1 /*
2  * efi.c - EFI subsystem
3  *
4  * Copyright (C) 2001,2003,2004 Dell <Matt_Domsch@dell.com>
5  * Copyright (C) 2004 Intel Corporation <matthew.e.tolentino@intel.com>
6  * Copyright (C) 2013 Tom Gundersen <teg@jklm.no>
7  *
8  * This code registers /sys/firmware/efi{,/efivars} when EFI is supported,
9  * allowing the efivarfs to be mounted or the efivars module to be loaded.
10  * The existance of /sys/firmware/efi may also be used by userspace to
11  * determine that the system supports EFI.
12  *
13  * This file is released under the GPLv2.
14  */
15 
16 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
17 
18 #include <linux/kobject.h>
19 #include <linux/module.h>
20 #include <linux/init.h>
21 #include <linux/device.h>
22 #include <linux/efi.h>
23 #include <linux/of.h>
24 #include <linux/of_fdt.h>
25 #include <linux/io.h>
26 #include <linux/platform_device.h>
27 
28 struct efi __read_mostly efi = {
29 	.mps			= EFI_INVALID_TABLE_ADDR,
30 	.acpi			= EFI_INVALID_TABLE_ADDR,
31 	.acpi20			= EFI_INVALID_TABLE_ADDR,
32 	.smbios			= EFI_INVALID_TABLE_ADDR,
33 	.smbios3		= EFI_INVALID_TABLE_ADDR,
34 	.sal_systab		= EFI_INVALID_TABLE_ADDR,
35 	.boot_info		= EFI_INVALID_TABLE_ADDR,
36 	.hcdp			= EFI_INVALID_TABLE_ADDR,
37 	.uga			= EFI_INVALID_TABLE_ADDR,
38 	.uv_systab		= EFI_INVALID_TABLE_ADDR,
39 	.fw_vendor		= EFI_INVALID_TABLE_ADDR,
40 	.runtime		= EFI_INVALID_TABLE_ADDR,
41 	.config_table		= EFI_INVALID_TABLE_ADDR,
42 	.esrt			= EFI_INVALID_TABLE_ADDR,
43 	.properties_table	= EFI_INVALID_TABLE_ADDR,
44 };
45 EXPORT_SYMBOL(efi);
46 
47 static bool disable_runtime;
setup_noefi(char * arg)48 static int __init setup_noefi(char *arg)
49 {
50 	disable_runtime = true;
51 	return 0;
52 }
53 early_param("noefi", setup_noefi);
54 
efi_runtime_disabled(void)55 bool efi_runtime_disabled(void)
56 {
57 	return disable_runtime;
58 }
59 
parse_efi_cmdline(char * str)60 static int __init parse_efi_cmdline(char *str)
61 {
62 	if (!str) {
63 		pr_warn("need at least one option\n");
64 		return -EINVAL;
65 	}
66 
67 	if (parse_option_str(str, "debug"))
68 		set_bit(EFI_DBG, &efi.flags);
69 
70 	if (parse_option_str(str, "noruntime"))
71 		disable_runtime = true;
72 
73 	return 0;
74 }
75 early_param("efi", parse_efi_cmdline);
76 
77 struct kobject *efi_kobj;
78 
79 /*
80  * Let's not leave out systab information that snuck into
81  * the efivars driver
82  */
systab_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)83 static ssize_t systab_show(struct kobject *kobj,
84 			   struct kobj_attribute *attr, char *buf)
85 {
86 	char *str = buf;
87 
88 	if (!kobj || !buf)
89 		return -EINVAL;
90 
91 	if (efi.mps != EFI_INVALID_TABLE_ADDR)
92 		str += sprintf(str, "MPS=0x%lx\n", efi.mps);
93 	if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
94 		str += sprintf(str, "ACPI20=0x%lx\n", efi.acpi20);
95 	if (efi.acpi != EFI_INVALID_TABLE_ADDR)
96 		str += sprintf(str, "ACPI=0x%lx\n", efi.acpi);
97 	/*
98 	 * If both SMBIOS and SMBIOS3 entry points are implemented, the
99 	 * SMBIOS3 entry point shall be preferred, so we list it first to
100 	 * let applications stop parsing after the first match.
