1 /*
2 * Copyright (c) 2006, Intel Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15 * Place - Suite 330, Boston, MA 02111-1307 USA.
16 *
17 * Copyright (C) 2006-2008 Intel Corporation
18 * Author: Ashok Raj <ashok.raj@intel.com>
19 * Author: Shaohua Li <shaohua.li@intel.com>
20 * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
21 *
22 * This file implements early detection/parsing of Remapping Devices
23 * reported to OS through BIOS via DMA remapping reporting (DMAR) ACPI
24 * tables.
25 *
26 * These routines are used by both DMA-remapping and Interrupt-remapping
27 */
28
29 #define pr_fmt(fmt) "DMAR: " fmt
30
31 #include <linux/pci.h>
32 #include <linux/dmar.h>
33 #include <linux/iova.h>
34 #include <linux/intel-iommu.h>
35 #include <linux/timer.h>
36 #include <linux/irq.h>
37 #include <linux/interrupt.h>
38 #include <linux/tboot.h>
39 #include <linux/dmi.h>
40 #include <linux/slab.h>
41 #include <linux/iommu.h>
42 #include <asm/irq_remapping.h>
43 #include <asm/iommu_table.h>
44
45 #include "irq_remapping.h"
46
47 typedef int (*dmar_res_handler_t)(struct acpi_dmar_header *, void *);
48 struct dmar_res_callback {
49 dmar_res_handler_t cb[ACPI_DMAR_TYPE_RESERVED];
50 void *arg[ACPI_DMAR_TYPE_RESERVED];
51 bool ignore_unhandled;
52 bool print_entry;
53 };
54
55 /*
56 * Assumptions:
57 * 1) The hotplug framework guarentees that DMAR unit will be hot-added
58 * before IO devices managed by that unit.
59 * 2) The hotplug framework guarantees that DMAR unit will be hot-removed
60 * after IO devices managed by that unit.
61 * 3) Hotplug events are rare.
62 *
63 * Locking rules for DMA and interrupt remapping related global data structures:
64 * 1) Use dmar_global_lock in process context
65 * 2) Use RCU in interrupt context
66 */
67 DECLARE_RWSEM(dmar_global_lock);
68 LIST_HEAD(dmar_drhd_units);
69
70 struct acpi_table_header * __initdata dmar_tbl;
71 static acpi_size dmar_tbl_size;
72 static int dmar_dev_scope_status = 1;
73 static unsigned long dmar_seq_ids[BITS_TO_LONGS(DMAR_UNITS_SUPPORTED)];
74
75 static int alloc_iommu(struct dmar_drhd_unit *drhd);
76 static void free_iommu(struct intel_iommu *iommu);
77
dmar_register_drhd_unit(struct dmar_drhd_unit * drhd)78 static void dmar_register_drhd_unit(struct dmar_drhd_unit *drhd)
79 {
80 /*
81 * add INCLUDE_ALL at the tail, so scan the list will find it at
82 * the very end.
83 */
84 if (drhd->include_all)
85 list_add_tail_rcu(&drhd->list, &dmar_drhd_units);
86 else
87 list_add_rcu(&drhd->list, &dmar_drhd_units);
88 }
89
dmar_alloc_dev_scope(void * start,void * end,int * cnt)90 void *dmar_alloc_dev_scope(void *start, void *end, int *cnt)
91 {
92 struct acpi_dmar_device_scope *scope;
93
94 *cnt = 0;
95 while (start < end) {
96 scope = start;
97 if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_NAMESPACE ||
98 scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT ||
99 scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE)
100 (*cnt)++;
101 else if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_IOAPIC &&
102 scope->entry_type != ACPI_DMAR_SCOPE_TYPE_HPET) {
103 pr_warn("Unsupported device scope\n");
104 }
105 start += scope->length;
106 }
107 if (*cnt == 0)
108 return NULL;
109
110 return kcalloc(*cnt, sizeof(struct dmar_dev_scope), GFP_KERNEL);
111 }
112
dmar_free_dev_scope(struct dmar_dev_scope ** devices,int * cnt)113 void dmar_free_dev_scope(struct dmar_dev_scope **devices, int *cnt)
114 {
115 int i;
116 struct device *tmp_dev;
117
118 if (*devices && *cnt) {
119 for_each_active_dev_scope(*devices, *cnt, i, tmp_dev)
120 put_device(tmp_dev);
121 kfree(*devices);
122 }
123
124 *devices = NULL;
125 *cnt = 0;
126 }
127
128 /* Optimize out kzalloc()/kfree() for normal cases */
129 static char dmar_pci_notify_info_buf[64];
130
131 static struct dmar_pci_notify_info *
dmar_alloc_pci_notify_info(struct pci_dev * dev,unsigned long event)132 dmar_alloc_pci_notify_info(struct pci_dev *dev, unsigned long event)
133 {
134 int level = 0;
135 size_t size;
136 struct pci_dev *tmp;
137 struct dmar_pci_notify_info *info;
138
139 BUG_ON(dev->is_virtfn);
140
141 /* Only generate path[] for device addition event */
142 if (event == BUS_NOTIFY_ADD_DEVICE)
143 for (tmp = dev; tmp; tmp = tmp->bus->self)
144 level++;
145
146 size = sizeof(*info) + level * sizeof(struct acpi_dmar_pci_path);
147 if (size <= sizeof(dmar_pci_notify_info_buf)) {
148 info = (struct dmar_pci_notify_info *)dmar_pci_notify_info_buf;
149 } else {
150 info = kzalloc(size, GFP_KERNEL);
151 if (!info) {
152 pr_warn("Out of memory when allocating notify_info "
153 "for %s.\n", pci_name(dev));
154 if (dmar_dev_scope_status == 0)
155 dmar_dev_scope_status = -ENOMEM;
156 return NULL;
157 }
158 }
159
160 info->event = event;
161 info->dev = dev;
162 info->seg = pci_domain_nr(dev->bus);
163 info->level = level;
164 if (event == BUS_NOTIFY_ADD_DEVICE) {
165 for (tmp = dev; tmp; tmp = tmp->bus->self) {
166 level--;
167 info->path[level].bus = tmp->bus->number;
168 info->path[level].device = PCI_SLOT(tmp->devfn);
169 info->path[level].function = PCI_FUNC(tmp->devfn);
170 if (pci_is_root_bus(tmp->bus))
171 info->bus = tmp->bus->number;
172 }
173 }
174
175 return info;
176 }
177
dmar_free_pci_notify_info(struct dmar_pci_notify_info * info)178 static inline void dmar_free_pci_notify_info(struct dmar_pci_notify_info *info)
179 {
180 if ((void *)info != dmar_pci_notify_info_buf)
181 kfree(info);
182 }
183
dmar_match_pci_path(struct dmar_pci_notify_info * info,int bus,struct acpi_dmar_pci_path * path,int count)184 static bool dmar_match_pci_path(struct dmar_pci_notify_info *info, int bus,
185 struct acpi_dmar_pci_path *path, int count)
186 {
187 int i;
188
189 if (info->bus != bus)
190 goto fallback;
191 if (info->level != count)
192 goto fallback;
193
194 for (i = 0; i < count; i++) {
195 if (path[i].device != info->path[i].device ||
196 path[i].function != info->path[i].function)
197 goto fallback;
198 }
199
200 return true;
201
202 fallback:
203
204 if (count != 1)
205 return false;
206
207 i = info->level - 1;
208 if (bus == info->path[i].bus &&
209 path[0].device == info->path[i].device &&
210 path[0].function == info->path[i].function) {
211 pr_info(FW_BUG "RMRR entry for device %02x:%02x.%x is broken - applying workaround\n",
212 bus, path[0].device, path[0].function);
213 return true;
214 }
215
216 return false;
217 }
218
219 /* Return: > 0 if match found, 0 if no match found, < 0 if error happens */
dmar_insert_dev_scope(struct dmar_pci_notify_info * info,void * start,void * end,u16 segment,struct dmar_dev_scope * devices,int devices_cnt)220 int dmar_insert_dev_scope(struct dmar_pci_notify_info *info,
221 void *start, void*end, u16 segment,
222 struct dmar_dev_scope *devices,
223 int devices_cnt)
224 {
225 int i, level;
226 struct device *tmp, *dev = &info->dev->dev;
227 struct acpi_dmar_device_scope *scope;
228 struct acpi_dmar_pci_path *path;
229
230 if (segment != info->seg)
231 return 0;
232
233 for (; start < end; start += scope->length) {
234 scope = start;
235 if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_ENDPOINT &&
236 scope->entry_type != ACPI_DMAR_SCOPE_TYPE_BRIDGE)
237 continue;
238
239 path = (struct acpi_dmar_pci_path *)(scope + 1);
240 level = (scope->length - sizeof(*scope)) / sizeof(*path);
241 if (!dmar_match_pci_path(info, scope->bus, path, level))
242 continue;
243
