1 /*
2  * Copyright IBM Corporation 2001, 2005, 2006
3  * Copyright Dave Engebretsen & Todd Inglett 2001
4  * Copyright Linas Vepstas 2005, 2006
5  * Copyright 2001-2012 IBM Corporation.
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program; if not, write to the Free Software
19  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
20  *
21  * Please address comments and feedback to Linas Vepstas <linas@austin.ibm.com>
22  */
23 
24 #include <linux/delay.h>
25 #include <linux/debugfs.h>
26 #include <linux/sched.h>
27 #include <linux/init.h>
28 #include <linux/list.h>
29 #include <linux/pci.h>
30 #include <linux/iommu.h>
31 #include <linux/proc_fs.h>
32 #include <linux/rbtree.h>
33 #include <linux/reboot.h>
34 #include <linux/seq_file.h>
35 #include <linux/spinlock.h>
36 #include <linux/export.h>
37 #include <linux/of.h>
38 
39 #include <linux/atomic.h>
40 #include <asm/debug.h>
41 #include <asm/eeh.h>
42 #include <asm/eeh_event.h>
43 #include <asm/io.h>
44 #include <asm/iommu.h>
45 #include <asm/machdep.h>
46 #include <asm/ppc-pci.h>
47 #include <asm/rtas.h>
48 
49 
50 /** Overview:
51  *  EEH, or "Extended Error Handling" is a PCI bridge technology for
52  *  dealing with PCI bus errors that can't be dealt with within the
53  *  usual PCI framework, except by check-stopping the CPU.  Systems
54  *  that are designed for high-availability/reliability cannot afford
55  *  to crash due to a "mere" PCI error, thus the need for EEH.
56  *  An EEH-capable bridge operates by converting a detected error
57  *  into a "slot freeze", taking the PCI adapter off-line, making
58  *  the slot behave, from the OS'es point of view, as if the slot
59  *  were "empty": all reads return 0xff's and all writes are silently
60  *  ignored.  EEH slot isolation events can be triggered by parity
61  *  errors on the address or data busses (e.g. during posted writes),
62  *  which in turn might be caused by low voltage on the bus, dust,
63  *  vibration, humidity, radioactivity or plain-old failed hardware.
64  *
65  *  Note, however, that one of the leading causes of EEH slot
66  *  freeze events are buggy device drivers, buggy device microcode,
67  *  or buggy device hardware.  This is because any attempt by the
68  *  device to bus-master data to a memory address that is not
69  *  assigned to the device will trigger a slot freeze.   (The idea
70  *  is to prevent devices-gone-wild from corrupting system memory).
71  *  Buggy hardware/drivers will have a miserable time co-existing
72  *  with EEH.
73  *
74  *  Ideally, a PCI device driver, when suspecting that an isolation
75  *  event has occurred (e.g. by reading 0xff's), will then ask EEH
76  *  whether this is the case, and then take appropriate steps to
77  *  reset the PCI slot, the PCI device, and then resume operations.
78  *  However, until that day,  the checking is done here, with the
79  *  eeh_check_failure() routine embedded in the MMIO macros.  If
80  *  the slot is found to be isolated, an "EEH Event" is synthesized
81  *  and sent out for processing.
82  */
83 
84 /* If a device driver keeps reading an MMIO register in an interrupt
85  * handler after a slot isolation event, it might be broken.
86  * This sets the threshold for how many read attempts we allow
87  * before printing an error message.
88  */
89 #define EEH_MAX_FAILS	2100000
90 
91 /* Time to wait for a PCI slot to report status, in milliseconds */
92 #define PCI_BUS_RESET_WAIT_MSEC (5*60*1000)
93 
94 /*
95  * EEH probe mode support, which is part of the flags,
96  * is to support multiple platforms for EEH. Some platforms
97  * like pSeries do PCI emunation based on device tree.
98  * However, other platforms like powernv probe PCI devices
99  * from hardware. The flag is used to distinguish that.
100  * In addition, struct eeh_ops::probe would be invoked for
101  * particular OF node or PCI device so that the corresponding
102  * PE would be created there.
103  */
104 int eeh_subsystem_flags;
105 EXPORT_SYMBOL(eeh_subsystem_flags);
106 
107 /*
108  * EEH allowed maximal frozen times. If one particular PE's
109  * frozen count in last hour exceeds this limit, the PE will
110  * be forced to be offline permanently.
111  */
112 int eeh_max_freezes = 5;
113 
114 /* Platform dependent EEH operations */
115 struct eeh_ops *eeh_ops = NULL;
116 
117 /* Lock to avoid races due to multiple reports of an error */
118 DEFINE_RAW_SPINLOCK(confirm_error_lock);
119 
120 /* Lock to protect passed flags */
121 static DEFINE_MUTEX(eeh_dev_mutex);
122 
123 /* Buffer for reporting pci register dumps. Its here in BSS, and
124  * not dynamically alloced, so that it ends up in RMO where RTAS
125  * can access it.
126  */
127 #define EEH_PCI_REGS_LOG_LEN 8192
128 static unsigned char pci_regs_buf[EEH_PCI_REGS_LOG_LEN];
129 
130 /*
131  * The struct is used to maintain the EEH global statistic
132  * information. Besides, the EEH global statistics will be
133  * exported to user space through procfs
134  */
135 struct eeh_stats {
136 	u64 no_device;		/* PCI device not found		*/
137 	u64 no_dn;		/* OF node not found		*/
138 	u64 no_cfg_addr;	/* Config address not found	*/
139 	u64 ignored_check;	/* EEH check skipped		*/
140 	u64 total_mmio_ffs;	/* Total EEH checks		*/
141 	u64 false_positives;	/* Unnecessary EEH checks	*/
142 	u64 slot_resets;	/* PE reset			*/
143 };
144 
145 static struct eeh_stats eeh_stats;
146 
147 #define IS_BRIDGE(class_code) (((class_code)<<16) == PCI_BASE_CLASS_BRIDGE)
148 
eeh_setup(char * str)149 static int __init eeh_setup(char *str)
150 {
151 	if (!strcmp(str, "off"))
152 		eeh_add_flag(EEH_FORCE_DISABLED);
153 	else if (!strcmp(str, "early_log"))
154 		eeh_add_flag(EEH_EARLY_DUMP_LOG);
155 
156 	return 1;
157 }
158 __setup("eeh=", eeh_setup);
159 
160 /*
161  * This routine captures assorted PCI configuration space data
162  * for the indicated PCI device, and puts them into a buffer
163  * for RTAS error logging.
