1 /*
2  *  linux/mm/vmscan.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95, Stephen Tweedie.
7  *  kswapd added: 7.1.96  sct
8  *  Removed kswapd_ctl limits, and swap out as many pages as needed
9  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11  *  Multiqueue VM started 5.8.00, Rik van Riel.
12  */
13 
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 
16 #include <linux/mm.h>
17 #include <linux/module.h>
18 #include <linux/gfp.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/pagemap.h>
22 #include <linux/init.h>
23 #include <linux/highmem.h>
24 #include <linux/vmpressure.h>
25 #include <linux/vmstat.h>
26 #include <linux/file.h>
27 #include <linux/writeback.h>
28 #include <linux/blkdev.h>
29 #include <linux/buffer_head.h>	/* for try_to_release_page(),
30 					buffer_heads_over_limit */
31 #include <linux/mm_inline.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rmap.h>
34 #include <linux/topology.h>
35 #include <linux/cpu.h>
36 #include <linux/cpuset.h>
37 #include <linux/compaction.h>
38 #include <linux/notifier.h>
39 #include <linux/rwsem.h>
40 #include <linux/delay.h>
41 #include <linux/kthread.h>
42 #include <linux/freezer.h>
43 #include <linux/memcontrol.h>
44 #include <linux/delayacct.h>
45 #include <linux/sysctl.h>
46 #include <linux/oom.h>
47 #include <linux/prefetch.h>
48 #include <linux/printk.h>
49 
50 #include <asm/tlbflush.h>
51 #include <asm/div64.h>
52 
53 #include <linux/swapops.h>
54 #include <linux/balloon_compaction.h>
55 
56 #include "internal.h"
57 
58 #define CREATE_TRACE_POINTS
59 #include <trace/events/vmscan.h>
60 
61 struct scan_control {
62 	/* How many pages shrink_list() should reclaim */
63 	unsigned long nr_to_reclaim;
64 
65 	/* This context's GFP mask */
66 	gfp_t gfp_mask;
67 
68 	/* Allocation order */
69 	int order;
70 
71 	/*
72 	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
73 	 * are scanned.
74 	 */
75 	nodemask_t	*nodemask;
76 
77 	/*
78 	 * The memory cgroup that hit its limit and as a result is the
79 	 * primary target of this reclaim invocation.
80 	 */
81 	struct mem_cgroup *target_mem_cgroup;
82 
83 	/* Scan (total_size >> priority) pages at once */
84 	int priority;
85 
86 	unsigned int may_writepage:1;
87 
88 	/* Can mapped pages be reclaimed? */
89 	unsigned int may_unmap:1;
90 
91 	/* Can pages be swapped as part of reclaim? */
92 	unsigned int may_swap:1;
93 
94 	/* Can cgroups be reclaimed below their normal consumption range? */
95 	unsigned int may_thrash:1;
96 
97 	unsigned int hibernation_mode:1;
98 
99 	/* One of the zones is ready for compaction */
100 	unsigned int compaction_ready:1;
101 
102 	/* Incremented by the number of inactive pages that were scanned */
103 	unsigned long nr_scanned;
104 
105 	/* Number of pages freed so far during a call to shrink_zones() */
106 	unsigned long nr_reclaimed;
107 };
108 
109 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
110 
111 #ifdef ARCH_HAS_PREFETCH
112 #define prefetch_prev_lru_page(_page, _base, _field)			\
113 	do {								\
114 		if ((_page)->lru.prev != _base) {			\
115 			struct page *prev;				\
116 									\
117 			prev = lru_to_page(&(_page->lru));		\
118 			prefetch(&prev->_field);			\
119 		}							\
120 	} while (0)
121 #else
122 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
123 #endif
124 
125 #ifdef ARCH_HAS_PREFETCHW
126 #define prefetchw_prev_lru_page(_page, _base, _field)			\
127 	do {								\
128 		if ((_page)->lru.prev != _base) {			\
129 			struct page *prev;				\
130 									\
131 			prev = lru_to_page(&(_page->lru));		\
132 			prefetchw(&prev->_field);			\
133 		}							\
134 	} while (0)
135 #else
136 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
137 #endif
138 
139 /*
140  * From 0 .. 100.  Higher means more swappy.
141  */
142 int vm_swappiness = 60;
143 /*
144  * The total number of pages which are beyond the high watermark within all
145  * zones.
146  */
147 unsigned long vm_total_pages;
148 
149 static LIST_HEAD(shrinker_list);
150 static DECLARE_RWSEM(shrinker_rwsem);
151 
152 #ifdef CONFIG_MEMCG
global_reclaim(struct scan_control * sc)153 static bool global_reclaim(struct scan_control *sc)
154 {
155 	return !sc->target_mem_cgroup;
156 }
157 #else
global_reclaim(struct scan_control * sc)158 static bool global_reclaim(struct scan_control *sc)
159 {
160 	return true;
161 }
162 #endif
163 
zone_reclaimable_pages(struct zone * zone)164 static unsigned long zone_reclaimable_pages(struct zone *zone)
165 {
166 	int nr;
167 
168 	nr = zone_page_state(zone, NR_ACTIVE_FILE) +
169 	     zone_page_state(zone, NR_INACTIVE_FILE);
170 
171 	if (get_nr_swap_pages() > 0)
172 		nr += zone_page_state(zone, NR_ACTIVE_ANON) +
173 		      zone_page_state(zone, NR_INACTIVE_ANON);
174 
175 	return nr;
176 }
177 
zone_reclaimable(struct zone * zone)178 bool zone_reclaimable(struct zone *zone)
179 {
180 	return zone_page_state(zone, NR_PAGES_SCANNED) <
181 		zone_reclaimable_pages(zone) * 6;
182 }
183 
get_lru_size(struct lruvec * lruvec,enum lru_list lru)184 static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru)
185 {
186 	if (!mem_cgroup_disabled())
187 		return mem_cgroup_get_lru_size(lruvec, lru);
188 
189 	return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
190 }
191 
192 /*
193  * Add a shrinker callback to be called from the vm.
194  */
register_shrinker(struct shrinker * shrinker)195 int register_shrinker(struct shrinker *shrinker)
196 {
197 	size_t size = sizeof(*shrinker->nr_deferred);
198 
199 	/*
200 	 * If we only have one possible node in the system anyway, save
201 	 * ourselves the trouble and disable NUMA aware behavior. This way we
202 	 * will save memory and some small loop time later.
203 	 */
204 	if (nr_node_ids == 1)
205 		shrinker->flags &= ~SHRINKER_NUMA_AWARE;
206 
207 	if (shrinker->flags & SHRINKER_NUMA_AWARE)
208 		size *= nr_node_ids;
209 
210 	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
211 	if (!shrinker->nr_deferred)
212 		return -ENOMEM;
213 
214 	down_write(&shrinker_rwsem);
215 	list_add_tail(&shrinker->list, &shrinker_list);
216 	up_write(&shrinker_rwsem);
217 	return 0;
218 }
219 EXPORT_SYMBOL(register_shrinker);
220 
221 /*
222  * Remove one
223  */
unregister_shrinker(struct shrinker * shrinker)224 void unregister_shrinker(struct shrinker *shrinker)
225 {
226 	down_write(&shrinker_rwsem);
227 	list_del(&shrinker->list);
228 	up_write(&shrinker_rwsem);
229 	kfree(shrinker->nr_deferred);
230 }
231 EXPORT_SYMBOL(unregister_shrinker);
232 
233 #define SHRINK_BATCH 128
234 
do_shrink_slab(struct shrink_control * shrinkctl,struct shrinker * shrinker,unsigned long nr_scanned,unsigned long nr_eligible)235 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
236 				    struct shrinker *shrinker,
237 				    unsigned long nr_scanned,
238 				    unsigned long nr_eligible)
239 {
240 	unsigned long freed = 0;
241 	unsigned long long delta;
242 	long total_scan;
243 	long freeable;
244 	long nr;
245 	long new_nr;
246 	int nid = shrinkctl->nid;
247 	long batch_size = shrinker->batch ? shrinker->batch
248 					  : SHRINK_BATCH;
249 
250 	freeable = shrinker->count_objects(shrinker, shrinkctl);
251 	if (freeable == 0)
252 		return 0;
253 
254 	/*
255 	 * copy the current shrinker scan count into a local variable
256 	 * and zero it so that other concurrent shrinker invocations
257 	 * don't also do this scanning work.
258 	 */
259 	nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
260 
261 	total_scan = nr;
262 	delta = (4 * nr_scanned) / shrinker->seeks;
263 	delta *= freeable;
264 	do_div(delta, nr_eligible + 1);
265 	total_scan += delta;
266 	if (total_scan < 0) {
267 		pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
268 		       shrinker->scan_objects, total_scan);
269 		total_scan = freeable;
270 	}
271 
272 	/*
273 	 * We need to avoid excessive windup on filesystem shrinkers
274 	 * due to large numbers of GFP_NOFS allocations causing the
275 	 * shrinkers to return -1 all the time. This results in a large
276 	 * nr being built up so when a shrink that can do some work
277 	 * comes along it empties the entire cache due to nr >>>
278 	 * freeable. This is bad for sustaining a working set in
279 	 * memory.
280 	 *
281 	 * Hence only allow the shrinker to scan the entire cache when
282 	 * a large delta change is calculated directly.
283 	 */
284 	if (delta < freeable / 4)
285 		total_scan = min(total_scan, freeable / 2);
286 
287 	/*
288 	 * Avoid risking looping forever due to too large nr value:
289 	 * never try to free more than twice the estimate number of
290 	 * freeable entries.
291 	 */
292 	if (total_scan > freeable * 2)
293 		total_scan = freeable * 2;
294 
295 	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
296 				   nr_scanned, nr_eligible,
297 				   freeable, delta, total_scan);
298 
299 	/*
300 	 * Normally, we should not scan less than batch_size objects in one
301 	 * pass to avoid too frequent shrinker calls, but if the slab has less
302 	 * than batch_size objects in total and we are really tight on memory,
303 	 * we will try to reclaim all available objects, otherwise we can end
304 	 * up failing allocations although there are plenty of reclaimable
305 	 * objects spread over several slabs with usage less than the
306 	 * batch_size.
307 	 *
308 	 * We detect the "tight on memory" situations by looking at the total
309 	 * number of objects we want to scan (total_scan). If it is greater
310 	 * than the total number of objects on slab (freeable), we must be
311 	 * scanning at high prio and therefore should try to reclaim as much as
312 	 * possible.
313 	 */
314 	while (total_scan >= batch_size ||
315 	       total_scan >= freeable) {
316 		unsigned long ret;
317 		unsigned long nr_to_scan = min(batch_size, total_scan);
318 
319 		shrinkctl->nr_to_scan = nr_to_scan;
320 		ret = shrinker->scan_objects(shrinker, shrinkctl);
321 		if (ret == SHRINK_STOP)
322 			break;
323 		freed += ret;
324 
325 		count_vm_events(SLABS_SCANNED, nr_to_scan);
326 		total_scan -= nr_to_scan;
327 
328 		cond_resched();
329 	}
330 
331 	/*
332 	 * move the unused scan count back into the shrinker in a
333 	 * manner that handles concurrent updates. If we exhausted the
334 	 * scan, there is no need to do an update.
335 	 */
336 	if (total_scan > 0)
337 		new_nr = atomic_long_add_return(total_scan,
338 						&shrinker->nr_deferred[nid]);
339 	else
340 		new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
341 
342 	trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
343 	return freed;
344 }
345 
346 /**
347  * shrink_slab - shrink slab caches
348  * @gfp_mask: allocation context
349  * @nid: node whose slab caches to target
350  * @memcg: memory cgroup whose slab caches to target
351  * @nr_scanned: pressure numerator
352  * @nr_eligible: pressure denominator
353  *
354  * Call the shrink functions to age shrinkable caches.
355  *
356  * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
357  * unaware shrinkers will receive a node id of 0 instead.
358  *
359  * @memcg specifies the memory cgroup to target. If it is not NULL,
360  * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan
361  * objects from the memory cgroup specified. Otherwise all shrinkers
362  * are called, and memcg aware shrinkers are supposed to scan the
363  * global list then.
364  *
365  * @nr_scanned and @nr_eligible form a ratio that indicate how much of
366  * the available objects should be scanned.  Page reclaim for example
367  * passes the number of pages scanned and the number of pages on the
368  * LRU lists that it considered on @nid, plus a bias in @nr_scanned
369  * when it encountered mapped pages.  The ratio is further biased by
370  * the ->seeks setting of the shrink function, which indicates the
371  * cost to recreate an object relative to that of an LRU page.
372  *
373  * Returns the number of reclaimed slab objects.
374  */
shrink_slab(gfp_t gfp_mask,int nid,struct mem_cgroup * memcg,unsigned long nr_scanned,unsigned long nr_eligible)375 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
376 				 struct mem_cgroup *memcg,
377 				 unsigned long nr_scanned,
378 				 unsigned long nr_eligible)
379 {
380 	struct shrinker *shrinker;
381 	unsigned long freed = 0;
382 
383 	if (memcg && !memcg_kmem_is_active(memcg))
384 		return 0;
385 
386 	if (nr_scanned == 0)
387 		nr_scanned = SWAP_CLUSTER_MAX;
388 
389 	if (!down_read_trylock(&shrinker_rwsem)) {
390 		/*
391 		 * If we would return 0, our callers would understand that we
392 		 * have nothing else to shrink and give up trying. By returning
393 		 * 1 we keep it going and assume we'll be able to shrink next
394 		 * time.
395 		 */
396 		freed = 1;
397 		goto out;
398 	}
399 
400 	list_for_each_entry(shrinker, &shrinker_list, list) {
401 		struct shrink_control sc = {
402 			.gfp_mask = gfp_mask,
403 			.nid = nid,
404 			.memcg = memcg,
405 		};
406 
407 		if (memcg && !(shrinker->flags & SHRINKER_MEMCG_AWARE))
408 			continue;
409 
410 		if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
411 			sc.nid = 0;
412 
413 		freed += do_shrink_slab(&sc, shrinker, nr_scanned, nr_eligible);
414 	}
415 
416 	up_read(&shrinker_rwsem);
417 out:
418 	cond_resched();
419 	return freed;
420 }
421 
drop_slab_node(int nid)422 void drop_slab_node(int nid)
423 {
424 	unsigned long freed;
425 
426 	do {
427 		struct mem_cgroup *memcg = NULL;
428 
429 		freed = 0;
430 		do {
431 			freed += shrink_slab(GFP_KERNEL, nid, memcg,
432 					     1000, 1000);
433 		} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
434 	} while (freed > 10);
435 }
436 
drop_slab(void)437 void drop_slab(void)
438 {
439 	int nid;
440 
441 	for_each_online_node(nid)
442 		drop_slab_node(nid);
443 }
444 
is_page_cache_freeable(struct page * page)445 static inline int is_page_cache_freeable(struct page *page)
446 {
447 	/*
448 	 * A freeable page cache page is referenced only by the caller
449 	 * that isolated the page, the page cache radix tree and
450 	 * optional buffer heads at page->private.
451 	 */
452 	return page_count(page) - page_has_private(page) == 2;
453 }
454 
may_write_to_queue(struct backing_dev_info * bdi,struct scan_control * sc)455 static int may_write_to_queue(struct backing_dev_info *bdi,
456 			      struct scan_control *sc)
457 {
458 	if (current->flags & PF_SWAPWRITE)
459 		return 1;
460 	if (!bdi_write_congested(bdi))
461 		return 1;
462 	if (bdi == current->backing_dev_info)
463 		return 1;
464 	return 0;
465 }
466 
467 /*
468  * We detected a synchronous write error writing a page out.  Probably
469  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
470  * fsync(), msync() or close().
471  *
472  * The tricky part is that after writepage we cannot touch the mapping: nothing
473  * prevents it from being freed up.  But we have a ref on the page and once
474  * that page is locked, the mapping is pinned.
475  *
476  * We're allowed to run sleeping lock_page() here because we know the caller has
477  * __GFP_FS.
478  */
handle_write_error(struct address_space * mapping,struct page * page,int error)479 static void handle_write_error(struct address_space *mapping,
480 				struct page *page, int error)
481 {
482 	lock_page(page);
483 	if (page_mapping(page) == mapping)
484 		mapping_set_error(mapping, error);
485 	unlock_page(page);
486 }
487 
488 /* possible outcome of pageout() */
489 typedef enum {
490 	/* failed to write page out, page is locked */
491 	PAGE_KEEP,
492 	/* move page to the active list, page is locked */
493 	PAGE_ACTIVATE,
494 	/* page has been sent to the disk successfully, page is unlocked */
495 	PAGE_SUCCESS,
496 	/* page is clean and locked */
497 	PAGE_CLEAN,
498 } pageout_t;
499 
500 /*
501  * pageout is called by shrink_page_list() for each dirty page.
502  * Calls ->writepage().
503  */
pageout(struct page * page,struct address_space * mapping,struct scan_control * sc)504 static pageout_t pageout(struct page *page, struct address_space *mapping,
505 			 struct scan_control *sc)
506 {
507 	/*
508 	 * If the page is dirty, only perform writeback if that write
509 	 * will be non-blocking.  To prevent this allocation from being
510 	 * stalled by pagecache activity.  But note that there may be
511 	 * stalls if we need to run get_block().  We could test
512 	 * PagePrivate for that.
513 	 *
514 	 * If this process is currently in __generic_file_write_iter() against
515 	 * this page's queue, we can perform writeback even if that
516 	 * will block.
517 	 *
518 	 * If the page is swapcache, write it back even if that would
519 	 * block, for some throttling. This happens by accident, because
520 	 * swap_backing_dev_info is bust: it doesn't reflect the
521 	 * congestion state of the swapdevs.  Easy to fix, if needed.