244 if ((scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT) ^
245 (info->dev->hdr_type == PCI_HEADER_TYPE_NORMAL)) {
246 pr_warn("Device scope type does not match for %s\n",
247 pci_name(info->dev));
248 return -EINVAL;
249 }
250
251 for_each_dev_scope(devices, devices_cnt, i, tmp)
252 if (tmp == NULL) {
253 devices[i].bus = info->dev->bus->number;
254 devices[i].devfn = info->dev->devfn;
255 rcu_assign_pointer(devices[i].dev,
256 get_device(dev));
257 return 1;
258 }
259 BUG_ON(i >= devices_cnt);
260 }
261
262 return 0;
263 }
264
dmar_remove_dev_scope(struct dmar_pci_notify_info * info,u16 segment,struct dmar_dev_scope * devices,int count)265 int dmar_remove_dev_scope(struct dmar_pci_notify_info *info, u16 segment,
266 struct dmar_dev_scope *devices, int count)
267 {
268 int index;
269 struct device *tmp;
270
271 if (info->seg != segment)
272 return 0;
273
274 for_each_active_dev_scope(devices, count, index, tmp)
275 if (tmp == &info->dev->dev) {
276 RCU_INIT_POINTER(devices[index].dev, NULL);
277 synchronize_rcu();
278 put_device(tmp);
279 return 1;
280 }
281
282 return 0;
283 }
284
dmar_pci_bus_add_dev(struct dmar_pci_notify_info * info)285 static int dmar_pci_bus_add_dev(struct dmar_pci_notify_info *info)
286 {
287 int ret = 0;
288 struct dmar_drhd_unit *dmaru;
289 struct acpi_dmar_hardware_unit *drhd;
290
291 for_each_drhd_unit(dmaru) {
292 if (dmaru->include_all)
293 continue;
294
295 drhd = container_of(dmaru->hdr,
296 struct acpi_dmar_hardware_unit, header);
297 ret = dmar_insert_dev_scope(info, (void *)(drhd + 1),
298 ((void *)drhd) + drhd->header.length,
299 dmaru->segment,
300 dmaru->devices, dmaru->devices_cnt);
301 if (ret != 0)
302 break;
303 }
304 if (ret >= 0)
305 ret = dmar_iommu_notify_scope_dev(info);
306 if (ret < 0 && dmar_dev_scope_status == 0)
307 dmar_dev_scope_status = ret;
308
309 return ret;
310 }
311
dmar_pci_bus_del_dev(struct dmar_pci_notify_info * info)312 static void dmar_pci_bus_del_dev(struct dmar_pci_notify_info *info)
313 {
314 struct dmar_drhd_unit *dmaru;
315
316 for_each_drhd_unit(dmaru)
317 if (dmar_remove_dev_scope(info, dmaru->segment,
318 dmaru->devices, dmaru->devices_cnt))
319 break;
320 dmar_iommu_notify_scope_dev(info);
321 }
322
dmar_pci_bus_notifier(struct notifier_block * nb,unsigned long action,void * data)323 static int dmar_pci_bus_notifier(struct notifier_block *nb,
324 unsigned long action, void *data)
325 {
326 struct pci_dev *pdev = to_pci_dev(data);
327 struct dmar_pci_notify_info *info;
328
329 /* Only care about add/remove events for physical functions */
330 if (pdev->is_virtfn)
331 return NOTIFY_DONE;
332 if (action != BUS_NOTIFY_ADD_DEVICE &&
333 action != BUS_NOTIFY_REMOVED_DEVICE)
334 return NOTIFY_DONE;
335
336 info = dmar_alloc_pci_notify_info(pdev, action);
337 if (!info)
338 return NOTIFY_DONE;
339
340 down_write(&dmar_global_lock);
341 if (action == BUS_NOTIFY_ADD_DEVICE)
342 dmar_pci_bus_add_dev(info);
343 else if (action == BUS_NOTIFY_REMOVED_DEVICE)
344 dmar_pci_bus_del_dev(info);
345 up_write(&dmar_global_lock);
346
347 dmar_free_pci_notify_info(info);
348
349 return NOTIFY_OK;
350 }
351
352 static struct notifier_block dmar_pci_bus_nb = {
353 .notifier_call = dmar_pci_bus_notifier,
354 .priority = INT_MIN,
355 };
356
357 static struct dmar_drhd_unit *
dmar_find_dmaru(struct acpi_dmar_hardware_unit * drhd)358 dmar_find_dmaru(struct acpi_dmar_hardware_unit *drhd)
359 {
360 struct dmar_drhd_unit *dmaru;
361
362 list_for_each_entry_rcu(dmaru, &dmar_drhd_units, list)
363 if (dmaru->segment == drhd->segment &&
364 dmaru->reg_base_addr == drhd->address)
365 return dmaru;
366
367 return NULL;
368 }
369
370 /**
371 * dmar_parse_one_drhd - parses exactly one DMA remapping hardware definition
372 * structure which uniquely represent one DMA remapping hardware unit
373 * present in the platform
374 */
dmar_parse_one_drhd(struct acpi_dmar_header * header,void * arg)375 static int dmar_parse_one_drhd(struct acpi_dmar_header *header, void *arg)
376 {
377 struct acpi_dmar_hardware_unit *drhd;
378 struct dmar_drhd_unit *dmaru;
379 int ret = 0;
380
381 drhd = (struct acpi_dmar_hardware_unit *)header;
382 dmaru = dmar_find_dmaru(drhd);
383 if (dmaru)
384 goto out;
385
386 dmaru = kzalloc(sizeof(*dmaru) + header->length, GFP_KERNEL);
387 if (!dmaru)
388 return -ENOMEM;
389
390 /*
391 * If header is allocated from slab by ACPI _DSM method, we need to
392 * copy the content because the memory buffer will be freed on return.
393 */
394 dmaru->hdr = (void *)(dmaru + 1);
395 memcpy(dmaru->hdr, header, header->length);
396 dmaru->reg_base_addr = drhd->address;
397 dmaru->segment = drhd->segment;
398 dmaru->include_all = drhd->flags & 0x1; /* BIT0: INCLUDE_ALL */
399 dmaru->devices = dmar_alloc_dev_scope((void *)(drhd + 1),
400 ((void *)drhd) + drhd->header.length,
401 &dmaru->devices_cnt);
402 if (dmaru->devices_cnt && dmaru->devices == NULL) {
403 kfree(dmaru);
404 return -ENOMEM;
405 }
406
407 ret = alloc_iommu(dmaru);
408 if (ret) {
409 dmar_free_dev_scope(&dmaru->devices,
410 &dmaru->devices_cnt);
411 kfree(dmaru);
412 return ret;
413 }
414 dmar_register_drhd_unit(dmaru);
415
416 out:
417 if (arg)
418 (*(int *)arg)++;
419
420 return 0;
421 }
422
dmar_free_drhd(struct dmar_drhd_unit * dmaru)423 static void dmar_free_drhd(struct dmar_drhd_unit *dmaru)
424 {
425 if (dmaru->devices && dmaru->devices_cnt)
426 dmar_free_dev_scope(&dmaru->devices, &dmaru->devices_cnt);
427 if (dmaru->iommu)
428 free_iommu(dmaru->iommu);
429 kfree(dmaru);
430 }
431
dmar_parse_one_andd(struct acpi_dmar_header * header,void * arg)432 static int __init dmar_parse_one_andd(struct acpi_dmar_header *header,
433 void *arg)
434 {
435 struct acpi_dmar_andd *andd = (void *)header;
436
437 /* Check for NUL termination within the designated length */
438 if (strnlen(andd->device_name, header->length - 8) == header->length - 8) {
439 WARN_TAINT(1, TAINT_FIRMWARE_WORKAROUND,
440 "Your BIOS is broken; ANDD object name is not NUL-terminated\n"
441 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
442 dmi_get_system_info(DMI_BIOS_VENDOR),
443 dmi_get_system_info(DMI_BIOS_VERSION),
444 dmi_get_system_info(DMI_PRODUCT_VERSION));
445 return -EINVAL;
446 }
447 pr_info("ANDD device: %x name: %s\n", andd->device_number,
448 andd->device_name);
449
450 return 0;
451 }
452
453 #ifdef CONFIG_ACPI_NUMA
dmar_parse_one_rhsa(struct acpi_dmar_header * header,void * arg)454 static int dmar_parse_one_rhsa(struct acpi_dmar_header *header, void *arg)
455 {
456 struct acpi_dmar_rhsa *rhsa;
457 struct dmar_drhd_unit *drhd;
458
459 rhsa = (struct acpi_dmar_rhsa *)header;
460 for_each_drhd_unit(drhd) {
461 if (drhd->reg_base_addr == rhsa->base_address) {
462 int node = acpi_map_pxm_to_node(rhsa->proximity_domain);
463
464 if (!node_online(node))
465 node = -1;
466 drhd->iommu->node = node;
467 return 0;
468 }
469 }
470 WARN_TAINT(
471 1, TAINT_FIRMWARE_WORKAROUND,
472 "Your BIOS is broken; RHSA refers to non-existent DMAR unit at %llx\n"
473 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
474 drhd->reg_base_addr,
475 dmi_get_system_info(DMI_BIOS_VENDOR),
476 dmi_get_system_info(DMI_BIOS_VERSION),
477 dmi_get_system_info(DMI_PRODUCT_VERSION));
478
479 return 0;
480 }
481 #else
482 #define dmar_parse_one_rhsa dmar_res_noop
483 #endif
484
485 static void __init
