1 #include <linux/slab.h>
2 #include <linux/file.h>
3 #include <linux/fdtable.h>
4 #include <linux/mm.h>
5 #include <linux/stat.h>
6 #include <linux/fcntl.h>
7 #include <linux/swap.h>
8 #include <linux/string.h>
9 #include <linux/init.h>
10 #include <linux/pagemap.h>
11 #include <linux/perf_event.h>
12 #include <linux/highmem.h>
13 #include <linux/spinlock.h>
14 #include <linux/key.h>
15 #include <linux/personality.h>
16 #include <linux/binfmts.h>
17 #include <linux/coredump.h>
18 #include <linux/utsname.h>
19 #include <linux/pid_namespace.h>
20 #include <linux/module.h>
21 #include <linux/namei.h>
22 #include <linux/mount.h>
23 #include <linux/security.h>
24 #include <linux/syscalls.h>
25 #include <linux/tsacct_kern.h>
26 #include <linux/cn_proc.h>
27 #include <linux/audit.h>
28 #include <linux/tracehook.h>
29 #include <linux/kmod.h>
30 #include <linux/fsnotify.h>
31 #include <linux/fs_struct.h>
32 #include <linux/pipe_fs_i.h>
33 #include <linux/oom.h>
34 #include <linux/compat.h>
35 #include <linux/sched.h>
36 #include <linux/fs.h>
37 #include <linux/path.h>
38
39 #include <asm/uaccess.h>
40 #include <asm/mmu_context.h>
41 #include <asm/tlb.h>
42 #include <asm/exec.h>
43
44 #include <trace/events/task.h>
45 #include "internal.h"
46
47 #include <trace/events/sched.h>
48
49 int core_uses_pid;
50 unsigned int core_pipe_limit;
51 char core_pattern[CORENAME_MAX_SIZE] = "core";
52 static int core_name_size = CORENAME_MAX_SIZE;
53
54 struct core_name {
55 char *corename;
56 int used, size;
57 };
58
59 /* The maximal length of core_pattern is also specified in sysctl.c */
60
expand_corename(struct core_name * cn,int size)61 static int expand_corename(struct core_name *cn, int size)
62 {
63 char *corename = krealloc(cn->corename, size, GFP_KERNEL);
64
65 if (!corename)
66 return -ENOMEM;
67
68 if (size > core_name_size) /* racy but harmless */
69 core_name_size = size;
70
71 cn->size = ksize(corename);
72 cn->corename = corename;
73 return 0;
74 }
75
cn_vprintf(struct core_name * cn,const char * fmt,va_list arg)76 static __printf(2, 0) int cn_vprintf(struct core_name *cn, const char *fmt,
77 va_list arg)
78 {
79 int free, need;
80 va_list arg_copy;
81
82 again:
83 free = cn->size - cn->used;
84
85 va_copy(arg_copy, arg);
86 need = vsnprintf(cn->corename + cn->used, free, fmt, arg_copy);
87 va_end(arg_copy);
88
89 if (need < free) {
90 cn->used += need;
91 return 0;
92 }
93
94 if (!expand_corename(cn, cn->size + need - free + 1))
95 goto again;
96
97 return -ENOMEM;
98 }
99
cn_printf(struct core_name * cn,const char * fmt,...)100 static __printf(2, 3) int cn_printf(struct core_name *cn, const char *fmt, ...)
101 {
102 va_list arg;
103 int ret;
104
105 va_start(arg, fmt);
106 ret = cn_vprintf(cn, fmt, arg);
107 va_end(arg);
108
109 return ret;
110 }
111
112 static __printf(2, 3)
cn_esc_printf(struct core_name * cn,const char * fmt,...)113 int cn_esc_printf(struct core_name *cn, const char *fmt, ...)
