev_id)1529 irqreturn_t efx_farch_legacy_interrupt(int irq, void *dev_id)
1530 {
1531 struct efx_nic *efx = dev_id;
1532 bool soft_enabled = ACCESS_ONCE(efx->irq_soft_enabled);
1533 efx_oword_t *int_ker = efx->irq_status.addr;
1534 irqreturn_t result = IRQ_NONE;
1535 struct efx_channel *channel;
1536 efx_dword_t reg;
1537 u32 queues;
1538 int syserr;
1539
1540 /* Read the ISR which also ACKs the interrupts */
1541 efx_readd(efx, ®, FR_BZ_INT_ISR0);
1542 queues = EFX_EXTRACT_DWORD(reg, 0, 31);
1543
1544 /* Legacy interrupts are disabled too late by the EEH kernel
1545 * code. Disable them earlier.
1546 * If an EEH error occurred, the read will have returned all ones.
1547 */
1548 if (EFX_DWORD_IS_ALL_ONES(reg) && efx_try_recovery(efx) &&
1549 !efx->eeh_disabled_legacy_irq) {
1550 disable_irq_nosync(efx->legacy_irq);
1551 efx->eeh_disabled_legacy_irq = true;
1552 }
1553
1554 /* Handle non-event-queue sources */
1555 if (queues & (1U << efx->irq_level) && soft_enabled) {
1556 syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1557 if (unlikely(syserr))
1558 return efx_farch_fatal_interrupt(efx);
1559 efx->last_irq_cpu = raw_smp_processor_id();
1560 }
1561
1562 if (queues != 0) {
1563 efx->irq_zero_count = 0;
1564
1565 /* Schedule processing of any interrupting queues */
1566 if (likely(soft_enabled)) {
1567 efx_for_each_channel(channel, efx) {
1568 if (queues & 1)
1569 efx_schedule_channel_irq(channel);
1570 queues >>= 1;
1571 }
1572 }
1573 result = IRQ_HANDLED;
1574
1575 } else {
1576 efx_qword_t *event;
1577
1578 /* Legacy ISR read can return zero once (SF bug 15783) */
1579
1580 /* We can't return IRQ_HANDLED more than once on seeing ISR=0
1581 * because this might be a shared interrupt. */
1582 if (efx->irq_zero_count++ == 0)
1583 result = IRQ_HANDLED;
1584
1585 /* Ensure we schedule or rearm all event queues */
1586 if (likely(soft_enabled)) {
1587 efx_for_each_channel(channel, efx) {
1588 event = efx_event(channel,
1589 channel->eventq_read_ptr);
1590 if (efx_event_present(event))
1591 efx_schedule_channel_irq(channel);
1592 else
1593 efx_farch_ev_read_ack(channel);
1594 }
1595 }
1596 }
1597
1598 if (result == IRQ_HANDLED)
1599 netif_vdbg(efx, intr, efx->net_dev,
1600 "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
1601 irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
1602
1603 return result;
1604 }
1605
1606 /* Handle an MSI interrupt
1607 *
1608 * Handle an MSI hardware interrupt. This routine schedules event
1609 * queue processing. No interrupt acknowledgement cycle is necessary.
1610 * Also, we never need to check that the interrupt is for us, since
1611 * MSI interrupts cannot be shared.
1612 */
efx_farch_msi_interrupt(int irq,void * dev_id)1613 irqreturn_t efx_farch_msi_interrupt(int irq, void *dev_id)
1614 {
1615 struct efx_msi_context *context = dev_id;
1616 struct efx_nic *efx = context->efx;
1617 efx_oword_t *int_ker = efx->irq_status.addr;
1618 int syserr;
1619
1620 netif_vdbg(efx, intr, efx->net_dev,
1621 "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
1622 irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
1623
1624 if (!likely(ACCESS_ONCE(efx->irq_soft_enabled)))
1625 return IRQ_HANDLED;
1626
1627 /* Handle non-event-queue sources */
1628 if (context->index == efx->irq_level) {
1629 syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1630 if (unlikely(syserr))
1631 return efx_farch_fatal_interrupt(efx);
1632 efx->last_irq_cpu = raw_smp_processor_id();
1633 }
1634
1635 /* Schedule processing of the channel */
1636 efx_schedule_channel_irq(efx->channel[context->index]);
1637
1638 return IRQ_HANDLED;
1639 }
1640
1641 /* Setup RSS indirection table.
1642 * This maps from the hash value of the packet to RXQ
1643 */
efx_farch_rx_push_indir_table(struct efx_nic * efx)1644 void efx_farch_rx_push_indir_table(struct efx_nic *efx)
1645 {
1646 size_t i = 0;
1647 efx_dword_t dword;
1648
1649 BUG_ON(efx_nic_rev(efx) < EFX_REV_FALCON_B0);
1650
1651 BUILD_BUG_ON(ARRAY_SIZE(efx->rx_indir_table) !=
1652 FR_BZ_RX_INDIRECTION_TBL_ROWS);
1653
1654 for (i = 0; i < FR_BZ_RX_INDIRECTION_TBL_ROWS; i++) {
1655 EFX_POPULATE_DWORD_1(dword, FRF_BZ_IT_QUEUE,
1656 efx->rx_indir_table[i]);
1657 efx_writed(efx, &dword,
1658 FR_BZ_RX_INDIRECTION_TBL +
1659 FR_BZ_RX_INDIRECTION_TBL_STEP * i);
1660 }
1661 }
1662
1663 /* Looks at available SRAM resources and works out how many queues we
1664 * can support, and where things like descriptor caches should live.
1665 *
1666 * SRAM is split up as follows:
1667 * 0 buftbl entries for channels
1668 * efx->vf_buftbl_base buftbl entries for SR-IOV
1669 * efx->rx_dc_base RX descriptor caches
1670 * efx->tx_dc_base TX descriptor caches
1671 */
efx_farch_dimension_resources(struct efx_nic * efx,unsigned sram_lim_qw)1672 void efx_farch_dimension_resources(struct efx_nic *efx, unsigned sram_lim_qw)
1673 {
1674 unsigned vi_count, buftbl_min;
1675
1676 #ifdef CONFIG_SFC_SRIOV
1677 struct siena_nic_data *nic_data = efx->nic_data;
1678 #endif
1679
1680 /* Account for the buffer table entries backing the datapath channels
1681 * and the descriptor caches for those channels.
1682 */
1683 buftbl_min = ((efx->n_rx_channels * EFX_MAX_DMAQ_SIZE +
1684 efx->n_tx_channels * EFX_TXQ_TYPES * EFX_MAX_DMAQ_SIZE +
1685 efx->n_channels * EFX_MAX_EVQ_SIZE)
1686 * sizeof(efx_qword_t) / EFX_BUF_SIZE);
1687 vi_count = max(efx->n_channels, efx->n_tx_channels * EFX_TXQ_TYPES);
1688
1689 #ifdef CONFIG_SFC_SRIOV
1690 if (efx->type->sriov_wanted(efx)) {
1691 unsigned vi_dc_entries, buftbl_free, entries_per_vf, vf_limit;
1692
1693 nic_data->vf_buftbl_base = buftbl_min;
1694
1695 vi_dc_entries = RX_DC_ENTRIES + TX_DC_ENTRIES;
1696 vi_count = max(vi_count, EFX_VI_BASE);
1697 buftbl_free = (sram_lim_qw - buftbl_min -
1698 vi_count * vi_dc_entries);
1699
1700 entries_per_vf = ((vi_dc_entries + EFX_VF_BUFTBL_PER_VI) *
1701 efx_vf_size(efx));
1702 vf_limit = min(buftbl_free / entries_per_vf,
1703 (1024U - EFX_VI_BASE) >> efx->vi_scale);
1704
1705 if (efx->vf_count > vf_limit) {
1706 netif_err(efx, probe, efx->net_dev,
1707 "Reducing VF count from from %d to %d\n",
1708 efx->vf_count, vf_limit);
1709 efx->vf_count = vf_limit;
1710 }
1711 vi_count += efx->vf_count * efx_vf_size(efx);
1712 }
1713 #endif
1714
1715 efx->tx_dc_base = sram_lim_qw - vi_count * TX_DC_ENTRIES;
1716 efx->rx_dc_base = efx->tx_dc_base - vi_count * RX_DC_ENTRIES;
1717 }
1718
efx_farch_fpga_ver(struct efx_nic * efx)1719 u32 efx_farch_fpga_ver(struct efx_nic *efx)
1720 {
1721 efx_oword_t altera_build;
1722 efx_reado(efx, &altera_build, FR_AZ_ALTERA_BUILD);
1723 return EFX_OWORD_FIELD(altera_build, FRF_AZ_ALTERA_BUILD_VER);
1724 }
1725
efx_farch_init_common(struct efx_nic * efx)1726 void efx_farch_init_common(struct efx_nic *efx)
1727 {
1728 efx_oword_t temp;
1729
1730 /* Set positions of descriptor caches in SRAM. */
1731 EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_TX_DC_BASE_ADR, efx->tx_dc_base);
1732 efx_writeo(efx, &temp, FR_AZ_SRM_TX_DC_CFG);
1733 EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_RX_DC_BASE_ADR, efx->rx_dc_base);
1734 efx_writeo(efx, &temp, FR_AZ_SRM_RX_DC_CFG);
1735
1736 /* Set TX descriptor cache size. */
1737 BUILD_BUG_ON(TX_DC_ENTRIES != (8 << TX_DC_ENTRIES_ORDER));
1738 EFX_POPULATE_OWORD_1(temp, FRF_AZ_TX_DC_SIZE, TX_DC_ENTRIES_ORDER);
1739 efx_writeo(efx, &temp, FR_AZ_TX_DC_CFG);
1740
1741 /* Set RX descriptor cache size. Set low watermark to size-8, as
1742 * this allows most efficient prefetching.
