1 #ifndef __LINUX_USB_H
2 #define __LINUX_USB_H
3
4 #include <linux/mod_devicetable.h>
5 #include <linux/usb/ch9.h>
6
7 #define USB_MAJOR 180
8 #define USB_DEVICE_MAJOR 189
9
10
11 #ifdef __KERNEL__
12
13 #include <linux/errno.h> /* for -ENODEV */
14 #include <linux/delay.h> /* for mdelay() */
15 #include <linux/interrupt.h> /* for in_interrupt() */
16 #include <linux/list.h> /* for struct list_head */
17 #include <linux/kref.h> /* for struct kref */
18 #include <linux/device.h> /* for struct device */
19 #include <linux/fs.h> /* for struct file_operations */
20 #include <linux/completion.h> /* for struct completion */
21 #include <linux/sched.h> /* for current && schedule_timeout */
22 #include <linux/mutex.h> /* for struct mutex */
23 #include <linux/pm_runtime.h> /* for runtime PM */
24
25 struct usb_device;
26 struct usb_driver;
27 struct wusb_dev;
28
29 /*-------------------------------------------------------------------------*/
30
31 /*
32 * Host-side wrappers for standard USB descriptors ... these are parsed
33 * from the data provided by devices. Parsing turns them from a flat
34 * sequence of descriptors into a hierarchy:
35 *
36 * - devices have one (usually) or more configs;
37 * - configs have one (often) or more interfaces;
38 * - interfaces have one (usually) or more settings;
39 * - each interface setting has zero or (usually) more endpoints.
40 * - a SuperSpeed endpoint has a companion descriptor
41 *
42 * And there might be other descriptors mixed in with those.
43 *
44 * Devices may also have class-specific or vendor-specific descriptors.
45 */
46
47 struct ep_device;
48
49 /**
50 * struct usb_host_endpoint - host-side endpoint descriptor and queue
51 * @desc: descriptor for this endpoint, wMaxPacketSize in native byteorder
52 * @ss_ep_comp: SuperSpeed companion descriptor for this endpoint
53 * @urb_list: urbs queued to this endpoint; maintained by usbcore
54 * @hcpriv: for use by HCD; typically holds hardware dma queue head (QH)
55 * with one or more transfer descriptors (TDs) per urb
56 * @ep_dev: ep_device for sysfs info
57 * @extra: descriptors following this endpoint in the configuration
58 * @extralen: how many bytes of "extra" are valid
59 * @enabled: URBs may be submitted to this endpoint
60 * @streams: number of USB-3 streams allocated on the endpoint
61 *
62 * USB requests are always queued to a given endpoint, identified by a
63 * descriptor within an active interface in a given USB configuration.
64 */
65 struct usb_host_endpoint {
66 struct usb_endpoint_descriptor desc;
67 struct usb_ss_ep_comp_descriptor ss_ep_comp;
68 struct list_head urb_list;
69 void *hcpriv;
70 struct ep_device *ep_dev; /* For sysfs info */
71
72 unsigned char *extra; /* Extra descriptors */
73 int extralen;
74 int enabled;
75 int streams;
76 };
77
78 /* host-side wrapper for one interface setting's parsed descriptors */
79 struct usb_host_interface {
80 struct usb_interface_descriptor desc;
81
82 int extralen;
83 unsigned char *extra; /* Extra descriptors */
84
85 /* array of desc.bNumEndpoints endpoints associated with this
86 * interface setting. these will be in no particular order.
87 */
88 struct usb_host_endpoint *endpoint;
89
90 char *string; /* iInterface string, if present */
91 };
92
93 enum usb_interface_condition {
94 USB_INTERFACE_UNBOUND = 0,
95 USB_INTERFACE_BINDING,
96 USB_INTERFACE_BOUND,
97 USB_INTERFACE_UNBINDING,
98 };
99
100 /**
101 * struct usb_interface - what usb device drivers talk to
102 * @altsetting: array of interface structures, one for each alternate
103 * setting that may be selected. Each one includes a set of
104 * endpoint configurations. They will be in no particular order.
105 * @cur_altsetting: the current altsetting.
106 * @num_altsetting: number of altsettings defined.
107 * @intf_assoc: interface association descriptor
108 * @minor: the minor number assigned to this interface, if this
109 * interface is bound to a driver that uses the USB major number.
110 * If this interface does not use the USB major, this field should
111 * be unused. The driver should set this value in the probe()
112 * function of the driver, after it has been assigned a minor
113 * number from the USB core by calling usb_register_dev().
114 * @condition: binding state of the interface: not bound, binding
115 * (in probe()), bound to a driver, or unbinding (in disconnect())
116 * @sysfs_files_created: sysfs attributes exist
117 * @ep_devs_created: endpoint child pseudo-devices exist
118 * @unregistering: flag set when the interface is being unregistered
119 * @needs_remote_wakeup: flag set when the driver requires remote-wakeup
120 * capability during autosuspend.
121 * @needs_altsetting0: flag set when a set-interface request for altsetting 0
122 * has been deferred.
123 * @needs_binding: flag set when the driver should be re-probed or unbound
124 * following a reset or suspend operation it doesn't support.
125 * @dev: driver model's view of this device
126 * @usb_dev: if an interface is bound to the USB major, this will point
127 * to the sysfs representation for that device.
128 * @pm_usage_cnt: PM usage counter for this interface
129 * @reset_ws: Used for scheduling resets from atomic context.
130 * @resetting_device: USB core reset the device, so use alt setting 0 as
131 * current; needs bandwidth alloc after reset.
132 *
133 * USB device drivers attach to interfaces on a physical device. Each
134 * interface encapsulates a single high level function, such as feeding
135 * an audio stream to a speaker or reporting a change in a volume control.
136 * Many USB devices only have one interface. The protocol used to talk to
137 * an interface's endpoints can be defined in a usb "class" specification,
138 * or by a product's vendor. The (default) control endpoint is part of
139 * every interface, but is never listed among the interface's descriptors.
140 *
141 * The driver that is bound to the interface can use standard driver model
142 * calls such as dev_get_drvdata() on the dev member of this structure.
143 *
144 * Each interface may have alternate settings. The initial configuration
145 * of a device sets altsetting 0, but the device driver can change
146 * that setting using usb_set_interface(). Alternate settings are often
147 * used to control the use of periodic endpoints, such as by having
148 * different endpoints use different amounts of reserved USB bandwidth.
149 * All standards-conformant USB devices that use isochronous endpoints
150 * will use them in non-default settings.
151 *
152 * The USB specification says that alternate setting numbers must run from
153 * 0 to one less than the total number of alternate settings. But some
154 * devices manage to mess this up, and the structures aren't necessarily
155 * stored in numerical order anyhow. Use usb_altnum_to_altsetting() to
156 * look up an alternate setting in the altsetting array based on its number.
157 */
158 struct usb_interface {
159 /* array of alternate settings for this interface,
160 * stored in no particular order */
161 struct usb_host_interface *altsetting;
162
163 struct usb_host_interface *cur_altsetting; /* the currently
164 * active alternate setting */
165 unsigned num_altsetting; /* number of alternate settings */
166
167 /* If there is an interface association descriptor then it will list
168 * the associated interfaces */
169 struct usb_interface_assoc_descriptor *intf_assoc;
170
171 int minor; /* minor number this interface is
172 * bound to */
173 enum usb_interface_condition condition; /* state of binding */
174 unsigned sysfs_files_created:1; /* the sysfs attributes exist */
175 unsigned ep_devs_created:1; /* endpoint "devices" exist */
176 unsigned unregistering:1; /* unregistration is in progress */
177 unsigned needs_remote_wakeup:1; /* driver requires remote wakeup */
178 unsigned needs_altsetting0:1; /* switch to altsetting 0 is pending */
179 unsigned needs_binding:1; /* needs delayed unbind/rebind */
180 unsigned resetting_device:1; /* true: bandwidth alloc after reset */
181
182 struct device dev; /* interface specific device info */
183 struct device *usb_dev;
184 atomic_t pm_usage_cnt; /* usage counter for autosuspend */
185 struct work_struct reset_ws; /* for resets in atomic context */
186 };
187 #define to_usb_interface(d) container_of(d, struct usb_interface, dev)
188
usb_get_intfdata(struct usb_interface * intf)189 static inline void *usb_get_intfdata(struct usb_interface *intf)
190 {
191 return dev_get_drvdata(&intf->dev);
192 }
193
usb_set_intfdata(struct usb_interface * intf,void * data)194 static inline void usb_set_intfdata(struct usb_interface *intf, void *data)
195 {
196 dev_set_drvdata(&intf->dev, data);
197 }
198
199 struct usb_interface *usb_get_intf(struct usb_interface *intf);
200 void usb_put_intf(struct usb_interface *intf);
201
202 /* Hard limit */
203 #define USB_MAXENDPOINTS 30
204 /* this maximum is arbitrary */
205 #define USB_MAXINTERFACES 32
206 #define USB_MAXIADS (USB_MAXINTERFACES/2)
207
208 /*
209 * USB Resume Timer: Every Host controller driver should drive the resume
210 * signalling on the bus for the amount of time defined by this macro.