dmar_table_print_dmar_entry(struct acpi_dmar_header * header)486 dmar_table_print_dmar_entry(struct acpi_dmar_header *header)
487 {
488 struct acpi_dmar_hardware_unit *drhd;
489 struct acpi_dmar_reserved_memory *rmrr;
490 struct acpi_dmar_atsr *atsr;
491 struct acpi_dmar_rhsa *rhsa;
492
493 switch (header->type) {
494 case ACPI_DMAR_TYPE_HARDWARE_UNIT:
495 drhd = container_of(header, struct acpi_dmar_hardware_unit,
496 header);
497 pr_info("DRHD base: %#016Lx flags: %#x\n",
498 (unsigned long long)drhd->address, drhd->flags);
499 break;
500 case ACPI_DMAR_TYPE_RESERVED_MEMORY:
501 rmrr = container_of(header, struct acpi_dmar_reserved_memory,
502 header);
503 pr_info("RMRR base: %#016Lx end: %#016Lx\n",
504 (unsigned long long)rmrr->base_address,
505 (unsigned long long)rmrr->end_address);
506 break;
507 case ACPI_DMAR_TYPE_ROOT_ATS:
508 atsr = container_of(header, struct acpi_dmar_atsr, header);
509 pr_info("ATSR flags: %#x\n", atsr->flags);
510 break;
511 case ACPI_DMAR_TYPE_HARDWARE_AFFINITY:
512 rhsa = container_of(header, struct acpi_dmar_rhsa, header);
513 pr_info("RHSA base: %#016Lx proximity domain: %#x\n",
514 (unsigned long long)rhsa->base_address,
515 rhsa->proximity_domain);
516 break;
517 case ACPI_DMAR_TYPE_NAMESPACE:
518 /* We don't print this here because we need to sanity-check
519 it first. So print it in dmar_parse_one_andd() instead. */
520 break;
521 }
522 }
523
524 /**
525 * dmar_table_detect - checks to see if the platform supports DMAR devices
526 */
dmar_table_detect(void)527 static int __init dmar_table_detect(void)
528 {
529 acpi_status status = AE_OK;
530
531 /* if we could find DMAR table, then there are DMAR devices */
532 status = acpi_get_table_with_size(ACPI_SIG_DMAR, 0,
533 (struct acpi_table_header **)&dmar_tbl,
534 &dmar_tbl_size);
535
536 if (ACPI_SUCCESS(status) && !dmar_tbl) {
537 pr_warn("Unable to map DMAR\n");
538 status = AE_NOT_FOUND;
539 }
540
541 return (ACPI_SUCCESS(status) ? 1 : 0);
542 }
543
dmar_walk_remapping_entries(struct acpi_dmar_header * start,size_t len,struct dmar_res_callback * cb)544 static int dmar_walk_remapping_entries(struct acpi_dmar_header *start,
545 size_t len, struct dmar_res_callback *cb)
546 {
547 int ret = 0;
548 struct acpi_dmar_header *iter, *next;
549 struct acpi_dmar_header *end = ((void *)start) + len;
550
551 for (iter = start; iter < end && ret == 0; iter = next) {
552 next = (void *)iter + iter->length;
553 if (iter->length == 0) {
554 /* Avoid looping forever on bad ACPI tables */
555 pr_debug(FW_BUG "Invalid 0-length structure\n");
556 break;
557 } else if (next > end) {
558 /* Avoid passing table end */
559 pr_warn(FW_BUG "Record passes table end\n");
560 ret = -EINVAL;
561 break;
562 }
563
564 if (cb->print_entry)
565 dmar_table_print_dmar_entry(iter);
566
567 if (iter->type >= ACPI_DMAR_TYPE_RESERVED) {
568 /* continue for forward compatibility */
569 pr_debug("Unknown DMAR structure type %d\n",
570 iter->type);
571 } else if (cb->cb[iter->type]) {
572 ret = cb->cb[iter->type](iter, cb->arg[iter->type]);
573 } else if (!cb->ignore_unhandled) {
574 pr_warn("No handler for DMAR structure type %d\n",
575 iter->type);
576 ret = -EINVAL;
577 }
578 }
579
580 return ret;
581 }
582
dmar_walk_dmar_table(struct acpi_table_dmar * dmar,struct dmar_res_callback * cb)583 static inline int dmar_walk_dmar_table(struct acpi_table_dmar *dmar,
584 struct dmar_res_callback *cb)
585 {
586 return dmar_walk_remapping_entries((void *)(dmar + 1),
587 dmar->header.length - sizeof(*dmar), cb);
588 }
589
590 /**
591 * parse_dmar_table - parses the DMA reporting table
592 */
593 static int __init
parse_dmar_table(void)594 parse_dmar_table(void)
595 {
596 struct acpi_table_dmar *dmar;
597 int ret = 0;
598 int drhd_count = 0;
599 struct dmar_res_callback cb = {
600 .print_entry = true,
601 .ignore_unhandled = true,
602 .arg[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &drhd_count,
603 .cb[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &dmar_parse_one_drhd,
604 .cb[ACPI_DMAR_TYPE_RESERVED_MEMORY] = &dmar_parse_one_rmrr,
605 .cb[ACPI_DMAR_TYPE_ROOT_ATS] = &dmar_parse_one_atsr,
606 .cb[ACPI_DMAR_TYPE_HARDWARE_AFFINITY] = &dmar_parse_one_rhsa,
607 .cb[ACPI_DMAR_TYPE_NAMESPACE] = &dmar_parse_one_andd,
608 };
609
610 /*
611 * Do it again, earlier dmar_tbl mapping could be mapped with
612 * fixed map.
613 */
614 dmar_table_detect();
615
616 /*
617 * ACPI tables may not be DMA protected by tboot, so use DMAR copy
618 * SINIT saved in SinitMleData in TXT heap (which is DMA protected)
619 */
620 dmar_tbl = tboot_get_dmar_table(dmar_tbl);
621
622 dmar = (struct acpi_table_dmar *)dmar_tbl;
623 if (!dmar)
624 return -ENODEV;
625
626 if (dmar->width < PAGE_SHIFT - 1) {
627 pr_warn("Invalid DMAR haw\n");
628 return -EINVAL;
629 }
630
631 pr_info("Host address width %d\n", dmar->width + 1);
632 ret = dmar_walk_dmar_table(dmar, &cb);
633 if (ret == 0 && drhd_count == 0)
634 pr_warn(FW_BUG "No DRHD structure found in DMAR table\n");
635
636 return ret;
637 }
638
dmar_pci_device_match(struct dmar_dev_scope devices[],int cnt,struct pci_dev * dev)639 static int dmar_pci_device_match(struct dmar_dev_scope devices[],
640 int cnt, struct pci_dev *dev)
641 {
642 int index;
643 struct device *tmp;
644
645 while (dev) {
646 for_each_active_dev_scope(devices, cnt, index, tmp)
647 if (dev_is_pci(tmp) && dev == to_pci_dev(tmp))
648 return 1;
649
650 /* Check our parent */
651 dev = dev->bus->self;
652 }
653
654 return 0;
655 }
656
657 struct dmar_drhd_unit *
dmar_find_matched_drhd_unit(struct pci_dev * dev)658 dmar_find_matched_drhd_unit(struct pci_dev *dev)
659 {
660 struct dmar_drhd_unit *dmaru;
661 struct acpi_dmar_hardware_unit *drhd;
662
663 dev = pci_physfn(dev);
664
665 rcu_read_lock();
666 for_each_drhd_unit(dmaru) {
667 drhd = container_of(dmaru->hdr,
668 struct acpi_dmar_hardware_unit,
669 header);
670
671 if (dmaru->include_all &&
672 drhd->segment == pci_domain_nr(dev->bus))
673 goto out;
674
675 if (dmar_pci_device_match(dmaru->devices,
676 dmaru->devices_cnt, dev))
677 goto out;
678 }
679 dmaru = NULL;
680 out:
681 rcu_read_unlock();
682
683 return dmaru;
684 }
685
dmar_acpi_insert_dev_scope(u8 device_number,struct acpi_device * adev)686 static void __init dmar_acpi_insert_dev_scope(u8 device_number,
687 struct acpi_device *adev)
688 {
689 struct dmar_drhd_unit *dmaru;
690 struct acpi_dmar_hardware_unit *drhd;
691 struct acpi_dmar_device_scope *scope;
692 struct device *tmp;
693 int i;
694 struct acpi_dmar_pci_path *path;
695
696 for_each_drhd_unit(dmaru) {
697 drhd = container_of(dmaru->hdr,
698 struct acpi_dmar_hardware_unit,
699 header);
700
701 for (scope = (void *)(drhd + 1);
702 (unsigned long)scope < ((unsigned long)drhd) + drhd->header.length;
703 scope = ((void *)scope) + scope->length) {
704 if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_NAMESPACE)
705 continue;
706 if (scope->enumeration_id != device_number)
707 continue;
708
709 path = (void *)(scope + 1);
710 pr_info("ACPI device \"%s\" under DMAR at %llx as %02x:%02x.%d\n",
711 dev_name(&adev->dev), dmaru->reg_base_addr,
712 scope->bus, path->device, path->function);
713 for_each_dev_scope(dmaru->devices, dmaru->devices_cnt, i, tmp)
714 if (tmp == NULL) {
715 dmaru->devices[i].bus = scope->bus;
716 dmaru->devices[i].devfn = PCI_DEVFN(path->device,
717 path->function);
718 rcu_assign_pointer(dmaru->devices[i].dev,
719 get_device(&adev->dev));
