1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2
3 #include <linux/errno.h>
4 #include <linux/kernel.h>
5 #include <linux/mm.h>
6 #include <linux/smp.h>
7 #include <linux/prctl.h>
8 #include <linux/slab.h>
9 #include <linux/sched.h>
10 #include <linux/module.h>
11 #include <linux/pm.h>
12 #include <linux/tick.h>
13 #include <linux/random.h>
14 #include <linux/user-return-notifier.h>
15 #include <linux/dmi.h>
16 #include <linux/utsname.h>
17 #include <linux/stackprotector.h>
18 #include <linux/tick.h>
19 #include <linux/cpuidle.h>
20 #include <trace/events/power.h>
21 #include <linux/hw_breakpoint.h>
22 #include <asm/cpu.h>
23 #include <asm/apic.h>
24 #include <asm/syscalls.h>
25 #include <asm/idle.h>
26 #include <asm/uaccess.h>
27 #include <asm/mwait.h>
28 #include <asm/i387.h>
29 #include <asm/fpu-internal.h>
30 #include <asm/debugreg.h>
31 #include <asm/nmi.h>
32 #include <asm/tlbflush.h>
33
34 /*
35 * per-CPU TSS segments. Threads are completely 'soft' on Linux,
36 * no more per-task TSS's. The TSS size is kept cacheline-aligned
37 * so they are allowed to end up in the .data..cacheline_aligned
38 * section. Since TSS's are completely CPU-local, we want them
39 * on exact cacheline boundaries, to eliminate cacheline ping-pong.
40 */
41 __visible DEFINE_PER_CPU_SHARED_ALIGNED(struct tss_struct, cpu_tss) = {
42 .x86_tss = {
43 .sp0 = TOP_OF_INIT_STACK,
44 #ifdef CONFIG_X86_32
45 .ss0 = __KERNEL_DS,
46 .ss1 = __KERNEL_CS,
47 .io_bitmap_base = INVALID_IO_BITMAP_OFFSET,
48 #endif
49 },
50 #ifdef CONFIG_X86_32
51 /*
52 * Note that the .io_bitmap member must be extra-big. This is because
53 * the CPU will access an additional byte beyond the end of the IO
54 * permission bitmap. The extra byte must be all 1 bits, and must
55 * be within the limit.
56 */
57 .io_bitmap = { [0 ... IO_BITMAP_LONGS] = ~0 },
58 #endif
59 };
60 EXPORT_PER_CPU_SYMBOL(cpu_tss);
61
62 #ifdef CONFIG_X86_64
63 static DEFINE_PER_CPU(unsigned char, is_idle);
64 static ATOMIC_NOTIFIER_HEAD(idle_notifier);
65
idle_notifier_register(struct notifier_block * n)66 void idle_notifier_register(struct notifier_block *n)
67 {
68 atomic_notifier_chain_register(&idle_notifier, n);
69 }
70 EXPORT_SYMBOL_GPL(idle_notifier_register);
71
idle_notifier_unregister(struct notifier_block * n)72 void idle_notifier_unregister(struct notifier_block *n)
73 {
74 atomic_notifier_chain_unregister(&idle_notifier, n);
75 }
76 EXPORT_SYMBOL_GPL(idle_notifier_unregister);
77 #endif
78
79 struct kmem_cache *task_xstate_cachep;
80 EXPORT_SYMBOL_GPL(task_xstate_cachep);
81
82 /*
83 * this gets called so that we can store lazy state into memory and copy the
84 * current task into the new thread.
85 */
arch_dup_task_struct(struct task_struct * dst,struct task_struct * src)86 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
87 {
88 *dst = *src;
89
90 dst->thread.fpu_counter = 0;
91 dst->thread.fpu.has_fpu = 0;
92 dst->thread.fpu.state = NULL;
93 task_disable_lazy_fpu_restore(dst);
94 if (tsk_used_math(src)) {
95 int err = fpu_alloc(&dst->thread.fpu);
96 if (err)
97 return err;
98 fpu_copy(dst, src);
99 }
100 return 0;
101 }
102
free_thread_xstate(struct task_struct * tsk)103 void free_thread_xstate(struct task_struct *tsk)
104 {
105 fpu_free(&tsk->thread.fpu);
106 }
107
arch_release_task_struct(struct task_struct * tsk)108 void arch_release_task_struct(struct task_struct *tsk)
109 {
110 free_thread_xstate(tsk);
111 }
112
arch_task_cache_init(void)113 void arch_task_cache_init(void)
114 {
115 task_xstate_cachep =
116 kmem_cache_create("task_xstate", xstate_size,
117 __alignof__(union thread_xstate),
118 SLAB_PANIC | SLAB_NOTRACK, NULL);
119 setup_xstate_comp();
120 }
121
122 /*
123 * Free current thread data structures etc..