1743 */
1744 BUILD_BUG_ON(RX_DC_ENTRIES != (8 << RX_DC_ENTRIES_ORDER));
1745 EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_SIZE, RX_DC_ENTRIES_ORDER);
1746 efx_writeo(efx, &temp, FR_AZ_RX_DC_CFG);
1747 EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_PF_LWM, RX_DC_ENTRIES - 8);
1748 efx_writeo(efx, &temp, FR_AZ_RX_DC_PF_WM);
1749
1750 /* Program INT_KER address */
1751 EFX_POPULATE_OWORD_2(temp,
1752 FRF_AZ_NORM_INT_VEC_DIS_KER,
1753 EFX_INT_MODE_USE_MSI(efx),
1754 FRF_AZ_INT_ADR_KER, efx->irq_status.dma_addr);
1755 efx_writeo(efx, &temp, FR_AZ_INT_ADR_KER);
1756
1757 if (EFX_WORKAROUND_17213(efx) && !EFX_INT_MODE_USE_MSI(efx))
1758 /* Use an interrupt level unused by event queues */
1759 efx->irq_level = 0x1f;
1760 else
1761 /* Use a valid MSI-X vector */
1762 efx->irq_level = 0;
1763
1764 /* Enable all the genuinely fatal interrupts. (They are still
1765 * masked by the overall interrupt mask, controlled by
1766 * falcon_interrupts()).
1767 *
1768 * Note: All other fatal interrupts are enabled
1769 */
1770 EFX_POPULATE_OWORD_3(temp,
1771 FRF_AZ_ILL_ADR_INT_KER_EN, 1,
1772 FRF_AZ_RBUF_OWN_INT_KER_EN, 1,
1773 FRF_AZ_TBUF_OWN_INT_KER_EN, 1);
1774 if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0)
1775 EFX_SET_OWORD_FIELD(temp, FRF_CZ_SRAM_PERR_INT_P_KER_EN, 1);
1776 EFX_INVERT_OWORD(temp);
1777 efx_writeo(efx, &temp, FR_AZ_FATAL_INTR_KER);
1778
1779 /* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be
1780 * controlled by the RX FIFO fill level. Set arbitration to one pkt/Q.
1781 */
1782 efx_reado(efx, &temp, FR_AZ_TX_RESERVED);
1783 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER, 0xfe);
1784 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER_EN, 1);
1785 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_ONE_PKT_PER_Q, 1);
1786 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PUSH_EN, 1);
1787 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_DIS_NON_IP_EV, 1);
1788 /* Enable SW_EV to inherit in char driver - assume harmless here */
1789 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_SOFT_EVT_EN, 1);
1790 /* Prefetch threshold 2 => fetch when descriptor cache half empty */
1791 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_THRESHOLD, 2);
1792 /* Disable hardware watchdog which can misfire */
1793 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_WD_TMR, 0x3fffff);
1794 /* Squash TX of packets of 16 bytes or less */
1795 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1796 EFX_SET_OWORD_FIELD(temp, FRF_BZ_TX_FLUSH_MIN_LEN_EN, 1);
1797 efx_writeo(efx, &temp, FR_AZ_TX_RESERVED);
1798
1799 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
1800 EFX_POPULATE_OWORD_4(temp,
1801 /* Default values */
1802 FRF_BZ_TX_PACE_SB_NOT_AF, 0x15,
1803 FRF_BZ_TX_PACE_SB_AF, 0xb,
1804 FRF_BZ_TX_PACE_FB_BASE, 0,
1805 /* Allow large pace values in the
1806 * fast bin. */
1807 FRF_BZ_TX_PACE_BIN_TH,
1808 FFE_BZ_TX_PACE_RESERVED);
1809 efx_writeo(efx, &temp, FR_BZ_TX_PACE);
1810 }
1811 }
1812
1813 /**************************************************************************
1814 *
1815 * Filter tables
1816 *
1817 **************************************************************************
1818 */
1819
1820 /* "Fudge factors" - difference between programmed value and actual depth.
1821 * Due to pipelined implementation we need to program H/W with a value that
1822 * is larger than the hop limit we want.
1823 */
1824 #define EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD 3
1825 #define EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL 1
1826
1827 /* Hard maximum search limit. Hardware will time-out beyond 200-something.
1828 * We also need to avoid infinite loops in efx_farch_filter_search() when the
1829 * table is full.
1830 */
1831 #define EFX_FARCH_FILTER_CTL_SRCH_MAX 200
1832
1833 /* Don't try very hard to find space for performance hints, as this is
1834 * counter-productive. */
1835 #define EFX_FARCH_FILTER_CTL_SRCH_HINT_MAX 5
1836
1837 enum efx_farch_filter_type {
1838 EFX_FARCH_FILTER_TCP_FULL = 0,
1839 EFX_FARCH_FILTER_TCP_WILD,
1840 EFX_FARCH_FILTER_UDP_FULL,
1841 EFX_FARCH_FILTER_UDP_WILD,
1842 EFX_FARCH_FILTER_MAC_FULL = 4,
1843 EFX_FARCH_FILTER_MAC_WILD,
1844 EFX_FARCH_FILTER_UC_DEF = 8,
1845 EFX_FARCH_FILTER_MC_DEF,
1846 EFX_FARCH_FILTER_TYPE_COUNT, /* number of specific types */
1847 };
1848
1849 enum efx_farch_filter_table_id {
1850 EFX_FARCH_FILTER_TABLE_RX_IP = 0,
1851 EFX_FARCH_FILTER_TABLE_RX_MAC,
1852 EFX_FARCH_FILTER_TABLE_RX_DEF,
1853 EFX_FARCH_FILTER_TABLE_TX_MAC,
1854 EFX_FARCH_FILTER_TABLE_COUNT,
1855 };
1856
1857 enum efx_farch_filter_index {
1858 EFX_FARCH_FILTER_INDEX_UC_DEF,
1859 EFX_FARCH_FILTER_INDEX_MC_DEF,
1860 EFX_FARCH_FILTER_SIZE_RX_DEF,
1861 };
1862
1863 struct efx_farch_filter_spec {
1864 u8 type:4;
1865 u8 priority:4;
1866 u8 flags;
1867 u16 dmaq_id;
1868 u32 data[3];
1869 };
1870
1871 struct efx_farch_filter_table {
1872 enum efx_farch_filter_table_id id;
1873 u32 offset; /* address of table relative to BAR */
1874 unsigned size; /* number of entries */
1875 unsigned step; /* step between entries */
1876 unsigned used; /* number currently used */
1877 unsigned long *used_bitmap;
1878 struct efx_farch_filter_spec *spec;
1879 unsigned search_limit[EFX_FARCH_FILTER_TYPE_COUNT];
1880 };
1881
1882 struct efx_farch_filter_state {
1883 struct efx_farch_filter_table table[EFX_FARCH_FILTER_TABLE_COUNT];
1884 };
1885
1886 static void
1887 efx_farch_filter_table_clear_entry(struct efx_nic *efx,
1888 struct efx_farch_filter_table *table,
1889 unsigned int filter_idx);
1890
1891 /* The filter hash function is LFSR polynomial x^16 + x^3 + 1 of a 32-bit
1892 * key derived from the n-tuple. The initial LFSR state is 0xffff. */
efx_farch_filter_hash(u32 key)1893 static u16 efx_farch_filter_hash(u32 key)
1894 {
1895 u16 tmp;
1896
1897 /* First 16 rounds */
1898 tmp = 0x1fff ^ key >> 16;
1899 tmp = tmp ^ tmp >> 3 ^ tmp >> 6;
1900 tmp = tmp ^ tmp >> 9;
1901 /* Last 16 rounds */
1902 tmp = tmp ^ tmp << 13 ^ key;
1903 tmp = tmp ^ tmp >> 3 ^ tmp >> 6;
1904 return tmp ^ tmp >> 9;
1905 }
1906
1907 /* To allow for hash collisions, filter search continues at these
1908 * increments from the first possible entry selected by the hash. */
efx_farch_filter_increment(u32 key)1909 static u16 efx_farch_filter_increment(u32 key)
1910 {
1911 return key * 2 - 1;
1912 }
1913
1914 static enum efx_farch_filter_table_id
efx_farch_filter_spec_table_id(const struct efx_farch_filter_spec * spec)1915 efx_farch_filter_spec_table_id(const struct efx_farch_filter_spec *spec)
1916 {
1917 BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