211 *
212 * That way we will have a 'stable' behavior among all HCDs supported by Linux.
213 *
214 * Note that the USB Specification states we should drive resume for *at least*
215 * 20 ms, but it doesn't give an upper bound. This creates two possible
216 * situations which we want to avoid:
217 *
218 * (a) sometimes an msleep(20) might expire slightly before 20 ms, which causes
219 * us to fail USB Electrical Tests, thus failing Certification
220 *
221 * (b) Some (many) devices actually need more than 20 ms of resume signalling,
222 * and while we can argue that's against the USB Specification, we don't have
223 * control over which devices a certification laboratory will be using for
224 * certification. If CertLab uses a device which was tested against Windows and
225 * that happens to have relaxed resume signalling rules, we might fall into
226 * situations where we fail interoperability and electrical tests.
227 *
228 * In order to avoid both conditions, we're using a 40 ms resume timeout, which
229 * should cope with both LPJ calibration errors and devices not following every
230 * detail of the USB Specification.
231 */
232 #define USB_RESUME_TIMEOUT 40 /* ms */
233
234 /**
235 * struct usb_interface_cache - long-term representation of a device interface
236 * @num_altsetting: number of altsettings defined.
237 * @ref: reference counter.
238 * @altsetting: variable-length array of interface structures, one for
239 * each alternate setting that may be selected. Each one includes a
240 * set of endpoint configurations. They will be in no particular order.
241 *
242 * These structures persist for the lifetime of a usb_device, unlike
243 * struct usb_interface (which persists only as long as its configuration
244 * is installed). The altsetting arrays can be accessed through these
245 * structures at any time, permitting comparison of configurations and
246 * providing support for the /proc/bus/usb/devices pseudo-file.
247 */
248 struct usb_interface_cache {
249 unsigned num_altsetting; /* number of alternate settings */
250 struct kref ref; /* reference counter */
251
252 /* variable-length array of alternate settings for this interface,
253 * stored in no particular order */
254 struct usb_host_interface altsetting[0];
255 };
256 #define ref_to_usb_interface_cache(r) \
257 container_of(r, struct usb_interface_cache, ref)
258 #define altsetting_to_usb_interface_cache(a) \
259 container_of(a, struct usb_interface_cache, altsetting[0])
260
261 /**
262 * struct usb_host_config - representation of a device's configuration
263 * @desc: the device's configuration descriptor.
264 * @string: pointer to the cached version of the iConfiguration string, if
265 * present for this configuration.
266 * @intf_assoc: list of any interface association descriptors in this config
267 * @interface: array of pointers to usb_interface structures, one for each
268 * interface in the configuration. The number of interfaces is stored
269 * in desc.bNumInterfaces. These pointers are valid only while the
270 * the configuration is active.
271 * @intf_cache: array of pointers to usb_interface_cache structures, one
272 * for each interface in the configuration. These structures exist
273 * for the entire life of the device.
274 * @extra: pointer to buffer containing all extra descriptors associated
275 * with this configuration (those preceding the first interface
276 * descriptor).
277 * @extralen: length of the extra descriptors buffer.
278 *
279 * USB devices may have multiple configurations, but only one can be active
280 * at any time. Each encapsulates a different operational environment;
281 * for example, a dual-speed device would have separate configurations for
282 * full-speed and high-speed operation. The number of configurations
283 * available is stored in the device descriptor as bNumConfigurations.
284 *
285 * A configuration can contain multiple interfaces. Each corresponds to
286 * a different function of the USB device, and all are available whenever
287 * the configuration is active. The USB standard says that interfaces
288 * are supposed to be numbered from 0 to desc.bNumInterfaces-1, but a lot
289 * of devices get this wrong. In addition, the interface array is not
290 * guaranteed to be sorted in numerical order. Use usb_ifnum_to_if() to
291 * look up an interface entry based on its number.
292 *
293 * Device drivers should not attempt to activate configurations. The choice
294 * of which configuration to install is a policy decision based on such
295 * considerations as available power, functionality provided, and the user's
296 * desires (expressed through userspace tools). However, drivers can call
297 * usb_reset_configuration() to reinitialize the current configuration and
298 * all its interfaces.
299 */
300 struct usb_host_config {
301 struct usb_config_descriptor desc;
302
303 char *string; /* iConfiguration string, if present */
304
305 /* List of any Interface Association Descriptors in this
306 * configuration. */
307 struct usb_interface_assoc_descriptor *intf_assoc[USB_MAXIADS];
308
309 /* the interfaces associated with this configuration,
310 * stored in no particular order */
311 struct usb_interface *interface[USB_MAXINTERFACES];
312
313 /* Interface information available even when this is not the
314 * active configuration */
315 struct usb_interface_cache *intf_cache[USB_MAXINTERFACES];
316
317 unsigned char *extra; /* Extra descriptors */
318 int extralen;
319 };
320
321 /* USB2.0 and USB3.0 device BOS descriptor set */
322 struct usb_host_bos {
323 struct usb_bos_descriptor *desc;
324
325 /* wireless cap descriptor is handled by wusb */
326 struct usb_ext_cap_descriptor *ext_cap;
327 struct usb_ss_cap_descriptor *ss_cap;
328 struct usb_ss_container_id_descriptor *ss_id;
329 };
330
331 int __usb_get_extra_descriptor(char *buffer, unsigned size,
332 unsigned char type, void **ptr);
333 #define usb_get_extra_descriptor(ifpoint, type, ptr) \
334 __usb_get_extra_descriptor((ifpoint)->extra, \
335 (ifpoint)->extralen, \
336 type, (void **)ptr)
337
338 /* ----------------------------------------------------------------------- */
339
340 /* USB device number allocation bitmap */
341 struct usb_devmap {
342 unsigned long devicemap[128 / (8*sizeof(unsigned long))];
343 };
344
345 /*
346 * Allocated per bus (tree of devices) we have:
347 */
348 struct usb_bus {
349 struct device *controller; /* host/master side hardware */
350 int busnum; /* Bus number (in order of reg) */
351 const char *bus_name; /* stable id (PCI slot_name etc) */
352 u8 uses_dma; /* Does the host controller use DMA? */
353 u8 uses_pio_for_control; /*
354 * Does the host controller use PIO
355 * for control transfers?
356 */
357 u8 otg_port; /* 0, or number of OTG/HNP port */
358 unsigned is_b_host:1; /* true during some HNP roleswitches */
359 unsigned b_hnp_enable:1; /* OTG: did A-Host enable HNP? */
360 unsigned no_stop_on_short:1; /*
361 * Quirk: some controllers don't stop
362 * the ep queue on a short transfer
363 * with the URB_SHORT_NOT_OK flag set.