164  */
eeh_dump_dev_log(struct eeh_dev * edev,char * buf,size_t len)165 static size_t eeh_dump_dev_log(struct eeh_dev *edev, char *buf, size_t len)
166 {
167 	struct pci_dn *pdn = eeh_dev_to_pdn(edev);
168 	u32 cfg;
169 	int cap, i;
170 	int n = 0, l = 0;
171 	char buffer[128];
172 
173 	n += scnprintf(buf+n, len-n, "%04x:%02x:%02x:%01x\n",
174 		       edev->phb->global_number, pdn->busno,
175 		       PCI_SLOT(pdn->devfn), PCI_FUNC(pdn->devfn));
176 	pr_warn("EEH: of node=%04x:%02x:%02x:%01x\n",
177 		edev->phb->global_number, pdn->busno,
178 		PCI_SLOT(pdn->devfn), PCI_FUNC(pdn->devfn));
179 
180 	eeh_ops->read_config(pdn, PCI_VENDOR_ID, 4, &cfg);
181 	n += scnprintf(buf+n, len-n, "dev/vend:%08x\n", cfg);
182 	pr_warn("EEH: PCI device/vendor: %08x\n", cfg);
183 
184 	eeh_ops->read_config(pdn, PCI_COMMAND, 4, &cfg);
185 	n += scnprintf(buf+n, len-n, "cmd/stat:%x\n", cfg);
186 	pr_warn("EEH: PCI cmd/status register: %08x\n", cfg);
187 
188 	/* Gather bridge-specific registers */
189 	if (edev->mode & EEH_DEV_BRIDGE) {
190 		eeh_ops->read_config(pdn, PCI_SEC_STATUS, 2, &cfg);
191 		n += scnprintf(buf+n, len-n, "sec stat:%x\n", cfg);
192 		pr_warn("EEH: Bridge secondary status: %04x\n", cfg);
193 
194 		eeh_ops->read_config(pdn, PCI_BRIDGE_CONTROL, 2, &cfg);
195 		n += scnprintf(buf+n, len-n, "brdg ctl:%x\n", cfg);
196 		pr_warn("EEH: Bridge control: %04x\n", cfg);
197 	}
198 
199 	/* Dump out the PCI-X command and status regs */
200 	cap = edev->pcix_cap;
201 	if (cap) {
202 		eeh_ops->read_config(pdn, cap, 4, &cfg);
203 		n += scnprintf(buf+n, len-n, "pcix-cmd:%x\n", cfg);
204 		pr_warn("EEH: PCI-X cmd: %08x\n", cfg);
205 
206 		eeh_ops->read_config(pdn, cap+4, 4, &cfg);
207 		n += scnprintf(buf+n, len-n, "pcix-stat:%x\n", cfg);
208 		pr_warn("EEH: PCI-X status: %08x\n", cfg);
209 	}
210 
211 	/* If PCI-E capable, dump PCI-E cap 10 */
212 	cap = edev->pcie_cap;
213 	if (cap) {
214 		n += scnprintf(buf+n, len-n, "pci-e cap10:\n");
215 		pr_warn("EEH: PCI-E capabilities and status follow:\n");
216 
217 		for (i=0; i<=8; i++) {
218 			eeh_ops->read_config(pdn, cap+4*i, 4, &cfg);
219 			n += scnprintf(buf+n, len-n, "%02x:%x\n", 4*i, cfg);
220 
221 			if ((i % 4) == 0) {
222 				if (i != 0)
223 					pr_warn("%s\n", buffer);
224 
225 				l = scnprintf(buffer, sizeof(buffer),
226 					      "EEH: PCI-E %02x: %08x ",
227 					      4*i, cfg);
228 			} else {
229 				l += scnprintf(buffer+l, sizeof(buffer)-l,
230 					       "%08x ", cfg);
231 			}
232 
233 		}
234 
235 		pr_warn("%s\n", buffer);
236 	}
237 
238 	/* If AER capable, dump it */
239 	cap = edev->aer_cap;
240 	if (cap) {
241 		n += scnprintf(buf+n, len-n, "pci-e AER:\n");
242 		pr_warn("EEH: PCI-E AER capability register set follows:\n");
243 
244 		for (i=0; i<=13; i++) {
245 			eeh_ops->read_config(pdn, cap+4*i, 4, &cfg);
246 			n += scnprintf(buf+n, len-n, "%02x:%x\n", 4*i, cfg);
247 
248 			if ((i % 4) == 0) {
249 				if (i != 0)
250 					pr_warn("%s\n", buffer);
251 
252 				l = scnprintf(buffer, sizeof(buffer),
253 					      "EEH: PCI-E AER %02x: %08x ",
254 					      4*i, cfg);
255 			} else {
256 				l += scnprintf(buffer+l, sizeof(buffer)-l,
257 					       "%08x ", cfg);
258 			}
259 		}
260 
261 		pr_warn("%s\n", buffer);
262 	}
263 
264 	return n;
265 }
266 
eeh_dump_pe_log(void * data,void * flag)267 static void *eeh_dump_pe_log(void *data, void *flag)
268 {
269 	struct eeh_pe *pe = data;
270 	struct eeh_dev *edev, *tmp;
271 	size_t *plen = flag;
272 
273 	/* If the PE's config space is blocked, 0xFF's will be
274 	 * returned. It's pointless to collect the log in this
275 	 * case.
276 	 */
277 	if (pe->state & EEH_PE_CFG_BLOCKED)
278 		return NULL;
279 
280 	eeh_pe_for_each_dev(pe, edev, tmp)
281 		*plen += eeh_dump_dev_log(edev, pci_regs_buf + *plen,
282 					  EEH_PCI_REGS_LOG_LEN - *plen);
283 
284 	return NULL;
285 }
286 
287 /**
288  * eeh_slot_error_detail - Generate combined log including driver log and error log
289  * @pe: EEH PE
290  * @severity: temporary or permanent error log
291  *
292  * This routine should be called to generate the combined log, which
293  * is comprised of driver log and error log. The driver log is figured
294  * out from the config space of the corresponding PCI device, while
295  * the error log is fetched through platform dependent function call.
296  */
eeh_slot_error_detail(struct eeh_pe * pe,int severity)297 void eeh_slot_error_detail(struct eeh_pe *pe, int severity)
298 {
299 	size_t loglen = 0;
300 
301 	/*
302 	 * When the PHB is fenced or dead, it's pointless to collect
303 	 * the data from PCI config space because it should return
304 	 * 0xFF's. For ER, we still retrieve the data from the PCI
305 	 * config space.
306 	 *
307 	 * For pHyp, we have to enable IO for log retrieval. Otherwise,
308 	 * 0xFF's is always returned from PCI config space.
309 	 */
310 	if (!(pe->type & EEH_PE_PHB)) {
311 		if (eeh_has_flag(EEH_ENABLE_IO_FOR_LOG))
312 			eeh_pci_enable(pe, EEH_OPT_THAW_MMIO);
313 
314 		/*
315 		 * The config space of some PCI devices can't be accessed
316 		 * when their PEs are in frozen state. Otherwise, fenced
317 		 * PHB might be seen. Those PEs are identified with flag
318 		 * EEH_PE_CFG_RESTRICTED, indicating EEH_PE_CFG_BLOCKED
319 		 * is set automatically when the PE is put to EEH_PE_ISOLATED.
320 		 *
321 		 * Restoring BARs possibly triggers PCI config access in
322 		 * (OPAL) firmware and then causes fenced PHB. If the
323 		 * PCI config is blocked with flag EEH_PE_CFG_BLOCKED, it's
324 		 * pointless to restore BARs and dump config space.
325 		 */
326 		eeh_ops->configure_bridge(pe);
327 		if (!(pe->state & EEH_PE_CFG_BLOCKED)) {
328 			eeh_pe_restore_bars(pe);
329 
330 			pci_regs_buf[0] = 0;
331 			eeh_pe_traverse(pe, eeh_dump_pe_log, &loglen);
332 		}
333 	}
334 
335 	eeh_ops->get_log(pe, severity, pci_regs_buf, loglen);
336 }
337 
338 /**
339  * eeh_token_to_phys - Convert EEH address token to phys address
340  * @token: I/O token, should be address in the form 0xA....
341  *
342  * This routine should be called to convert virtual I/O address
343  * to physical one.
344  */
eeh_token_to_phys(unsigned long token)345 static inline unsigned long eeh_token_to_phys(unsigned long token)
346 {
347 	pte_t *ptep;
348 	unsigned long pa;
349 	int hugepage_shift;
350 
351 	/*
352 	 * We won't find hugepages here(this is iomem). Hence we are not
353 	 * worried about _PAGE_SPLITTING/collapse. Also we will not hit
354 	 * page table free, because of init_mm.
355 	 */
356 	ptep = __find_linux_pte_or_hugepte(init_mm.pgd, token, &hugepage_shift);
357 	if (!ptep)
358 		return token;
359 	WARN_ON(hugepage_shift);
360 	pa = pte_pfn(*ptep) << PAGE_SHIFT;
361 
362 	return pa | (token & (PAGE_SIZE-1));
363 }
364 
365 /*
366  * On PowerNV platform, we might already have fenced PHB there.
367  * For that case, it's meaningless to recover frozen PE. Intead,
368  * We have to handle fenced PHB firstly.
369  */
eeh_phb_check_failure(struct eeh_pe * pe)370 static int eeh_phb_check_failure(struct eeh_pe *pe)
371 {
372 	struct eeh_pe *phb_pe;
373 	unsigned long flags;
374 	int ret;
375 
376 	if (!eeh_has_flag(EEH_PROBE_MODE_DEV))
377 		return -EPERM;
378 
379 	/* Find the PHB PE */
380 	phb_pe = eeh_phb_pe_get(pe->phb);
381 	if (!phb_pe) {
382 		pr_warn("%s Can't find PE for PHB#%d\n",
383 			__func__, pe->phb->global_number);
384 		return -EEXIST;
385 	}
386 
387 	/* If the PHB has been in problematic state */
388 	eeh_serialize_lock(&flags);
389 	if (phb_pe->state & EEH_PE_ISOLATED) {
390 		ret = 0;
391 		goto out;
392 	}
393 
394 	/* Check PHB state */
395 	ret = eeh_ops->get_state(phb_pe, NULL);
396 	if ((ret < 0) ||
397 	    (ret == EEH_STATE_NOT_SUPPORT) ||
398 	    (ret & (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE)) ==
399 	    (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE)) {
400 		ret = 0;
401 		goto out;
402 	}
403 
404 	/* Isolate the PHB and send event */
405 	eeh_pe_state_mark(phb_pe, EEH_PE_ISOLATED);
406 	eeh_serialize_unlock(flags);
407 
408 	pr_err("EEH: PHB#%x failure detected, location: %s\n",
409 		phb_pe->phb->global_number, eeh_pe_loc_get(phb_pe));
410 	dump_stack();
411 	eeh_send_failure_event(phb_pe);
412 
413 	return 1;
414 out:
415 	eeh_serialize_unlock(flags);
416 	return ret;
417 }
418 
419 /**
420  * eeh_dev_check_failure - Check if all 1's data is due to EEH slot freeze
421  * @edev: eeh device
422  *
423  * Check for an EEH failure for the given device node.  Call this
424  * routine if the result of a read was all 0xff's and you want to
425  * find out if this is due to an EEH slot freeze.  This routine
426  * will query firmware for the EEH status.