101 	 */
102 	if (efi.smbios3 != EFI_INVALID_TABLE_ADDR)
103 		str += sprintf(str, "SMBIOS3=0x%lx\n", efi.smbios3);
104 	if (efi.smbios != EFI_INVALID_TABLE_ADDR)
105 		str += sprintf(str, "SMBIOS=0x%lx\n", efi.smbios);
106 	if (efi.hcdp != EFI_INVALID_TABLE_ADDR)
107 		str += sprintf(str, "HCDP=0x%lx\n", efi.hcdp);
108 	if (efi.boot_info != EFI_INVALID_TABLE_ADDR)
109 		str += sprintf(str, "BOOTINFO=0x%lx\n", efi.boot_info);
110 	if (efi.uga != EFI_INVALID_TABLE_ADDR)
111 		str += sprintf(str, "UGA=0x%lx\n", efi.uga);
112 
113 	return str - buf;
114 }
115 
116 static struct kobj_attribute efi_attr_systab =
117 			__ATTR(systab, 0400, systab_show, NULL);
118 
119 #define EFI_FIELD(var) efi.var
120 
121 #define EFI_ATTR_SHOW(name) \
122 static ssize_t name##_show(struct kobject *kobj, \
123 				struct kobj_attribute *attr, char *buf) \
124 { \
125 	return sprintf(buf, "0x%lx\n", EFI_FIELD(name)); \
126 }
127 
128 EFI_ATTR_SHOW(fw_vendor);
129 EFI_ATTR_SHOW(runtime);
130 EFI_ATTR_SHOW(config_table);
131 
fw_platform_size_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)132 static ssize_t fw_platform_size_show(struct kobject *kobj,
133 				     struct kobj_attribute *attr, char *buf)
134 {
135 	return sprintf(buf, "%d\n", efi_enabled(EFI_64BIT) ? 64 : 32);
136 }
137 
138 static struct kobj_attribute efi_attr_fw_vendor = __ATTR_RO(fw_vendor);
139 static struct kobj_attribute efi_attr_runtime = __ATTR_RO(runtime);
140 static struct kobj_attribute efi_attr_config_table = __ATTR_RO(config_table);
141 static struct kobj_attribute efi_attr_fw_platform_size =
142 	__ATTR_RO(fw_platform_size);
143 
144 static struct attribute *efi_subsys_attrs[] = {
145 	&efi_attr_systab.attr,
146 	&efi_attr_fw_vendor.attr,
147 	&efi_attr_runtime.attr,
148 	&efi_attr_config_table.attr,
149 	&efi_attr_fw_platform_size.attr,
150 	NULL,
151 };
152 
efi_attr_is_visible(struct kobject * kobj,struct attribute * attr,int n)153 static umode_t efi_attr_is_visible(struct kobject *kobj,
154 				   struct attribute *attr, int n)
155 {
156 	if (attr == &efi_attr_fw_vendor.attr) {
157 		if (efi_enabled(EFI_PARAVIRT) ||
158 				efi.fw_vendor == EFI_INVALID_TABLE_ADDR)
159 			return 0;
160 	} else if (attr == &efi_attr_runtime.attr) {
161 		if (efi.runtime == EFI_INVALID_TABLE_ADDR)
162 			return 0;
163 	} else if (attr == &efi_attr_config_table.attr) {
164 		if (efi.config_table == EFI_INVALID_TABLE_ADDR)
165 			return 0;
166 	}
167 
168 	return attr->mode;
169 }
170 
171 static struct attribute_group efi_subsys_attr_group = {
172 	.attrs = efi_subsys_attrs,
173 	.is_visible = efi_attr_is_visible,
174 };
175 
176 static struct efivars generic_efivars;
177 static struct efivar_operations generic_ops;
178 
generic_ops_register(void)179 static int generic_ops_register(void)
180 {
181 	generic_ops.get_variable = efi.get_variable;
182 	generic_ops.set_variable = efi.set_variable;
183 	generic_ops.set_variable_nonblocking = efi.set_variable_nonblocking;
184 	generic_ops.get_next_variable = efi.get_next_variable;
185 	generic_ops.query_variable_store = efi_query_variable_store;
186 
187 	return efivars_register(&generic_efivars, &generic_ops, efi_kobj);
188 }
189 
generic_ops_unregister(void)190 static void generic_ops_unregister(void)
191 {
192 	efivars_unregister(&generic_efivars);
193 }
194 
195 /*
196  * We register the efi subsystem with the firmware subsystem and the
197  * efivars subsystem with the efi subsystem, if the system was booted with
198  * EFI.
