1 #include <linux/slab.h>
2 #include <linux/file.h>
3 #include <linux/fdtable.h>
4 #include <linux/mm.h>
5 #include <linux/stat.h>
6 #include <linux/fcntl.h>
7 #include <linux/swap.h>
8 #include <linux/string.h>
9 #include <linux/init.h>
10 #include <linux/pagemap.h>
11 #include <linux/perf_event.h>
12 #include <linux/highmem.h>
13 #include <linux/spinlock.h>
14 #include <linux/key.h>
15 #include <linux/personality.h>
16 #include <linux/binfmts.h>
17 #include <linux/coredump.h>
18 #include <linux/utsname.h>
19 #include <linux/pid_namespace.h>
20 #include <linux/module.h>
21 #include <linux/namei.h>
22 #include <linux/mount.h>
23 #include <linux/security.h>
24 #include <linux/syscalls.h>
25 #include <linux/tsacct_kern.h>
26 #include <linux/cn_proc.h>
27 #include <linux/audit.h>
28 #include <linux/tracehook.h>
29 #include <linux/kmod.h>
30 #include <linux/fsnotify.h>
31 #include <linux/fs_struct.h>
32 #include <linux/pipe_fs_i.h>
33 #include <linux/oom.h>
34 #include <linux/compat.h>
35 #include <linux/sched.h>
36 #include <linux/fs.h>
37 #include <linux/path.h>
38 
39 #include <asm/uaccess.h>
40 #include <asm/mmu_context.h>
41 #include <asm/tlb.h>
42 #include <asm/exec.h>
43 
44 #include <trace/events/task.h>
45 #include "internal.h"
46 
47 #include <trace/events/sched.h>
48 
49 int core_uses_pid;
50 unsigned int core_pipe_limit;
51 char core_pattern[CORENAME_MAX_SIZE] = "core";
52 static int core_name_size = CORENAME_MAX_SIZE;
53 
54 struct core_name {
55 	char *corename;
56 	int used, size;
57 };
58 
59 /* The maximal length of core_pattern is also specified in sysctl.c */
60 
expand_corename(struct core_name * cn,int size)61 static int expand_corename(struct core_name *cn, int size)
62 {
63 	char *corename = krealloc(cn->corename, size, GFP_KERNEL);
64 
65 	if (!corename)
66 		return -ENOMEM;
67 
68 	if (size > core_name_size) /* racy but harmless */
69 		core_name_size = size;
70 
71 	cn->size = ksize(corename);
72 	cn->corename = corename;
73 	return 0;
74 }
75 
cn_vprintf(struct core_name * cn,const char * fmt,va_list arg)76 static __printf(2, 0) int cn_vprintf(struct core_name *cn, const char *fmt,
77 				     va_list arg)
78 {
79 	int free, need;
80 	va_list arg_copy;
81 
82 again:
83 	free = cn->size - cn->used;
84 
85 	va_copy(arg_copy, arg);
86 	need = vsnprintf(cn->corename + cn->used, free, fmt, arg_copy);
87 	va_end(arg_copy);
88 
89 	if (need < free) {
90 		cn->used += need;
91 		return 0;
92 	}
93 
94 	if (!expand_corename(cn, cn->size + need - free + 1))
95 		goto again;
96 
97 	return -ENOMEM;
98 }
99 
cn_printf(struct core_name * cn,const char * fmt,...)100 static __printf(2, 3) int cn_printf(struct core_name *cn, const char *fmt, ...)
101 {
102 	va_list arg;
103 	int ret;
104 
105 	va_start(arg, fmt);
106 	ret = cn_vprintf(cn, fmt, arg);
107 	va_end(arg);
108 
109 	return ret;
110 }
111 
112 static __printf(2, 3)
cn_esc_printf(struct core_name * cn,const char * fmt,...)113 int cn_esc_printf(struct core_name *cn, const char *fmt, ...)