1918 (EFX_FARCH_FILTER_TCP_FULL >> 2));
1919 BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
1920 (EFX_FARCH_FILTER_TCP_WILD >> 2));
1921 BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
1922 (EFX_FARCH_FILTER_UDP_FULL >> 2));
1923 BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
1924 (EFX_FARCH_FILTER_UDP_WILD >> 2));
1925 BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_MAC !=
1926 (EFX_FARCH_FILTER_MAC_FULL >> 2));
1927 BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_MAC !=
1928 (EFX_FARCH_FILTER_MAC_WILD >> 2));
1929 BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_TX_MAC !=
1930 EFX_FARCH_FILTER_TABLE_RX_MAC + 2);
1931 return (spec->type >> 2) + ((spec->flags & EFX_FILTER_FLAG_TX) ? 2 : 0);
1932 }
1933
efx_farch_filter_push_rx_config(struct efx_nic * efx)1934 static void efx_farch_filter_push_rx_config(struct efx_nic *efx)
1935 {
1936 struct efx_farch_filter_state *state = efx->filter_state;
1937 struct efx_farch_filter_table *table;
1938 efx_oword_t filter_ctl;
1939
1940 efx_reado(efx, &filter_ctl, FR_BZ_RX_FILTER_CTL);
1941
1942 table = &state->table[EFX_FARCH_FILTER_TABLE_RX_IP];
1943 EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_TCP_FULL_SRCH_LIMIT,
1944 table->search_limit[EFX_FARCH_FILTER_TCP_FULL] +
1945 EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
1946 EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_TCP_WILD_SRCH_LIMIT,
1947 table->search_limit[EFX_FARCH_FILTER_TCP_WILD] +
1948 EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
1949 EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_UDP_FULL_SRCH_LIMIT,
1950 table->search_limit[EFX_FARCH_FILTER_UDP_FULL] +
1951 EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
1952 EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_UDP_WILD_SRCH_LIMIT,
1953 table->search_limit[EFX_FARCH_FILTER_UDP_WILD] +
1954 EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
1955
1956 table = &state->table[EFX_FARCH_FILTER_TABLE_RX_MAC];
1957 if (table->size) {
1958 EFX_SET_OWORD_FIELD(
1959 filter_ctl, FRF_CZ_ETHERNET_FULL_SEARCH_LIMIT,
1960 table->search_limit[EFX_FARCH_FILTER_MAC_FULL] +
1961 EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
1962 EFX_SET_OWORD_FIELD(
1963 filter_ctl, FRF_CZ_ETHERNET_WILDCARD_SEARCH_LIMIT,
1964 table->search_limit[EFX_FARCH_FILTER_MAC_WILD] +
1965 EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
1966 }
1967
1968 table = &state->table[EFX_FARCH_FILTER_TABLE_RX_DEF];
1969 if (table->size) {
1970 EFX_SET_OWORD_FIELD(
1971 filter_ctl, FRF_CZ_UNICAST_NOMATCH_Q_ID,
1972 table->spec[EFX_FARCH_FILTER_INDEX_UC_DEF].dmaq_id);
1973 EFX_SET_OWORD_FIELD(
1974 filter_ctl, FRF_CZ_UNICAST_NOMATCH_RSS_ENABLED,
1975 !!(table->spec[EFX_FARCH_FILTER_INDEX_UC_DEF].flags &
1976 EFX_FILTER_FLAG_RX_RSS));
1977 EFX_SET_OWORD_FIELD(
1978 filter_ctl, FRF_CZ_MULTICAST_NOMATCH_Q_ID,
1979 table->spec[EFX_FARCH_FILTER_INDEX_MC_DEF].dmaq_id);
1980 EFX_SET_OWORD_FIELD(
1981 filter_ctl, FRF_CZ_MULTICAST_NOMATCH_RSS_ENABLED,
1982 !!(table->spec[EFX_FARCH_FILTER_INDEX_MC_DEF].flags &
1983 EFX_FILTER_FLAG_RX_RSS));
1984
1985 /* There is a single bit to enable RX scatter for all
1986 * unmatched packets. Only set it if scatter is
1987 * enabled in both filter specs.
1988 */
1989 EFX_SET_OWORD_FIELD(
1990 filter_ctl, FRF_BZ_SCATTER_ENBL_NO_MATCH_Q,
1991 !!(table->spec[EFX_FARCH_FILTER_INDEX_UC_DEF].flags &
1992 table->spec[EFX_FARCH_FILTER_INDEX_MC_DEF].flags &
1993 EFX_FILTER_FLAG_RX_SCATTER));
1994 } else if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
1995 /* We don't expose 'default' filters because unmatched
1996 * packets always go to the queue number found in the
1997 * RSS table. But we still need to set the RX scatter
1998 * bit here.
1999 */
2000 EFX_SET_OWORD_FIELD(
2001 filter_ctl, FRF_BZ_SCATTER_ENBL_NO_MATCH_Q,
2002 efx->rx_scatter);
2003 }
2004
2005 efx_writeo(efx, &filter_ctl, FR_BZ_RX_FILTER_CTL);
2006 }
2007
efx_farch_filter_push_tx_limits(struct efx_nic * efx)2008 static void efx_farch_filter_push_tx_limits(struct efx_nic *efx)
2009 {
2010 struct efx_farch_filter_state *state = efx->filter_state;
2011 struct efx_farch_filter_table *table;
2012 efx_oword_t tx_cfg;
2013
2014 efx_reado(efx, &tx_cfg, FR_AZ_TX_CFG);
2015
2016 table = &state->table[EFX_FARCH_FILTER_TABLE_TX_MAC];
2017 if (table->size) {
2018 EFX_SET_OWORD_FIELD(
2019 tx_cfg, FRF_CZ_TX_ETH_FILTER_FULL_SEARCH_RANGE,
2020 table->search_limit[EFX_FARCH_FILTER_MAC_FULL] +
2021 EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
2022 EFX_SET_OWORD_FIELD(
2023 tx_cfg, FRF_CZ_TX_ETH_FILTER_WILD_SEARCH_RANGE,
2024 table->search_limit[EFX_FARCH_FILTER_MAC_WILD] +
2025 EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
2026 }
2027
2028 efx_writeo(efx, &tx_cfg, FR_AZ_TX_CFG);
2029 }
2030
2031 static int
efx_farch_filter_from_gen_spec(struct efx_farch_filter_spec * spec,const struct efx_filter_spec * gen_spec)2032 efx_farch_filter_from_gen_spec(struct efx_farch_filter_spec *spec,
2033 const struct efx_filter_spec *gen_spec)
2034 {
2035 bool is_full = false;
2036
2037 if ((gen_spec->flags & EFX_FILTER_FLAG_RX_RSS) &&
2038 gen_spec->rss_context != EFX_FILTER_RSS_CONTEXT_DEFAULT)
2039 return -EINVAL;
2040
2041 spec->priority = gen_spec->priority;
2042 spec->flags = gen_spec->flags;
2043 spec->dmaq_id = gen_spec->dmaq_id;
2044
2045 switch (gen_spec->match_flags) {
2046 case (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_IP_PROTO |
2047 EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT |
2048 EFX_FILTER_MATCH_REM_HOST | EFX_FILTER_MATCH_REM_PORT):
2049 is_full = true;
2050 /* fall through */
2051 case (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_IP_PROTO |
2052 EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT): {
2053 __be32 rhost, host1, host2;
2054 __be16 rport, port1, port2;
2055
2056 EFX_BUG_ON_PARANOID(!(gen_spec->flags & EFX_FILTER_FLAG_RX));
2057
2058 if (gen_spec->ether_type != htons(ETH_P_IP))
2059 return -EPROTONOSUPPORT;
2060 if (gen_spec->loc_port == 0 ||
2061 (is_full && gen_spec->rem_port == 0))
2062 return -EADDRNOTAVAIL;
2063 switch (gen_spec->ip_proto) {
2064 case IPPROTO_TCP:
2065 spec->type = (is_full ? EFX_FARCH_FILTER_TCP_FULL :
2066 EFX_FARCH_FILTER_TCP_WILD);
2067 break;
2068 case IPPROTO_UDP:
2069 spec->type = (is_full ? EFX_FARCH_FILTER_UDP_FULL :
2070 EFX_FARCH_FILTER_UDP_WILD);
2071 break;
2072 default:
2073 return -EPROTONOSUPPORT;
2074 }
2075
2076 /* Filter is constructed in terms of source and destination,
2077 * with the odd wrinkle that the ports are swapped in a UDP
2078 * wildcard filter. We need to convert from local and remote
2079 * (= zero for wildcard) addresses.