720 return;
721 }
722 BUG_ON(i >= dmaru->devices_cnt);
723 }
724 }
725 pr_warn("No IOMMU scope found for ANDD enumeration ID %d (%s)\n",
726 device_number, dev_name(&adev->dev));
727 }
728
dmar_acpi_dev_scope_init(void)729 static int __init dmar_acpi_dev_scope_init(void)
730 {
731 struct acpi_dmar_andd *andd;
732
733 if (dmar_tbl == NULL)
734 return -ENODEV;
735
736 for (andd = (void *)dmar_tbl + sizeof(struct acpi_table_dmar);
737 ((unsigned long)andd) < ((unsigned long)dmar_tbl) + dmar_tbl->length;
738 andd = ((void *)andd) + andd->header.length) {
739 if (andd->header.type == ACPI_DMAR_TYPE_NAMESPACE) {
740 acpi_handle h;
741 struct acpi_device *adev;
742
743 if (!ACPI_SUCCESS(acpi_get_handle(ACPI_ROOT_OBJECT,
744 andd->device_name,
745 &h))) {
746 pr_err("Failed to find handle for ACPI object %s\n",
747 andd->device_name);
748 continue;
749 }
750 if (acpi_bus_get_device(h, &adev)) {
751 pr_err("Failed to get device for ACPI object %s\n",
752 andd->device_name);
753 continue;
754 }
755 dmar_acpi_insert_dev_scope(andd->device_number, adev);
756 }
757 }
758 return 0;
759 }
760
dmar_dev_scope_init(void)761 int __init dmar_dev_scope_init(void)
762 {
763 struct pci_dev *dev = NULL;
764 struct dmar_pci_notify_info *info;
765
766 if (dmar_dev_scope_status != 1)
767 return dmar_dev_scope_status;
768
769 if (list_empty(&dmar_drhd_units)) {
770 dmar_dev_scope_status = -ENODEV;
771 } else {
772 dmar_dev_scope_status = 0;
773
774 dmar_acpi_dev_scope_init();
775
776 for_each_pci_dev(dev) {
777 if (dev->is_virtfn)
778 continue;
779
780 info = dmar_alloc_pci_notify_info(dev,
781 BUS_NOTIFY_ADD_DEVICE);
782 if (!info) {
783 return dmar_dev_scope_status;
784 } else {
785 dmar_pci_bus_add_dev(info);
786 dmar_free_pci_notify_info(info);
787 }
788 }
789
790 bus_register_notifier(&pci_bus_type, &dmar_pci_bus_nb);
791 }
792
793 return dmar_dev_scope_status;
794 }
795
796
dmar_table_init(void)797 int __init dmar_table_init(void)
798 {
799 static int dmar_table_initialized;
800 int ret;
801
802 if (dmar_table_initialized == 0) {
803 ret = parse_dmar_table();
804 if (ret < 0) {
805 if (ret != -ENODEV)
806 pr_info("Parse DMAR table failure.\n");
807 } else if (list_empty(&dmar_drhd_units)) {
808 pr_info("No DMAR devices found\n");
809 ret = -ENODEV;
810 }
811
812 if (ret < 0)
813 dmar_table_initialized = ret;
814 else
815 dmar_table_initialized = 1;
816 }
817
818 return dmar_table_initialized < 0 ? dmar_table_initialized : 0;
819 }
820
warn_invalid_dmar(u64 addr,const char * message)821 static void warn_invalid_dmar(u64 addr, const char *message)
822 {
823 WARN_TAINT_ONCE(
824 1, TAINT_FIRMWARE_WORKAROUND,
825 "Your BIOS is broken; DMAR reported at address %llx%s!\n"
826 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
827 addr, message,
828 dmi_get_system_info(DMI_BIOS_VENDOR),
829 dmi_get_system_info(DMI_BIOS_VERSION),
830 dmi_get_system_info(DMI_PRODUCT_VERSION));
831 }
832
833 static int __ref
dmar_validate_one_drhd(struct acpi_dmar_header * entry,void * arg)834 dmar_validate_one_drhd(struct acpi_dmar_header *entry, void *arg)
835 {
836 struct acpi_dmar_hardware_unit *drhd;
837 void __iomem *addr;
838 u64 cap, ecap;
839
840 drhd = (void *)entry;
841 if (!drhd->address) {
842 warn_invalid_dmar(0, "");
843 return -EINVAL;
844 }
845
846 if (arg)
847 addr = ioremap(drhd->address, VTD_PAGE_SIZE);
848 else
849 addr = early_ioremap(drhd->address, VTD_PAGE_SIZE);
850 if (!addr) {
851 pr_warn("Can't validate DRHD address: %llx\n", drhd->address);
852 return -EINVAL;
853 }
854
855 cap = dmar_readq(addr + DMAR_CAP_REG);
856 ecap = dmar_readq(addr + DMAR_ECAP_REG);
857
858 if (arg)
859 iounmap(addr);
860 else
861 early_iounmap(addr, VTD_PAGE_SIZE);
862
863 if (cap == (uint64_t)-1 && ecap == (uint64_t)-1) {
864 warn_invalid_dmar(drhd->address, " returns all ones");
865 return -EINVAL;
866 }
867
868 return 0;
869 }
870
detect_intel_iommu(void)871 int __init detect_intel_iommu(void)
872 {
873 int ret;
874 struct dmar_res_callback validate_drhd_cb = {
875 .cb[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &dmar_validate_one_drhd,
876 .ignore_unhandled = true,
877 };
878
879 down_write(&dmar_global_lock);
880 ret = dmar_table_detect();
881 if (ret)
882 ret = !dmar_walk_dmar_table((struct acpi_table_dmar *)dmar_tbl,
883 &validate_drhd_cb);
884 if (ret && !no_iommu && !iommu_detected && !dmar_disabled) {
885 iommu_detected = 1;
886 /* Make sure ACS will be enabled */
887 pci_request_acs();
888 }
889
890 #ifdef CONFIG_X86
891 if (ret)
892 x86_init.iommu.iommu_init = intel_iommu_init;
893 #endif
894
895 early_acpi_os_unmap_memory((void __iomem *)dmar_tbl, dmar_tbl_size);
896 dmar_tbl = NULL;
897 up_write(&dmar_global_lock);
898
899 return ret ? 1 : -ENODEV;
900 }
901
902
unmap_iommu(struct intel_iommu * iommu)903 static void unmap_iommu(struct intel_iommu *iommu)
904 {
905 iounmap(iommu->reg);
906 release_mem_region(iommu->reg_phys, iommu->reg_size);
907 }
908
909 /**
910 * map_iommu: map the iommu's registers
911 * @iommu: the iommu to map
912 * @phys_addr: the physical address of the base resgister
913 *
914 * Memory map the iommu's registers. Start w/ a single page, and
915 * possibly expand if that turns out to be insufficent.
916 */
map_iommu(struct intel_iommu * iommu,u64 phys_addr)917 static int map_iommu(struct intel_iommu *iommu, u64 phys_addr)
918 {
919 int map_size, err=0;
920
921 iommu->reg_phys = phys_addr;
922 iommu->reg_size = VTD_PAGE_SIZE;
923
924 if (!request_mem_region(iommu->reg_phys, iommu->reg_size, iommu->name)) {
925 pr_err("Can't reserve memory\n");
926 err = -EBUSY;
927 goto out;
928 }
929
930 iommu->reg = ioremap(iommu->reg_phys, iommu->reg_size);
931 if (!iommu->reg) {
932 pr_err("Can't map the region\n");
933 err = -ENOMEM;
934 goto release;
935 }
936
937 iommu->cap = dmar_readq(iommu->reg + DMAR_CAP_REG);
938 iommu->ecap = dmar_readq(iommu->reg + DMAR_ECAP_REG);
939
940 if (iommu->cap == (uint64_t)-1 && iommu->ecap == (uint64_t)-1) {
941 err = -EINVAL;
942 warn_invalid_dmar(phys_addr, " returns all ones");
943 goto unmap;
944 }
945
946 /* the registers might be more than one page */
947 map_size = max_t(int, ecap_max_iotlb_offset(iommu->ecap),
948 cap_max_fault_reg_offset(iommu->cap));
949 map_size = VTD_PAGE_ALIGN(map_size);
950 if (map_size > iommu->reg_size) {
951 iounmap(iommu->reg);
952 release_mem_region(iommu->reg_phys, iommu->reg_size);
953 iommu->reg_size = map_size;
954 if (!request_mem_region(iommu->reg_phys, iommu->reg_size,
955 iommu->name)) {
956 pr_err("Can't reserve memory\n");
957 err = -EBUSY;
958 goto out;
959 }
960 iommu->reg = ioremap(iommu->reg_phys, iommu->reg_size);
961 if (!iommu->reg) {
962 pr_err("Can't map the region\n");
963 err = -ENOMEM;
964 goto release;
965 }
966 }
967 err = 0;
968 goto out;
969
970 unmap:
971 iounmap(iommu->reg);
972 release:
973 release_mem_region(iommu->reg_phys, iommu->reg_size);
974 out:
975 return err;
976 }
977
dmar_alloc_seq_id(struct intel_iommu * iommu)978 static int dmar_alloc_seq_id(struct intel_iommu *iommu)
979 {
980 iommu->seq_id = find_first_zero_bit(dmar_seq_ids,
981 DMAR_UNITS_SUPPORTED);
982 if (iommu->seq_id >= DMAR_UNITS_SUPPORTED) {
983 iommu->seq_id = -1;
984 } else {
985 set_bit(iommu->seq_id, dmar_seq_ids);
986 sprintf(iommu->name, "dmar%d", iommu->seq_id);
987 }
988
989 return iommu->seq_id;
990 }
991