522 	 */
523 	if (!is_page_cache_freeable(page))
524 		return PAGE_KEEP;
525 	if (!mapping) {
526 		/*
527 		 * Some data journaling orphaned pages can have
528 		 * page->mapping == NULL while being dirty with clean buffers.
529 		 */
530 		if (page_has_private(page)) {
531 			if (try_to_free_buffers(page)) {
532 				ClearPageDirty(page);
533 				pr_info("%s: orphaned page\n", __func__);
534 				return PAGE_CLEAN;
535 			}
536 		}
537 		return PAGE_KEEP;
538 	}
539 	if (mapping->a_ops->writepage == NULL)
540 		return PAGE_ACTIVATE;
541 	if (!may_write_to_queue(inode_to_bdi(mapping->host), sc))
542 		return PAGE_KEEP;
543 
544 	if (clear_page_dirty_for_io(page)) {
545 		int res;
546 		struct writeback_control wbc = {
547 			.sync_mode = WB_SYNC_NONE,
548 			.nr_to_write = SWAP_CLUSTER_MAX,
549 			.range_start = 0,
550 			.range_end = LLONG_MAX,
551 			.for_reclaim = 1,
552 		};
553 
554 		SetPageReclaim(page);
555 		res = mapping->a_ops->writepage(page, &wbc);
556 		if (res < 0)
557 			handle_write_error(mapping, page, res);
558 		if (res == AOP_WRITEPAGE_ACTIVATE) {
559 			ClearPageReclaim(page);
560 			return PAGE_ACTIVATE;
561 		}
562 
563 		if (!PageWriteback(page)) {
564 			/* synchronous write or broken a_ops? */
565 			ClearPageReclaim(page);
566 		}
567 		trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
568 		inc_zone_page_state(page, NR_VMSCAN_WRITE);
569 		return PAGE_SUCCESS;
570 	}
571 
572 	return PAGE_CLEAN;
573 }
574 
575 /*
576  * Same as remove_mapping, but if the page is removed from the mapping, it
577  * gets returned with a refcount of 0.
578  */
__remove_mapping(struct address_space * mapping,struct page * page,bool reclaimed)579 static int __remove_mapping(struct address_space *mapping, struct page *page,
580 			    bool reclaimed)
581 {
582 	BUG_ON(!PageLocked(page));
583 	BUG_ON(mapping != page_mapping(page));
584 
585 	spin_lock_irq(&mapping->tree_lock);
586 	/*
587 	 * The non racy check for a busy page.
588 	 *
589 	 * Must be careful with the order of the tests. When someone has
590 	 * a ref to the page, it may be possible that they dirty it then
591 	 * drop the reference. So if PageDirty is tested before page_count
592 	 * here, then the following race may occur:
593 	 *
594 	 * get_user_pages(&page);
595 	 * [user mapping goes away]
596 	 * write_to(page);
597 	 *				!PageDirty(page)    [good]
598 	 * SetPageDirty(page);
599 	 * put_page(page);
600 	 *				!page_count(page)   [good, discard it]
601 	 *
602 	 * [oops, our write_to data is lost]
603 	 *
604 	 * Reversing the order of the tests ensures such a situation cannot
605 	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
606 	 * load is not satisfied before that of page->_count.
607 	 *
608 	 * Note that if SetPageDirty is always performed via set_page_dirty,
609 	 * and thus under tree_lock, then this ordering is not required.
610 	 */
611 	if (!page_freeze_refs(page, 2))
612 		goto cannot_free;
613 	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
614 	if (unlikely(PageDirty(page))) {
615 		page_unfreeze_refs(page, 2);
616 		goto cannot_free;
617 	}
618 
619 	if (PageSwapCache(page)) {
620 		swp_entry_t swap = { .val = page_private(page) };
621 		mem_cgroup_swapout(page, swap);
622 		__delete_from_swap_cache(page);
623 		spin_unlock_irq(&mapping->tree_lock);
624 		swapcache_free(swap);
625 	} else {
626 		void (*freepage)(struct page *);
627 		void *shadow = NULL;
628 
629 		freepage = mapping->a_ops->freepage;
630 		/*
631 		 * Remember a shadow entry for reclaimed file cache in
632 		 * order to detect refaults, thus thrashing, later on.
633 		 *
634 		 * But don't store shadows in an address space that is
635 		 * already exiting.  This is not just an optizimation,
636 		 * inode reclaim needs to empty out the radix tree or
637 		 * the nodes are lost.  Don't plant shadows behind its
638 		 * back.
639 		 */
640 		if (reclaimed && page_is_file_cache(page) &&
641 		    !mapping_exiting(mapping))
642 			shadow = workingset_eviction(mapping, page);
643 		__delete_from_page_cache(page, shadow);
644 		spin_unlock_irq(&mapping->tree_lock);
645 
646 		if (freepage != NULL)
647 			freepage(page);
648 	}
649 
650 	return 1;
651 
652 cannot_free:
653 	spin_unlock_irq(&mapping->tree_lock);
654 	return 0;
655 }
656 
657 /*
658  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
659  * someone else has a ref on the page, abort and return 0.  If it was
660  * successfully detached, return 1.  Assumes the caller has a single ref on
661  * this page.
662  */
remove_mapping(struct address_space * mapping,struct page * page)663 int remove_mapping(struct address_space *mapping, struct page *page)
664 {
665 	if (__remove_mapping(mapping, page, false)) {
666 		/*
667 		 * Unfreezing the refcount with 1 rather than 2 effectively
668 		 * drops the pagecache ref for us without requiring another
669 		 * atomic operation.
670 		 */
671 		page_unfreeze_refs(page, 1);
672 		return 1;
673 	}
674 	return 0;
675 }
676 
677 /**
678  * putback_lru_page - put previously isolated page onto appropriate LRU list
679  * @page: page to be put back to appropriate lru list
680  *
681  * Add previously isolated @page to appropriate LRU list.
682  * Page may still be unevictable for other reasons.
683  *
684  * lru_lock must not be held, interrupts must be enabled.
685  */
putback_lru_page(struct page * page)686 void putback_lru_page(struct page *page)
687 {
688 	bool is_unevictable;
689 	int was_unevictable = PageUnevictable(page);
690 
691 	VM_BUG_ON_PAGE(PageLRU(page), page);
692 
693 redo:
694 	ClearPageUnevictable(page);
695 
696 	if (page_evictable(page)) {
697 		/*
698 		 * For evictable pages, we can use the cache.
699 		 * In event of a race, worst case is we end up with an
700 		 * unevictable page on [in]active list.
701 		 * We know how to handle that.
702 		 */
703 		is_unevictable = false;
704 		lru_cache_add(page);
705 	} else {
706 		/*
707 		 * Put unevictable pages directly on zone's unevictable
708 		 * list.
709 		 */
710 		is_unevictable = true;
711 		add_page_to_unevictable_list(page);
712 		/*
713 		 * When racing with an mlock or AS_UNEVICTABLE clearing
714 		 * (page is unlocked) make sure that if the other thread
715 		 * does not observe our setting of PG_lru and fails
716 		 * isolation/check_move_unevictable_pages,
717 		 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
718 		 * the page back to the evictable list.
719 		 *
720 		 * The other side is TestClearPageMlocked() or shmem_lock().
721 		 */
722 		smp_mb();
723 	}
724 
725 	/*
726 	 * page's status can change while we move it among lru. If an evictable
727 	 * page is on unevictable list, it never be freed. To avoid that,
728 	 * check after we added it to the list, again.
729 	 */
730 	if (is_unevictable && page_evictable(page)) {
731 		if (!isolate_lru_page(page)) {
732 			put_page(page);
733 			goto redo;
734 		}
735 		/* This means someone else dropped this page from LRU
736 		 * So, it will be freed or putback to LRU again. There is
737 		 * nothing to do here.
738 		 */
739 	}
740 
741 	if (was_unevictable && !is_unevictable)
742 		count_vm_event(UNEVICTABLE_PGRESCUED);
743 	else if (!was_unevictable && is_unevictable)
744 		count_vm_event(UNEVICTABLE_PGCULLED);
745 
746 	put_page(page);		/* drop ref from isolate */
747 }
748 
749 enum page_references {
750 	PAGEREF_RECLAIM,
751 	PAGEREF_RECLAIM_CLEAN,
752 	PAGEREF_KEEP,
753 	PAGEREF_ACTIVATE,
754 };
755 
page_check_references(struct page * page,struct scan_control * sc)756 static enum page_references page_check_references(struct page *page,
757 						  struct scan_control *sc)
758 {
759 	int referenced_ptes, referenced_page;
760 	unsigned long vm_flags;
761 
762 	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
763 					  &vm_flags);
764 	referenced_page = TestClearPageReferenced(page);
765 
766 	/*
767 	 * Mlock lost the isolation race with us.  Let try_to_unmap()
768 	 * move the page to the unevictable list.
769 	 */
770 	if (vm_flags & VM_LOCKED)
771 		return PAGEREF_RECLAIM;
772 
773 	if (referenced_ptes) {
774 		if (PageSwapBacked(page))
775 			return PAGEREF_ACTIVATE;
776 		/*
777 		 * All mapped pages start out with page table
778 		 * references from the instantiating fault, so we need
779 		 * to look twice if a mapped file page is used more
780 		 * than once.
781 		 *
782 		 * Mark it and spare it for another trip around the
783 		 * inactive list.  Another page table reference will
784 		 * lead to its activation.
785 		 *
786 		 * Note: the mark is set for activated pages as well
787 		 * so that recently deactivated but used pages are
788 		 * quickly recovered.
789 		 */
790 		SetPageReferenced(page);
791 
792 		if (referenced_page || referenced_ptes > 1)
793 			return PAGEREF_ACTIVATE;
794 
795 		/*
796 		 * Activate file-backed executable pages after first usage.
797 		 */
798 		if (vm_flags & VM_EXEC)
799 			return PAGEREF_ACTIVATE;
800 
801 		return PAGEREF_KEEP;
802 	}
803 
804 	/* Reclaim if clean, defer dirty pages to writeback */
805 	if (referenced_page && !PageSwapBacked(page))
806 		return PAGEREF_RECLAIM_CLEAN;
807 
808 	return PAGEREF_RECLAIM;
809 }
810 
811 /* Check if a page is dirty or under writeback */
page_check_dirty_writeback(struct page * page,bool * dirty,bool * writeback)812 static void page_check_dirty_writeback(struct page *page,
813 				       bool *dirty, bool *writeback)
814 {
815 	struct address_space *mapping;
816 
817 	/*
818 	 * Anonymous pages are not handled by flushers and must be written
819 	 * from reclaim context. Do not stall reclaim based on them
820 	 */
821 	if (!page_is_file_cache(page)) {
822 		*dirty = false;
823 		*writeback = false;
824 		return;
825 	}
826 
827 	/* By default assume that the page flags are accurate */
828 	*dirty = PageDirty(page);
829 	*writeback = PageWriteback(page);
830 
831 	/* Verify dirty/writeback state if the filesystem supports it */
832 	if (!page_has_private(page))
833 		return;
834 
835 	mapping = page_mapping(page);
836 	if (mapping && mapping->a_ops->is_dirty_writeback)
837 		mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
838 }
839 
840 /*
841  * shrink_page_list() returns the number of reclaimed pages
842  */
shrink_page_list(struct list_head * page_list,struct zone * zone,struct scan_control * sc,enum ttu_flags ttu_flags,unsigned long * ret_nr_dirty,unsigned long * ret_nr_unqueued_dirty,unsigned long * ret_nr_congested,unsigned long * ret_nr_writeback,unsigned long * ret_nr_immediate,bool force_reclaim)843 static unsigned long shrink_page_list(struct list_head *page_list,
844 				      struct zone *zone,
845 				      struct scan_control *sc,
846 				      enum ttu_flags ttu_flags,
847 				      unsigned long *ret_nr_dirty,
848 				      unsigned long *ret_nr_unqueued_dirty,
849 				      unsigned long *ret_nr_congested,
850 				      unsigned long *ret_nr_writeback,
851 				      unsigned long *ret_nr_immediate,
852 				      bool force_reclaim)
853 {
854 	LIST_HEAD(ret_pages);
855 	LIST_HEAD(free_pages);
856 	int pgactivate = 0;
857 	unsigned long nr_unqueued_dirty = 0;
858 	unsigned long nr_dirty = 0;
859 	unsigned long nr_congested = 0;
860 	unsigned long nr_reclaimed = 0;
861 	unsigned long nr_writeback = 0;
862 	unsigned long nr_immediate = 0;
863 
864 	cond_resched();
865 
866 	while (!list_empty(page_list)) {
867 		struct address_space *mapping;
868 		struct page *page;
869 		int may_enter_fs;
870 		enum page_references references = PAGEREF_RECLAIM_CLEAN;
871 		bool dirty, writeback;
872 
873 		cond_resched();
874 
875 		page = lru_to_page(page_list);
876 		list_del(&page->lru);
877 
878 		if (!trylock_page(page))
879 			goto keep;
880 
881 		VM_BUG_ON_PAGE(PageActive(page), page);
882 		VM_BUG_ON_PAGE(page_zone(page) != zone, page);
883 
884 		sc->nr_scanned++;
885 
886 		if (unlikely(!page_evictable(page)))
887 			goto cull_mlocked;
888 
889 		if (!sc->may_unmap && page_mapped(page))
890 			goto keep_locked;
891 
892 		/* Double the slab pressure for mapped and swapcache pages */
893 		if (page_mapped(page) || PageSwapCache(page))
894 			sc->nr_scanned++;
895 
896 		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
897 			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
898 
899 		/*
900 		 * The number of dirty pages determines if a zone is marked
901 		 * reclaim_congested which affects wait_iff_congested. kswapd
902 		 * will stall and start writing pages if the tail of the LRU
903 		 * is all dirty unqueued pages.
904 		 */
905 		page_check_dirty_writeback(page, &dirty, &writeback);
906 		if (dirty || writeback)
907 			nr_dirty++;
908 
909 		if (dirty && !writeback)
910 			nr_unqueued_dirty++;
911 
912 		/*
913 		 * Treat this page as congested if the underlying BDI is or if
914 		 * pages are cycling through the LRU so quickly that the
915 		 * pages marked for immediate reclaim are making it to the
916 		 * end of the LRU a second time.
917 		 */
918 		mapping = page_mapping(page);
919 		if (((dirty || writeback) && mapping &&
920 		     bdi_write_congested(inode_to_bdi(mapping->host))) ||
921 		    (writeback && PageReclaim(page)))
922 			nr_congested++;
923 
924 		/*
925 		 * If a page at the tail of the LRU is under writeback, there
926 		 * are three cases to consider.
927 		 *
928 		 * 1) If reclaim is encountering an excessive number of pages
929 		 *    under writeback and this page is both under writeback and
930 		 *    PageReclaim then it indicates that pages are being queued
931 		 *    for IO but are being recycled through the LRU before the
932 		 *    IO can complete. Waiting on the page itself risks an
933 		 *    indefinite stall if it is impossible to writeback the
934 		 *    page due to IO error or disconnected storage so instead
935 		 *    note that the LRU is being scanned too quickly and the
936 		 *    caller can stall after page list has been processed.
937 		 *
938 		 * 2) Global reclaim encounters a page, memcg encounters a
939 		 *    page that is not marked for immediate reclaim or
940 		 *    the caller does not have __GFP_FS (or __GFP_IO if it's
941 		 *    simply going to swap, not to fs). In this case mark
942 		 *    the page for immediate reclaim and continue scanning.
943 		 *
944 		 *    Require may_enter_fs because we would wait on fs, which
945 		 *    may not have submitted IO yet. And the loop driver might
946 		 *    enter reclaim, and deadlock if it waits on a page for
947 		 *    which it is needed to do the write (loop masks off
948 		 *    __GFP_IO|__GFP_FS for this reason); but more thought
949 		 *    would probably show more reasons.
950 		 *
951 		 * 3) memcg encounters a page that is not already marked
952 		 *    PageReclaim. memcg does not have any dirty pages
953 		 *    throttling so we could easily OOM just because too many
954 		 *    pages are in writeback and there is nothing else to
955 		 *    reclaim. Wait for the writeback to complete.
956 		 */
957 		if (PageWriteback(page)) {
958 			/* Case 1 above */
959 			if (current_is_kswapd() &&
960 			    PageReclaim(page) &&
961 			    test_bit(ZONE_WRITEBACK, &zone->flags)) {
962 				nr_immediate++;
963 				goto keep_locked;
964 
965 			/* Case 2 above */
966 			} else if (global_reclaim(sc) ||
967 			    !PageReclaim(page) || !may_enter_fs) {
968 				/*
969 				 * This is slightly racy - end_page_writeback()
970 				 * might have just cleared PageReclaim, then
971 				 * setting PageReclaim here end up interpreted
972 				 * as PageReadahead - but that does not matter
973 				 * enough to care.  What we do want is for this
974 				 * page to have PageReclaim set next time memcg
975 				 * reclaim reaches the tests above, so it will
976 				 * then wait_on_page_writeback() to avoid OOM;
977 				 * and it's also appropriate in global reclaim.
978 				 */
979 				SetPageReclaim(page);
980 				nr_writeback++;
981 
982 				goto keep_locked;
983 
984 			/* Case 3 above */
985 			} else {
986 				wait_on_page_writeback(page);
987 			}
988 		}
989 
990 		if (!force_reclaim)
991 			references = page_check_references(page, sc);
992 
993 		switch (references) {
994 		case PAGEREF_ACTIVATE:
995 			goto activate_locked;
996 		case PAGEREF_KEEP:
997 			goto keep_locked;
998 		case PAGEREF_RECLAIM:
999 		case PAGEREF_RECLAIM_CLEAN:
1000 			; /* try to reclaim the page below */
1001 		}
1002 
1003 		/*
1004 		 * Anonymous process memory has backing store?