2080 */
2081 rhost = is_full ? gen_spec->rem_host[0] : 0;
2082 rport = is_full ? gen_spec->rem_port : 0;
2083 host1 = rhost;
2084 host2 = gen_spec->loc_host[0];
2085 if (!is_full && gen_spec->ip_proto == IPPROTO_UDP) {
2086 port1 = gen_spec->loc_port;
2087 port2 = rport;
2088 } else {
2089 port1 = rport;
2090 port2 = gen_spec->loc_port;
2091 }
2092 spec->data[0] = ntohl(host1) << 16 | ntohs(port1);
2093 spec->data[1] = ntohs(port2) << 16 | ntohl(host1) >> 16;
2094 spec->data[2] = ntohl(host2);
2095
2096 break;
2097 }
2098
2099 case EFX_FILTER_MATCH_LOC_MAC | EFX_FILTER_MATCH_OUTER_VID:
2100 is_full = true;
2101 /* fall through */
2102 case EFX_FILTER_MATCH_LOC_MAC:
2103 spec->type = (is_full ? EFX_FARCH_FILTER_MAC_FULL :
2104 EFX_FARCH_FILTER_MAC_WILD);
2105 spec->data[0] = is_full ? ntohs(gen_spec->outer_vid) : 0;
2106 spec->data[1] = (gen_spec->loc_mac[2] << 24 |
2107 gen_spec->loc_mac[3] << 16 |
2108 gen_spec->loc_mac[4] << 8 |
2109 gen_spec->loc_mac[5]);
2110 spec->data[2] = (gen_spec->loc_mac[0] << 8 |
2111 gen_spec->loc_mac[1]);
2112 break;
2113
2114 case EFX_FILTER_MATCH_LOC_MAC_IG:
2115 spec->type = (is_multicast_ether_addr(gen_spec->loc_mac) ?
2116 EFX_FARCH_FILTER_MC_DEF :
2117 EFX_FARCH_FILTER_UC_DEF);
2118 memset(spec->data, 0, sizeof(spec->data)); /* ensure equality */
2119 break;
2120
2121 default:
2122 return -EPROTONOSUPPORT;
2123 }
2124
2125 return 0;
2126 }
2127
2128 static void
efx_farch_filter_to_gen_spec(struct efx_filter_spec * gen_spec,const struct efx_farch_filter_spec * spec)2129 efx_farch_filter_to_gen_spec(struct efx_filter_spec *gen_spec,
2130 const struct efx_farch_filter_spec *spec)
2131 {
2132 bool is_full = false;
2133
2134 /* *gen_spec should be completely initialised, to be consistent
2135 * with efx_filter_init_{rx,tx}() and in case we want to copy
2136 * it back to userland.
2137 */
2138 memset(gen_spec, 0, sizeof(*gen_spec));
2139
2140 gen_spec->priority = spec->priority;
2141 gen_spec->flags = spec->flags;
2142 gen_spec->dmaq_id = spec->dmaq_id;
2143
2144 switch (spec->type) {
2145 case EFX_FARCH_FILTER_TCP_FULL:
2146 case EFX_FARCH_FILTER_UDP_FULL:
2147 is_full = true;
2148 /* fall through */
2149 case EFX_FARCH_FILTER_TCP_WILD:
2150 case EFX_FARCH_FILTER_UDP_WILD: {
2151 __be32 host1, host2;
2152 __be16 port1, port2;
2153
2154 gen_spec->match_flags =
2155 EFX_FILTER_MATCH_ETHER_TYPE |
2156 EFX_FILTER_MATCH_IP_PROTO |
2157 EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT;
2158 if (is_full)
2159 gen_spec->match_flags |= (EFX_FILTER_MATCH_REM_HOST |
2160 EFX_FILTER_MATCH_REM_PORT);
2161 gen_spec->ether_type = htons(ETH_P_IP);
2162 gen_spec->ip_proto =
2163 (spec->type == EFX_FARCH_FILTER_TCP_FULL ||
2164 spec->type == EFX_FARCH_FILTER_TCP_WILD) ?
2165 IPPROTO_TCP : IPPROTO_UDP;
2166
2167 host1 = htonl(spec->data[0] >> 16 | spec->data[1] << 16);
2168 port1 = htons(spec->data[0]);
2169 host2 = htonl(spec->data[2]);
2170 port2 = htons(spec->data[1] >> 16);
2171 if (spec->flags & EFX_FILTER_FLAG_TX) {
2172 gen_spec->loc_host[0] = host1;
2173 gen_spec->rem_host[0] = host2;
2174 } else {
2175 gen_spec->loc_host[0] = host2;
2176 gen_spec->rem_host[0] = host1;
2177 }
2178 if (!!(gen_spec->flags & EFX_FILTER_FLAG_TX) ^
2179 (!is_full && gen_spec->ip_proto == IPPROTO_UDP)) {
2180 gen_spec->loc_port = port1;
2181 gen_spec->rem_port = port2;
2182 } else {
2183 gen_spec->loc_port = port2;
2184 gen_spec->rem_port = port1;
2185 }
2186
2187 break;
2188 }
2189
2190 case EFX_FARCH_FILTER_MAC_FULL:
2191 is_full = true;
2192 /* fall through */
2193 case EFX_FARCH_FILTER_MAC_WILD:
2194 gen_spec->match_flags = EFX_FILTER_MATCH_LOC_MAC;
2195 if (is_full)
2196 gen_spec->match_flags |= EFX_FILTER_MATCH_OUTER_VID;
2197 gen_spec->loc_mac[0] = spec->data[2] >> 8;
2198 gen_spec->loc_mac[1] = spec->data[2];
2199 gen_spec->loc_mac[2] = spec->data[1] >> 24;
2200 gen_spec->loc_mac[3] = spec->data[1] >> 16;
2201 gen_spec->loc_mac[4] = spec->data[1] >> 8;
2202 gen_spec->loc_mac[5] = spec->data[1];
2203 gen_spec->outer_vid = htons(spec->data[0]);
2204 break;
2205
2206 case EFX_FARCH_FILTER_UC_DEF:
2207 case EFX_FARCH_FILTER_MC_DEF:
2208 gen_spec->match_flags = EFX_FILTER_MATCH_LOC_MAC_IG;
2209 gen_spec->loc_mac[0] = spec->type == EFX_FARCH_FILTER_MC_DEF;
2210 break;
2211
2212 default:
2213 WARN_ON(1);
2214 break;
2215 }
2216 }
2217
2218 static void
efx_farch_filter_init_rx_auto(struct efx_nic * efx,struct efx_farch_filter_spec * spec)2219 efx_farch_filter_init_rx_auto(struct efx_nic *efx,
2220 struct efx_farch_filter_spec *spec)
2221 {
2222 /* If there's only one channel then disable RSS for non VF
2223 * traffic, thereby allowing VFs to use RSS when the PF can't.
