1 /*
2 * drm_irq.c IRQ and vblank support
3 *
4 * \author Rickard E. (Rik) Faith <faith@valinux.com>
5 * \author Gareth Hughes <gareth@valinux.com>
6 */
7
8 /*
9 * Created: Fri Mar 19 14:30:16 1999 by faith@valinux.com
10 *
11 * Copyright 1999, 2000 Precision Insight, Inc., Cedar Park, Texas.
12 * Copyright 2000 VA Linux Systems, Inc., Sunnyvale, California.
13 * All Rights Reserved.
14 *
15 * Permission is hereby granted, free of charge, to any person obtaining a
16 * copy of this software and associated documentation files (the "Software"),
17 * to deal in the Software without restriction, including without limitation
18 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
19 * and/or sell copies of the Software, and to permit persons to whom the
20 * Software is furnished to do so, subject to the following conditions:
21 *
22 * The above copyright notice and this permission notice (including the next
23 * paragraph) shall be included in all copies or substantial portions of the
24 * Software.
25 *
26 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
27 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
28 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
29 * VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
30 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
31 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
32 * OTHER DEALINGS IN THE SOFTWARE.
33 */
34
35 #include <drm/drmP.h>
36 #include "drm_trace.h"
37 #include "drm_internal.h"
38
39 #include <linux/interrupt.h> /* For task queue support */
40 #include <linux/slab.h>
41
42 #include <linux/vgaarb.h>
43 #include <linux/export.h>
44
45 /* Access macro for slots in vblank timestamp ringbuffer. */
46 #define vblanktimestamp(dev, crtc, count) \
47 ((dev)->vblank[crtc].time[(count) % DRM_VBLANKTIME_RBSIZE])
48
49 /* Retry timestamp calculation up to 3 times to satisfy
50 * drm_timestamp_precision before giving up.
51 */
52 #define DRM_TIMESTAMP_MAXRETRIES 3
53
54 /* Threshold in nanoseconds for detection of redundant
55 * vblank irq in drm_handle_vblank(). 1 msec should be ok.
56 */
57 #define DRM_REDUNDANT_VBLIRQ_THRESH_NS 1000000
58
59 static bool
60 drm_get_last_vbltimestamp(struct drm_device *dev, int crtc,
61 struct timeval *tvblank, unsigned flags);
62
63 static unsigned int drm_timestamp_precision = 20; /* Default to 20 usecs. */
64
65 /*
66 * Default to use monotonic timestamps for wait-for-vblank and page-flip
67 * complete events.
68 */
69 unsigned int drm_timestamp_monotonic = 1;
70
71 static int drm_vblank_offdelay = 5000; /* Default to 5000 msecs. */
72
73 module_param_named(vblankoffdelay, drm_vblank_offdelay, int, 0600);
74 module_param_named(timestamp_precision_usec, drm_timestamp_precision, int, 0600);
75 module_param_named(timestamp_monotonic, drm_timestamp_monotonic, int, 0600);
76
77 /**
78 * drm_update_vblank_count - update the master vblank counter
79 * @dev: DRM device
80 * @crtc: counter to update
81 *
82 * Call back into the driver to update the appropriate vblank counter
83 * (specified by @crtc). Deal with wraparound, if it occurred, and
84 * update the last read value so we can deal with wraparound on the next
85 * call if necessary.
86 *
87 * Only necessary when going from off->on, to account for frames we
88 * didn't get an interrupt for.
89 *
90 * Note: caller must hold dev->vbl_lock since this reads & writes
91 * device vblank fields.
92 */
drm_update_vblank_count(struct drm_device * dev,int crtc)93 static void drm_update_vblank_count(struct drm_device *dev, int crtc)
94 {
95 struct drm_vblank_crtc *vblank = &dev->vblank[crtc];
96 u32 cur_vblank, diff, tslot;
97 bool rc;
98 struct timeval t_vblank;
99
100 /*
101 * Interrupts were disabled prior to this call, so deal with counter
102 * wrap if needed.
103 * NOTE! It's possible we lost a full dev->max_vblank_count events
104 * here if the register is small or we had vblank interrupts off for
105 * a long time.
106 *
107 * We repeat the hardware vblank counter & timestamp query until
108 * we get consistent results. This to prevent races between gpu
109 * updating its hardware counter while we are retrieving the
110 * corresponding vblank timestamp.
111 */
112 do {
113 cur_vblank = dev->driver->get_vblank_counter(dev, crtc);
114 rc = drm_get_last_vbltimestamp(dev, crtc, &t_vblank, 0);
115 } while (cur_vblank != dev->driver->get_vblank_counter(dev, crtc));
116
117 /* Deal with counter wrap */
118 diff = cur_vblank - vblank->last;
119 if (cur_vblank < vblank->last) {
120 diff += dev->max_vblank_count;
121
122 DRM_DEBUG("last_vblank[%d]=0x%x, cur_vblank=0x%x => diff=0x%x\n",
123 crtc, vblank->last, cur_vblank, diff);
124 }
125
126 DRM_DEBUG("updating vblank count on crtc %d, missed %d\n",
127 crtc, diff);
128
129 if (diff == 0)
130 return;
131
132 /* Reinitialize corresponding vblank timestamp if high-precision query
133 * available. Skip this step if query unsupported or failed. Will
134 * reinitialize delayed at next vblank interrupt in that case and
135 * assign 0 for now, to mark the vblanktimestamp as invalid.
136 */
137 tslot = atomic_read(&vblank->count) + diff;
138 vblanktimestamp(dev, crtc, tslot) = rc ? t_vblank : (struct timeval) {0, 0};
139
140 smp_mb__before_atomic();
141 atomic_add(diff, &vblank->count);
142 smp_mb__after_atomic();
143 }
144
145 /*
146 * Disable vblank irq's on crtc, make sure that last vblank count
147 * of hardware and corresponding consistent software vblank counter
148 * are preserved, even if there are any spurious vblank irq's after
149 * disable.
150 */
vblank_disable_and_save(struct drm_device * dev,int crtc)151 static void vblank_disable_and_save(struct drm_device *dev, int crtc)
152 {
153 struct drm_vblank_crtc *vblank = &dev->vblank[crtc];
154 unsigned long irqflags;
155 u32 vblcount;
156 s64 diff_ns;
157 bool vblrc;
158 struct timeval tvblank;
159 int count = DRM_TIMESTAMP_MAXRETRIES;
160
161 /* Prevent vblank irq processing while disabling vblank irqs,
162 * so no updates of timestamps or count can happen after we've
163 * disabled. Needed to prevent races in case of delayed irq's.
164 */
165 spin_lock_irqsave(&dev->vblank_time_lock, irqflags);
166
167 /*
168 * If the vblank interrupt was already disabled update the count
169 * and timestamp to maintain the appearance that the counter
170 * has been ticking all along until this time. This makes the
171 * count account for the entire time between drm_vblank_on() and
172 * drm_vblank_off().
173 *
174 * But only do this if precise vblank timestamps are available.
175 * Otherwise we might read a totally bogus timestamp since drivers
176 * lacking precise timestamp support rely upon sampling the system clock
177 * at vblank interrupt time. Which obviously won't work out well if the
178 * vblank interrupt is disabled.
179 */
180 if (!vblank->enabled &&
181 drm_get_last_vbltimestamp(dev, crtc, &tvblank, 0)) {
182 drm_update_vblank_count(dev, crtc);
183 spin_unlock_irqrestore(&dev->vblank_time_lock, irqflags);
184 return;
185 }
186
187 /*
188 * Only disable vblank interrupts if they're enabled. This avoids
189 * calling the ->disable_vblank() operation in atomic context with the
190 * hardware potentially runtime suspended.
191 */
192 if (vblank->enabled) {
193 dev->driver->disable_vblank(dev, crtc);
194 vblank->enabled = false;
195 }
196
197 /* No further vblank irq's will be processed after
198 * this point. Get current hardware vblank count and
199 * vblank timestamp, repeat until they are consistent.
200 *
201 * FIXME: There is still a race condition here and in
202 * drm_update_vblank_count() which can cause off-by-one
203 * reinitialization of software vblank counter. If gpu
204 * vblank counter doesn't increment exactly at the leading
205 * edge of a vblank interval, then we can lose 1 count if
206 * we happen to execute between start of vblank and the
207 * delayed gpu counter increment.
208 */
209 do {
210 vblank->last = dev->driver->get_vblank_counter(dev, crtc);
211 vblrc = drm_get_last_vbltimestamp(dev, crtc, &tvblank, 0);
212 } while (vblank->last != dev->driver->get_vblank_counter(dev, crtc) && (--count) && vblrc);
213
214 if (!count)
215 vblrc = 0;
216
217 /* Compute time difference to stored timestamp of last vblank
218 * as updated by last invocation of drm_handle_vblank() in vblank irq.
219 */
220 vblcount = atomic_read(&vblank->count);
221 diff_ns = timeval_to_ns(&tvblank) -
222 timeval_to_ns(&vblanktimestamp(dev, crtc, vblcount));
223
224 /* If there is at least 1 msec difference between the last stored
225 * timestamp and tvblank, then we are currently executing our
226 * disable inside a new vblank interval, the tvblank timestamp
227 * corresponds to this new vblank interval and the irq handler
228 * for this vblank didn't run yet and won't run due to our disable.
