1 /*
2 * drivers/base/power/main.c - Where the driver meets power management.
3 *
4 * Copyright (c) 2003 Patrick Mochel
5 * Copyright (c) 2003 Open Source Development Lab
6 *
7 * This file is released under the GPLv2
8 *
9 *
10 * The driver model core calls device_pm_add() when a device is registered.
11 * This will initialize the embedded device_pm_info object in the device
12 * and add it to the list of power-controlled devices. sysfs entries for
13 * controlling device power management will also be added.
14 *
15 * A separate list is used for keeping track of power info, because the power
16 * domain dependencies may differ from the ancestral dependencies that the
17 * subsystem list maintains.
18 */
19
20 #include <linux/device.h>
21 #include <linux/kallsyms.h>
22 #include <linux/export.h>
23 #include <linux/mutex.h>
24 #include <linux/pm.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/pm-trace.h>
27 #include <linux/pm_wakeirq.h>
28 #include <linux/interrupt.h>
29 #include <linux/sched.h>
30 #include <linux/async.h>
31 #include <linux/suspend.h>
32 #include <trace/events/power.h>
33 #include <linux/cpufreq.h>
34 #include <linux/cpuidle.h>
35 #include <linux/timer.h>
36
37 #include "../base.h"
38 #include "power.h"
39
40 typedef int (*pm_callback_t)(struct device *);
41
42 /*
43 * The entries in the dpm_list list are in a depth first order, simply
44 * because children are guaranteed to be discovered after parents, and
45 * are inserted at the back of the list on discovery.
46 *
47 * Since device_pm_add() may be called with a device lock held,
48 * we must never try to acquire a device lock while holding
49 * dpm_list_mutex.
50 */
51
52 LIST_HEAD(dpm_list);
53 static LIST_HEAD(dpm_prepared_list);
54 static LIST_HEAD(dpm_suspended_list);
55 static LIST_HEAD(dpm_late_early_list);
56 static LIST_HEAD(dpm_noirq_list);
57
58 struct suspend_stats suspend_stats;
59 static DEFINE_MUTEX(dpm_list_mtx);
60 static pm_message_t pm_transition;
61
62 static int async_error;
63
pm_verb(int event)64 static char *pm_verb(int event)
65 {
66 switch (event) {
67 case PM_EVENT_SUSPEND:
68 return "suspend";
69 case PM_EVENT_RESUME:
70 return "resume";
71 case PM_EVENT_FREEZE:
72 return "freeze";
73 case PM_EVENT_QUIESCE:
74 return "quiesce";
75 case PM_EVENT_HIBERNATE:
76 return "hibernate";
77 case PM_EVENT_THAW:
78 return "thaw";
79 case PM_EVENT_RESTORE:
80 return "restore";
81 case PM_EVENT_RECOVER:
82 return "recover";
83 default:
84 return "(unknown PM event)";
85 }
86 }
87
88 /**
89 * device_pm_sleep_init - Initialize system suspend-related device fields.
90 * @dev: Device object being initialized.
91 */
device_pm_sleep_init(struct device * dev)92 void device_pm_sleep_init(struct device *dev)
93 {
94 dev->power.is_prepared = false;
95 dev->power.is_suspended = false;
96 dev->power.is_noirq_suspended = false;
97 dev->power.is_late_suspended = false;
98 init_completion(&dev->power.completion);
99 complete_all(&dev->power.completion);
100 dev->power.wakeup = NULL;
101 INIT_LIST_HEAD(&dev->power.entry);
102 }
103
104 /**
105 * device_pm_lock - Lock the list of active devices used by the PM core.
106 */
device_pm_lock(void)107 void device_pm_lock(void)
108 {
109 mutex_lock(&dpm_list_mtx);
110 }
111
112 /**
113 * device_pm_unlock - Unlock the list of active devices used by the PM core.
114 */
device_pm_unlock(void)115 void device_pm_unlock(void)
116 {
117 mutex_unlock(&dpm_list_mtx);
118 }
119
120 /**
121 * device_pm_add - Add a device to the PM core's list of active devices.
122 * @dev: Device to add to the list.
123 */
device_pm_add(struct device * dev)124 void device_pm_add(struct device *dev)
125 {
126 pr_debug("PM: Adding info for %s:%s\n",
127 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
128 mutex_lock(&dpm_list_mtx);
129 if (dev->parent && dev->parent->power.is_prepared)
130 dev_warn(dev, "parent %s should not be sleeping\n",
131 dev_name(dev->parent));
132 list_add_tail(&dev->power.entry, &dpm_list);
133 mutex_unlock(&dpm_list_mtx);
134 }
135
136 /**
137 * device_pm_remove - Remove a device from the PM core's list of active devices.
138 * @dev: Device to be removed from the list.
139 */
device_pm_remove(struct device * dev)140 void device_pm_remove(struct device *dev)
141 {
142 pr_debug("PM: Removing info for %s:%s\n",
143 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
144 complete_all(&dev->power.completion);
145 mutex_lock(&dpm_list_mtx);
146 list_del_init(&dev->power.entry);
147 mutex_unlock(&dpm_list_mtx);
148 device_wakeup_disable(dev);
149 pm_runtime_remove(dev);
150 }
151
152 /**
153 * device_pm_move_before - Move device in the PM core's list of active devices.
154 * @deva: Device to move in dpm_list.
155 * @devb: Device @deva should come before.
156 */
device_pm_move_before(struct device * deva,struct device * devb)157 void device_pm_move_before(struct device *deva, struct device *devb)
158 {
159 pr_debug("PM: Moving %s:%s before %s:%s\n",
160 deva->bus ? deva->bus->name : "No Bus", dev_name(deva),
161 devb->bus ? devb->bus->name : "No Bus", dev_name(devb));
162 /* Delete deva from dpm_list and reinsert before devb. */
163 list_move_tail(&deva->power.entry, &devb->power.entry);
164 }
165
166 /**
167 * device_pm_move_after - Move device in the PM core's list of active devices.
168 * @deva: Device to move in dpm_list.
169 * @devb: Device @deva should come after.
170 */
device_pm_move_after(struct device * deva,struct device * devb)171 void device_pm_move_after(struct device *deva, struct device *devb)
172 {
173 pr_debug("PM: Moving %s:%s after %s:%s\n",
174 deva->bus ? deva->bus->name : "No Bus", dev_name(deva),
175 devb->bus ? devb->bus->name : "No Bus", dev_name(devb));
176 /* Delete deva from dpm_list and reinsert after devb. */
177 list_move(&deva->power.entry, &devb->power.entry);
178 }
179
180 /**
181 * device_pm_move_last - Move device to end of the PM core's list of devices.
182 * @dev: Device to move in dpm_list.
183 */
device_pm_move_last(struct device * dev)184 void device_pm_move_last(struct device *dev)
185 {
186 pr_debug("PM: Moving %s:%s to end of list\n",
187 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
188 list_move_tail(&dev->power.entry, &dpm_list);
189 }
190
initcall_debug_start(struct device * dev)191 static ktime_t initcall_debug_start(struct device *dev)
192 {
193 ktime_t calltime = ktime_set(0, 0);
194
195 if (pm_print_times_enabled) {
196 pr_info("calling %s+ @ %i, parent: %s\n",
197 dev_name(dev), task_pid_nr(current),
198 dev->parent ? dev_name(dev->parent) : "none");
199 calltime = ktime_get();
200 }
201
202 return calltime;
203 }
204
initcall_debug_report(struct device * dev,ktime_t calltime,int error,pm_message_t state,char * info)205 static void initcall_debug_report(struct device *dev, ktime_t calltime,
206 int error, pm_message_t state, char *info)
207 {
208 ktime_t rettime;
209 s64 nsecs;
210
211 rettime = ktime_get();
212 nsecs = (s64) ktime_to_ns(ktime_sub(rettime, calltime));
213
214 if (pm_print_times_enabled) {
215 pr_info("call %s+ returned %d after %Ld usecs\n", dev_name(dev),
216 error, (unsigned long long)nsecs >> 10);
217 }
218 }
219
220 /**
221 * dpm_wait - Wait for a PM operation to complete.
