1 /*
2  * DECnet       An implementation of the DECnet protocol suite for the LINUX
3  *              operating system.  DECnet is implemented using the  BSD Socket
4  *              interface as the means of communication with the user level.
5  *
6  *              DECnet Neighbour Functions (Adjacency Database and
7  *                                                        On-Ethernet Cache)
8  *
9  * Author:      Steve Whitehouse <SteveW@ACM.org>
10  *
11  *
12  * Changes:
13  *     Steve Whitehouse     : Fixed router listing routine
14  *     Steve Whitehouse     : Added error_report functions
15  *     Steve Whitehouse     : Added default router detection
16  *     Steve Whitehouse     : Hop counts in outgoing messages
17  *     Steve Whitehouse     : Fixed src/dst in outgoing messages so
18  *                            forwarding now stands a good chance of
19  *                            working.
20  *     Steve Whitehouse     : Fixed neighbour states (for now anyway).
21  *     Steve Whitehouse     : Made error_report functions dummies. This
22  *                            is not the right place to return skbs.
23  *     Steve Whitehouse     : Convert to seq_file
24  *
25  */
26 
27 #include <linux/net.h>
28 #include <linux/module.h>
29 #include <linux/socket.h>
30 #include <linux/if_arp.h>
31 #include <linux/slab.h>
32 #include <linux/if_ether.h>
33 #include <linux/init.h>
34 #include <linux/proc_fs.h>
35 #include <linux/string.h>
36 #include <linux/netfilter_decnet.h>
37 #include <linux/spinlock.h>
38 #include <linux/seq_file.h>
39 #include <linux/rcupdate.h>
40 #include <linux/jhash.h>
41 #include <linux/atomic.h>
42 #include <net/net_namespace.h>
43 #include <net/neighbour.h>
44 #include <net/dst.h>
45 #include <net/flow.h>
46 #include <net/dn.h>
47 #include <net/dn_dev.h>
48 #include <net/dn_neigh.h>
49 #include <net/dn_route.h>
50 
51 static int dn_neigh_construct(struct neighbour *);
52 static void dn_neigh_error_report(struct neighbour *, struct sk_buff *);
53 static int dn_neigh_output(struct neighbour *neigh, struct sk_buff *skb);
54 
55 /*
56  * Operations for adding the link layer header.
57  */
58 static const struct neigh_ops dn_neigh_ops = {
59 	.family =		AF_DECnet,
60 	.error_report =		dn_neigh_error_report,
61 	.output =		dn_neigh_output,
62 	.connected_output =	dn_neigh_output,
63 };
64 
dn_neigh_hash(const void * pkey,const struct net_device * dev,__u32 * hash_rnd)65 static u32 dn_neigh_hash(const void *pkey,
66 			 const struct net_device *dev,
67 			 __u32 *hash_rnd)
68 {
69 	return jhash_2words(*(__u16 *)pkey, 0, hash_rnd[0]);
70 }
71 
dn_key_eq(const struct neighbour * neigh,const void * pkey)72 static bool dn_key_eq(const struct neighbour *neigh, const void *pkey)
73 {
74 	return neigh_key_eq16(neigh, pkey);
75 }
76 
77 struct neigh_table dn_neigh_table = {
78 	.family =			PF_DECnet,
79 	.entry_size =			NEIGH_ENTRY_SIZE(sizeof(struct dn_neigh)),
80 	.key_len =			sizeof(__le16),
81 	.protocol =			cpu_to_be16(ETH_P_DNA_RT),
82 	.hash =				dn_neigh_hash,
83 	.key_eq =			dn_key_eq,
84 	.constructor =			dn_neigh_construct,
85 	.id =				"dn_neigh_cache",
86 	.parms ={
87 		.tbl =			&dn_neigh_table,
88 		.reachable_time =	30 * HZ,
89 		.data = {
90 			[NEIGH_VAR_MCAST_PROBES] = 0,
91 			[NEIGH_VAR_UCAST_PROBES] = 0,
92 			[NEIGH_VAR_APP_PROBES] = 0,
93 			[NEIGH_VAR_RETRANS_TIME] = 1 * HZ,
94 			[NEIGH_VAR_BASE_REACHABLE_TIME] = 30 * HZ,