2224 */
2225 spec->priority = EFX_FILTER_PRI_AUTO;
2226 spec->flags = (EFX_FILTER_FLAG_RX |
2227 (efx->n_rx_channels > 1 ? EFX_FILTER_FLAG_RX_RSS : 0) |
2228 (efx->rx_scatter ? EFX_FILTER_FLAG_RX_SCATTER : 0));
2229 spec->dmaq_id = 0;
2230 }
2231
2232 /* Build a filter entry and return its n-tuple key. */
efx_farch_filter_build(efx_oword_t * filter,struct efx_farch_filter_spec * spec)2233 static u32 efx_farch_filter_build(efx_oword_t *filter,
2234 struct efx_farch_filter_spec *spec)
2235 {
2236 u32 data3;
2237
2238 switch (efx_farch_filter_spec_table_id(spec)) {
2239 case EFX_FARCH_FILTER_TABLE_RX_IP: {
2240 bool is_udp = (spec->type == EFX_FARCH_FILTER_UDP_FULL ||
2241 spec->type == EFX_FARCH_FILTER_UDP_WILD);
2242 EFX_POPULATE_OWORD_7(
2243 *filter,
2244 FRF_BZ_RSS_EN,
2245 !!(spec->flags & EFX_FILTER_FLAG_RX_RSS),
2246 FRF_BZ_SCATTER_EN,
2247 !!(spec->flags & EFX_FILTER_FLAG_RX_SCATTER),
2248 FRF_BZ_TCP_UDP, is_udp,
2249 FRF_BZ_RXQ_ID, spec->dmaq_id,
2250 EFX_DWORD_2, spec->data[2],
2251 EFX_DWORD_1, spec->data[1],
2252 EFX_DWORD_0, spec->data[0]);
2253 data3 = is_udp;
2254 break;
2255 }
2256
2257 case EFX_FARCH_FILTER_TABLE_RX_MAC: {
2258 bool is_wild = spec->type == EFX_FARCH_FILTER_MAC_WILD;
2259 EFX_POPULATE_OWORD_7(
2260 *filter,
2261 FRF_CZ_RMFT_RSS_EN,
2262 !!(spec->flags & EFX_FILTER_FLAG_RX_RSS),
2263 FRF_CZ_RMFT_SCATTER_EN,
2264 !!(spec->flags & EFX_FILTER_FLAG_RX_SCATTER),
2265 FRF_CZ_RMFT_RXQ_ID, spec->dmaq_id,
2266 FRF_CZ_RMFT_WILDCARD_MATCH, is_wild,
2267 FRF_CZ_RMFT_DEST_MAC_HI, spec->data[2],
2268 FRF_CZ_RMFT_DEST_MAC_LO, spec->data[1],
2269 FRF_CZ_RMFT_VLAN_ID, spec->data[0]);
2270 data3 = is_wild;
2271 break;
2272 }
2273
2274 case EFX_FARCH_FILTER_TABLE_TX_MAC: {
2275 bool is_wild = spec->type == EFX_FARCH_FILTER_MAC_WILD;
2276 EFX_POPULATE_OWORD_5(*filter,
2277 FRF_CZ_TMFT_TXQ_ID, spec->dmaq_id,
2278 FRF_CZ_TMFT_WILDCARD_MATCH, is_wild,
2279 FRF_CZ_TMFT_SRC_MAC_HI, spec->data[2],
2280 FRF_CZ_TMFT_SRC_MAC_LO, spec->data[1],
2281 FRF_CZ_TMFT_VLAN_ID, spec->data[0]);
2282 data3 = is_wild | spec->dmaq_id << 1;
2283 break;
2284 }
2285
2286 default:
2287 BUG();
2288 }
2289
2290 return spec->data[0] ^ spec->data[1] ^ spec->data[2] ^ data3;
2291 }
2292
efx_farch_filter_equal(const struct efx_farch_filter_spec * left,const struct efx_farch_filter_spec * right)2293 static bool efx_farch_filter_equal(const struct efx_farch_filter_spec *left,
2294 const struct efx_farch_filter_spec *right)
2295 {
2296 if (left->type != right->type ||
2297 memcmp(left->data, right->data, sizeof(left->data)))
2298 return false;
2299
2300 if (left->flags & EFX_FILTER_FLAG_TX &&
2301 left->dmaq_id != right->dmaq_id)
2302 return false;
2303
2304 return true;
2305 }
2306
2307 /*
2308 * Construct/deconstruct external filter IDs. At least the RX filter
2309 * IDs must be ordered by matching priority, for RX NFC semantics.
2310 *
2311 * Deconstruction needs to be robust against invalid IDs so that
2312 * efx_filter_remove_id_safe() and efx_filter_get_filter_safe() can
2313 * accept user-provided IDs.
2314 */
2315
2316 #define EFX_FARCH_FILTER_MATCH_PRI_COUNT 5
2317
2318 static const u8 efx_farch_filter_type_match_pri[EFX_FARCH_FILTER_TYPE_COUNT] = {
2319 [EFX_FARCH_FILTER_TCP_FULL] = 0,
2320 [EFX_FARCH_FILTER_UDP_FULL] = 0,
2321 [EFX_FARCH_FILTER_TCP_WILD] = 1,
2322 [EFX_FARCH_FILTER_UDP_WILD] = 1,
2323 [EFX_FARCH_FILTER_MAC_FULL] = 2,
2324 [EFX_FARCH_FILTER_MAC_WILD] = 3,
2325 [EFX_FARCH_FILTER_UC_DEF] = 4,
2326 [EFX_FARCH_FILTER_MC_DEF] = 4,
2327 };
2328
2329 static const enum efx_farch_filter_table_id efx_farch_filter_range_table[] = {
2330 EFX_FARCH_FILTER_TABLE_RX_IP, /* RX match pri 0 */
2331 EFX_FARCH_FILTER_TABLE_RX_IP,
2332 EFX_FARCH_FILTER_TABLE_RX_MAC,
2333 EFX_FARCH_FILTER_TABLE_RX_MAC,
2334 EFX_FARCH_FILTER_TABLE_RX_DEF, /* RX match pri 4 */
2335 EFX_FARCH_FILTER_TABLE_TX_MAC, /* TX match pri 0 */
2336 EFX_FARCH_FILTER_TABLE_TX_MAC, /* TX match pri 1 */
2337 };
2338
2339 #define EFX_FARCH_FILTER_INDEX_WIDTH 13
2340 #define EFX_FARCH_FILTER_INDEX_MASK ((1 << EFX_FARCH_FILTER_INDEX_WIDTH) - 1)
2341
2342 static inline u32
efx_farch_filter_make_id(const struct efx_farch_filter_spec * spec,unsigned int index)2343 efx_farch_filter_make_id(const struct efx_farch_filter_spec *spec,
2344 unsigned int index)
2345 {
2346 unsigned int range;
2347
2348 range = efx_farch_filter_type_match_pri[spec->type];
2349 if (!(spec->flags & EFX_FILTER_FLAG_RX))
2350 range += EFX_FARCH_FILTER_MATCH_PRI_COUNT;
2351
2352 return range << EFX_FARCH_FILTER_INDEX_WIDTH | index;
2353 }
2354
2355 static inline enum efx_farch_filter_table_id
efx_farch_filter_id_table_id(u32 id)2356 efx_farch_filter_id_table_id(u32 id)
2357 {
2358 unsigned int range = id >> EFX_FARCH_FILTER_INDEX_WIDTH;
2359
2360 if (range < ARRAY_SIZE(efx_farch_filter_range_table))
2361 return efx_farch_filter_range_table[range];
2362 else
2363 return EFX_FARCH_FILTER_TABLE_COUNT; /* invalid */
2364 }
2365
efx_farch_filter_id_index(u32 id)2366 static inline unsigned int efx_farch_filter_id_index(u32 id)
2367 {
2368 return id & EFX_FARCH_FILTER_INDEX_MASK;
2369 }
2370
efx_farch_filter_get_rx_id_limit(struct efx_nic * efx)2371 u32 efx_farch_filter_get_rx_id_limit(struct efx_nic *efx)
2372 {
2373 struct efx_farch_filter_state *state = efx->filter_state;
2374 unsigned int range = EFX_FARCH_FILTER_MATCH_PRI_COUNT - 1;
2375 enum efx_farch_filter_table_id table_id;
2376
2377 do {
2378 table_id = efx_farch_filter_range_table[range];
2379 if (state->table[table_id].size != 0)
2380 return range << EFX_FARCH_FILTER_INDEX_WIDTH |
2381 state->table[table_id].size;
2382 } while (range--);
2383
2384 return 0;
2385 }
2386
efx_farch_filter_insert(struct efx_nic * efx,struct efx_filter_spec * gen_spec,bool replace_equal)2387 s32 efx_farch_filter_insert(struct efx_nic *efx,
2388 struct efx_filter_spec *gen_spec,
2389 bool replace_equal)
2390 {
2391 struct efx_farch_filter_state *state = efx->filter_state;
2392 struct efx_farch_filter_table *table;
2393 struct efx_farch_filter_spec spec;
2394 efx_oword_t filter;
2395 int rep_index, ins_index;
2396 unsigned int depth = 0;
2397 int rc;
2398
2399 rc = efx_farch_filter_from_gen_spec(&spec, gen_spec);
2400 if (rc)
2401 return rc;
2402
2403 table = &state->table[efx_farch_filter_spec_table_id(&spec)];
2404 if (table->size == 0)
2405 return -EINVAL;
2406
2407 netif_vdbg(efx, hw, efx->net_dev,
2408 "%s: type %d search_limit=%d", __func__, spec.type,
2409 table->search_limit[spec.type]);
2410
2411 if (table->id == EFX_FARCH_FILTER_TABLE_RX_DEF) {
2412 /* One filter spec per type */
2413 BUILD_BUG_ON(EFX_FARCH_FILTER_INDEX_UC_DEF != 0);
2414 BUILD_BUG_ON(EFX_FARCH_FILTER_INDEX_MC_DEF !=
2415 EFX_FARCH_FILTER_MC_DEF - EFX_FARCH_FILTER_UC_DEF);
2416 rep_index = spec.type - EFX_FARCH_FILTER_UC_DEF;
2417 ins_index = rep_index;
2418
2419 spin_lock_bh(&efx->filter_lock);
2420 } else {
2421 /* Search concurrently for
2422 * (1) a filter to be replaced (rep_index): any filter
2423 * with the same match values, up to the current
2424 * search depth for this type, and
2425 * (2) the insertion point (ins_index): (1) or any
2426 * free slot before it or up to the maximum search
2427 * depth for this priority
2428 * We fail if we cannot find (2).