222 * @dev: Device to wait for.
223 * @async: If unset, wait only if the device's power.async_suspend flag is set.
224 */
dpm_wait(struct device * dev,bool async)225 static void dpm_wait(struct device *dev, bool async)
226 {
227 if (!dev)
228 return;
229
230 if (async || (pm_async_enabled && dev->power.async_suspend))
231 wait_for_completion(&dev->power.completion);
232 }
233
dpm_wait_fn(struct device * dev,void * async_ptr)234 static int dpm_wait_fn(struct device *dev, void *async_ptr)
235 {
236 dpm_wait(dev, *((bool *)async_ptr));
237 return 0;
238 }
239
dpm_wait_for_children(struct device * dev,bool async)240 static void dpm_wait_for_children(struct device *dev, bool async)
241 {
242 device_for_each_child(dev, &async, dpm_wait_fn);
243 }
244
245 /**
246 * pm_op - Return the PM operation appropriate for given PM event.
247 * @ops: PM operations to choose from.
248 * @state: PM transition of the system being carried out.
249 */
pm_op(const struct dev_pm_ops * ops,pm_message_t state)250 static pm_callback_t pm_op(const struct dev_pm_ops *ops, pm_message_t state)
251 {
252 switch (state.event) {
253 #ifdef CONFIG_SUSPEND
254 case PM_EVENT_SUSPEND:
255 return ops->suspend;
256 case PM_EVENT_RESUME:
257 return ops->resume;
258 #endif /* CONFIG_SUSPEND */
259 #ifdef CONFIG_HIBERNATE_CALLBACKS
260 case PM_EVENT_FREEZE:
261 case PM_EVENT_QUIESCE:
262 return ops->freeze;
263 case PM_EVENT_HIBERNATE:
264 return ops->poweroff;
265 case PM_EVENT_THAW:
266 case PM_EVENT_RECOVER:
267 return ops->thaw;
268 break;
269 case PM_EVENT_RESTORE:
270 return ops->restore;
271 #endif /* CONFIG_HIBERNATE_CALLBACKS */
272 }
273
274 return NULL;
275 }
276
277 /**
278 * pm_late_early_op - Return the PM operation appropriate for given PM event.
279 * @ops: PM operations to choose from.
280 * @state: PM transition of the system being carried out.
281 *
282 * Runtime PM is disabled for @dev while this function is being executed.
283 */
pm_late_early_op(const struct dev_pm_ops * ops,pm_message_t state)284 static pm_callback_t pm_late_early_op(const struct dev_pm_ops *ops,
285 pm_message_t state)
286 {
287 switch (state.event) {
288 #ifdef CONFIG_SUSPEND
289 case PM_EVENT_SUSPEND:
290 return ops->suspend_late;
291 case PM_EVENT_RESUME:
292 return ops->resume_early;
293 #endif /* CONFIG_SUSPEND */
294 #ifdef CONFIG_HIBERNATE_CALLBACKS
295 case PM_EVENT_FREEZE:
296 case PM_EVENT_QUIESCE:
297 return ops->freeze_late;
298 case PM_EVENT_HIBERNATE:
299 return ops->poweroff_late;
300 case PM_EVENT_THAW:
301 case PM_EVENT_RECOVER:
302 return ops->thaw_early;
303 case PM_EVENT_RESTORE:
304 return ops->restore_early;
305 #endif /* CONFIG_HIBERNATE_CALLBACKS */
306 }
307
308 return NULL;
309 }
310
311 /**
312 * pm_noirq_op - Return the PM operation appropriate for given PM event.
313 * @ops: PM operations to choose from.
314 * @state: PM transition of the system being carried out.
315 *
316 * The driver of @dev will not receive interrupts while this function is being
317 * executed.
318 */
pm_noirq_op(const struct dev_pm_ops * ops,pm_message_t state)319 static pm_callback_t pm_noirq_op(const struct dev_pm_ops *ops, pm_message_t state)
320 {
321 switch (state.event) {
322 #ifdef CONFIG_SUSPEND
323 case PM_EVENT_SUSPEND:
324 return ops->suspend_noirq;
325 case PM_EVENT_RESUME:
326 return ops->resume_noirq;
327 #endif /* CONFIG_SUSPEND */
328 #ifdef CONFIG_HIBERNATE_CALLBACKS
329 case PM_EVENT_FREEZE:
330 case PM_EVENT_QUIESCE:
331 return ops->freeze_noirq;
332 case PM_EVENT_HIBERNATE:
333 return ops->poweroff_noirq;
334 case PM_EVENT_THAW:
335 case PM_EVENT_RECOVER:
336 return ops->thaw_noirq;
337 case PM_EVENT_RESTORE:
338 return ops->restore_noirq;
339 #endif /* CONFIG_HIBERNATE_CALLBACKS */
340 }
341
342 return NULL;
343 }
344
pm_dev_dbg(struct device * dev,pm_message_t state,char * info)345 static void pm_dev_dbg(struct device *dev, pm_message_t state, char *info)
346 {
347 dev_dbg(dev, "%s%s%s\n", info, pm_verb(state.event),
348 ((state.event & PM_EVENT_SLEEP) && device_may_wakeup(dev)) ?
349 ", may wakeup" : "");
350 }
351
pm_dev_err(struct device * dev,pm_message_t state,char * info,int error)352 static void pm_dev_err(struct device *dev, pm_message_t state, char *info,
353 int error)
354 {
355 printk(KERN_ERR "PM: Device %s failed to %s%s: error %d\n",
356 dev_name(dev), pm_verb(state.event), info, error);
357 }
358
dpm_show_time(ktime_t starttime,pm_message_t state,char * info)359 static void dpm_show_time(ktime_t starttime, pm_message_t state, char *info)
360 {
361 ktime_t calltime;
362 u64 usecs64;
363 int usecs;
364
365 calltime = ktime_get();
366 usecs64 = ktime_to_ns(ktime_sub(calltime, starttime));
367 do_div(usecs64, NSEC_PER_USEC);
368 usecs = usecs64;
369 if (usecs == 0)
370 usecs = 1;
371 pr_info("PM: %s%s%s of devices complete after %ld.%03ld msecs\n",
372 info ?: "", info ? " " : "", pm_verb(state.event),
373 usecs / USEC_PER_MSEC, usecs % USEC_PER_MSEC);
374 }
375
dpm_run_callback(pm_callback_t cb,struct device * dev,pm_message_t state,char * info)376 static int dpm_run_callback(pm_callback_t cb, struct device *dev,
377 pm_message_t state, char *info)
378 {
379 ktime_t calltime;
380 int error;
381
382 if (!cb)
383 return 0;
384
385 calltime = initcall_debug_start(dev);
386
387 pm_dev_dbg(dev, state, info);
388 trace_device_pm_callback_start(dev, info, state.event);
389 error = cb(dev);
390 trace_device_pm_callback_end(dev, error);
391 suspend_report_result(cb, error);
392
393 initcall_debug_report(dev, calltime, error, state, info);
394
395 return error;
396 }
397
398 #ifdef CONFIG_DPM_WATCHDOG
399 struct dpm_watchdog {
400 struct device *dev;
401 struct task_struct *tsk;
402 struct timer_list timer;
403 };
404
405 #define DECLARE_DPM_WATCHDOG_ON_STACK(wd) \
406 struct dpm_watchdog wd
407
408 /**
409 * dpm_watchdog_handler - Driver suspend / resume watchdog handler.
