1 /*
2  * EFI stub implementation that is shared by arm and arm64 architectures.
3  * This should be #included by the EFI stub implementation files.
4  *
5  * Copyright (C) 2013,2014 Linaro Limited
6  *     Roy Franz <roy.franz@linaro.org
7  * Copyright (C) 2013 Red Hat, Inc.
8  *     Mark Salter <msalter@redhat.com>
9  *
10  * This file is part of the Linux kernel, and is made available under the
11  * terms of the GNU General Public License version 2.
12  *
13  */
14 
15 #include <linux/efi.h>
16 #include <linux/sort.h>
17 #include <asm/efi.h>
18 
19 #include "efistub.h"
20 
efi_secureboot_enabled(efi_system_table_t * sys_table_arg)21 static int efi_secureboot_enabled(efi_system_table_t *sys_table_arg)
22 {
23 	static efi_guid_t const var_guid = EFI_GLOBAL_VARIABLE_GUID;
24 	static efi_char16_t const var_name[] = {
25 		'S', 'e', 'c', 'u', 'r', 'e', 'B', 'o', 'o', 't', 0 };
26 
27 	efi_get_variable_t *f_getvar = sys_table_arg->runtime->get_variable;
28 	unsigned long size = sizeof(u8);
29 	efi_status_t status;
30 	u8 val;
31 
32 	status = f_getvar((efi_char16_t *)var_name, (efi_guid_t *)&var_guid,
33 			  NULL, &size, &val);
34 
35 	switch (status) {
36 	case EFI_SUCCESS:
37 		return val;
38 	case EFI_NOT_FOUND:
39 		return 0;
40 	default:
41 		return 1;
42 	}
43 }
44 
efi_open_volume(efi_system_table_t * sys_table_arg,void * __image,void ** __fh)45 efi_status_t efi_open_volume(efi_system_table_t *sys_table_arg,
46 			     void *__image, void **__fh)
47 {
48 	efi_file_io_interface_t *io;
49 	efi_loaded_image_t *image = __image;
50 	efi_file_handle_t *fh;
51 	efi_guid_t fs_proto = EFI_FILE_SYSTEM_GUID;
52 	efi_status_t status;
53 	void *handle = (void *)(unsigned long)image->device_handle;
54 
55 	status = sys_table_arg->boottime->handle_protocol(handle,
56 				 &fs_proto, (void **)&io);
57 	if (status != EFI_SUCCESS) {
58 		efi_printk(sys_table_arg, "Failed to handle fs_proto\n");
59 		return status;
60 	}
61 
62 	status = io->open_volume(io, &fh);
63 	if (status != EFI_SUCCESS)
64 		efi_printk(sys_table_arg, "Failed to open volume\n");
65 
66 	*__fh = fh;
67 	return status;
68 }
69 
efi_file_close(void * handle)70 efi_status_t efi_file_close(void *handle)
71 {
72 	efi_file_handle_t *fh = handle;
73 
74 	return fh->close(handle);
75 }
76 
77 efi_status_t
efi_file_read(void * handle,unsigned long * size,void * addr)78 efi_file_read(void *handle, unsigned long *size, void *addr)
79 {
80 	efi_file_handle_t *fh = handle;
81 
82 	return fh->read(handle, size, addr);
83 }
84 
85 
86 efi_status_t
efi_file_size(efi_system_table_t * sys_table_arg,void * __fh,efi_char16_t * filename_16,void ** handle,u64 * file_sz)87 efi_file_size(efi_system_table_t *sys_table_arg, void *__fh,
88 	      efi_char16_t *filename_16, void **handle, u64 *file_sz)
89 {
90 	efi_file_handle_t *h, *fh = __fh;
91 	efi_file_info_t *info;
92 	efi_status_t status;
93 	efi_guid_t info_guid = EFI_FILE_INFO_ID;
94 	unsigned long info_sz;
95 
96 	status = fh->open(fh, &h, filename_16, EFI_FILE_MODE_READ, (u64)0);
97 	if (status != EFI_SUCCESS) {
98 		efi_printk(sys_table_arg, "Failed to open file: ");
99 		efi_char16_printk(sys_table_arg, filename_16);
100 		efi_printk(sys_table_arg, "\n");
101 		return status;
102 	}
103 
104 	*handle = h;
105 
106 	info_sz = 0;
107 	status = h->get_info(h, &info_guid, &info_sz, NULL);
108 	if (status != EFI_BUFFER_TOO_SMALL) {
109 		efi_printk(sys_table_arg, "Failed to get file info size\n");
110 		return status;
111 	}
112 
113 grow:
114 	status = sys_table_arg->boottime->allocate_pool(EFI_LOADER_DATA,
115 				 info_sz, (void **)&info);
116 	if (status != EFI_SUCCESS) {
117 		efi_printk(sys_table_arg, "Failed to alloc mem for file info\n");