1005 		 * Try to allocate it some swap space here.
1006 		 */
1007 		if (PageAnon(page) && !PageSwapCache(page)) {
1008 			if (!(sc->gfp_mask & __GFP_IO))
1009 				goto keep_locked;
1010 			if (!add_to_swap(page, page_list))
1011 				goto activate_locked;
1012 			may_enter_fs = 1;
1013 
1014 			/* Adding to swap updated mapping */
1015 			mapping = page_mapping(page);
1016 		}
1017 
1018 		/*
1019 		 * The page is mapped into the page tables of one or more
1020 		 * processes. Try to unmap it here.
1021 		 */
1022 		if (page_mapped(page) && mapping) {
1023 			switch (try_to_unmap(page, ttu_flags)) {
1024 			case SWAP_FAIL:
1025 				goto activate_locked;
1026 			case SWAP_AGAIN:
1027 				goto keep_locked;
1028 			case SWAP_MLOCK:
1029 				goto cull_mlocked;
1030 			case SWAP_SUCCESS:
1031 				; /* try to free the page below */
1032 			}
1033 		}
1034 
1035 		if (PageDirty(page)) {
1036 			/*
1037 			 * Only kswapd can writeback filesystem pages to
1038 			 * avoid risk of stack overflow but only writeback
1039 			 * if many dirty pages have been encountered.
1040 			 */
1041 			if (page_is_file_cache(page) &&
1042 					(!current_is_kswapd() ||
1043 					 !test_bit(ZONE_DIRTY, &zone->flags))) {
1044 				/*
1045 				 * Immediately reclaim when written back.
1046 				 * Similar in principal to deactivate_page()
1047 				 * except we already have the page isolated
1048 				 * and know it's dirty
1049 				 */
1050 				inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
1051 				SetPageReclaim(page);
1052 
1053 				goto keep_locked;
1054 			}
1055 
1056 			if (references == PAGEREF_RECLAIM_CLEAN)
1057 				goto keep_locked;
1058 			if (!may_enter_fs)
1059 				goto keep_locked;
1060 			if (!sc->may_writepage)
1061 				goto keep_locked;
1062 
1063 			/* Page is dirty, try to write it out here */
1064 			switch (pageout(page, mapping, sc)) {
1065 			case PAGE_KEEP:
1066 				goto keep_locked;
1067 			case PAGE_ACTIVATE:
1068 				goto activate_locked;
1069 			case PAGE_SUCCESS:
1070 				if (PageWriteback(page))
1071 					goto keep;
1072 				if (PageDirty(page))
1073 					goto keep;
1074 
1075 				/*
1076 				 * A synchronous write - probably a ramdisk.  Go
1077 				 * ahead and try to reclaim the page.
1078 				 */
1079 				if (!trylock_page(page))
1080 					goto keep;
1081 				if (PageDirty(page) || PageWriteback(page))
1082 					goto keep_locked;
1083 				mapping = page_mapping(page);
1084 			case PAGE_CLEAN:
1085 				; /* try to free the page below */
1086 			}
1087 		}
1088 
1089 		/*
1090 		 * If the page has buffers, try to free the buffer mappings
1091 		 * associated with this page. If we succeed we try to free
1092 		 * the page as well.
1093 		 *
1094 		 * We do this even if the page is PageDirty().
1095 		 * try_to_release_page() does not perform I/O, but it is
1096 		 * possible for a page to have PageDirty set, but it is actually
1097 		 * clean (all its buffers are clean).  This happens if the
1098 		 * buffers were written out directly, with submit_bh(). ext3
1099 		 * will do this, as well as the blockdev mapping.
1100 		 * try_to_release_page() will discover that cleanness and will
1101 		 * drop the buffers and mark the page clean - it can be freed.
1102 		 *
1103 		 * Rarely, pages can have buffers and no ->mapping.  These are
1104 		 * the pages which were not successfully invalidated in
1105 		 * truncate_complete_page().  We try to drop those buffers here
1106 		 * and if that worked, and the page is no longer mapped into
1107 		 * process address space (page_count == 1) it can be freed.
1108 		 * Otherwise, leave the page on the LRU so it is swappable.
1109 		 */
1110 		if (page_has_private(page)) {
1111 			if (!try_to_release_page(page, sc->gfp_mask))
1112 				goto activate_locked;
1113 			if (!mapping && page_count(page) == 1) {
1114 				unlock_page(page);
1115 				if (put_page_testzero(page))
1116 					goto free_it;
1117 				else {
1118 					/*
1119 					 * rare race with speculative reference.
1120 					 * the speculative reference will free
1121 					 * this page shortly, so we may
1122 					 * increment nr_reclaimed here (and
1123 					 * leave it off the LRU).
1124 					 */
1125 					nr_reclaimed++;
1126 					continue;
1127 				}
1128 			}
1129 		}
1130 
1131 		if (!mapping || !__remove_mapping(mapping, page, true))
1132 			goto keep_locked;
1133 
1134 		/*
1135 		 * At this point, we have no other references and there is
1136 		 * no way to pick any more up (removed from LRU, removed
1137 		 * from pagecache). Can use non-atomic bitops now (and
1138 		 * we obviously don't have to worry about waking up a process
1139 		 * waiting on the page lock, because there are no references.
1140 		 */
1141 		__clear_page_locked(page);
1142 free_it:
1143 		nr_reclaimed++;
1144 
1145 		/*
1146 		 * Is there need to periodically free_page_list? It would
1147 		 * appear not as the counts should be low
1148 		 */
1149 		list_add(&page->lru, &free_pages);
1150 		continue;
1151 
1152 cull_mlocked:
1153 		if (PageSwapCache(page))
1154 			try_to_free_swap(page);
1155 		unlock_page(page);
1156 		list_add(&page->lru, &ret_pages);
1157 		continue;
1158 
1159 activate_locked:
1160 		/* Not a candidate for swapping, so reclaim swap space. */
1161 		if (PageSwapCache(page) && vm_swap_full())
1162 			try_to_free_swap(page);
1163 		VM_BUG_ON_PAGE(PageActive(page), page);
1164 		SetPageActive(page);
1165 		pgactivate++;
1166 keep_locked:
1167 		unlock_page(page);
1168 keep:
1169 		list_add(&page->lru, &ret_pages);
1170 		VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1171 	}
1172 
1173 	mem_cgroup_uncharge_list(&free_pages);
1174 	free_hot_cold_page_list(&free_pages, true);
1175 
1176 	list_splice(&ret_pages, page_list);
1177 	count_vm_events(PGACTIVATE, pgactivate);
1178 
1179 	*ret_nr_dirty += nr_dirty;
1180 	*ret_nr_congested += nr_congested;
1181 	*ret_nr_unqueued_dirty += nr_unqueued_dirty;
1182 	*ret_nr_writeback += nr_writeback;
1183 	*ret_nr_immediate += nr_immediate;
1184 	return nr_reclaimed;
1185 }
1186 
reclaim_clean_pages_from_list(struct zone * zone,struct list_head * page_list)1187 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1188 					    struct list_head *page_list)
1189 {
1190 	struct scan_control sc = {
1191 		.gfp_mask = GFP_KERNEL,
1192 		.priority = DEF_PRIORITY,
1193 		.may_unmap = 1,
1194 	};
1195 	unsigned long ret, dummy1, dummy2, dummy3, dummy4, dummy5;
1196 	struct page *page, *next;
1197 	LIST_HEAD(clean_pages);
1198 
1199 	list_for_each_entry_safe(page, next, page_list, lru) {
1200 		if (page_is_file_cache(page) && !PageDirty(page) &&
1201 		    !isolated_balloon_page(page)) {
1202 			ClearPageActive(page);
1203 			list_move(&page->lru, &clean_pages);
1204 		}
1205 	}
1206 
1207 	ret = shrink_page_list(&clean_pages, zone, &sc,
1208 			TTU_UNMAP|TTU_IGNORE_ACCESS,
1209 			&dummy1, &dummy2, &dummy3, &dummy4, &dummy5, true);
1210 	list_splice(&clean_pages, page_list);
1211 	mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret);
1212 	return ret;
1213 }
1214 
1215 /*
1216  * Attempt to remove the specified page from its LRU.  Only take this page
1217  * if it is of the appropriate PageActive status.  Pages which are being
1218  * freed elsewhere are also ignored.
1219  *
1220  * page:	page to consider
1221  * mode:	one of the LRU isolation modes defined above
1222  *
1223  * returns 0 on success, -ve errno on failure.
1224  */
__isolate_lru_page(struct page * page,isolate_mode_t mode)1225 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1226 {
1227 	int ret = -EINVAL;
1228 
1229 	/* Only take pages on the LRU. */
1230 	if (!PageLRU(page))
1231 		return ret;
1232 
1233 	/* Compaction should not handle unevictable pages but CMA can do so */
1234 	if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1235 		return ret;
1236 
1237 	ret = -EBUSY;
1238 
1239 	/*
1240 	 * To minimise LRU disruption, the caller can indicate that it only
1241 	 * wants to isolate pages it will be able to operate on without
1242 	 * blocking - clean pages for the most part.
1243 	 *
1244 	 * ISOLATE_CLEAN means that only clean pages should be isolated. This
1245 	 * is used by reclaim when it is cannot write to backing storage
1246 	 *
1247 	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1248 	 * that it is possible to migrate without blocking
1249 	 */
1250 	if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
1251 		/* All the caller can do on PageWriteback is block */
1252 		if (PageWriteback(page))
1253 			return ret;
1254 
1255 		if (PageDirty(page)) {
1256 			struct address_space *mapping;
1257 
1258 			/* ISOLATE_CLEAN means only clean pages */
1259 			if (mode & ISOLATE_CLEAN)
1260 				return ret;
1261 
1262 			/*
1263 			 * Only pages without mappings or that have a
1264 			 * ->migratepage callback are possible to migrate
1265 			 * without blocking
1266 			 */
1267 			mapping = page_mapping(page);
1268 			if (mapping && !mapping->a_ops->migratepage)
1269 				return ret;
1270 		}
1271 	}
1272 
1273 	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1274 		return ret;
1275 
1276 	if (likely(get_page_unless_zero(page))) {
1277 		/*
1278 		 * Be careful not to clear PageLRU until after we're
1279 		 * sure the page is not being freed elsewhere -- the
1280 		 * page release code relies on it.
1281 		 */
1282 		ClearPageLRU(page);
1283 		ret = 0;
1284 	}
1285 
1286 	return ret;
1287 }
1288 
1289 /*
1290  * zone->lru_lock is heavily contended.  Some of the functions that
1291  * shrink the lists perform better by taking out a batch of pages
1292  * and working on them outside the LRU lock.
1293  *
1294  * For pagecache intensive workloads, this function is the hottest
1295  * spot in the kernel (apart from copy_*_user functions).
1296  *
1297  * Appropriate locks must be held before calling this function.
1298  *
1299  * @nr_to_scan:	The number of pages to look through on the list.
1300  * @lruvec:	The LRU vector to pull pages from.
1301  * @dst:	The temp list to put pages on to.
1302  * @nr_scanned:	The number of pages that were scanned.
1303  * @sc:		The scan_control struct for this reclaim session
1304  * @mode:	One of the LRU isolation modes
1305  * @lru:	LRU list id for isolating
1306  *
1307  * returns how many pages were moved onto *@dst.
1308  */
isolate_lru_pages(unsigned long nr_to_scan,struct lruvec * lruvec,struct list_head * dst,unsigned long * nr_scanned,struct scan_control * sc,isolate_mode_t mode,enum lru_list lru)1309 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1310 		struct lruvec *lruvec, struct list_head *dst,
1311 		unsigned long *nr_scanned, struct scan_control *sc,
1312 		isolate_mode_t mode, enum lru_list lru)
1313 {
1314 	struct list_head *src = &lruvec->lists[lru];
1315 	unsigned long nr_taken = 0;
1316 	unsigned long scan;
1317 
1318 	for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1319 		struct page *page;
1320 		int nr_pages;
1321 
1322 		page = lru_to_page(src);
1323 		prefetchw_prev_lru_page(page, src, flags);
1324 
1325 		VM_BUG_ON_PAGE(!PageLRU(page), page);
1326 
1327 		switch (__isolate_lru_page(page, mode)) {
1328 		case 0:
1329 			nr_pages = hpage_nr_pages(page);
1330 			mem_cgroup_update_lru_size(lruvec, lru, -nr_pages);
1331 			list_move(&page->lru, dst);
1332 			nr_taken += nr_pages;
1333 			break;
1334 
1335 		case -EBUSY:
1336 			/* else it is being freed elsewhere */
1337 			list_move(&page->lru, src);
1338 			continue;
1339 
1340 		default:
1341 			BUG();
1342 		}
1343 	}
1344 
1345 	*nr_scanned = scan;
1346 	trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
1347 				    nr_taken, mode, is_file_lru(lru));
1348 	return nr_taken;
1349 }
1350 
1351 /**
1352  * isolate_lru_page - tries to isolate a page from its LRU list
1353  * @page: page to isolate from its LRU list
1354  *
1355  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1356  * vmstat statistic corresponding to whatever LRU list the page was on.
1357  *
1358  * Returns 0 if the page was removed from an LRU list.
1359  * Returns -EBUSY if the page was not on an LRU list.
1360  *
1361  * The returned page will have PageLRU() cleared.  If it was found on
1362  * the active list, it will have PageActive set.  If it was found on
1363  * the unevictable list, it will have the PageUnevictable bit set. That flag
1364  * may need to be cleared by the caller before letting the page go.
1365  *
1366  * The vmstat statistic corresponding to the list on which the page was
1367  * found will be decremented.
1368  *
1369  * Restrictions:
1370  * (1) Must be called with an elevated refcount on the page. This is a
1371  *     fundamentnal difference from isolate_lru_pages (which is called
1372  *     without a stable reference).
1373  * (2) the lru_lock must not be held.
1374  * (3) interrupts must be enabled.
1375  */
isolate_lru_page(struct page * page)1376 int isolate_lru_page(struct page *page)
1377 {
1378 	int ret = -EBUSY;
1379 
1380 	VM_BUG_ON_PAGE(!page_count(page), page);
1381 
1382 	if (PageLRU(page)) {
1383 		struct zone *zone = page_zone(page);
1384 		struct lruvec *lruvec;
1385 
1386 		spin_lock_irq(&zone->lru_lock);
1387 		lruvec = mem_cgroup_page_lruvec(page, zone);
1388 		if (PageLRU(page)) {
1389 			int lru = page_lru(page);
1390 			get_page(page);
1391 			ClearPageLRU(page);
1392 			del_page_from_lru_list(page, lruvec, lru);
1393 			ret = 0;
1394 		}
1395 		spin_unlock_irq(&zone->lru_lock);
1396 	}
1397 	return ret;
1398 }
1399 
1400 /*
1401  * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1402  * then get resheduled. When there are massive number of tasks doing page
1403  * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1404  * the LRU list will go small and be scanned faster than necessary, leading to
1405  * unnecessary swapping, thrashing and OOM.
1406  */
too_many_isolated(struct zone * zone,int file,struct scan_control * sc)1407 static int too_many_isolated(struct zone *zone, int file,
1408 		struct scan_control *sc)
1409 {
1410 	unsigned long inactive, isolated;
1411 
1412 	if (current_is_kswapd())
1413 		return 0;
1414 
1415 	if (!global_reclaim(sc))
1416 		return 0;
1417 
1418 	if (file) {
1419 		inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1420 		isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1421 	} else {
1422 		inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1423 		isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1424 	}
1425 
1426 	/*
1427 	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1428 	 * won't get blocked by normal direct-reclaimers, forming a circular
1429 	 * deadlock.
1430 	 */
1431 	if ((sc->gfp_mask & GFP_IOFS) == GFP_IOFS)
1432 		inactive >>= 3;
1433 
1434 	return isolated > inactive;
1435 }
1436 
1437 static noinline_for_stack void
putback_inactive_pages(struct lruvec * lruvec,struct list_head * page_list)1438 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1439 {
1440 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1441 	struct zone *zone = lruvec_zone(lruvec);
1442 	LIST_HEAD(pages_to_free);
1443 
1444 	/*
1445 	 * Put back any unfreeable pages.
1446 	 */
1447 	while (!list_empty(page_list)) {
1448 		struct page *page = lru_to_page(page_list);
1449 		int lru;
1450 
1451 		VM_BUG_ON_PAGE(PageLRU(page), page);
1452 		list_del(&page->lru);
1453 		if (unlikely(!page_evictable(page))) {
1454 			spin_unlock_irq(&zone->lru_lock);
1455 			putback_lru_page(page);
1456 			spin_lock_irq(&zone->lru_lock);
1457 			continue;
1458 		}
1459 
1460 		lruvec = mem_cgroup_page_lruvec(page, zone);
1461 
1462 		SetPageLRU(page);
1463 		lru = page_lru(page);
1464 		add_page_to_lru_list(page, lruvec, lru);
1465 
1466 		if (is_active_lru(lru)) {
1467 			int file = is_file_lru(lru);
1468 			int numpages = hpage_nr_pages(page);
1469 			reclaim_stat->recent_rotated[file] += numpages;
1470 		}
1471 		if (put_page_testzero(page)) {
1472 			__ClearPageLRU(page);
1473 			__ClearPageActive(page);
1474 			del_page_from_lru_list(page, lruvec, lru);
1475 
1476 			if (unlikely(PageCompound(page))) {
1477 				spin_unlock_irq(&zone->lru_lock);
1478 				mem_cgroup_uncharge(page);
1479 				(*get_compound_page_dtor(page))(page);
1480 				spin_lock_irq(&zone->lru_lock);
1481 			} else
1482 				list_add(&page->lru, &pages_to_free);
1483 		}
1484 	}
1485 
1486 	/*
1487 	 * To save our caller's stack, now use input list for pages to free.