364 */
365 unsigned no_sg_constraint:1; /* no sg constraint */
366 unsigned sg_tablesize; /* 0 or largest number of sg list entries */
367
368 int devnum_next; /* Next open device number in
369 * round-robin allocation */
370 struct mutex devnum_next_mutex; /* devnum_next mutex */
371
372 struct usb_devmap devmap; /* device address allocation map */
373 struct usb_device *root_hub; /* Root hub */
374 struct usb_bus *hs_companion; /* Companion EHCI bus, if any */
375 struct list_head bus_list; /* list of busses */
376
377 int bandwidth_allocated; /* on this bus: how much of the time
378 * reserved for periodic (intr/iso)
379 * requests is used, on average?
380 * Units: microseconds/frame.
381 * Limits: Full/low speed reserve 90%,
382 * while high speed reserves 80%.
383 */
384 int bandwidth_int_reqs; /* number of Interrupt requests */
385 int bandwidth_isoc_reqs; /* number of Isoc. requests */
386
387 unsigned resuming_ports; /* bit array: resuming root-hub ports */
388
389 #if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE)
390 struct mon_bus *mon_bus; /* non-null when associated */
391 int monitored; /* non-zero when monitored */
392 #endif
393 };
394
395 struct usb_dev_state;
396
397 /* ----------------------------------------------------------------------- */
398
399 struct usb_tt;
400
401 enum usb_device_removable {
402 USB_DEVICE_REMOVABLE_UNKNOWN = 0,
403 USB_DEVICE_REMOVABLE,
404 USB_DEVICE_FIXED,
405 };
406
407 enum usb_port_connect_type {
408 USB_PORT_CONNECT_TYPE_UNKNOWN = 0,
409 USB_PORT_CONNECT_TYPE_HOT_PLUG,
410 USB_PORT_CONNECT_TYPE_HARD_WIRED,
411 USB_PORT_NOT_USED,
412 };
413
414 /*
415 * USB 2.0 Link Power Management (LPM) parameters.
416 */
417 struct usb2_lpm_parameters {
418 /* Best effort service latency indicate how long the host will drive
419 * resume on an exit from L1.
420 */
421 unsigned int besl;
422
423 /* Timeout value in microseconds for the L1 inactivity (LPM) timer.
424 * When the timer counts to zero, the parent hub will initiate a LPM
425 * transition to L1.
426 */
427 int timeout;
428 };
429
430 /*
431 * USB 3.0 Link Power Management (LPM) parameters.
432 *
433 * PEL and SEL are USB 3.0 Link PM latencies for device-initiated LPM exit.
434 * MEL is the USB 3.0 Link PM latency for host-initiated LPM exit.
435 * All three are stored in nanoseconds.
436 */
437 struct usb3_lpm_parameters {
438 /*
439 * Maximum exit latency (MEL) for the host to send a packet to the
440 * device (either a Ping for isoc endpoints, or a data packet for
441 * interrupt endpoints), the hubs to decode the packet, and for all hubs
442 * in the path to transition the links to U0.
443 */
444 unsigned int mel;
445 /*
446 * Maximum exit latency for a device-initiated LPM transition to bring
447 * all links into U0. Abbreviated as "PEL" in section 9.4.12 of the USB
448 * 3.0 spec, with no explanation of what "P" stands for. "Path"?
449 */
450 unsigned int pel;
451
452 /*
453 * The System Exit Latency (SEL) includes PEL, and three other
454 * latencies. After a device initiates a U0 transition, it will take
455 * some time from when the device sends the ERDY to when it will finally
456 * receive the data packet. Basically, SEL should be the worse-case
457 * latency from when a device starts initiating a U0 transition to when
458 * it will get data.
459 */
460 unsigned int sel;
461 /*
462 * The idle timeout value that is currently programmed into the parent
463 * hub for this device. When the timer counts to zero, the parent hub
464 * will initiate an LPM transition to either U1 or U2.
465 */
466 int timeout;
467 };
468
469 /**
470 * struct usb_device - kernel's representation of a USB device
471 * @devnum: device number; address on a USB bus
472 * @devpath: device ID string for use in messages (e.g., /port/...)
473 * @route: tree topology hex string for use with xHCI
474 * @state: device state: configured, not attached, etc.
475 * @speed: device speed: high/full/low (or error)
476 * @tt: Transaction Translator info; used with low/full speed dev, highspeed hub
477 * @ttport: device port on that tt hub
478 * @toggle: one bit for each endpoint, with ([0] = IN, [1] = OUT) endpoints
479 * @parent: our hub, unless we're the root
480 * @bus: bus we're part of
481 * @ep0: endpoint 0 data (default control pipe)
482 * @dev: generic device interface
483 * @descriptor: USB device descriptor
484 * @bos: USB device BOS descriptor set
485 * @config: all of the device's configs
486 * @actconfig: the active configuration
487 * @ep_in: array of IN endpoints
488 * @ep_out: array of OUT endpoints
489 * @rawdescriptors: raw descriptors for each config
490 * @bus_mA: Current available from the bus
491 * @portnum: parent port number (origin 1)
492 * @level: number of USB hub ancestors
493 * @can_submit: URBs may be submitted
494 * @persist_enabled: USB_PERSIST enabled for this device
495 * @have_langid: whether string_langid is valid
496 * @authorized: policy has said we can use it;
497 * (user space) policy determines if we authorize this device to be
498 * used or not. By default, wired USB devices are authorized.
499 * WUSB devices are not, until we authorize them from user space.
500 * FIXME -- complete doc
501 * @authenticated: Crypto authentication passed
502 * @wusb: device is Wireless USB
503 * @lpm_capable: device supports LPM
504 * @usb2_hw_lpm_capable: device can perform USB2 hardware LPM
505 * @usb2_hw_lpm_besl_capable: device can perform USB2 hardware BESL LPM
506 * @usb2_hw_lpm_enabled: USB2 hardware LPM is enabled
507 * @usb2_hw_lpm_allowed: Userspace allows USB 2.0 LPM to be enabled
508 * @usb3_lpm_enabled: USB3 hardware LPM enabled
509 * @string_langid: language ID for strings
510 * @product: iProduct string, if present (static)
511 * @manufacturer: iManufacturer string, if present (static)
512 * @serial: iSerialNumber string, if present (static)
513 * @filelist: usbfs files that are open to this device
514 * @maxchild: number of ports if hub
515 * @quirks: quirks of the whole device
516 * @urbnum: number of URBs submitted for the whole device
517 * @active_duration: total time device is not suspended
518 * @connect_time: time device was first connected
519 * @do_remote_wakeup: remote wakeup should be enabled
520 * @reset_resume: needs reset instead of resume
521 * @port_is_suspended: the upstream port is suspended (L2 or U3)
522 * @wusb_dev: if this is a Wireless USB device, link to the WUSB
523 * specific data for the device.
524 * @slot_id: Slot ID assigned by xHCI
525 * @removable: Device can be physically removed from this port
526 * @l1_params: best effor service latency for USB2 L1 LPM state, and L1 timeout.
527 * @u1_params: exit latencies for USB3 U1 LPM state, and hub-initiated timeout.
528 * @u2_params: exit latencies for USB3 U2 LPM state, and hub-initiated timeout.
529 * @lpm_disable_count: Ref count used by usb_disable_lpm() and usb_enable_lpm()
530 * to keep track of the number of functions that require USB 3.0 Link Power
531 * Management to be disabled for this usb_device. This count should only
532 * be manipulated by those functions, with the bandwidth_mutex is held.
533 *
534 * Notes:
535 * Usbcore drivers should not set usbdev->state directly. Instead use
536 * usb_set_device_state().