427  *
428  * Returns 0 if there has not been an EEH error; otherwise returns
429  * a non-zero value and queues up a slot isolation event notification.
430  *
431  * It is safe to call this routine in an interrupt context.
432  */
eeh_dev_check_failure(struct eeh_dev * edev)433 int eeh_dev_check_failure(struct eeh_dev *edev)
434 {
435 	int ret;
436 	int active_flags = (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE);
437 	unsigned long flags;
438 	struct pci_dn *pdn;
439 	struct pci_dev *dev;
440 	struct eeh_pe *pe, *parent_pe, *phb_pe;
441 	int rc = 0;
442 	const char *location = NULL;
443 
444 	eeh_stats.total_mmio_ffs++;
445 
446 	if (!eeh_enabled())
447 		return 0;
448 
449 	if (!edev) {
450 		eeh_stats.no_dn++;
451 		return 0;
452 	}
453 	dev = eeh_dev_to_pci_dev(edev);
454 	pe = eeh_dev_to_pe(edev);
455 
456 	/* Access to IO BARs might get this far and still not want checking. */
457 	if (!pe) {
458 		eeh_stats.ignored_check++;
459 		pr_debug("EEH: Ignored check for %s\n",
460 			eeh_pci_name(dev));
461 		return 0;
462 	}
463 
464 	if (!pe->addr && !pe->config_addr) {
465 		eeh_stats.no_cfg_addr++;
466 		return 0;
467 	}
468 
469 	/*
470 	 * On PowerNV platform, we might already have fenced PHB
471 	 * there and we need take care of that firstly.
472 	 */
473 	ret = eeh_phb_check_failure(pe);
474 	if (ret > 0)
475 		return ret;
476 
477 	/*
478 	 * If the PE isn't owned by us, we shouldn't check the
479 	 * state. Instead, let the owner handle it if the PE has
480 	 * been frozen.
481 	 */
482 	if (eeh_pe_passed(pe))
483 		return 0;
484 
485 	/* If we already have a pending isolation event for this
486 	 * slot, we know it's bad already, we don't need to check.
487 	 * Do this checking under a lock; as multiple PCI devices
488 	 * in one slot might report errors simultaneously, and we
489 	 * only want one error recovery routine running.
490 	 */
491 	eeh_serialize_lock(&flags);
492 	rc = 1;
493 	if (pe->state & EEH_PE_ISOLATED) {
494 		pe->check_count++;
495 		if (pe->check_count % EEH_MAX_FAILS == 0) {
496 			pdn = eeh_dev_to_pdn(edev);
497 			if (pdn->node)
498 				location = of_get_property(pdn->node, "ibm,loc-code", NULL);
499 			printk(KERN_ERR "EEH: %d reads ignored for recovering device at "
500 				"location=%s driver=%s pci addr=%s\n",
501 				pe->check_count,
502 				location ? location : "unknown",
503 				eeh_driver_name(dev), eeh_pci_name(dev));
504 			printk(KERN_ERR "EEH: Might be infinite loop in %s driver\n",
505 				eeh_driver_name(dev));
506 			dump_stack();
507 		}
508 		goto dn_unlock;
509 	}
510 
511 	/*
512 	 * Now test for an EEH failure.  This is VERY expensive.
513 	 * Note that the eeh_config_addr may be a parent device
514 	 * in the case of a device behind a bridge, or it may be
515 	 * function zero of a multi-function device.
516 	 * In any case they must share a common PHB.
517 	 */
518 	ret = eeh_ops->get_state(pe, NULL);
519 
520 	/* Note that config-io to empty slots may fail;
521 	 * they are empty when they don't have children.
522 	 * We will punt with the following conditions: Failure to get
523 	 * PE's state, EEH not support and Permanently unavailable
524 	 * state, PE is in good state.
525 	 */
526 	if ((ret < 0) ||
527 	    (ret == EEH_STATE_NOT_SUPPORT) ||
528 	    ((ret & active_flags) == active_flags)) {
529 		eeh_stats.false_positives++;
530 		pe->false_positives++;
531 		rc = 0;
532 		goto dn_unlock;
533 	}
534 
535 	/*
536 	 * It should be corner case that the parent PE has been
537 	 * put into frozen state as well. We should take care
538 	 * that at first.
539 	 */
540 	parent_pe = pe->parent;
541 	while (parent_pe) {
542 		/* Hit the ceiling ? */
543 		if (parent_pe->type & EEH_PE_PHB)
544 			break;
545 
546 		/* Frozen parent PE ? */
547 		ret = eeh_ops->get_state(parent_pe, NULL);
548 		if (ret > 0 &&
549 		    (ret & active_flags) != active_flags)
550 			pe = parent_pe;
551 
552 		/* Next parent level */
553 		parent_pe = parent_pe->parent;
554 	}
555 
556 	eeh_stats.slot_resets++;
557 
558 	/* Avoid repeated reports of this failure, including problems
559 	 * with other functions on this device, and functions under
560 	 * bridges.
561 	 */
562 	eeh_pe_state_mark(pe, EEH_PE_ISOLATED);
563 	eeh_serialize_unlock(flags);
564 
565 	/* Most EEH events are due to device driver bugs.  Having
566 	 * a stack trace will help the device-driver authors figure
567 	 * out what happened.  So print that out.
568 	 */
569 	phb_pe = eeh_phb_pe_get(pe->phb);
570 	pr_err("EEH: Frozen PHB#%x-PE#%x detected\n",
571 	       pe->phb->global_number, pe->addr);
572 	pr_err("EEH: PE location: %s, PHB location: %s\n",
573 	       eeh_pe_loc_get(pe), eeh_pe_loc_get(phb_pe));
574 	dump_stack();
575 
576 	eeh_send_failure_event(pe);
577 
578 	return 1;
579 
580 dn_unlock:
581 	eeh_serialize_unlock(flags);
582 	return rc;
583 }
584 
585 EXPORT_SYMBOL_GPL(eeh_dev_check_failure);
586 
587 /**
588  * eeh_check_failure - Check if all 1's data is due to EEH slot freeze
589  * @token: I/O address
590  *
591  * Check for an EEH failure at the given I/O address. Call this
592  * routine if the result of a read was all 0xff's and you want to
593  * find out if this is due to an EEH slot freeze event. This routine
594  * will query firmware for the EEH status.
595  *
596  * Note this routine is safe to call in an interrupt context.
597  */
eeh_check_failure(const volatile void __iomem * token)598 int eeh_check_failure(const volatile void __iomem *token)
599 {
600 	unsigned long addr;
601 	struct eeh_dev *edev;
602 
603 	/* Finding the phys addr + pci device; this is pretty quick. */
604 	addr = eeh_token_to_phys((unsigned long __force) token);
605 	edev = eeh_addr_cache_get_dev(addr);
606 	if (!edev) {
607 		eeh_stats.no_device++;
608 		return 0;
609 	}
610 
611 	return eeh_dev_check_failure(edev);
612 }
613 EXPORT_SYMBOL(eeh_check_failure);
614 
615 
616 /**
617  * eeh_pci_enable - Enable MMIO or DMA transfers for this slot
618  * @pe: EEH PE
619  *
620  * This routine should be called to reenable frozen MMIO or DMA
621  * so that it would work correctly again. It's useful while doing
622  * recovery or log collection on the indicated device.
623  */
eeh_pci_enable(struct eeh_pe * pe,int function)624 int eeh_pci_enable(struct eeh_pe *pe, int function)
625 {
626 	int active_flag, rc;
627 
628 	/*
629 	 * pHyp doesn't allow to enable IO or DMA on unfrozen PE.
630 	 * Also, it's pointless to enable them on unfrozen PE. So
631 	 * we have to check before enabling IO or DMA.
632 	 */
633 	switch (function) {
634 	case EEH_OPT_THAW_MMIO:
635 		active_flag = EEH_STATE_MMIO_ACTIVE;
636 		break;
637 	case EEH_OPT_THAW_DMA:
638 		active_flag = EEH_STATE_DMA_ACTIVE;
639 		break;
640 	case EEH_OPT_DISABLE:
641 	case EEH_OPT_ENABLE:
642 	case EEH_OPT_FREEZE_PE:
643 		active_flag = 0;
644 		break;
645 	default:
646 		pr_warn("%s: Invalid function %d\n",
647 			__func__, function);
648 		return -EINVAL;
649 	}
650 
651 	/*
652 	 * Check if IO or DMA has been enabled before
653 	 * enabling them.