410 * @data: Watchdog object address.
411 *
412 * Called when a driver has timed out suspending or resuming.
413 * There's not much we can do here to recover so panic() to
414 * capture a crash-dump in pstore.
415 */
dpm_watchdog_handler(unsigned long data)416 static void dpm_watchdog_handler(unsigned long data)
417 {
418 struct dpm_watchdog *wd = (void *)data;
419
420 dev_emerg(wd->dev, "**** DPM device timeout ****\n");
421 show_stack(wd->tsk, NULL);
422 panic("%s %s: unrecoverable failure\n",
423 dev_driver_string(wd->dev), dev_name(wd->dev));
424 }
425
426 /**
427 * dpm_watchdog_set - Enable pm watchdog for given device.
428 * @wd: Watchdog. Must be allocated on the stack.
429 * @dev: Device to handle.
430 */
dpm_watchdog_set(struct dpm_watchdog * wd,struct device * dev)431 static void dpm_watchdog_set(struct dpm_watchdog *wd, struct device *dev)
432 {
433 struct timer_list *timer = &wd->timer;
434
435 wd->dev = dev;
436 wd->tsk = current;
437
438 init_timer_on_stack(timer);
439 /* use same timeout value for both suspend and resume */
440 timer->expires = jiffies + HZ * CONFIG_DPM_WATCHDOG_TIMEOUT;
441 timer->function = dpm_watchdog_handler;
442 timer->data = (unsigned long)wd;
443 add_timer(timer);
444 }
445
446 /**
447 * dpm_watchdog_clear - Disable suspend/resume watchdog.
448 * @wd: Watchdog to disable.
449 */
dpm_watchdog_clear(struct dpm_watchdog * wd)450 static void dpm_watchdog_clear(struct dpm_watchdog *wd)
451 {
452 struct timer_list *timer = &wd->timer;
453
454 del_timer_sync(timer);
455 destroy_timer_on_stack(timer);
456 }
457 #else
458 #define DECLARE_DPM_WATCHDOG_ON_STACK(wd)
459 #define dpm_watchdog_set(x, y)
460 #define dpm_watchdog_clear(x)
461 #endif
462
463 /*------------------------- Resume routines -------------------------*/
464
465 /**
466 * device_resume_noirq - Execute an "early resume" callback for given device.
467 * @dev: Device to handle.
468 * @state: PM transition of the system being carried out.
469 * @async: If true, the device is being resumed asynchronously.
470 *
471 * The driver of @dev will not receive interrupts while this function is being
472 * executed.
473 */
device_resume_noirq(struct device * dev,pm_message_t state,bool async)474 static int device_resume_noirq(struct device *dev, pm_message_t state, bool async)
475 {
476 pm_callback_t callback = NULL;
477 char *info = NULL;
478 int error = 0;
479
480 TRACE_DEVICE(dev);
481 TRACE_RESUME(0);
482
483 if (dev->power.syscore || dev->power.direct_complete)
484 goto Out;
485
486 if (!dev->power.is_noirq_suspended)
487 goto Out;
488
489 dpm_wait(dev->parent, async);
490
491 if (dev->pm_domain) {
492 info = "noirq power domain ";
493 callback = pm_noirq_op(&dev->pm_domain->ops, state);
494 } else if (dev->type && dev->type->pm) {
495 info = "noirq type ";
496 callback = pm_noirq_op(dev->type->pm, state);
497 } else if (dev->class && dev->class->pm) {
498 info = "noirq class ";
499 callback = pm_noirq_op(dev->class->pm, state);
500 } else if (dev->bus && dev->bus->pm) {
501 info = "noirq bus ";
502 callback = pm_noirq_op(dev->bus->pm, state);
503 }
504
505 if (!callback && dev->driver && dev->driver->pm) {
506 info = "noirq driver ";
507 callback = pm_noirq_op(dev->driver->pm, state);
508 }
509
510 error = dpm_run_callback(callback, dev, state, info);
511 dev->power.is_noirq_suspended = false;
512
513 Out:
514 complete_all(&dev->power.completion);
515 TRACE_RESUME(error);
516 return error;
517 }
518
is_async(struct device * dev)519 static bool is_async(struct device *dev)
520 {
521 return dev->power.async_suspend && pm_async_enabled
522 && !pm_trace_is_enabled();
523 }
524
async_resume_noirq(void * data,async_cookie_t cookie)525 static void async_resume_noirq(void *data, async_cookie_t cookie)
526 {
527 struct device *dev = (struct device *)data;
528 int error;
529
530 error = device_resume_noirq(dev, pm_transition, true);
531 if (error)
532 pm_dev_err(dev, pm_transition, " async", error);
533
534 put_device(dev);
535 }
536
537 /**
538 * dpm_resume_noirq - Execute "noirq resume" callbacks for all devices.
539 * @state: PM transition of the system being carried out.
540 *
541 * Call the "noirq" resume handlers for all devices in dpm_noirq_list and
542 * enable device drivers to receive interrupts.
543 */
dpm_resume_noirq(pm_message_t state)544 void dpm_resume_noirq(pm_message_t state)
545 {
546 struct device *dev;
547 ktime_t starttime = ktime_get();
548
549 trace_suspend_resume(TPS("dpm_resume_noirq"), state.event, true);
550 mutex_lock(&dpm_list_mtx);
551 pm_transition = state;
552
553 /*
554 * Advanced the async threads upfront,
555 * in case the starting of async threads is
556 * delayed by non-async resuming devices.
557 */
558 list_for_each_entry(dev, &dpm_noirq_list, power.entry) {
559 reinit_completion(&dev->power.completion);
560 if (is_async(dev)) {
561 get_device(dev);
562 async_schedule(async_resume_noirq, dev);
563 }
564 }
565
566 while (!list_empty(&dpm_noirq_list)) {
567 dev = to_device(dpm_noirq_list.next);
568 get_device(dev);
569 list_move_tail(&dev->power.entry, &dpm_late_early_list);
570 mutex_unlock(&dpm_list_mtx);
571
572 if (!is_async(dev)) {
573 int error;
574
575 error = device_resume_noirq(dev, state, false);
576 if (error) {
577 suspend_stats.failed_resume_noirq++;
578 dpm_save_failed_step(SUSPEND_RESUME_NOIRQ);
579 dpm_save_failed_dev(dev_name(dev));
580 pm_dev_err(dev, state, " noirq", error);
581 }
582 }
583
584 mutex_lock(&dpm_list_mtx);
585 put_device(dev);
586 }
587 mutex_unlock(&dpm_list_mtx);
588 async_synchronize_full();
589 dpm_show_time(starttime, state, "noirq");
590 resume_device_irqs();
591 device_wakeup_disarm_wake_irqs();
592 cpuidle_resume();
593 trace_suspend_resume(TPS("dpm_resume_noirq"), state.event, false);
594 }
595
596 /**
597 * device_resume_early - Execute an "early resume" callback for given device.
598 * @dev: Device to handle.
599 * @state: PM transition of the system being carried out.
600 * @async: If true, the device is being resumed asynchronously.
601 *
602 * Runtime PM is disabled for @dev while this function is being executed.