2429 *
2430 * We can stop once either
2431 * (a) we find (1), in which case we have definitely
2432 * found (2) as well; or
2433 * (b) we have searched exhaustively for (1), and have
2434 * either found (2) or searched exhaustively for it
2435 */
2436 u32 key = efx_farch_filter_build(&filter, &spec);
2437 unsigned int hash = efx_farch_filter_hash(key);
2438 unsigned int incr = efx_farch_filter_increment(key);
2439 unsigned int max_rep_depth = table->search_limit[spec.type];
2440 unsigned int max_ins_depth =
2441 spec.priority <= EFX_FILTER_PRI_HINT ?
2442 EFX_FARCH_FILTER_CTL_SRCH_HINT_MAX :
2443 EFX_FARCH_FILTER_CTL_SRCH_MAX;
2444 unsigned int i = hash & (table->size - 1);
2445
2446 ins_index = -1;
2447 depth = 1;
2448
2449 spin_lock_bh(&efx->filter_lock);
2450
2451 for (;;) {
2452 if (!test_bit(i, table->used_bitmap)) {
2453 if (ins_index < 0)
2454 ins_index = i;
2455 } else if (efx_farch_filter_equal(&spec,
2456 &table->spec[i])) {
2457 /* Case (a) */
2458 if (ins_index < 0)
2459 ins_index = i;
2460 rep_index = i;
2461 break;
2462 }
2463
2464 if (depth >= max_rep_depth &&
2465 (ins_index >= 0 || depth >= max_ins_depth)) {
2466 /* Case (b) */
2467 if (ins_index < 0) {
2468 rc = -EBUSY;
2469 goto out;
2470 }
2471 rep_index = -1;
2472 break;
2473 }
2474
2475 i = (i + incr) & (table->size - 1);
2476 ++depth;
2477 }
2478 }
2479
2480 /* If we found a filter to be replaced, check whether we
2481 * should do so
2482 */
2483 if (rep_index >= 0) {
2484 struct efx_farch_filter_spec *saved_spec =
2485 &table->spec[rep_index];
2486
2487 if (spec.priority == saved_spec->priority && !replace_equal) {
2488 rc = -EEXIST;
2489 goto out;
2490 }
2491 if (spec.priority < saved_spec->priority) {
2492 rc = -EPERM;
2493 goto out;
2494 }
2495 if (saved_spec->priority == EFX_FILTER_PRI_AUTO ||
2496 saved_spec->flags & EFX_FILTER_FLAG_RX_OVER_AUTO)
2497 spec.flags |= EFX_FILTER_FLAG_RX_OVER_AUTO;
2498 }
2499
2500 /* Insert the filter */
2501 if (ins_index != rep_index) {
2502 __set_bit(ins_index, table->used_bitmap);
2503 ++table->used;
2504 }
2505 table->spec[ins_index] = spec;
2506
2507 if (table->id == EFX_FARCH_FILTER_TABLE_RX_DEF) {
2508 efx_farch_filter_push_rx_config(efx);
2509 } else {
2510 if (table->search_limit[spec.type] < depth) {
2511 table->search_limit[spec.type] = depth;
2512 if (spec.flags & EFX_FILTER_FLAG_TX)
2513 efx_farch_filter_push_tx_limits(efx);
2514 else
2515 efx_farch_filter_push_rx_config(efx);
2516 }
2517
2518 efx_writeo(efx, &filter,
2519 table->offset + table->step * ins_index);
2520
2521 /* If we were able to replace a filter by inserting
2522 * at a lower depth, clear the replaced filter
2523 */
2524 if (ins_index != rep_index && rep_index >= 0)
2525 efx_farch_filter_table_clear_entry(efx, table,
2526 rep_index);
2527 }
2528
2529 netif_vdbg(efx, hw, efx->net_dev,
2530 "%s: filter type %d index %d rxq %u set",
2531 __func__, spec.type, ins_index, spec.dmaq_id);
2532 rc = efx_farch_filter_make_id(&spec, ins_index);
2533
2534 out:
2535 spin_unlock_bh(&efx->filter_lock);
2536 return rc;
2537 }
2538
2539 static void
efx_farch_filter_table_clear_entry(struct efx_nic * efx,struct efx_farch_filter_table * table,unsigned int filter_idx)2540 efx_farch_filter_table_clear_entry(struct efx_nic *efx,
2541 struct efx_farch_filter_table *table,
2542 unsigned int filter_idx)
2543 {
2544 static efx_oword_t filter;
2545
2546 EFX_WARN_ON_PARANOID(!test_bit(filter_idx, table->used_bitmap));
2547 BUG_ON(table->offset == 0); /* can't clear MAC default filters */
2548
2549 __clear_bit(filter_idx, table->used_bitmap);
2550 --table->used;
2551 memset(&table->spec[filter_idx], 0, sizeof(table->spec[0]));
2552
2553 efx_writeo(efx, &filter, table->offset + table->step * filter_idx);
2554
2555 /* If this filter required a greater search depth than
2556 * any other, the search limit for its type can now be
2557 * decreased. However, it is hard to determine that
2558 * unless the table has become completely empty - in
2559 * which case, all its search limits can be set to 0.