537 */
538 struct usb_device {
539 int devnum;
540 char devpath[16];
541 u32 route;
542 enum usb_device_state state;
543 enum usb_device_speed speed;
544
545 struct usb_tt *tt;
546 int ttport;
547
548 unsigned int toggle[2];
549
550 struct usb_device *parent;
551 struct usb_bus *bus;
552 struct usb_host_endpoint ep0;
553
554 struct device dev;
555
556 struct usb_device_descriptor descriptor;
557 struct usb_host_bos *bos;
558 struct usb_host_config *config;
559
560 struct usb_host_config *actconfig;
561 struct usb_host_endpoint *ep_in[16];
562 struct usb_host_endpoint *ep_out[16];
563
564 char **rawdescriptors;
565
566 unsigned short bus_mA;
567 u8 portnum;
568 u8 level;
569
570 unsigned can_submit:1;
571 unsigned persist_enabled:1;
572 unsigned have_langid:1;
573 unsigned authorized:1;
574 unsigned authenticated:1;
575 unsigned wusb:1;
576 unsigned lpm_capable:1;
577 unsigned usb2_hw_lpm_capable:1;
578 unsigned usb2_hw_lpm_besl_capable:1;
579 unsigned usb2_hw_lpm_enabled:1;
580 unsigned usb2_hw_lpm_allowed:1;
581 unsigned usb3_lpm_enabled:1;
582 int string_langid;
583
584 /* static strings from the device */
585 char *product;
586 char *manufacturer;
587 char *serial;
588
589 struct list_head filelist;
590
591 int maxchild;
592
593 u32 quirks;
594 atomic_t urbnum;
595
596 unsigned long active_duration;
597
598 #ifdef CONFIG_PM
599 unsigned long connect_time;
600
601 unsigned do_remote_wakeup:1;
602 unsigned reset_resume:1;
603 unsigned port_is_suspended:1;
604 #endif
605 struct wusb_dev *wusb_dev;
606 int slot_id;
607 enum usb_device_removable removable;
608 struct usb2_lpm_parameters l1_params;
609 struct usb3_lpm_parameters u1_params;
610 struct usb3_lpm_parameters u2_params;
611 unsigned lpm_disable_count;
612 };
613 #define to_usb_device(d) container_of(d, struct usb_device, dev)
614
interface_to_usbdev(struct usb_interface * intf)615 static inline struct usb_device *interface_to_usbdev(struct usb_interface *intf)
616 {
617 return to_usb_device(intf->dev.parent);
618 }
619
620 extern struct usb_device *usb_get_dev(struct usb_device *dev);
621 extern void usb_put_dev(struct usb_device *dev);
622 extern struct usb_device *usb_hub_find_child(struct usb_device *hdev,
623 int port1);
624
625 /**
626 * usb_hub_for_each_child - iterate over all child devices on the hub
627 * @hdev: USB device belonging to the usb hub
628 * @port1: portnum associated with child device
629 * @child: child device pointer
630 */
631 #define usb_hub_for_each_child(hdev, port1, child) \
632 for (port1 = 1, child = usb_hub_find_child(hdev, port1); \
633 port1 <= hdev->maxchild; \
634 child = usb_hub_find_child(hdev, ++port1)) \
635 if (!child) continue; else
636
637 /* USB device locking */
638 #define usb_lock_device(udev) device_lock(&(udev)->dev)
639 #define usb_unlock_device(udev) device_unlock(&(udev)->dev)
640 #define usb_trylock_device(udev) device_trylock(&(udev)->dev)
641 extern int usb_lock_device_for_reset(struct usb_device *udev,
642 const struct usb_interface *iface);
643
644 /* USB port reset for device reinitialization */
645 extern int usb_reset_device(struct usb_device *dev);
646 extern void usb_queue_reset_device(struct usb_interface *dev);
647
648 #ifdef CONFIG_ACPI
649 extern int usb_acpi_set_power_state(struct usb_device *hdev, int index,
650 bool enable);
651 extern bool usb_acpi_power_manageable(struct usb_device *hdev, int index);
652 #else
usb_acpi_set_power_state(struct usb_device * hdev,int index,bool enable)653 static inline int usb_acpi_set_power_state(struct usb_device *hdev, int index,
654 bool enable) { return 0; }
usb_acpi_power_manageable(struct usb_device * hdev,int index)655 static inline bool usb_acpi_power_manageable(struct usb_device *hdev, int index)
656 { return true; }
657 #endif
658
659 /* USB autosuspend and autoresume */
660 #ifdef CONFIG_PM
661 extern void usb_enable_autosuspend(struct usb_device *udev);
662 extern void usb_disable_autosuspend(struct usb_device *udev);
663
664 extern int usb_autopm_get_interface(struct usb_interface *intf);
665 extern void usb_autopm_put_interface(struct usb_interface *intf);
666 extern int usb_autopm_get_interface_async(struct usb_interface *intf);
667 extern void usb_autopm_put_interface_async(struct usb_interface *intf);
668 extern void usb_autopm_get_interface_no_resume(struct usb_interface *intf);
669 extern void usb_autopm_put_interface_no_suspend(struct usb_interface *intf);
670
usb_mark_last_busy(struct usb_device * udev)671 static inline void usb_mark_last_busy(struct usb_device *udev)
672 {
673 pm_runtime_mark_last_busy(&udev->dev);
674 }
675
676 #else
677
usb_enable_autosuspend(struct usb_device * udev)678 static inline int usb_enable_autosuspend(struct usb_device *udev)
679 { return 0; }
usb_disable_autosuspend(struct usb_device * udev)680 static inline int usb_disable_autosuspend(struct usb_device *udev)
681 { return 0; }
682
usb_autopm_get_interface(struct usb_interface * intf)683 static inline int usb_autopm_get_interface(struct usb_interface *intf)
684 { return 0; }
usb_autopm_get_interface_async(struct usb_interface * intf)685 static inline int usb_autopm_get_interface_async(struct usb_interface *intf)
686 { return 0; }
687
usb_autopm_put_interface(struct usb_interface * intf)688 static inline void usb_autopm_put_interface(struct usb_interface *intf)
689 { }
usb_autopm_put_interface_async(struct usb_interface * intf)690 static inline void usb_autopm_put_interface_async(struct usb_interface *intf)
691 { }
usb_autopm_get_interface_no_resume(struct usb_interface * intf)692 static inline void usb_autopm_get_interface_no_resume(
693 struct usb_interface *intf)
694 { }
usb_autopm_put_interface_no_suspend(struct usb_interface * intf)695 static inline void usb_autopm_put_interface_no_suspend(
696 struct usb_interface *intf)
697 { }
usb_mark_last_busy(struct usb_device * udev)698 static inline void usb_mark_last_busy(struct usb_device *udev)
699 { }
700 #endif
701
702 extern int usb_disable_lpm(struct usb_device *udev);
703 extern void usb_enable_lpm(struct usb_device *udev);
704 /* Same as above, but these functions lock/unlock the bandwidth_mutex. */
705 extern int usb_unlocked_disable_lpm(struct usb_device *udev);
706 extern void usb_unlocked_enable_lpm(struct usb_device *udev);
707
708 extern int usb_disable_ltm(struct usb_device *udev);
709 extern void usb_enable_ltm(struct usb_device *udev);
710
usb_device_supports_ltm(struct usb_device * udev)711 static inline bool usb_device_supports_ltm(struct usb_device *udev)
712 {
713 if (udev->speed != USB_SPEED_SUPER || !udev->bos || !udev->bos->ss_cap)
714 return false;
715 return udev->bos->ss_cap->bmAttributes & USB_LTM_SUPPORT;
716 }
717
usb_device_no_sg_constraint(struct usb_device * udev)718 static inline bool usb_device_no_sg_constraint(struct usb_device *udev)
719 {
720 return udev && udev->bus && udev->bus->no_sg_constraint;
721 }
722
723
724 /*-------------------------------------------------------------------------*/
725
726 /* for drivers using iso endpoints */
727 extern int usb_get_current_frame_number(struct usb_device *usb_dev);
728
729 /* Sets up a group of bulk endpoints to support multiple stream IDs. */
730 extern int usb_alloc_streams(struct usb_interface *interface,
731 struct usb_host_endpoint **eps, unsigned int num_eps,
732 unsigned int num_streams, gfp_t mem_flags);
733
734 /* Reverts a group of bulk endpoints back to not using stream IDs. */
735 extern int usb_free_streams(struct usb_interface *interface,
736 struct usb_host_endpoint **eps, unsigned int num_eps,
737 gfp_t mem_flags);
738
739 /* used these for multi-interface device registration */
740 extern int usb_driver_claim_interface(struct usb_driver *driver,
741 struct usb_interface *iface, void *priv);
742
743 /**
744 * usb_interface_claimed - returns true iff an interface is claimed
745 * @iface: the interface being checked
746 *
747 * Return: %true (nonzero) iff the interface is claimed, else %false
748 * (zero).