dmar_free_seq_id(struct intel_iommu * iommu)992 static void dmar_free_seq_id(struct intel_iommu *iommu)
993 {
994 if (iommu->seq_id >= 0) {
995 clear_bit(iommu->seq_id, dmar_seq_ids);
996 iommu->seq_id = -1;
997 }
998 }
999
alloc_iommu(struct dmar_drhd_unit * drhd)1000 static int alloc_iommu(struct dmar_drhd_unit *drhd)
1001 {
1002 struct intel_iommu *iommu;
1003 u32 ver, sts;
1004 int agaw = 0;
1005 int msagaw = 0;
1006 int err;
1007
1008 if (!drhd->reg_base_addr) {
1009 warn_invalid_dmar(0, "");
1010 return -EINVAL;
1011 }
1012
1013 iommu = kzalloc(sizeof(*iommu), GFP_KERNEL);
1014 if (!iommu)
1015 return -ENOMEM;
1016
1017 if (dmar_alloc_seq_id(iommu) < 0) {
1018 pr_err("Failed to allocate seq_id\n");
1019 err = -ENOSPC;
1020 goto error;
1021 }
1022
1023 err = map_iommu(iommu, drhd->reg_base_addr);
1024 if (err) {
1025 pr_err("Failed to map %s\n", iommu->name);
1026 goto error_free_seq_id;
1027 }
1028
1029 err = -EINVAL;
1030 agaw = iommu_calculate_agaw(iommu);
1031 if (agaw < 0) {
1032 pr_err("Cannot get a valid agaw for iommu (seq_id = %d)\n",
1033 iommu->seq_id);
1034 goto err_unmap;
1035 }
1036 msagaw = iommu_calculate_max_sagaw(iommu);
1037 if (msagaw < 0) {
1038 pr_err("Cannot get a valid max agaw for iommu (seq_id = %d)\n",
1039 iommu->seq_id);
1040 goto err_unmap;
1041 }
1042 iommu->agaw = agaw;
1043 iommu->msagaw = msagaw;
1044 iommu->segment = drhd->segment;
1045
1046 iommu->node = -1;
1047
1048 ver = readl(iommu->reg + DMAR_VER_REG);
1049 pr_info("%s: reg_base_addr %llx ver %d:%d cap %llx ecap %llx\n",
1050 iommu->name,
1051 (unsigned long long)drhd->reg_base_addr,
1052 DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver),
1053 (unsigned long long)iommu->cap,
1054 (unsigned long long)iommu->ecap);
1055
1056 /* Reflect status in gcmd */
1057 sts = readl(iommu->reg + DMAR_GSTS_REG);
1058 if (sts & DMA_GSTS_IRES)
1059 iommu->gcmd |= DMA_GCMD_IRE;
1060 if (sts & DMA_GSTS_TES)
1061 iommu->gcmd |= DMA_GCMD_TE;
1062 if (sts & DMA_GSTS_QIES)
1063 iommu->gcmd |= DMA_GCMD_QIE;
1064
1065 raw_spin_lock_init(&iommu->register_lock);
1066
1067 drhd->iommu = iommu;
1068
1069 if (intel_iommu_enabled)
1070 iommu->iommu_dev = iommu_device_create(NULL, iommu,
1071 intel_iommu_groups,
1072 "%s", iommu->name);
1073
1074 return 0;
1075
1076 err_unmap:
1077 unmap_iommu(iommu);
1078 error_free_seq_id:
1079 dmar_free_seq_id(iommu);
1080 error:
1081 kfree(iommu);
1082 return err;
1083 }
1084
free_iommu(struct intel_iommu * iommu)1085 static void free_iommu(struct intel_iommu *iommu)
1086 {
1087 iommu_device_destroy(iommu->iommu_dev);
1088
1089 if (iommu->irq) {
1090 if (iommu->pr_irq) {
1091 free_irq(iommu->pr_irq, iommu);
1092 dmar_free_hwirq(iommu->pr_irq);
1093 iommu->pr_irq = 0;
1094 }
1095 free_irq(iommu->irq, iommu);
1096 dmar_free_hwirq(iommu->irq);
1097 iommu->irq = 0;
1098 }
1099
1100 if (iommu->qi) {
1101 free_page((unsigned long)iommu->qi->desc);
1102 kfree(iommu->qi->desc_status);
1103 kfree(iommu->qi);
1104 }
1105
1106 if (iommu->reg)
1107 unmap_iommu(iommu);
1108
1109 dmar_free_seq_id(iommu);
1110 kfree(iommu);
1111 }
1112
1113 /*
1114 * Reclaim all the submitted descriptors which have completed its work.
1115 */
reclaim_free_desc(struct q_inval * qi)1116 static inline void reclaim_free_desc(struct q_inval *qi)
1117 {
1118 while (qi->desc_status[qi->free_tail] == QI_DONE ||
1119 qi->desc_status[qi->free_tail] == QI_ABORT) {
1120 qi->desc_status[qi->free_tail] = QI_FREE;
1121 qi->free_tail = (qi->free_tail + 1) % QI_LENGTH;
1122 qi->free_cnt++;
1123 }
1124 }
1125
qi_check_fault(struct intel_iommu * iommu,int index)1126 static int qi_check_fault(struct intel_iommu *iommu, int index)
1127 {
1128 u32 fault;
1129 int head, tail;
1130 struct q_inval *qi = iommu->qi;
1131 int wait_index = (index + 1) % QI_LENGTH;
1132
1133 if (qi->desc_status[wait_index] == QI_ABORT)
1134 return -EAGAIN;
1135
1136 fault = readl(iommu->reg + DMAR_FSTS_REG);
1137
1138 /*
1139 * If IQE happens, the head points to the descriptor associated
1140 * with the error. No new descriptors are fetched until the IQE
1141 * is cleared.
1142 */
1143 if (fault & DMA_FSTS_IQE) {
1144 head = readl(iommu->reg + DMAR_IQH_REG);
1145 if ((head >> DMAR_IQ_SHIFT) == index) {
1146 pr_err("VT-d detected invalid descriptor: "
1147 "low=%llx, high=%llx\n",
1148 (unsigned long long)qi->desc[index].low,
1149 (unsigned long long)qi->desc[index].high);
1150 memcpy(&qi->desc[index], &qi->desc[wait_index],
1151 sizeof(struct qi_desc));
1152 __iommu_flush_cache(iommu, &qi->desc[index],
1153 sizeof(struct qi_desc));
1154 writel(DMA_FSTS_IQE, iommu->reg + DMAR_FSTS_REG);
1155 return -EINVAL;
1156 }
1157 }
1158
1159 /*
1160 * If ITE happens, all pending wait_desc commands are aborted.
1161 * No new descriptors are fetched until the ITE is cleared.
1162 */
1163 if (fault & DMA_FSTS_ITE) {
1164 head = readl(iommu->reg + DMAR_IQH_REG);
1165 head = ((head >> DMAR_IQ_SHIFT) - 1 + QI_LENGTH) % QI_LENGTH;
1166 head |= 1;
1167 tail = readl(iommu->reg + DMAR_IQT_REG);
1168 tail = ((tail >> DMAR_IQ_SHIFT) - 1 + QI_LENGTH) % QI_LENGTH;
1169
1170 writel(DMA_FSTS_ITE, iommu->reg + DMAR_FSTS_REG);
1171
1172 do {
1173 if (qi->desc_status[head] == QI_IN_USE)
1174 qi->desc_status[head] = QI_ABORT;
1175 head = (head - 2 + QI_LENGTH) % QI_LENGTH;
1176 } while (head != tail);
1177
1178 if (qi->desc_status[wait_index] == QI_ABORT)
1179 return -EAGAIN;
1180 }
1181
1182 if (fault & DMA_FSTS_ICE)
1183 writel(DMA_FSTS_ICE, iommu->reg + DMAR_FSTS_REG);
1184
1185 return 0;
1186 }
1187
1188 /*
1189 * Submit the queued invalidation descriptor to the remapping
1190 * hardware unit and wait for its completion.
1191 */
qi_submit_sync(struct qi_desc * desc,struct intel_iommu * iommu)1192 int qi_submit_sync(struct qi_desc *desc, struct intel_iommu *iommu)
1193 {
1194 int rc;
1195 struct q_inval *qi = iommu->qi;
1196 struct qi_desc *hw, wait_desc;
1197 int wait_index, index;
1198 unsigned long flags;
1199
1200 if (!qi)
1201 return 0;
1202
1203 hw = qi->desc;
1204
1205 restart:
1206 rc = 0;
1207
1208 raw_spin_lock_irqsave(&qi->q_lock, flags);
1209 while (qi->free_cnt < 3) {
1210 raw_spin_unlock_irqrestore(&qi->q_lock, flags);
1211 cpu_relax();
1212 raw_spin_lock_irqsave(&qi->q_lock, flags);
1213 }
1214
1215 index = qi->free_head;
1216 wait_index = (index + 1) % QI_LENGTH;
1217
1218 qi->desc_status[index] = qi->desc_status[wait_index] = QI_IN_USE;
1219
1220 hw[index] = *desc;
1221
1222 wait_desc.low = QI_IWD_STATUS_DATA(QI_DONE) |
1223 QI_IWD_STATUS_WRITE | QI_IWD_TYPE;
1224 wait_desc.high = virt_to_phys(&qi->desc_status[wait_index]);
1225
1226 hw[wait_index] = wait_desc;
1227
1228 __iommu_flush_cache(iommu, &hw[index], sizeof(struct qi_desc));
1229 __iommu_flush_cache(iommu, &hw[wait_index], sizeof(struct qi_desc));
1230
1231 qi->free_head = (qi->free_head + 2) % QI_LENGTH;
1232 qi->free_cnt -= 2;
1233
1234 /*
1235 * update the HW tail register indicating the presence of
1236 * new descriptors.
1237 */
1238 writel(qi->free_head << DMAR_IQ_SHIFT, iommu->reg + DMAR_IQT_REG);
1239
1240 while (qi->desc_status[wait_index] != QI_DONE) {
1241 /*
1242 * We will leave the interrupts disabled, to prevent interrupt
1243 * context to queue another cmd while a cmd is already submitted
1244 * and waiting for completion on this cpu. This is to avoid
1245 * a deadlock where the interrupt context can wait indefinitely
1246 * for free slots in the queue.