603 */
device_resume_early(struct device * dev,pm_message_t state,bool async)604 static int device_resume_early(struct device *dev, pm_message_t state, bool async)
605 {
606 pm_callback_t callback = NULL;
607 char *info = NULL;
608 int error = 0;
609
610 TRACE_DEVICE(dev);
611 TRACE_RESUME(0);
612
613 if (dev->power.syscore || dev->power.direct_complete)
614 goto Out;
615
616 if (!dev->power.is_late_suspended)
617 goto Out;
618
619 dpm_wait(dev->parent, async);
620
621 if (dev->pm_domain) {
622 info = "early power domain ";
623 callback = pm_late_early_op(&dev->pm_domain->ops, state);
624 } else if (dev->type && dev->type->pm) {
625 info = "early type ";
626 callback = pm_late_early_op(dev->type->pm, state);
627 } else if (dev->class && dev->class->pm) {
628 info = "early class ";
629 callback = pm_late_early_op(dev->class->pm, state);
630 } else if (dev->bus && dev->bus->pm) {
631 info = "early bus ";
632 callback = pm_late_early_op(dev->bus->pm, state);
633 }
634
635 if (!callback && dev->driver && dev->driver->pm) {
636 info = "early driver ";
637 callback = pm_late_early_op(dev->driver->pm, state);
638 }
639
640 error = dpm_run_callback(callback, dev, state, info);
641 dev->power.is_late_suspended = false;
642
643 Out:
644 TRACE_RESUME(error);
645
646 pm_runtime_enable(dev);
647 complete_all(&dev->power.completion);
648 return error;
649 }
650
async_resume_early(void * data,async_cookie_t cookie)651 static void async_resume_early(void *data, async_cookie_t cookie)
652 {
653 struct device *dev = (struct device *)data;
654 int error;
655
656 error = device_resume_early(dev, pm_transition, true);
657 if (error)
658 pm_dev_err(dev, pm_transition, " async", error);
659
660 put_device(dev);
661 }
662
663 /**
664 * dpm_resume_early - Execute "early resume" callbacks for all devices.
665 * @state: PM transition of the system being carried out.
666 */
dpm_resume_early(pm_message_t state)667 void dpm_resume_early(pm_message_t state)
668 {
669 struct device *dev;
670 ktime_t starttime = ktime_get();
671
672 trace_suspend_resume(TPS("dpm_resume_early"), state.event, true);
673 mutex_lock(&dpm_list_mtx);
674 pm_transition = state;
675
676 /*
677 * Advanced the async threads upfront,
678 * in case the starting of async threads is
679 * delayed by non-async resuming devices.
680 */
681 list_for_each_entry(dev, &dpm_late_early_list, power.entry) {
682 reinit_completion(&dev->power.completion);
683 if (is_async(dev)) {
684 get_device(dev);
685 async_schedule(async_resume_early, dev);
686 }
687 }
688
689 while (!list_empty(&dpm_late_early_list)) {
690 dev = to_device(dpm_late_early_list.next);
691 get_device(dev);
692 list_move_tail(&dev->power.entry, &dpm_suspended_list);
693 mutex_unlock(&dpm_list_mtx);
694
695 if (!is_async(dev)) {
696 int error;
697
698 error = device_resume_early(dev, state, false);
699 if (error) {
700 suspend_stats.failed_resume_early++;
701 dpm_save_failed_step(SUSPEND_RESUME_EARLY);
702 dpm_save_failed_dev(dev_name(dev));
703 pm_dev_err(dev, state, " early", error);
704 }
705 }
706 mutex_lock(&dpm_list_mtx);
707 put_device(dev);
708 }
709 mutex_unlock(&dpm_list_mtx);
710 async_synchronize_full();
711 dpm_show_time(starttime, state, "early");
712 trace_suspend_resume(TPS("dpm_resume_early"), state.event, false);
713 }
714
715 /**
716 * dpm_resume_start - Execute "noirq" and "early" device callbacks.
717 * @state: PM transition of the system being carried out.
718 */
dpm_resume_start(pm_message_t state)719 void dpm_resume_start(pm_message_t state)
720 {
721 dpm_resume_noirq(state);
722 dpm_resume_early(state);
723 }
724 EXPORT_SYMBOL_GPL(dpm_resume_start);
725
726 /**
727 * device_resume - Execute "resume" callbacks for given device.
728 * @dev: Device to handle.
729 * @state: PM transition of the system being carried out.
730 * @async: If true, the device is being resumed asynchronously.
731 */
device_resume(struct device * dev,pm_message_t state,bool async)732 static int device_resume(struct device *dev, pm_message_t state, bool async)
733 {
734 pm_callback_t callback = NULL;
735 char *info = NULL;
736 int error = 0;
737 DECLARE_DPM_WATCHDOG_ON_STACK(wd);
738
739 TRACE_DEVICE(dev);
740 TRACE_RESUME(0);
741
742 if (dev->power.syscore)
743 goto Complete;
744
745 if (dev->power.direct_complete) {
746 /* Match the pm_runtime_disable() in __device_suspend(). */
747 pm_runtime_enable(dev);
748 goto Complete;
749 }
750
751 dpm_wait(dev->parent, async);
752 dpm_watchdog_set(&wd, dev);
753 device_lock(dev);
754
755 /*
756 * This is a fib. But we'll allow new children to be added below
757 * a resumed device, even if the device hasn't been completed yet.
758 */
759 dev->power.is_prepared = false;
760
761 if (!dev->power.is_suspended)
762 goto Unlock;
763
764 if (dev->pm_domain) {
765 info = "power domain ";
766 callback = pm_op(&dev->pm_domain->ops, state);
767 goto Driver;
768 }
769
770 if (dev->type && dev->type->pm) {
771 info = "type ";
772 callback = pm_op(dev->type->pm, state);
773 goto Driver;
774 }
775
776 if (dev->class) {
777 if (dev->class->pm) {
778 info = "class ";
779 callback = pm_op(dev->class->pm, state);
780 goto Driver;
781 } else if (dev->class->resume) {
782 info = "legacy class ";
783 callback = dev->class->resume;
784 goto End;
785 }
786 }
787
788 if (dev->bus) {
789 if (dev->bus->pm) {
790 info = "bus ";
791 callback = pm_op(dev->bus->pm, state);
792 } else if (dev->bus->resume) {
793 info = "legacy bus ";
794 callback = dev->bus->resume;
795 goto End;
796 }
797 }
798
799 Driver:
800 if (!callback && dev->driver && dev->driver->pm) {
801 info = "driver ";
802 callback = pm_op(dev->driver->pm, state);
803 }
804
805 End:
806 error = dpm_run_callback(callback, dev, state, info);
807 dev->power.is_suspended = false;
808
809 Unlock:
810 device_unlock(dev);
811 dpm_watchdog_clear(&wd);
812
813 Complete:
814 complete_all(&dev->power.completion);
815
816 TRACE_RESUME(error);
817
818 return error;
819 }
820
async_resume(void * data,async_cookie_t cookie)821 static void async_resume(void *data, async_cookie_t cookie)
822 {
823 struct device *dev = (struct device *)data;
824 int error;
825
826 error = device_resume(dev, pm_transition, true);
827 if (error)
828 pm_dev_err(dev, pm_transition, " async", error);
829 put_device(dev);
830 }
831
832 /**
833 * dpm_resume - Execute "resume" callbacks for non-sysdev devices.
834 * @state: PM transition of the system being carried out.
835 *
836 * Execute the appropriate "resume" callback for all devices whose status
837 * indicates that they are suspended.