114 {
115 int cur = cn->used;
116 va_list arg;
117 int ret;
118
119 va_start(arg, fmt);
120 ret = cn_vprintf(cn, fmt, arg);
121 va_end(arg);
122
123 for (; cur < cn->used; ++cur) {
124 if (cn->corename[cur] == '/')
125 cn->corename[cur] = '!';
126 }
127 return ret;
128 }
129
cn_print_exe_file(struct core_name * cn)130 static int cn_print_exe_file(struct core_name *cn)
131 {
132 struct file *exe_file;
133 char *pathbuf, *path;
134 int ret;
135
136 exe_file = get_mm_exe_file(current->mm);
137 if (!exe_file)
138 return cn_esc_printf(cn, "%s (path unknown)", current->comm);
139
140 pathbuf = kmalloc(PATH_MAX, GFP_TEMPORARY);
141 if (!pathbuf) {
142 ret = -ENOMEM;
143 goto put_exe_file;
144 }
145
146 path = file_path(exe_file, pathbuf, PATH_MAX);
147 if (IS_ERR(path)) {
148 ret = PTR_ERR(path);
149 goto free_buf;
150 }
151
152 ret = cn_esc_printf(cn, "%s", path);
153
154 free_buf:
155 kfree(pathbuf);
156 put_exe_file:
157 fput(exe_file);
158 return ret;
159 }
160
161 /* format_corename will inspect the pattern parameter, and output a
162 * name into corename, which must have space for at least
163 * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
164 */
format_corename(struct core_name * cn,struct coredump_params * cprm)165 static int format_corename(struct core_name *cn, struct coredump_params *cprm)
166 {
167 const struct cred *cred = current_cred();
168 const char *pat_ptr = core_pattern;
169 int ispipe = (*pat_ptr == '|');
170 int pid_in_pattern = 0;
171 int err = 0;
172
173 cn->used = 0;
174 cn->corename = NULL;
175 if (expand_corename(cn, core_name_size))
176 return -ENOMEM;
177 cn->corename[0] = '\0';
178
179 if (ispipe)
180 ++pat_ptr;
181
182 /* Repeat as long as we have more pattern to process and more output
183 space */
184 while (*pat_ptr) {
185 if (*pat_ptr != '%') {
186 err = cn_printf(cn, "%c", *pat_ptr++);
187 } else {
188 switch (*++pat_ptr) {
189 /* single % at the end, drop that */
190 case 0:
191 goto out;
192 /* Double percent, output one percent */
193 case '%':
194 err = cn_printf(cn, "%c", '%');
195 break;
196 /* pid */
197 case 'p':
198 pid_in_pattern = 1;
199 err = cn_printf(cn, "%d",
200 task_tgid_vnr(current));
201 break;
202 /* global pid */
203 case 'P':
204 err = cn_printf(cn, "%d",
205 task_tgid_nr(current));
206 break;
207 case 'i':
208 err = cn_printf(cn, "%d",
209 task_pid_vnr(current));
210 break;
211 case 'I':
212 err = cn_printf(cn, "%d",
213 task_pid_nr(current));
214 break;
215 /* uid */
216 case 'u':
217 err = cn_printf(cn, "%u",
218 from_kuid(&init_user_ns,
219 cred->uid));
220 break;
221 /* gid */
222 case 'g':
223 err = cn_printf(cn, "%u",
224 from_kgid(&init_user_ns,
225 cred->gid));
226 break;
227 case 'd':
228 err = cn_printf(cn, "%d",
229 __get_dumpable(cprm->mm_flags));
230 break;
231 /* signal that caused the coredump */
232 case 's':
233 err = cn_printf(cn, "%d",
234 cprm->siginfo->si_signo);
235 break;
236 /* UNIX time of coredump */
237 case 't': {
238 struct timeval tv;
239 do_gettimeofday(&tv);
240 err = cn_printf(cn, "%lu", tv.tv_sec);
241 break;
242 }
243 /* hostname */
244 case 'h':
245 down_read(&uts_sem);
246 err = cn_esc_printf(cn, "%s",
247 utsname()->nodename);
248 up_read(&uts_sem);
249 break;
250 /* executable */
251 case 'e':
252 err = cn_esc_printf(cn, "%s", current->comm);
253 break;
254 case 'E':