1488 	 */
1489 	list_splice(&pages_to_free, page_list);
1490 }
1491 
1492 /*
1493  * If a kernel thread (such as nfsd for loop-back mounts) services
1494  * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1495  * In that case we should only throttle if the backing device it is
1496  * writing to is congested.  In other cases it is safe to throttle.
1497  */
current_may_throttle(void)1498 static int current_may_throttle(void)
1499 {
1500 	return !(current->flags & PF_LESS_THROTTLE) ||
1501 		current->backing_dev_info == NULL ||
1502 		bdi_write_congested(current->backing_dev_info);
1503 }
1504 
1505 /*
1506  * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
1507  * of reclaimed pages
1508  */
1509 static noinline_for_stack unsigned long
shrink_inactive_list(unsigned long nr_to_scan,struct lruvec * lruvec,struct scan_control * sc,enum lru_list lru)1510 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1511 		     struct scan_control *sc, enum lru_list lru)
1512 {
1513 	LIST_HEAD(page_list);
1514 	unsigned long nr_scanned;
1515 	unsigned long nr_reclaimed = 0;
1516 	unsigned long nr_taken;
1517 	unsigned long nr_dirty = 0;
1518 	unsigned long nr_congested = 0;
1519 	unsigned long nr_unqueued_dirty = 0;
1520 	unsigned long nr_writeback = 0;
1521 	unsigned long nr_immediate = 0;
1522 	isolate_mode_t isolate_mode = 0;
1523 	int file = is_file_lru(lru);
1524 	struct zone *zone = lruvec_zone(lruvec);
1525 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1526 
1527 	while (unlikely(too_many_isolated(zone, file, sc))) {
1528 		congestion_wait(BLK_RW_ASYNC, HZ/10);
1529 
1530 		/* We are about to die and free our memory. Return now. */
1531 		if (fatal_signal_pending(current))
1532 			return SWAP_CLUSTER_MAX;
1533 	}
1534 
1535 	lru_add_drain();
1536 
1537 	if (!sc->may_unmap)
1538 		isolate_mode |= ISOLATE_UNMAPPED;
1539 	if (!sc->may_writepage)
1540 		isolate_mode |= ISOLATE_CLEAN;
1541 
1542 	spin_lock_irq(&zone->lru_lock);
1543 
1544 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1545 				     &nr_scanned, sc, isolate_mode, lru);
1546 
1547 	__mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1548 	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1549 
1550 	if (global_reclaim(sc)) {
1551 		__mod_zone_page_state(zone, NR_PAGES_SCANNED, nr_scanned);
1552 		if (current_is_kswapd())
1553 			__count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
1554 		else
1555 			__count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
1556 	}
1557 	spin_unlock_irq(&zone->lru_lock);
1558 
1559 	if (nr_taken == 0)
1560 		return 0;
1561 
1562 	nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP,
1563 				&nr_dirty, &nr_unqueued_dirty, &nr_congested,
1564 				&nr_writeback, &nr_immediate,
1565 				false);
1566 
1567 	spin_lock_irq(&zone->lru_lock);
1568 
1569 	reclaim_stat->recent_scanned[file] += nr_taken;
1570 
1571 	if (global_reclaim(sc)) {
1572 		if (current_is_kswapd())
1573 			__count_zone_vm_events(PGSTEAL_KSWAPD, zone,
1574 					       nr_reclaimed);
1575 		else
1576 			__count_zone_vm_events(PGSTEAL_DIRECT, zone,
1577 					       nr_reclaimed);
1578 	}
1579 
1580 	putback_inactive_pages(lruvec, &page_list);
1581 
1582 	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1583 
1584 	spin_unlock_irq(&zone->lru_lock);
1585 
1586 	mem_cgroup_uncharge_list(&page_list);
1587 	free_hot_cold_page_list(&page_list, true);
1588 
1589 	/*
1590 	 * If reclaim is isolating dirty pages under writeback, it implies
1591 	 * that the long-lived page allocation rate is exceeding the page
1592 	 * laundering rate. Either the global limits are not being effective
1593 	 * at throttling processes due to the page distribution throughout
1594 	 * zones or there is heavy usage of a slow backing device. The
1595 	 * only option is to throttle from reclaim context which is not ideal
1596 	 * as there is no guarantee the dirtying process is throttled in the
1597 	 * same way balance_dirty_pages() manages.
1598 	 *
1599 	 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1600 	 * of pages under pages flagged for immediate reclaim and stall if any
1601 	 * are encountered in the nr_immediate check below.
1602 	 */
1603 	if (nr_writeback && nr_writeback == nr_taken)
1604 		set_bit(ZONE_WRITEBACK, &zone->flags);
1605 
1606 	/*
1607 	 * memcg will stall in page writeback so only consider forcibly
1608 	 * stalling for global reclaim
1609 	 */
1610 	if (global_reclaim(sc)) {
1611 		/*
1612 		 * Tag a zone as congested if all the dirty pages scanned were
1613 		 * backed by a congested BDI and wait_iff_congested will stall.
1614 		 */
1615 		if (nr_dirty && nr_dirty == nr_congested)
1616 			set_bit(ZONE_CONGESTED, &zone->flags);
1617 
1618 		/*
1619 		 * If dirty pages are scanned that are not queued for IO, it
1620 		 * implies that flushers are not keeping up. In this case, flag
1621 		 * the zone ZONE_DIRTY and kswapd will start writing pages from
1622 		 * reclaim context.
1623 		 */
1624 		if (nr_unqueued_dirty == nr_taken)
1625 			set_bit(ZONE_DIRTY, &zone->flags);
1626 
1627 		/*
1628 		 * If kswapd scans pages marked marked for immediate
1629 		 * reclaim and under writeback (nr_immediate), it implies
1630 		 * that pages are cycling through the LRU faster than
1631 		 * they are written so also forcibly stall.
1632 		 */
1633 		if (nr_immediate && current_may_throttle())
1634 			congestion_wait(BLK_RW_ASYNC, HZ/10);
1635 	}
1636 
1637 	/*
1638 	 * Stall direct reclaim for IO completions if underlying BDIs or zone
1639 	 * is congested. Allow kswapd to continue until it starts encountering
1640 	 * unqueued dirty pages or cycling through the LRU too quickly.
1641 	 */
1642 	if (!sc->hibernation_mode && !current_is_kswapd() &&
1643 	    current_may_throttle())
1644 		wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1645 
1646 	trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1647 		zone_idx(zone),
1648 		nr_scanned, nr_reclaimed,
1649 		sc->priority,
1650 		trace_shrink_flags(file));
1651 	return nr_reclaimed;
1652 }
1653 
1654 /*
1655  * This moves pages from the active list to the inactive list.
1656  *
1657  * We move them the other way if the page is referenced by one or more
1658  * processes, from rmap.
1659  *
1660  * If the pages are mostly unmapped, the processing is fast and it is
1661  * appropriate to hold zone->lru_lock across the whole operation.  But if
1662  * the pages are mapped, the processing is slow (page_referenced()) so we
1663  * should drop zone->lru_lock around each page.  It's impossible to balance
1664  * this, so instead we remove the pages from the LRU while processing them.
1665  * It is safe to rely on PG_active against the non-LRU pages in here because
1666  * nobody will play with that bit on a non-LRU page.
1667  *
1668  * The downside is that we have to touch page->_count against each page.
1669  * But we had to alter page->flags anyway.
1670  */
1671 
move_active_pages_to_lru(struct lruvec * lruvec,struct list_head * list,struct list_head * pages_to_free,enum lru_list lru)1672 static void move_active_pages_to_lru(struct lruvec *lruvec,
1673 				     struct list_head *list,
1674 				     struct list_head *pages_to_free,
1675 				     enum lru_list lru)
1676 {
1677 	struct zone *zone = lruvec_zone(lruvec);
1678 	unsigned long pgmoved = 0;
1679 	struct page *page;
1680 	int nr_pages;
1681 
1682 	while (!list_empty(list)) {
1683 		page = lru_to_page(list);
1684 		lruvec = mem_cgroup_page_lruvec(page, zone);
1685 
1686 		VM_BUG_ON_PAGE(PageLRU(page), page);
1687 		SetPageLRU(page);
1688 
1689 		nr_pages = hpage_nr_pages(page);
1690 		mem_cgroup_update_lru_size(lruvec, lru, nr_pages);
1691 		list_move(&page->lru, &lruvec->lists[lru]);
1692 		pgmoved += nr_pages;
1693 
1694 		if (put_page_testzero(page)) {
1695 			__ClearPageLRU(page);
1696 			__ClearPageActive(page);
1697 			del_page_from_lru_list(page, lruvec, lru);
1698 
1699 			if (unlikely(PageCompound(page))) {
1700 				spin_unlock_irq(&zone->lru_lock);
1701 				mem_cgroup_uncharge(page);
1702 				(*get_compound_page_dtor(page))(page);
1703 				spin_lock_irq(&zone->lru_lock);
1704 			} else
1705 				list_add(&page->lru, pages_to_free);
1706 		}
1707 	}
1708 	__mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1709 	if (!is_active_lru(lru))
1710 		__count_vm_events(PGDEACTIVATE, pgmoved);
1711 }
1712 
shrink_active_list(unsigned long nr_to_scan,struct lruvec * lruvec,struct scan_control * sc,enum lru_list lru)1713 static void shrink_active_list(unsigned long nr_to_scan,
1714 			       struct lruvec *lruvec,
1715 			       struct scan_control *sc,
1716 			       enum lru_list lru)
1717 {
1718 	unsigned long nr_taken;
1719 	unsigned long nr_scanned;
1720 	unsigned long vm_flags;
1721 	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1722 	LIST_HEAD(l_active);
1723 	LIST_HEAD(l_inactive);
1724 	struct page *page;
1725 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1726 	unsigned long nr_rotated = 0;
1727 	isolate_mode_t isolate_mode = 0;
1728 	int file = is_file_lru(lru);
1729 	struct zone *zone = lruvec_zone(lruvec);
1730 
1731 	lru_add_drain();
1732 
1733 	if (!sc->may_unmap)
1734 		isolate_mode |= ISOLATE_UNMAPPED;
1735 	if (!sc->may_writepage)
1736 		isolate_mode |= ISOLATE_CLEAN;
1737 
1738 	spin_lock_irq(&zone->lru_lock);
1739 
1740 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1741 				     &nr_scanned, sc, isolate_mode, lru);
1742 	if (global_reclaim(sc))
1743 		__mod_zone_page_state(zone, NR_PAGES_SCANNED, nr_scanned);
1744 
1745 	reclaim_stat->recent_scanned[file] += nr_taken;
1746 
1747 	__count_zone_vm_events(PGREFILL, zone, nr_scanned);
1748 	__mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1749 	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1750 	spin_unlock_irq(&zone->lru_lock);
1751 
1752 	while (!list_empty(&l_hold)) {
1753 		cond_resched();
1754 		page = lru_to_page(&l_hold);
1755 		list_del(&page->lru);
1756 
1757 		if (unlikely(!page_evictable(page))) {
1758 			putback_lru_page(page);
1759 			continue;
1760 		}
1761 
1762 		if (unlikely(buffer_heads_over_limit)) {
1763 			if (page_has_private(page) && trylock_page(page)) {
1764 				if (page_has_private(page))
1765 					try_to_release_page(page, 0);
1766 				unlock_page(page);
1767 			}
1768 		}
1769 
1770 		if (page_referenced(page, 0, sc->target_mem_cgroup,
1771 				    &vm_flags)) {
1772 			nr_rotated += hpage_nr_pages(page);
1773 			/*
1774 			 * Identify referenced, file-backed active pages and
1775 			 * give them one more trip around the active list. So
1776 			 * that executable code get better chances to stay in
1777 			 * memory under moderate memory pressure.  Anon pages
1778 			 * are not likely to be evicted by use-once streaming
1779 			 * IO, plus JVM can create lots of anon VM_EXEC pages,
1780 			 * so we ignore them here.
1781 			 */
1782 			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1783 				list_add(&page->lru, &l_active);
1784 				continue;
1785 			}
1786 		}
1787 
1788 		ClearPageActive(page);	/* we are de-activating */
1789 		list_add(&page->lru, &l_inactive);
1790 	}
1791 
1792 	/*
1793 	 * Move pages back to the lru list.
1794 	 */
1795 	spin_lock_irq(&zone->lru_lock);
1796 	/*
1797 	 * Count referenced pages from currently used mappings as rotated,
1798 	 * even though only some of them are actually re-activated.  This
1799 	 * helps balance scan pressure between file and anonymous pages in
1800 	 * get_scan_count.
1801 	 */
1802 	reclaim_stat->recent_rotated[file] += nr_rotated;
1803 
1804 	move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
1805 	move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
1806 	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1807 	spin_unlock_irq(&zone->lru_lock);
1808 
1809 	mem_cgroup_uncharge_list(&l_hold);
1810 	free_hot_cold_page_list(&l_hold, true);
1811 }
1812 
1813 #ifdef CONFIG_SWAP
inactive_anon_is_low_global(struct zone * zone)1814 static int inactive_anon_is_low_global(struct zone *zone)
1815 {
1816 	unsigned long active, inactive;
1817 
1818 	active = zone_page_state(zone, NR_ACTIVE_ANON);
1819 	inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1820 
1821 	if (inactive * zone->inactive_ratio < active)
1822 		return 1;
1823 
1824 	return 0;
1825 }
1826 
1827 /**
1828  * inactive_anon_is_low - check if anonymous pages need to be deactivated
1829  * @lruvec: LRU vector to check
1830  *
1831  * Returns true if the zone does not have enough inactive anon pages,
1832  * meaning some active anon pages need to be deactivated.
1833  */
inactive_anon_is_low(struct lruvec * lruvec)1834 static int inactive_anon_is_low(struct lruvec *lruvec)
1835 {
1836 	/*
1837 	 * If we don't have swap space, anonymous page deactivation
1838 	 * is pointless.
1839 	 */
1840 	if (!total_swap_pages)
1841 		return 0;
1842 
1843 	if (!mem_cgroup_disabled())
1844 		return mem_cgroup_inactive_anon_is_low(lruvec);
1845 
1846 	return inactive_anon_is_low_global(lruvec_zone(lruvec));
1847 }
1848 #else
inactive_anon_is_low(struct lruvec * lruvec)1849 static inline int inactive_anon_is_low(struct lruvec *lruvec)
1850 {
1851 	return 0;
1852 }
1853 #endif
1854 
1855 /**
1856  * inactive_file_is_low - check if file pages need to be deactivated
1857  * @lruvec: LRU vector to check
1858  *
1859  * When the system is doing streaming IO, memory pressure here
1860  * ensures that active file pages get deactivated, until more
1861  * than half of the file pages are on the inactive list.
1862  *
1863  * Once we get to that situation, protect the system's working
1864  * set from being evicted by disabling active file page aging.
1865  *
1866  * This uses a different ratio than the anonymous pages, because
1867  * the page cache uses a use-once replacement algorithm.
1868  */
inactive_file_is_low(struct lruvec * lruvec)1869 static int inactive_file_is_low(struct lruvec *lruvec)
1870 {
1871 	unsigned long inactive;
1872 	unsigned long active;
1873 
1874 	inactive = get_lru_size(lruvec, LRU_INACTIVE_FILE);
1875 	active = get_lru_size(lruvec, LRU_ACTIVE_FILE);
1876 
1877 	return active > inactive;
1878 }
1879 
inactive_list_is_low(struct lruvec * lruvec,enum lru_list lru)1880 static int inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru)
1881 {
1882 	if (is_file_lru(lru))
1883 		return inactive_file_is_low(lruvec);
1884 	else
1885 		return inactive_anon_is_low(lruvec);
1886 }
1887 
shrink_list(enum lru_list lru,unsigned long nr_to_scan,struct lruvec * lruvec,struct scan_control * sc)1888 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1889 				 struct lruvec *lruvec, struct scan_control *sc)
1890 {
1891 	if (is_active_lru(lru)) {
1892 		if (inactive_list_is_low(lruvec, lru))
1893 			shrink_active_list(nr_to_scan, lruvec, sc, lru);
1894 		return 0;
1895 	}
1896 
1897 	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
1898 }
1899 
1900 enum scan_balance {
1901 	SCAN_EQUAL,
1902 	SCAN_FRACT,
1903 	SCAN_ANON,
1904 	SCAN_FILE,
1905 };
1906 
1907 /*
1908  * Determine how aggressively the anon and file LRU lists should be
1909  * scanned.  The relative value of each set of LRU lists is determined
1910  * by looking at the fraction of the pages scanned we did rotate back
1911  * onto the active list instead of evict.
1912  *
1913  * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
1914  * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
1915  */
get_scan_count(struct lruvec * lruvec,int swappiness,struct scan_control * sc,unsigned long * nr,unsigned long * lru_pages)1916 static void get_scan_count(struct lruvec *lruvec, int swappiness,
1917 			   struct scan_control *sc, unsigned long *nr,
1918 			   unsigned long *lru_pages)
1919 {
1920 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1921 	u64 fraction[2];
1922 	u64 denominator = 0;	/* gcc */
1923 	struct zone *zone = lruvec_zone(lruvec);
1924 	unsigned long anon_prio, file_prio;
1925 	enum scan_balance scan_balance;
1926 	unsigned long anon, file;
1927 	bool force_scan = false;
1928 	unsigned long ap, fp;
1929 	enum lru_list lru;
1930 	bool some_scanned;
1931 	int pass;
1932 
1933 	/*
1934 	 * If the zone or memcg is small, nr[l] can be 0.  This
1935 	 * results in no scanning on this priority and a potential
1936 	 * priority drop.  Global direct reclaim can go to the next
1937 	 * zone and tends to have no problems. Global kswapd is for
1938 	 * zone balancing and it needs to scan a minimum amount. When
1939 	 * reclaiming for a memcg, a priority drop can cause high
1940 	 * latencies, so it's better to scan a minimum amount there as
1941 	 * well.