199  */
efisubsys_init(void)200 static int __init efisubsys_init(void)
201 {
202 	int error;
203 
204 	if (!efi_enabled(EFI_BOOT))
205 		return 0;
206 
207 	/* We register the efi directory at /sys/firmware/efi */
208 	efi_kobj = kobject_create_and_add("efi", firmware_kobj);
209 	if (!efi_kobj) {
210 		pr_err("efi: Firmware registration failed.\n");
211 		return -ENOMEM;
212 	}
213 
214 	error = generic_ops_register();
215 	if (error)
216 		goto err_put;
217 
218 	error = sysfs_create_group(efi_kobj, &efi_subsys_attr_group);
219 	if (error) {
220 		pr_err("efi: Sysfs attribute export failed with error %d.\n",
221 		       error);
222 		goto err_unregister;
223 	}
224 
225 	error = efi_runtime_map_init(efi_kobj);
226 	if (error)
227 		goto err_remove_group;
228 
229 	/* and the standard mountpoint for efivarfs */
230 	error = sysfs_create_mount_point(efi_kobj, "efivars");
231 	if (error) {
232 		pr_err("efivars: Subsystem registration failed.\n");
233 		goto err_remove_group;
234 	}
235 
236 	return 0;
237 
238 err_remove_group:
239 	sysfs_remove_group(efi_kobj, &efi_subsys_attr_group);
240 err_unregister:
241 	generic_ops_unregister();
242 err_put:
243 	kobject_put(efi_kobj);
244 	return error;
245 }
246 
247 subsys_initcall(efisubsys_init);
248 
249 /*
250  * Find the efi memory descriptor for a given physical address.  Given a
251  * physicall address, determine if it exists within an EFI Memory Map entry,
252  * and if so, populate the supplied memory descriptor with the appropriate
253  * data.
254  */
efi_mem_desc_lookup(u64 phys_addr,efi_memory_desc_t * out_md)255 int __init efi_mem_desc_lookup(u64 phys_addr, efi_memory_desc_t *out_md)
256 {
257 	struct efi_memory_map *map = efi.memmap;
258 	phys_addr_t p, e;
259 
260 	if (!efi_enabled(EFI_MEMMAP)) {
261 		pr_err_once("EFI_MEMMAP is not enabled.\n");
262 		return -EINVAL;
263 	}
264 
265 	if (!map) {
266 		pr_err_once("efi.memmap is not set.\n");
267 		return -EINVAL;
268 	}
269 	if (!out_md) {
270 		pr_err_once("out_md is null.\n");
271 		return -EINVAL;
272         }
273 	if (WARN_ON_ONCE(!map->phys_map))
274 		return -EINVAL;
275 	if (WARN_ON_ONCE(map->nr_map == 0) || WARN_ON_ONCE(map->desc_size == 0))
276 		return -EINVAL;
277 
278 	e = map->phys_map + map->nr_map * map->desc_size;
279 	for (p = map->phys_map; p < e; p += map->desc_size) {
280 		efi_memory_desc_t *md;
281 		u64 size;
282 		u64 end;
283 
284 		/*
285 		 * If a driver calls this after efi_free_boot_services,
286 		 * ->map will be NULL, and the target may also not be mapped.