255 err = cn_print_exe_file(cn);
256 break;
257 /* core limit size */
258 case 'c':
259 err = cn_printf(cn, "%lu",
260 rlimit(RLIMIT_CORE));
261 break;
262 default:
263 break;
264 }
265 ++pat_ptr;
266 }
267
268 if (err)
269 return err;
270 }
271
272 out:
273 /* Backward compatibility with core_uses_pid:
274 *
275 * If core_pattern does not include a %p (as is the default)
276 * and core_uses_pid is set, then .%pid will be appended to
277 * the filename. Do not do this for piped commands. */
278 if (!ispipe && !pid_in_pattern && core_uses_pid) {
279 err = cn_printf(cn, ".%d", task_tgid_vnr(current));
280 if (err)
281 return err;
282 }
283 return ispipe;
284 }
285
zap_process(struct task_struct * start,int exit_code,int flags)286 static int zap_process(struct task_struct *start, int exit_code, int flags)
287 {
288 struct task_struct *t;
289 int nr = 0;
290
291 /* ignore all signals except SIGKILL, see prepare_signal() */
292 start->signal->flags = SIGNAL_GROUP_COREDUMP | flags;
293 start->signal->group_exit_code = exit_code;
294 start->signal->group_stop_count = 0;
295
296 for_each_thread(start, t) {
297 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
298 if (t != current && t->mm) {
299 sigaddset(&t->pending.signal, SIGKILL);
300 signal_wake_up(t, 1);
301 nr++;
302 }
303 }
304
305 return nr;
306 }
307
zap_threads(struct task_struct * tsk,struct mm_struct * mm,struct core_state * core_state,int exit_code)308 static int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
309 struct core_state *core_state, int exit_code)
310 {
311 struct task_struct *g, *p;
312 unsigned long flags;
313 int nr = -EAGAIN;
314
315 spin_lock_irq(&tsk->sighand->siglock);
316 if (!signal_group_exit(tsk->signal)) {
317 mm->core_state = core_state;
318 tsk->signal->group_exit_task = tsk;
319 nr = zap_process(tsk, exit_code, 0);
320 clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
321 }
322 spin_unlock_irq(&tsk->sighand->siglock);
323 if (unlikely(nr < 0))
324 return nr;
325
326 tsk->flags |= PF_DUMPCORE;
327 if (atomic_read(&mm->mm_users) == nr + 1)
328 goto done;
329 /*
330 * We should find and kill all tasks which use this mm, and we should
331 * count them correctly into ->nr_threads. We don't take tasklist
332 * lock, but this is safe wrt:
333 *
334 * fork:
335 * None of sub-threads can fork after zap_process(leader). All
336 * processes which were created before this point should be
337 * visible to zap_threads() because copy_process() adds the new
338 * process to the tail of init_task.tasks list, and lock/unlock
339 * of ->siglock provides a memory barrier.
340 *
341 * do_exit:
342 * The caller holds mm->mmap_sem. This means that the task which
343 * uses this mm can't pass exit_mm(), so it can't exit or clear
344 * its ->mm.
345 *
346 * de_thread:
347 * It does list_replace_rcu(&leader->tasks, ¤t->tasks),
348 * we must see either old or new leader, this does not matter.
349 * However, it can change p->sighand, so lock_task_sighand(p)
350 * must be used. Since p->mm != NULL and we hold ->mmap_sem
351 * it can't fail.
352 *
353 * Note also that "g" can be the old leader with ->mm == NULL
354 * and already unhashed and thus removed from ->thread_group.
355 * This is OK, __unhash_process()->list_del_rcu() does not
356 * clear the ->next pointer, we will find the new leader via
357 * next_thread().