1942 	 */
1943 	if (current_is_kswapd()) {
1944 		if (!zone_reclaimable(zone))
1945 			force_scan = true;
1946 		if (!mem_cgroup_lruvec_online(lruvec))
1947 			force_scan = true;
1948 	}
1949 	if (!global_reclaim(sc))
1950 		force_scan = true;
1951 
1952 	/* If we have no swap space, do not bother scanning anon pages. */
1953 	if (!sc->may_swap || (get_nr_swap_pages() <= 0)) {
1954 		scan_balance = SCAN_FILE;
1955 		goto out;
1956 	}
1957 
1958 	/*
1959 	 * Global reclaim will swap to prevent OOM even with no
1960 	 * swappiness, but memcg users want to use this knob to
1961 	 * disable swapping for individual groups completely when
1962 	 * using the memory controller's swap limit feature would be
1963 	 * too expensive.
1964 	 */
1965 	if (!global_reclaim(sc) && !swappiness) {
1966 		scan_balance = SCAN_FILE;
1967 		goto out;
1968 	}
1969 
1970 	/*
1971 	 * Do not apply any pressure balancing cleverness when the
1972 	 * system is close to OOM, scan both anon and file equally
1973 	 * (unless the swappiness setting disagrees with swapping).
1974 	 */
1975 	if (!sc->priority && swappiness) {
1976 		scan_balance = SCAN_EQUAL;
1977 		goto out;
1978 	}
1979 
1980 	/*
1981 	 * Prevent the reclaimer from falling into the cache trap: as
1982 	 * cache pages start out inactive, every cache fault will tip
1983 	 * the scan balance towards the file LRU.  And as the file LRU
1984 	 * shrinks, so does the window for rotation from references.
1985 	 * This means we have a runaway feedback loop where a tiny
1986 	 * thrashing file LRU becomes infinitely more attractive than
1987 	 * anon pages.  Try to detect this based on file LRU size.
1988 	 */
1989 	if (global_reclaim(sc)) {
1990 		unsigned long zonefile;
1991 		unsigned long zonefree;
1992 
1993 		zonefree = zone_page_state(zone, NR_FREE_PAGES);
1994 		zonefile = zone_page_state(zone, NR_ACTIVE_FILE) +
1995 			   zone_page_state(zone, NR_INACTIVE_FILE);
1996 
1997 		if (unlikely(zonefile + zonefree <= high_wmark_pages(zone))) {
1998 			scan_balance = SCAN_ANON;
1999 			goto out;
2000 		}
2001 	}
2002 
2003 	/*
2004 	 * There is enough inactive page cache, do not reclaim
2005 	 * anything from the anonymous working set right now.
2006 	 */
2007 	if (!inactive_file_is_low(lruvec)) {
2008 		scan_balance = SCAN_FILE;
2009 		goto out;
2010 	}
2011 
2012 	scan_balance = SCAN_FRACT;
2013 
2014 	/*
2015 	 * With swappiness at 100, anonymous and file have the same priority.
2016 	 * This scanning priority is essentially the inverse of IO cost.
2017 	 */
2018 	anon_prio = swappiness;
2019 	file_prio = 200 - anon_prio;
2020 
2021 	/*
2022 	 * OK, so we have swap space and a fair amount of page cache
2023 	 * pages.  We use the recently rotated / recently scanned
2024 	 * ratios to determine how valuable each cache is.
2025 	 *
2026 	 * Because workloads change over time (and to avoid overflow)
2027 	 * we keep these statistics as a floating average, which ends
2028 	 * up weighing recent references more than old ones.
2029 	 *
2030 	 * anon in [0], file in [1]
2031 	 */
2032 
2033 	anon  = get_lru_size(lruvec, LRU_ACTIVE_ANON) +
2034 		get_lru_size(lruvec, LRU_INACTIVE_ANON);
2035 	file  = get_lru_size(lruvec, LRU_ACTIVE_FILE) +
2036 		get_lru_size(lruvec, LRU_INACTIVE_FILE);
2037 
2038 	spin_lock_irq(&zone->lru_lock);
2039 	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
2040 		reclaim_stat->recent_scanned[0] /= 2;
2041 		reclaim_stat->recent_rotated[0] /= 2;
2042 	}
2043 
2044 	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
2045 		reclaim_stat->recent_scanned[1] /= 2;
2046 		reclaim_stat->recent_rotated[1] /= 2;
2047 	}
2048 
2049 	/*
2050 	 * The amount of pressure on anon vs file pages is inversely
2051 	 * proportional to the fraction of recently scanned pages on
2052 	 * each list that were recently referenced and in active use.
2053 	 */
2054 	ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2055 	ap /= reclaim_stat->recent_rotated[0] + 1;
2056 
2057 	fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2058 	fp /= reclaim_stat->recent_rotated[1] + 1;
2059 	spin_unlock_irq(&zone->lru_lock);
2060 
2061 	fraction[0] = ap;
2062 	fraction[1] = fp;
2063 	denominator = ap + fp + 1;
2064 out:
2065 	some_scanned = false;
2066 	/* Only use force_scan on second pass. */
2067 	for (pass = 0; !some_scanned && pass < 2; pass++) {
2068 		*lru_pages = 0;
2069 		for_each_evictable_lru(lru) {
2070 			int file = is_file_lru(lru);
2071 			unsigned long size;
2072 			unsigned long scan;
2073 
2074 			size = get_lru_size(lruvec, lru);
2075 			scan = size >> sc->priority;
2076 
2077 			if (!scan && pass && force_scan)
2078 				scan = min(size, SWAP_CLUSTER_MAX);
2079 
2080 			switch (scan_balance) {
2081 			case SCAN_EQUAL:
2082 				/* Scan lists relative to size */
2083 				break;
2084 			case SCAN_FRACT:
2085 				/*
2086 				 * Scan types proportional to swappiness and
2087 				 * their relative recent reclaim efficiency.
2088 				 */
2089 				scan = div64_u64(scan * fraction[file],
2090 							denominator);
2091 				break;
2092 			case SCAN_FILE:
2093 			case SCAN_ANON:
2094 				/* Scan one type exclusively */
2095 				if ((scan_balance == SCAN_FILE) != file) {
2096 					size = 0;
2097 					scan = 0;
2098 				}
2099 				break;
2100 			default:
2101 				/* Look ma, no brain */
2102 				BUG();
2103 			}
2104 
2105 			*lru_pages += size;
2106 			nr[lru] = scan;
2107 
2108 			/*
2109 			 * Skip the second pass and don't force_scan,
2110 			 * if we found something to scan.
2111 			 */
2112 			some_scanned |= !!scan;
2113 		}
2114 	}
2115 }
2116 
2117 /*
2118  * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
2119  */
shrink_lruvec(struct lruvec * lruvec,int swappiness,struct scan_control * sc,unsigned long * lru_pages)2120 static void shrink_lruvec(struct lruvec *lruvec, int swappiness,
2121 			  struct scan_control *sc, unsigned long *lru_pages)
2122 {
2123 	unsigned long nr[NR_LRU_LISTS];
2124 	unsigned long targets[NR_LRU_LISTS];
2125 	unsigned long nr_to_scan;
2126 	enum lru_list lru;
2127 	unsigned long nr_reclaimed = 0;
2128 	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2129 	struct blk_plug plug;
2130 	bool scan_adjusted;
2131 
2132 	get_scan_count(lruvec, swappiness, sc, nr, lru_pages);
2133 
2134 	/* Record the original scan target for proportional adjustments later */
2135 	memcpy(targets, nr, sizeof(nr));
2136 
2137 	/*
2138 	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2139 	 * event that can occur when there is little memory pressure e.g.
2140 	 * multiple streaming readers/writers. Hence, we do not abort scanning
2141 	 * when the requested number of pages are reclaimed when scanning at
2142 	 * DEF_PRIORITY on the assumption that the fact we are direct
2143 	 * reclaiming implies that kswapd is not keeping up and it is best to
2144 	 * do a batch of work at once. For memcg reclaim one check is made to
2145 	 * abort proportional reclaim if either the file or anon lru has already
2146 	 * dropped to zero at the first pass.
2147 	 */
2148 	scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2149 			 sc->priority == DEF_PRIORITY);
2150 
2151 	blk_start_plug(&plug);
2152 	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2153 					nr[LRU_INACTIVE_FILE]) {
2154 		unsigned long nr_anon, nr_file, percentage;
2155 		unsigned long nr_scanned;
2156 
2157 		for_each_evictable_lru(lru) {
2158 			if (nr[lru]) {
2159 				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2160 				nr[lru] -= nr_to_scan;
2161 
2162 				nr_reclaimed += shrink_list(lru, nr_to_scan,
2163 							    lruvec, sc);
2164 			}
2165 		}
2166 
2167 		if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2168 			continue;
2169 
2170 		/*
2171 		 * For kswapd and memcg, reclaim at least the number of pages
2172 		 * requested. Ensure that the anon and file LRUs are scanned
2173 		 * proportionally what was requested by get_scan_count(). We
2174 		 * stop reclaiming one LRU and reduce the amount scanning
2175 		 * proportional to the original scan target.
2176 		 */
2177 		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2178 		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2179 
2180 		/*
2181 		 * It's just vindictive to attack the larger once the smaller
2182 		 * has gone to zero.  And given the way we stop scanning the
2183 		 * smaller below, this makes sure that we only make one nudge
2184 		 * towards proportionality once we've got nr_to_reclaim.
2185 		 */
2186 		if (!nr_file || !nr_anon)
2187 			break;
2188 
2189 		if (nr_file > nr_anon) {
2190 			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2191 						targets[LRU_ACTIVE_ANON] + 1;
2192 			lru = LRU_BASE;
2193 			percentage = nr_anon * 100 / scan_target;
2194 		} else {
2195 			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2196 						targets[LRU_ACTIVE_FILE] + 1;
2197 			lru = LRU_FILE;
2198 			percentage = nr_file * 100 / scan_target;
2199 		}
2200 
2201 		/* Stop scanning the smaller of the LRU */
2202 		nr[lru] = 0;
2203 		nr[lru + LRU_ACTIVE] = 0;
2204 
2205 		/*
2206 		 * Recalculate the other LRU scan count based on its original
2207 		 * scan target and the percentage scanning already complete
2208 		 */
2209 		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2210 		nr_scanned = targets[lru] - nr[lru];
2211 		nr[lru] = targets[lru] * (100 - percentage) / 100;
2212 		nr[lru] -= min(nr[lru], nr_scanned);
2213 
2214 		lru += LRU_ACTIVE;
2215 		nr_scanned = targets[lru] - nr[lru];
2216 		nr[lru] = targets[lru] * (100 - percentage) / 100;
2217 		nr[lru] -= min(nr[lru], nr_scanned);
2218 
2219 		scan_adjusted = true;
2220 	}
2221 	blk_finish_plug(&plug);
2222 	sc->nr_reclaimed += nr_reclaimed;
2223 
2224 	/*
2225 	 * Even if we did not try to evict anon pages at all, we want to
2226 	 * rebalance the anon lru active/inactive ratio.
2227 	 */
2228 	if (inactive_anon_is_low(lruvec))
2229 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2230 				   sc, LRU_ACTIVE_ANON);
2231 
2232 	throttle_vm_writeout(sc->gfp_mask);
2233 }
2234 
2235 /* Use reclaim/compaction for costly allocs or under memory pressure */
in_reclaim_compaction(struct scan_control * sc)2236 static bool in_reclaim_compaction(struct scan_control *sc)
2237 {
2238 	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2239 			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2240 			 sc->priority < DEF_PRIORITY - 2))
2241 		return true;
2242 
2243 	return false;
2244 }
2245 
2246 /*
2247  * Reclaim/compaction is used for high-order allocation requests. It reclaims
2248  * order-0 pages before compacting the zone. should_continue_reclaim() returns
2249  * true if more pages should be reclaimed such that when the page allocator
2250  * calls try_to_compact_zone() that it will have enough free pages to succeed.
2251  * It will give up earlier than that if there is difficulty reclaiming pages.
2252  */
should_continue_reclaim(struct zone * zone,unsigned long nr_reclaimed,unsigned long nr_scanned,struct scan_control * sc)2253 static inline bool should_continue_reclaim(struct zone *zone,
2254 					unsigned long nr_reclaimed,
2255 					unsigned long nr_scanned,
2256 					struct scan_control *sc)
2257 {
2258 	unsigned long pages_for_compaction;
2259 	unsigned long inactive_lru_pages;
2260 
2261 	/* If not in reclaim/compaction mode, stop */
2262 	if (!in_reclaim_compaction(sc))
2263 		return false;
2264 
2265 	/* Consider stopping depending on scan and reclaim activity */
2266 	if (sc->gfp_mask & __GFP_REPEAT) {
2267 		/*
2268 		 * For __GFP_REPEAT allocations, stop reclaiming if the
2269 		 * full LRU list has been scanned and we are still failing
2270 		 * to reclaim pages. This full LRU scan is potentially
2271 		 * expensive but a __GFP_REPEAT caller really wants to succeed
2272 		 */
2273 		if (!nr_reclaimed && !nr_scanned)
2274 			return false;
2275 	} else {
2276 		/*
2277 		 * For non-__GFP_REPEAT allocations which can presumably
2278 		 * fail without consequence, stop if we failed to reclaim
2279 		 * any pages from the last SWAP_CLUSTER_MAX number of
2280 		 * pages that were scanned. This will return to the
2281 		 * caller faster at the risk reclaim/compaction and
2282 		 * the resulting allocation attempt fails
2283 		 */
2284 		if (!nr_reclaimed)
2285 			return false;
2286 	}
2287 
2288 	/*
2289 	 * If we have not reclaimed enough pages for compaction and the
2290 	 * inactive lists are large enough, continue reclaiming
2291 	 */
2292 	pages_for_compaction = (2UL << sc->order);
2293 	inactive_lru_pages = zone_page_state(zone, NR_INACTIVE_FILE);
2294 	if (get_nr_swap_pages() > 0)
2295 		inactive_lru_pages += zone_page_state(zone, NR_INACTIVE_ANON);
2296 	if (sc->nr_reclaimed < pages_for_compaction &&
2297 			inactive_lru_pages > pages_for_compaction)
2298 		return true;
2299 
2300 	/* If compaction would go ahead or the allocation would succeed, stop */
2301 	switch (compaction_suitable(zone, sc->order, 0, 0)) {
2302 	case COMPACT_PARTIAL:
2303 	case COMPACT_CONTINUE:
2304 		return false;
2305 	default:
2306 		return true;
2307 	}
2308 }
2309 
shrink_zone(struct zone * zone,struct scan_control * sc,bool is_classzone)2310 static bool shrink_zone(struct zone *zone, struct scan_control *sc,
2311 			bool is_classzone)
2312 {
2313 	struct reclaim_state *reclaim_state = current->reclaim_state;
2314 	unsigned long nr_reclaimed, nr_scanned;
2315 	bool reclaimable = false;
2316 
2317 	do {
2318 		struct mem_cgroup *root = sc->target_mem_cgroup;
2319 		struct mem_cgroup_reclaim_cookie reclaim = {
2320 			.zone = zone,
2321 			.priority = sc->priority,
2322 		};
2323 		unsigned long zone_lru_pages = 0;
2324 		struct mem_cgroup *memcg;
2325 
2326 		nr_reclaimed = sc->nr_reclaimed;
2327 		nr_scanned = sc->nr_scanned;
2328 
2329 		memcg = mem_cgroup_iter(root, NULL, &reclaim);
2330 		do {
2331 			unsigned long lru_pages;
2332 			unsigned long scanned;
2333 			struct lruvec *lruvec;
2334 			int swappiness;
2335 
2336 			if (mem_cgroup_low(root, memcg)) {
2337 				if (!sc->may_thrash)
2338 					continue;
2339 				mem_cgroup_events(memcg, MEMCG_LOW, 1);
2340 			}
2341 
2342 			lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2343 			swappiness = mem_cgroup_swappiness(memcg);
2344 			scanned = sc->nr_scanned;
2345 
2346 			shrink_lruvec(lruvec, swappiness, sc, &lru_pages);
2347 			zone_lru_pages += lru_pages;
2348 
2349 			if (memcg && is_classzone)
2350 				shrink_slab(sc->gfp_mask, zone_to_nid(zone),
2351 					    memcg, sc->nr_scanned - scanned,
2352 					    lru_pages);
2353 
2354 			/*
2355 			 * Direct reclaim and kswapd have to scan all memory
2356 			 * cgroups to fulfill the overall scan target for the
2357 			 * zone.
2358 			 *
2359 			 * Limit reclaim, on the other hand, only cares about
2360 			 * nr_to_reclaim pages to be reclaimed and it will
2361 			 * retry with decreasing priority if one round over the
2362 			 * whole hierarchy is not sufficient.
2363 			 */
2364 			if (!global_reclaim(sc) &&
2365 					sc->nr_reclaimed >= sc->nr_to_reclaim) {
2366 				mem_cgroup_iter_break(root, memcg);
2367 				break;
2368 			}
2369 		} while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
2370 
2371 		/*
2372 		 * Shrink the slab caches in the same proportion that
2373 		 * the eligible LRU pages were scanned.