287 		 * So just always get our own virtual map on the CPU.
288 		 *
289 		 */
290 		md = early_memremap(p, sizeof (*md));
291 		if (!md) {
292 			pr_err_once("early_memremap(%pa, %zu) failed.\n",
293 				    &p, sizeof (*md));
294 			return -ENOMEM;
295 		}
296 
297 		if (!(md->attribute & EFI_MEMORY_RUNTIME) &&
298 		    md->type != EFI_BOOT_SERVICES_DATA &&
299 		    md->type != EFI_RUNTIME_SERVICES_DATA) {
300 			early_memunmap(md, sizeof (*md));
301 			continue;
302 		}
303 
304 		size = md->num_pages << EFI_PAGE_SHIFT;
305 		end = md->phys_addr + size;
306 		if (phys_addr >= md->phys_addr && phys_addr < end) {
307 			memcpy(out_md, md, sizeof(*out_md));
308 			early_memunmap(md, sizeof (*md));
309 			return 0;
310 		}
311 
312 		early_memunmap(md, sizeof (*md));
313 	}
314 	pr_err_once("requested map not found.\n");
315 	return -ENOENT;
316 }
317 
318 /*
319  * Calculate the highest address of an efi memory descriptor.
320  */
efi_mem_desc_end(efi_memory_desc_t * md)321 u64 __init efi_mem_desc_end(efi_memory_desc_t *md)
322 {
323 	u64 size = md->num_pages << EFI_PAGE_SHIFT;
324 	u64 end = md->phys_addr + size;
325 	return end;
326 }
327 
328 /*
329  * We can't ioremap data in EFI boot services RAM, because we've already mapped
330  * it as RAM.  So, look it up in the existing EFI memory map instead.  Only
331  * callable after efi_enter_virtual_mode and before efi_free_boot_services.
332  */
efi_lookup_mapped_addr(u64 phys_addr)333 void __iomem *efi_lookup_mapped_addr(u64 phys_addr)
334 {
335 	struct efi_memory_map *map;
336 	void *p;
337 	map = efi.memmap;
338 	if (!map)
339 		return NULL;
340 	if (WARN_ON(!map->map))
341 		return NULL;
342 	for (p = map->map; p < map->map_end; p += map->desc_size) {
343 		efi_memory_desc_t *md = p;
344 		u64 size = md->num_pages << EFI_PAGE_SHIFT;
345 		u64 end = md->phys_addr + size;
346 		if (!(md->attribute & EFI_MEMORY_RUNTIME) &&
347 		    md->type != EFI_BOOT_SERVICES_CODE &&
348 		    md->type != EFI_BOOT_SERVICES_DATA)
349 			continue;
350 		if (!md->virt_addr)
351 			continue;
352 		if (phys_addr >= md->phys_addr && phys_addr < end) {
353 			phys_addr += md->virt_addr - md->phys_addr;
354 			return (__force void __iomem *)(unsigned long)phys_addr;
355 		}
356 	}
357 	return NULL;
358 }
359 
360 static __initdata efi_config_table_type_t common_tables[] = {
361 	{ACPI_20_TABLE_GUID, "ACPI 2.0", &efi.acpi20},
362 	{ACPI_TABLE_GUID, "ACPI", &efi.acpi},
363 	{HCDP_TABLE_GUID, "HCDP", &efi.hcdp},
364 	{MPS_TABLE_GUID, "MPS", &efi.mps},
365 	{SAL_SYSTEM_TABLE_GUID, "SALsystab", &efi.sal_systab},
366 	{SMBIOS_TABLE_GUID, "SMBIOS", &efi.smbios},
367 	{SMBIOS3_TABLE_GUID, "SMBIOS 3.0", &efi.smbios3},
368 	{UGA_IO_PROTOCOL_GUID, "UGA", &efi.uga},
369 	{EFI_SYSTEM_RESOURCE_TABLE_GUID, "ESRT", &efi.esrt},