358 */
359 rcu_read_lock();
360 for_each_process(g) {
361 if (g == tsk->group_leader)
362 continue;
363 if (g->flags & PF_KTHREAD)
364 continue;
365
366 for_each_thread(g, p) {
367 if (unlikely(!p->mm))
368 continue;
369 if (unlikely(p->mm == mm)) {
370 lock_task_sighand(p, &flags);
371 nr += zap_process(p, exit_code,
372 SIGNAL_GROUP_EXIT);
373 unlock_task_sighand(p, &flags);
374 }
375 break;
376 }
377 }
378 rcu_read_unlock();
379 done:
380 atomic_set(&core_state->nr_threads, nr);
381 return nr;
382 }
383
coredump_wait(int exit_code,struct core_state * core_state)384 static int coredump_wait(int exit_code, struct core_state *core_state)
385 {
386 struct task_struct *tsk = current;
387 struct mm_struct *mm = tsk->mm;
388 int core_waiters = -EBUSY;
389
390 init_completion(&core_state->startup);
391 core_state->dumper.task = tsk;
392 core_state->dumper.next = NULL;
393
394 down_write(&mm->mmap_sem);
395 if (!mm->core_state)
396 core_waiters = zap_threads(tsk, mm, core_state, exit_code);
397 up_write(&mm->mmap_sem);
398
399 if (core_waiters > 0) {
400 struct core_thread *ptr;
401
402 wait_for_completion(&core_state->startup);
403 /*
404 * Wait for all the threads to become inactive, so that
405 * all the thread context (extended register state, like
406 * fpu etc) gets copied to the memory.
407 */
408 ptr = core_state->dumper.next;
409 while (ptr != NULL) {
410 wait_task_inactive(ptr->task, 0);
411 ptr = ptr->next;
412 }
413 }
414
415 return core_waiters;
416 }
417
coredump_finish(struct mm_struct * mm,bool core_dumped)418 static void coredump_finish(struct mm_struct *mm, bool core_dumped)
419 {
420 struct core_thread *curr, *next;
421 struct task_struct *task;
422
423 spin_lock_irq(¤t->sighand->siglock);
424 if (core_dumped && !__fatal_signal_pending(current))
425 current->signal->group_exit_code |= 0x80;
426 current->signal->group_exit_task = NULL;
427 current->signal->flags = SIGNAL_GROUP_EXIT;
428 spin_unlock_irq(¤t->sighand->siglock);
429
430 next = mm->core_state->dumper.next;
431 while ((curr = next) != NULL) {
432 next = curr->next;
433 task = curr->task;
434 /*
435 * see exit_mm(), curr->task must not see
436 * ->task == NULL before we read ->next.
437 */
438 smp_mb();
439 curr->task = NULL;
440 wake_up_process(task);
441 }
442
443 mm->core_state = NULL;
444 }
445
dump_interrupted(void)446 static bool dump_interrupted(void)
447 {
448 /*
449 * SIGKILL or freezing() interrupt the coredumping. Perhaps we
450 * can do try_to_freeze() and check __fatal_signal_pending(),
451 * but then we need to teach dump_write() to restart and clear
452 * TIF_SIGPENDING.
453 */
454 return signal_pending(current);
455 }
456
wait_for_dump_helpers(struct file * file)457 static void wait_for_dump_helpers(struct file *file)
458 {
459 struct pipe_inode_info *pipe = file->private_data;
460
461 pipe_lock(pipe);
462 pipe->readers++;
463 pipe->writers--;
464 wake_up_interruptible_sync(&pipe->wait);
465 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
466 pipe_unlock(pipe);
467
468 /*
469 * We actually want wait_event_freezable() but then we need
470 * to clear TIF_SIGPENDING and improve dump_interrupted().
471 */
472 wait_event_interruptible(pipe->wait, pipe->readers == 1);
473
474 pipe_lock(pipe);
475 pipe->readers--;
476 pipe->writers++;
477 pipe_unlock(pipe);
478 }
479
480 /*
481 * umh_pipe_setup
482 * helper function to customize the process used
483 * to collect the core in userspace. Specifically
484 * it sets up a pipe and installs it as fd 0 (stdin)
485 * for the process. Returns 0 on success, or
486 * PTR_ERR on failure.