114 {
115 	int cur = cn->used;
116 	va_list arg;
117 	int ret;
118 
119 	va_start(arg, fmt);
120 	ret = cn_vprintf(cn, fmt, arg);
121 	va_end(arg);
122 
123 	for (; cur < cn->used; ++cur) {
124 		if (cn->corename[cur] == '/')
125 			cn->corename[cur] = '!';
126 	}
127 	return ret;
128 }
129 
cn_print_exe_file(struct core_name * cn)130 static int cn_print_exe_file(struct core_name *cn)
131 {
132 	struct file *exe_file;
133 	char *pathbuf, *path;
134 	int ret;
135 
136 	exe_file = get_mm_exe_file(current->mm);
137 	if (!exe_file)
138 		return cn_esc_printf(cn, "%s (path unknown)", current->comm);
139 
140 	pathbuf = kmalloc(PATH_MAX, GFP_TEMPORARY);
141 	if (!pathbuf) {
142 		ret = -ENOMEM;
143 		goto put_exe_file;
144 	}
145 
146 	path = file_path(exe_file, pathbuf, PATH_MAX);
147 	if (IS_ERR(path)) {
148 		ret = PTR_ERR(path);
149 		goto free_buf;
150 	}
151 
152 	ret = cn_esc_printf(cn, "%s", path);
153 
154 free_buf:
155 	kfree(pathbuf);
156 put_exe_file:
157 	fput(exe_file);
158 	return ret;
159 }
160 
161 /* format_corename will inspect the pattern parameter, and output a
162  * name into corename, which must have space for at least
163  * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
164  */
format_corename(struct core_name * cn,struct coredump_params * cprm)165 static int format_corename(struct core_name *cn, struct coredump_params *cprm)
166 {
167 	const struct cred *cred = current_cred();
168 	const char *pat_ptr = core_pattern;
169 	int ispipe = (*pat_ptr == '|');
170 	int pid_in_pattern = 0;
171 	int err = 0;
172 
173 	cn->used = 0;
174 	cn->corename = NULL;
175 	if (expand_corename(cn, core_name_size))
176 		return -ENOMEM;
177 	cn->corename[0] = '\0';
178 
179 	if (ispipe)
180 		++pat_ptr;
181 
182 	/* Repeat as long as we have more pattern to process and more output
183 	   space */
184 	while (*pat_ptr) {
185 		if (*pat_ptr != '%') {
186 			err = cn_printf(cn, "%c", *pat_ptr++);
187 		} else {
188 			switch (*++pat_ptr) {
189 			/* single % at the end, drop that */
190 			case 0:
191 				goto out;
192 			/* Double percent, output one percent */
193 			case '%':
194 				err = cn_printf(cn, "%c", '%');
195 				break;
196 			/* pid */
197 			case 'p':
198 				pid_in_pattern = 1;
199 				err = cn_printf(cn, "%d",
200 					      task_tgid_vnr(current));
201 				break;
202 			/* global pid */
203 			case 'P':
204 				err = cn_printf(cn, "%d",
205 					      task_tgid_nr(current));
206 				break;
207 			case 'i':
208 				err = cn_printf(cn, "%d",
209 					      task_pid_vnr(current));
210 				break;
211 			case 'I':
212 				err = cn_printf(cn, "%d",
213 					      task_pid_nr(current));
214 				break;
215 			/* uid */
216 			case 'u':
217 				err = cn_printf(cn, "%u",
218 						from_kuid(&init_user_ns,
219 							  cred->uid));
220 				break;
221 			/* gid */
222 			case 'g':
223 				err = cn_printf(cn, "%u",
224 						from_kgid(&init_user_ns,
225 							  cred->gid));
226 				break;
227 			case 'd':
228 				err = cn_printf(cn, "%d",
229 					__get_dumpable(cprm->mm_flags));
230 				break;
231 			/* signal that caused the coredump */
232 			case 's':
233 				err = cn_printf(cn, "%d",
234 						cprm->siginfo->si_signo);
235 				break;
236 			/* UNIX time of coredump */
237 			case 't': {
238 				struct timeval tv;
239 				do_gettimeofday(&tv);
240 				err = cn_printf(cn, "%lu", tv.tv_sec);
241 				break;
242 			}
243 			/* hostname */
244 			case 'h':
245 				down_read(&uts_sem);
246 				err = cn_esc_printf(cn, "%s",
247 					      utsname()->nodename);
248 				up_read(&uts_sem);
249 				break;
250 			/* executable */
251 			case 'e':