370 	{EFI_PROPERTIES_TABLE_GUID, "PROP", &efi.properties_table},
371 	{NULL_GUID, NULL, NULL},
372 };
373 
match_config_table(efi_guid_t * guid,unsigned long table,efi_config_table_type_t * table_types)374 static __init int match_config_table(efi_guid_t *guid,
375 				     unsigned long table,
376 				     efi_config_table_type_t *table_types)
377 {
378 	int i;
379 
380 	if (table_types) {
381 		for (i = 0; efi_guidcmp(table_types[i].guid, NULL_GUID); i++) {
382 			if (!efi_guidcmp(*guid, table_types[i].guid)) {
383 				*(table_types[i].ptr) = table;
384 				pr_cont(" %s=0x%lx ",
385 					table_types[i].name, table);
386 				return 1;
387 			}
388 		}
389 	}
390 
391 	return 0;
392 }
393 
efi_config_parse_tables(void * config_tables,int count,int sz,efi_config_table_type_t * arch_tables)394 int __init efi_config_parse_tables(void *config_tables, int count, int sz,
395 				   efi_config_table_type_t *arch_tables)
396 {
397 	void *tablep;
398 	int i;
399 
400 	tablep = config_tables;
401 	pr_info("");
402 	for (i = 0; i < count; i++) {
403 		efi_guid_t guid;
404 		unsigned long table;
405 
406 		if (efi_enabled(EFI_64BIT)) {
407 			u64 table64;
408 			guid = ((efi_config_table_64_t *)tablep)->guid;
409 			table64 = ((efi_config_table_64_t *)tablep)->table;
410 			table = table64;
411 #ifndef CONFIG_64BIT
412 			if (table64 >> 32) {
413 				pr_cont("\n");
414 				pr_err("Table located above 4GB, disabling EFI.\n");
415 				return -EINVAL;
416 			}
417 #endif
418 		} else {
419 			guid = ((efi_config_table_32_t *)tablep)->guid;
420 			table = ((efi_config_table_32_t *)tablep)->table;
421 		}
422 
423 		if (!match_config_table(&guid, table, common_tables))
424 			match_config_table(&guid, table, arch_tables);
425 
426 		tablep += sz;
427 	}
428 	pr_cont("\n");
429 	set_bit(EFI_CONFIG_TABLES, &efi.flags);
430 
431 	/* Parse the EFI Properties table if it exists */
432 	if (efi.properties_table != EFI_INVALID_TABLE_ADDR) {
433 		efi_properties_table_t *tbl;
434 
435 		tbl = early_memremap(efi.properties_table, sizeof(*tbl));
436 		if (tbl == NULL) {
437 			pr_err("Could not map Properties table!\n");
438 			return -ENOMEM;
439 		}
440 
441 		if (tbl->memory_protection_attribute &
442 		    EFI_PROPERTIES_RUNTIME_MEMORY_PROTECTION_NON_EXECUTABLE_PE_DATA)
443 			set_bit(EFI_NX_PE_DATA, &efi.flags);
444 
445 		early_memunmap(tbl, sizeof(*tbl));
446 	}
447 
448 	return 0;
449 }
450 
efi_config_init(efi_config_table_type_t * arch_tables)451 int __init efi_config_init(efi_config_table_type_t *arch_tables)
452 {
453 	void *config_tables;
454 	int sz, ret;
455 
456 	if (efi_enabled(EFI_64BIT))
457 		sz = sizeof(efi_config_table_64_t);
458 	else
459 		sz = sizeof(efi_config_table_32_t);
460 
461 	/*
462 	 * Let's see what config tables the firmware passed to us.