487 * Note that it also sets the core limit to 1. This
488 * is a special value that we use to trap recursive
489 * core dumps
490 */
umh_pipe_setup(struct subprocess_info * info,struct cred * new)491 static int umh_pipe_setup(struct subprocess_info *info, struct cred *new)
492 {
493 struct file *files[2];
494 struct coredump_params *cp = (struct coredump_params *)info->data;
495 int err = create_pipe_files(files, 0);
496 if (err)
497 return err;
498
499 cp->file = files[1];
500
501 err = replace_fd(0, files[0], 0);
502 fput(files[0]);
503 /* and disallow core files too */
504 current->signal->rlim[RLIMIT_CORE] = (struct rlimit){1, 1};
505
506 return err;
507 }
508
do_coredump(const siginfo_t * siginfo)509 void do_coredump(const siginfo_t *siginfo)
510 {
511 struct core_state core_state;
512 struct core_name cn;
513 struct mm_struct *mm = current->mm;
514 struct linux_binfmt * binfmt;
515 const struct cred *old_cred;
516 struct cred *cred;
517 int retval = 0;
518 int ispipe;
519 struct files_struct *displaced;
520 /* require nonrelative corefile path and be extra careful */
521 bool need_suid_safe = false;
522 bool core_dumped = false;
523 static atomic_t core_dump_count = ATOMIC_INIT(0);
524 struct coredump_params cprm = {
525 .siginfo = siginfo,
526 .regs = signal_pt_regs(),
527 .limit = rlimit(RLIMIT_CORE),
528 /*
529 * We must use the same mm->flags while dumping core to avoid
530 * inconsistency of bit flags, since this flag is not protected
531 * by any locks.
532 */
533 .mm_flags = mm->flags,
534 };
535
536 audit_core_dumps(siginfo->si_signo);
537
538 binfmt = mm->binfmt;
539 if (!binfmt || !binfmt->core_dump)
540 goto fail;
541 if (!__get_dumpable(cprm.mm_flags))
542 goto fail;
543
544 cred = prepare_creds();
545 if (!cred)
546 goto fail;
547 /*
548 * We cannot trust fsuid as being the "true" uid of the process
549 * nor do we know its entire history. We only know it was tainted
550 * so we dump it as root in mode 2, and only into a controlled
551 * environment (pipe handler or fully qualified path).
552 */
553 if (__get_dumpable(cprm.mm_flags) == SUID_DUMP_ROOT) {
554 /* Setuid core dump mode */
555 cred->fsuid = GLOBAL_ROOT_UID; /* Dump root private */
556 need_suid_safe = true;
557 }
558
559 retval = coredump_wait(siginfo->si_signo, &core_state);
560 if (retval < 0)
561 goto fail_creds;
562
563 old_cred = override_creds(cred);
564
565 ispipe = format_corename(&cn, &cprm);
566
567 if (ispipe) {
568 int dump_count;
569 char **helper_argv;
570 struct subprocess_info *sub_info;
571
572 if (ispipe < 0) {
573 printk(KERN_WARNING "format_corename failed\n");
574 printk(KERN_WARNING "Aborting core\n");
575 goto fail_unlock;
576 }
577
578 if (cprm.limit == 1) {
579 /* See umh_pipe_setup() which sets RLIMIT_CORE = 1.
580 *
581 * Normally core limits are irrelevant to pipes, since
582 * we're not writing to the file system, but we use
583 * cprm.limit of 1 here as a special value, this is a
584 * consistent way to catch recursive crashes.
585 * We can still crash if the core_pattern binary sets
586 * RLIM_CORE = !1, but it runs as root, and can do
587 * lots of stupid things.
588 *
589 * Note that we use task_tgid_vnr here to grab the pid
590 * of the process group leader. That way we get the
591 * right pid if a thread in a multi-threaded
592 * core_pattern process dies.