118 		return status;
119 	}
120 
121 	status = h->get_info(h, &info_guid, &info_sz,
122 						   info);
123 	if (status == EFI_BUFFER_TOO_SMALL) {
124 		sys_table_arg->boottime->free_pool(info);
125 		goto grow;
126 	}
127 
128 	*file_sz = info->file_size;
129 	sys_table_arg->boottime->free_pool(info);
130 
131 	if (status != EFI_SUCCESS)
132 		efi_printk(sys_table_arg, "Failed to get initrd info\n");
133 
134 	return status;
135 }
136 
137 
138 
efi_char16_printk(efi_system_table_t * sys_table_arg,efi_char16_t * str)139 void efi_char16_printk(efi_system_table_t *sys_table_arg,
140 			      efi_char16_t *str)
141 {
142 	struct efi_simple_text_output_protocol *out;
143 
144 	out = (struct efi_simple_text_output_protocol *)sys_table_arg->con_out;
145 	out->output_string(out, str);
146 }
147 
148 
149 /*
150  * This function handles the architcture specific differences between arm and
151  * arm64 regarding where the kernel image must be loaded and any memory that
152  * must be reserved. On failure it is required to free all
153  * all allocations it has made.
154  */
155 efi_status_t handle_kernel_image(efi_system_table_t *sys_table,
156 				 unsigned long *image_addr,
157 				 unsigned long *image_size,
158 				 unsigned long *reserve_addr,
159 				 unsigned long *reserve_size,
160 				 unsigned long dram_base,
161 				 efi_loaded_image_t *image);
162 /*
163  * EFI entry point for the arm/arm64 EFI stubs.  This is the entrypoint
164  * that is described in the PE/COFF header.  Most of the code is the same
165  * for both archictectures, with the arch-specific code provided in the
166  * handle_kernel_image() function.
167  */
efi_entry(void * handle,efi_system_table_t * sys_table,unsigned long * image_addr)168 unsigned long efi_entry(void *handle, efi_system_table_t *sys_table,
169 			       unsigned long *image_addr)
170 {
171 	efi_loaded_image_t *image;
172 	efi_status_t status;
173 	unsigned long image_size = 0;
174 	unsigned long dram_base;
175 	/* addr/point and size pairs for memory management*/
176 	unsigned long initrd_addr;
177 	u64 initrd_size = 0;
178 	unsigned long fdt_addr = 0;  /* Original DTB */
179 	unsigned long fdt_size = 0;
180 	char *cmdline_ptr = NULL;
181 	int cmdline_size = 0;
182 	unsigned long new_fdt_addr;
183 	efi_guid_t loaded_image_proto = LOADED_IMAGE_PROTOCOL_GUID;
184 	unsigned long reserve_addr = 0;
185 	unsigned long reserve_size = 0;
186 
187 	/* Check if we were booted by the EFI firmware */
188 	if (sys_table->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE)
189 		goto fail;
190 
191 	pr_efi(sys_table, "Booting Linux Kernel...\n");
192 
193 	/*
194 	 * Get a handle to the loaded image protocol.  This is used to get
195 	 * information about the running image, such as size and the command
196 	 * line.
197 	 */
198 	status = sys_table->boottime->handle_protocol(handle,
199 					&loaded_image_proto, (void *)&image);
200 	if (status != EFI_SUCCESS) {
201 		pr_efi_err(sys_table, "Failed to get loaded image protocol\n");
202 		goto fail;
203 	}
204 
205 	dram_base = get_dram_base(sys_table);
206 	if (dram_base == EFI_ERROR) {
207 		pr_efi_err(sys_table, "Failed to find DRAM base\n");
208 		goto fail;
209 	}
210 	status = handle_kernel_image(sys_table, image_addr, &image_size,
211 				     &reserve_addr,
212 				     &reserve_size,
213 				     dram_base, image);
214 	if (status != EFI_SUCCESS) {
215 		pr_efi_err(sys_table, "Failed to relocate kernel\n");
216 		goto fail;
217 	}
218 
219 	/*
220 	 * Get the command line from EFI, using the LOADED_IMAGE
221 	 * protocol. We are going to copy the command line into the
222 	 * device tree, so this can be allocated anywhere.