252 				err = cn_esc_printf(cn, "%s", current->comm);
253 				break;
254 			case 'E':
255 				err = cn_print_exe_file(cn);
256 				break;
257 			/* core limit size */
258 			case 'c':
259 				err = cn_printf(cn, "%lu",
260 					      rlimit(RLIMIT_CORE));
261 				break;
262 			default:
263 				break;
264 			}
265 			++pat_ptr;
266 		}
267 
268 		if (err)
269 			return err;
270 	}
271 
272 out:
273 	/* Backward compatibility with core_uses_pid:
274 	 *
275 	 * If core_pattern does not include a %p (as is the default)
276 	 * and core_uses_pid is set, then .%pid will be appended to
277 	 * the filename. Do not do this for piped commands. */
278 	if (!ispipe && !pid_in_pattern && core_uses_pid) {
279 		err = cn_printf(cn, ".%d", task_tgid_vnr(current));
280 		if (err)
281 			return err;
282 	}
283 	return ispipe;
284 }
285 
zap_process(struct task_struct * start,int exit_code,int flags)286 static int zap_process(struct task_struct *start, int exit_code, int flags)
287 {
288 	struct task_struct *t;
289 	int nr = 0;
290 
291 	/* ignore all signals except SIGKILL, see prepare_signal() */
292 	start->signal->flags = SIGNAL_GROUP_COREDUMP | flags;
293 	start->signal->group_exit_code = exit_code;
294 	start->signal->group_stop_count = 0;
295 
296 	for_each_thread(start, t) {
297 		task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
298 		if (t != current && t->mm) {
299 			sigaddset(&t->pending.signal, SIGKILL);
300 			signal_wake_up(t, 1);
301 			nr++;
302 		}
303 	}
304 
305 	return nr;
306 }
307 
zap_threads(struct task_struct * tsk,struct mm_struct * mm,struct core_state * core_state,int exit_code)308 static int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
309 			struct core_state *core_state, int exit_code)
310 {
311 	struct task_struct *g, *p;
312 	unsigned long flags;
313 	int nr = -EAGAIN;
314 
315 	spin_lock_irq(&tsk->sighand->siglock);
316 	if (!signal_group_exit(tsk->signal)) {
317 		mm->core_state = core_state;
318 		tsk->signal->group_exit_task = tsk;
319 		nr = zap_process(tsk, exit_code, 0);
320 		clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
321 	}
322 	spin_unlock_irq(&tsk->sighand->siglock);
323 	if (unlikely(nr < 0))
324 		return nr;
325 
326 	tsk->flags |= PF_DUMPCORE;
327 	if (atomic_read(&mm->mm_users) == nr + 1)
328 		goto done;
329 	/*
330 	 * We should find and kill all tasks which use this mm, and we should
331 	 * count them correctly into ->nr_threads. We don't take tasklist
332 	 * lock, but this is safe wrt:
333 	 *
334 	 * fork:
335 	 *	None of sub-threads can fork after zap_process(leader). All
336 	 *	processes which were created before this point should be
337 	 *	visible to zap_threads() because copy_process() adds the new
338 	 *	process to the tail of init_task.tasks list, and lock/unlock
339 	 *	of ->siglock provides a memory barrier.
340 	 *
341 	 * do_exit:
342 	 *	The caller holds mm->mmap_sem. This means that the task which
343 	 *	uses this mm can't pass exit_mm(), so it can't exit or clear
344 	 *	its ->mm.
345 	 *
346 	 * de_thread:
347 	 *	It does list_replace_rcu(&leader->tasks, &current->tasks),
348 	 *	we must see either old or new leader, this does not matter.
349 	 *	However, it can change p->sighand, so lock_task_sighand(p)
350 	 *	must be used. Since p->mm != NULL and we hold ->mmap_sem
351 	 *	it can't fail.
352 	 *
353 	 *	Note also that "g" can be the old leader with ->mm == NULL
354 	 *	and already unhashed and thus removed from ->thread_group.
355 	 *	This is OK, __unhash_process()->list_del_rcu() does not
356 	 *	clear the ->next pointer, we will find the new leader via
357 	 *	next_thread().