654 	 */
655 	if (active_flag) {
656 		rc = eeh_ops->get_state(pe, NULL);
657 		if (rc < 0)
658 			return rc;
659 
660 		/* Needn't enable it at all */
661 		if (rc == EEH_STATE_NOT_SUPPORT)
662 			return 0;
663 
664 		/* It's already enabled */
665 		if (rc & active_flag)
666 			return 0;
667 	}
668 
669 
670 	/* Issue the request */
671 	rc = eeh_ops->set_option(pe, function);
672 	if (rc)
673 		pr_warn("%s: Unexpected state change %d on "
674 			"PHB#%d-PE#%x, err=%d\n",
675 			__func__, function, pe->phb->global_number,
676 			pe->addr, rc);
677 
678 	/* Check if the request is finished successfully */
679 	if (active_flag) {
680 		rc = eeh_ops->wait_state(pe, PCI_BUS_RESET_WAIT_MSEC);
681 		if (rc <= 0)
682 			return rc;
683 
684 		if (rc & active_flag)
685 			return 0;
686 
687 		return -EIO;
688 	}
689 
690 	return rc;
691 }
692 
eeh_disable_and_save_dev_state(void * data,void * userdata)693 static void *eeh_disable_and_save_dev_state(void *data, void *userdata)
694 {
695 	struct eeh_dev *edev = data;
696 	struct pci_dev *pdev = eeh_dev_to_pci_dev(edev);
697 	struct pci_dev *dev = userdata;
698 
699 	/*
700 	 * The caller should have disabled and saved the
701 	 * state for the specified device
702 	 */
703 	if (!pdev || pdev == dev)
704 		return NULL;
705 
706 	/* Ensure we have D0 power state */
707 	pci_set_power_state(pdev, PCI_D0);
708 
709 	/* Save device state */
710 	pci_save_state(pdev);
711 
712 	/*
713 	 * Disable device to avoid any DMA traffic and
714 	 * interrupt from the device
715 	 */
716 	pci_write_config_word(pdev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
717 
718 	return NULL;
719 }
720 
eeh_restore_dev_state(void * data,void * userdata)721 static void *eeh_restore_dev_state(void *data, void *userdata)
722 {
723 	struct eeh_dev *edev = data;
724 	struct pci_dn *pdn = eeh_dev_to_pdn(edev);
725 	struct pci_dev *pdev = eeh_dev_to_pci_dev(edev);
726 	struct pci_dev *dev = userdata;
727 
728 	if (!pdev)
729 		return NULL;
730 
731 	/* Apply customization from firmware */
732 	if (pdn && eeh_ops->restore_config)
733 		eeh_ops->restore_config(pdn);
734 
735 	/* The caller should restore state for the specified device */
736 	if (pdev != dev)
737 		pci_save_state(pdev);
738 
739 	return NULL;
740 }
741 
742 /**
743  * pcibios_set_pcie_slot_reset - Set PCI-E reset state
744  * @dev: pci device struct
745  * @state: reset state to enter
746  *
747  * Return value:
748  * 	0 if success
749  */
pcibios_set_pcie_reset_state(struct pci_dev * dev,enum pcie_reset_state state)750 int pcibios_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
751 {
752 	struct eeh_dev *edev = pci_dev_to_eeh_dev(dev);
753 	struct eeh_pe *pe = eeh_dev_to_pe(edev);
754 
755 	if (!pe) {
756 		pr_err("%s: No PE found on PCI device %s\n",
757 			__func__, pci_name(dev));
758 		return -EINVAL;
759 	}
760 
761 	switch (state) {
762 	case pcie_deassert_reset:
763 		eeh_ops->reset(pe, EEH_RESET_DEACTIVATE);
764 		eeh_unfreeze_pe(pe, false);
765 		eeh_pe_state_clear(pe, EEH_PE_CFG_BLOCKED);
766 		eeh_pe_dev_traverse(pe, eeh_restore_dev_state, dev);
767 		eeh_pe_state_clear(pe, EEH_PE_ISOLATED);
768 		break;
769 	case pcie_hot_reset:
770 		eeh_pe_state_mark(pe, EEH_PE_ISOLATED);
771 		eeh_ops->set_option(pe, EEH_OPT_FREEZE_PE);
772 		eeh_pe_dev_traverse(pe, eeh_disable_and_save_dev_state, dev);
773 		eeh_pe_state_mark(pe, EEH_PE_CFG_BLOCKED);
774 		eeh_ops->reset(pe, EEH_RESET_HOT);
775 		break;
776 	case pcie_warm_reset:
777 		eeh_pe_state_mark(pe, EEH_PE_ISOLATED);
778 		eeh_ops->set_option(pe, EEH_OPT_FREEZE_PE);
779 		eeh_pe_dev_traverse(pe, eeh_disable_and_save_dev_state, dev);
780 		eeh_pe_state_mark(pe, EEH_PE_CFG_BLOCKED);
781 		eeh_ops->reset(pe, EEH_RESET_FUNDAMENTAL);
782 		break;
783 	default:
784 		eeh_pe_state_clear(pe, EEH_PE_ISOLATED | EEH_PE_CFG_BLOCKED);
785 		return -EINVAL;
786 	};
787 
788 	return 0;
789 }
790 
791 /**
792  * eeh_set_pe_freset - Check the required reset for the indicated device
793  * @data: EEH device
794  * @flag: return value
795  *
796  * Each device might have its preferred reset type: fundamental or
797  * hot reset. The routine is used to collected the information for
798  * the indicated device and its children so that the bunch of the
799  * devices could be reset properly.
800  */
eeh_set_dev_freset(void * data,void * flag)801 static void *eeh_set_dev_freset(void *data, void *flag)
802 {
803 	struct pci_dev *dev;
804 	unsigned int *freset = (unsigned int *)flag;
805 	struct eeh_dev *edev = (struct eeh_dev *)data;
806 
807 	dev = eeh_dev_to_pci_dev(edev);
808 	if (dev)
809 		*freset |= dev->needs_freset;
810 
811 	return NULL;
812 }
813 
814 /**
815  * eeh_reset_pe_once - Assert the pci #RST line for 1/4 second
816  * @pe: EEH PE
817  *
818  * Assert the PCI #RST line for 1/4 second.
819  */
eeh_reset_pe_once(struct eeh_pe * pe)820 static void eeh_reset_pe_once(struct eeh_pe *pe)
821 {
822 	unsigned int freset = 0;
823 
824 	/* Determine type of EEH reset required for
825 	 * Partitionable Endpoint, a hot-reset (1)
826 	 * or a fundamental reset (3).
827 	 * A fundamental reset required by any device under
828 	 * Partitionable Endpoint trumps hot-reset.
829 	 */
830 	eeh_pe_dev_traverse(pe, eeh_set_dev_freset, &freset);
831 
832 	if (freset)
833 		eeh_ops->reset(pe, EEH_RESET_FUNDAMENTAL);
834 	else
835 		eeh_ops->reset(pe, EEH_RESET_HOT);
836 
837 	eeh_ops->reset(pe, EEH_RESET_DEACTIVATE);
838 }
839 
840 /**
841  * eeh_reset_pe - Reset the indicated PE
842  * @pe: EEH PE
843  *
844  * This routine should be called to reset indicated device, including
845  * PE. A PE might include multiple PCI devices and sometimes PCI bridges
846  * might be involved as well.
847  */
eeh_reset_pe(struct eeh_pe * pe)848 int eeh_reset_pe(struct eeh_pe *pe)
849 {
850 	int flags = (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE);
851 	int i, state, ret;
852 
853 	/* Mark as reset and block config space */
854 	eeh_pe_state_mark(pe, EEH_PE_RESET | EEH_PE_CFG_BLOCKED);
855 
856 	/* Take three shots at resetting the bus */
857 	for (i = 0; i < 3; i++) {
858 		eeh_reset_pe_once(pe);
859 
860 		/*
861 		 * EEH_PE_ISOLATED is expected to be removed after
862 		 * BAR restore.
863 		 */
864 		state = eeh_ops->wait_state(pe, PCI_BUS_RESET_WAIT_MSEC);
865 		if ((state & flags) == flags) {
866 			ret = 0;
867 			goto out;
868 		}
869 
870 		if (state < 0) {
871 			pr_warn("%s: Unrecoverable slot failure on PHB#%d-PE#%x",
872 				__func__, pe->phb->global_number, pe->addr);
873 			ret = -ENOTRECOVERABLE;
874 			goto out;
875 		}
876 
877 		/* We might run out of credits */
878 		ret = -EIO;
879 		pr_warn("%s: Failure %d resetting PHB#%x-PE#%x\n (%d)\n",
880 			__func__, state, pe->phb->global_number, pe->addr, (i + 1));
881 	}
882 
883 out:
884 	eeh_pe_state_clear(pe, EEH_PE_RESET | EEH_PE_CFG_BLOCKED);
885 	return ret;
886 }
887 
888 /**
889  * eeh_save_bars - Save device bars
890  * @edev: PCI device associated EEH device
891  *
892  * Save the values of the device bars. Unlike the restore
893  * routine, this routine is *not* recursive. This is because
894  * PCI devices are added individually; but, for the restore,
895  * an entire slot is reset at a time.