223 	 */
224 	cmdline_ptr = efi_convert_cmdline(sys_table, image, &cmdline_size);
225 	if (!cmdline_ptr) {
226 		pr_efi_err(sys_table, "getting command line via LOADED_IMAGE_PROTOCOL\n");
227 		goto fail_free_image;
228 	}
229 
230 	status = efi_parse_options(cmdline_ptr);
231 	if (status != EFI_SUCCESS)
232 		pr_efi_err(sys_table, "Failed to parse EFI cmdline options\n");
233 
234 	/*
235 	 * Unauthenticated device tree data is a security hazard, so
236 	 * ignore 'dtb=' unless UEFI Secure Boot is disabled.
237 	 */
238 	if (efi_secureboot_enabled(sys_table)) {
239 		pr_efi(sys_table, "UEFI Secure Boot is enabled.\n");
240 	} else {
241 		status = handle_cmdline_files(sys_table, image, cmdline_ptr,
242 					      "dtb=",
243 					      ~0UL, &fdt_addr, &fdt_size);
244 
245 		if (status != EFI_SUCCESS) {
246 			pr_efi_err(sys_table, "Failed to load device tree!\n");
247 			goto fail_free_cmdline;
248 		}
249 	}
250 
251 	if (fdt_addr) {
252 		pr_efi(sys_table, "Using DTB from command line\n");
253 	} else {
254 		/* Look for a device tree configuration table entry. */
255 		fdt_addr = (uintptr_t)get_fdt(sys_table, &fdt_size);
256 		if (fdt_addr)
257 			pr_efi(sys_table, "Using DTB from configuration table\n");
258 	}
259 
260 	if (!fdt_addr)
261 		pr_efi(sys_table, "Generating empty DTB\n");
262 
263 	status = handle_cmdline_files(sys_table, image, cmdline_ptr,
264 				      "initrd=", dram_base + SZ_512M,
265 				      (unsigned long *)&initrd_addr,
266 				      (unsigned long *)&initrd_size);
267 	if (status != EFI_SUCCESS)
268 		pr_efi_err(sys_table, "Failed initrd from command line!\n");
269 
270 	new_fdt_addr = fdt_addr;
271 	status = allocate_new_fdt_and_exit_boot(sys_table, handle,
272 				&new_fdt_addr, dram_base + MAX_FDT_OFFSET,
273 				initrd_addr, initrd_size, cmdline_ptr,
274 				fdt_addr, fdt_size);
275 
276 	/*
277 	 * If all went well, we need to return the FDT address to the
278 	 * calling function so it can be passed to kernel as part of
279 	 * the kernel boot protocol.
280 	 */
281 	if (status == EFI_SUCCESS)
282 		return new_fdt_addr;
283 
284 	pr_efi_err(sys_table, "Failed to update FDT and exit boot services\n");
285 
286 	efi_free(sys_table, initrd_size, initrd_addr);
287 	efi_free(sys_table, fdt_size, fdt_addr);
288 
289 fail_free_cmdline:
290 	efi_free(sys_table, cmdline_size, (unsigned long)cmdline_ptr);
291 
292 fail_free_image:
293 	efi_free(sys_table, image_size, *image_addr);
294 	efi_free(sys_table, reserve_size, reserve_addr);
295 fail:
296 	return EFI_ERROR;
297 }
298 
299 /*
300  * This is the base address at which to start allocating virtual memory ranges
301  * for UEFI Runtime Services. This is in the low TTBR0 range so that we can use
302  * any allocation we choose, and eliminate the risk of a conflict after kexec.
303  * The value chosen is the largest non-zero power of 2 suitable for this purpose
304  * both on 32-bit and 64-bit ARM CPUs, to maximize the likelihood that it can
305  * be mapped efficiently.
306  */
307 #define EFI_RT_VIRTUAL_BASE	0x40000000
308 
cmp_mem_desc(const void * l,const void * r)309 static int cmp_mem_desc(const void *l, const void *r)
310 {
311 	const efi_memory_desc_t *left = l, *right = r;
312 
313 	return (left->phys_addr > right->phys_addr) ? 1 : -1;
314 }
315 
316 /*
317  * Returns whether region @left ends exactly where region @right starts,
318  * or false if either argument is NULL.