358 	 */
359 	rcu_read_lock();
360 	for_each_process(g) {
361 		if (g == tsk->group_leader)
362 			continue;
363 		if (g->flags & PF_KTHREAD)
364 			continue;
365 
366 		for_each_thread(g, p) {
367 			if (unlikely(!p->mm))
368 				continue;
369 			if (unlikely(p->mm == mm)) {
370 				lock_task_sighand(p, &flags);
371 				nr += zap_process(p, exit_code,
372 							SIGNAL_GROUP_EXIT);
373 				unlock_task_sighand(p, &flags);
374 			}
375 			break;
376 		}
377 	}
378 	rcu_read_unlock();
379 done:
380 	atomic_set(&core_state->nr_threads, nr);
381 	return nr;
382 }
383 
coredump_wait(int exit_code,struct core_state * core_state)384 static int coredump_wait(int exit_code, struct core_state *core_state)
385 {
386 	struct task_struct *tsk = current;
387 	struct mm_struct *mm = tsk->mm;
388 	int core_waiters = -EBUSY;
389 
390 	init_completion(&core_state->startup);
391 	core_state->dumper.task = tsk;
392 	core_state->dumper.next = NULL;
393 
394 	down_write(&mm->mmap_sem);
395 	if (!mm->core_state)
396 		core_waiters = zap_threads(tsk, mm, core_state, exit_code);
397 	up_write(&mm->mmap_sem);
398 
399 	if (core_waiters > 0) {
400 		struct core_thread *ptr;
401 
402 		wait_for_completion(&core_state->startup);
403 		/*
404 		 * Wait for all the threads to become inactive, so that
405 		 * all the thread context (extended register state, like
406 		 * fpu etc) gets copied to the memory.
407 		 */
408 		ptr = core_state->dumper.next;
409 		while (ptr != NULL) {
410 			wait_task_inactive(ptr->task, 0);
411 			ptr = ptr->next;
412 		}
413 	}
414 
415 	return core_waiters;
416 }
417 
coredump_finish(struct mm_struct * mm,bool core_dumped)418 static void coredump_finish(struct mm_struct *mm, bool core_dumped)
419 {
420 	struct core_thread *curr, *next;
421 	struct task_struct *task;
422 
423 	spin_lock_irq(&current->sighand->siglock);
424 	if (core_dumped && !__fatal_signal_pending(current))
425 		current->signal->group_exit_code |= 0x80;
426 	current->signal->group_exit_task = NULL;
427 	current->signal->flags = SIGNAL_GROUP_EXIT;
428 	spin_unlock_irq(&current->sighand->siglock);
429 
430 	next = mm->core_state->dumper.next;
431 	while ((curr = next) != NULL) {
432 		next = curr->next;
433 		task = curr->task;
434 		/*
435 		 * see exit_mm(), curr->task must not see
436 		 * ->task == NULL before we read ->next.
437 		 */
438 		smp_mb();
439 		curr->task = NULL;
440 		wake_up_process(task);
441 	}
442 
443 	mm->core_state = NULL;
444 }
445 
dump_interrupted(void)446 static bool dump_interrupted(void)
447 {
448 	/*
449 	 * SIGKILL or freezing() interrupt the coredumping. Perhaps we
450 	 * can do try_to_freeze() and check __fatal_signal_pending(),
451 	 * but then we need to teach dump_write() to restart and clear
452 	 * TIF_SIGPENDING.
453 	 */
454 	return signal_pending(current);
455 }
456 
wait_for_dump_helpers(struct file * file)457 static void wait_for_dump_helpers(struct file *file)
458 {
459 	struct pipe_inode_info *pipe = file->private_data;
460 
461 	pipe_lock(pipe);
462 	pipe->readers++;
463 	pipe->writers--;
464 	wake_up_interruptible_sync(&pipe->wait);
465 	kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
466 	pipe_unlock(pipe);
467 
468 	/*
469 	 * We actually want wait_event_freezable() but then we need
470 	 * to clear TIF_SIGPENDING and improve dump_interrupted().
471 	 */
472 	wait_event_interruptible(pipe->wait, pipe->readers == 1);
473 
474 	pipe_lock(pipe);
475 	pipe->readers--;
476 	pipe->writers++;
477 	pipe_unlock(pipe);
478 }
479 
480 /*
481  * umh_pipe_setup
482  * helper function to customize the process used
483  * to collect the core in userspace.  Specifically
484  * it sets up a pipe and installs it as fd 0 (stdin)
485  * for the process.  Returns 0 on success, or
486  * PTR_ERR on failure.