2560 */
2561 if (unlikely(table->used == 0)) {
2562 memset(table->search_limit, 0, sizeof(table->search_limit));
2563 if (table->id == EFX_FARCH_FILTER_TABLE_TX_MAC)
2564 efx_farch_filter_push_tx_limits(efx);
2565 else
2566 efx_farch_filter_push_rx_config(efx);
2567 }
2568 }
2569
efx_farch_filter_remove(struct efx_nic * efx,struct efx_farch_filter_table * table,unsigned int filter_idx,enum efx_filter_priority priority)2570 static int efx_farch_filter_remove(struct efx_nic *efx,
2571 struct efx_farch_filter_table *table,
2572 unsigned int filter_idx,
2573 enum efx_filter_priority priority)
2574 {
2575 struct efx_farch_filter_spec *spec = &table->spec[filter_idx];
2576
2577 if (!test_bit(filter_idx, table->used_bitmap) ||
2578 spec->priority != priority)
2579 return -ENOENT;
2580
2581 if (spec->flags & EFX_FILTER_FLAG_RX_OVER_AUTO) {
2582 efx_farch_filter_init_rx_auto(efx, spec);
2583 efx_farch_filter_push_rx_config(efx);
2584 } else {
2585 efx_farch_filter_table_clear_entry(efx, table, filter_idx);
2586 }
2587
2588 return 0;
2589 }
2590
efx_farch_filter_remove_safe(struct efx_nic * efx,enum efx_filter_priority priority,u32 filter_id)2591 int efx_farch_filter_remove_safe(struct efx_nic *efx,
2592 enum efx_filter_priority priority,
2593 u32 filter_id)
2594 {
2595 struct efx_farch_filter_state *state = efx->filter_state;
2596 enum efx_farch_filter_table_id table_id;
2597 struct efx_farch_filter_table *table;
2598 unsigned int filter_idx;
2599 struct efx_farch_filter_spec *spec;
2600 int rc;
2601
2602 table_id = efx_farch_filter_id_table_id(filter_id);
2603 if ((unsigned int)table_id >= EFX_FARCH_FILTER_TABLE_COUNT)
2604 return -ENOENT;
2605 table = &state->table[table_id];
2606
2607 filter_idx = efx_farch_filter_id_index(filter_id);
2608 if (filter_idx >= table->size)
2609 return -ENOENT;
2610 spec = &table->spec[filter_idx];
2611
2612 spin_lock_bh(&efx->filter_lock);
2613 rc = efx_farch_filter_remove(efx, table, filter_idx, priority);
2614 spin_unlock_bh(&efx->filter_lock);
2615
2616 return rc;
2617 }
2618
efx_farch_filter_get_safe(struct efx_nic * efx,enum efx_filter_priority priority,u32 filter_id,struct efx_filter_spec * spec_buf)2619 int efx_farch_filter_get_safe(struct efx_nic *efx,
2620 enum efx_filter_priority priority,
2621 u32 filter_id, struct efx_filter_spec *spec_buf)
2622 {
2623 struct efx_farch_filter_state *state = efx->filter_state;
2624 enum efx_farch_filter_table_id table_id;
2625 struct efx_farch_filter_table *table;
2626 struct efx_farch_filter_spec *spec;
2627 unsigned int filter_idx;
2628 int rc;
2629
2630 table_id = efx_farch_filter_id_table_id(filter_id);
2631 if ((unsigned int)table_id >= EFX_FARCH_FILTER_TABLE_COUNT)
2632 return -ENOENT;
2633 table = &state->table[table_id];
2634
2635 filter_idx = efx_farch_filter_id_index(filter_id);
2636 if (filter_idx >= table->size)
2637 return -ENOENT;
2638 spec = &table->spec[filter_idx];
2639
2640 spin_lock_bh(&efx->filter_lock);
2641
2642 if (test_bit(filter_idx, table->used_bitmap) &&
2643 spec->priority == priority) {
2644 efx_farch_filter_to_gen_spec(spec_buf, spec);
2645 rc = 0;
2646 } else {
2647 rc = -ENOENT;
2648 }
2649
2650 spin_unlock_bh(&efx->filter_lock);
2651
2652 return rc;
2653 }
2654
2655 static void
efx_farch_filter_table_clear(struct efx_nic * efx,enum efx_farch_filter_table_id table_id,enum efx_filter_priority priority)2656 efx_farch_filter_table_clear(struct efx_nic *efx,
2657 enum efx_farch_filter_table_id table_id,
2658 enum efx_filter_priority priority)
2659 {
2660 struct efx_farch_filter_state *state = efx->filter_state;
2661 struct efx_farch_filter_table *table = &state->table[table_id];
2662 unsigned int filter_idx;
2663
2664 spin_lock_bh(&efx->filter_lock);
2665 for (filter_idx = 0; filter_idx < table->size; ++filter_idx) {
2666 if (table->spec[filter_idx].priority != EFX_FILTER_PRI_AUTO)
2667 efx_farch_filter_remove(efx, table,
2668 filter_idx, priority);
2669 }
2670 spin_unlock_bh(&efx->filter_lock);
2671 }
2672
efx_farch_filter_clear_rx(struct efx_nic * efx,enum efx_filter_priority priority)2673 int efx_farch_filter_clear_rx(struct efx_nic *efx,
2674 enum efx_filter_priority priority)
2675 {
2676 efx_farch_filter_table_clear(efx, EFX_FARCH_FILTER_TABLE_RX_IP,
2677 priority);
2678 efx_farch_filter_table_clear(efx, EFX_FARCH_FILTER_TABLE_RX_MAC,
2679 priority);
2680 efx_farch_filter_table_clear(efx, EFX_FARCH_FILTER_TABLE_RX_DEF,
2681 priority);
2682 return 0;
2683 }
2684
efx_farch_filter_count_rx_used(struct efx_nic * efx,enum efx_filter_priority priority)2685 u32 efx_farch_filter_count_rx_used(struct efx_nic *efx,
2686 enum efx_filter_priority priority)
2687 {
2688 struct efx_farch_filter_state *state = efx->filter_state;
2689 enum efx_farch_filter_table_id table_id;
2690 struct efx_farch_filter_table *table;
2691 unsigned int filter_idx;
2692 u32 count = 0;
2693
2694 spin_lock_bh(&efx->filter_lock);
2695
2696 for (table_id = EFX_FARCH_FILTER_TABLE_RX_IP;
2697 table_id <= EFX_FARCH_FILTER_TABLE_RX_DEF;
2698 table_id++) {
2699 table = &state->table[table_id];
2700 for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2701 if (test_bit(filter_idx, table->used_bitmap) &&
2702 table->spec[filter_idx].priority == priority)
2703 ++count;
2704 }
2705 }
2706
2707 spin_unlock_bh(&efx->filter_lock);
2708
2709 return count;
2710 }
2711
efx_farch_filter_get_rx_ids(struct efx_nic * efx,enum efx_filter_priority priority,u32 * buf,u32 size)2712 s32 efx_farch_filter_get_rx_ids(struct efx_nic *efx,
2713 enum efx_filter_priority priority,
2714 u32 *buf, u32 size)
2715 {
2716 struct efx_farch_filter_state *state = efx->filter_state;
2717 enum efx_farch_filter_table_id table_id;
2718 struct efx_farch_filter_table *table;
2719 unsigned int filter_idx;
2720 s32 count = 0;
2721
2722 spin_lock_bh(&efx->filter_lock);
2723
2724 for (table_id = EFX_FARCH_FILTER_TABLE_RX_IP;
2725 table_id <= EFX_FARCH_FILTER_TABLE_RX_DEF;
2726 table_id++) {
2727 table = &state->table[table_id];
2728 for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2729 if (test_bit(filter_idx, table->used_bitmap) &&
2730 table->spec[filter_idx].priority == priority) {
2731 if (count == size) {
2732 count = -EMSGSIZE;
2733 goto out;
2734 }
2735 buf[count++] = efx_farch_filter_make_id(
2736 &table->spec[filter_idx], filter_idx);
2737 }
2738 }
2739 }
2740 out:
2741 spin_unlock_bh(&efx->filter_lock);
2742
2743 return count;
2744 }
2745
2746 /* Restore filter stater after reset */
efx_farch_filter_table_restore(struct efx_nic * efx)2747 void efx_farch_filter_table_restore(struct efx_nic *efx)
2748 {
2749 struct efx_farch_filter_state *state = efx->filter_state;
2750 enum efx_farch_filter_table_id table_id;
2751 struct efx_farch_filter_table *table;
2752 efx_oword_t filter;
2753 unsigned int filter_idx;
2754
2755 spin_lock_bh(&efx->filter_lock);
2756
2757 for (table_id = 0; table_id < EFX_FARCH_FILTER_TABLE_COUNT; table_id++) {
2758 table = &state->table[table_id];
2759