229 * Therefore we need to do the job of drm_handle_vblank() and
230 * increment the vblank counter by one to account for this vblank.
231 *
232 * Skip this step if there isn't any high precision timestamp
233 * available. In that case we can't account for this and just
234 * hope for the best.
235 */
236 if (vblrc && (abs64(diff_ns) > 1000000)) {
237 /* Store new timestamp in ringbuffer. */
238 vblanktimestamp(dev, crtc, vblcount + 1) = tvblank;
239
240 /* Increment cooked vblank count. This also atomically commits
241 * the timestamp computed above.
242 */
243 smp_mb__before_atomic();
244 atomic_inc(&vblank->count);
245 smp_mb__after_atomic();
246 }
247
248 spin_unlock_irqrestore(&dev->vblank_time_lock, irqflags);
249 }
250
vblank_disable_fn(unsigned long arg)251 static void vblank_disable_fn(unsigned long arg)
252 {
253 struct drm_vblank_crtc *vblank = (void *)arg;
254 struct drm_device *dev = vblank->dev;
255 unsigned long irqflags;
256 int crtc = vblank->crtc;
257
258 if (!dev->vblank_disable_allowed)
259 return;
260
261 spin_lock_irqsave(&dev->vbl_lock, irqflags);
262 if (atomic_read(&vblank->refcount) == 0 && vblank->enabled) {
263 DRM_DEBUG("disabling vblank on crtc %d\n", crtc);
264 vblank_disable_and_save(dev, crtc);
265 }
266 spin_unlock_irqrestore(&dev->vbl_lock, irqflags);
267 }
268
269 /**
270 * drm_vblank_cleanup - cleanup vblank support
271 * @dev: DRM device
272 *
273 * This function cleans up any resources allocated in drm_vblank_init.
274 */
drm_vblank_cleanup(struct drm_device * dev)275 void drm_vblank_cleanup(struct drm_device *dev)
276 {
277 int crtc;
278
279 /* Bail if the driver didn't call drm_vblank_init() */
280 if (dev->num_crtcs == 0)
281 return;
282
283 for (crtc = 0; crtc < dev->num_crtcs; crtc++) {
284 struct drm_vblank_crtc *vblank = &dev->vblank[crtc];
285
286 WARN_ON(vblank->enabled &&
287 drm_core_check_feature(dev, DRIVER_MODESET));
288
289 del_timer_sync(&vblank->disable_timer);
290 }
291
292 kfree(dev->vblank);
293
294 dev->num_crtcs = 0;
295 }
296 EXPORT_SYMBOL(drm_vblank_cleanup);
297
298 /**
299 * drm_vblank_init - initialize vblank support
300 * @dev: drm_device
301 * @num_crtcs: number of crtcs supported by @dev
302 *
303 * This function initializes vblank support for @num_crtcs display pipelines.
304 *
305 * Returns:
306 * Zero on success or a negative error code on failure.
307 */
drm_vblank_init(struct drm_device * dev,int num_crtcs)308 int drm_vblank_init(struct drm_device *dev, int num_crtcs)
309 {
310 int i, ret = -ENOMEM;
311
312 spin_lock_init(&dev->vbl_lock);
313 spin_lock_init(&dev->vblank_time_lock);
314
315 dev->num_crtcs = num_crtcs;
316
317 dev->vblank = kcalloc(num_crtcs, sizeof(*dev->vblank), GFP_KERNEL);
318 if (!dev->vblank)
319 goto err;
320
321 for (i = 0; i < num_crtcs; i++) {
322 struct drm_vblank_crtc *vblank = &dev->vblank[i];
323
324 vblank->dev = dev;
325 vblank->crtc = i;
326 init_waitqueue_head(&vblank->queue);
327 setup_timer(&vblank->disable_timer, vblank_disable_fn,
328 (unsigned long)vblank);
329 }
330
331 DRM_INFO("Supports vblank timestamp caching Rev 2 (21.10.2013).\n");
332
333 /* Driver specific high-precision vblank timestamping supported? */
334 if (dev->driver->get_vblank_timestamp)
335 DRM_INFO("Driver supports precise vblank timestamp query.\n");
336 else
337 DRM_INFO("No driver support for vblank timestamp query.\n");
338
339 dev->vblank_disable_allowed = false;
340
341 return 0;
342
343 err:
344 dev->num_crtcs = 0;
345 return ret;
346 }
347 EXPORT_SYMBOL(drm_vblank_init);
348
drm_irq_vgaarb_nokms(void * cookie,bool state)349 static void drm_irq_vgaarb_nokms(void *cookie, bool state)
350 {
351 struct drm_device *dev = cookie;
352
353 if (dev->driver->vgaarb_irq) {
354 dev->driver->vgaarb_irq(dev, state);
355 return;
356 }
357
358 if (!dev->irq_enabled)
359 return;
360
361 if (state) {
362 if (dev->driver->irq_uninstall)
363 dev->driver->irq_uninstall(dev);
364 } else {
365 if (dev->driver->irq_preinstall)
366 dev->driver->irq_preinstall(dev);
367 if (dev->driver->irq_postinstall)
368 dev->driver->irq_postinstall(dev);
369 }
370 }
371
372 /**
373 * drm_irq_install - install IRQ handler
374 * @dev: DRM device
375 * @irq: IRQ number to install the handler for
376 *
377 * Initializes the IRQ related data. Installs the handler, calling the driver
378 * irq_preinstall() and irq_postinstall() functions before and after the
379 * installation.
380 *
381 * This is the simplified helper interface provided for drivers with no special
382 * needs. Drivers which need to install interrupt handlers for multiple
383 * interrupts must instead set drm_device->irq_enabled to signal the DRM core
384 * that vblank interrupts are available.
385 *
386 * Returns:
387 * Zero on success or a negative error code on failure.
388 */
drm_irq_install(struct drm_device * dev,int irq)389 int drm_irq_install(struct drm_device *dev, int irq)
390 {
391 int ret;
392 unsigned long sh_flags = 0;
393
394 if (!drm_core_check_feature(dev, DRIVER_HAVE_IRQ))
395 return -EINVAL;
396
397 if (irq == 0)
398 return -EINVAL;
399
400 /* Driver must have been initialized */
401 if (!dev->dev_private)
402 return -EINVAL;
403
404 if (dev->irq_enabled)
405 return -EBUSY;
406 dev->irq_enabled = true;
407
408 DRM_DEBUG("irq=%d\n", irq);
409
410 /* Before installing handler */
411 if (dev->driver->irq_preinstall)
412 dev->driver->irq_preinstall(dev);
413
414 /* Install handler */
415 if (drm_core_check_feature(dev, DRIVER_IRQ_SHARED))
416 sh_flags = IRQF_SHARED;
417
418 ret = request_irq(irq, dev->driver->irq_handler,
419 sh_flags, dev->driver->name, dev);
420
421 if (ret < 0) {
422 dev->irq_enabled = false;
423 return ret;
424 }
425
426 if (!drm_core_check_feature(dev, DRIVER_MODESET))
427 vga_client_register(dev->pdev, (void *)dev, drm_irq_vgaarb_nokms, NULL);
428
429 /* After installing handler */
430 if (dev->driver->irq_postinstall)
431 ret = dev->driver->irq_postinstall(dev);
432
433 if (ret < 0) {
434 dev->irq_enabled = false;
435 if (!drm_core_check_feature(dev, DRIVER_MODESET))
436 vga_client_register(dev->pdev, NULL, NULL, NULL);
437 free_irq(irq, dev);
438 } else {
439 dev->irq = irq;
440 }
441
442 return ret;
443 }
444 EXPORT_SYMBOL(drm_irq_install);
445
446 /**
447 * drm_irq_uninstall - uninstall the IRQ handler
448 * @dev: DRM device
449 *
450 * Calls the driver's irq_uninstall() function and unregisters the IRQ handler.
451 * This should only be called by drivers which used drm_irq_install() to set up
452 * their interrupt handler. Other drivers must only reset
453 * drm_device->irq_enabled to false.
454 *
455 * Note that for kernel modesetting drivers it is a bug if this function fails.
456 * The sanity checks are only to catch buggy user modesetting drivers which call
457 * the same function through an ioctl.
458 *
459 * Returns:
460 * Zero on success or a negative error code on failure.
461 */
drm_irq_uninstall(struct drm_device * dev)462 int drm_irq_uninstall(struct drm_device *dev)
463 {
464 unsigned long irqflags;
465 bool irq_enabled;
466 int i;
467
468 if (!drm_core_check_feature(dev, DRIVER_HAVE_IRQ))
469 return -EINVAL;
470
471 irq_enabled = dev->irq_enabled;
472 dev->irq_enabled = false;
473
474 /*
475 * Wake up any waiters so they don't hang. This is just to paper over
476 * isssues for UMS drivers which aren't in full control of their
477 * vblank/irq handling. KMS drivers must ensure that vblanks are all
478 * disabled when uninstalling the irq handler.