124 */
exit_thread(void)125 void exit_thread(void)
126 {
127 struct task_struct *me = current;
128 struct thread_struct *t = &me->thread;
129 unsigned long *bp = t->io_bitmap_ptr;
130
131 if (bp) {
132 struct tss_struct *tss = &per_cpu(cpu_tss, get_cpu());
133
134 t->io_bitmap_ptr = NULL;
135 clear_thread_flag(TIF_IO_BITMAP);
136 /*
137 * Careful, clear this in the TSS too:
138 */
139 memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
140 t->io_bitmap_max = 0;
141 put_cpu();
142 kfree(bp);
143 }
144
145 drop_fpu(me);
146 }
147
flush_thread(void)148 void flush_thread(void)
149 {
150 struct task_struct *tsk = current;
151
152 flush_ptrace_hw_breakpoint(tsk);
153 memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
154
155 if (!use_eager_fpu()) {
156 /* FPU state will be reallocated lazily at the first use. */
157 drop_fpu(tsk);
158 free_thread_xstate(tsk);
159 } else {
160 if (!tsk_used_math(tsk)) {
161 /* kthread execs. TODO: cleanup this horror. */
162 if (WARN_ON(init_fpu(tsk)))
163 force_sig(SIGKILL, tsk);
164 user_fpu_begin();
165 }
166 restore_init_xstate();
167 }
168 }
169
hard_disable_TSC(void)170 static void hard_disable_TSC(void)
171 {
172 cr4_set_bits(X86_CR4_TSD);
173 }
174
disable_TSC(void)175 void disable_TSC(void)
176 {
177 preempt_disable();
178 if (!test_and_set_thread_flag(TIF_NOTSC))
179 /*
180 * Must flip the CPU state synchronously with
181 * TIF_NOTSC in the current running context.
182 */
183 hard_disable_TSC();
184 preempt_enable();
185 }
186
hard_enable_TSC(void)187 static void hard_enable_TSC(void)
188 {
189 cr4_clear_bits(X86_CR4_TSD);
190 }
191
enable_TSC(void)192 static void enable_TSC(void)
193 {
194 preempt_disable();
195 if (test_and_clear_thread_flag(TIF_NOTSC))
196 /*
197 * Must flip the CPU state synchronously with
198 * TIF_NOTSC in the current running context.
199 */
200 hard_enable_TSC();
201 preempt_enable();
202 }
203
get_tsc_mode(unsigned long adr)204 int get_tsc_mode(unsigned long adr)
205 {
206 unsigned int val;
207
208 if (test_thread_flag(TIF_NOTSC))
209 val = PR_TSC_SIGSEGV;
210 else
211 val = PR_TSC_ENABLE;
212
213 return put_user(val, (unsigned int __user *)adr);
214 }
215
set_tsc_mode(unsigned int val)216 int set_tsc_mode(unsigned int val)
217 {
218 if (val == PR_TSC_SIGSEGV)
219 disable_TSC();
220 else if (val == PR_TSC_ENABLE)
221 enable_TSC();
222 else
223 return -EINVAL;
224
225 return 0;
226 }
227
__switch_to_xtra(struct task_struct * prev_p,struct task_struct * next_p,struct tss_struct * tss)228 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
229 struct tss_struct *tss)
230 {
231 struct thread_struct *prev, *next;
232
233 prev = &prev_p->thread;
234 next = &next_p->thread;
235
236 if (test_tsk_thread_flag(prev_p, TIF_BLOCKSTEP) ^
237 test_tsk_thread_flag(next_p, TIF_BLOCKSTEP)) {
238 unsigned long debugctl = get_debugctlmsr();
239
240 debugctl &= ~DEBUGCTLMSR_BTF;
241 if (test_tsk_thread_flag(next_p, TIF_BLOCKSTEP))
242 debugctl |= DEBUGCTLMSR_BTF;
243
244 update_debugctlmsr(debugctl);
245 }
246
247 if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
248 test_tsk_thread_flag(next_p, TIF_NOTSC)) {
249 /* prev and next are different */
250 if (test_tsk_thread_flag(next_p, TIF_NOTSC))
251 hard_disable_TSC();
252 else
253 hard_enable_TSC();
254 }
255
256 if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
257 /*
258 * Copy the relevant range of the IO bitmap.