593 */
594 printk(KERN_WARNING
595 "Process %d(%s) has RLIMIT_CORE set to 1\n",
596 task_tgid_vnr(current), current->comm);
597 printk(KERN_WARNING "Aborting core\n");
598 goto fail_unlock;
599 }
600 cprm.limit = RLIM_INFINITY;
601
602 dump_count = atomic_inc_return(&core_dump_count);
603 if (core_pipe_limit && (core_pipe_limit < dump_count)) {
604 printk(KERN_WARNING "Pid %d(%s) over core_pipe_limit\n",
605 task_tgid_vnr(current), current->comm);
606 printk(KERN_WARNING "Skipping core dump\n");
607 goto fail_dropcount;
608 }
609
610 helper_argv = argv_split(GFP_KERNEL, cn.corename, NULL);
611 if (!helper_argv) {
612 printk(KERN_WARNING "%s failed to allocate memory\n",
613 __func__);
614 goto fail_dropcount;
615 }
616
617 retval = -ENOMEM;
618 sub_info = call_usermodehelper_setup(helper_argv[0],
619 helper_argv, NULL, GFP_KERNEL,
620 umh_pipe_setup, NULL, &cprm);
621 if (sub_info)
622 retval = call_usermodehelper_exec(sub_info,
623 UMH_WAIT_EXEC);
624
625 argv_free(helper_argv);
626 if (retval) {
627 printk(KERN_INFO "Core dump to |%s pipe failed\n",
628 cn.corename);
629 goto close_fail;
630 }
631 } else {
632 struct inode *inode;
633 int open_flags = O_CREAT | O_RDWR | O_NOFOLLOW |
634 O_LARGEFILE | O_EXCL;
635
636 if (cprm.limit < binfmt->min_coredump)
637 goto fail_unlock;
638
639 if (need_suid_safe && cn.corename[0] != '/') {
640 printk(KERN_WARNING "Pid %d(%s) can only dump core "\
641 "to fully qualified path!\n",
642 task_tgid_vnr(current), current->comm);
643 printk(KERN_WARNING "Skipping core dump\n");
644 goto fail_unlock;
645 }
646
647 /*
648 * Unlink the file if it exists unless this is a SUID
649 * binary - in that case, we're running around with root
650 * privs and don't want to unlink another user's coredump.
651 */
652 if (!need_suid_safe) {
653 mm_segment_t old_fs;
654
655 old_fs = get_fs();
656 set_fs(KERNEL_DS);
657 /*
658 * If it doesn't exist, that's fine. If there's some
659 * other problem, we'll catch it at the filp_open().
660 */
661 (void) sys_unlink((const char __user *)cn.corename);
662 set_fs(old_fs);
663 }
664
665 /*
666 * There is a race between unlinking and creating the
667 * file, but if that causes an EEXIST here, that's
668 * fine - another process raced with us while creating
669 * the corefile, and the other process won. To userspace,
670 * what matters is that at least one of the two processes
671 * writes its coredump successfully, not which one.
672 */
673 if (need_suid_safe) {
674 /*
675 * Using user namespaces, normal user tasks can change
676 * their current->fs->root to point to arbitrary
677 * directories. Since the intention of the "only dump
678 * with a fully qualified path" rule is to control where
679 * coredumps may be placed using root privileges,
680 * current->fs->root must not be used. Instead, use the
681 * root directory of init_task.
682 */
683 struct path root;
684
685 task_lock(&init_task);
686 get_fs_root(init_task.fs, &root);
687 task_unlock(&init_task);
688 cprm.file = file_open_root(root.dentry, root.mnt,
689 cn.corename, open_flags, 0600);
690 path_put(&root);
691 } else {
692 cprm.file = filp_open(cn.corename, open_flags, 0600);
693 }
694 if (IS_ERR(cprm.file))
695 goto fail_unlock;
696
697 inode = file_inode(cprm.file);
698 if (inode->i_nlink > 1)
699 goto close_fail;
700 if (d_unhashed(cprm.file->f_path.dentry))
701 goto close_fail;
702 /*
703 * AK: actually i see no reason to not allow this for named
704 * pipes etc, but keep the previous behaviour for now.