2374 		 */
2375 		if (global_reclaim(sc) && is_classzone)
2376 			shrink_slab(sc->gfp_mask, zone_to_nid(zone), NULL,
2377 				    sc->nr_scanned - nr_scanned,
2378 				    zone_lru_pages);
2379 
2380 		if (reclaim_state) {
2381 			sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2382 			reclaim_state->reclaimed_slab = 0;
2383 		}
2384 
2385 		vmpressure(sc->gfp_mask, sc->target_mem_cgroup,
2386 			   sc->nr_scanned - nr_scanned,
2387 			   sc->nr_reclaimed - nr_reclaimed);
2388 
2389 		if (sc->nr_reclaimed - nr_reclaimed)
2390 			reclaimable = true;
2391 
2392 	} while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed,
2393 					 sc->nr_scanned - nr_scanned, sc));
2394 
2395 	return reclaimable;
2396 }
2397 
2398 /*
2399  * Returns true if compaction should go ahead for a high-order request, or
2400  * the high-order allocation would succeed without compaction.
2401  */
compaction_ready(struct zone * zone,int order)2402 static inline bool compaction_ready(struct zone *zone, int order)
2403 {
2404 	unsigned long balance_gap, watermark;
2405 	bool watermark_ok;
2406 
2407 	/*
2408 	 * Compaction takes time to run and there are potentially other
2409 	 * callers using the pages just freed. Continue reclaiming until
2410 	 * there is a buffer of free pages available to give compaction
2411 	 * a reasonable chance of completing and allocating the page
2412 	 */
2413 	balance_gap = min(low_wmark_pages(zone), DIV_ROUND_UP(
2414 			zone->managed_pages, KSWAPD_ZONE_BALANCE_GAP_RATIO));
2415 	watermark = high_wmark_pages(zone) + balance_gap + (2UL << order);
2416 	watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);
2417 
2418 	/*
2419 	 * If compaction is deferred, reclaim up to a point where
2420 	 * compaction will have a chance of success when re-enabled
2421 	 */
2422 	if (compaction_deferred(zone, order))
2423 		return watermark_ok;
2424 
2425 	/*
2426 	 * If compaction is not ready to start and allocation is not likely
2427 	 * to succeed without it, then keep reclaiming.
2428 	 */
2429 	if (compaction_suitable(zone, order, 0, 0) == COMPACT_SKIPPED)
2430 		return false;
2431 
2432 	return watermark_ok;
2433 }
2434 
2435 /*
2436  * This is the direct reclaim path, for page-allocating processes.  We only
2437  * try to reclaim pages from zones which will satisfy the caller's allocation
2438  * request.
2439  *
2440  * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2441  * Because:
2442  * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2443  *    allocation or
2444  * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2445  *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2446  *    zone defense algorithm.
2447  *
2448  * If a zone is deemed to be full of pinned pages then just give it a light
2449  * scan then give up on it.
2450  *
2451  * Returns true if a zone was reclaimable.
2452  */
shrink_zones(struct zonelist * zonelist,struct scan_control * sc)2453 static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2454 {
2455 	struct zoneref *z;
2456 	struct zone *zone;
2457 	unsigned long nr_soft_reclaimed;
2458 	unsigned long nr_soft_scanned;
2459 	gfp_t orig_mask;
2460 	enum zone_type requested_highidx = gfp_zone(sc->gfp_mask);
2461 	bool reclaimable = false;
2462 
2463 	/*
2464 	 * If the number of buffer_heads in the machine exceeds the maximum
2465 	 * allowed level, force direct reclaim to scan the highmem zone as
2466 	 * highmem pages could be pinning lowmem pages storing buffer_heads
2467 	 */
2468 	orig_mask = sc->gfp_mask;
2469 	if (buffer_heads_over_limit)
2470 		sc->gfp_mask |= __GFP_HIGHMEM;
2471 
2472 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2473 					gfp_zone(sc->gfp_mask), sc->nodemask) {
2474 		enum zone_type classzone_idx;
2475 
2476 		if (!populated_zone(zone))
2477 			continue;
2478 
2479 		classzone_idx = requested_highidx;
2480 		while (!populated_zone(zone->zone_pgdat->node_zones +
2481 							classzone_idx))
2482 			classzone_idx--;
2483 
2484 		/*
2485 		 * Take care memory controller reclaiming has small influence
2486 		 * to global LRU.
2487 		 */
2488 		if (global_reclaim(sc)) {
2489 			if (!cpuset_zone_allowed(zone,
2490 						 GFP_KERNEL | __GFP_HARDWALL))
2491 				continue;
2492 
2493 			if (sc->priority != DEF_PRIORITY &&
2494 			    !zone_reclaimable(zone))
2495 				continue;	/* Let kswapd poll it */
2496 
2497 			/*
2498 			 * If we already have plenty of memory free for
2499 			 * compaction in this zone, don't free any more.
2500 			 * Even though compaction is invoked for any
2501 			 * non-zero order, only frequent costly order
2502 			 * reclamation is disruptive enough to become a
2503 			 * noticeable problem, like transparent huge
2504 			 * page allocations.
2505 			 */
2506 			if (IS_ENABLED(CONFIG_COMPACTION) &&
2507 			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2508 			    zonelist_zone_idx(z) <= requested_highidx &&
2509 			    compaction_ready(zone, sc->order)) {
2510 				sc->compaction_ready = true;
2511 				continue;
2512 			}
2513 
2514 			/*
2515 			 * This steals pages from memory cgroups over softlimit
2516 			 * and returns the number of reclaimed pages and
2517 			 * scanned pages. This works for global memory pressure
2518 			 * and balancing, not for a memcg's limit.
2519 			 */
2520 			nr_soft_scanned = 0;
2521 			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2522 						sc->order, sc->gfp_mask,
2523 						&nr_soft_scanned);
2524 			sc->nr_reclaimed += nr_soft_reclaimed;
2525 			sc->nr_scanned += nr_soft_scanned;
2526 			if (nr_soft_reclaimed)
2527 				reclaimable = true;
2528 			/* need some check for avoid more shrink_zone() */
2529 		}
2530 
2531 		if (shrink_zone(zone, sc, zone_idx(zone) == classzone_idx))
2532 			reclaimable = true;
2533 
2534 		if (global_reclaim(sc) &&
2535 		    !reclaimable && zone_reclaimable(zone))
2536 			reclaimable = true;
2537 	}
2538 
2539 	/*
2540 	 * Restore to original mask to avoid the impact on the caller if we
2541 	 * promoted it to __GFP_HIGHMEM.
2542 	 */
2543 	sc->gfp_mask = orig_mask;
2544 
2545 	return reclaimable;
2546 }
2547 
2548 /*
2549  * This is the main entry point to direct page reclaim.
2550  *
2551  * If a full scan of the inactive list fails to free enough memory then we
2552  * are "out of memory" and something needs to be killed.
2553  *
2554  * If the caller is !__GFP_FS then the probability of a failure is reasonably
2555  * high - the zone may be full of dirty or under-writeback pages, which this
2556  * caller can't do much about.  We kick the writeback threads and take explicit
2557  * naps in the hope that some of these pages can be written.  But if the
2558  * allocating task holds filesystem locks which prevent writeout this might not
2559  * work, and the allocation attempt will fail.
2560  *
2561  * returns:	0, if no pages reclaimed
2562  * 		else, the number of pages reclaimed
2563  */
do_try_to_free_pages(struct zonelist * zonelist,struct scan_control * sc)2564 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2565 					  struct scan_control *sc)
2566 {
2567 	int initial_priority = sc->priority;
2568 	unsigned long total_scanned = 0;
2569 	unsigned long writeback_threshold;
2570 	bool zones_reclaimable;
2571 retry:
2572 	delayacct_freepages_start();
2573 
2574 	if (global_reclaim(sc))
2575 		count_vm_event(ALLOCSTALL);
2576 
2577 	do {
2578 		vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2579 				sc->priority);
2580 		sc->nr_scanned = 0;
2581 		zones_reclaimable = shrink_zones(zonelist, sc);
2582 
2583 		total_scanned += sc->nr_scanned;
2584 		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2585 			break;
2586 
2587 		if (sc->compaction_ready)
2588 			break;
2589 
2590 		/*
2591 		 * If we're getting trouble reclaiming, start doing
2592 		 * writepage even in laptop mode.
2593 		 */
2594 		if (sc->priority < DEF_PRIORITY - 2)
2595 			sc->may_writepage = 1;
2596 
2597 		/*
2598 		 * Try to write back as many pages as we just scanned.  This
2599 		 * tends to cause slow streaming writers to write data to the
2600 		 * disk smoothly, at the dirtying rate, which is nice.   But
2601 		 * that's undesirable in laptop mode, where we *want* lumpy
2602 		 * writeout.  So in laptop mode, write out the whole world.
2603 		 */
2604 		writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2605 		if (total_scanned > writeback_threshold) {
2606 			wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2607 						WB_REASON_TRY_TO_FREE_PAGES);
2608 			sc->may_writepage = 1;
2609 		}
2610 	} while (--sc->priority >= 0);
2611 
2612 	delayacct_freepages_end();
2613 
2614 	if (sc->nr_reclaimed)
2615 		return sc->nr_reclaimed;
2616 
2617 	/* Aborted reclaim to try compaction? don't OOM, then */
2618 	if (sc->compaction_ready)
2619 		return 1;
2620 
2621 	/* Untapped cgroup reserves?  Don't OOM, retry. */
2622 	if (!sc->may_thrash) {
2623 		sc->priority = initial_priority;
2624 		sc->may_thrash = 1;
2625 		goto retry;
2626 	}
2627 
2628 	/* Any of the zones still reclaimable?  Don't OOM. */
2629 	if (zones_reclaimable)
2630 		return 1;
2631 
2632 	return 0;
2633 }
2634 
pfmemalloc_watermark_ok(pg_data_t * pgdat)2635 static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
2636 {
2637 	struct zone *zone;
2638 	unsigned long pfmemalloc_reserve = 0;
2639 	unsigned long free_pages = 0;
2640 	int i;
2641 	bool wmark_ok;
2642 
2643 	for (i = 0; i <= ZONE_NORMAL; i++) {
2644 		zone = &pgdat->node_zones[i];
2645 		if (!populated_zone(zone))
2646 			continue;
2647 
2648 		pfmemalloc_reserve += min_wmark_pages(zone);
2649 		free_pages += zone_page_state(zone, NR_FREE_PAGES);
2650 	}
2651 
2652 	/* If there are no reserves (unexpected config) then do not throttle */
2653 	if (!pfmemalloc_reserve)
2654 		return true;
2655 
2656 	wmark_ok = free_pages > pfmemalloc_reserve / 2;
2657 
2658 	/* kswapd must be awake if processes are being throttled */
2659 	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2660 		pgdat->classzone_idx = min(pgdat->classzone_idx,
2661 						(enum zone_type)ZONE_NORMAL);
2662 		wake_up_interruptible(&pgdat->kswapd_wait);
2663 	}
2664 
2665 	return wmark_ok;
2666 }
2667 
2668 /*
2669  * Throttle direct reclaimers if backing storage is backed by the network
2670  * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2671  * depleted. kswapd will continue to make progress and wake the processes
2672  * when the low watermark is reached.
2673  *
2674  * Returns true if a fatal signal was delivered during throttling. If this
2675  * happens, the page allocator should not consider triggering the OOM killer.
2676  */
throttle_direct_reclaim(gfp_t gfp_mask,struct zonelist * zonelist,nodemask_t * nodemask)2677 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2678 					nodemask_t *nodemask)
2679 {
2680 	struct zoneref *z;
2681 	struct zone *zone;
2682 	pg_data_t *pgdat = NULL;
2683 
2684 	/*
2685 	 * Kernel threads should not be throttled as they may be indirectly
2686 	 * responsible for cleaning pages necessary for reclaim to make forward
2687 	 * progress. kjournald for example may enter direct reclaim while
2688 	 * committing a transaction where throttling it could forcing other
2689 	 * processes to block on log_wait_commit().
2690 	 */
2691 	if (current->flags & PF_KTHREAD)
2692 		goto out;
2693 
2694 	/*
2695 	 * If a fatal signal is pending, this process should not throttle.
2696 	 * It should return quickly so it can exit and free its memory
2697 	 */
2698 	if (fatal_signal_pending(current))
2699 		goto out;
2700 
2701 	/*
2702 	 * Check if the pfmemalloc reserves are ok by finding the first node
2703 	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
2704 	 * GFP_KERNEL will be required for allocating network buffers when
2705 	 * swapping over the network so ZONE_HIGHMEM is unusable.
2706 	 *
2707 	 * Throttling is based on the first usable node and throttled processes
2708 	 * wait on a queue until kswapd makes progress and wakes them. There
2709 	 * is an affinity then between processes waking up and where reclaim
2710 	 * progress has been made assuming the process wakes on the same node.
2711 	 * More importantly, processes running on remote nodes will not compete
2712 	 * for remote pfmemalloc reserves and processes on different nodes
2713 	 * should make reasonable progress.
2714 	 */
2715 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2716 					gfp_zone(gfp_mask), nodemask) {
2717 		if (zone_idx(zone) > ZONE_NORMAL)
2718 			continue;
2719 
2720 		/* Throttle based on the first usable node */
2721 		pgdat = zone->zone_pgdat;
2722 		if (pfmemalloc_watermark_ok(pgdat))
2723 			goto out;
2724 		break;
2725 	}
2726 
2727 	/* If no zone was usable by the allocation flags then do not throttle */
2728 	if (!pgdat)
2729 		goto out;
2730 
2731 	/* Account for the throttling */
2732 	count_vm_event(PGSCAN_DIRECT_THROTTLE);
2733 
2734 	/*
2735 	 * If the caller cannot enter the filesystem, it's possible that it
2736 	 * is due to the caller holding an FS lock or performing a journal
2737 	 * transaction in the case of a filesystem like ext[3|4]. In this case,
2738 	 * it is not safe to block on pfmemalloc_wait as kswapd could be
2739 	 * blocked waiting on the same lock. Instead, throttle for up to a
2740 	 * second before continuing.
2741 	 */
2742 	if (!(gfp_mask & __GFP_FS)) {
2743 		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2744 			pfmemalloc_watermark_ok(pgdat), HZ);
2745 
2746 		goto check_pending;
2747 	}
2748 
2749 	/* Throttle until kswapd wakes the process */
2750 	wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2751 		pfmemalloc_watermark_ok(pgdat));
2752 
2753 check_pending:
2754 	if (fatal_signal_pending(current))
2755 		return true;
2756 
2757 out:
2758 	return false;
2759 }
2760 
try_to_free_pages(struct zonelist * zonelist,int order,gfp_t gfp_mask,nodemask_t * nodemask)2761 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2762 				gfp_t gfp_mask, nodemask_t *nodemask)
2763 {
2764 	unsigned long nr_reclaimed;
2765 	struct scan_control sc = {
2766 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2767 		.gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
2768 		.order = order,
2769 		.nodemask = nodemask,
2770 		.priority = DEF_PRIORITY,
2771 		.may_writepage = !laptop_mode,
2772 		.may_unmap = 1,
2773 		.may_swap = 1,
2774 	};
2775 
2776 	/*
2777 	 * Do not enter reclaim if fatal signal was delivered while throttled.
2778 	 * 1 is returned so that the page allocator does not OOM kill at this
2779 	 * point.
2780 	 */
2781 	if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
2782 		return 1;
2783 
2784 	trace_mm_vmscan_direct_reclaim_begin(order,
2785 				sc.may_writepage,
2786 				gfp_mask);
2787 
2788 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2789 
2790 	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2791 
2792 	return nr_reclaimed;
2793 }
2794 
2795 #ifdef CONFIG_MEMCG
2796 
mem_cgroup_shrink_node_zone(struct mem_cgroup * memcg,gfp_t gfp_mask,bool noswap,struct zone * zone,unsigned long * nr_scanned)2797 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
2798 						gfp_t gfp_mask, bool noswap,
2799 						struct zone *zone,
2800 						unsigned long *nr_scanned)
2801 {
2802 	struct scan_control sc = {
2803 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2804 		.target_mem_cgroup = memcg,
2805 		.may_writepage = !laptop_mode,
2806 		.may_unmap = 1,
2807 		.may_swap = !noswap,
2808 	};
2809 	struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2810 	int swappiness = mem_cgroup_swappiness(memcg);
2811 	unsigned long lru_pages;
2812 
2813 	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2814 			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2815 
2816 	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
2817 						      sc.may_writepage,
2818 						      sc.gfp_mask);
2819 
2820 	/*
2821 	 * NOTE: Although we can get the priority field, using it
2822 	 * here is not a good idea, since it limits the pages we can scan.
2823 	 * if we don't reclaim here, the shrink_zone from balance_pgdat
2824 	 * will pick up pages from other mem cgroup's as well. We hack
2825 	 * the priority and make it zero.
2826 	 */
2827 	shrink_lruvec(lruvec, swappiness, &sc, &lru_pages);
2828 
2829 	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2830 
2831 	*nr_scanned = sc.nr_scanned;
2832 	return sc.nr_reclaimed;
2833 }
2834 
try_to_free_mem_cgroup_pages(struct mem_cgroup * memcg,unsigned long nr_pages,gfp_t gfp_mask,bool may_swap)2835 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
2836 					   unsigned long nr_pages,
2837 					   gfp_t gfp_mask,
2838 					   bool may_swap)
2839 {
2840 	struct zonelist *zonelist;
2841 	unsigned long nr_reclaimed;
2842 	int nid;
2843 	struct scan_control sc = {
2844 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
2845 		.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2846 				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2847 		.target_mem_cgroup = memcg,
2848 		.priority = DEF_PRIORITY,
2849 		.may_writepage = !laptop_mode,
2850 		.may_unmap = 1,
2851 		.may_swap = may_swap,
2852 	};
2853 
2854 	/*
2855 	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2856 	 * take care of from where we get pages. So the node where we start the
2857 	 * scan does not need to be the current node.