479 */
480 if (dev->num_crtcs) {
481 spin_lock_irqsave(&dev->vbl_lock, irqflags);
482 for (i = 0; i < dev->num_crtcs; i++) {
483 struct drm_vblank_crtc *vblank = &dev->vblank[i];
484
485 if (!vblank->enabled)
486 continue;
487
488 WARN_ON(drm_core_check_feature(dev, DRIVER_MODESET));
489
490 vblank_disable_and_save(dev, i);
491 wake_up(&vblank->queue);
492 }
493 spin_unlock_irqrestore(&dev->vbl_lock, irqflags);
494 }
495
496 if (!irq_enabled)
497 return -EINVAL;
498
499 DRM_DEBUG("irq=%d\n", dev->irq);
500
501 if (!drm_core_check_feature(dev, DRIVER_MODESET))
502 vga_client_register(dev->pdev, NULL, NULL, NULL);
503
504 if (dev->driver->irq_uninstall)
505 dev->driver->irq_uninstall(dev);
506
507 free_irq(dev->irq, dev);
508
509 return 0;
510 }
511 EXPORT_SYMBOL(drm_irq_uninstall);
512
513 /*
514 * IRQ control ioctl.
515 *
516 * \param inode device inode.
517 * \param file_priv DRM file private.
518 * \param cmd command.
519 * \param arg user argument, pointing to a drm_control structure.
520 * \return zero on success or a negative number on failure.
521 *
522 * Calls irq_install() or irq_uninstall() according to \p arg.
523 */
drm_control(struct drm_device * dev,void * data,struct drm_file * file_priv)524 int drm_control(struct drm_device *dev, void *data,
525 struct drm_file *file_priv)
526 {
527 struct drm_control *ctl = data;
528 int ret = 0, irq;
529
530 /* if we haven't irq we fallback for compatibility reasons -
531 * this used to be a separate function in drm_dma.h
532 */
533
534 if (!drm_core_check_feature(dev, DRIVER_HAVE_IRQ))
535 return 0;
536 if (drm_core_check_feature(dev, DRIVER_MODESET))
537 return 0;
538 /* UMS was only ever support on pci devices. */
539 if (WARN_ON(!dev->pdev))
540 return -EINVAL;
541
542 switch (ctl->func) {
543 case DRM_INST_HANDLER:
544 irq = dev->pdev->irq;
545
546 if (dev->if_version < DRM_IF_VERSION(1, 2) &&
547 ctl->irq != irq)
548 return -EINVAL;
549 mutex_lock(&dev->struct_mutex);
550 ret = drm_irq_install(dev, irq);
551 mutex_unlock(&dev->struct_mutex);
552
553 return ret;
554 case DRM_UNINST_HANDLER:
555 mutex_lock(&dev->struct_mutex);
556 ret = drm_irq_uninstall(dev);
557 mutex_unlock(&dev->struct_mutex);
558
559 return ret;
560 default:
561 return -EINVAL;
562 }
563 }
564
565 /**
566 * drm_calc_timestamping_constants - calculate vblank timestamp constants
567 * @crtc: drm_crtc whose timestamp constants should be updated.
568 * @mode: display mode containing the scanout timings
569 *
570 * Calculate and store various constants which are later
571 * needed by vblank and swap-completion timestamping, e.g,
572 * by drm_calc_vbltimestamp_from_scanoutpos(). They are
573 * derived from CRTC's true scanout timing, so they take
574 * things like panel scaling or other adjustments into account.
575 */
drm_calc_timestamping_constants(struct drm_crtc * crtc,const struct drm_display_mode * mode)576 void drm_calc_timestamping_constants(struct drm_crtc *crtc,
577 const struct drm_display_mode *mode)
578 {
579 int linedur_ns = 0, pixeldur_ns = 0, framedur_ns = 0;
580 int dotclock = mode->crtc_clock;
581
582 /* Valid dotclock? */
583 if (dotclock > 0) {
584 int frame_size = mode->crtc_htotal * mode->crtc_vtotal;
585
586 /*
587 * Convert scanline length in pixels and video
588 * dot clock to line duration, frame duration
589 * and pixel duration in nanoseconds:
590 */
591 pixeldur_ns = 1000000 / dotclock;
592 linedur_ns = div_u64((u64) mode->crtc_htotal * 1000000, dotclock);
593 framedur_ns = div_u64((u64) frame_size * 1000000, dotclock);
594
595 /*
596 * Fields of interlaced scanout modes are only half a frame duration.
597 */
598 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
599 framedur_ns /= 2;
600 } else
601 DRM_ERROR("crtc %d: Can't calculate constants, dotclock = 0!\n",
602 crtc->base.id);
603
604 crtc->pixeldur_ns = pixeldur_ns;
605 crtc->linedur_ns = linedur_ns;
606 crtc->framedur_ns = framedur_ns;
607
608 DRM_DEBUG("crtc %d: hwmode: htotal %d, vtotal %d, vdisplay %d\n",
609 crtc->base.id, mode->crtc_htotal,
610 mode->crtc_vtotal, mode->crtc_vdisplay);
611 DRM_DEBUG("crtc %d: clock %d kHz framedur %d linedur %d, pixeldur %d\n",
612 crtc->base.id, dotclock, framedur_ns,
613 linedur_ns, pixeldur_ns);
614 }
615 EXPORT_SYMBOL(drm_calc_timestamping_constants);
616
617 /**
618 * drm_calc_vbltimestamp_from_scanoutpos - precise vblank timestamp helper
619 * @dev: DRM device
620 * @crtc: Which CRTC's vblank timestamp to retrieve
621 * @max_error: Desired maximum allowable error in timestamps (nanosecs)
622 * On return contains true maximum error of timestamp
623 * @vblank_time: Pointer to struct timeval which should receive the timestamp
624 * @flags: Flags to pass to driver:
625 * 0 = Default,
626 * DRM_CALLED_FROM_VBLIRQ = If function is called from vbl IRQ handler
627 * @refcrtc: CRTC which defines scanout timing
628 * @mode: mode which defines the scanout timings
629 *
630 * Implements calculation of exact vblank timestamps from given drm_display_mode
631 * timings and current video scanout position of a CRTC. This can be called from
632 * within get_vblank_timestamp() implementation of a kms driver to implement the
633 * actual timestamping.
634 *
635 * Should return timestamps conforming to the OML_sync_control OpenML
636 * extension specification. The timestamp corresponds to the end of
637 * the vblank interval, aka start of scanout of topmost-leftmost display
638 * pixel in the following video frame.
639 *
640 * Requires support for optional dev->driver->get_scanout_position()
641 * in kms driver, plus a bit of setup code to provide a drm_display_mode
642 * that corresponds to the true scanout timing.
643 *
644 * The current implementation only handles standard video modes. It
645 * returns as no operation if a doublescan or interlaced video mode is
646 * active. Higher level code is expected to handle this.
647 *
648 * Returns:
649 * Negative value on error, failure or if not supported in current
650 * video mode:
651 *
652 * -EINVAL - Invalid CRTC.
653 * -EAGAIN - Temporary unavailable, e.g., called before initial modeset.
654 * -ENOTSUPP - Function not supported in current display mode.
655 * -EIO - Failed, e.g., due to failed scanout position query.
656 *
657 * Returns or'ed positive status flags on success:
658 *
659 * DRM_VBLANKTIME_SCANOUTPOS_METHOD - Signal this method used for timestamping.
660 * DRM_VBLANKTIME_INVBL - Timestamp taken while scanout was in vblank interval.
661 *
662 */
drm_calc_vbltimestamp_from_scanoutpos(struct drm_device * dev,int crtc,int * max_error,struct timeval * vblank_time,unsigned flags,const struct drm_crtc * refcrtc,const struct drm_display_mode * mode)663 int drm_calc_vbltimestamp_from_scanoutpos(struct drm_device *dev, int crtc,
664 int *max_error,
665 struct timeval *vblank_time,
666 unsigned flags,
667 const struct drm_crtc *refcrtc,
668 const struct drm_display_mode *mode)
669 {
670 struct timeval tv_etime;
671 ktime_t stime, etime;
672 int vbl_status;
673 int vpos, hpos, i;
674 int framedur_ns, linedur_ns, pixeldur_ns, delta_ns, duration_ns;
675 bool invbl;
676
677 if (crtc < 0 || crtc >= dev->num_crtcs) {
678 DRM_ERROR("Invalid crtc %d\n", crtc);
679 return -EINVAL;
680 }
681
682 /* Scanout position query not supported? Should not happen. */
683 if (!dev->driver->get_scanout_position) {
684 DRM_ERROR("Called from driver w/o get_scanout_position()!?\n");
685 return -EIO;
686 }
687
688 /* Durations of frames, lines, pixels in nanoseconds. */
689 framedur_ns = refcrtc->framedur_ns;
690 linedur_ns = refcrtc->linedur_ns;
691 pixeldur_ns = refcrtc->pixeldur_ns;
692
693 /* If mode timing undefined, just return as no-op:
694 * Happens during initial modesetting of a crtc.