1247 */
1248 rc = qi_check_fault(iommu, index);
1249 if (rc)
1250 break;
1251
1252 raw_spin_unlock(&qi->q_lock);
1253 cpu_relax();
1254 raw_spin_lock(&qi->q_lock);
1255 }
1256
1257 qi->desc_status[index] = QI_DONE;
1258
1259 reclaim_free_desc(qi);
1260 raw_spin_unlock_irqrestore(&qi->q_lock, flags);
1261
1262 if (rc == -EAGAIN)
1263 goto restart;
1264
1265 return rc;
1266 }
1267
1268 /*
1269 * Flush the global interrupt entry cache.
1270 */
qi_global_iec(struct intel_iommu * iommu)1271 void qi_global_iec(struct intel_iommu *iommu)
1272 {
1273 struct qi_desc desc;
1274
1275 desc.low = QI_IEC_TYPE;
1276 desc.high = 0;
1277
1278 /* should never fail */
1279 qi_submit_sync(&desc, iommu);
1280 }
1281
qi_flush_context(struct intel_iommu * iommu,u16 did,u16 sid,u8 fm,u64 type)1282 void qi_flush_context(struct intel_iommu *iommu, u16 did, u16 sid, u8 fm,
1283 u64 type)
1284 {
1285 struct qi_desc desc;
1286
1287 desc.low = QI_CC_FM(fm) | QI_CC_SID(sid) | QI_CC_DID(did)
1288 | QI_CC_GRAN(type) | QI_CC_TYPE;
1289 desc.high = 0;
1290
1291 qi_submit_sync(&desc, iommu);
1292 }
1293
qi_flush_iotlb(struct intel_iommu * iommu,u16 did,u64 addr,unsigned int size_order,u64 type)1294 void qi_flush_iotlb(struct intel_iommu *iommu, u16 did, u64 addr,
1295 unsigned int size_order, u64 type)
1296 {
1297 u8 dw = 0, dr = 0;
1298
1299 struct qi_desc desc;
1300 int ih = 0;
1301
1302 if (cap_write_drain(iommu->cap))
1303 dw = 1;
1304
1305 if (cap_read_drain(iommu->cap))
1306 dr = 1;
1307
1308 desc.low = QI_IOTLB_DID(did) | QI_IOTLB_DR(dr) | QI_IOTLB_DW(dw)
1309 | QI_IOTLB_GRAN(type) | QI_IOTLB_TYPE;
1310 desc.high = QI_IOTLB_ADDR(addr) | QI_IOTLB_IH(ih)
1311 | QI_IOTLB_AM(size_order);
1312
1313 qi_submit_sync(&desc, iommu);
1314 }
1315
qi_flush_dev_iotlb(struct intel_iommu * iommu,u16 sid,u16 qdep,u64 addr,unsigned mask)1316 void qi_flush_dev_iotlb(struct intel_iommu *iommu, u16 sid, u16 qdep,
1317 u64 addr, unsigned mask)
1318 {
1319 struct qi_desc desc;
1320
1321 if (mask) {
1322 BUG_ON(addr & ((1 << (VTD_PAGE_SHIFT + mask)) - 1));
1323 addr |= (1 << (VTD_PAGE_SHIFT + mask - 1)) - 1;
1324 desc.high = QI_DEV_IOTLB_ADDR(addr) | QI_DEV_IOTLB_SIZE;
1325 } else
1326 desc.high = QI_DEV_IOTLB_ADDR(addr);
1327
1328 if (qdep >= QI_DEV_IOTLB_MAX_INVS)
1329 qdep = 0;
1330
1331 desc.low = QI_DEV_IOTLB_SID(sid) | QI_DEV_IOTLB_QDEP(qdep) |
1332 QI_DIOTLB_TYPE;
1333
1334 qi_submit_sync(&desc, iommu);
1335 }
1336
1337 /*
1338 * Disable Queued Invalidation interface.
1339 */
dmar_disable_qi(struct intel_iommu * iommu)1340 void dmar_disable_qi(struct intel_iommu *iommu)
1341 {
1342 unsigned long flags;
1343 u32 sts;
1344 cycles_t start_time = get_cycles();
1345
1346 if (!ecap_qis(iommu->ecap))
1347 return;
1348
1349 raw_spin_lock_irqsave(&iommu->register_lock, flags);
1350
1351 sts = readl(iommu->reg + DMAR_GSTS_REG);
1352 if (!(sts & DMA_GSTS_QIES))
1353 goto end;
1354
1355 /*
1356 * Give a chance to HW to complete the pending invalidation requests.
1357 */
1358 while ((readl(iommu->reg + DMAR_IQT_REG) !=
1359 readl(iommu->reg + DMAR_IQH_REG)) &&
1360 (DMAR_OPERATION_TIMEOUT > (get_cycles() - start_time)))
1361 cpu_relax();
1362
1363 iommu->gcmd &= ~DMA_GCMD_QIE;
1364 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1365
1366 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl,
1367 !(sts & DMA_GSTS_QIES), sts);
1368 end:
1369 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1370 }
1371
1372 /*
1373 * Enable queued invalidation.
1374 */
__dmar_enable_qi(struct intel_iommu * iommu)1375 static void __dmar_enable_qi(struct intel_iommu *iommu)
1376 {
1377 u32 sts;
1378 unsigned long flags;
1379 struct q_inval *qi = iommu->qi;
1380
1381 qi->free_head = qi->free_tail = 0;
1382 qi->free_cnt = QI_LENGTH;
1383
1384 raw_spin_lock_irqsave(&iommu->register_lock, flags);
1385
1386 /* write zero to the tail reg */
1387 writel(0, iommu->reg + DMAR_IQT_REG);
1388
1389 dmar_writeq(iommu->reg + DMAR_IQA_REG, virt_to_phys(qi->desc));
1390
1391 iommu->gcmd |= DMA_GCMD_QIE;
1392 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1393
1394 /* Make sure hardware complete it */
1395 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl, (sts & DMA_GSTS_QIES), sts);
1396
1397 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1398 }
1399
1400 /*
1401 * Enable Queued Invalidation interface. This is a must to support
1402 * interrupt-remapping. Also used by DMA-remapping, which replaces
1403 * register based IOTLB invalidation.
1404 */
dmar_enable_qi(struct intel_iommu * iommu)1405 int dmar_enable_qi(struct intel_iommu *iommu)
1406 {
1407 struct q_inval *qi;
1408 struct page *desc_page;
1409
1410 if (!ecap_qis(iommu->ecap))
1411 return -ENOENT;
1412
1413 /*
1414 * queued invalidation is already setup and enabled.
1415 */
1416 if (iommu->qi)
1417 return 0;
1418
1419 iommu->qi = kmalloc(sizeof(*qi), GFP_ATOMIC);
1420 if (!iommu->qi)
1421 return -ENOMEM;
1422
1423 qi = iommu->qi;
1424
1425
1426 desc_page = alloc_pages_node(iommu->node, GFP_ATOMIC | __GFP_ZERO, 0);
1427 if (!desc_page) {
1428 kfree(qi);
1429 iommu->qi = NULL;
1430 return -ENOMEM;
1431 }
1432
1433 qi->desc = page_address(desc_page);
1434
1435 qi->desc_status = kzalloc(QI_LENGTH * sizeof(int), GFP_ATOMIC);
1436 if (!qi->desc_status) {
1437 free_page((unsigned long) qi->desc);
1438 kfree(qi);
1439 iommu->qi = NULL;
1440 return -ENOMEM;
1441 }
1442
1443 raw_spin_lock_init(&qi->q_lock);
1444
1445 __dmar_enable_qi(iommu);
1446
1447 return 0;
1448 }
1449
1450 /* iommu interrupt handling. Most stuff are MSI-like. */
1451
1452 enum faulttype {
1453 DMA_REMAP,
1454 INTR_REMAP,
1455 UNKNOWN,
1456 };
1457
1458 static const char *dma_remap_fault_reasons[] =
1459 {
1460 "Software",
1461 "Present bit in root entry is clear",
1462 "Present bit in context entry is clear",
1463 "Invalid context entry",
1464 "Access beyond MGAW",
1465 "PTE Write access is not set",
1466 "PTE Read access is not set",
1467 "Next page table ptr is invalid",
1468 "Root table address invalid",
1469 "Context table ptr is invalid",
1470 "non-zero reserved fields in RTP",
1471 "non-zero reserved fields in CTP",
1472 "non-zero reserved fields in PTE",
1473 "PCE for translation request specifies blocking",
1474 };
1475
1476 static const char *irq_remap_fault_reasons[] =
1477 {
1478 "Detected reserved fields in the decoded interrupt-remapped request",
1479 "Interrupt index exceeded the interrupt-remapping table size",
1480 "Present field in the IRTE entry is clear",
1481 "Error accessing interrupt-remapping table pointed by IRTA_REG",
1482 "Detected reserved fields in the IRTE entry",
1483 "Blocked a compatibility format interrupt request",
1484 "Blocked an interrupt request due to source-id verification failure",
1485 };
1486
dmar_get_fault_reason(u8 fault_reason,int * fault_type)1487 static const char *dmar_get_fault_reason(u8 fault_reason, int *fault_type)
1488 {
1489 if (fault_reason >= 0x20 && (fault_reason - 0x20 <
1490 ARRAY_SIZE(irq_remap_fault_reasons))) {
1491 *fault_type = INTR_REMAP;
1492 return irq_remap_fault_reasons[fault_reason - 0x20];
1493 } else if (fault_reason < ARRAY_SIZE(dma_remap_fault_reasons)) {
1494 *fault_type = DMA_REMAP;
1495 return dma_remap_fault_reasons[fault_reason];
1496 } else {
1497 *fault_type = UNKNOWN;
1498 return "Unknown";