2858 	 */
2859 	nid = mem_cgroup_select_victim_node(memcg);
2860 
2861 	zonelist = NODE_DATA(nid)->node_zonelists;
2862 
2863 	trace_mm_vmscan_memcg_reclaim_begin(0,
2864 					    sc.may_writepage,
2865 					    sc.gfp_mask);
2866 
2867 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2868 
2869 	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2870 
2871 	return nr_reclaimed;
2872 }
2873 #endif
2874 
age_active_anon(struct zone * zone,struct scan_control * sc)2875 static void age_active_anon(struct zone *zone, struct scan_control *sc)
2876 {
2877 	struct mem_cgroup *memcg;
2878 
2879 	if (!total_swap_pages)
2880 		return;
2881 
2882 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
2883 	do {
2884 		struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2885 
2886 		if (inactive_anon_is_low(lruvec))
2887 			shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2888 					   sc, LRU_ACTIVE_ANON);
2889 
2890 		memcg = mem_cgroup_iter(NULL, memcg, NULL);
2891 	} while (memcg);
2892 }
2893 
zone_balanced(struct zone * zone,int order,unsigned long balance_gap,int classzone_idx)2894 static bool zone_balanced(struct zone *zone, int order,
2895 			  unsigned long balance_gap, int classzone_idx)
2896 {
2897 	if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) +
2898 				    balance_gap, classzone_idx, 0))
2899 		return false;
2900 
2901 	if (IS_ENABLED(CONFIG_COMPACTION) && order && compaction_suitable(zone,
2902 				order, 0, classzone_idx) == COMPACT_SKIPPED)
2903 		return false;
2904 
2905 	return true;
2906 }
2907 
2908 /*
2909  * pgdat_balanced() is used when checking if a node is balanced.
2910  *
2911  * For order-0, all zones must be balanced!
2912  *
2913  * For high-order allocations only zones that meet watermarks and are in a
2914  * zone allowed by the callers classzone_idx are added to balanced_pages. The
2915  * total of balanced pages must be at least 25% of the zones allowed by
2916  * classzone_idx for the node to be considered balanced. Forcing all zones to
2917  * be balanced for high orders can cause excessive reclaim when there are
2918  * imbalanced zones.
2919  * The choice of 25% is due to
2920  *   o a 16M DMA zone that is balanced will not balance a zone on any
2921  *     reasonable sized machine
2922  *   o On all other machines, the top zone must be at least a reasonable
2923  *     percentage of the middle zones. For example, on 32-bit x86, highmem
2924  *     would need to be at least 256M for it to be balance a whole node.
2925  *     Similarly, on x86-64 the Normal zone would need to be at least 1G
2926  *     to balance a node on its own. These seemed like reasonable ratios.
2927  */
pgdat_balanced(pg_data_t * pgdat,int order,int classzone_idx)2928 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
2929 {
2930 	unsigned long managed_pages = 0;
2931 	unsigned long balanced_pages = 0;
2932 	int i;
2933 
2934 	/* Check the watermark levels */
2935 	for (i = 0; i <= classzone_idx; i++) {
2936 		struct zone *zone = pgdat->node_zones + i;
2937 
2938 		if (!populated_zone(zone))
2939 			continue;
2940 
2941 		managed_pages += zone->managed_pages;
2942 
2943 		/*
2944 		 * A special case here:
2945 		 *
2946 		 * balance_pgdat() skips over all_unreclaimable after
2947 		 * DEF_PRIORITY. Effectively, it considers them balanced so
2948 		 * they must be considered balanced here as well!
2949 		 */
2950 		if (!zone_reclaimable(zone)) {
2951 			balanced_pages += zone->managed_pages;
2952 			continue;
2953 		}
2954 
2955 		if (zone_balanced(zone, order, 0, i))
2956 			balanced_pages += zone->managed_pages;
2957 		else if (!order)
2958 			return false;
2959 	}
2960 
2961 	if (order)
2962 		return balanced_pages >= (managed_pages >> 2);
2963 	else
2964 		return true;
2965 }
2966 
2967 /*
2968  * Prepare kswapd for sleeping. This verifies that there are no processes
2969  * waiting in throttle_direct_reclaim() and that watermarks have been met.
2970  *
2971  * Returns true if kswapd is ready to sleep
2972  */
prepare_kswapd_sleep(pg_data_t * pgdat,int order,long remaining,int classzone_idx)2973 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
2974 					int classzone_idx)
2975 {
2976 	/* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2977 	if (remaining)
2978 		return false;
2979 
2980 	/*
2981 	 * The throttled processes are normally woken up in balance_pgdat() as
2982 	 * soon as pfmemalloc_watermark_ok() is true. But there is a potential
2983 	 * race between when kswapd checks the watermarks and a process gets
2984 	 * throttled. There is also a potential race if processes get
2985 	 * throttled, kswapd wakes, a large process exits thereby balancing the
2986 	 * zones, which causes kswapd to exit balance_pgdat() before reaching
2987 	 * the wake up checks. If kswapd is going to sleep, no process should
2988 	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
2989 	 * the wake up is premature, processes will wake kswapd and get
2990 	 * throttled again. The difference from wake ups in balance_pgdat() is
2991 	 * that here we are under prepare_to_wait().
2992 	 */
2993 	if (waitqueue_active(&pgdat->pfmemalloc_wait))
2994 		wake_up_all(&pgdat->pfmemalloc_wait);
2995 
2996 	return pgdat_balanced(pgdat, order, classzone_idx);
2997 }
2998 
2999 /*
3000  * kswapd shrinks the zone by the number of pages required to reach
3001  * the high watermark.
3002  *
3003  * Returns true if kswapd scanned at least the requested number of pages to
3004  * reclaim or if the lack of progress was due to pages under writeback.
3005  * This is used to determine if the scanning priority needs to be raised.
3006  */
kswapd_shrink_zone(struct zone * zone,int classzone_idx,struct scan_control * sc,unsigned long * nr_attempted)3007 static bool kswapd_shrink_zone(struct zone *zone,
3008 			       int classzone_idx,
3009 			       struct scan_control *sc,
3010 			       unsigned long *nr_attempted)
3011 {
3012 	int testorder = sc->order;
3013 	unsigned long balance_gap;
3014 	bool lowmem_pressure;
3015 
3016 	/* Reclaim above the high watermark. */
3017 	sc->nr_to_reclaim = max(SWAP_CLUSTER_MAX, high_wmark_pages(zone));
3018 
3019 	/*
3020 	 * Kswapd reclaims only single pages with compaction enabled. Trying
3021 	 * too hard to reclaim until contiguous free pages have become
3022 	 * available can hurt performance by evicting too much useful data
3023 	 * from memory. Do not reclaim more than needed for compaction.
3024 	 */
3025 	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
3026 			compaction_suitable(zone, sc->order, 0, classzone_idx)
3027 							!= COMPACT_SKIPPED)
3028 		testorder = 0;
3029 
3030 	/*
3031 	 * We put equal pressure on every zone, unless one zone has way too
3032 	 * many pages free already. The "too many pages" is defined as the
3033 	 * high wmark plus a "gap" where the gap is either the low
3034 	 * watermark or 1% of the zone, whichever is smaller.
3035 	 */
3036 	balance_gap = min(low_wmark_pages(zone), DIV_ROUND_UP(
3037 			zone->managed_pages, KSWAPD_ZONE_BALANCE_GAP_RATIO));
3038 
3039 	/*
3040 	 * If there is no low memory pressure or the zone is balanced then no
3041 	 * reclaim is necessary
3042 	 */
3043 	lowmem_pressure = (buffer_heads_over_limit && is_highmem(zone));
3044 	if (!lowmem_pressure && zone_balanced(zone, testorder,
3045 						balance_gap, classzone_idx))
3046 		return true;
3047 
3048 	shrink_zone(zone, sc, zone_idx(zone) == classzone_idx);
3049 
3050 	/* Account for the number of pages attempted to reclaim */
3051 	*nr_attempted += sc->nr_to_reclaim;
3052 
3053 	clear_bit(ZONE_WRITEBACK, &zone->flags);
3054 
3055 	/*
3056 	 * If a zone reaches its high watermark, consider it to be no longer
3057 	 * congested. It's possible there are dirty pages backed by congested
3058 	 * BDIs but as pressure is relieved, speculatively avoid congestion
3059 	 * waits.
3060 	 */
3061 	if (zone_reclaimable(zone) &&
3062 	    zone_balanced(zone, testorder, 0, classzone_idx)) {
3063 		clear_bit(ZONE_CONGESTED, &zone->flags);
3064 		clear_bit(ZONE_DIRTY, &zone->flags);
3065 	}
3066 
3067 	return sc->nr_scanned >= sc->nr_to_reclaim;
3068 }
3069 
3070 /*
3071  * For kswapd, balance_pgdat() will work across all this node's zones until
3072  * they are all at high_wmark_pages(zone).
3073  *
3074  * Returns the final order kswapd was reclaiming at
3075  *
3076  * There is special handling here for zones which are full of pinned pages.
3077  * This can happen if the pages are all mlocked, or if they are all used by
3078  * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
3079  * What we do is to detect the case where all pages in the zone have been
3080  * scanned twice and there has been zero successful reclaim.  Mark the zone as
3081  * dead and from now on, only perform a short scan.  Basically we're polling
3082  * the zone for when the problem goes away.
3083  *
3084  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
3085  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3086  * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
3087  * lower zones regardless of the number of free pages in the lower zones. This
3088  * interoperates with the page allocator fallback scheme to ensure that aging
3089  * of pages is balanced across the zones.
3090  */
balance_pgdat(pg_data_t * pgdat,int order,int * classzone_idx)3091 static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
3092 							int *classzone_idx)
3093 {
3094 	int i;
3095 	int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
3096 	unsigned long nr_soft_reclaimed;
3097 	unsigned long nr_soft_scanned;
3098 	struct scan_control sc = {
3099 		.gfp_mask = GFP_KERNEL,
3100 		.order = order,
3101 		.priority = DEF_PRIORITY,
3102 		.may_writepage = !laptop_mode,
3103 		.may_unmap = 1,
3104 		.may_swap = 1,
3105 	};
3106 	count_vm_event(PAGEOUTRUN);
3107 
3108 	do {
3109 		unsigned long nr_attempted = 0;
3110 		bool raise_priority = true;
3111 		bool pgdat_needs_compaction = (order > 0);
3112 
3113 		sc.nr_reclaimed = 0;
3114 
3115 		/*
3116 		 * Scan in the highmem->dma direction for the highest
3117 		 * zone which needs scanning
3118 		 */
3119 		for (i = pgdat->nr_zones - 1; i >= 0; i--) {
3120 			struct zone *zone = pgdat->node_zones + i;
3121 
3122 			if (!populated_zone(zone))
3123 				continue;
3124 
3125 			if (sc.priority != DEF_PRIORITY &&
3126 			    !zone_reclaimable(zone))
3127 				continue;
3128 
3129 			/*
3130 			 * Do some background aging of the anon list, to give
3131 			 * pages a chance to be referenced before reclaiming.
3132 			 */
3133 			age_active_anon(zone, &sc);
3134 
3135 			/*
3136 			 * If the number of buffer_heads in the machine
3137 			 * exceeds the maximum allowed level and this node
3138 			 * has a highmem zone, force kswapd to reclaim from
3139 			 * it to relieve lowmem pressure.
3140 			 */
3141 			if (buffer_heads_over_limit && is_highmem_idx(i)) {
3142 				end_zone = i;
3143 				break;
3144 			}
3145 
3146 			if (!zone_balanced(zone, order, 0, 0)) {
3147 				end_zone = i;
3148 				break;
3149 			} else {
3150 				/*
3151 				 * If balanced, clear the dirty and congested
3152 				 * flags
3153 				 */
3154 				clear_bit(ZONE_CONGESTED, &zone->flags);
3155 				clear_bit(ZONE_DIRTY, &zone->flags);
3156 			}
3157 		}
3158 
3159 		if (i < 0)
3160 			goto out;
3161 
3162 		for (i = 0; i <= end_zone; i++) {
3163 			struct zone *zone = pgdat->node_zones + i;
3164 
3165 			if (!populated_zone(zone))
3166 				continue;
3167 
3168 			/*
3169 			 * If any zone is currently balanced then kswapd will
3170 			 * not call compaction as it is expected that the
3171 			 * necessary pages are already available.
3172 			 */
3173 			if (pgdat_needs_compaction &&
3174 					zone_watermark_ok(zone, order,
3175 						low_wmark_pages(zone),
3176 						*classzone_idx, 0))
3177 				pgdat_needs_compaction = false;
3178 		}
3179 
3180 		/*
3181 		 * If we're getting trouble reclaiming, start doing writepage
3182 		 * even in laptop mode.
3183 		 */
3184 		if (sc.priority < DEF_PRIORITY - 2)
3185 			sc.may_writepage = 1;
3186 
3187 		/*
3188 		 * Now scan the zone in the dma->highmem direction, stopping
3189 		 * at the last zone which needs scanning.
3190 		 *
3191 		 * We do this because the page allocator works in the opposite
3192 		 * direction.  This prevents the page allocator from allocating
3193 		 * pages behind kswapd's direction of progress, which would
3194 		 * cause too much scanning of the lower zones.
3195 		 */
3196 		for (i = 0; i <= end_zone; i++) {
3197 			struct zone *zone = pgdat->node_zones + i;
3198 
3199 			if (!populated_zone(zone))
3200 				continue;
3201 
3202 			if (sc.priority != DEF_PRIORITY &&
3203 			    !zone_reclaimable(zone))
3204 				continue;
3205 
3206 			sc.nr_scanned = 0;
3207 
3208 			nr_soft_scanned = 0;
3209 			/*
3210 			 * Call soft limit reclaim before calling shrink_zone.
3211 			 */
3212 			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
3213 							order, sc.gfp_mask,
3214 							&nr_soft_scanned);
3215 			sc.nr_reclaimed += nr_soft_reclaimed;
3216 
3217 			/*
3218 			 * There should be no need to raise the scanning
3219 			 * priority if enough pages are already being scanned
3220 			 * that that high watermark would be met at 100%
3221 			 * efficiency.
3222 			 */
3223 			if (kswapd_shrink_zone(zone, end_zone,
3224 					       &sc, &nr_attempted))
3225 				raise_priority = false;
3226 		}
3227 
3228 		/*
3229 		 * If the low watermark is met there is no need for processes
3230 		 * to be throttled on pfmemalloc_wait as they should not be
3231 		 * able to safely make forward progress. Wake them
3232 		 */
3233 		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3234 				pfmemalloc_watermark_ok(pgdat))
3235 			wake_up_all(&pgdat->pfmemalloc_wait);
3236 
3237 		/*
3238 		 * Fragmentation may mean that the system cannot be rebalanced
3239 		 * for high-order allocations in all zones. If twice the
3240 		 * allocation size has been reclaimed and the zones are still
3241 		 * not balanced then recheck the watermarks at order-0 to
3242 		 * prevent kswapd reclaiming excessively. Assume that a
3243 		 * process requested a high-order can direct reclaim/compact.
3244 		 */
3245 		if (order && sc.nr_reclaimed >= 2UL << order)
3246 			order = sc.order = 0;
3247 
3248 		/* Check if kswapd should be suspending */
3249 		if (try_to_freeze() || kthread_should_stop())
3250 			break;
3251 
3252 		/*
3253 		 * Compact if necessary and kswapd is reclaiming at least the
3254 		 * high watermark number of pages as requsted
3255 		 */
3256 		if (pgdat_needs_compaction && sc.nr_reclaimed > nr_attempted)
3257 			compact_pgdat(pgdat, order);
3258 
3259 		/*
3260 		 * Raise priority if scanning rate is too low or there was no
3261 		 * progress in reclaiming pages
3262 		 */
3263 		if (raise_priority || !sc.nr_reclaimed)
3264 			sc.priority--;
3265 	} while (sc.priority >= 1 &&
3266 		 !pgdat_balanced(pgdat, order, *classzone_idx));
3267 
3268 out:
3269 	/*
3270 	 * Return the order we were reclaiming at so prepare_kswapd_sleep()
3271 	 * makes a decision on the order we were last reclaiming at. However,
3272 	 * if another caller entered the allocator slow path while kswapd
3273 	 * was awake, order will remain at the higher level
3274 	 */
3275 	*classzone_idx = end_zone;
3276 	return order;
3277 }
3278 
kswapd_try_to_sleep(pg_data_t * pgdat,int order,int classzone_idx)3279 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3280 {
3281 	long remaining = 0;
3282 	DEFINE_WAIT(wait);
3283 
3284 	if (freezing(current) || kthread_should_stop())
3285 		return;
3286 
3287 	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3288 
3289 	/* Try to sleep for a short interval */
3290 	if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3291 		remaining = schedule_timeout(HZ/10);
3292 		finish_wait(&pgdat->kswapd_wait, &wait);
3293 		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3294 	}
3295 
3296 	/*
3297 	 * After a short sleep, check if it was a premature sleep. If not, then
3298 	 * go fully to sleep until explicitly woken up.
3299 	 */
3300 	if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3301 		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3302 
3303 		/*
3304 		 * vmstat counters are not perfectly accurate and the estimated
3305 		 * value for counters such as NR_FREE_PAGES can deviate from the
3306 		 * true value by nr_online_cpus * threshold. To avoid the zone
3307 		 * watermarks being breached while under pressure, we reduce the
3308 		 * per-cpu vmstat threshold while kswapd is awake and restore
3309 		 * them before going back to sleep.
3310 		 */
3311 		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3312 
3313 		/*
3314 		 * Compaction records what page blocks it recently failed to
3315 		 * isolate pages from and skips them in the future scanning.
3316 		 * When kswapd is going to sleep, it is reasonable to assume
3317 		 * that pages and compaction may succeed so reset the cache.