896  */
eeh_save_bars(struct eeh_dev * edev)897 void eeh_save_bars(struct eeh_dev *edev)
898 {
899 	struct pci_dn *pdn;
900 	int i;
901 
902 	pdn = eeh_dev_to_pdn(edev);
903 	if (!pdn)
904 		return;
905 
906 	for (i = 0; i < 16; i++)
907 		eeh_ops->read_config(pdn, i * 4, 4, &edev->config_space[i]);
908 
909 	/*
910 	 * For PCI bridges including root port, we need enable bus
911 	 * master explicitly. Otherwise, it can't fetch IODA table
912 	 * entries correctly. So we cache the bit in advance so that
913 	 * we can restore it after reset, either PHB range or PE range.
914 	 */
915 	if (edev->mode & EEH_DEV_BRIDGE)
916 		edev->config_space[1] |= PCI_COMMAND_MASTER;
917 }
918 
919 /**
920  * eeh_ops_register - Register platform dependent EEH operations
921  * @ops: platform dependent EEH operations
922  *
923  * Register the platform dependent EEH operation callback
924  * functions. The platform should call this function before
925  * any other EEH operations.
926  */
eeh_ops_register(struct eeh_ops * ops)927 int __init eeh_ops_register(struct eeh_ops *ops)
928 {
929 	if (!ops->name) {
930 		pr_warn("%s: Invalid EEH ops name for %p\n",
931 			__func__, ops);
932 		return -EINVAL;
933 	}
934 
935 	if (eeh_ops && eeh_ops != ops) {
936 		pr_warn("%s: EEH ops of platform %s already existing (%s)\n",
937 			__func__, eeh_ops->name, ops->name);
938 		return -EEXIST;
939 	}
940 
941 	eeh_ops = ops;
942 
943 	return 0;
944 }
945 
946 /**
947  * eeh_ops_unregister - Unreigster platform dependent EEH operations
948  * @name: name of EEH platform operations
949  *
950  * Unregister the platform dependent EEH operation callback
951  * functions.
952  */
eeh_ops_unregister(const char * name)953 int __exit eeh_ops_unregister(const char *name)
954 {
955 	if (!name || !strlen(name)) {
956 		pr_warn("%s: Invalid EEH ops name\n",
957 			__func__);
958 		return -EINVAL;
959 	}
960 
961 	if (eeh_ops && !strcmp(eeh_ops->name, name)) {
962 		eeh_ops = NULL;
963 		return 0;
964 	}
965 
966 	return -EEXIST;
967 }
968 
eeh_reboot_notifier(struct notifier_block * nb,unsigned long action,void * unused)969 static int eeh_reboot_notifier(struct notifier_block *nb,
970 			       unsigned long action, void *unused)
971 {
972 	eeh_clear_flag(EEH_ENABLED);
973 	return NOTIFY_DONE;
974 }
975 
976 static struct notifier_block eeh_reboot_nb = {
977 	.notifier_call = eeh_reboot_notifier,
978 };
979 
980 /**
981  * eeh_init - EEH initialization
982  *
983  * Initialize EEH by trying to enable it for all of the adapters in the system.
984  * As a side effect we can determine here if eeh is supported at all.
985  * Note that we leave EEH on so failed config cycles won't cause a machine
986  * check.  If a user turns off EEH for a particular adapter they are really
987  * telling Linux to ignore errors.  Some hardware (e.g. POWER5) won't
988  * grant access to a slot if EEH isn't enabled, and so we always enable
989  * EEH for all slots/all devices.
990  *
991  * The eeh-force-off option disables EEH checking globally, for all slots.
992  * Even if force-off is set, the EEH hardware is still enabled, so that
993  * newer systems can boot.
994  */
eeh_init(void)995 int eeh_init(void)
996 {
997 	struct pci_controller *hose, *tmp;
998 	struct pci_dn *pdn;
999 	static int cnt = 0;
1000 	int ret = 0;
1001 
1002 	/*
1003 	 * We have to delay the initialization on PowerNV after
1004 	 * the PCI hierarchy tree has been built because the PEs
1005 	 * are figured out based on PCI devices instead of device
1006 	 * tree nodes
1007 	 */
1008 	if (machine_is(powernv) && cnt++ <= 0)
1009 		return ret;
1010 
1011 	/* Register reboot notifier */
1012 	ret = register_reboot_notifier(&eeh_reboot_nb);
1013 	if (ret) {
1014 		pr_warn("%s: Failed to register notifier (%d)\n",
1015 			__func__, ret);
1016 		return ret;
1017 	}
1018 
1019 	/* call platform initialization function */
1020 	if (!eeh_ops) {
1021 		pr_warn("%s: Platform EEH operation not found\n",
1022 			__func__);
1023 		return -EEXIST;
1024 	} else if ((ret = eeh_ops->init()))
1025 		return ret;
1026 
1027 	/* Initialize EEH event */
1028 	ret = eeh_event_init();
1029 	if (ret)
1030 		return ret;
1031 
1032 	/* Enable EEH for all adapters */
1033 	list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
1034 		pdn = hose->pci_data;
1035 		traverse_pci_dn(pdn, eeh_ops->probe, NULL);
1036 	}
1037 
1038 	/*
1039 	 * Call platform post-initialization. Actually, It's good chance
1040 	 * to inform platform that EEH is ready to supply service if the
1041 	 * I/O cache stuff has been built up.
1042 	 */
1043 	if (eeh_ops->post_init) {
1044 		ret = eeh_ops->post_init();
1045 		if (ret)
1046 			return ret;
1047 	}
1048 
1049 	if (eeh_enabled())
1050 		pr_info("EEH: PCI Enhanced I/O Error Handling Enabled\n");
1051 	else
1052 		pr_warn("EEH: No capable adapters found\n");
1053 
1054 	return ret;
1055 }
1056 
1057 core_initcall_sync(eeh_init);
1058 
1059 /**
1060  * eeh_add_device_early - Enable EEH for the indicated device node
1061  * @pdn: PCI device node for which to set up EEH
1062  *
1063  * This routine must be used to perform EEH initialization for PCI
1064  * devices that were added after system boot (e.g. hotplug, dlpar).
1065  * This routine must be called before any i/o is performed to the
1066  * adapter (inluding any config-space i/o).
1067  * Whether this actually enables EEH or not for this device depends
1068  * on the CEC architecture, type of the device, on earlier boot
1069  * command-line arguments & etc.
1070  */
eeh_add_device_early(struct pci_dn * pdn)1071 void eeh_add_device_early(struct pci_dn *pdn)
1072 {
1073 	struct pci_controller *phb;
1074 	struct eeh_dev *edev = pdn_to_eeh_dev(pdn);
1075 
1076 	if (!edev)
1077 		return;
1078 
1079 	if (!eeh_has_flag(EEH_PROBE_MODE_DEVTREE))
1080 		return;
1081 
1082 	/* USB Bus children of PCI devices will not have BUID's */
1083 	phb = edev->phb;
1084 	if (NULL == phb ||
1085 	    (eeh_has_flag(EEH_PROBE_MODE_DEVTREE) && 0 == phb->buid))
1086 		return;
1087 
1088 	eeh_ops->probe(pdn, NULL);
1089 }
1090 
1091 /**
1092  * eeh_add_device_tree_early - Enable EEH for the indicated device
1093  * @pdn: PCI device node
1094  *
1095  * This routine must be used to perform EEH initialization for the
1096  * indicated PCI device that was added after system boot (e.g.
1097  * hotplug, dlpar).
1098  */
eeh_add_device_tree_early(struct pci_dn * pdn)1099 void eeh_add_device_tree_early(struct pci_dn *pdn)
1100 {
1101 	struct pci_dn *n;
1102 
1103 	if (!pdn)
1104 		return;
1105 
1106 	list_for_each_entry(n, &pdn->child_list, list)
1107 		eeh_add_device_tree_early(n);
1108 	eeh_add_device_early(pdn);
1109 }
1110 EXPORT_SYMBOL_GPL(eeh_add_device_tree_early);
1111 
1112 /**
1113  * eeh_add_device_late - Perform EEH initialization for the indicated pci device
1114  * @dev: pci device for which to set up EEH
1115  *
1116  * This routine must be used to complete EEH initialization for PCI
1117  * devices that were added after system boot (e.g. hotplug, dlpar).