838 */
dpm_resume(pm_message_t state)839 void dpm_resume(pm_message_t state)
840 {
841 struct device *dev;
842 ktime_t starttime = ktime_get();
843
844 trace_suspend_resume(TPS("dpm_resume"), state.event, true);
845 might_sleep();
846
847 mutex_lock(&dpm_list_mtx);
848 pm_transition = state;
849 async_error = 0;
850
851 list_for_each_entry(dev, &dpm_suspended_list, power.entry) {
852 reinit_completion(&dev->power.completion);
853 if (is_async(dev)) {
854 get_device(dev);
855 async_schedule(async_resume, dev);
856 }
857 }
858
859 while (!list_empty(&dpm_suspended_list)) {
860 dev = to_device(dpm_suspended_list.next);
861 get_device(dev);
862 if (!is_async(dev)) {
863 int error;
864
865 mutex_unlock(&dpm_list_mtx);
866
867 error = device_resume(dev, state, false);
868 if (error) {
869 suspend_stats.failed_resume++;
870 dpm_save_failed_step(SUSPEND_RESUME);
871 dpm_save_failed_dev(dev_name(dev));
872 pm_dev_err(dev, state, "", error);
873 }
874
875 mutex_lock(&dpm_list_mtx);
876 }
877 if (!list_empty(&dev->power.entry))
878 list_move_tail(&dev->power.entry, &dpm_prepared_list);
879 put_device(dev);
880 }
881 mutex_unlock(&dpm_list_mtx);
882 async_synchronize_full();
883 dpm_show_time(starttime, state, NULL);
884
885 cpufreq_resume();
886 trace_suspend_resume(TPS("dpm_resume"), state.event, false);
887 }
888
889 /**
890 * device_complete - Complete a PM transition for given device.
891 * @dev: Device to handle.
892 * @state: PM transition of the system being carried out.
893 */
device_complete(struct device * dev,pm_message_t state)894 static void device_complete(struct device *dev, pm_message_t state)
895 {
896 void (*callback)(struct device *) = NULL;
897 char *info = NULL;
898
899 if (dev->power.syscore)
900 return;
901
902 device_lock(dev);
903
904 if (dev->pm_domain) {
905 info = "completing power domain ";
906 callback = dev->pm_domain->ops.complete;
907 } else if (dev->type && dev->type->pm) {
908 info = "completing type ";
909 callback = dev->type->pm->complete;
910 } else if (dev->class && dev->class->pm) {
911 info = "completing class ";
912 callback = dev->class->pm->complete;
913 } else if (dev->bus && dev->bus->pm) {
914 info = "completing bus ";
915 callback = dev->bus->pm->complete;
916 }
917
918 if (!callback && dev->driver && dev->driver->pm) {
919 info = "completing driver ";
920 callback = dev->driver->pm->complete;
921 }
922
923 if (callback) {
924 pm_dev_dbg(dev, state, info);
925 callback(dev);
926 }
927
928 device_unlock(dev);
929
930 pm_runtime_put(dev);
931 }
932
933 /**
934 * dpm_complete - Complete a PM transition for all non-sysdev devices.
935 * @state: PM transition of the system being carried out.
936 *
937 * Execute the ->complete() callbacks for all devices whose PM status is not
938 * DPM_ON (this allows new devices to be registered).
939 */
dpm_complete(pm_message_t state)940 void dpm_complete(pm_message_t state)
941 {
942 struct list_head list;
943
944 trace_suspend_resume(TPS("dpm_complete"), state.event, true);
945 might_sleep();
946
947 INIT_LIST_HEAD(&list);
948 mutex_lock(&dpm_list_mtx);
949 while (!list_empty(&dpm_prepared_list)) {
950 struct device *dev = to_device(dpm_prepared_list.prev);
951
952 get_device(dev);
953 dev->power.is_prepared = false;
954 list_move(&dev->power.entry, &list);
955 mutex_unlock(&dpm_list_mtx);
956
957 trace_device_pm_callback_start(dev, "", state.event);
958 device_complete(dev, state);
959 trace_device_pm_callback_end(dev, 0);
960
961 mutex_lock(&dpm_list_mtx);
962 put_device(dev);
963 }
964 list_splice(&list, &dpm_list);
965 mutex_unlock(&dpm_list_mtx);
966 trace_suspend_resume(TPS("dpm_complete"), state.event, false);
967 }
968
969 /**
970 * dpm_resume_end - Execute "resume" callbacks and complete system transition.
971 * @state: PM transition of the system being carried out.
972 *
973 * Execute "resume" callbacks for all devices and complete the PM transition of
974 * the system.
975 */
dpm_resume_end(pm_message_t state)976 void dpm_resume_end(pm_message_t state)
977 {
978 dpm_resume(state);
979 dpm_complete(state);
980 }
981 EXPORT_SYMBOL_GPL(dpm_resume_end);
982
983
984 /*------------------------- Suspend routines -------------------------*/
985
986 /**
987 * resume_event - Return a "resume" message for given "suspend" sleep state.
988 * @sleep_state: PM message representing a sleep state.
989 *
990 * Return a PM message representing the resume event corresponding to given
991 * sleep state.
992 */
resume_event(pm_message_t sleep_state)993 static pm_message_t resume_event(pm_message_t sleep_state)
994 {
995 switch (sleep_state.event) {
996 case PM_EVENT_SUSPEND:
997 return PMSG_RESUME;
998 case PM_EVENT_FREEZE:
999 case PM_EVENT_QUIESCE:
1000 return PMSG_RECOVER;
1001 case PM_EVENT_HIBERNATE:
1002 return PMSG_RESTORE;
1003 }
1004 return PMSG_ON;
1005 }
1006
1007 /**
1008 * device_suspend_noirq - Execute a "late suspend" callback for given device.
1009 * @dev: Device to handle.
1010 * @state: PM transition of the system being carried out.
1011 * @async: If true, the device is being suspended asynchronously.
1012 *
1013 * The driver of @dev will not receive interrupts while this function is being
1014 * executed.
1015 */
__device_suspend_noirq(struct device * dev,pm_message_t state,bool async)1016 static int __device_suspend_noirq(struct device *dev, pm_message_t state, bool async)
1017 {
1018 pm_callback_t callback = NULL;
1019 char *info = NULL;
1020 int error = 0;
1021
1022 TRACE_DEVICE(dev);
1023 TRACE_SUSPEND(0);
1024
1025 if (async_error)
1026 goto Complete;
1027
1028 if (pm_wakeup_pending()) {
1029 async_error = -EBUSY;
1030 goto Complete;
1031 }
1032
1033 if (dev->power.syscore || dev->power.direct_complete)
1034 goto Complete;
1035
1036 dpm_wait_for_children(dev, async);
1037
1038 if (dev->pm_domain) {
1039 info = "noirq power domain ";
1040 callback = pm_noirq_op(&dev->pm_domain->ops, state);
1041 } else if (dev->type && dev->type->pm) {
1042 info = "noirq type ";
1043 callback = pm_noirq_op(dev->type->pm, state);
1044 } else if (dev->class && dev->class->pm) {
1045 info = "noirq class ";
1046 callback = pm_noirq_op(dev->class->pm, state);
1047 } else if (dev->bus && dev->bus->pm) {
1048 info = "noirq bus ";
1049 callback = pm_noirq_op(dev->bus->pm, state);
1050 }
1051
1052 if (!callback && dev->driver && dev->driver->pm) {
1053 info = "noirq driver ";
1054 callback = pm_noirq_op(dev->driver->pm, state);
1055 }
1056
1057 error = dpm_run_callback(callback, dev, state, info);
1058 if (!error)
1059 dev->power.is_noirq_suspended = true;
1060 else
1061 async_error = error;
1062
1063 Complete:
1064 complete_all(&dev->power.completion);
1065 TRACE_SUSPEND(error);
1066 return error;
1067 }
1068
async_suspend_noirq(void * data,async_cookie_t cookie)1069 static void async_suspend_noirq(void *data, async_cookie_t cookie)
1070 {
1071 struct device *dev = (struct device *)data;
1072 int error;
1073
1074 error = __device_suspend_noirq(dev, pm_transition, true);
1075 if (error) {
1076 dpm_save_failed_dev(dev_name(dev));
1077 pm_dev_err(dev, pm_transition, " async", error);
1078 }
1079
1080 put_device(dev);
1081 }
1082
device_suspend_noirq(struct device * dev)1083 static int device_suspend_noirq(struct device *dev)
1084 {
1085 reinit_completion(&dev->power.completion);
1086
1087 if (is_async(dev)) {
1088 get_device(dev);
1089 async_schedule(async_suspend_noirq, dev);
1090 return 0;
1091 }
1092 return __device_suspend_noirq(dev, pm_transition, false);
1093 }
1094
1095 /**
1096 * dpm_suspend_noirq - Execute "noirq suspend" callbacks for all devices.