463 	 */
464 	config_tables = early_memremap(efi.systab->tables,
465 				       efi.systab->nr_tables * sz);
466 	if (config_tables == NULL) {
467 		pr_err("Could not map Configuration table!\n");
468 		return -ENOMEM;
469 	}
470 
471 	ret = efi_config_parse_tables(config_tables, efi.systab->nr_tables, sz,
472 				      arch_tables);
473 
474 	early_memunmap(config_tables, efi.systab->nr_tables * sz);
475 	return ret;
476 }
477 
478 #ifdef CONFIG_EFI_VARS_MODULE
efi_load_efivars(void)479 static int __init efi_load_efivars(void)
480 {
481 	struct platform_device *pdev;
482 
483 	if (!efi_enabled(EFI_RUNTIME_SERVICES))
484 		return 0;
485 
486 	pdev = platform_device_register_simple("efivars", 0, NULL, 0);
487 	return IS_ERR(pdev) ? PTR_ERR(pdev) : 0;
488 }
489 device_initcall(efi_load_efivars);
490 #endif
491 
492 #ifdef CONFIG_EFI_PARAMS_FROM_FDT
493 
494 #define UEFI_PARAM(name, prop, field)			   \
495 	{						   \
496 		{ name },				   \
497 		{ prop },				   \
498 		offsetof(struct efi_fdt_params, field),    \
499 		FIELD_SIZEOF(struct efi_fdt_params, field) \
500 	}
501 
502 static __initdata struct {
503 	const char name[32];
504 	const char propname[32];
505 	int offset;
506 	int size;
507 } dt_params[] = {
508 	UEFI_PARAM("System Table", "linux,uefi-system-table", system_table),
509 	UEFI_PARAM("MemMap Address", "linux,uefi-mmap-start", mmap),
510 	UEFI_PARAM("MemMap Size", "linux,uefi-mmap-size", mmap_size),
511 	UEFI_PARAM("MemMap Desc. Size", "linux,uefi-mmap-desc-size", desc_size),
512 	UEFI_PARAM("MemMap Desc. Version", "linux,uefi-mmap-desc-ver", desc_ver)
513 };
514 
515 struct param_info {
516 	int found;
517 	void *params;
518 };
519 
fdt_find_uefi_params(unsigned long node,const char * uname,int depth,void * data)520 static int __init fdt_find_uefi_params(unsigned long node, const char *uname,
521 				       int depth, void *data)
522 {
523 	struct param_info *info = data;
524 	const void *prop;
525 	void *dest;
526 	u64 val;
527 	int i, len;
528 
529 	if (depth != 1 || strcmp(uname, "chosen") != 0)
530 		return 0;
531 
532 	for (i = 0; i < ARRAY_SIZE(dt_params); i++) {
533 		prop = of_get_flat_dt_prop(node, dt_params[i].propname, &len);
534 		if (!prop)
535 			return 0;
536 		dest = info->params + dt_params[i].offset;
537 		info->found++;
538 
539 		val = of_read_number(prop, len / sizeof(u32));
540 
541 		if (dt_params[i].size == sizeof(u32))
542 			*(u32 *)dest = val;
543 		else
544 			*(u64 *)dest = val;
545 
546 		if (efi_enabled(EFI_DBG))
547 			pr_info("  %s: 0x%0*llx\n", dt_params[i].name,
548 				dt_params[i].size * 2, val);
549 	}
550 	return 1;
551 }
552 
efi_get_fdt_params(struct efi_fdt_params * params)553 int __init efi_get_fdt_params(struct efi_fdt_params *params)
554 {
555 	struct param_info info;
556 	int ret;
557 
558 	pr_info("Getting EFI parameters from FDT:\n");
559 
560 	info.found = 0;
561 	info.params = params;
562 
563 	ret = of_scan_flat_dt(fdt_find_uefi_params, &info);
564 	if (!info.found)
565 		pr_info("UEFI not found.\n");
566 	else if (!ret)
567 		pr_err("Can't find '%s' in device tree!\n",
568 		       dt_params[info.found].name);
569 
570 	return ret;