1499 }
1500 }
1501
1502
dmar_msi_reg(struct intel_iommu * iommu,int irq)1503 static inline int dmar_msi_reg(struct intel_iommu *iommu, int irq)
1504 {
1505 if (iommu->irq == irq)
1506 return DMAR_FECTL_REG;
1507 else if (iommu->pr_irq == irq)
1508 return DMAR_PECTL_REG;
1509 else
1510 BUG();
1511 }
1512
dmar_msi_unmask(struct irq_data * data)1513 void dmar_msi_unmask(struct irq_data *data)
1514 {
1515 struct intel_iommu *iommu = irq_data_get_irq_handler_data(data);
1516 int reg = dmar_msi_reg(iommu, data->irq);
1517 unsigned long flag;
1518
1519 /* unmask it */
1520 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1521 writel(0, iommu->reg + reg);
1522 /* Read a reg to force flush the post write */
1523 readl(iommu->reg + reg);
1524 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1525 }
1526
dmar_msi_mask(struct irq_data * data)1527 void dmar_msi_mask(struct irq_data *data)
1528 {
1529 struct intel_iommu *iommu = irq_data_get_irq_handler_data(data);
1530 int reg = dmar_msi_reg(iommu, data->irq);
1531 unsigned long flag;
1532
1533 /* mask it */
1534 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1535 writel(DMA_FECTL_IM, iommu->reg + reg);
1536 /* Read a reg to force flush the post write */
1537 readl(iommu->reg + reg);
1538 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1539 }
1540
dmar_msi_write(int irq,struct msi_msg * msg)1541 void dmar_msi_write(int irq, struct msi_msg *msg)
1542 {
1543 struct intel_iommu *iommu = irq_get_handler_data(irq);
1544 int reg = dmar_msi_reg(iommu, irq);
1545 unsigned long flag;
1546
1547 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1548 writel(msg->data, iommu->reg + reg + 4);
1549 writel(msg->address_lo, iommu->reg + reg + 8);
1550 writel(msg->address_hi, iommu->reg + reg + 12);
1551 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1552 }
1553
dmar_msi_read(int irq,struct msi_msg * msg)1554 void dmar_msi_read(int irq, struct msi_msg *msg)
1555 {
1556 struct intel_iommu *iommu = irq_get_handler_data(irq);
1557 int reg = dmar_msi_reg(iommu, irq);
1558 unsigned long flag;
1559
1560 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1561 msg->data = readl(iommu->reg + reg + 4);
1562 msg->address_lo = readl(iommu->reg + reg + 8);
1563 msg->address_hi = readl(iommu->reg + reg + 12);
1564 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1565 }
1566
dmar_fault_do_one(struct intel_iommu * iommu,int type,u8 fault_reason,u16 source_id,unsigned long long addr)1567 static int dmar_fault_do_one(struct intel_iommu *iommu, int type,
1568 u8 fault_reason, u16 source_id, unsigned long long addr)
1569 {
1570 const char *reason;
1571 int fault_type;
1572
1573 reason = dmar_get_fault_reason(fault_reason, &fault_type);
1574
1575 if (fault_type == INTR_REMAP)
1576 pr_err("INTR-REMAP: Request device [[%02x:%02x.%d] "
1577 "fault index %llx\n"
1578 "INTR-REMAP:[fault reason %02d] %s\n",
1579 (source_id >> 8), PCI_SLOT(source_id & 0xFF),
1580 PCI_FUNC(source_id & 0xFF), addr >> 48,
1581 fault_reason, reason);
1582 else
1583 pr_err("DMAR:[%s] Request device [%02x:%02x.%d] "
1584 "fault addr %llx \n"
1585 "DMAR:[fault reason %02d] %s\n",
1586 (type ? "DMA Read" : "DMA Write"),
1587 (source_id >> 8), PCI_SLOT(source_id & 0xFF),
1588 PCI_FUNC(source_id & 0xFF), addr, fault_reason, reason);
1589 return 0;
1590 }
1591
1592 #define PRIMARY_FAULT_REG_LEN (16)
dmar_fault(int irq,void * dev_id)1593 irqreturn_t dmar_fault(int irq, void *dev_id)
1594 {
1595 struct intel_iommu *iommu = dev_id;
1596 int reg, fault_index;
1597 u32 fault_status;
1598 unsigned long flag;
1599
1600 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1601 fault_status = readl(iommu->reg + DMAR_FSTS_REG);
1602 if (fault_status)
1603 pr_err("DRHD: handling fault status reg %x\n", fault_status);
1604
1605 /* TBD: ignore advanced fault log currently */
1606 if (!(fault_status & DMA_FSTS_PPF))
1607 goto unlock_exit;
1608
1609 fault_index = dma_fsts_fault_record_index(fault_status);
1610 reg = cap_fault_reg_offset(iommu->cap);
1611 while (1) {
1612 u8 fault_reason;
1613 u16 source_id;
1614 u64 guest_addr;
1615 int type;
1616 u32 data;
1617
1618 /* highest 32 bits */
1619 data = readl(iommu->reg + reg +
1620 fault_index * PRIMARY_FAULT_REG_LEN + 12);
1621 if (!(data & DMA_FRCD_F))
1622 break;
1623
1624 fault_reason = dma_frcd_fault_reason(data);
1625 type = dma_frcd_type(data);
1626
1627 data = readl(iommu->reg + reg +
1628 fault_index * PRIMARY_FAULT_REG_LEN + 8);
1629 source_id = dma_frcd_source_id(data);
1630
1631 guest_addr = dmar_readq(iommu->reg + reg +
1632 fault_index * PRIMARY_FAULT_REG_LEN);
1633 guest_addr = dma_frcd_page_addr(guest_addr);
1634 /* clear the fault */
1635 writel(DMA_FRCD_F, iommu->reg + reg +
1636 fault_index * PRIMARY_FAULT_REG_LEN + 12);
1637
1638 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1639
1640 dmar_fault_do_one(iommu, type, fault_reason,
1641 source_id, guest_addr);
1642
1643 fault_index++;
1644 if (fault_index >= cap_num_fault_regs(iommu->cap))
1645 fault_index = 0;
1646 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1647 }
1648
1649 writel(DMA_FSTS_PFO | DMA_FSTS_PPF, iommu->reg + DMAR_FSTS_REG);
1650
1651 unlock_exit:
1652 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1653 return IRQ_HANDLED;
1654 }
1655
dmar_set_interrupt(struct intel_iommu * iommu)1656 int dmar_set_interrupt(struct intel_iommu *iommu)
1657 {
1658 int irq, ret;
1659
1660 /*
1661 * Check if the fault interrupt is already initialized.
1662 */
1663 if (iommu->irq)
1664 return 0;
1665
1666 irq = dmar_alloc_hwirq(iommu->seq_id, iommu->node, iommu);
1667 if (irq > 0) {
1668 iommu->irq = irq;
1669 } else {
1670 pr_err("No free IRQ vectors\n");
1671 return -EINVAL;
1672 }
1673
1674 ret = request_irq(irq, dmar_fault, IRQF_NO_THREAD, iommu->name, iommu);
1675 if (ret)
1676 pr_err("Can't request irq\n");
1677 return ret;
1678 }
1679
enable_drhd_fault_handling(void)1680 int __init enable_drhd_fault_handling(void)
1681 {
1682 struct dmar_drhd_unit *drhd;
1683 struct intel_iommu *iommu;
1684
1685 /*
1686 * Enable fault control interrupt.
1687 */
1688 for_each_iommu(iommu, drhd) {
1689 u32 fault_status;
1690 int ret = dmar_set_interrupt(iommu);
1691
1692 if (ret) {
1693 pr_err("DRHD %Lx: failed to enable fault, interrupt, ret %d\n",
1694 (unsigned long long)drhd->reg_base_addr, ret);
1695 return -1;
1696 }
1697
1698 /*
1699 * Clear any previous faults.
1700 */
1701 dmar_fault(iommu->irq, iommu);
1702 fault_status = readl(iommu->reg + DMAR_FSTS_REG);
1703 writel(fault_status, iommu->reg + DMAR_FSTS_REG);
1704 }
1705
1706 return 0;
1707 }
1708
1709 /*
1710 * Re-enable Queued Invalidation interface.
1711 */
dmar_reenable_qi(struct intel_iommu * iommu)1712 int dmar_reenable_qi(struct intel_iommu *iommu)
1713 {
1714 if (!ecap_qis(iommu->ecap))
1715 return -ENOENT;
1716
1717 if (!iommu->qi)
1718 return -ENOENT;
1719
1720 /*
1721 * First disable queued invalidation.
1722 */
1723 dmar_disable_qi(iommu);
1724 /*
1725 * Then enable queued invalidation again. Since there is no pending
1726 * invalidation requests now, it's safe to re-enable queued
1727 * invalidation.
1728 */
1729 __dmar_enable_qi(iommu);
1730
1731 return 0;
1732 }
1733
1734 /*
1735 * Check interrupt remapping support in DMAR table description.