1097 * @state: PM transition of the system being carried out.
1098 *
1099 * Prevent device drivers from receiving interrupts and call the "noirq" suspend
1100 * handlers for all non-sysdev devices.
1101 */
dpm_suspend_noirq(pm_message_t state)1102 int dpm_suspend_noirq(pm_message_t state)
1103 {
1104 ktime_t starttime = ktime_get();
1105 int error = 0;
1106
1107 trace_suspend_resume(TPS("dpm_suspend_noirq"), state.event, true);
1108 cpuidle_pause();
1109 device_wakeup_arm_wake_irqs();
1110 suspend_device_irqs();
1111 mutex_lock(&dpm_list_mtx);
1112 pm_transition = state;
1113 async_error = 0;
1114
1115 while (!list_empty(&dpm_late_early_list)) {
1116 struct device *dev = to_device(dpm_late_early_list.prev);
1117
1118 get_device(dev);
1119 mutex_unlock(&dpm_list_mtx);
1120
1121 error = device_suspend_noirq(dev);
1122
1123 mutex_lock(&dpm_list_mtx);
1124 if (error) {
1125 pm_dev_err(dev, state, " noirq", error);
1126 dpm_save_failed_dev(dev_name(dev));
1127 put_device(dev);
1128 break;
1129 }
1130 if (!list_empty(&dev->power.entry))
1131 list_move(&dev->power.entry, &dpm_noirq_list);
1132 put_device(dev);
1133
1134 if (async_error)
1135 break;
1136 }
1137 mutex_unlock(&dpm_list_mtx);
1138 async_synchronize_full();
1139 if (!error)
1140 error = async_error;
1141
1142 if (error) {
1143 suspend_stats.failed_suspend_noirq++;
1144 dpm_save_failed_step(SUSPEND_SUSPEND_NOIRQ);
1145 dpm_resume_noirq(resume_event(state));
1146 } else {
1147 dpm_show_time(starttime, state, "noirq");
1148 }
1149 trace_suspend_resume(TPS("dpm_suspend_noirq"), state.event, false);
1150 return error;
1151 }
1152
1153 /**
1154 * device_suspend_late - Execute a "late suspend" callback for given device.
1155 * @dev: Device to handle.
1156 * @state: PM transition of the system being carried out.
1157 * @async: If true, the device is being suspended asynchronously.
1158 *
1159 * Runtime PM is disabled for @dev while this function is being executed.
1160 */
__device_suspend_late(struct device * dev,pm_message_t state,bool async)1161 static int __device_suspend_late(struct device *dev, pm_message_t state, bool async)
1162 {
1163 pm_callback_t callback = NULL;
1164 char *info = NULL;
1165 int error = 0;
1166
1167 TRACE_DEVICE(dev);
1168 TRACE_SUSPEND(0);
1169
1170 __pm_runtime_disable(dev, false);
1171
1172 if (async_error)
1173 goto Complete;
1174
1175 if (pm_wakeup_pending()) {
1176 async_error = -EBUSY;
1177 goto Complete;
1178 }
1179
1180 if (dev->power.syscore || dev->power.direct_complete)
1181 goto Complete;
1182
1183 dpm_wait_for_children(dev, async);
1184
1185 if (dev->pm_domain) {
1186 info = "late power domain ";
1187 callback = pm_late_early_op(&dev->pm_domain->ops, state);
1188 } else if (dev->type && dev->type->pm) {
1189 info = "late type ";
1190 callback = pm_late_early_op(dev->type->pm, state);
1191 } else if (dev->class && dev->class->pm) {
1192 info = "late class ";
1193 callback = pm_late_early_op(dev->class->pm, state);
1194 } else if (dev->bus && dev->bus->pm) {
1195 info = "late bus ";
1196 callback = pm_late_early_op(dev->bus->pm, state);
1197 }
1198
1199 if (!callback && dev->driver && dev->driver->pm) {
1200 info = "late driver ";
1201 callback = pm_late_early_op(dev->driver->pm, state);
1202 }
1203
1204 error = dpm_run_callback(callback, dev, state, info);
1205 if (!error)
1206 dev->power.is_late_suspended = true;
1207 else
1208 async_error = error;
1209
1210 Complete:
1211 TRACE_SUSPEND(error);
1212 complete_all(&dev->power.completion);
1213 return error;
1214 }
1215
async_suspend_late(void * data,async_cookie_t cookie)1216 static void async_suspend_late(void *data, async_cookie_t cookie)
1217 {
1218 struct device *dev = (struct device *)data;
1219 int error;
1220
1221 error = __device_suspend_late(dev, pm_transition, true);
1222 if (error) {
1223 dpm_save_failed_dev(dev_name(dev));
1224 pm_dev_err(dev, pm_transition, " async", error);
1225 }
1226 put_device(dev);
1227 }
1228
device_suspend_late(struct device * dev)1229 static int device_suspend_late(struct device *dev)
1230 {
1231 reinit_completion(&dev->power.completion);
1232
1233 if (is_async(dev)) {
1234 get_device(dev);
1235 async_schedule(async_suspend_late, dev);
1236 return 0;
1237 }
1238
1239 return __device_suspend_late(dev, pm_transition, false);
1240 }
1241
1242 /**
1243 * dpm_suspend_late - Execute "late suspend" callbacks for all devices.
1244 * @state: PM transition of the system being carried out.
1245 */
dpm_suspend_late(pm_message_t state)1246 int dpm_suspend_late(pm_message_t state)
1247 {
1248 ktime_t starttime = ktime_get();
1249 int error = 0;
1250
1251 trace_suspend_resume(TPS("dpm_suspend_late"), state.event, true);
1252 mutex_lock(&dpm_list_mtx);
1253 pm_transition = state;
1254 async_error = 0;
1255
1256 while (!list_empty(&dpm_suspended_list)) {
1257 struct device *dev = to_device(dpm_suspended_list.prev);
1258
1259 get_device(dev);
1260 mutex_unlock(&dpm_list_mtx);
1261
1262 error = device_suspend_late(dev);
1263
1264 mutex_lock(&dpm_list_mtx);
1265 if (!list_empty(&dev->power.entry))
1266 list_move(&dev->power.entry, &dpm_late_early_list);
1267
1268 if (error) {
1269 pm_dev_err(dev, state, " late", error);
1270 dpm_save_failed_dev(dev_name(dev));
1271 put_device(dev);
1272 break;
1273 }
1274 put_device(dev);
1275
1276 if (async_error)
1277 break;
1278 }
1279 mutex_unlock(&dpm_list_mtx);
1280 async_synchronize_full();
1281 if (!error)
1282 error = async_error;
1283 if (error) {
1284 suspend_stats.failed_suspend_late++;
1285 dpm_save_failed_step(SUSPEND_SUSPEND_LATE);
1286 dpm_resume_early(resume_event(state));
1287 } else {
1288 dpm_show_time(starttime, state, "late");
1289 }
1290 trace_suspend_resume(TPS("dpm_suspend_late"), state.event, false);
1291 return error;
1292 }
1293
1294 /**
1295 * dpm_suspend_end - Execute "late" and "noirq" device suspend callbacks.