95 			[NEIGH_VAR_DELAY_PROBE_TIME] = 5 * HZ,
96 			[NEIGH_VAR_GC_STALETIME] = 60 * HZ,
97 			[NEIGH_VAR_QUEUE_LEN_BYTES] = 64*1024,
98 			[NEIGH_VAR_PROXY_QLEN] = 0,
99 			[NEIGH_VAR_ANYCAST_DELAY] = 0,
100 			[NEIGH_VAR_PROXY_DELAY] = 0,
101 			[NEIGH_VAR_LOCKTIME] = 1 * HZ,
102 		},
103 	},
104 	.gc_interval =			30 * HZ,
105 	.gc_thresh1 =			128,
106 	.gc_thresh2 =			512,
107 	.gc_thresh3 =			1024,
108 };
109 
dn_neigh_construct(struct neighbour * neigh)110 static int dn_neigh_construct(struct neighbour *neigh)
111 {
112 	struct net_device *dev = neigh->dev;
113 	struct dn_neigh *dn = (struct dn_neigh *)neigh;
114 	struct dn_dev *dn_db;
115 	struct neigh_parms *parms;
116 
117 	rcu_read_lock();
118 	dn_db = rcu_dereference(dev->dn_ptr);
119 	if (dn_db == NULL) {
120 		rcu_read_unlock();
121 		return -EINVAL;
122 	}
123 
124 	parms = dn_db->neigh_parms;
125 	if (!parms) {
126 		rcu_read_unlock();
127 		return -EINVAL;
128 	}
129 
130 	__neigh_parms_put(neigh->parms);
131 	neigh->parms = neigh_parms_clone(parms);
132 	rcu_read_unlock();
133 
134 	neigh->ops = &dn_neigh_ops;
135 	neigh->nud_state = NUD_NOARP;
136 	neigh->output = neigh->ops->connected_output;
137 
138 	if ((dev->type == ARPHRD_IPGRE) || (dev->flags & IFF_POINTOPOINT))
139 		memcpy(neigh->ha, dev->broadcast, dev->addr_len);
140 	else if ((dev->type == ARPHRD_ETHER) || (dev->type == ARPHRD_LOOPBACK))
141 		dn_dn2eth(neigh->ha, dn->addr);
142 	else {
143 		net_dbg_ratelimited("Trying to create neigh for hw %d\n",
144 				    dev->type);
145 		return -EINVAL;
146 	}
147 
148 	/*
149 	 * Make an estimate of the remote block size by assuming that its
150 	 * two less then the device mtu, which it true for ethernet (and
151 	 * other things which support long format headers) since there is
152 	 * an extra length field (of 16 bits) which isn't part of the
153 	 * ethernet headers and which the DECnet specs won't admit is part
154 	 * of the DECnet routing headers either.
155 	 *
156 	 * If we over estimate here its no big deal, the NSP negotiations
157 	 * will prevent us from sending packets which are too large for the
158 	 * remote node to handle. In any case this figure is normally updated
159 	 * by a hello message in most cases.
160 	 */
161 	dn->blksize = dev->mtu - 2;
162 
163 	return 0;
164 }
165 
dn_neigh_error_report(struct neighbour * neigh,struct sk_buff * skb)166 static void dn_neigh_error_report(struct neighbour *neigh, struct sk_buff *skb)
167 {
168 	printk(KERN_DEBUG "dn_neigh_error_report: called\n");
169 	kfree_skb(skb);
170 }
171 
dn_neigh_output(struct neighbour * neigh,struct sk_buff * skb)172 static int dn_neigh_output(struct neighbour *neigh, struct sk_buff *skb)
173 {
174 	struct dst_entry *dst = skb_dst(skb);
175 	struct dn_route *rt = (struct dn_route *)dst;
176 	struct net_device *dev = neigh->dev;
177 	char mac_addr[ETH_ALEN];
178 	unsigned int seq;
179 	int err;
180 
181 	dn_dn2eth(mac_addr, rt->rt_local_src);
182 	do {
183 		seq = read_seqbegin(&neigh->ha_lock);
184 		err = dev_hard_header(skb, dev, ntohs(skb->protocol),
185 				      neigh->ha, mac_addr, skb->len);
186 	} while (read_seqretry(&neigh->ha_lock, seq));
187 
188 	if (err >= 0)
189 		err = dev_queue_xmit(skb);
190 	else {
191 		kfree_skb(skb);
192 		err = -EINVAL;
193 	}
194 	return err;
195 }
196 
dn_neigh_output_packet(struct sock * sk,struct sk_buff * skb)197 static int dn_neigh_output_packet(struct sock *sk, struct sk_buff *skb)