1736 */
dmar_ir_support(void)1737 int __init dmar_ir_support(void)
1738 {
1739 struct acpi_table_dmar *dmar;
1740 dmar = (struct acpi_table_dmar *)dmar_tbl;
1741 if (!dmar)
1742 return 0;
1743 return dmar->flags & 0x1;
1744 }
1745
1746 /* Check whether DMAR units are in use */
dmar_in_use(void)1747 static inline bool dmar_in_use(void)
1748 {
1749 return irq_remapping_enabled || intel_iommu_enabled;
1750 }
1751
dmar_free_unused_resources(void)1752 static int __init dmar_free_unused_resources(void)
1753 {
1754 struct dmar_drhd_unit *dmaru, *dmaru_n;
1755
1756 if (dmar_in_use())
1757 return 0;
1758
1759 if (dmar_dev_scope_status != 1 && !list_empty(&dmar_drhd_units))
1760 bus_unregister_notifier(&pci_bus_type, &dmar_pci_bus_nb);
1761
1762 down_write(&dmar_global_lock);
1763 list_for_each_entry_safe(dmaru, dmaru_n, &dmar_drhd_units, list) {
1764 list_del(&dmaru->list);
1765 dmar_free_drhd(dmaru);
1766 }
1767 up_write(&dmar_global_lock);
1768
1769 return 0;
1770 }
1771
1772 late_initcall(dmar_free_unused_resources);
1773 IOMMU_INIT_POST(detect_intel_iommu);
1774
1775 /*
1776 * DMAR Hotplug Support
1777 * For more details, please refer to Intel(R) Virtualization Technology
1778 * for Directed-IO Architecture Specifiction, Rev 2.2, Section 8.8
1779 * "Remapping Hardware Unit Hot Plug".
1780 */
1781 static u8 dmar_hp_uuid[] = {
1782 /* 0000 */ 0xA6, 0xA3, 0xC1, 0xD8, 0x9B, 0xBE, 0x9B, 0x4C,
1783 /* 0008 */ 0x91, 0xBF, 0xC3, 0xCB, 0x81, 0xFC, 0x5D, 0xAF
1784 };
1785
1786 /*
1787 * Currently there's only one revision and BIOS will not check the revision id,
1788 * so use 0 for safety.
1789 */
1790 #define DMAR_DSM_REV_ID 0
1791 #define DMAR_DSM_FUNC_DRHD 1
1792 #define DMAR_DSM_FUNC_ATSR 2
1793 #define DMAR_DSM_FUNC_RHSA 3
1794
dmar_detect_dsm(acpi_handle handle,int func)1795 static inline bool dmar_detect_dsm(acpi_handle handle, int func)
1796 {
1797 return acpi_check_dsm(handle, dmar_hp_uuid, DMAR_DSM_REV_ID, 1 << func);
1798 }
1799
dmar_walk_dsm_resource(acpi_handle handle,int func,dmar_res_handler_t handler,void * arg)1800 static int dmar_walk_dsm_resource(acpi_handle handle, int func,
1801 dmar_res_handler_t handler, void *arg)
1802 {
1803 int ret = -ENODEV;
1804 union acpi_object *obj;
1805 struct acpi_dmar_header *start;
1806 struct dmar_res_callback callback;
1807 static int res_type[] = {
1808 [DMAR_DSM_FUNC_DRHD] = ACPI_DMAR_TYPE_HARDWARE_UNIT,
1809 [DMAR_DSM_FUNC_ATSR] = ACPI_DMAR_TYPE_ROOT_ATS,
1810 [DMAR_DSM_FUNC_RHSA] = ACPI_DMAR_TYPE_HARDWARE_AFFINITY,
1811 };
1812
1813 if (!dmar_detect_dsm(handle, func))
1814 return 0;
1815
1816 obj = acpi_evaluate_dsm_typed(handle, dmar_hp_uuid, DMAR_DSM_REV_ID,
1817 func, NULL, ACPI_TYPE_BUFFER);
1818 if (!obj)
1819 return -ENODEV;
1820
1821 memset(&callback, 0, sizeof(callback));
1822 callback.cb[res_type[func]] = handler;
1823 callback.arg[res_type[func]] = arg;
1824 start = (struct acpi_dmar_header *)obj->buffer.pointer;
1825 ret = dmar_walk_remapping_entries(start, obj->buffer.length, &callback);
1826
1827 ACPI_FREE(obj);
1828
1829 return ret;
1830 }
1831
dmar_hp_add_drhd(struct acpi_dmar_header * header,void * arg)1832 static int dmar_hp_add_drhd(struct acpi_dmar_header *header, void *arg)
1833 {
1834 int ret;
1835 struct dmar_drhd_unit *dmaru;
1836
1837 dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header);
1838 if (!dmaru)
1839 return -ENODEV;
1840
1841 ret = dmar_ir_hotplug(dmaru, true);
1842 if (ret == 0)
1843 ret = dmar_iommu_hotplug(dmaru, true);
1844
1845 return ret;
1846 }
1847
dmar_hp_remove_drhd(struct acpi_dmar_header * header,void * arg)1848 static int dmar_hp_remove_drhd(struct acpi_dmar_header *header, void *arg)
1849 {
1850 int i, ret;
1851 struct device *dev;
1852 struct dmar_drhd_unit *dmaru;
1853
1854 dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header);
1855 if (!dmaru)
1856 return 0;
1857
1858 /*
1859 * All PCI devices managed by this unit should have been destroyed.
1860 */
1861 if (!dmaru->include_all && dmaru->devices && dmaru->devices_cnt)
1862 for_each_active_dev_scope(dmaru->devices,
1863 dmaru->devices_cnt, i, dev)
1864 return -EBUSY;
1865
1866 ret = dmar_ir_hotplug(dmaru, false);
1867 if (ret == 0)
1868 ret = dmar_iommu_hotplug(dmaru, false);
1869
1870 return ret;
1871 }
1872
dmar_hp_release_drhd(struct acpi_dmar_header * header,void * arg)1873 static int dmar_hp_release_drhd(struct acpi_dmar_header *header, void *arg)
1874 {
1875 struct dmar_drhd_unit *dmaru;
1876
1877 dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header);
1878 if (dmaru) {
1879 list_del_rcu(&dmaru->list);
1880 synchronize_rcu();
1881 dmar_free_drhd(dmaru);
1882 }
1883
1884 return 0;
1885 }
1886
dmar_hotplug_insert(acpi_handle handle)1887 static int dmar_hotplug_insert(acpi_handle handle)
1888 {
1889 int ret;
1890 int drhd_count = 0;
1891
1892 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
1893 &dmar_validate_one_drhd, (void *)1);
1894 if (ret)
1895 goto out;
1896
1897 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
1898 &dmar_parse_one_drhd, (void *)&drhd_count);
1899 if (ret == 0 && drhd_count == 0) {
1900 pr_warn(FW_BUG "No DRHD structures in buffer returned by _DSM method\n");
1901 goto out;
1902 } else if (ret) {
1903 goto release_drhd;
1904 }
1905
1906 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_RHSA,
1907 &dmar_parse_one_rhsa, NULL);
1908 if (ret)
1909 goto release_drhd;
1910
1911 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
1912 &dmar_parse_one_atsr, NULL);
1913 if (ret)
1914 goto release_atsr;
1915
1916 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
1917 &dmar_hp_add_drhd, NULL);
1918 if (!ret)
1919 return 0;
1920
1921 dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
1922 &dmar_hp_remove_drhd, NULL);
1923 release_atsr:
1924 dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
1925 &dmar_release_one_atsr, NULL);
1926 release_drhd:
1927 dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
1928 &dmar_hp_release_drhd, NULL);
1929 out:
1930 return ret;
1931 }
1932
dmar_hotplug_remove(acpi_handle handle)1933 static int dmar_hotplug_remove(acpi_handle handle)
1934 {
1935 int ret;
1936
1937 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
1938 &dmar_check_one_atsr, NULL);
1939 if (ret)
1940 return ret;
1941
1942 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
1943 &dmar_hp_remove_drhd, NULL);
1944 if (ret == 0) {
1945 WARN_ON(dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
1946 &dmar_release_one_atsr, NULL));
1947 WARN_ON(dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
1948 &dmar_hp_release_drhd, NULL));
1949 } else {
1950 dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
1951 &dmar_hp_add_drhd, NULL);
1952 }
1953
1954 return ret;
1955 }
1956
dmar_get_dsm_handle(acpi_handle handle,u32 lvl,void * context,void ** retval)1957 static acpi_status dmar_get_dsm_handle(acpi_handle handle, u32 lvl,
1958 void *context, void **retval)
1959 {
1960 acpi_handle *phdl = retval;
1961
1962 if (dmar_detect_dsm(handle, DMAR_DSM_FUNC_DRHD)) {
1963 *phdl = handle;
1964 return AE_CTRL_TERMINATE;
1965 }
1966
1967 return AE_OK;
1968 }
1969
dmar_device_hotplug(acpi_handle handle,bool insert)1970 static int dmar_device_hotplug(acpi_handle handle, bool insert)
1971 {
1972 int ret;
1973 acpi_handle tmp = NULL;
1974 acpi_status status;
1975
1976 if (!dmar_in_use())
1977 return 0;
1978
1979 if (dmar_detect_dsm(handle, DMAR_DSM_FUNC_DRHD)) {
1980 tmp = handle;
1981 } else {
1982 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle,
1983 ACPI_UINT32_MAX,
1984 dmar_get_dsm_handle,
1985 NULL, NULL, &tmp);
1986 if (ACPI_FAILURE(status)) {
1987 pr_warn("Failed to locate _DSM method.\n");
1988 return -ENXIO;
1989 }
1990 }
1991 if (tmp == NULL)
1992 return 0;
1993
1994 down_write(&dmar_global_lock);
1995 if (insert)
1996 ret = dmar_hotplug_insert(tmp);
1997 else
1998 ret = dmar_hotplug_remove(tmp);
1999 up_write(&dmar_global_lock);
2000
2001 return ret;
2002 }
2003
dmar_device_add(acpi_handle handle)2004 int dmar_device_add(acpi_handle handle)
2005 {
2006 return dmar_device_hotplug(handle, true);
2007 }
2008
dmar_device_remove(acpi_handle handle)2009 int dmar_device_remove(acpi_handle handle)
2010 {
2011 return dmar_device_hotplug(handle, false);
2012 }
2013