705 */
706 if (!S_ISREG(inode->i_mode))
707 goto close_fail;
708 /*
709 * Don't dump core if the filesystem changed owner or mode
710 * of the file during file creation. This is an issue when
711 * a process dumps core while its cwd is e.g. on a vfat
712 * filesystem.
713 */
714 if (!uid_eq(inode->i_uid, current_fsuid()))
715 goto close_fail;
716 if ((inode->i_mode & 0677) != 0600)
717 goto close_fail;
718 if (!(cprm.file->f_mode & FMODE_CAN_WRITE))
719 goto close_fail;
720 if (do_truncate(cprm.file->f_path.dentry, 0, 0, cprm.file))
721 goto close_fail;
722 }
723
724 /* get us an unshared descriptor table; almost always a no-op */
725 retval = unshare_files(&displaced);
726 if (retval)
727 goto close_fail;
728 if (displaced)
729 put_files_struct(displaced);
730 if (!dump_interrupted()) {
731 file_start_write(cprm.file);
732 core_dumped = binfmt->core_dump(&cprm);
733 file_end_write(cprm.file);
734 }
735 if (ispipe && core_pipe_limit)
736 wait_for_dump_helpers(cprm.file);
737 close_fail:
738 if (cprm.file)
739 filp_close(cprm.file, NULL);
740 fail_dropcount:
741 if (ispipe)
742 atomic_dec(&core_dump_count);
743 fail_unlock:
744 kfree(cn.corename);
745 coredump_finish(mm, core_dumped);
746 revert_creds(old_cred);
747 fail_creds:
748 put_cred(cred);
749 fail:
750 return;
751 }
752
753 /*
754 * Core dumping helper functions. These are the only things you should
755 * do on a core-file: use only these functions to write out all the
756 * necessary info.
757 */
dump_emit(struct coredump_params * cprm,const void * addr,int nr)758 int dump_emit(struct coredump_params *cprm, const void *addr, int nr)
759 {
760 struct file *file = cprm->file;
761 loff_t pos = file->f_pos;
762 ssize_t n;
763 if (cprm->written + nr > cprm->limit)
764 return 0;
765 while (nr) {
766 if (dump_interrupted())
767 return 0;
768 n = __kernel_write(file, addr, nr, &pos);
769 if (n <= 0)
770 return 0;
771 file->f_pos = pos;
772 cprm->written += n;
773 nr -= n;
774 }
775 return 1;
776 }
777 EXPORT_SYMBOL(dump_emit);
778
dump_skip(struct coredump_params * cprm,size_t nr)779 int dump_skip(struct coredump_params *cprm, size_t nr)
780 {
781 static char zeroes[PAGE_SIZE];
782 struct file *file = cprm->file;
783 if (file->f_op->llseek && file->f_op->llseek != no_llseek) {
784 if (cprm->written + nr > cprm->limit)
785 return 0;
786 if (dump_interrupted() ||
787 file->f_op->llseek(file, nr, SEEK_CUR) < 0)
788 return 0;
789 cprm->written += nr;
790 return 1;
791 } else {
792 while (nr > PAGE_SIZE) {
793 if (!dump_emit(cprm, zeroes, PAGE_SIZE))
794 return 0;
795 nr -= PAGE_SIZE;
796 }
797 return dump_emit(cprm, zeroes, nr);
798 }
799 }
800 EXPORT_SYMBOL(dump_skip);
801
dump_align(struct coredump_params * cprm,int align)802 int dump_align(struct coredump_params *cprm, int align)
803 {
804 unsigned mod = cprm->written & (align - 1);
805 if (align & (align - 1))
806 return 0;
807 return mod ? dump_skip(cprm, align - mod) : 1;
808 }
809 EXPORT_SYMBOL(dump_align);
810