198 {
199 	struct dst_entry *dst = skb_dst(skb);
200 	struct dn_route *rt = (struct dn_route *)dst;
201 	struct neighbour *neigh = rt->n;
202 
203 	return neigh->output(neigh, skb);
204 }
205 
206 /*
207  * For talking to broadcast devices: Ethernet & PPP
208  */
dn_long_output(struct neighbour * neigh,struct sock * sk,struct sk_buff * skb)209 static int dn_long_output(struct neighbour *neigh, struct sock *sk,
210 			  struct sk_buff *skb)
211 {
212 	struct net_device *dev = neigh->dev;
213 	int headroom = dev->hard_header_len + sizeof(struct dn_long_packet) + 3;
214 	unsigned char *data;
215 	struct dn_long_packet *lp;
216 	struct dn_skb_cb *cb = DN_SKB_CB(skb);
217 
218 
219 	if (skb_headroom(skb) < headroom) {
220 		struct sk_buff *skb2 = skb_realloc_headroom(skb, headroom);
221 		if (skb2 == NULL) {
222 			net_crit_ratelimited("dn_long_output: no memory\n");
223 			kfree_skb(skb);
224 			return -ENOBUFS;
225 		}
226 		consume_skb(skb);
227 		skb = skb2;
228 		net_info_ratelimited("dn_long_output: Increasing headroom\n");
229 	}
230 
231 	data = skb_push(skb, sizeof(struct dn_long_packet) + 3);
232 	lp = (struct dn_long_packet *)(data+3);
233 
234 	*((__le16 *)data) = cpu_to_le16(skb->len - 2);
235 	*(data + 2) = 1 | DN_RT_F_PF; /* Padding */
236 
237 	lp->msgflg   = DN_RT_PKT_LONG|(cb->rt_flags&(DN_RT_F_IE|DN_RT_F_RQR|DN_RT_F_RTS));
238 	lp->d_area   = lp->d_subarea = 0;
239 	dn_dn2eth(lp->d_id, cb->dst);
240 	lp->s_area   = lp->s_subarea = 0;
241 	dn_dn2eth(lp->s_id, cb->src);
242 	lp->nl2      = 0;
243 	lp->visit_ct = cb->hops & 0x3f;
244 	lp->s_class  = 0;
245 	lp->pt       = 0;
246 
247 	skb_reset_network_header(skb);
248 
249 	return NF_HOOK(NFPROTO_DECNET, NF_DN_POST_ROUTING, sk, skb,
250 		       NULL, neigh->dev, dn_neigh_output_packet);
251 }
252 
253 /*
254  * For talking to pointopoint and multidrop devices: DDCMP and X.25
255  */
dn_short_output(struct neighbour * neigh,struct sock * sk,struct sk_buff * skb)256 static int dn_short_output(struct neighbour *neigh, struct sock *sk,
257 			   struct sk_buff *skb)
258 {
259 	struct net_device *dev = neigh->dev;
260 	int headroom = dev->hard_header_len + sizeof(struct dn_short_packet) + 2;
261 	struct dn_short_packet *sp;
262 	unsigned char *data;
263 	struct dn_skb_cb *cb = DN_SKB_CB(skb);
264 
265 
266 	if (skb_headroom(skb) < headroom) {
267 		struct sk_buff *skb2 = skb_realloc_headroom(skb, headroom);
268 		if (skb2 == NULL) {
269 			net_crit_ratelimited("dn_short_output: no memory\n");
270 			kfree_skb(skb);
271 			return -ENOBUFS;
272 		}
273 		consume_skb(skb);
274 		skb = skb2;
275 		net_info_ratelimited("dn_short_output: Increasing headroom\n");
276 	}
277 
278 	data = skb_push(skb, sizeof(struct dn_short_packet) + 2);
279 	*((__le16 *)data) = cpu_to_le16(skb->len - 2);
280 	sp = (struct dn_short_packet *)(data+2);
281 
282 	sp->msgflg     = DN_RT_PKT_SHORT|(cb->rt_flags&(DN_RT_F_RQR|DN_RT_F_RTS));
283 	sp->dstnode    = cb->dst;
284 	sp->srcnode    = cb->src;
285 	sp->forward    = cb->hops & 0x3f;
286 
287 	skb_reset_network_header(skb);
288 
289 	return NF_HOOK(NFPROTO_DECNET, NF_DN_POST_ROUTING, sk, skb,
290 		       NULL, neigh->dev, dn_neigh_output_packet);
291 }
292 
293 /*
294  * For talking to DECnet phase III nodes
295  * Phase 3 output is the same as short output, execpt that
296  * it clears the area bits before transmission.