2760 /* Check whether this is a regular register table */
2761 if (table->step == 0)
2762 continue;
2763
2764 for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2765 if (!test_bit(filter_idx, table->used_bitmap))
2766 continue;
2767 efx_farch_filter_build(&filter, &table->spec[filter_idx]);
2768 efx_writeo(efx, &filter,
2769 table->offset + table->step * filter_idx);
2770 }
2771 }
2772
2773 efx_farch_filter_push_rx_config(efx);
2774 efx_farch_filter_push_tx_limits(efx);
2775
2776 spin_unlock_bh(&efx->filter_lock);
2777 }
2778
efx_farch_filter_table_remove(struct efx_nic * efx)2779 void efx_farch_filter_table_remove(struct efx_nic *efx)
2780 {
2781 struct efx_farch_filter_state *state = efx->filter_state;
2782 enum efx_farch_filter_table_id table_id;
2783
2784 for (table_id = 0; table_id < EFX_FARCH_FILTER_TABLE_COUNT; table_id++) {
2785 kfree(state->table[table_id].used_bitmap);
2786 vfree(state->table[table_id].spec);
2787 }
2788 kfree(state);
2789 }
2790
efx_farch_filter_table_probe(struct efx_nic * efx)2791 int efx_farch_filter_table_probe(struct efx_nic *efx)
2792 {
2793 struct efx_farch_filter_state *state;
2794 struct efx_farch_filter_table *table;
2795 unsigned table_id;
2796
2797 state = kzalloc(sizeof(struct efx_farch_filter_state), GFP_KERNEL);
2798 if (!state)
2799 return -ENOMEM;
2800 efx->filter_state = state;
2801
2802 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
2803 table = &state->table[EFX_FARCH_FILTER_TABLE_RX_IP];
2804 table->id = EFX_FARCH_FILTER_TABLE_RX_IP;
2805 table->offset = FR_BZ_RX_FILTER_TBL0;
2806 table->size = FR_BZ_RX_FILTER_TBL0_ROWS;
2807 table->step = FR_BZ_RX_FILTER_TBL0_STEP;
2808 }
2809
2810 if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) {
2811 table = &state->table[EFX_FARCH_FILTER_TABLE_RX_MAC];
2812 table->id = EFX_FARCH_FILTER_TABLE_RX_MAC;
2813 table->offset = FR_CZ_RX_MAC_FILTER_TBL0;
2814 table->size = FR_CZ_RX_MAC_FILTER_TBL0_ROWS;
2815 table->step = FR_CZ_RX_MAC_FILTER_TBL0_STEP;
2816
2817 table = &state->table[EFX_FARCH_FILTER_TABLE_RX_DEF];
2818 table->id = EFX_FARCH_FILTER_TABLE_RX_DEF;
2819 table->size = EFX_FARCH_FILTER_SIZE_RX_DEF;
2820
2821 table = &state->table[EFX_FARCH_FILTER_TABLE_TX_MAC];
2822 table->id = EFX_FARCH_FILTER_TABLE_TX_MAC;
2823 table->offset = FR_CZ_TX_MAC_FILTER_TBL0;
2824 table->size = FR_CZ_TX_MAC_FILTER_TBL0_ROWS;
2825 table->step = FR_CZ_TX_MAC_FILTER_TBL0_STEP;
2826 }
2827
2828 for (table_id = 0; table_id < EFX_FARCH_FILTER_TABLE_COUNT; table_id++) {
2829 table = &state->table[table_id];
2830 if (table->size == 0)
2831 continue;
2832 table->used_bitmap = kcalloc(BITS_TO_LONGS(table->size),
2833 sizeof(unsigned long),
2834 GFP_KERNEL);
2835 if (!table->used_bitmap)
2836 goto fail;
2837 table->spec = vzalloc(table->size * sizeof(*table->spec));
2838 if (!table->spec)
2839 goto fail;
2840 }
2841
2842 table = &state->table[EFX_FARCH_FILTER_TABLE_RX_DEF];
2843 if (table->size) {
2844 /* RX default filters must always exist */
2845 struct efx_farch_filter_spec *spec;
2846 unsigned i;
2847
2848 for (i = 0; i < EFX_FARCH_FILTER_SIZE_RX_DEF; i++) {
2849 spec = &table->spec[i];
2850 spec->type = EFX_FARCH_FILTER_UC_DEF + i;
2851 efx_farch_filter_init_rx_auto(efx, spec);
2852 __set_bit(i, table->used_bitmap);
2853 }
2854 }
2855
2856 efx_farch_filter_push_rx_config(efx);
2857
2858 return 0;
2859
2860 fail:
2861 efx_farch_filter_table_remove(efx);
2862 return -ENOMEM;
2863 }
2864
2865 /* Update scatter enable flags for filters pointing to our own RX queues */
efx_farch_filter_update_rx_scatter(struct efx_nic * efx)2866 void efx_farch_filter_update_rx_scatter(struct efx_nic *efx)
2867 {
2868 struct efx_farch_filter_state *state = efx->filter_state;
2869 enum efx_farch_filter_table_id table_id;
2870 struct efx_farch_filter_table *table;
2871 efx_oword_t filter;
2872 unsigned int filter_idx;
2873
2874 spin_lock_bh(&efx->filter_lock);
2875
2876 for (table_id = EFX_FARCH_FILTER_TABLE_RX_IP;
2877 table_id <= EFX_FARCH_FILTER_TABLE_RX_DEF;
2878 table_id++) {
2879 table = &state->table[table_id];
2880
2881 for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2882 if (!test_bit(filter_idx, table->used_bitmap) ||
2883 table->spec[filter_idx].dmaq_id >=
2884 efx->n_rx_channels)
2885 continue;
2886
2887 if (efx->rx_scatter)
2888 table->spec[filter_idx].flags |=
2889 EFX_FILTER_FLAG_RX_SCATTER;
2890 else
2891 table->spec[filter_idx].flags &=
2892 ~EFX_FILTER_FLAG_RX_SCATTER;
2893
2894 if (table_id == EFX_FARCH_FILTER_TABLE_RX_DEF)
2895 /* Pushed by efx_farch_filter_push_rx_config() */
2896 continue;
2897
2898 efx_farch_filter_build(&filter, &table->spec[filter_idx]);
2899 efx_writeo(efx, &filter,
2900 table->offset + table->step * filter_idx);
2901 }
2902 }
2903
2904 efx_farch_filter_push_rx_config(efx);
2905
2906 spin_unlock_bh(&efx->filter_lock);
2907 }
2908
2909 #ifdef CONFIG_RFS_ACCEL
2910
efx_farch_filter_rfs_insert(struct efx_nic * efx,struct efx_filter_spec * gen_spec)2911 s32 efx_farch_filter_rfs_insert(struct efx_nic *efx,
2912 struct efx_filter_spec *gen_spec)
2913 {
2914 return efx_farch_filter_insert(efx, gen_spec, true);
2915 }
2916
efx_farch_filter_rfs_expire_one(struct efx_nic * efx,u32 flow_id,unsigned int index)2917 bool efx_farch_filter_rfs_expire_one(struct efx_nic *efx, u32 flow_id,
2918 unsigned int index)
2919 {
2920 struct efx_farch_filter_state *state = efx->filter_state;
2921 struct efx_farch_filter_table *table =
2922 &state->table[EFX_FARCH_FILTER_TABLE_RX_IP];
2923
2924 if (test_bit(index, table->used_bitmap) &&
2925 table->spec[index].priority == EFX_FILTER_PRI_HINT &&
2926 rps_may_expire_flow(efx->net_dev, table->spec[index].dmaq_id,
2927 flow_id, index)) {
2928 efx_farch_filter_table_clear_entry(efx, table, index);
2929 return true;
2930 }
2931
2932 return false;
2933 }
2934
2935 #endif /* CONFIG_RFS_ACCEL */
2936
efx_farch_filter_sync_rx_mode(struct efx_nic * efx)2937 void efx_farch_filter_sync_rx_mode(struct efx_nic *efx)
2938 {
2939 struct net_device *net_dev = efx->net_dev;
2940 struct netdev_hw_addr *ha;
2941 union efx_multicast_hash *mc_hash = &efx->multicast_hash;
2942 u32 crc;
2943 int bit;
2944
2945 if (!efx_dev_registered(efx))
2946 return;
2947
2948 netif_addr_lock_bh(net_dev);
2949
2950 efx->unicast_filter = !(net_dev->flags & IFF_PROMISC);
2951
2952 /* Build multicast hash table */
2953 if (net_dev->flags & (IFF_PROMISC | IFF_ALLMULTI)) {
2954 memset(mc_hash, 0xff, sizeof(*mc_hash));
2955 } else {
2956 memset(mc_hash, 0x00, sizeof(*mc_hash));
2957 netdev_for_each_mc_addr(ha, net_dev) {
2958 crc = ether_crc_le(ETH_ALEN, ha->addr);
2959 bit = crc & (EFX_MCAST_HASH_ENTRIES - 1);
2960 __set_bit_le(bit, mc_hash);
2961 }
2962
2963 /* Broadcast packets go through the multicast hash filter.
2964 * ether_crc_le() of the broadcast address is 0xbe2612ff
2965 * so we always add bit 0xff to the mask.
2966 */
2967 __set_bit_le(0xff, mc_hash);
2968 }
2969
2970 netif_addr_unlock_bh(net_dev);
2971 }
2972