3318 		 */
3319 		reset_isolation_suitable(pgdat);
3320 
3321 		if (!kthread_should_stop())
3322 			schedule();
3323 
3324 		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3325 	} else {
3326 		if (remaining)
3327 			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3328 		else
3329 			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3330 	}
3331 	finish_wait(&pgdat->kswapd_wait, &wait);
3332 }
3333 
3334 /*
3335  * The background pageout daemon, started as a kernel thread
3336  * from the init process.
3337  *
3338  * This basically trickles out pages so that we have _some_
3339  * free memory available even if there is no other activity
3340  * that frees anything up. This is needed for things like routing
3341  * etc, where we otherwise might have all activity going on in
3342  * asynchronous contexts that cannot page things out.
3343  *
3344  * If there are applications that are active memory-allocators
3345  * (most normal use), this basically shouldn't matter.
3346  */
kswapd(void * p)3347 static int kswapd(void *p)
3348 {
3349 	unsigned long order, new_order;
3350 	unsigned balanced_order;
3351 	int classzone_idx, new_classzone_idx;
3352 	int balanced_classzone_idx;
3353 	pg_data_t *pgdat = (pg_data_t*)p;
3354 	struct task_struct *tsk = current;
3355 
3356 	struct reclaim_state reclaim_state = {
3357 		.reclaimed_slab = 0,
3358 	};
3359 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3360 
3361 	lockdep_set_current_reclaim_state(GFP_KERNEL);
3362 
3363 	if (!cpumask_empty(cpumask))
3364 		set_cpus_allowed_ptr(tsk, cpumask);
3365 	current->reclaim_state = &reclaim_state;
3366 
3367 	/*
3368 	 * Tell the memory management that we're a "memory allocator",
3369 	 * and that if we need more memory we should get access to it
3370 	 * regardless (see "__alloc_pages()"). "kswapd" should
3371 	 * never get caught in the normal page freeing logic.
3372 	 *
3373 	 * (Kswapd normally doesn't need memory anyway, but sometimes
3374 	 * you need a small amount of memory in order to be able to
3375 	 * page out something else, and this flag essentially protects
3376 	 * us from recursively trying to free more memory as we're
3377 	 * trying to free the first piece of memory in the first place).
3378 	 */
3379 	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3380 	set_freezable();
3381 
3382 	order = new_order = 0;
3383 	balanced_order = 0;
3384 	classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
3385 	balanced_classzone_idx = classzone_idx;
3386 	for ( ; ; ) {
3387 		bool ret;
3388 
3389 		/*
3390 		 * If the last balance_pgdat was unsuccessful it's unlikely a
3391 		 * new request of a similar or harder type will succeed soon
3392 		 * so consider going to sleep on the basis we reclaimed at
3393 		 */
3394 		if (balanced_classzone_idx >= new_classzone_idx &&
3395 					balanced_order == new_order) {
3396 			new_order = pgdat->kswapd_max_order;
3397 			new_classzone_idx = pgdat->classzone_idx;
3398 			pgdat->kswapd_max_order =  0;
3399 			pgdat->classzone_idx = pgdat->nr_zones - 1;
3400 		}
3401 
3402 		if (order < new_order || classzone_idx > new_classzone_idx) {
3403 			/*
3404 			 * Don't sleep if someone wants a larger 'order'
3405 			 * allocation or has tigher zone constraints
3406 			 */
3407 			order = new_order;
3408 			classzone_idx = new_classzone_idx;
3409 		} else {
3410 			kswapd_try_to_sleep(pgdat, balanced_order,
3411 						balanced_classzone_idx);
3412 			order = pgdat->kswapd_max_order;
3413 			classzone_idx = pgdat->classzone_idx;
3414 			new_order = order;
3415 			new_classzone_idx = classzone_idx;
3416 			pgdat->kswapd_max_order = 0;
3417 			pgdat->classzone_idx = pgdat->nr_zones - 1;
3418 		}
3419 
3420 		ret = try_to_freeze();
3421 		if (kthread_should_stop())
3422 			break;
3423 
3424 		/*
3425 		 * We can speed up thawing tasks if we don't call balance_pgdat
3426 		 * after returning from the refrigerator
3427 		 */
3428 		if (!ret) {
3429 			trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
3430 			balanced_classzone_idx = classzone_idx;
3431 			balanced_order = balance_pgdat(pgdat, order,
3432 						&balanced_classzone_idx);
3433 		}
3434 	}
3435 
3436 	tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3437 	current->reclaim_state = NULL;
3438 	lockdep_clear_current_reclaim_state();
3439 
3440 	return 0;
3441 }
3442 
3443 /*
3444  * A zone is low on free memory, so wake its kswapd task to service it.
3445  */
wakeup_kswapd(struct zone * zone,int order,enum zone_type classzone_idx)3446 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
3447 {
3448 	pg_data_t *pgdat;
3449 
3450 	if (!populated_zone(zone))
3451 		return;
3452 
3453 	if (!cpuset_zone_allowed(zone, GFP_KERNEL | __GFP_HARDWALL))
3454 		return;
3455 	pgdat = zone->zone_pgdat;
3456 	if (pgdat->kswapd_max_order < order) {
3457 		pgdat->kswapd_max_order = order;
3458 		pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
3459 	}
3460 	if (!waitqueue_active(&pgdat->kswapd_wait))
3461 		return;
3462 	if (zone_balanced(zone, order, 0, 0))
3463 		return;
3464 
3465 	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3466 	wake_up_interruptible(&pgdat->kswapd_wait);
3467 }
3468 
3469 #ifdef CONFIG_HIBERNATION
3470 /*
3471  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3472  * freed pages.
3473  *
3474  * Rather than trying to age LRUs the aim is to preserve the overall
3475  * LRU order by reclaiming preferentially
3476  * inactive > active > active referenced > active mapped
3477  */
shrink_all_memory(unsigned long nr_to_reclaim)3478 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3479 {
3480 	struct reclaim_state reclaim_state;
3481 	struct scan_control sc = {
3482 		.nr_to_reclaim = nr_to_reclaim,
3483 		.gfp_mask = GFP_HIGHUSER_MOVABLE,
3484 		.priority = DEF_PRIORITY,
3485 		.may_writepage = 1,
3486 		.may_unmap = 1,
3487 		.may_swap = 1,
3488 		.hibernation_mode = 1,
3489 	};
3490 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3491 	struct task_struct *p = current;
3492 	unsigned long nr_reclaimed;
3493 
3494 	p->flags |= PF_MEMALLOC;
3495 	lockdep_set_current_reclaim_state(sc.gfp_mask);
3496 	reclaim_state.reclaimed_slab = 0;
3497 	p->reclaim_state = &reclaim_state;
3498 
3499 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3500 
3501 	p->reclaim_state = NULL;
3502 	lockdep_clear_current_reclaim_state();
3503 	p->flags &= ~PF_MEMALLOC;
3504 
3505 	return nr_reclaimed;
3506 }
3507 #endif /* CONFIG_HIBERNATION */
3508 
3509 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3510    not required for correctness.  So if the last cpu in a node goes
3511    away, we get changed to run anywhere: as the first one comes back,
3512    restore their cpu bindings. */
cpu_callback(struct notifier_block * nfb,unsigned long action,void * hcpu)3513 static int cpu_callback(struct notifier_block *nfb, unsigned long action,
3514 			void *hcpu)
3515 {
3516 	int nid;
3517 
3518 	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3519 		for_each_node_state(nid, N_MEMORY) {
3520 			pg_data_t *pgdat = NODE_DATA(nid);
3521 			const struct cpumask *mask;
3522 
3523 			mask = cpumask_of_node(pgdat->node_id);
3524 
3525 			if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3526 				/* One of our CPUs online: restore mask */
3527 				set_cpus_allowed_ptr(pgdat->kswapd, mask);
3528 		}
3529 	}
3530 	return NOTIFY_OK;
3531 }
3532 
3533 /*
3534  * This kswapd start function will be called by init and node-hot-add.
3535  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3536  */
kswapd_run(int nid)3537 int kswapd_run(int nid)
3538 {
3539 	pg_data_t *pgdat = NODE_DATA(nid);
3540 	int ret = 0;
3541 
3542 	if (pgdat->kswapd)
3543 		return 0;
3544 
3545 	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3546 	if (IS_ERR(pgdat->kswapd)) {
3547 		/* failure at boot is fatal */
3548 		BUG_ON(system_state == SYSTEM_BOOTING);
3549 		pr_err("Failed to start kswapd on node %d\n", nid);
3550 		ret = PTR_ERR(pgdat->kswapd);
3551 		pgdat->kswapd = NULL;
3552 	}
3553 	return ret;
3554 }
3555 
3556 /*
3557  * Called by memory hotplug when all memory in a node is offlined.  Caller must
3558  * hold mem_hotplug_begin/end().
3559  */
kswapd_stop(int nid)3560 void kswapd_stop(int nid)
3561 {
3562 	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3563 
3564 	if (kswapd) {
3565 		kthread_stop(kswapd);
3566 		NODE_DATA(nid)->kswapd = NULL;
3567 	}
3568 }
3569 
kswapd_init(void)3570 static int __init kswapd_init(void)
3571 {
3572 	int nid;
3573 
3574 	swap_setup();
3575 	for_each_node_state(nid, N_MEMORY)
3576  		kswapd_run(nid);
3577 	hotcpu_notifier(cpu_callback, 0);
3578 	return 0;
3579 }
3580 
3581 module_init(kswapd_init)
3582 
3583 #ifdef CONFIG_NUMA
3584 /*
3585  * Zone reclaim mode
3586  *
3587  * If non-zero call zone_reclaim when the number of free pages falls below
3588  * the watermarks.
3589  */
3590 int zone_reclaim_mode __read_mostly;
3591 
3592 #define RECLAIM_OFF 0
3593 #define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
3594 #define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
3595 #define RECLAIM_SWAP (1<<2)	/* Swap pages out during reclaim */
3596 
3597 /*
3598  * Priority for ZONE_RECLAIM. This determines the fraction of pages
3599  * of a node considered for each zone_reclaim. 4 scans 1/16th of
3600  * a zone.
3601  */
3602 #define ZONE_RECLAIM_PRIORITY 4
3603 
3604 /*
3605  * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3606  * occur.
3607  */
3608 int sysctl_min_unmapped_ratio = 1;
3609 
3610 /*
3611  * If the number of slab pages in a zone grows beyond this percentage then
3612  * slab reclaim needs to occur.
3613  */
3614 int sysctl_min_slab_ratio = 5;
3615 
zone_unmapped_file_pages(struct zone * zone)3616 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3617 {
3618 	unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3619 	unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3620 		zone_page_state(zone, NR_ACTIVE_FILE);
3621 
3622 	/*
3623 	 * It's possible for there to be more file mapped pages than
3624 	 * accounted for by the pages on the file LRU lists because
3625 	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3626 	 */
3627 	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3628 }
3629 
3630 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
zone_pagecache_reclaimable(struct zone * zone)3631 static long zone_pagecache_reclaimable(struct zone *zone)
3632 {
3633 	long nr_pagecache_reclaimable;
3634 	long delta = 0;
3635 
3636 	/*
3637 	 * If RECLAIM_SWAP is set, then all file pages are considered
3638 	 * potentially reclaimable. Otherwise, we have to worry about
3639 	 * pages like swapcache and zone_unmapped_file_pages() provides
3640 	 * a better estimate
3641 	 */
3642 	if (zone_reclaim_mode & RECLAIM_SWAP)
3643 		nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3644 	else
3645 		nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3646 
3647 	/* If we can't clean pages, remove dirty pages from consideration */
3648 	if (!(zone_reclaim_mode & RECLAIM_WRITE))
3649 		delta += zone_page_state(zone, NR_FILE_DIRTY);
3650 
3651 	/* Watch for any possible underflows due to delta */
3652 	if (unlikely(delta > nr_pagecache_reclaimable))
3653 		delta = nr_pagecache_reclaimable;
3654 
3655 	return nr_pagecache_reclaimable - delta;
3656 }
3657 
3658 /*
3659  * Try to free up some pages from this zone through reclaim.
3660  */
__zone_reclaim(struct zone * zone,gfp_t gfp_mask,unsigned int order)3661 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3662 {
3663 	/* Minimum pages needed in order to stay on node */
3664 	const unsigned long nr_pages = 1 << order;
3665 	struct task_struct *p = current;
3666 	struct reclaim_state reclaim_state;
3667 	struct scan_control sc = {
3668 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3669 		.gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
3670 		.order = order,
3671 		.priority = ZONE_RECLAIM_PRIORITY,
3672 		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3673 		.may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3674 		.may_swap = 1,
3675 	};
3676 
3677 	cond_resched();
3678 	/*
3679 	 * We need to be able to allocate from the reserves for RECLAIM_SWAP
3680 	 * and we also need to be able to write out pages for RECLAIM_WRITE
3681 	 * and RECLAIM_SWAP.
3682 	 */
3683 	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3684 	lockdep_set_current_reclaim_state(gfp_mask);
3685 	reclaim_state.reclaimed_slab = 0;
3686 	p->reclaim_state = &reclaim_state;
3687 
3688 	if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3689 		/*
3690 		 * Free memory by calling shrink zone with increasing
3691 		 * priorities until we have enough memory freed.
3692 		 */
3693 		do {
3694 			shrink_zone(zone, &sc, true);
3695 		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3696 	}
3697 
3698 	p->reclaim_state = NULL;
3699 	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3700 	lockdep_clear_current_reclaim_state();
3701 	return sc.nr_reclaimed >= nr_pages;
3702 }
3703 
zone_reclaim(struct zone * zone,gfp_t gfp_mask,unsigned int order)3704 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3705 {
3706 	int node_id;
3707 	int ret;
3708 
3709 	/*
3710 	 * Zone reclaim reclaims unmapped file backed pages and
3711 	 * slab pages if we are over the defined limits.
3712 	 *
3713 	 * A small portion of unmapped file backed pages is needed for
3714 	 * file I/O otherwise pages read by file I/O will be immediately
3715 	 * thrown out if the zone is overallocated. So we do not reclaim
3716 	 * if less than a specified percentage of the zone is used by
3717 	 * unmapped file backed pages.
3718 	 */
3719 	if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3720 	    zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3721 		return ZONE_RECLAIM_FULL;
3722 
3723 	if (!zone_reclaimable(zone))
3724 		return ZONE_RECLAIM_FULL;
3725 
3726 	/*
3727 	 * Do not scan if the allocation should not be delayed.
3728 	 */
3729 	if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3730 		return ZONE_RECLAIM_NOSCAN;
3731 
3732 	/*
3733 	 * Only run zone reclaim on the local zone or on zones that do not
3734 	 * have associated processors. This will favor the local processor
3735 	 * over remote processors and spread off node memory allocations
3736 	 * as wide as possible.
3737 	 */
3738 	node_id = zone_to_nid(zone);
3739 	if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3740 		return ZONE_RECLAIM_NOSCAN;
3741 
3742 	if (test_and_set_bit(ZONE_RECLAIM_LOCKED, &zone->flags))
3743 		return ZONE_RECLAIM_NOSCAN;
3744 
3745 	ret = __zone_reclaim(zone, gfp_mask, order);
3746 	clear_bit(ZONE_RECLAIM_LOCKED, &zone->flags);
3747 
3748 	if (!ret)
3749 		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3750 
3751 	return ret;
3752 }
3753 #endif
3754 
3755 /*
3756  * page_evictable - test whether a page is evictable
3757  * @page: the page to test
3758  *
3759  * Test whether page is evictable--i.e., should be placed on active/inactive
3760  * lists vs unevictable list.
3761  *
3762  * Reasons page might not be evictable:
3763  * (1) page's mapping marked unevictable
3764  * (2) page is part of an mlocked VMA
3765  *
3766  */
page_evictable(struct page * page)3767 int page_evictable(struct page *page)
3768 {
3769 	return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
3770 }
3771 
3772 #ifdef CONFIG_SHMEM
3773 /**
3774  * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3775  * @pages:	array of pages to check
3776  * @nr_pages:	number of pages to check
3777  *
3778  * Checks pages for evictability and moves them to the appropriate lru list.
3779  *
3780  * This function is only used for SysV IPC SHM_UNLOCK.
3781  */
check_move_unevictable_pages(struct page ** pages,int nr_pages)3782 void check_move_unevictable_pages(struct page **pages, int nr_pages)
3783 {
3784 	struct lruvec *lruvec;
3785 	struct zone *zone = NULL;
3786 	int pgscanned = 0;
3787 	int pgrescued = 0;
3788 	int i;
3789 
3790 	for (i = 0; i < nr_pages; i++) {
3791 		struct page *page = pages[i];
3792 		struct zone *pagezone;
3793 
3794 		pgscanned++;
3795 		pagezone = page_zone(page);
3796 		if (pagezone != zone) {
3797 			if (zone)
3798 				spin_unlock_irq(&zone->lru_lock);
3799 			zone = pagezone;
3800 			spin_lock_irq(&zone->lru_lock);
3801 		}
3802 		lruvec = mem_cgroup_page_lruvec(page, zone);
3803 
3804 		if (!PageLRU(page) || !PageUnevictable(page))
3805 			continue;
3806 
3807 		if (page_evictable(page)) {
3808 			enum lru_list lru = page_lru_base_type(page);
3809 
3810 			VM_BUG_ON_PAGE(PageActive(page), page);
3811 			ClearPageUnevictable(page);
3812 			del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3813 			add_page_to_lru_list(page, lruvec, lru);
3814 			pgrescued++;
3815 		}
3816 	}
3817 
3818 	if (zone) {
3819 		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3820 		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3821 		spin_unlock_irq(&zone->lru_lock);
3822 	}
3823 }
3824 #endif /* CONFIG_SHMEM */
3825