297  */
dn_phase3_output(struct neighbour * neigh,struct sock * sk,struct sk_buff * skb)298 static int dn_phase3_output(struct neighbour *neigh, struct sock *sk,
299 			    struct sk_buff *skb)
300 {
301 	struct net_device *dev = neigh->dev;
302 	int headroom = dev->hard_header_len + sizeof(struct dn_short_packet) + 2;
303 	struct dn_short_packet *sp;
304 	unsigned char *data;
305 	struct dn_skb_cb *cb = DN_SKB_CB(skb);
306 
307 	if (skb_headroom(skb) < headroom) {
308 		struct sk_buff *skb2 = skb_realloc_headroom(skb, headroom);
309 		if (skb2 == NULL) {
310 			net_crit_ratelimited("dn_phase3_output: no memory\n");
311 			kfree_skb(skb);
312 			return -ENOBUFS;
313 		}
314 		consume_skb(skb);
315 		skb = skb2;
316 		net_info_ratelimited("dn_phase3_output: Increasing headroom\n");
317 	}
318 
319 	data = skb_push(skb, sizeof(struct dn_short_packet) + 2);
320 	*((__le16 *)data) = cpu_to_le16(skb->len - 2);
321 	sp = (struct dn_short_packet *)(data + 2);
322 
323 	sp->msgflg   = DN_RT_PKT_SHORT|(cb->rt_flags&(DN_RT_F_RQR|DN_RT_F_RTS));
324 	sp->dstnode  = cb->dst & cpu_to_le16(0x03ff);
325 	sp->srcnode  = cb->src & cpu_to_le16(0x03ff);
326 	sp->forward  = cb->hops & 0x3f;
327 
328 	skb_reset_network_header(skb);
329 
330 	return NF_HOOK(NFPROTO_DECNET, NF_DN_POST_ROUTING, sk, skb,
331 		       NULL, neigh->dev, dn_neigh_output_packet);
332 }
333 
dn_to_neigh_output(struct sock * sk,struct sk_buff * skb)334 int dn_to_neigh_output(struct sock *sk, struct sk_buff *skb)
335 {
336 	struct dst_entry *dst = skb_dst(skb);
337 	struct dn_route *rt = (struct dn_route *) dst;
338 	struct neighbour *neigh = rt->n;
339 	struct dn_neigh *dn = (struct dn_neigh *)neigh;
340 	struct dn_dev *dn_db;
341 	bool use_long;
342 
343 	rcu_read_lock();
344 	dn_db = rcu_dereference(neigh->dev->dn_ptr);
345 	if (dn_db == NULL) {
346 		rcu_read_unlock();
347 		return -EINVAL;
348 	}
349 	use_long = dn_db->use_long;
350 	rcu_read_unlock();
351 
352 	if (dn->flags & DN_NDFLAG_P3)
353 		return dn_phase3_output(neigh, sk, skb);
354 	if (use_long)
355 		return dn_long_output(neigh, sk, skb);
356 	else
357 		return dn_short_output(neigh, sk, skb);
358 }
359 
360 /*
361  * Unfortunately, the neighbour code uses the device in its hash
362  * function, so we don't get any advantage from it. This function
363  * basically does a neigh_lookup(), but without comparing the device
364  * field. This is required for the On-Ethernet cache
365  */
366 
367 /*
368  * Pointopoint link receives a hello message
369  */
dn_neigh_pointopoint_hello(struct sk_buff * skb)370 void dn_neigh_pointopoint_hello(struct sk_buff *skb)
371 {
372 	kfree_skb(skb);
373 }
374 
375 /*
376  * Ethernet router hello message received
377  */
dn_neigh_router_hello(struct sock * sk,struct sk_buff * skb)378 int dn_neigh_router_hello(struct sock *sk, struct sk_buff *skb)
379 {
380 	struct rtnode_hello_message *msg = (struct rtnode_hello_message *)skb->data;
381 
382 	struct neighbour *neigh;
383 	struct dn_neigh *dn;
384 	struct dn_dev *dn_db;
385 	__le16 src;
386 
387 	src = dn_eth2dn(msg->id);
388 
389 	neigh = __neigh_lookup(&dn_neigh_table, &src, skb->dev, 1);
390 