259 * Normally this is 128 bytes or less:
260 */
261 memcpy(tss->io_bitmap, next->io_bitmap_ptr,
262 max(prev->io_bitmap_max, next->io_bitmap_max));
263 } else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) {
264 /*
265 * Clear any possible leftover bits:
266 */
267 memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
268 }
269 propagate_user_return_notify(prev_p, next_p);
270 }
271
272 /*
273 * Idle related variables and functions
274 */
275 unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
276 EXPORT_SYMBOL(boot_option_idle_override);
277
278 static void (*x86_idle)(void);
279
280 #ifndef CONFIG_SMP
play_dead(void)281 static inline void play_dead(void)
282 {
283 BUG();
284 }
285 #endif
286
287 #ifdef CONFIG_X86_64
enter_idle(void)288 void enter_idle(void)
289 {
290 this_cpu_write(is_idle, 1);
291 atomic_notifier_call_chain(&idle_notifier, IDLE_START, NULL);
292 }
293
__exit_idle(void)294 static void __exit_idle(void)
295 {
296 if (x86_test_and_clear_bit_percpu(0, is_idle) == 0)
297 return;
298 atomic_notifier_call_chain(&idle_notifier, IDLE_END, NULL);
299 }
300
301 /* Called from interrupts to signify idle end */
exit_idle(void)302 void exit_idle(void)
303 {
304 /* idle loop has pid 0 */
305 if (current->pid)
306 return;
307 __exit_idle();
308 }
309 #endif
310
arch_cpu_idle_enter(void)311 void arch_cpu_idle_enter(void)
312 {
313 local_touch_nmi();
314 enter_idle();
315 }
316
arch_cpu_idle_exit(void)317 void arch_cpu_idle_exit(void)
318 {
319 __exit_idle();
320 }
321
arch_cpu_idle_dead(void)322 void arch_cpu_idle_dead(void)
323 {
324 play_dead();
325 }
326
327 /*
328 * Called from the generic idle code.
329 */
arch_cpu_idle(void)330 void arch_cpu_idle(void)
331 {
332 x86_idle();
333 }
334
335 /*
336 * We use this if we don't have any better idle routine..
337 */
default_idle(void)338 void default_idle(void)
339 {
340 trace_cpu_idle_rcuidle(1, smp_processor_id());
341 safe_halt();
342 trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
343 }
344 #ifdef CONFIG_APM_MODULE
345 EXPORT_SYMBOL(default_idle);
346 #endif
347
348 #ifdef CONFIG_XEN
xen_set_default_idle(void)349 bool xen_set_default_idle(void)
350 {
351 bool ret = !!x86_idle;
352
353 x86_idle = default_idle;
354
355 return ret;
356 }
357 #endif
stop_this_cpu(void * dummy)358 void stop_this_cpu(void *dummy)
359 {
360 local_irq_disable();
361 /*
362 * Remove this CPU:
363 */
364 set_cpu_online(smp_processor_id(), false);
365 disable_local_APIC();
366
367 for (;;)
368 halt();
369 }
370
371 bool amd_e400_c1e_detected;
372 EXPORT_SYMBOL(amd_e400_c1e_detected);
373
374 static cpumask_var_t amd_e400_c1e_mask;
375
amd_e400_remove_cpu(int cpu)376 void amd_e400_remove_cpu(int cpu)
377 {
378 if (amd_e400_c1e_mask != NULL)
379 cpumask_clear_cpu(cpu, amd_e400_c1e_mask);
380 }
381
382 /*
383 * AMD Erratum 400 aware idle routine. We check for C1E active in the interrupt
384 * pending message MSR. If we detect C1E, then we handle it the same
385 * way as C3 power states (local apic timer and TSC stop)
386 */
amd_e400_idle(void)387 static void amd_e400_idle(void)
388 {
389 if (!amd_e400_c1e_detected) {
390 u32 lo, hi;
391
392 rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
393
394 if (lo & K8_INTP_C1E_ACTIVE_MASK) {
395 amd_e400_c1e_detected = true;
396 if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
397 mark_tsc_unstable("TSC halt in AMD C1E");
398 pr_info("System has AMD C1E enabled\n");
399 }
400 }
401
402 if (amd_e400_c1e_detected) {
403 int cpu = smp_processor_id();
404
405 if (!cpumask_test_cpu(cpu, amd_e400_c1e_mask)) {
406 cpumask_set_cpu(cpu, amd_e400_c1e_mask);
407 /* Force broadcast so ACPI can not interfere. */
408 tick_broadcast_force();
409 pr_info("Switch to broadcast mode on CPU%d\n", cpu);
410 }
411 tick_broadcast_enter();
412
413 default_idle();
414
415 /*
416 * The switch back from broadcast mode needs to be
417 * called with interrupts disabled.