749 *
750 * Note:
751 * Callers must own the driver model's usb bus readlock. So driver
752 * probe() entries don't need extra locking, but other call contexts
753 * may need to explicitly claim that lock.
754 *
755 */
usb_interface_claimed(struct usb_interface * iface)756 static inline int usb_interface_claimed(struct usb_interface *iface)
757 {
758 return (iface->dev.driver != NULL);
759 }
760
761 extern void usb_driver_release_interface(struct usb_driver *driver,
762 struct usb_interface *iface);
763 const struct usb_device_id *usb_match_id(struct usb_interface *interface,
764 const struct usb_device_id *id);
765 extern int usb_match_one_id(struct usb_interface *interface,
766 const struct usb_device_id *id);
767
768 extern int usb_for_each_dev(void *data, int (*fn)(struct usb_device *, void *));
769 extern struct usb_interface *usb_find_interface(struct usb_driver *drv,
770 int minor);
771 extern struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev,
772 unsigned ifnum);
773 extern struct usb_host_interface *usb_altnum_to_altsetting(
774 const struct usb_interface *intf, unsigned int altnum);
775 extern struct usb_host_interface *usb_find_alt_setting(
776 struct usb_host_config *config,
777 unsigned int iface_num,
778 unsigned int alt_num);
779
780 /* port claiming functions */
781 int usb_hub_claim_port(struct usb_device *hdev, unsigned port1,
782 struct usb_dev_state *owner);
783 int usb_hub_release_port(struct usb_device *hdev, unsigned port1,
784 struct usb_dev_state *owner);
785
786 /**
787 * usb_make_path - returns stable device path in the usb tree
788 * @dev: the device whose path is being constructed
789 * @buf: where to put the string
790 * @size: how big is "buf"?
791 *
792 * Return: Length of the string (> 0) or negative if size was too small.
793 *
794 * Note:
795 * This identifier is intended to be "stable", reflecting physical paths in
796 * hardware such as physical bus addresses for host controllers or ports on
797 * USB hubs. That makes it stay the same until systems are physically
798 * reconfigured, by re-cabling a tree of USB devices or by moving USB host
799 * controllers. Adding and removing devices, including virtual root hubs
800 * in host controller driver modules, does not change these path identifiers;
801 * neither does rebooting or re-enumerating. These are more useful identifiers
802 * than changeable ("unstable") ones like bus numbers or device addresses.
803 *
804 * With a partial exception for devices connected to USB 2.0 root hubs, these
805 * identifiers are also predictable. So long as the device tree isn't changed,
806 * plugging any USB device into a given hub port always gives it the same path.
807 * Because of the use of "companion" controllers, devices connected to ports on
808 * USB 2.0 root hubs (EHCI host controllers) will get one path ID if they are
809 * high speed, and a different one if they are full or low speed.
810 */
usb_make_path(struct usb_device * dev,char * buf,size_t size)811 static inline int usb_make_path(struct usb_device *dev, char *buf, size_t size)
812 {
813 int actual;
814 actual = snprintf(buf, size, "usb-%s-%s", dev->bus->bus_name,
815 dev->devpath);
816 return (actual >= (int)size) ? -1 : actual;
817 }
818
819 /*-------------------------------------------------------------------------*/
820
821 #define USB_DEVICE_ID_MATCH_DEVICE \
822 (USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT)
823 #define USB_DEVICE_ID_MATCH_DEV_RANGE \
824 (USB_DEVICE_ID_MATCH_DEV_LO | USB_DEVICE_ID_MATCH_DEV_HI)
825 #define USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION \
826 (USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_DEV_RANGE)
827 #define USB_DEVICE_ID_MATCH_DEV_INFO \
828 (USB_DEVICE_ID_MATCH_DEV_CLASS | \
829 USB_DEVICE_ID_MATCH_DEV_SUBCLASS | \
830 USB_DEVICE_ID_MATCH_DEV_PROTOCOL)
831 #define USB_DEVICE_ID_MATCH_INT_INFO \
832 (USB_DEVICE_ID_MATCH_INT_CLASS | \
833 USB_DEVICE_ID_MATCH_INT_SUBCLASS | \
834 USB_DEVICE_ID_MATCH_INT_PROTOCOL)
835
836 /**
837 * USB_DEVICE - macro used to describe a specific usb device
838 * @vend: the 16 bit USB Vendor ID
839 * @prod: the 16 bit USB Product ID
840 *
841 * This macro is used to create a struct usb_device_id that matches a
842 * specific device.
843 */
844 #define USB_DEVICE(vend, prod) \
845 .match_flags = USB_DEVICE_ID_MATCH_DEVICE, \
846 .idVendor = (vend), \
847 .idProduct = (prod)
848 /**
849 * USB_DEVICE_VER - describe a specific usb device with a version range
850 * @vend: the 16 bit USB Vendor ID
851 * @prod: the 16 bit USB Product ID
852 * @lo: the bcdDevice_lo value
853 * @hi: the bcdDevice_hi value
854 *
855 * This macro is used to create a struct usb_device_id that matches a
856 * specific device, with a version range.
857 */
858 #define USB_DEVICE_VER(vend, prod, lo, hi) \
859 .match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION, \
860 .idVendor = (vend), \
861 .idProduct = (prod), \
862 .bcdDevice_lo = (lo), \
863 .bcdDevice_hi = (hi)
864
865 /**
866 * USB_DEVICE_INTERFACE_CLASS - describe a usb device with a specific interface class
867 * @vend: the 16 bit USB Vendor ID
868 * @prod: the 16 bit USB Product ID
869 * @cl: bInterfaceClass value
870 *
871 * This macro is used to create a struct usb_device_id that matches a
872 * specific interface class of devices.
873 */
874 #define USB_DEVICE_INTERFACE_CLASS(vend, prod, cl) \
875 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
876 USB_DEVICE_ID_MATCH_INT_CLASS, \
877 .idVendor = (vend), \
878 .idProduct = (prod), \
879 .bInterfaceClass = (cl)
880
881 /**
882 * USB_DEVICE_INTERFACE_PROTOCOL - describe a usb device with a specific interface protocol
883 * @vend: the 16 bit USB Vendor ID
884 * @prod: the 16 bit USB Product ID
885 * @pr: bInterfaceProtocol value
886 *
887 * This macro is used to create a struct usb_device_id that matches a
888 * specific interface protocol of devices.
889 */
890 #define USB_DEVICE_INTERFACE_PROTOCOL(vend, prod, pr) \
891 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
892 USB_DEVICE_ID_MATCH_INT_PROTOCOL, \
893 .idVendor = (vend), \
894 .idProduct = (prod), \
895 .bInterfaceProtocol = (pr)
896
897 /**
898 * USB_DEVICE_INTERFACE_NUMBER - describe a usb device with a specific interface number
899 * @vend: the 16 bit USB Vendor ID
900 * @prod: the 16 bit USB Product ID
901 * @num: bInterfaceNumber value
902 *
903 * This macro is used to create a struct usb_device_id that matches a
904 * specific interface number of devices.
905 */
906 #define USB_DEVICE_INTERFACE_NUMBER(vend, prod, num) \
907 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
908 USB_DEVICE_ID_MATCH_INT_NUMBER, \
909 .idVendor = (vend), \
910 .idProduct = (prod), \
911 .bInterfaceNumber = (num)
912
913 /**
914 * USB_DEVICE_INFO - macro used to describe a class of usb devices
915 * @cl: bDeviceClass value
916 * @sc: bDeviceSubClass value
917 * @pr: bDeviceProtocol value
918 *
919 * This macro is used to create a struct usb_device_id that matches a
920 * specific class of devices.