391 	dn = (struct dn_neigh *)neigh;
392 
393 	if (neigh) {
394 		write_lock(&neigh->lock);
395 
396 		neigh->used = jiffies;
397 		dn_db = rcu_dereference(neigh->dev->dn_ptr);
398 
399 		if (!(neigh->nud_state & NUD_PERMANENT)) {
400 			neigh->updated = jiffies;
401 
402 			if (neigh->dev->type == ARPHRD_ETHER)
403 				memcpy(neigh->ha, &eth_hdr(skb)->h_source, ETH_ALEN);
404 
405 			dn->blksize  = le16_to_cpu(msg->blksize);
406 			dn->priority = msg->priority;
407 
408 			dn->flags &= ~DN_NDFLAG_P3;
409 
410 			switch (msg->iinfo & DN_RT_INFO_TYPE) {
411 			case DN_RT_INFO_L1RT:
412 				dn->flags &=~DN_NDFLAG_R2;
413 				dn->flags |= DN_NDFLAG_R1;
414 				break;
415 			case DN_RT_INFO_L2RT:
416 				dn->flags |= DN_NDFLAG_R2;
417 			}
418 		}
419 
420 		/* Only use routers in our area */
421 		if ((le16_to_cpu(src)>>10) == (le16_to_cpu((decnet_address))>>10)) {
422 			if (!dn_db->router) {
423 				dn_db->router = neigh_clone(neigh);
424 			} else {
425 				if (msg->priority > ((struct dn_neigh *)dn_db->router)->priority)
426 					neigh_release(xchg(&dn_db->router, neigh_clone(neigh)));
427 			}
428 		}
429 		write_unlock(&neigh->lock);
430 		neigh_release(neigh);
431 	}
432 
433 	kfree_skb(skb);
434 	return 0;
435 }
436 
437 /*
438  * Endnode hello message received
439  */
dn_neigh_endnode_hello(struct sock * sk,struct sk_buff * skb)440 int dn_neigh_endnode_hello(struct sock *sk, struct sk_buff *skb)
441 {
442 	struct endnode_hello_message *msg = (struct endnode_hello_message *)skb->data;
443 	struct neighbour *neigh;
444 	struct dn_neigh *dn;
445 	__le16 src;
446 
447 	src = dn_eth2dn(msg->id);
448 
449 	neigh = __neigh_lookup(&dn_neigh_table, &src, skb->dev, 1);
450 
451 	dn = (struct dn_neigh *)neigh;
452 
453 	if (neigh) {
454 		write_lock(&neigh->lock);
455 
456 		neigh->used = jiffies;
457 
458 		if (!(neigh->nud_state & NUD_PERMANENT)) {
459 			neigh->updated = jiffies;
460 
461 			if (neigh->dev->type == ARPHRD_ETHER)
462 				memcpy(neigh->ha, &eth_hdr(skb)->h_source, ETH_ALEN);
463 			dn->flags   &= ~(DN_NDFLAG_R1 | DN_NDFLAG_R2);
464 			dn->blksize  = le16_to_cpu(msg->blksize);
465 			dn->priority = 0;
466 		}
467 
468 		write_unlock(&neigh->lock);
469 		neigh_release(neigh);
470 	}
471 
472 	kfree_skb(skb);
473 	return 0;
474 }
475 
dn_find_slot(char * base,int max,int priority)476 static char *dn_find_slot(char *base, int max, int priority)
477 {
478 	int i;
479 	unsigned char *min = NULL;
480 
481 	base += 6; /* skip first id */
482 
483 	for(i = 0; i < max; i++) {
484 		if (!min || (*base < *min))
485 			min = base;
486 		base += 7; /* find next priority */
487 	}
488 
489 	if (!min)
490 		return NULL;
491 
492 	return (*min < priority) ? (min - 6) : NULL;
493 }
494 
495 struct elist_cb_state {
496 	struct net_device *dev;
497 	unsigned char *ptr;
498 	unsigned char *rs;
499 	int t, n;
500 };
501 
neigh_elist_cb(struct neighbour * neigh,void * _info)502 static void neigh_elist_cb(struct neighbour *neigh, void *_info)
503 {
504 	struct elist_cb_state *s = _info;
505 	struct dn_neigh *dn;
506 
507 	if (neigh->dev != s->dev)
508 		return;
509 
510 	dn = (struct dn_neigh *) neigh;