1118  */
eeh_add_device_late(struct pci_dev * dev)1119 void eeh_add_device_late(struct pci_dev *dev)
1120 {
1121 	struct pci_dn *pdn;
1122 	struct eeh_dev *edev;
1123 
1124 	if (!dev || !eeh_enabled())
1125 		return;
1126 
1127 	pr_debug("EEH: Adding device %s\n", pci_name(dev));
1128 
1129 	pdn = pci_get_pdn_by_devfn(dev->bus, dev->devfn);
1130 	edev = pdn_to_eeh_dev(pdn);
1131 	if (edev->pdev == dev) {
1132 		pr_debug("EEH: Already referenced !\n");
1133 		return;
1134 	}
1135 
1136 	/*
1137 	 * The EEH cache might not be removed correctly because of
1138 	 * unbalanced kref to the device during unplug time, which
1139 	 * relies on pcibios_release_device(). So we have to remove
1140 	 * that here explicitly.
1141 	 */
1142 	if (edev->pdev) {
1143 		eeh_rmv_from_parent_pe(edev);
1144 		eeh_addr_cache_rmv_dev(edev->pdev);
1145 		eeh_sysfs_remove_device(edev->pdev);
1146 		edev->mode &= ~EEH_DEV_SYSFS;
1147 
1148 		/*
1149 		 * We definitely should have the PCI device removed
1150 		 * though it wasn't correctly. So we needn't call
1151 		 * into error handler afterwards.
1152 		 */
1153 		edev->mode |= EEH_DEV_NO_HANDLER;
1154 
1155 		edev->pdev = NULL;
1156 		dev->dev.archdata.edev = NULL;
1157 	}
1158 
1159 	if (eeh_has_flag(EEH_PROBE_MODE_DEV))
1160 		eeh_ops->probe(pdn, NULL);
1161 
1162 	edev->pdev = dev;
1163 	dev->dev.archdata.edev = edev;
1164 
1165 	eeh_addr_cache_insert_dev(dev);
1166 }
1167 
1168 /**
1169  * eeh_add_device_tree_late - Perform EEH initialization for the indicated PCI bus
1170  * @bus: PCI bus
1171  *
1172  * This routine must be used to perform EEH initialization for PCI
1173  * devices which are attached to the indicated PCI bus. The PCI bus
1174  * is added after system boot through hotplug or dlpar.
1175  */
eeh_add_device_tree_late(struct pci_bus * bus)1176 void eeh_add_device_tree_late(struct pci_bus *bus)
1177 {
1178 	struct pci_dev *dev;
1179 
1180 	list_for_each_entry(dev, &bus->devices, bus_list) {
1181 		eeh_add_device_late(dev);
1182 		if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1183 			struct pci_bus *subbus = dev->subordinate;
1184 			if (subbus)
1185 				eeh_add_device_tree_late(subbus);
1186 		}
1187 	}
1188 }
1189 EXPORT_SYMBOL_GPL(eeh_add_device_tree_late);
1190 
1191 /**
1192  * eeh_add_sysfs_files - Add EEH sysfs files for the indicated PCI bus
1193  * @bus: PCI bus
1194  *
1195  * This routine must be used to add EEH sysfs files for PCI
1196  * devices which are attached to the indicated PCI bus. The PCI bus
1197  * is added after system boot through hotplug or dlpar.
1198  */
eeh_add_sysfs_files(struct pci_bus * bus)1199 void eeh_add_sysfs_files(struct pci_bus *bus)
1200 {
1201 	struct pci_dev *dev;
1202 
1203 	list_for_each_entry(dev, &bus->devices, bus_list) {
1204 		eeh_sysfs_add_device(dev);
1205 		if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1206 			struct pci_bus *subbus = dev->subordinate;
1207 			if (subbus)
1208 				eeh_add_sysfs_files(subbus);
1209 		}
1210 	}
1211 }
1212 EXPORT_SYMBOL_GPL(eeh_add_sysfs_files);
1213 
1214 /**
1215  * eeh_remove_device - Undo EEH setup for the indicated pci device
1216  * @dev: pci device to be removed
1217  *
1218  * This routine should be called when a device is removed from
1219  * a running system (e.g. by hotplug or dlpar).  It unregisters
1220  * the PCI device from the EEH subsystem.  I/O errors affecting
1221  * this device will no longer be detected after this call; thus,
1222  * i/o errors affecting this slot may leave this device unusable.
1223  */
eeh_remove_device(struct pci_dev * dev)1224 void eeh_remove_device(struct pci_dev *dev)
1225 {
1226 	struct eeh_dev *edev;
1227 
1228 	if (!dev || !eeh_enabled())
1229 		return;
1230 	edev = pci_dev_to_eeh_dev(dev);
1231 
1232 	/* Unregister the device with the EEH/PCI address search system */
1233 	pr_debug("EEH: Removing device %s\n", pci_name(dev));
1234 
1235 	if (!edev || !edev->pdev || !edev->pe) {
1236 		pr_debug("EEH: Not referenced !\n");
1237 		return;
1238 	}
1239 
1240 	/*
1241 	 * During the hotplug for EEH error recovery, we need the EEH
1242 	 * device attached to the parent PE in order for BAR restore
1243 	 * a bit later. So we keep it for BAR restore and remove it
1244 	 * from the parent PE during the BAR resotre.
1245 	 */
1246 	edev->pdev = NULL;
1247 	dev->dev.archdata.edev = NULL;
1248 	if (!(edev->pe->state & EEH_PE_KEEP))
1249 		eeh_rmv_from_parent_pe(edev);
1250 	else
1251 		edev->mode |= EEH_DEV_DISCONNECTED;
1252 
1253 	/*
1254 	 * We're removing from the PCI subsystem, that means
1255 	 * the PCI device driver can't support EEH or not
1256 	 * well. So we rely on hotplug completely to do recovery
1257 	 * for the specific PCI device.
1258 	 */
1259 	edev->mode |= EEH_DEV_NO_HANDLER;
1260 
1261 	eeh_addr_cache_rmv_dev(dev);
1262 	eeh_sysfs_remove_device(dev);
1263 	edev->mode &= ~EEH_DEV_SYSFS;
1264 }
1265 
eeh_unfreeze_pe(struct eeh_pe * pe,bool sw_state)1266 int eeh_unfreeze_pe(struct eeh_pe *pe, bool sw_state)
1267 {
1268 	int ret;
1269 
1270 	ret = eeh_pci_enable(pe, EEH_OPT_THAW_MMIO);
1271 	if (ret) {
1272 		pr_warn("%s: Failure %d enabling IO on PHB#%x-PE#%x\n",
1273 			__func__, ret, pe->phb->global_number, pe->addr);
1274 		return ret;
1275 	}
1276 
1277 	ret = eeh_pci_enable(pe, EEH_OPT_THAW_DMA);
1278 	if (ret) {
1279 		pr_warn("%s: Failure %d enabling DMA on PHB#%x-PE#%x\n",
1280 			__func__, ret, pe->phb->global_number, pe->addr);
1281 		return ret;
1282 	}
1283 
1284 	/* Clear software isolated state */
1285 	if (sw_state && (pe->state & EEH_PE_ISOLATED))
1286 		eeh_pe_state_clear(pe, EEH_PE_ISOLATED);
1287 
1288 	return ret;
1289 }
1290 
1291 
1292 static struct pci_device_id eeh_reset_ids[] = {
1293 	{ PCI_DEVICE(0x19a2, 0x0710) },	/* Emulex, BE     */
1294 	{ PCI_DEVICE(0x10df, 0xe220) },	/* Emulex, Lancer */
1295 	{ PCI_DEVICE(0x14e4, 0x1657) }, /* Broadcom BCM5719 */
1296 	{ 0 }
1297 };
1298 
eeh_pe_change_owner(struct eeh_pe * pe)1299 static int eeh_pe_change_owner(struct eeh_pe *pe)
1300 {
1301 	struct eeh_dev *edev, *tmp;
1302 	struct pci_dev *pdev;
1303 	struct pci_device_id *id;
1304 	int flags, ret;
1305 
1306 	/* Check PE state */
1307 	flags = (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE);
1308 	ret = eeh_ops->get_state(pe, NULL);
1309 	if (ret < 0 || ret == EEH_STATE_NOT_SUPPORT)
1310 		return 0;
1311 
1312 	/* Unfrozen PE, nothing to do */
1313 	if ((ret & flags) == flags)
1314 		return 0;
1315 
1316 	/* Frozen PE, check if it needs PE level reset */
1317 	eeh_pe_for_each_dev(pe, edev, tmp) {
1318 		pdev = eeh_dev_to_pci_dev(edev);
1319 		if (!pdev)
1320 			continue;
1321 
1322 		for (id = &eeh_reset_ids[0]; id->vendor != 0; id++) {
1323 			if (id->vendor != PCI_ANY_ID &&
1324 			    id->vendor != pdev->vendor)
1325 				continue;
1326 			if (id->device != PCI_ANY_ID &&
1327 			    id->device != pdev->device)
1328 				continue;
1329 			if (id->subvendor != PCI_ANY_ID &&
1330 			    id->subvendor != pdev->subsystem_vendor)
1331 				continue;
1332 			if (id->subdevice != PCI_ANY_ID &&
1333 			    id->subdevice != pdev->subsystem_device)
1334 				continue;
1335 
1336 			goto reset;
1337 		}
1338 	}
1339 
1340 	return eeh_unfreeze_pe(pe, true);
1341 
1342 reset:
1343 	return eeh_pe_reset_and_recover(pe);
1344 }
1345 
1346 /**
1347  * eeh_dev_open - Increase count of pass through devices for PE
1348  * @pdev: PCI device
1349  *
1350  * Increase count of passed through devices for the indicated
1351  * PE. In the result, the EEH errors detected on the PE won't be
1352  * reported. The PE owner will be responsible for detection
1353  * and recovery.