487  * Note that it also sets the core limit to 1.  This
488  * is a special value that we use to trap recursive
489  * core dumps
490  */
umh_pipe_setup(struct subprocess_info * info,struct cred * new)491 static int umh_pipe_setup(struct subprocess_info *info, struct cred *new)
492 {
493 	struct file *files[2];
494 	struct coredump_params *cp = (struct coredump_params *)info->data;
495 	int err = create_pipe_files(files, 0);
496 	if (err)
497 		return err;
498 
499 	cp->file = files[1];
500 
501 	err = replace_fd(0, files[0], 0);
502 	fput(files[0]);
503 	/* and disallow core files too */
504 	current->signal->rlim[RLIMIT_CORE] = (struct rlimit){1, 1};
505 
506 	return err;
507 }
508 
do_coredump(const siginfo_t * siginfo)509 void do_coredump(const siginfo_t *siginfo)
510 {
511 	struct core_state core_state;
512 	struct core_name cn;
513 	struct mm_struct *mm = current->mm;
514 	struct linux_binfmt * binfmt;
515 	const struct cred *old_cred;
516 	struct cred *cred;
517 	int retval = 0;
518 	int ispipe;
519 	struct files_struct *displaced;
520 	/* require nonrelative corefile path and be extra careful */
521 	bool need_suid_safe = false;
522 	bool core_dumped = false;
523 	static atomic_t core_dump_count = ATOMIC_INIT(0);
524 	struct coredump_params cprm = {
525 		.siginfo = siginfo,
526 		.regs = signal_pt_regs(),
527 		.limit = rlimit(RLIMIT_CORE),
528 		/*
529 		 * We must use the same mm->flags while dumping core to avoid
530 		 * inconsistency of bit flags, since this flag is not protected
531 		 * by any locks.
532 		 */
533 		.mm_flags = mm->flags,
534 	};
535 
536 	audit_core_dumps(siginfo->si_signo);
537 
538 	binfmt = mm->binfmt;
539 	if (!binfmt || !binfmt->core_dump)
540 		goto fail;
541 	if (!__get_dumpable(cprm.mm_flags))
542 		goto fail;
543 
544 	cred = prepare_creds();
545 	if (!cred)
546 		goto fail;
547 	/*
548 	 * We cannot trust fsuid as being the "true" uid of the process
549 	 * nor do we know its entire history. We only know it was tainted
550 	 * so we dump it as root in mode 2, and only into a controlled
551 	 * environment (pipe handler or fully qualified path).
552 	 */
553 	if (__get_dumpable(cprm.mm_flags) == SUID_DUMP_ROOT) {
554 		/* Setuid core dump mode */
555 		cred->fsuid = GLOBAL_ROOT_UID;	/* Dump root private */
556 		need_suid_safe = true;
557 	}
558 
559 	retval = coredump_wait(siginfo->si_signo, &core_state);
560 	if (retval < 0)
561 		goto fail_creds;
562 
563 	old_cred = override_creds(cred);
564 
565 	ispipe = format_corename(&cn, &cprm);
566 
567 	if (ispipe) {
568 		int dump_count;
569 		char **helper_argv;
570 		struct subprocess_info *sub_info;
571 
572 		if (ispipe < 0) {
573 			printk(KERN_WARNING "format_corename failed\n");
574 			printk(KERN_WARNING "Aborting core\n");
575 			goto fail_unlock;
576 		}
577 
578 		if (cprm.limit == 1) {
579 			/* See umh_pipe_setup() which sets RLIMIT_CORE = 1.
580 			 *
581 			 * Normally core limits are irrelevant to pipes, since
582 			 * we're not writing to the file system, but we use
583 			 * cprm.limit of 1 here as a special value, this is a
584 			 * consistent way to catch recursive crashes.
585 			 * We can still crash if the core_pattern binary sets
586 			 * RLIM_CORE = !1, but it runs as root, and can do
587 			 * lots of stupid things.
588 			 *
589 			 * Note that we use task_tgid_vnr here to grab the pid
590 			 * of the process group leader.  That way we get the
591 			 * right pid if a thread in a multi-threaded
592 			 * core_pattern process dies.