418 */
419 local_irq_disable();
420 tick_broadcast_exit();
421 local_irq_enable();
422 } else
423 default_idle();
424 }
425
426 /*
427 * Intel Core2 and older machines prefer MWAIT over HALT for C1.
428 * We can't rely on cpuidle installing MWAIT, because it will not load
429 * on systems that support only C1 -- so the boot default must be MWAIT.
430 *
431 * Some AMD machines are the opposite, they depend on using HALT.
432 *
433 * So for default C1, which is used during boot until cpuidle loads,
434 * use MWAIT-C1 on Intel HW that has it, else use HALT.
435 */
prefer_mwait_c1_over_halt(const struct cpuinfo_x86 * c)436 static int prefer_mwait_c1_over_halt(const struct cpuinfo_x86 *c)
437 {
438 if (c->x86_vendor != X86_VENDOR_INTEL)
439 return 0;
440
441 if (!cpu_has(c, X86_FEATURE_MWAIT))
442 return 0;
443
444 return 1;
445 }
446
447 /*
448 * MONITOR/MWAIT with no hints, used for default default C1 state.
449 * This invokes MWAIT with interrutps enabled and no flags,
450 * which is backwards compatible with the original MWAIT implementation.
451 */
452
mwait_idle(void)453 static void mwait_idle(void)
454 {
455 if (!current_set_polling_and_test()) {
456 trace_cpu_idle_rcuidle(1, smp_processor_id());
457 if (this_cpu_has(X86_BUG_CLFLUSH_MONITOR)) {
458 smp_mb(); /* quirk */
459 clflush((void *)¤t_thread_info()->flags);
460 smp_mb(); /* quirk */
461 }
462
463 __monitor((void *)¤t_thread_info()->flags, 0, 0);
464 if (!need_resched())
465 __sti_mwait(0, 0);
466 else
467 local_irq_enable();
468 trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
469 } else {
470 local_irq_enable();
471 }
472 __current_clr_polling();
473 }
474
select_idle_routine(const struct cpuinfo_x86 * c)475 void select_idle_routine(const struct cpuinfo_x86 *c)
476 {
477 #ifdef CONFIG_SMP
478 if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1)
479 pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
480 #endif
481 if (x86_idle || boot_option_idle_override == IDLE_POLL)
482 return;
483
484 if (cpu_has_bug(c, X86_BUG_AMD_APIC_C1E)) {
485 /* E400: APIC timer interrupt does not wake up CPU from C1e */
486 pr_info("using AMD E400 aware idle routine\n");
487 x86_idle = amd_e400_idle;
488 } else if (prefer_mwait_c1_over_halt(c)) {
489 pr_info("using mwait in idle threads\n");
490 x86_idle = mwait_idle;
491 } else
492 x86_idle = default_idle;
493 }
494
init_amd_e400_c1e_mask(void)495 void __init init_amd_e400_c1e_mask(void)
496 {
497 /* If we're using amd_e400_idle, we need to allocate amd_e400_c1e_mask. */
498 if (x86_idle == amd_e400_idle)
499 zalloc_cpumask_var(&amd_e400_c1e_mask, GFP_KERNEL);
500 }
501
idle_setup(char * str)502 static int __init idle_setup(char *str)
503 {
504 if (!str)
505 return -EINVAL;
506
507 if (!strcmp(str, "poll")) {
508 pr_info("using polling idle threads\n");
509 boot_option_idle_override = IDLE_POLL;
510 cpu_idle_poll_ctrl(true);
511 } else if (!strcmp(str, "halt")) {
512 /*
513 * When the boot option of idle=halt is added, halt is
514 * forced to be used for CPU idle. In such case CPU C2/C3
515 * won't be used again.
516 * To continue to load the CPU idle driver, don't touch
517 * the boot_option_idle_override.
518 */
519 x86_idle = default_idle;
520 boot_option_idle_override = IDLE_HALT;
521 } else if (!strcmp(str, "nomwait")) {
522 /*
523 * If the boot option of "idle=nomwait" is added,
524 * it means that mwait will be disabled for CPU C2/C3
525 * states. In such case it won't touch the variable
526 * of boot_option_idle_override.
527 */
528 boot_option_idle_override = IDLE_NOMWAIT;
529 } else
530 return -1;
531
532 return 0;
533 }
534 early_param("idle", idle_setup);
535
arch_align_stack(unsigned long sp)536 unsigned long arch_align_stack(unsigned long sp)
537 {
538 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
539 sp -= get_random_int() % 8192;
540 return sp & ~0xf;
541 }
542
arch_randomize_brk(struct mm_struct * mm)543 unsigned long arch_randomize_brk(struct mm_struct *mm)
544 {
545 unsigned long range_end = mm->brk + 0x02000000;
546 return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
547 }
548
549