1354  */
eeh_dev_open(struct pci_dev * pdev)1355 int eeh_dev_open(struct pci_dev *pdev)
1356 {
1357 	struct eeh_dev *edev;
1358 	int ret = -ENODEV;
1359 
1360 	mutex_lock(&eeh_dev_mutex);
1361 
1362 	/* No PCI device ? */
1363 	if (!pdev)
1364 		goto out;
1365 
1366 	/* No EEH device or PE ? */
1367 	edev = pci_dev_to_eeh_dev(pdev);
1368 	if (!edev || !edev->pe)
1369 		goto out;
1370 
1371 	/*
1372 	 * The PE might have been put into frozen state, but we
1373 	 * didn't detect that yet. The passed through PCI devices
1374 	 * in frozen PE won't work properly. Clear the frozen state
1375 	 * in advance.
1376 	 */
1377 	ret = eeh_pe_change_owner(edev->pe);
1378 	if (ret)
1379 		goto out;
1380 
1381 	/* Increase PE's pass through count */
1382 	atomic_inc(&edev->pe->pass_dev_cnt);
1383 	mutex_unlock(&eeh_dev_mutex);
1384 
1385 	return 0;
1386 out:
1387 	mutex_unlock(&eeh_dev_mutex);
1388 	return ret;
1389 }
1390 EXPORT_SYMBOL_GPL(eeh_dev_open);
1391 
1392 /**
1393  * eeh_dev_release - Decrease count of pass through devices for PE
1394  * @pdev: PCI device
1395  *
1396  * Decrease count of pass through devices for the indicated PE. If
1397  * there is no passed through device in PE, the EEH errors detected
1398  * on the PE will be reported and handled as usual.
1399  */
eeh_dev_release(struct pci_dev * pdev)1400 void eeh_dev_release(struct pci_dev *pdev)
1401 {
1402 	struct eeh_dev *edev;
1403 
1404 	mutex_lock(&eeh_dev_mutex);
1405 
1406 	/* No PCI device ? */
1407 	if (!pdev)
1408 		goto out;
1409 
1410 	/* No EEH device ? */
1411 	edev = pci_dev_to_eeh_dev(pdev);
1412 	if (!edev || !edev->pe || !eeh_pe_passed(edev->pe))
1413 		goto out;
1414 
1415 	/* Decrease PE's pass through count */
1416 	atomic_dec(&edev->pe->pass_dev_cnt);
1417 	WARN_ON(atomic_read(&edev->pe->pass_dev_cnt) < 0);
1418 	eeh_pe_change_owner(edev->pe);
1419 out:
1420 	mutex_unlock(&eeh_dev_mutex);
1421 }
1422 EXPORT_SYMBOL(eeh_dev_release);
1423 
1424 #ifdef CONFIG_IOMMU_API
1425 
dev_has_iommu_table(struct device * dev,void * data)1426 static int dev_has_iommu_table(struct device *dev, void *data)
1427 {
1428 	struct pci_dev *pdev = to_pci_dev(dev);
1429 	struct pci_dev **ppdev = data;
1430 	struct iommu_table *tbl;
1431 
1432 	if (!dev)
1433 		return 0;
1434 
1435 	tbl = get_iommu_table_base(dev);
1436 	if (tbl && tbl->it_group) {
1437 		*ppdev = pdev;
1438 		return 1;
1439 	}
1440 
1441 	return 0;
1442 }
1443 
1444 /**
1445  * eeh_iommu_group_to_pe - Convert IOMMU group to EEH PE
1446  * @group: IOMMU group
1447  *
1448  * The routine is called to convert IOMMU group to EEH PE.
1449  */
eeh_iommu_group_to_pe(struct iommu_group * group)1450 struct eeh_pe *eeh_iommu_group_to_pe(struct iommu_group *group)
1451 {
1452 	struct pci_dev *pdev = NULL;
1453 	struct eeh_dev *edev;
1454 	int ret;
1455 
1456 	/* No IOMMU group ? */
1457 	if (!group)
1458 		return NULL;
1459 
1460 	ret = iommu_group_for_each_dev(group, &pdev, dev_has_iommu_table);
1461 	if (!ret || !pdev)
1462 		return NULL;
1463 
1464 	/* No EEH device or PE ? */
1465 	edev = pci_dev_to_eeh_dev(pdev);
1466 	if (!edev || !edev->pe)
1467 		return NULL;
1468 
1469 	return edev->pe;
1470 }
1471 EXPORT_SYMBOL_GPL(eeh_iommu_group_to_pe);
1472 
1473 #endif /* CONFIG_IOMMU_API */
1474 
1475 /**
1476  * eeh_pe_set_option - Set options for the indicated PE
1477  * @pe: EEH PE
1478  * @option: requested option
1479  *
1480  * The routine is called to enable or disable EEH functionality
1481  * on the indicated PE, to enable IO or DMA for the frozen PE.
1482  */
eeh_pe_set_option(struct eeh_pe * pe,int option)1483 int eeh_pe_set_option(struct eeh_pe *pe, int option)
1484 {
1485 	int ret = 0;
1486 
1487 	/* Invalid PE ? */
1488 	if (!pe)
1489 		return -ENODEV;
1490 
1491 	/*
1492 	 * EEH functionality could possibly be disabled, just
1493 	 * return error for the case. And the EEH functinality
1494 	 * isn't expected to be disabled on one specific PE.
1495 	 */
1496 	switch (option) {
1497 	case EEH_OPT_ENABLE:
1498 		if (eeh_enabled()) {
1499 			ret = eeh_pe_change_owner(pe);
1500 			break;
1501 		}
1502 		ret = -EIO;
1503 		break;
1504 	case EEH_OPT_DISABLE:
1505 		break;
1506 	case EEH_OPT_THAW_MMIO:
1507 	case EEH_OPT_THAW_DMA:
1508 		if (!eeh_ops || !eeh_ops->set_option) {
1509 			ret = -ENOENT;
1510 			break;
1511 		}
1512 
1513 		ret = eeh_pci_enable(pe, option);
1514 		break;
1515 	default:
1516 		pr_debug("%s: Option %d out of range (%d, %d)\n",
1517 			__func__, option, EEH_OPT_DISABLE, EEH_OPT_THAW_DMA);
1518 		ret = -EINVAL;
1519 	}
1520 
1521 	return ret;
1522 }
1523 EXPORT_SYMBOL_GPL(eeh_pe_set_option);
1524 
1525 /**
1526  * eeh_pe_get_state - Retrieve PE's state
1527  * @pe: EEH PE
1528  *
1529  * Retrieve the PE's state, which includes 3 aspects: enabled
1530  * DMA, enabled IO and asserted reset.