593 			 */
594 			printk(KERN_WARNING
595 				"Process %d(%s) has RLIMIT_CORE set to 1\n",
596 				task_tgid_vnr(current), current->comm);
597 			printk(KERN_WARNING "Aborting core\n");
598 			goto fail_unlock;
599 		}
600 		cprm.limit = RLIM_INFINITY;
601 
602 		dump_count = atomic_inc_return(&core_dump_count);
603 		if (core_pipe_limit && (core_pipe_limit < dump_count)) {
604 			printk(KERN_WARNING "Pid %d(%s) over core_pipe_limit\n",
605 			       task_tgid_vnr(current), current->comm);
606 			printk(KERN_WARNING "Skipping core dump\n");
607 			goto fail_dropcount;
608 		}
609 
610 		helper_argv = argv_split(GFP_KERNEL, cn.corename, NULL);
611 		if (!helper_argv) {
612 			printk(KERN_WARNING "%s failed to allocate memory\n",
613 			       __func__);
614 			goto fail_dropcount;
615 		}
616 
617 		retval = -ENOMEM;
618 		sub_info = call_usermodehelper_setup(helper_argv[0],
619 						helper_argv, NULL, GFP_KERNEL,
620 						umh_pipe_setup, NULL, &cprm);
621 		if (sub_info)
622 			retval = call_usermodehelper_exec(sub_info,
623 							  UMH_WAIT_EXEC);
624 
625 		argv_free(helper_argv);
626 		if (retval) {
627 			printk(KERN_INFO "Core dump to |%s pipe failed\n",
628 			       cn.corename);
629 			goto close_fail;
630 		}
631 	} else {
632 		struct inode *inode;
633 		int open_flags = O_CREAT | O_RDWR | O_NOFOLLOW |
634 				 O_LARGEFILE | O_EXCL;
635 
636 		if (cprm.limit < binfmt->min_coredump)
637 			goto fail_unlock;
638 
639 		if (need_suid_safe && cn.corename[0] != '/') {
640 			printk(KERN_WARNING "Pid %d(%s) can only dump core "\
641 				"to fully qualified path!\n",
642 				task_tgid_vnr(current), current->comm);
643 			printk(KERN_WARNING "Skipping core dump\n");
644 			goto fail_unlock;
645 		}
646 
647 		/*
648 		 * Unlink the file if it exists unless this is a SUID
649 		 * binary - in that case, we're running around with root
650 		 * privs and don't want to unlink another user's coredump.
651 		 */
652 		if (!need_suid_safe) {
653 			mm_segment_t old_fs;
654 
655 			old_fs = get_fs();
656 			set_fs(KERNEL_DS);
657 			/*
658 			 * If it doesn't exist, that's fine. If there's some
659 			 * other problem, we'll catch it at the filp_open().
660 			 */
661 			(void) sys_unlink((const char __user *)cn.corename);
662 			set_fs(old_fs);
663 		}
664 
665 		/*
666 		 * There is a race between unlinking and creating the
667 		 * file, but if that causes an EEXIST here, that's
668 		 * fine - another process raced with us while creating
669 		 * the corefile, and the other process won. To userspace,
670 		 * what matters is that at least one of the two processes
671 		 * writes its coredump successfully, not which one.
672 		 */
673 		if (need_suid_safe) {
674 			/*
675 			 * Using user namespaces, normal user tasks can change
676 			 * their current->fs->root to point to arbitrary
677 			 * directories. Since the intention of the "only dump
678 			 * with a fully qualified path" rule is to control where
679 			 * coredumps may be placed using root privileges,
680 			 * current->fs->root must not be used. Instead, use the
681 			 * root directory of init_task.
682 			 */
683 			struct path root;
684 
685 			task_lock(&init_task);
686 			get_fs_root(init_task.fs, &root);
687 			task_unlock(&init_task);
688 			cprm.file = file_open_root(root.dentry, root.mnt,
689 				cn.corename, open_flags, 0600);
690 			path_put(&root);
691 		} else {
692 			cprm.file = filp_open(cn.corename, open_flags, 0600);
693 		}
694 		if (IS_ERR(cprm.file))
695 			goto fail_unlock;
696 
697 		inode = file_inode(cprm.file);
698 		if (inode->i_nlink > 1)
699 			goto close_fail;
700 		if (d_unhashed(cprm.file->f_path.dentry))
701 			goto close_fail;
702 		/*
703 		 * AK: actually i see no reason to not allow this for named
704 		 * pipes etc, but keep the previous behaviour for now.