695 */
696 if (framedur_ns == 0) {
697 DRM_DEBUG("crtc %d: Noop due to uninitialized mode.\n", crtc);
698 return -EAGAIN;
699 }
700
701 /* Get current scanout position with system timestamp.
702 * Repeat query up to DRM_TIMESTAMP_MAXRETRIES times
703 * if single query takes longer than max_error nanoseconds.
704 *
705 * This guarantees a tight bound on maximum error if
706 * code gets preempted or delayed for some reason.
707 */
708 for (i = 0; i < DRM_TIMESTAMP_MAXRETRIES; i++) {
709 /*
710 * Get vertical and horizontal scanout position vpos, hpos,
711 * and bounding timestamps stime, etime, pre/post query.
712 */
713 vbl_status = dev->driver->get_scanout_position(dev, crtc, flags, &vpos,
714 &hpos, &stime, &etime);
715
716 /* Return as no-op if scanout query unsupported or failed. */
717 if (!(vbl_status & DRM_SCANOUTPOS_VALID)) {
718 DRM_DEBUG("crtc %d : scanoutpos query failed [%d].\n",
719 crtc, vbl_status);
720 return -EIO;
721 }
722
723 /* Compute uncertainty in timestamp of scanout position query. */
724 duration_ns = ktime_to_ns(etime) - ktime_to_ns(stime);
725
726 /* Accept result with < max_error nsecs timing uncertainty. */
727 if (duration_ns <= *max_error)
728 break;
729 }
730
731 /* Noisy system timing? */
732 if (i == DRM_TIMESTAMP_MAXRETRIES) {
733 DRM_DEBUG("crtc %d: Noisy timestamp %d us > %d us [%d reps].\n",
734 crtc, duration_ns/1000, *max_error/1000, i);
735 }
736
737 /* Return upper bound of timestamp precision error. */
738 *max_error = duration_ns;
739
740 /* Check if in vblank area:
741 * vpos is >=0 in video scanout area, but negative
742 * within vblank area, counting down the number of lines until
743 * start of scanout.
744 */
745 invbl = vbl_status & DRM_SCANOUTPOS_IN_VBLANK;
746
747 /* Convert scanout position into elapsed time at raw_time query
748 * since start of scanout at first display scanline. delta_ns
749 * can be negative if start of scanout hasn't happened yet.
750 */
751 delta_ns = vpos * linedur_ns + hpos * pixeldur_ns;
752
753 if (!drm_timestamp_monotonic)
754 etime = ktime_mono_to_real(etime);
755
756 /* save this only for debugging purposes */
757 tv_etime = ktime_to_timeval(etime);
758 /* Subtract time delta from raw timestamp to get final
759 * vblank_time timestamp for end of vblank.
760 */
761 if (delta_ns < 0)
762 etime = ktime_add_ns(etime, -delta_ns);
763 else
764 etime = ktime_sub_ns(etime, delta_ns);
765 *vblank_time = ktime_to_timeval(etime);
766
767 DRM_DEBUG("crtc %d : v %d p(%d,%d)@ %ld.%ld -> %ld.%ld [e %d us, %d rep]\n",
768 crtc, (int)vbl_status, hpos, vpos,
769 (long)tv_etime.tv_sec, (long)tv_etime.tv_usec,
770 (long)vblank_time->tv_sec, (long)vblank_time->tv_usec,
771 duration_ns/1000, i);
772
773 vbl_status = DRM_VBLANKTIME_SCANOUTPOS_METHOD;
774 if (invbl)
775 vbl_status |= DRM_VBLANKTIME_IN_VBLANK;
776
777 return vbl_status;
778 }
779 EXPORT_SYMBOL(drm_calc_vbltimestamp_from_scanoutpos);
780
get_drm_timestamp(void)781 static struct timeval get_drm_timestamp(void)
782 {
783 ktime_t now;
784
785 now = drm_timestamp_monotonic ? ktime_get() : ktime_get_real();
786 return ktime_to_timeval(now);
787 }
788
789 /**
790 * drm_get_last_vbltimestamp - retrieve raw timestamp for the most recent
791 * vblank interval
792 * @dev: DRM device
793 * @crtc: which CRTC's vblank timestamp to retrieve
794 * @tvblank: Pointer to target struct timeval which should receive the timestamp
795 * @flags: Flags to pass to driver:
796 * 0 = Default,
797 * DRM_CALLED_FROM_VBLIRQ = If function is called from vbl IRQ handler
798 *
799 * Fetches the system timestamp corresponding to the time of the most recent
800 * vblank interval on specified CRTC. May call into kms-driver to
801 * compute the timestamp with a high-precision GPU specific method.
802 *
803 * Returns zero if timestamp originates from uncorrected do_gettimeofday()
804 * call, i.e., it isn't very precisely locked to the true vblank.
805 *
806 * Returns:
807 * True if timestamp is considered to be very precise, false otherwise.
808 */
809 static bool
drm_get_last_vbltimestamp(struct drm_device * dev,int crtc,struct timeval * tvblank,unsigned flags)810 drm_get_last_vbltimestamp(struct drm_device *dev, int crtc,
811 struct timeval *tvblank, unsigned flags)
812 {
813 int ret;
814
815 /* Define requested maximum error on timestamps (nanoseconds). */
816 int max_error = (int) drm_timestamp_precision * 1000;
817
818 /* Query driver if possible and precision timestamping enabled. */
819 if (dev->driver->get_vblank_timestamp && (max_error > 0)) {
820 ret = dev->driver->get_vblank_timestamp(dev, crtc, &max_error,
821 tvblank, flags);
822 if (ret > 0)
823 return true;
824 }
825
826 /* GPU high precision timestamp query unsupported or failed.
827 * Return current monotonic/gettimeofday timestamp as best estimate.
828 */
829 *tvblank = get_drm_timestamp();
830
831 return false;
832 }
833
834 /**
835 * drm_vblank_count - retrieve "cooked" vblank counter value
836 * @dev: DRM device
837 * @crtc: which counter to retrieve
838 *
839 * Fetches the "cooked" vblank count value that represents the number of
840 * vblank events since the system was booted, including lost events due to
841 * modesetting activity.
842 *
843 * This is the legacy version of drm_crtc_vblank_count().
844 *
845 * Returns:
846 * The software vblank counter.
847 */
drm_vblank_count(struct drm_device * dev,int crtc)848 u32 drm_vblank_count(struct drm_device *dev, int crtc)
849 {
850 struct drm_vblank_crtc *vblank = &dev->vblank[crtc];
851
852 if (WARN_ON(crtc >= dev->num_crtcs))
853 return 0;
854 return atomic_read(&vblank->count);
855 }
856 EXPORT_SYMBOL(drm_vblank_count);
857
858 /**
859 * drm_crtc_vblank_count - retrieve "cooked" vblank counter value
860 * @crtc: which counter to retrieve
861 *
862 * Fetches the "cooked" vblank count value that represents the number of
863 * vblank events since the system was booted, including lost events due to
864 * modesetting activity.
865 *
866 * This is the native KMS version of drm_vblank_count().
867 *
868 * Returns:
869 * The software vblank counter.
870 */
drm_crtc_vblank_count(struct drm_crtc * crtc)871 u32 drm_crtc_vblank_count(struct drm_crtc *crtc)
872 {
873 return drm_vblank_count(crtc->dev, drm_crtc_index(crtc));
874 }
875 EXPORT_SYMBOL(drm_crtc_vblank_count);
876
877 /**
878 * drm_vblank_count_and_time - retrieve "cooked" vblank counter value
879 * and the system timestamp corresponding to that vblank counter value.
880 *
881 * @dev: DRM device
882 * @crtc: which counter to retrieve
883 * @vblanktime: Pointer to struct timeval to receive the vblank timestamp.
884 *
885 * Fetches the "cooked" vblank count value that represents the number of
886 * vblank events since the system was booted, including lost events due to
887 * modesetting activity. Returns corresponding system timestamp of the time
888 * of the vblank interval that corresponds to the current vblank counter value.
889 */
drm_vblank_count_and_time(struct drm_device * dev,int crtc,struct timeval * vblanktime)890 u32 drm_vblank_count_and_time(struct drm_device *dev, int crtc,
891 struct timeval *vblanktime)
892 {
893 struct drm_vblank_crtc *vblank = &dev->vblank[crtc];
894 u32 cur_vblank;
895
896 if (WARN_ON(crtc >= dev->num_crtcs))
897 return 0;
898
899 /* Read timestamp from slot of _vblank_time ringbuffer
900 * that corresponds to current vblank count. Retry if
901 * count has incremented during readout. This works like
902 * a seqlock.