921 */
922 #define USB_DEVICE_INFO(cl, sc, pr) \
923 .match_flags = USB_DEVICE_ID_MATCH_DEV_INFO, \
924 .bDeviceClass = (cl), \
925 .bDeviceSubClass = (sc), \
926 .bDeviceProtocol = (pr)
927
928 /**
929 * USB_INTERFACE_INFO - macro used to describe a class of usb interfaces
930 * @cl: bInterfaceClass value
931 * @sc: bInterfaceSubClass value
932 * @pr: bInterfaceProtocol value
933 *
934 * This macro is used to create a struct usb_device_id that matches a
935 * specific class of interfaces.
936 */
937 #define USB_INTERFACE_INFO(cl, sc, pr) \
938 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO, \
939 .bInterfaceClass = (cl), \
940 .bInterfaceSubClass = (sc), \
941 .bInterfaceProtocol = (pr)
942
943 /**
944 * USB_DEVICE_AND_INTERFACE_INFO - describe a specific usb device with a class of usb interfaces
945 * @vend: the 16 bit USB Vendor ID
946 * @prod: the 16 bit USB Product ID
947 * @cl: bInterfaceClass value
948 * @sc: bInterfaceSubClass value
949 * @pr: bInterfaceProtocol value
950 *
951 * This macro is used to create a struct usb_device_id that matches a
952 * specific device with a specific class of interfaces.
953 *
954 * This is especially useful when explicitly matching devices that have
955 * vendor specific bDeviceClass values, but standards-compliant interfaces.
956 */
957 #define USB_DEVICE_AND_INTERFACE_INFO(vend, prod, cl, sc, pr) \
958 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \
959 | USB_DEVICE_ID_MATCH_DEVICE, \
960 .idVendor = (vend), \
961 .idProduct = (prod), \
962 .bInterfaceClass = (cl), \
963 .bInterfaceSubClass = (sc), \
964 .bInterfaceProtocol = (pr)
965
966 /**
967 * USB_VENDOR_AND_INTERFACE_INFO - describe a specific usb vendor with a class of usb interfaces
968 * @vend: the 16 bit USB Vendor ID
969 * @cl: bInterfaceClass value
970 * @sc: bInterfaceSubClass value
971 * @pr: bInterfaceProtocol value
972 *
973 * This macro is used to create a struct usb_device_id that matches a
974 * specific vendor with a specific class of interfaces.
975 *
976 * This is especially useful when explicitly matching devices that have
977 * vendor specific bDeviceClass values, but standards-compliant interfaces.
978 */
979 #define USB_VENDOR_AND_INTERFACE_INFO(vend, cl, sc, pr) \
980 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \
981 | USB_DEVICE_ID_MATCH_VENDOR, \
982 .idVendor = (vend), \
983 .bInterfaceClass = (cl), \
984 .bInterfaceSubClass = (sc), \
985 .bInterfaceProtocol = (pr)
986
987 /* ----------------------------------------------------------------------- */
988
989 /* Stuff for dynamic usb ids */
990 struct usb_dynids {
991 spinlock_t lock;
992 struct list_head list;
993 };
994
995 struct usb_dynid {
996 struct list_head node;
997 struct usb_device_id id;
998 };
999
1000 extern ssize_t usb_store_new_id(struct usb_dynids *dynids,
1001 const struct usb_device_id *id_table,
1002 struct device_driver *driver,
1003 const char *buf, size_t count);
1004
1005 extern ssize_t usb_show_dynids(struct usb_dynids *dynids, char *buf);
1006
1007 /**
1008 * struct usbdrv_wrap - wrapper for driver-model structure
1009 * @driver: The driver-model core driver structure.
1010 * @for_devices: Non-zero for device drivers, 0 for interface drivers.
1011 */
1012 struct usbdrv_wrap {
1013 struct device_driver driver;
1014 int for_devices;
1015 };
1016
1017 /**
1018 * struct usb_driver - identifies USB interface driver to usbcore
1019 * @name: The driver name should be unique among USB drivers,
1020 * and should normally be the same as the module name.
1021 * @probe: Called to see if the driver is willing to manage a particular
1022 * interface on a device. If it is, probe returns zero and uses
1023 * usb_set_intfdata() to associate driver-specific data with the
1024 * interface. It may also use usb_set_interface() to specify the
1025 * appropriate altsetting. If unwilling to manage the interface,
1026 * return -ENODEV, if genuine IO errors occurred, an appropriate
1027 * negative errno value.
1028 * @disconnect: Called when the interface is no longer accessible, usually
1029 * because its device has been (or is being) disconnected or the
1030 * driver module is being unloaded.
1031 * @unlocked_ioctl: Used for drivers that want to talk to userspace through
1032 * the "usbfs" filesystem. This lets devices provide ways to
1033 * expose information to user space regardless of where they
1034 * do (or don't) show up otherwise in the filesystem.
1035 * @suspend: Called when the device is going to be suspended by the
1036 * system either from system sleep or runtime suspend context. The
1037 * return value will be ignored in system sleep context, so do NOT
1038 * try to continue using the device if suspend fails in this case.
1039 * Instead, let the resume or reset-resume routine recover from
1040 * the failure.
1041 * @resume: Called when the device is being resumed by the system.
1042 * @reset_resume: Called when the suspended device has been reset instead
1043 * of being resumed.
1044 * @pre_reset: Called by usb_reset_device() when the device is about to be
1045 * reset. This routine must not return until the driver has no active
1046 * URBs for the device, and no more URBs may be submitted until the
1047 * post_reset method is called.
1048 * @post_reset: Called by usb_reset_device() after the device
1049 * has been reset
1050 * @id_table: USB drivers use ID table to support hotplugging.
1051 * Export this with MODULE_DEVICE_TABLE(usb,...). This must be set
1052 * or your driver's probe function will never get called.
1053 * @dynids: used internally to hold the list of dynamically added device
1054 * ids for this driver.
1055 * @drvwrap: Driver-model core structure wrapper.
1056 * @no_dynamic_id: if set to 1, the USB core will not allow dynamic ids to be
1057 * added to this driver by preventing the sysfs file from being created.
1058 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
1059 * for interfaces bound to this driver.
1060 * @soft_unbind: if set to 1, the USB core will not kill URBs and disable
1061 * endpoints before calling the driver's disconnect method.
1062 * @disable_hub_initiated_lpm: if set to 1, the USB core will not allow hubs
1063 * to initiate lower power link state transitions when an idle timeout
1064 * occurs. Device-initiated USB 3.0 link PM will still be allowed.
1065 *
1066 * USB interface drivers must provide a name, probe() and disconnect()
1067 * methods, and an id_table. Other driver fields are optional.
1068 *
1069 * The id_table is used in hotplugging. It holds a set of descriptors,
1070 * and specialized data may be associated with each entry. That table
1071 * is used by both user and kernel mode hotplugging support.
1072 *
1073 * The probe() and disconnect() methods are called in a context where
1074 * they can sleep, but they should avoid abusing the privilege. Most
1075 * work to connect to a device should be done when the device is opened,
1076 * and undone at the last close. The disconnect code needs to address
1077 * concurrency issues with respect to open() and close() methods, as
1078 * well as forcing all pending I/O requests to complete (by unlinking
1079 * them as necessary, and blocking until the unlinks complete).
1080 */
1081 struct usb_driver {
1082 const char *name;
1083
1084 int (*probe) (struct usb_interface *intf,
1085 const struct usb_device_id *id);
1086
1087 void (*disconnect) (struct usb_interface *intf);
1088
1089 int (*unlocked_ioctl) (struct usb_interface *intf, unsigned int code,
1090 void *buf);
1091
1092 int (*suspend) (struct usb_interface *intf, pm_message_t message);
1093 int (*resume) (struct usb_interface *intf);
1094 int (*reset_resume)(struct usb_interface *intf);
1095
1096 int (*pre_reset)(struct usb_interface *intf);
1097 int (*post_reset)(struct usb_interface *intf);
1098
1099 const struct usb_device_id *id_table;
1100
1101 struct usb_dynids dynids;
1102 struct usbdrv_wrap drvwrap;
1103 unsigned int no_dynamic_id:1;
1104 unsigned int supports_autosuspend:1;
1105 unsigned int disable_hub_initiated_lpm:1;
1106 unsigned int soft_unbind:1;
1107 };
1108 #define to_usb_driver(d) container_of(d, struct usb_driver, drvwrap.driver)
1109
1110 /**
1111 * struct usb_device_driver - identifies USB device driver to usbcore
1112 * @name: The driver name should be unique among USB drivers,
1113 * and should normally be the same as the module name.