1531  */
eeh_pe_get_state(struct eeh_pe * pe)1532 int eeh_pe_get_state(struct eeh_pe *pe)
1533 {
1534 	int result, ret = 0;
1535 	bool rst_active, dma_en, mmio_en;
1536 
1537 	/* Existing PE ? */
1538 	if (!pe)
1539 		return -ENODEV;
1540 
1541 	if (!eeh_ops || !eeh_ops->get_state)
1542 		return -ENOENT;
1543 
1544 	result = eeh_ops->get_state(pe, NULL);
1545 	rst_active = !!(result & EEH_STATE_RESET_ACTIVE);
1546 	dma_en = !!(result & EEH_STATE_DMA_ENABLED);
1547 	mmio_en = !!(result & EEH_STATE_MMIO_ENABLED);
1548 
1549 	if (rst_active)
1550 		ret = EEH_PE_STATE_RESET;
1551 	else if (dma_en && mmio_en)
1552 		ret = EEH_PE_STATE_NORMAL;
1553 	else if (!dma_en && !mmio_en)
1554 		ret = EEH_PE_STATE_STOPPED_IO_DMA;
1555 	else if (!dma_en && mmio_en)
1556 		ret = EEH_PE_STATE_STOPPED_DMA;
1557 	else
1558 		ret = EEH_PE_STATE_UNAVAIL;
1559 
1560 	return ret;
1561 }
1562 EXPORT_SYMBOL_GPL(eeh_pe_get_state);
1563 
eeh_pe_reenable_devices(struct eeh_pe * pe)1564 static int eeh_pe_reenable_devices(struct eeh_pe *pe)
1565 {
1566 	struct eeh_dev *edev, *tmp;
1567 	struct pci_dev *pdev;
1568 	int ret = 0;
1569 
1570 	/* Restore config space */
1571 	eeh_pe_restore_bars(pe);
1572 
1573 	/*
1574 	 * Reenable PCI devices as the devices passed
1575 	 * through are always enabled before the reset.
1576 	 */
1577 	eeh_pe_for_each_dev(pe, edev, tmp) {
1578 		pdev = eeh_dev_to_pci_dev(edev);
1579 		if (!pdev)
1580 			continue;
1581 
1582 		ret = pci_reenable_device(pdev);
1583 		if (ret) {
1584 			pr_warn("%s: Failure %d reenabling %s\n",
1585 				__func__, ret, pci_name(pdev));
1586 			return ret;
1587 		}
1588 	}
1589 
1590 	/* The PE is still in frozen state */
1591 	return eeh_unfreeze_pe(pe, true);
1592 }
1593 
1594 /**
1595  * eeh_pe_reset - Issue PE reset according to specified type
1596  * @pe: EEH PE
1597  * @option: reset type
1598  *
1599  * The routine is called to reset the specified PE with the
1600  * indicated type, either fundamental reset or hot reset.
1601  * PE reset is the most important part for error recovery.
1602  */
eeh_pe_reset(struct eeh_pe * pe,int option)1603 int eeh_pe_reset(struct eeh_pe *pe, int option)
1604 {
1605 	int ret = 0;
1606 
1607 	/* Invalid PE ? */
1608 	if (!pe)
1609 		return -ENODEV;
1610 
1611 	if (!eeh_ops || !eeh_ops->set_option || !eeh_ops->reset)
1612 		return -ENOENT;
1613 
1614 	switch (option) {
1615 	case EEH_RESET_DEACTIVATE:
1616 		ret = eeh_ops->reset(pe, option);
1617 		eeh_pe_state_clear(pe, EEH_PE_CFG_BLOCKED);
1618 		if (ret)
1619 			break;
1620 
1621 		ret = eeh_pe_reenable_devices(pe);
1622 		break;
1623 	case EEH_RESET_HOT:
1624 	case EEH_RESET_FUNDAMENTAL:
1625 		/*
1626 		 * Proactively freeze the PE to drop all MMIO access
1627 		 * during reset, which should be banned as it's always
1628 		 * cause recursive EEH error.
1629 		 */
1630 		eeh_ops->set_option(pe, EEH_OPT_FREEZE_PE);
1631 
1632 		eeh_pe_state_mark(pe, EEH_PE_CFG_BLOCKED);
1633 		ret = eeh_ops->reset(pe, option);
1634 		break;
1635 	default:
1636 		pr_debug("%s: Unsupported option %d\n",
1637 			__func__, option);
1638 		ret = -EINVAL;
1639 	}
1640 
1641 	return ret;
1642 }
1643 EXPORT_SYMBOL_GPL(eeh_pe_reset);
1644 
1645 /**
1646  * eeh_pe_configure - Configure PCI bridges after PE reset
1647  * @pe: EEH PE
1648  *
1649  * The routine is called to restore the PCI config space for
1650  * those PCI devices, especially PCI bridges affected by PE
1651  * reset issued previously.
1652  */
eeh_pe_configure(struct eeh_pe * pe)1653 int eeh_pe_configure(struct eeh_pe *pe)
1654 {
1655 	int ret = 0;
1656 
1657 	/* Invalid PE ? */
1658 	if (!pe)
1659 		return -ENODEV;
1660 
1661 	return ret;
1662 }
1663 EXPORT_SYMBOL_GPL(eeh_pe_configure);
1664 
proc_eeh_show(struct seq_file * m,void * v)1665 static int proc_eeh_show(struct seq_file *m, void *v)
1666 {
1667 	if (!eeh_enabled()) {
1668 		seq_printf(m, "EEH Subsystem is globally disabled\n");
1669 		seq_printf(m, "eeh_total_mmio_ffs=%llu\n", eeh_stats.total_mmio_ffs);
1670 	} else {
1671 		seq_printf(m, "EEH Subsystem is enabled\n");
1672 		seq_printf(m,
1673 				"no device=%llu\n"
1674 				"no device node=%llu\n"
1675 				"no config address=%llu\n"
1676 				"check not wanted=%llu\n"
1677 				"eeh_total_mmio_ffs=%llu\n"
1678 				"eeh_false_positives=%llu\n"
1679 				"eeh_slot_resets=%llu\n",
1680 				eeh_stats.no_device,
1681 				eeh_stats.no_dn,
1682 				eeh_stats.no_cfg_addr,
1683 				eeh_stats.ignored_check,
1684 				eeh_stats.total_mmio_ffs,
1685 				eeh_stats.false_positives,
1686 				eeh_stats.slot_resets);
1687 	}
1688 
1689 	return 0;
1690 }
1691 
proc_eeh_open(struct inode * inode,struct file * file)1692 static int proc_eeh_open(struct inode *inode, struct file *file)
1693 {
1694 	return single_open(file, proc_eeh_show, NULL);
1695 }
1696 
1697 static const struct file_operations proc_eeh_operations = {
1698 	.open      = proc_eeh_open,
1699 	.read      = seq_read,
1700 	.llseek    = seq_lseek,
1701 	.release   = single_release,
1702 };
1703 
1704 #ifdef CONFIG_DEBUG_FS
eeh_enable_dbgfs_set(void * data,u64 val)1705 static int eeh_enable_dbgfs_set(void *data, u64 val)
1706 {
1707 	if (val)
1708 		eeh_clear_flag(EEH_FORCE_DISABLED);
1709 	else
1710 		eeh_add_flag(EEH_FORCE_DISABLED);
1711 
1712 	/* Notify the backend */
1713 	if (eeh_ops->post_init)
1714 		eeh_ops->post_init();
1715 
1716 	return 0;
1717 }
1718 
eeh_enable_dbgfs_get(void * data,u64 * val)1719 static int eeh_enable_dbgfs_get(void *data, u64 *val)
1720 {
1721 	if (eeh_enabled())
1722 		*val = 0x1ul;
1723 	else
1724 		*val = 0x0ul;
1725 	return 0;
1726 }
1727 
eeh_freeze_dbgfs_set(void * data,u64 val)1728 static int eeh_freeze_dbgfs_set(void *data, u64 val)
1729 {
1730 	eeh_max_freezes = val;
1731 	return 0;
1732 }
1733 
eeh_freeze_dbgfs_get(void * data,u64 * val)1734 static int eeh_freeze_dbgfs_get(void *data, u64 *val)
1735 {
1736 	*val = eeh_max_freezes;
1737 	return 0;
1738 }
1739 
1740 DEFINE_SIMPLE_ATTRIBUTE(eeh_enable_dbgfs_ops, eeh_enable_dbgfs_get,
1741 			eeh_enable_dbgfs_set, "0x%llx\n");
1742 DEFINE_SIMPLE_ATTRIBUTE(eeh_freeze_dbgfs_ops, eeh_freeze_dbgfs_get,
1743 			eeh_freeze_dbgfs_set, "0x%llx\n");
1744 #endif
1745 
eeh_init_proc(void)1746 static int __init eeh_init_proc(void)
1747 {
1748 	if (machine_is(pseries) || machine_is(powernv)) {
1749 		proc_create("powerpc/eeh", 0, NULL, &proc_eeh_operations);
1750 #ifdef CONFIG_DEBUG_FS
1751 		debugfs_create_file("eeh_enable", 0600,
1752                                     powerpc_debugfs_root, NULL,
1753                                     &eeh_enable_dbgfs_ops);
1754 		debugfs_create_file("eeh_max_freezes", 0600,
1755 				    powerpc_debugfs_root, NULL,
1756 				    &eeh_freeze_dbgfs_ops);
1757 #endif
1758 	}
1759 
1760 	return 0;
1761 }
1762 __initcall(eeh_init_proc);
1763