903 */
904 do {
905 cur_vblank = atomic_read(&vblank->count);
906 *vblanktime = vblanktimestamp(dev, crtc, cur_vblank);
907 smp_rmb();
908 } while (cur_vblank != atomic_read(&vblank->count));
909
910 return cur_vblank;
911 }
912 EXPORT_SYMBOL(drm_vblank_count_and_time);
913
send_vblank_event(struct drm_device * dev,struct drm_pending_vblank_event * e,unsigned long seq,struct timeval * now)914 static void send_vblank_event(struct drm_device *dev,
915 struct drm_pending_vblank_event *e,
916 unsigned long seq, struct timeval *now)
917 {
918 WARN_ON_SMP(!spin_is_locked(&dev->event_lock));
919 e->event.sequence = seq;
920 e->event.tv_sec = now->tv_sec;
921 e->event.tv_usec = now->tv_usec;
922
923 list_add_tail(&e->base.link,
924 &e->base.file_priv->event_list);
925 wake_up_interruptible(&e->base.file_priv->event_wait);
926 trace_drm_vblank_event_delivered(e->base.pid, e->pipe,
927 e->event.sequence);
928 }
929
930 /**
931 * drm_send_vblank_event - helper to send vblank event after pageflip
932 * @dev: DRM device
933 * @crtc: CRTC in question
934 * @e: the event to send
935 *
936 * Updates sequence # and timestamp on event, and sends it to userspace.
937 * Caller must hold event lock.
938 *
939 * This is the legacy version of drm_crtc_send_vblank_event().
940 */
drm_send_vblank_event(struct drm_device * dev,int crtc,struct drm_pending_vblank_event * e)941 void drm_send_vblank_event(struct drm_device *dev, int crtc,
942 struct drm_pending_vblank_event *e)
943 {
944 struct timeval now;
945 unsigned int seq;
946
947 if (crtc >= 0) {
948 seq = drm_vblank_count_and_time(dev, crtc, &now);
949 } else {
950 seq = 0;
951
952 now = get_drm_timestamp();
953 }
954 e->pipe = crtc;
955 send_vblank_event(dev, e, seq, &now);
956 }
957 EXPORT_SYMBOL(drm_send_vblank_event);
958
959 /**
960 * drm_crtc_send_vblank_event - helper to send vblank event after pageflip
961 * @crtc: the source CRTC of the vblank event
962 * @e: the event to send
963 *
964 * Updates sequence # and timestamp on event, and sends it to userspace.
965 * Caller must hold event lock.
966 *
967 * This is the native KMS version of drm_send_vblank_event().
968 */
drm_crtc_send_vblank_event(struct drm_crtc * crtc,struct drm_pending_vblank_event * e)969 void drm_crtc_send_vblank_event(struct drm_crtc *crtc,
970 struct drm_pending_vblank_event *e)
971 {
972 drm_send_vblank_event(crtc->dev, drm_crtc_index(crtc), e);
973 }
974 EXPORT_SYMBOL(drm_crtc_send_vblank_event);
975
976 /**
977 * drm_vblank_enable - enable the vblank interrupt on a CRTC
978 * @dev: DRM device
979 * @crtc: CRTC in question
980 */
drm_vblank_enable(struct drm_device * dev,int crtc)981 static int drm_vblank_enable(struct drm_device *dev, int crtc)
982 {
983 struct drm_vblank_crtc *vblank = &dev->vblank[crtc];
984 int ret = 0;
985
986 assert_spin_locked(&dev->vbl_lock);
987
988 spin_lock(&dev->vblank_time_lock);
989
990 if (!vblank->enabled) {
991 /*
992 * Enable vblank irqs under vblank_time_lock protection.
993 * All vblank count & timestamp updates are held off
994 * until we are done reinitializing master counter and
995 * timestamps. Filtercode in drm_handle_vblank() will
996 * prevent double-accounting of same vblank interval.
997 */
998 ret = dev->driver->enable_vblank(dev, crtc);
999 DRM_DEBUG("enabling vblank on crtc %d, ret: %d\n", crtc, ret);
1000 if (ret)
1001 atomic_dec(&vblank->refcount);
1002 else {
1003 vblank->enabled = true;
1004 drm_update_vblank_count(dev, crtc);
1005 }
1006 }
1007
1008 spin_unlock(&dev->vblank_time_lock);
1009
1010 return ret;
1011 }
1012
1013 /**
1014 * drm_vblank_get - get a reference count on vblank events
1015 * @dev: DRM device
1016 * @crtc: which CRTC to own
1017 *
1018 * Acquire a reference count on vblank events to avoid having them disabled
1019 * while in use.
1020 *
1021 * This is the legacy version of drm_crtc_vblank_get().
1022 *
1023 * Returns:
1024 * Zero on success, nonzero on failure.
1025 */
drm_vblank_get(struct drm_device * dev,int crtc)1026 int drm_vblank_get(struct drm_device *dev, int crtc)
1027 {
1028 struct drm_vblank_crtc *vblank = &dev->vblank[crtc];
1029 unsigned long irqflags;
1030 int ret = 0;
1031
1032 if (WARN_ON(crtc >= dev->num_crtcs))
1033 return -EINVAL;
1034
1035 spin_lock_irqsave(&dev->vbl_lock, irqflags);
1036 /* Going from 0->1 means we have to enable interrupts again */
1037 if (atomic_add_return(1, &vblank->refcount) == 1) {
1038 ret = drm_vblank_enable(dev, crtc);
1039 } else {
1040 if (!vblank->enabled) {
1041 atomic_dec(&vblank->refcount);
1042 ret = -EINVAL;
1043 }
1044 }
1045 spin_unlock_irqrestore(&dev->vbl_lock, irqflags);
1046
1047 return ret;
1048 }
1049 EXPORT_SYMBOL(drm_vblank_get);
1050
1051 /**
1052 * drm_crtc_vblank_get - get a reference count on vblank events
1053 * @crtc: which CRTC to own
1054 *
1055 * Acquire a reference count on vblank events to avoid having them disabled
1056 * while in use.
1057 *
1058 * This is the native kms version of drm_vblank_get().
1059 *
1060 * Returns:
1061 * Zero on success, nonzero on failure.
1062 */
drm_crtc_vblank_get(struct drm_crtc * crtc)1063 int drm_crtc_vblank_get(struct drm_crtc *crtc)
1064 {
1065 return drm_vblank_get(crtc->dev, drm_crtc_index(crtc));
1066 }
1067 EXPORT_SYMBOL(drm_crtc_vblank_get);
1068
1069 /**
1070 * drm_vblank_put - give up ownership of vblank events
1071 * @dev: DRM device
1072 * @crtc: which counter to give up
1073 *
1074 * Release ownership of a given vblank counter, turning off interrupts
1075 * if possible. Disable interrupts after drm_vblank_offdelay milliseconds.
1076 *
1077 * This is the legacy version of drm_crtc_vblank_put().
1078 */
drm_vblank_put(struct drm_device * dev,int crtc)1079 void drm_vblank_put(struct drm_device *dev, int crtc)
1080 {
1081 struct drm_vblank_crtc *vblank = &dev->vblank[crtc];
1082
1083 if (WARN_ON(atomic_read(&vblank->refcount) == 0))
1084 return;
1085
1086 if (WARN_ON(crtc >= dev->num_crtcs))
1087 return;
1088
1089 /* Last user schedules interrupt disable */
1090 if (atomic_dec_and_test(&vblank->refcount)) {
1091 if (drm_vblank_offdelay == 0)
1092 return;
1093 else if (dev->vblank_disable_immediate || drm_vblank_offdelay < 0)
1094 vblank_disable_fn((unsigned long)vblank);
1095 else
1096 mod_timer(&vblank->disable_timer,
1097 jiffies + ((drm_vblank_offdelay * HZ)/1000));
1098 }
1099 }
1100 EXPORT_SYMBOL(drm_vblank_put);
1101
1102 /**
1103 * drm_crtc_vblank_put - give up ownership of vblank events
1104 * @crtc: which counter to give up
1105 *
1106 * Release ownership of a given vblank counter, turning off interrupts
1107 * if possible. Disable interrupts after drm_vblank_offdelay milliseconds.
1108 *
1109 * This is the native kms version of drm_vblank_put().
1110 */
drm_crtc_vblank_put(struct drm_crtc * crtc)1111 void drm_crtc_vblank_put(struct drm_crtc *crtc)
1112 {
1113 drm_vblank_put(crtc->dev, drm_crtc_index(crtc));
1114 }
1115 EXPORT_SYMBOL(drm_crtc_vblank_put);
1116
1117 /**
1118 * drm_wait_one_vblank - wait for one vblank
1119 * @dev: DRM device
1120 * @crtc: crtc index
1121 *
1122 * This waits for one vblank to pass on @crtc, using the irq driver interfaces.
1123 * It is a failure to call this when the vblank irq for @crtc is disabled, e.g.
1124 * due to lack of driver support or because the crtc is off.
1125 */
drm_wait_one_vblank(struct drm_device * dev,int crtc)1126 void drm_wait_one_vblank(struct drm_device *dev, int crtc)
1127 {
1128 int ret;
1129 u32 last;
1130
1131 ret = drm_vblank_get(dev, crtc);
1132 if (WARN(ret, "vblank not available on crtc %i, ret=%i\n", crtc, ret))
1133 return;
1134
1135 last = drm_vblank_count(dev, crtc);
1136
1137 ret = wait_event_timeout(dev->vblank[crtc].queue,
1138 last != drm_vblank_count(dev, crtc),
1139 msecs_to_jiffies(100));
1140
1141 WARN(ret == 0, "vblank wait timed out on crtc %i\n", crtc);
1142
1143 drm_vblank_put(dev, crtc);
1144 }
1145 EXPORT_SYMBOL(drm_wait_one_vblank);
1146
1147 /**
1148 * drm_crtc_wait_one_vblank - wait for one vblank
1149 * @crtc: DRM crtc
1150 *
1151 * This waits for one vblank to pass on @crtc, using the irq driver interfaces.