511 	if (!(dn->flags & (DN_NDFLAG_R1|DN_NDFLAG_R2)))
512 		return;
513 
514 	if (s->t == s->n)
515 		s->rs = dn_find_slot(s->ptr, s->n, dn->priority);
516 	else
517 		s->t++;
518 	if (s->rs == NULL)
519 		return;
520 
521 	dn_dn2eth(s->rs, dn->addr);
522 	s->rs += 6;
523 	*(s->rs) = neigh->nud_state & NUD_CONNECTED ? 0x80 : 0x0;
524 	*(s->rs) |= dn->priority;
525 	s->rs++;
526 }
527 
dn_neigh_elist(struct net_device * dev,unsigned char * ptr,int n)528 int dn_neigh_elist(struct net_device *dev, unsigned char *ptr, int n)
529 {
530 	struct elist_cb_state state;
531 
532 	state.dev = dev;
533 	state.t = 0;
534 	state.n = n;
535 	state.ptr = ptr;
536 	state.rs = ptr;
537 
538 	neigh_for_each(&dn_neigh_table, neigh_elist_cb, &state);
539 
540 	return state.t;
541 }
542 
543 
544 #ifdef CONFIG_PROC_FS
545 
dn_neigh_format_entry(struct seq_file * seq,struct neighbour * n)546 static inline void dn_neigh_format_entry(struct seq_file *seq,
547 					 struct neighbour *n)
548 {
549 	struct dn_neigh *dn = (struct dn_neigh *) n;
550 	char buf[DN_ASCBUF_LEN];
551 
552 	read_lock(&n->lock);
553 	seq_printf(seq, "%-7s %s%s%s   %02x    %02d  %07ld %-8s\n",
554 		   dn_addr2asc(le16_to_cpu(dn->addr), buf),
555 		   (dn->flags&DN_NDFLAG_R1) ? "1" : "-",
556 		   (dn->flags&DN_NDFLAG_R2) ? "2" : "-",
557 		   (dn->flags&DN_NDFLAG_P3) ? "3" : "-",
558 		   dn->n.nud_state,
559 		   atomic_read(&dn->n.refcnt),
560 		   dn->blksize,
561 		   (dn->n.dev) ? dn->n.dev->name : "?");
562 	read_unlock(&n->lock);
563 }
564 
dn_neigh_seq_show(struct seq_file * seq,void * v)565 static int dn_neigh_seq_show(struct seq_file *seq, void *v)
566 {
567 	if (v == SEQ_START_TOKEN) {
568 		seq_puts(seq, "Addr    Flags State Use Blksize Dev\n");
569 	} else {
570 		dn_neigh_format_entry(seq, v);
571 	}
572 
573 	return 0;
574 }
575 
dn_neigh_seq_start(struct seq_file * seq,loff_t * pos)576 static void *dn_neigh_seq_start(struct seq_file *seq, loff_t *pos)
577 {
578 	return neigh_seq_start(seq, pos, &dn_neigh_table,
579 			       NEIGH_SEQ_NEIGH_ONLY);
580 }
581 
582 static const struct seq_operations dn_neigh_seq_ops = {
583 	.start = dn_neigh_seq_start,
584 	.next  = neigh_seq_next,
585 	.stop  = neigh_seq_stop,
586 	.show  = dn_neigh_seq_show,
587 };
588 
dn_neigh_seq_open(struct inode * inode,struct file * file)589 static int dn_neigh_seq_open(struct inode *inode, struct file *file)
590 {
591 	return seq_open_net(inode, file, &dn_neigh_seq_ops,
592 			    sizeof(struct neigh_seq_state));
593 }
594 
595 static const struct file_operations dn_neigh_seq_fops = {
596 	.owner		= THIS_MODULE,
597 	.open		= dn_neigh_seq_open,
598 	.read		= seq_read,
599 	.llseek		= seq_lseek,
600 	.release	= seq_release_net,
601 };
602 
603 #endif
604 
dn_neigh_init(void)605 void __init dn_neigh_init(void)
606 {
607 	neigh_table_init(NEIGH_DN_TABLE, &dn_neigh_table);
608 	proc_create("decnet_neigh", S_IRUGO, init_net.proc_net,
609 		    &dn_neigh_seq_fops);
610 }
611 
dn_neigh_cleanup(void)612 void __exit dn_neigh_cleanup(void)
613 {
614 	remove_proc_entry("decnet_neigh", init_net.proc_net);
615 	neigh_table_clear(NEIGH_DN_TABLE, &dn_neigh_table);
616 }
617