1296 * @state: PM transition of the system being carried out.
1297 */
dpm_suspend_end(pm_message_t state)1298 int dpm_suspend_end(pm_message_t state)
1299 {
1300 int error = dpm_suspend_late(state);
1301 if (error)
1302 return error;
1303
1304 error = dpm_suspend_noirq(state);
1305 if (error) {
1306 dpm_resume_early(resume_event(state));
1307 return error;
1308 }
1309
1310 return 0;
1311 }
1312 EXPORT_SYMBOL_GPL(dpm_suspend_end);
1313
1314 /**
1315 * legacy_suspend - Execute a legacy (bus or class) suspend callback for device.
1316 * @dev: Device to suspend.
1317 * @state: PM transition of the system being carried out.
1318 * @cb: Suspend callback to execute.
1319 * @info: string description of caller.
1320 */
legacy_suspend(struct device * dev,pm_message_t state,int (* cb)(struct device * dev,pm_message_t state),char * info)1321 static int legacy_suspend(struct device *dev, pm_message_t state,
1322 int (*cb)(struct device *dev, pm_message_t state),
1323 char *info)
1324 {
1325 int error;
1326 ktime_t calltime;
1327
1328 calltime = initcall_debug_start(dev);
1329
1330 trace_device_pm_callback_start(dev, info, state.event);
1331 error = cb(dev, state);
1332 trace_device_pm_callback_end(dev, error);
1333 suspend_report_result(cb, error);
1334
1335 initcall_debug_report(dev, calltime, error, state, info);
1336
1337 return error;
1338 }
1339
1340 /**
1341 * device_suspend - Execute "suspend" callbacks for given device.
1342 * @dev: Device to handle.
1343 * @state: PM transition of the system being carried out.
1344 * @async: If true, the device is being suspended asynchronously.
1345 */
__device_suspend(struct device * dev,pm_message_t state,bool async)1346 static int __device_suspend(struct device *dev, pm_message_t state, bool async)
1347 {
1348 pm_callback_t callback = NULL;
1349 char *info = NULL;
1350 int error = 0;
1351 DECLARE_DPM_WATCHDOG_ON_STACK(wd);
1352
1353 TRACE_DEVICE(dev);
1354 TRACE_SUSPEND(0);
1355
1356 dpm_wait_for_children(dev, async);
1357
1358 if (async_error)
1359 goto Complete;
1360
1361 /*
1362 * If a device configured to wake up the system from sleep states
1363 * has been suspended at run time and there's a resume request pending
1364 * for it, this is equivalent to the device signaling wakeup, so the
1365 * system suspend operation should be aborted.
1366 */
1367 if (pm_runtime_barrier(dev) && device_may_wakeup(dev))
1368 pm_wakeup_event(dev, 0);
1369
1370 if (pm_wakeup_pending()) {
1371 async_error = -EBUSY;
1372 goto Complete;
1373 }
1374
1375 if (dev->power.syscore)
1376 goto Complete;
1377
1378 if (dev->power.direct_complete) {
1379 if (pm_runtime_status_suspended(dev)) {
1380 pm_runtime_disable(dev);
1381 if (pm_runtime_status_suspended(dev))
1382 goto Complete;
1383
1384 pm_runtime_enable(dev);
1385 }
1386 dev->power.direct_complete = false;
1387 }
1388
1389 dpm_watchdog_set(&wd, dev);
1390 device_lock(dev);
1391
1392 if (dev->pm_domain) {
1393 info = "power domain ";
1394 callback = pm_op(&dev->pm_domain->ops, state);
1395 goto Run;
1396 }
1397
1398 if (dev->type && dev->type->pm) {
1399 info = "type ";
1400 callback = pm_op(dev->type->pm, state);
1401 goto Run;
1402 }
1403
1404 if (dev->class) {
1405 if (dev->class->pm) {
1406 info = "class ";
1407 callback = pm_op(dev->class->pm, state);
1408 goto Run;
1409 } else if (dev->class->suspend) {
1410 pm_dev_dbg(dev, state, "legacy class ");
1411 error = legacy_suspend(dev, state, dev->class->suspend,
1412 "legacy class ");
1413 goto End;
1414 }
1415 }
1416
1417 if (dev->bus) {
1418 if (dev->bus->pm) {
1419 info = "bus ";
1420 callback = pm_op(dev->bus->pm, state);
1421 } else if (dev->bus->suspend) {
1422 pm_dev_dbg(dev, state, "legacy bus ");
1423 error = legacy_suspend(dev, state, dev->bus->suspend,
1424 "legacy bus ");
1425 goto End;
1426 }
1427 }
1428
1429 Run:
1430 if (!callback && dev->driver && dev->driver->pm) {
1431 info = "driver ";
1432 callback = pm_op(dev->driver->pm, state);
1433 }
1434
1435 error = dpm_run_callback(callback, dev, state, info);
1436
1437 End:
1438 if (!error) {
1439 struct device *parent = dev->parent;
1440
1441 dev->power.is_suspended = true;
1442 if (parent) {
1443 spin_lock_irq(&parent->power.lock);
1444
1445 dev->parent->power.direct_complete = false;
1446 if (dev->power.wakeup_path
1447 && !dev->parent->power.ignore_children)
1448 dev->parent->power.wakeup_path = true;
1449
1450 spin_unlock_irq(&parent->power.lock);
1451 }
1452 }
1453
1454 device_unlock(dev);
1455 dpm_watchdog_clear(&wd);
1456
1457 Complete:
1458 complete_all(&dev->power.completion);
1459 if (error)
1460 async_error = error;
1461
1462 TRACE_SUSPEND(error);
1463 return error;
1464 }
1465
async_suspend(void * data,async_cookie_t cookie)1466 static void async_suspend(void *data, async_cookie_t cookie)
1467 {
1468 struct device *dev = (struct device *)data;
1469 int error;
1470
1471 error = __device_suspend(dev, pm_transition, true);
1472 if (error) {
1473 dpm_save_failed_dev(dev_name(dev));
1474 pm_dev_err(dev, pm_transition, " async", error);
1475 }
1476
1477 put_device(dev);
1478 }
1479
device_suspend(struct device * dev)1480 static int device_suspend(struct device *dev)
1481 {
1482 reinit_completion(&dev->power.completion);
1483
1484 if (is_async(dev)) {
1485 get_device(dev);
1486 async_schedule(async_suspend, dev);
1487 return 0;
1488 }
1489
1490 return __device_suspend(dev, pm_transition, false);
1491 }
1492
1493 /**
1494 * dpm_suspend - Execute "suspend" callbacks for all non-sysdev devices.
1495 * @state: PM transition of the system being carried out.