1152 * It is a failure to call this when the vblank irq for @crtc is disabled, e.g.
1153 * due to lack of driver support or because the crtc is off.
1154 */
drm_crtc_wait_one_vblank(struct drm_crtc * crtc)1155 void drm_crtc_wait_one_vblank(struct drm_crtc *crtc)
1156 {
1157 drm_wait_one_vblank(crtc->dev, drm_crtc_index(crtc));
1158 }
1159 EXPORT_SYMBOL(drm_crtc_wait_one_vblank);
1160
1161 /**
1162 * drm_vblank_off - disable vblank events on a CRTC
1163 * @dev: DRM device
1164 * @crtc: CRTC in question
1165 *
1166 * Drivers can use this function to shut down the vblank interrupt handling when
1167 * disabling a crtc. This function ensures that the latest vblank frame count is
1168 * stored so that drm_vblank_on() can restore it again.
1169 *
1170 * Drivers must use this function when the hardware vblank counter can get
1171 * reset, e.g. when suspending.
1172 *
1173 * This is the legacy version of drm_crtc_vblank_off().
1174 */
drm_vblank_off(struct drm_device * dev,int crtc)1175 void drm_vblank_off(struct drm_device *dev, int crtc)
1176 {
1177 struct drm_vblank_crtc *vblank = &dev->vblank[crtc];
1178 struct drm_pending_vblank_event *e, *t;
1179 struct timeval now;
1180 unsigned long irqflags;
1181 unsigned int seq;
1182
1183 if (WARN_ON(crtc >= dev->num_crtcs))
1184 return;
1185
1186 spin_lock_irqsave(&dev->event_lock, irqflags);
1187
1188 spin_lock(&dev->vbl_lock);
1189 vblank_disable_and_save(dev, crtc);
1190 wake_up(&vblank->queue);
1191
1192 /*
1193 * Prevent subsequent drm_vblank_get() from re-enabling
1194 * the vblank interrupt by bumping the refcount.
1195 */
1196 if (!vblank->inmodeset) {
1197 atomic_inc(&vblank->refcount);
1198 vblank->inmodeset = 1;
1199 }
1200 spin_unlock(&dev->vbl_lock);
1201
1202 /* Send any queued vblank events, lest the natives grow disquiet */
1203 seq = drm_vblank_count_and_time(dev, crtc, &now);
1204
1205 list_for_each_entry_safe(e, t, &dev->vblank_event_list, base.link) {
1206 if (e->pipe != crtc)
1207 continue;
1208 DRM_DEBUG("Sending premature vblank event on disable: \
1209 wanted %d, current %d\n",
1210 e->event.sequence, seq);
1211 list_del(&e->base.link);
1212 drm_vblank_put(dev, e->pipe);
1213 send_vblank_event(dev, e, seq, &now);
1214 }
1215 spin_unlock_irqrestore(&dev->event_lock, irqflags);
1216 }
1217 EXPORT_SYMBOL(drm_vblank_off);
1218
1219 /**
1220 * drm_crtc_vblank_off - disable vblank events on a CRTC
1221 * @crtc: CRTC in question
1222 *
1223 * Drivers can use this function to shut down the vblank interrupt handling when
1224 * disabling a crtc. This function ensures that the latest vblank frame count is
1225 * stored so that drm_vblank_on can restore it again.
1226 *
1227 * Drivers must use this function when the hardware vblank counter can get
1228 * reset, e.g. when suspending.
1229 *
1230 * This is the native kms version of drm_vblank_off().
1231 */
drm_crtc_vblank_off(struct drm_crtc * crtc)1232 void drm_crtc_vblank_off(struct drm_crtc *crtc)
1233 {
1234 drm_vblank_off(crtc->dev, drm_crtc_index(crtc));
1235 }
1236 EXPORT_SYMBOL(drm_crtc_vblank_off);
1237
1238 /**
1239 * drm_crtc_vblank_reset - reset vblank state to off on a CRTC
1240 * @crtc: CRTC in question
1241 *
1242 * Drivers can use this function to reset the vblank state to off at load time.
1243 * Drivers should use this together with the drm_crtc_vblank_off() and
1244 * drm_crtc_vblank_on() functions. The difference compared to
1245 * drm_crtc_vblank_off() is that this function doesn't save the vblank counter
1246 * and hence doesn't need to call any driver hooks.
1247 */
drm_crtc_vblank_reset(struct drm_crtc * drm_crtc)1248 void drm_crtc_vblank_reset(struct drm_crtc *drm_crtc)
1249 {
1250 struct drm_device *dev = drm_crtc->dev;
1251 unsigned long irqflags;
1252 int crtc = drm_crtc_index(drm_crtc);
1253 struct drm_vblank_crtc *vblank = &dev->vblank[crtc];
1254
1255 spin_lock_irqsave(&dev->vbl_lock, irqflags);
1256 /*
1257 * Prevent subsequent drm_vblank_get() from enabling the vblank
1258 * interrupt by bumping the refcount.
1259 */
1260 if (!vblank->inmodeset) {
1261 atomic_inc(&vblank->refcount);
1262 vblank->inmodeset = 1;
1263 }
1264 spin_unlock_irqrestore(&dev->vbl_lock, irqflags);
1265
1266 WARN_ON(!list_empty(&dev->vblank_event_list));
1267 }
1268 EXPORT_SYMBOL(drm_crtc_vblank_reset);
1269
1270 /**
1271 * drm_vblank_on - enable vblank events on a CRTC
1272 * @dev: DRM device
1273 * @crtc: CRTC in question
1274 *
1275 * This functions restores the vblank interrupt state captured with
1276 * drm_vblank_off() again. Note that calls to drm_vblank_on() and
1277 * drm_vblank_off() can be unbalanced and so can also be unconditionally called
1278 * in driver load code to reflect the current hardware state of the crtc.
1279 *
1280 * This is the legacy version of drm_crtc_vblank_on().
1281 */
drm_vblank_on(struct drm_device * dev,int crtc)1282 void drm_vblank_on(struct drm_device *dev, int crtc)
1283 {
1284 struct drm_vblank_crtc *vblank = &dev->vblank[crtc];
1285 unsigned long irqflags;
1286
1287 if (WARN_ON(crtc >= dev->num_crtcs))
1288 return;
1289
1290 spin_lock_irqsave(&dev->vbl_lock, irqflags);
1291 /* Drop our private "prevent drm_vblank_get" refcount */
1292 if (vblank->inmodeset) {
1293 atomic_dec(&vblank->refcount);
1294 vblank->inmodeset = 0;
1295 }
1296
1297 /*
1298 * sample the current counter to avoid random jumps
1299 * when drm_vblank_enable() applies the diff
1300 *
1301 * -1 to make sure user will never see the same
1302 * vblank counter value before and after a modeset
1303 */
1304 vblank->last =
1305 (dev->driver->get_vblank_counter(dev, crtc) - 1) &
1306 dev->max_vblank_count;
1307 /*
1308 * re-enable interrupts if there are users left, or the
1309 * user wishes vblank interrupts to be enabled all the time.
1310 */
1311 if (atomic_read(&vblank->refcount) != 0 ||
1312 (!dev->vblank_disable_immediate && drm_vblank_offdelay == 0))
1313 WARN_ON(drm_vblank_enable(dev, crtc));
1314 spin_unlock_irqrestore(&dev->vbl_lock, irqflags);
1315 }
1316 EXPORT_SYMBOL(drm_vblank_on);
1317
1318 /**
1319 * drm_crtc_vblank_on - enable vblank events on a CRTC
1320 * @crtc: CRTC in question
1321 *
1322 * This functions restores the vblank interrupt state captured with
1323 * drm_vblank_off() again. Note that calls to drm_vblank_on() and
1324 * drm_vblank_off() can be unbalanced and so can also be unconditionally called
1325 * in driver load code to reflect the current hardware state of the crtc.
1326 *
1327 * This is the native kms version of drm_vblank_on().
1328 */
drm_crtc_vblank_on(struct drm_crtc * crtc)1329 void drm_crtc_vblank_on(struct drm_crtc *crtc)
1330 {
1331 drm_vblank_on(crtc->dev, drm_crtc_index(crtc));
1332 }
1333 EXPORT_SYMBOL(drm_crtc_vblank_on);
1334
1335 /**
1336 * drm_vblank_pre_modeset - account for vblanks across mode sets
1337 * @dev: DRM device
1338 * @crtc: CRTC in question
1339 *
1340 * Account for vblank events across mode setting events, which will likely
1341 * reset the hardware frame counter.