1114 * @probe: Called to see if the driver is willing to manage a particular
1115 * device. If it is, probe returns zero and uses dev_set_drvdata()
1116 * to associate driver-specific data with the device. If unwilling
1117 * to manage the device, return a negative errno value.
1118 * @disconnect: Called when the device is no longer accessible, usually
1119 * because it has been (or is being) disconnected or the driver's
1120 * module is being unloaded.
1121 * @suspend: Called when the device is going to be suspended by the system.
1122 * @resume: Called when the device is being resumed by the system.
1123 * @drvwrap: Driver-model core structure wrapper.
1124 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
1125 * for devices bound to this driver.
1126 *
1127 * USB drivers must provide all the fields listed above except drvwrap.
1128 */
1129 struct usb_device_driver {
1130 const char *name;
1131
1132 int (*probe) (struct usb_device *udev);
1133 void (*disconnect) (struct usb_device *udev);
1134
1135 int (*suspend) (struct usb_device *udev, pm_message_t message);
1136 int (*resume) (struct usb_device *udev, pm_message_t message);
1137 struct usbdrv_wrap drvwrap;
1138 unsigned int supports_autosuspend:1;
1139 };
1140 #define to_usb_device_driver(d) container_of(d, struct usb_device_driver, \
1141 drvwrap.driver)
1142
1143 extern struct bus_type usb_bus_type;
1144
1145 /**
1146 * struct usb_class_driver - identifies a USB driver that wants to use the USB major number
1147 * @name: the usb class device name for this driver. Will show up in sysfs.
1148 * @devnode: Callback to provide a naming hint for a possible
1149 * device node to create.
1150 * @fops: pointer to the struct file_operations of this driver.
1151 * @minor_base: the start of the minor range for this driver.
1152 *
1153 * This structure is used for the usb_register_dev() and
1154 * usb_unregister_dev() functions, to consolidate a number of the
1155 * parameters used for them.
1156 */
1157 struct usb_class_driver {
1158 char *name;
1159 char *(*devnode)(struct device *dev, umode_t *mode);
1160 const struct file_operations *fops;
1161 int minor_base;
1162 };
1163
1164 /*
1165 * use these in module_init()/module_exit()
1166 * and don't forget MODULE_DEVICE_TABLE(usb, ...)
1167 */
1168 extern int usb_register_driver(struct usb_driver *, struct module *,
1169 const char *);
1170
1171 /* use a define to avoid include chaining to get THIS_MODULE & friends */
1172 #define usb_register(driver) \
1173 usb_register_driver(driver, THIS_MODULE, KBUILD_MODNAME)
1174
1175 extern void usb_deregister(struct usb_driver *);
1176
1177 /**
1178 * module_usb_driver() - Helper macro for registering a USB driver
1179 * @__usb_driver: usb_driver struct
1180 *
1181 * Helper macro for USB drivers which do not do anything special in module
1182 * init/exit. This eliminates a lot of boilerplate. Each module may only
1183 * use this macro once, and calling it replaces module_init() and module_exit()
1184 */
1185 #define module_usb_driver(__usb_driver) \
1186 module_driver(__usb_driver, usb_register, \
1187 usb_deregister)
1188
1189 extern int usb_register_device_driver(struct usb_device_driver *,
1190 struct module *);
1191 extern void usb_deregister_device_driver(struct usb_device_driver *);
1192
1193 extern int usb_register_dev(struct usb_interface *intf,
1194 struct usb_class_driver *class_driver);
1195 extern void usb_deregister_dev(struct usb_interface *intf,
1196 struct usb_class_driver *class_driver);
1197
1198 extern int usb_disabled(void);
1199
1200 /* ----------------------------------------------------------------------- */
1201
1202 /*
1203 * URB support, for asynchronous request completions
1204 */
1205
1206 /*
1207 * urb->transfer_flags:
1208 *
1209 * Note: URB_DIR_IN/OUT is automatically set in usb_submit_urb().
1210 */
1211 #define URB_SHORT_NOT_OK 0x0001 /* report short reads as errors */
1212 #define URB_ISO_ASAP 0x0002 /* iso-only; use the first unexpired
1213 * slot in the schedule */
1214 #define URB_NO_TRANSFER_DMA_MAP 0x0004 /* urb->transfer_dma valid on submit */
1215 #define URB_NO_FSBR 0x0020 /* UHCI-specific */
1216 #define URB_ZERO_PACKET 0x0040 /* Finish bulk OUT with short packet */
1217 #define URB_NO_INTERRUPT 0x0080 /* HINT: no non-error interrupt
1218 * needed */
1219 #define URB_FREE_BUFFER 0x0100 /* Free transfer buffer with the URB */
1220
1221 /* The following flags are used internally by usbcore and HCDs */
1222 #define URB_DIR_IN 0x0200 /* Transfer from device to host */
1223 #define URB_DIR_OUT 0
1224 #define URB_DIR_MASK URB_DIR_IN
1225
1226 #define URB_DMA_MAP_SINGLE 0x00010000 /* Non-scatter-gather mapping */
1227 #define URB_DMA_MAP_PAGE 0x00020000 /* HCD-unsupported S-G */
1228 #define URB_DMA_MAP_SG 0x00040000 /* HCD-supported S-G */
1229 #define URB_MAP_LOCAL 0x00080000 /* HCD-local-memory mapping */
1230 #define URB_SETUP_MAP_SINGLE 0x00100000 /* Setup packet DMA mapped */
1231 #define URB_SETUP_MAP_LOCAL 0x00200000 /* HCD-local setup packet */
1232 #define URB_DMA_SG_COMBINED 0x00400000 /* S-G entries were combined */
1233 #define URB_ALIGNED_TEMP_BUFFER 0x00800000 /* Temp buffer was alloc'd */
1234
1235 struct usb_iso_packet_descriptor {
1236 unsigned int offset;
1237 unsigned int length; /* expected length */
1238 unsigned int actual_length;
1239 int status;
1240 };
1241
1242 struct urb;
1243
1244 struct usb_anchor {
1245 struct list_head urb_list;
1246 wait_queue_head_t wait;
1247 spinlock_t lock;
1248 atomic_t suspend_wakeups;
1249 unsigned int poisoned:1;
1250 };
1251
init_usb_anchor(struct usb_anchor * anchor)1252 static inline void init_usb_anchor(struct usb_anchor *anchor)
1253 {
1254 memset(anchor, 0, sizeof(*anchor));
1255 INIT_LIST_HEAD(&anchor->urb_list);
1256 init_waitqueue_head(&anchor->wait);
1257 spin_lock_init(&anchor->lock);
1258 }
1259
1260 typedef void (*usb_complete_t)(struct urb *);
1261
1262 /**
1263 * struct urb - USB Request Block
1264 * @urb_list: For use by current owner of the URB.
1265 * @anchor_list: membership in the list of an anchor
1266 * @anchor: to anchor URBs to a common mooring
1267 * @ep: Points to the endpoint's data structure. Will eventually
1268 * replace @pipe.
1269 * @pipe: Holds endpoint number, direction, type, and more.
1270 * Create these values with the eight macros available;
1271 * usb_{snd,rcv}TYPEpipe(dev,endpoint), where the TYPE is "ctrl"
1272 * (control), "bulk", "int" (interrupt), or "iso" (isochronous).
1273 * For example usb_sndbulkpipe() or usb_rcvintpipe(). Endpoint
1274 * numbers range from zero to fifteen. Note that "in" endpoint two
1275 * is a different endpoint (and pipe) from "out" endpoint two.
1276 * The current configuration controls the existence, type, and
1277 * maximum packet size of any given endpoint.
1278 * @stream_id: the endpoint's stream ID for bulk streams
1279 * @dev: Identifies the USB device to perform the request.