705 		 */
706 		if (!S_ISREG(inode->i_mode))
707 			goto close_fail;
708 		/*
709 		 * Don't dump core if the filesystem changed owner or mode
710 		 * of the file during file creation. This is an issue when
711 		 * a process dumps core while its cwd is e.g. on a vfat
712 		 * filesystem.
713 		 */
714 		if (!uid_eq(inode->i_uid, current_fsuid()))
715 			goto close_fail;
716 		if ((inode->i_mode & 0677) != 0600)
717 			goto close_fail;
718 		if (!(cprm.file->f_mode & FMODE_CAN_WRITE))
719 			goto close_fail;
720 		if (do_truncate(cprm.file->f_path.dentry, 0, 0, cprm.file))
721 			goto close_fail;
722 	}
723 
724 	/* get us an unshared descriptor table; almost always a no-op */
725 	retval = unshare_files(&displaced);
726 	if (retval)
727 		goto close_fail;
728 	if (displaced)
729 		put_files_struct(displaced);
730 	if (!dump_interrupted()) {
731 		file_start_write(cprm.file);
732 		core_dumped = binfmt->core_dump(&cprm);
733 		file_end_write(cprm.file);
734 	}
735 	if (ispipe && core_pipe_limit)
736 		wait_for_dump_helpers(cprm.file);
737 close_fail:
738 	if (cprm.file)
739 		filp_close(cprm.file, NULL);
740 fail_dropcount:
741 	if (ispipe)
742 		atomic_dec(&core_dump_count);
743 fail_unlock:
744 	kfree(cn.corename);
745 	coredump_finish(mm, core_dumped);
746 	revert_creds(old_cred);
747 fail_creds:
748 	put_cred(cred);
749 fail:
750 	return;
751 }
752 
753 /*
754  * Core dumping helper functions.  These are the only things you should
755  * do on a core-file: use only these functions to write out all the
756  * necessary info.
757  */
dump_emit(struct coredump_params * cprm,const void * addr,int nr)758 int dump_emit(struct coredump_params *cprm, const void *addr, int nr)
759 {
760 	struct file *file = cprm->file;
761 	loff_t pos = file->f_pos;
762 	ssize_t n;
763 	if (cprm->written + nr > cprm->limit)
764 		return 0;
765 	while (nr) {
766 		if (dump_interrupted())
767 			return 0;
768 		n = __kernel_write(file, addr, nr, &pos);
769 		if (n <= 0)
770 			return 0;
771 		file->f_pos = pos;
772 		cprm->written += n;
773 		nr -= n;
774 	}
775 	return 1;
776 }
777 EXPORT_SYMBOL(dump_emit);
778 
dump_skip(struct coredump_params * cprm,size_t nr)779 int dump_skip(struct coredump_params *cprm, size_t nr)
780 {
781 	static char zeroes[PAGE_SIZE];
782 	struct file *file = cprm->file;
783 	if (file->f_op->llseek && file->f_op->llseek != no_llseek) {
784 		if (cprm->written + nr > cprm->limit)
785 			return 0;
786 		if (dump_interrupted() ||
787 		    file->f_op->llseek(file, nr, SEEK_CUR) < 0)
788 			return 0;
789 		cprm->written += nr;
790 		return 1;
791 	} else {
792 		while (nr > PAGE_SIZE) {
793 			if (!dump_emit(cprm, zeroes, PAGE_SIZE))
794 				return 0;
795 			nr -= PAGE_SIZE;
796 		}
797 		return dump_emit(cprm, zeroes, nr);
798 	}
799 }
800 EXPORT_SYMBOL(dump_skip);
801 
dump_align(struct coredump_params * cprm,int align)802 int dump_align(struct coredump_params *cprm, int align)
803 {
804 	unsigned mod = cprm->written & (align - 1);
805 	if (align & (align - 1))
806 		return 0;
807 	return mod ? dump_skip(cprm, align - mod) : 1;
808 }
809 EXPORT_SYMBOL(dump_align);
810