571 }
572 #endif /* CONFIG_EFI_PARAMS_FROM_FDT */
573 
574 static __initdata char memory_type_name[][20] = {
575 	"Reserved",
576 	"Loader Code",
577 	"Loader Data",
578 	"Boot Code",
579 	"Boot Data",
580 	"Runtime Code",
581 	"Runtime Data",
582 	"Conventional Memory",
583 	"Unusable Memory",
584 	"ACPI Reclaim Memory",
585 	"ACPI Memory NVS",
586 	"Memory Mapped I/O",
587 	"MMIO Port Space",
588 	"PAL Code"
589 };
590 
efi_md_typeattr_format(char * buf,size_t size,const efi_memory_desc_t * md)591 char * __init efi_md_typeattr_format(char *buf, size_t size,
592 				     const efi_memory_desc_t *md)
593 {
594 	char *pos;
595 	int type_len;
596 	u64 attr;
597 
598 	pos = buf;
599 	if (md->type >= ARRAY_SIZE(memory_type_name))
600 		type_len = snprintf(pos, size, "[type=%u", md->type);
601 	else
602 		type_len = snprintf(pos, size, "[%-*s",
603 				    (int)(sizeof(memory_type_name[0]) - 1),
604 				    memory_type_name[md->type]);
605 	if (type_len >= size)
606 		return buf;
607 
608 	pos += type_len;
609 	size -= type_len;
610 
611 	attr = md->attribute;
612 	if (attr & ~(EFI_MEMORY_UC | EFI_MEMORY_WC | EFI_MEMORY_WT |
613 		     EFI_MEMORY_WB | EFI_MEMORY_UCE | EFI_MEMORY_RO |
614 		     EFI_MEMORY_WP | EFI_MEMORY_RP | EFI_MEMORY_XP |
615 		     EFI_MEMORY_RUNTIME | EFI_MEMORY_MORE_RELIABLE))
616 		snprintf(pos, size, "|attr=0x%016llx]",
617 			 (unsigned long long)attr);
618 	else
619 		snprintf(pos, size, "|%3s|%2s|%2s|%2s|%2s|%2s|%3s|%2s|%2s|%2s|%2s]",
620 			 attr & EFI_MEMORY_RUNTIME ? "RUN" : "",
621 			 attr & EFI_MEMORY_MORE_RELIABLE ? "MR" : "",
622 			 attr & EFI_MEMORY_XP      ? "XP"  : "",
623 			 attr & EFI_MEMORY_RP      ? "RP"  : "",
624 			 attr & EFI_MEMORY_WP      ? "WP"  : "",
625 			 attr & EFI_MEMORY_RO      ? "RO"  : "",
626 			 attr & EFI_MEMORY_UCE     ? "UCE" : "",
627 			 attr & EFI_MEMORY_WB      ? "WB"  : "",
628 			 attr & EFI_MEMORY_WT      ? "WT"  : "",
629 			 attr & EFI_MEMORY_WC      ? "WC"  : "",
630 			 attr & EFI_MEMORY_UC      ? "UC"  : "");
631 	return buf;
632 }
633 
634 /*
635  * efi_mem_attributes - lookup memmap attributes for physical address
636  * @phys_addr: the physical address to lookup
637  *
638  * Search in the EFI memory map for the region covering
639  * @phys_addr. Returns the EFI memory attributes if the region
640  * was found in the memory map, 0 otherwise.
641  *
642  * Despite being marked __weak, most architectures should *not*
643  * override this function. It is __weak solely for the benefit
644  * of ia64 which has a funky EFI memory map that doesn't work
645  * the same way as other architectures.
646  */
efi_mem_attributes(unsigned long phys_addr)647 u64 __weak efi_mem_attributes(unsigned long phys_addr)
648 {
649 	struct efi_memory_map *map;
650 	efi_memory_desc_t *md;
651 	void *p;
652 
653 	if (!efi_enabled(EFI_MEMMAP))
654 		return 0;
655 
656 	map = efi.memmap;
657 	for (p = map->map; p < map->map_end; p += map->desc_size) {
658 		md = p;
659 		if ((md->phys_addr <= phys_addr) &&
660 		    (phys_addr < (md->phys_addr +
661 		    (md->num_pages << EFI_PAGE_SHIFT))))
662 			return md->attribute;
663 	}
664 	return 0;
665 }
666