319  */
regions_are_adjacent(efi_memory_desc_t * left,efi_memory_desc_t * right)320 static bool regions_are_adjacent(efi_memory_desc_t *left,
321 				 efi_memory_desc_t *right)
322 {
323 	u64 left_end;
324 
325 	if (left == NULL || right == NULL)
326 		return false;
327 
328 	left_end = left->phys_addr + left->num_pages * EFI_PAGE_SIZE;
329 
330 	return left_end == right->phys_addr;
331 }
332 
333 /*
334  * Returns whether region @left and region @right have compatible memory type
335  * mapping attributes, and are both EFI_MEMORY_RUNTIME regions.
336  */
regions_have_compatible_memory_type_attrs(efi_memory_desc_t * left,efi_memory_desc_t * right)337 static bool regions_have_compatible_memory_type_attrs(efi_memory_desc_t *left,
338 						      efi_memory_desc_t *right)
339 {
340 	static const u64 mem_type_mask = EFI_MEMORY_WB | EFI_MEMORY_WT |
341 					 EFI_MEMORY_WC | EFI_MEMORY_UC |
342 					 EFI_MEMORY_RUNTIME;
343 
344 	return ((left->attribute ^ right->attribute) & mem_type_mask) == 0;
345 }
346 
347 /*
348  * efi_get_virtmap() - create a virtual mapping for the EFI memory map
349  *
350  * This function populates the virt_addr fields of all memory region descriptors
351  * in @memory_map whose EFI_MEMORY_RUNTIME attribute is set. Those descriptors
352  * are also copied to @runtime_map, and their total count is returned in @count.
353  */
efi_get_virtmap(efi_memory_desc_t * memory_map,unsigned long map_size,unsigned long desc_size,efi_memory_desc_t * runtime_map,int * count)354 void efi_get_virtmap(efi_memory_desc_t *memory_map, unsigned long map_size,
355 		     unsigned long desc_size, efi_memory_desc_t *runtime_map,
356 		     int *count)
357 {
358 	u64 efi_virt_base = EFI_RT_VIRTUAL_BASE;
359 	efi_memory_desc_t *in, *prev = NULL, *out = runtime_map;
360 	int l;
361 
362 	/*
363 	 * To work around potential issues with the Properties Table feature
364 	 * introduced in UEFI 2.5, which may split PE/COFF executable images
365 	 * in memory into several RuntimeServicesCode and RuntimeServicesData
366 	 * regions, we need to preserve the relative offsets between adjacent
367 	 * EFI_MEMORY_RUNTIME regions with the same memory type attributes.
368 	 * The easiest way to find adjacent regions is to sort the memory map
369 	 * before traversing it.
370 	 */
371 	sort(memory_map, map_size / desc_size, desc_size, cmp_mem_desc, NULL);
372 
373 	for (l = 0; l < map_size; l += desc_size, prev = in) {
374 		u64 paddr, size;
375 
376 		in = (void *)memory_map + l;
377 		if (!(in->attribute & EFI_MEMORY_RUNTIME))
378 			continue;
379 
380 		paddr = in->phys_addr;
381 		size = in->num_pages * EFI_PAGE_SIZE;
382 
383 		/*
384 		 * Make the mapping compatible with 64k pages: this allows
385 		 * a 4k page size kernel to kexec a 64k page size kernel and
386 		 * vice versa.
387 		 */
388 		if (!regions_are_adjacent(prev, in) ||
389 		    !regions_have_compatible_memory_type_attrs(prev, in)) {
390 
391 			paddr = round_down(in->phys_addr, SZ_64K);
392 			size += in->phys_addr - paddr;
393 
394 			/*
395 			 * Avoid wasting memory on PTEs by choosing a virtual
396 			 * base that is compatible with section mappings if this
397 			 * region has the appropriate size and physical
398 			 * alignment. (Sections are 2 MB on 4k granule kernels)
399 			 */
400 			if (IS_ALIGNED(in->phys_addr, SZ_2M) && size >= SZ_2M)
401 				efi_virt_base = round_up(efi_virt_base, SZ_2M);
402 			else
403 				efi_virt_base = round_up(efi_virt_base, SZ_64K);
404 		}
405 
406 		in->virt_addr = efi_virt_base + in->phys_addr - paddr;
407 		efi_virt_base += size;
408 
409 		memcpy(out, in, desc_size);
410 		out = (void *)out + desc_size;
411 		++*count;
412 	}
413 }
414