1496 */
dpm_suspend(pm_message_t state)1497 int dpm_suspend(pm_message_t state)
1498 {
1499 ktime_t starttime = ktime_get();
1500 int error = 0;
1501
1502 trace_suspend_resume(TPS("dpm_suspend"), state.event, true);
1503 might_sleep();
1504
1505 cpufreq_suspend();
1506
1507 mutex_lock(&dpm_list_mtx);
1508 pm_transition = state;
1509 async_error = 0;
1510 while (!list_empty(&dpm_prepared_list)) {
1511 struct device *dev = to_device(dpm_prepared_list.prev);
1512
1513 get_device(dev);
1514 mutex_unlock(&dpm_list_mtx);
1515
1516 error = device_suspend(dev);
1517
1518 mutex_lock(&dpm_list_mtx);
1519 if (error) {
1520 pm_dev_err(dev, state, "", error);
1521 dpm_save_failed_dev(dev_name(dev));
1522 put_device(dev);
1523 break;
1524 }
1525 if (!list_empty(&dev->power.entry))
1526 list_move(&dev->power.entry, &dpm_suspended_list);
1527 put_device(dev);
1528 if (async_error)
1529 break;
1530 }
1531 mutex_unlock(&dpm_list_mtx);
1532 async_synchronize_full();
1533 if (!error)
1534 error = async_error;
1535 if (error) {
1536 suspend_stats.failed_suspend++;
1537 dpm_save_failed_step(SUSPEND_SUSPEND);
1538 } else
1539 dpm_show_time(starttime, state, NULL);
1540 trace_suspend_resume(TPS("dpm_suspend"), state.event, false);
1541 return error;
1542 }
1543
1544 /**
1545 * device_prepare - Prepare a device for system power transition.
1546 * @dev: Device to handle.
1547 * @state: PM transition of the system being carried out.
1548 *
1549 * Execute the ->prepare() callback(s) for given device. No new children of the
1550 * device may be registered after this function has returned.
1551 */
device_prepare(struct device * dev,pm_message_t state)1552 static int device_prepare(struct device *dev, pm_message_t state)
1553 {
1554 int (*callback)(struct device *) = NULL;
1555 char *info = NULL;
1556 int ret = 0;
1557
1558 if (dev->power.syscore)
1559 return 0;
1560
1561 /*
1562 * If a device's parent goes into runtime suspend at the wrong time,
1563 * it won't be possible to resume the device. To prevent this we
1564 * block runtime suspend here, during the prepare phase, and allow
1565 * it again during the complete phase.
1566 */
1567 pm_runtime_get_noresume(dev);
1568
1569 device_lock(dev);
1570
1571 dev->power.wakeup_path = device_may_wakeup(dev);
1572
1573 if (dev->pm_domain) {
1574 info = "preparing power domain ";
1575 callback = dev->pm_domain->ops.prepare;
1576 } else if (dev->type && dev->type->pm) {
1577 info = "preparing type ";
1578 callback = dev->type->pm->prepare;
1579 } else if (dev->class && dev->class->pm) {
1580 info = "preparing class ";
1581 callback = dev->class->pm->prepare;
1582 } else if (dev->bus && dev->bus->pm) {
1583 info = "preparing bus ";
1584 callback = dev->bus->pm->prepare;
1585 }
1586
1587 if (!callback && dev->driver && dev->driver->pm) {
1588 info = "preparing driver ";
1589 callback = dev->driver->pm->prepare;
1590 }
1591
1592 if (callback)
1593 ret = callback(dev);
1594
1595 device_unlock(dev);
1596
1597 if (ret < 0) {
1598 suspend_report_result(callback, ret);
1599 pm_runtime_put(dev);
1600 return ret;
1601 }
1602 /*
1603 * A positive return value from ->prepare() means "this device appears
1604 * to be runtime-suspended and its state is fine, so if it really is
1605 * runtime-suspended, you can leave it in that state provided that you
1606 * will do the same thing with all of its descendants". This only
1607 * applies to suspend transitions, however.
1608 */
1609 spin_lock_irq(&dev->power.lock);
1610 dev->power.direct_complete = ret > 0 && state.event == PM_EVENT_SUSPEND;
1611 spin_unlock_irq(&dev->power.lock);
1612 return 0;
1613 }
1614
1615 /**
1616 * dpm_prepare - Prepare all non-sysdev devices for a system PM transition.
1617 * @state: PM transition of the system being carried out.
1618 *
1619 * Execute the ->prepare() callback(s) for all devices.
1620 */
dpm_prepare(pm_message_t state)1621 int dpm_prepare(pm_message_t state)
1622 {
1623 int error = 0;
1624
1625 trace_suspend_resume(TPS("dpm_prepare"), state.event, true);
1626 might_sleep();
1627
1628 mutex_lock(&dpm_list_mtx);
1629 while (!list_empty(&dpm_list)) {
1630 struct device *dev = to_device(dpm_list.next);
1631
1632 get_device(dev);
1633 mutex_unlock(&dpm_list_mtx);
1634
1635 trace_device_pm_callback_start(dev, "", state.event);
1636 error = device_prepare(dev, state);
1637 trace_device_pm_callback_end(dev, error);
1638
1639 mutex_lock(&dpm_list_mtx);
1640 if (error) {
1641 if (error == -EAGAIN) {
1642 put_device(dev);
1643 error = 0;
1644 continue;
1645 }
1646 printk(KERN_INFO "PM: Device %s not prepared "
1647 "for power transition: code %d\n",
1648 dev_name(dev), error);
1649 put_device(dev);
1650 break;
1651 }
1652 dev->power.is_prepared = true;
1653 if (!list_empty(&dev->power.entry))
1654 list_move_tail(&dev->power.entry, &dpm_prepared_list);
1655 put_device(dev);
1656 }
1657 mutex_unlock(&dpm_list_mtx);
1658 trace_suspend_resume(TPS("dpm_prepare"), state.event, false);
1659 return error;
1660 }
1661
1662 /**
1663 * dpm_suspend_start - Prepare devices for PM transition and suspend them.
1664 * @state: PM transition of the system being carried out.
1665 *
1666 * Prepare all non-sysdev devices for system PM transition and execute "suspend"
1667 * callbacks for them.
1668 */
dpm_suspend_start(pm_message_t state)1669 int dpm_suspend_start(pm_message_t state)
1670 {
1671 int error;
1672
1673 error = dpm_prepare(state);
1674 if (error) {
1675 suspend_stats.failed_prepare++;
1676 dpm_save_failed_step(SUSPEND_PREPARE);
1677 } else
1678 error = dpm_suspend(state);
1679 return error;
1680 }
1681 EXPORT_SYMBOL_GPL(dpm_suspend_start);
1682
__suspend_report_result(const char * function,void * fn,int ret)1683 void __suspend_report_result(const char *function, void *fn, int ret)
1684 {
1685 if (ret)
1686 printk(KERN_ERR "%s(): %pF returns %d\n", function, fn, ret);
1687 }
1688 EXPORT_SYMBOL_GPL(__suspend_report_result);
1689
1690 /**
1691 * device_pm_wait_for_dev - Wait for suspend/resume of a device to complete.
1692 * @dev: Device to wait for.
1693 * @subordinate: Device that needs to wait for @dev.
1694 */
device_pm_wait_for_dev(struct device * subordinate,struct device * dev)1695 int device_pm_wait_for_dev(struct device *subordinate, struct device *dev)
1696 {
1697 dpm_wait(dev, subordinate->power.async_suspend);
1698 return async_error;
1699 }
1700 EXPORT_SYMBOL_GPL(device_pm_wait_for_dev);
1701
1702 /**
1703 * dpm_for_each_dev - device iterator.
1704 * @data: data for the callback.
1705 * @fn: function to be called for each device.
1706 *
1707 * Iterate over devices in dpm_list, and call @fn for each device,
1708 * passing it @data.
1709 */
dpm_for_each_dev(void * data,void (* fn)(struct device *,void *))1710 void dpm_for_each_dev(void *data, void (*fn)(struct device *, void *))
1711 {
1712 struct device *dev;
1713
1714 if (!fn)
1715 return;
1716
1717 device_pm_lock();
1718 list_for_each_entry(dev, &dpm_list, power.entry)
1719 fn(dev, data);
1720 device_pm_unlock();
1721 }
1722 EXPORT_SYMBOL_GPL(dpm_for_each_dev);
1723