1342 *
1343 * This is done by grabbing a temporary vblank reference to ensure that the
1344 * vblank interrupt keeps running across the modeset sequence. With this the
1345 * software-side vblank frame counting will ensure that there are no jumps or
1346 * discontinuities.
1347 *
1348 * Unfortunately this approach is racy and also doesn't work when the vblank
1349 * interrupt stops running, e.g. across system suspend resume. It is therefore
1350 * highly recommended that drivers use the newer drm_vblank_off() and
1351 * drm_vblank_on() instead. drm_vblank_pre_modeset() only works correctly when
1352 * using "cooked" software vblank frame counters and not relying on any hardware
1353 * counters.
1354 *
1355 * Drivers must call drm_vblank_post_modeset() when re-enabling the same crtc
1356 * again.
1357 */
drm_vblank_pre_modeset(struct drm_device * dev,int crtc)1358 void drm_vblank_pre_modeset(struct drm_device *dev, int crtc)
1359 {
1360 struct drm_vblank_crtc *vblank = &dev->vblank[crtc];
1361
1362 /* vblank is not initialized (IRQ not installed ?), or has been freed */
1363 if (!dev->num_crtcs)
1364 return;
1365
1366 if (WARN_ON(crtc >= dev->num_crtcs))
1367 return;
1368
1369 /*
1370 * To avoid all the problems that might happen if interrupts
1371 * were enabled/disabled around or between these calls, we just
1372 * have the kernel take a reference on the CRTC (just once though
1373 * to avoid corrupting the count if multiple, mismatch calls occur),
1374 * so that interrupts remain enabled in the interim.
1375 */
1376 if (!vblank->inmodeset) {
1377 vblank->inmodeset = 0x1;
1378 if (drm_vblank_get(dev, crtc) == 0)
1379 vblank->inmodeset |= 0x2;
1380 }
1381 }
1382 EXPORT_SYMBOL(drm_vblank_pre_modeset);
1383
1384 /**
1385 * drm_vblank_post_modeset - undo drm_vblank_pre_modeset changes
1386 * @dev: DRM device
1387 * @crtc: CRTC in question
1388 *
1389 * This function again drops the temporary vblank reference acquired in
1390 * drm_vblank_pre_modeset.
1391 */
drm_vblank_post_modeset(struct drm_device * dev,int crtc)1392 void drm_vblank_post_modeset(struct drm_device *dev, int crtc)
1393 {
1394 struct drm_vblank_crtc *vblank = &dev->vblank[crtc];
1395 unsigned long irqflags;
1396
1397 /* vblank is not initialized (IRQ not installed ?), or has been freed */
1398 if (!dev->num_crtcs)
1399 return;
1400
1401 if (vblank->inmodeset) {
1402 spin_lock_irqsave(&dev->vbl_lock, irqflags);
1403 dev->vblank_disable_allowed = true;
1404 spin_unlock_irqrestore(&dev->vbl_lock, irqflags);
1405
1406 if (vblank->inmodeset & 0x2)
1407 drm_vblank_put(dev, crtc);
1408
1409 vblank->inmodeset = 0;
1410 }
1411 }
1412 EXPORT_SYMBOL(drm_vblank_post_modeset);
1413
1414 /*
1415 * drm_modeset_ctl - handle vblank event counter changes across mode switch
1416 * @DRM_IOCTL_ARGS: standard ioctl arguments
1417 *
1418 * Applications should call the %_DRM_PRE_MODESET and %_DRM_POST_MODESET
1419 * ioctls around modesetting so that any lost vblank events are accounted for.
1420 *
1421 * Generally the counter will reset across mode sets. If interrupts are
1422 * enabled around this call, we don't have to do anything since the counter
1423 * will have already been incremented.
1424 */
drm_modeset_ctl(struct drm_device * dev,void * data,struct drm_file * file_priv)1425 int drm_modeset_ctl(struct drm_device *dev, void *data,
1426 struct drm_file *file_priv)
1427 {
1428 struct drm_modeset_ctl *modeset = data;
1429 unsigned int crtc;
1430
1431 /* If drm_vblank_init() hasn't been called yet, just no-op */
1432 if (!dev->num_crtcs)
1433 return 0;
1434
1435 /* KMS drivers handle this internally */
1436 if (drm_core_check_feature(dev, DRIVER_MODESET))
1437 return 0;
1438
1439 crtc = modeset->crtc;
1440 if (crtc >= dev->num_crtcs)
1441 return -EINVAL;
1442
1443 switch (modeset->cmd) {
1444 case _DRM_PRE_MODESET:
1445 drm_vblank_pre_modeset(dev, crtc);
1446 break;
1447 case _DRM_POST_MODESET:
1448 drm_vblank_post_modeset(dev, crtc);
1449 break;
1450 default:
1451 return -EINVAL;
1452 }
1453
1454 return 0;
1455 }
1456
drm_queue_vblank_event(struct drm_device * dev,int pipe,union drm_wait_vblank * vblwait,struct drm_file * file_priv)1457 static int drm_queue_vblank_event(struct drm_device *dev, int pipe,
1458 union drm_wait_vblank *vblwait,
1459 struct drm_file *file_priv)
1460 {
1461 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1462 struct drm_pending_vblank_event *e;
1463 struct timeval now;
1464 unsigned long flags;
1465 unsigned int seq;
1466 int ret;
1467
1468 e = kzalloc(sizeof(*e), GFP_KERNEL);
1469 if (e == NULL) {
1470 ret = -ENOMEM;
1471 goto err_put;
1472 }
1473
1474 e->pipe = pipe;
1475 e->base.pid = current->pid;
1476 e->event.base.type = DRM_EVENT_VBLANK;
1477 e->event.base.length = sizeof(e->event);
1478 e->event.user_data = vblwait->request.signal;
1479 e->base.event = &e->event.base;
1480 e->base.file_priv = file_priv;
1481 e->base.destroy = (void (*) (struct drm_pending_event *)) kfree;
1482
1483 spin_lock_irqsave(&dev->event_lock, flags);
1484
1485 /*
1486 * drm_vblank_off() might have been called after we called
1487 * drm_vblank_get(). drm_vblank_off() holds event_lock
1488 * around the vblank disable, so no need for further locking.
1489 * The reference from drm_vblank_get() protects against
1490 * vblank disable from another source.
1491 */
1492 if (!vblank->enabled) {
1493 ret = -EINVAL;
1494 goto err_unlock;
1495 }
1496
1497 if (file_priv->event_space < sizeof(e->event)) {
1498 ret = -EBUSY;
1499 goto err_unlock;
1500 }
1501
1502 file_priv->event_space -= sizeof(e->event);
1503 seq = drm_vblank_count_and_time(dev, pipe, &now);
1504
1505 if ((vblwait->request.type & _DRM_VBLANK_NEXTONMISS) &&
1506 (seq - vblwait->request.sequence) <= (1 << 23)) {
1507 vblwait->request.sequence = seq + 1;
1508 vblwait->reply.sequence = vblwait->request.sequence;
1509 }
1510
1511 DRM_DEBUG("event on vblank count %d, current %d, crtc %d\n",
1512 vblwait->request.sequence, seq, pipe);
1513
1514 trace_drm_vblank_event_queued(current->pid, pipe,
1515 vblwait->request.sequence);
1516
1517 e->event.sequence = vblwait->request.sequence;
1518 if ((seq - vblwait->request.sequence) <= (1 << 23)) {
1519 drm_vblank_put(dev, pipe);
1520 send_vblank_event(dev, e, seq, &now);
1521 vblwait->reply.sequence = seq;
1522 } else {
1523 /* drm_handle_vblank_events will call drm_vblank_put */
1524 list_add_tail(&e->base.link, &dev->vblank_event_list);
1525 vblwait->reply.sequence = vblwait->request.sequence;
1526 }
1527
1528 spin_unlock_irqrestore(&dev->event_lock, flags);
1529
1530 return 0;
1531
1532 err_unlock:
1533 spin_unlock_irqrestore(&dev->event_lock, flags);
1534 kfree(e);
1535 err_put:
1536 drm_vblank_put(dev, pipe);
1537 return ret;
1538 }
1539
1540 /*
1541 * Wait for VBLANK.
1542 *
1543 * \param inode device inode.
1544 * \param file_priv DRM file private.
1545 * \param cmd command.
1546 * \param data user argument, pointing to a drm_wait_vblank structure.
1547 * \return zero on success or a negative number on failure.
1548 *
1549 * This function enables the vblank interrupt on the pipe requested, then
1550 * sleeps waiting for the requested sequence number to occur, and drops
1551 * the vblank interrupt refcount afterwards. (vblank IRQ disable follows that
1552 * after a timeout with no further vblank waits scheduled).
1553 */
drm_wait_vblank(struct drm_device * dev,void * data,struct drm_file * file_priv)1554 int drm_wait_vblank(struct drm_device *dev, void *data,
1555 struct drm_file *file_priv)
1556 {
1557 struct drm_vblank_crtc *vblank;
1558 union drm_wait_vblank *vblwait = data;
1559 int ret;
1560 unsigned int flags, seq, crtc, high_crtc;
1561
1562 if (!dev->irq_enabled)
1563 return -EINVAL;
1564
1565 if (vblwait->request.type & _DRM_VBLANK_SIGNAL)
1566 return -EINVAL;
1567
1568 if (vblwait->request.type &
1569 ~(_DRM_VBLANK_TYPES_MASK | _DRM_VBLANK_FLAGS_MASK |
1570 _DRM_VBLANK_HIGH_CRTC_MASK)) {
1571 DRM_ERROR("Unsupported type value 0x%x, supported mask 0x%x\n",
1572 vblwait->request.type,
1573 (_DRM_VBLANK_TYPES_MASK | _DRM_VBLANK_FLAGS_MASK |
1574 _DRM_VBLANK_HIGH_CRTC_MASK));
1575 return -EINVAL;
1576 }
1577
1578 flags = vblwait->request.type & _DRM_VBLANK_FLAGS_MASK;
1579 high_crtc = (vblwait->request.type & _DRM_VBLANK_HIGH_CRTC_MASK);
1580 if (high_crtc)
1581 crtc = high_crtc >> _DRM_VBLANK_HIGH_CRTC_SHIFT;
1582 else
1583 crtc = flags & _DRM_VBLANK_SECONDARY ? 1 : 0;
1584 if (crtc >= dev->num_crtcs)
1585 return -EINVAL;
1586
1587 vblank = &dev->vblank[crtc];
1588
1589 ret = drm_vblank_get(dev, crtc);
1590 if (ret) {
1591 DRM_DEBUG("failed to acquire vblank counter, %d\n", ret);
1592 return ret;
1593 }
1594 seq = drm_vblank_count(dev, crtc);
1595
1596 switch (vblwait->request.type & _DRM_VBLANK_TYPES_MASK) {
1597 case _DRM_VBLANK_RELATIVE:
1598 vblwait->request.sequence += seq;
1599 vblwait->request.type &= ~_DRM_VBLANK_RELATIVE;
1600 case _DRM_VBLANK_ABSOLUTE:
1601 break;
1602 default:
1603 ret = -EINVAL;
1604 goto done;
1605 }
1606
1607 if (flags & _DRM_VBLANK_EVENT) {
1608 /* must hold on to the vblank ref until the event fires
1609 * drm_vblank_put will be called asynchronously
1610 */
1611 return drm_queue_vblank_event(dev, crtc, vblwait, file_priv);
1612 }
1613
1614 if ((flags & _DRM_VBLANK_NEXTONMISS) &&
1615 (seq - vblwait->request.sequence) <= (1<<23)) {
1616 vblwait->request.sequence = seq + 1;
1617 }
1618
1619 DRM_DEBUG("waiting on vblank count %d, crtc %d\n",
1620 vblwait->request.sequence, crtc);
1621 vblank->last_wait = vblwait->request.sequence;
1622 DRM_WAIT_ON(ret, vblank->queue, 3 * HZ,
1623 (((drm_vblank_count(dev, crtc) -
1624 vblwait->request.sequence) <= (1 << 23)) ||
1625 !vblank->enabled ||
1626 !dev->irq_enabled));
1627
1628 if (ret != -EINTR) {
1629 struct timeval now;
1630
1631 vblwait->reply.sequence = drm_vblank_count_and_time(dev, crtc, &now);
1632 vblwait->reply.tval_sec = now.tv_sec;
1633 vblwait->reply.tval_usec = now.tv_usec;
1634
1635 DRM_DEBUG("returning %d to client\n",
1636 vblwait->reply.sequence);
1637 } else {
1638 DRM_DEBUG("vblank wait interrupted by signal\n");
1639 }
1640
1641 done:
1642 drm_vblank_put(dev, crtc);
1643 return ret;
1644 }
1645
drm_handle_vblank_events(struct drm_device * dev,int crtc)1646 static void drm_handle_vblank_events(struct drm_device *dev, int crtc)
1647 {
1648 struct drm_pending_vblank_event *e, *t;
1649 struct timeval now;
1650 unsigned int seq;
1651
1652 assert_spin_locked(&dev->event_lock);
1653
1654 seq = drm_vblank_count_and_time(dev, crtc, &now);
1655
1656 list_for_each_entry_safe(e, t, &dev->vblank_event_list, base.link) {
1657 if (e->pipe != crtc)
1658 continue;
1659 if ((seq - e->event.sequence) > (1<<23))
1660 continue;
1661
1662 DRM_DEBUG("vblank event on %d, current %d\n",
1663 e->event.sequence, seq);
1664
1665 list_del(&e->base.link);
1666 drm_vblank_put(dev, e->pipe);
1667 send_vblank_event(dev, e, seq, &now);
1668 }
1669
1670 trace_drm_vblank_event(crtc, seq);
1671 }
1672
1673 /**
1674 * drm_handle_vblank - handle a vblank event
1675 * @dev: DRM device
1676 * @crtc: where this event occurred
1677 *
1678 * Drivers should call this routine in their vblank interrupt handlers to
1679 * update the vblank counter and send any signals that may be pending.
1680 *
1681 * This is the legacy version of drm_crtc_handle_vblank().
1682 */
drm_handle_vblank(struct drm_device * dev,int crtc)1683 bool drm_handle_vblank(struct drm_device *dev, int crtc)
1684 {
1685 struct drm_vblank_crtc *vblank = &dev->vblank[crtc];
1686 u32 vblcount;
1687 s64 diff_ns;
1688 struct timeval tvblank;
1689 unsigned long irqflags;
1690
1691 if (WARN_ON_ONCE(!dev->num_crtcs))
1692 return false;
1693
1694 if (WARN_ON(crtc >= dev->num_crtcs))
1695 return false;
1696
1697 spin_lock_irqsave(&dev->event_lock, irqflags);
1698
1699 /* Need timestamp lock to prevent concurrent execution with
1700 * vblank enable/disable, as this would cause inconsistent
1701 * or corrupted timestamps and vblank counts.
1702 */
1703 spin_lock(&dev->vblank_time_lock);
1704
1705 /* Vblank irq handling disabled. Nothing to do. */
1706 if (!vblank->enabled) {
1707 spin_unlock(&dev->vblank_time_lock);
1708 spin_unlock_irqrestore(&dev->event_lock, irqflags);
1709 return false;
1710 }
1711
1712 /* Fetch corresponding timestamp for this vblank interval from
1713 * driver and store it in proper slot of timestamp ringbuffer.
1714 */
1715
1716 /* Get current timestamp and count. */
1717 vblcount = atomic_read(&vblank->count);
1718 drm_get_last_vbltimestamp(dev, crtc, &tvblank, DRM_CALLED_FROM_VBLIRQ);
1719
1720 /* Compute time difference to timestamp of last vblank */
1721 diff_ns = timeval_to_ns(&tvblank) -
1722 timeval_to_ns(&vblanktimestamp(dev, crtc, vblcount));
1723
1724 /* Update vblank timestamp and count if at least
1725 * DRM_REDUNDANT_VBLIRQ_THRESH_NS nanoseconds
1726 * difference between last stored timestamp and current
1727 * timestamp. A smaller difference means basically
1728 * identical timestamps. Happens if this vblank has
1729 * been already processed and this is a redundant call,
1730 * e.g., due to spurious vblank interrupts. We need to
1731 * ignore those for accounting.
1732 */
1733 if (abs64(diff_ns) > DRM_REDUNDANT_VBLIRQ_THRESH_NS) {
1734 /* Store new timestamp in ringbuffer. */
1735 vblanktimestamp(dev, crtc, vblcount + 1) = tvblank;
1736
1737 /* Increment cooked vblank count. This also atomically commits
1738 * the timestamp computed above.
1739 */
1740 smp_mb__before_atomic();
1741 atomic_inc(&vblank->count);
1742 smp_mb__after_atomic();
1743 } else {
1744 DRM_DEBUG("crtc %d: Redundant vblirq ignored. diff_ns = %d\n",
1745 crtc, (int) diff_ns);
1746 }
1747
1748 spin_unlock(&dev->vblank_time_lock);
1749
1750 wake_up(&vblank->queue);
1751 drm_handle_vblank_events(dev, crtc);
1752
1753 spin_unlock_irqrestore(&dev->event_lock, irqflags);
1754
1755 return true;
1756 }
1757 EXPORT_SYMBOL(drm_handle_vblank);
1758
1759 /**
1760 * drm_crtc_handle_vblank - handle a vblank event
1761 * @crtc: where this event occurred
1762 *
1763 * Drivers should call this routine in their vblank interrupt handlers to
1764 * update the vblank counter and send any signals that may be pending.
1765 *
1766 * This is the native KMS version of drm_handle_vblank().
1767 *
1768 * Returns:
1769 * True if the event was successfully handled, false on failure.
1770 */
drm_crtc_handle_vblank(struct drm_crtc * crtc)1771 bool drm_crtc_handle_vblank(struct drm_crtc *crtc)
1772 {
1773 return drm_handle_vblank(crtc->dev, drm_crtc_index(crtc));
1774 }
1775 EXPORT_SYMBOL(drm_crtc_handle_vblank);
1776