1280 * @status: This is read in non-iso completion functions to get the
1281 * status of the particular request. ISO requests only use it
1282 * to tell whether the URB was unlinked; detailed status for
1283 * each frame is in the fields of the iso_frame-desc.
1284 * @transfer_flags: A variety of flags may be used to affect how URB
1285 * submission, unlinking, or operation are handled. Different
1286 * kinds of URB can use different flags.
1287 * @transfer_buffer: This identifies the buffer to (or from) which the I/O
1288 * request will be performed unless URB_NO_TRANSFER_DMA_MAP is set
1289 * (however, do not leave garbage in transfer_buffer even then).
1290 * This buffer must be suitable for DMA; allocate it with
1291 * kmalloc() or equivalent. For transfers to "in" endpoints, contents
1292 * of this buffer will be modified. This buffer is used for the data
1293 * stage of control transfers.
1294 * @transfer_dma: When transfer_flags includes URB_NO_TRANSFER_DMA_MAP,
1295 * the device driver is saying that it provided this DMA address,
1296 * which the host controller driver should use in preference to the
1297 * transfer_buffer.
1298 * @sg: scatter gather buffer list, the buffer size of each element in
1299 * the list (except the last) must be divisible by the endpoint's
1300 * max packet size if no_sg_constraint isn't set in 'struct usb_bus'
1301 * @num_mapped_sgs: (internal) number of mapped sg entries
1302 * @num_sgs: number of entries in the sg list
1303 * @transfer_buffer_length: How big is transfer_buffer. The transfer may
1304 * be broken up into chunks according to the current maximum packet
1305 * size for the endpoint, which is a function of the configuration
1306 * and is encoded in the pipe. When the length is zero, neither
1307 * transfer_buffer nor transfer_dma is used.
1308 * @actual_length: This is read in non-iso completion functions, and
1309 * it tells how many bytes (out of transfer_buffer_length) were
1310 * transferred. It will normally be the same as requested, unless
1311 * either an error was reported or a short read was performed.
1312 * The URB_SHORT_NOT_OK transfer flag may be used to make such
1313 * short reads be reported as errors.
1314 * @setup_packet: Only used for control transfers, this points to eight bytes
1315 * of setup data. Control transfers always start by sending this data
1316 * to the device. Then transfer_buffer is read or written, if needed.
1317 * @setup_dma: DMA pointer for the setup packet. The caller must not use
1318 * this field; setup_packet must point to a valid buffer.
1319 * @start_frame: Returns the initial frame for isochronous transfers.
1320 * @number_of_packets: Lists the number of ISO transfer buffers.
1321 * @interval: Specifies the polling interval for interrupt or isochronous
1322 * transfers. The units are frames (milliseconds) for full and low
1323 * speed devices, and microframes (1/8 millisecond) for highspeed
1324 * and SuperSpeed devices.
1325 * @error_count: Returns the number of ISO transfers that reported errors.
1326 * @context: For use in completion functions. This normally points to
1327 * request-specific driver context.
1328 * @complete: Completion handler. This URB is passed as the parameter to the
1329 * completion function. The completion function may then do what
1330 * it likes with the URB, including resubmitting or freeing it.
1331 * @iso_frame_desc: Used to provide arrays of ISO transfer buffers and to
1332 * collect the transfer status for each buffer.
1333 *
1334 * This structure identifies USB transfer requests. URBs must be allocated by
1335 * calling usb_alloc_urb() and freed with a call to usb_free_urb().
1336 * Initialization may be done using various usb_fill_*_urb() functions. URBs
1337 * are submitted using usb_submit_urb(), and pending requests may be canceled
1338 * using usb_unlink_urb() or usb_kill_urb().
1339 *
1340 * Data Transfer Buffers:
1341 *
1342 * Normally drivers provide I/O buffers allocated with kmalloc() or otherwise
1343 * taken from the general page pool. That is provided by transfer_buffer
1344 * (control requests also use setup_packet), and host controller drivers
1345 * perform a dma mapping (and unmapping) for each buffer transferred. Those
1346 * mapping operations can be expensive on some platforms (perhaps using a dma
1347 * bounce buffer or talking to an IOMMU),
1348 * although they're cheap on commodity x86 and ppc hardware.
1349 *
1350 * Alternatively, drivers may pass the URB_NO_TRANSFER_DMA_MAP transfer flag,
1351 * which tells the host controller driver that no such mapping is needed for
1352 * the transfer_buffer since
1353 * the device driver is DMA-aware. For example, a device driver might
1354 * allocate a DMA buffer with usb_alloc_coherent() or call usb_buffer_map().
1355 * When this transfer flag is provided, host controller drivers will
1356 * attempt to use the dma address found in the transfer_dma
1357 * field rather than determining a dma address themselves.
1358 *
1359 * Note that transfer_buffer must still be set if the controller
1360 * does not support DMA (as indicated by bus.uses_dma) and when talking
1361 * to root hub. If you have to trasfer between highmem zone and the device
1362 * on such controller, create a bounce buffer or bail out with an error.
1363 * If transfer_buffer cannot be set (is in highmem) and the controller is DMA
1364 * capable, assign NULL to it, so that usbmon knows not to use the value.
1365 * The setup_packet must always be set, so it cannot be located in highmem.
1366 *
1367 * Initialization:
1368 *
1369 * All URBs submitted must initialize the dev, pipe, transfer_flags (may be
1370 * zero), and complete fields. All URBs must also initialize
1371 * transfer_buffer and transfer_buffer_length. They may provide the
1372 * URB_SHORT_NOT_OK transfer flag, indicating that short reads are
1373 * to be treated as errors; that flag is invalid for write requests.
1374 *
1375 * Bulk URBs may
1376 * use the URB_ZERO_PACKET transfer flag, indicating that bulk OUT transfers
1377 * should always terminate with a short packet, even if it means adding an
1378 * extra zero length packet.
1379 *
1380 * Control URBs must provide a valid pointer in the setup_packet field.
1381 * Unlike the transfer_buffer, the setup_packet may not be mapped for DMA
1382 * beforehand.
1383 *
1384 * Interrupt URBs must provide an interval, saying how often (in milliseconds
1385 * or, for highspeed devices, 125 microsecond units)
1386 * to poll for transfers. After the URB has been submitted, the interval
1387 * field reflects how the transfer was actually scheduled.
1388 * The polling interval may be more frequent than requested.
1389 * For example, some controllers have a maximum interval of 32 milliseconds,
1390 * while others support intervals of up to 1024 milliseconds.
1391 * Isochronous URBs also have transfer intervals. (Note that for isochronous
1392 * endpoints, as well as high speed interrupt endpoints, the encoding of
1393 * the transfer interval in the endpoint descriptor is logarithmic.
1394 * Device drivers must convert that value to linear units themselves.)
1395 *
1396 * If an isochronous endpoint queue isn't already running, the host
1397 * controller will schedule a new URB to start as soon as bandwidth
1398 * utilization allows. If the queue is running then a new URB will be
1399 * scheduled to start in the first transfer slot following the end of the
1400 * preceding URB, if that slot has not already expired. If the slot has
1401 * expired (which can happen when IRQ delivery is delayed for a long time),
1402 * the scheduling behavior depends on the URB_ISO_ASAP flag. If the flag
1403 * is clear then the URB will be scheduled to start in the expired slot,
1404 * implying that some of its packets will not be transferred; if the flag
1405 * is set then the URB will be scheduled in the first unexpired slot,
1406 * breaking the queue's synchronization. Upon URB completion, the
1407 * start_frame field will be set to the (micro)frame number in which the
1408 * transfer was scheduled. Ranges for frame counter values are HC-specific
1409 * and can go from as low as 256 to as high as 65536 frames.
1410 *
1411 * Isochronous URBs have a different data transfer model, in part because
1412 * the quality of service is only "best effort". Callers provide specially
1413 * allocated URBs, with number_of_packets worth of iso_frame_desc structures
1414 * at the end. Each such packet is an individual ISO transfer. Isochronous
1415 * URBs are normally queued, submitted by drivers to arrange that
1416 * transfers are at least double buffered, and then explicitly resubmitted
1417 * in completion handlers, so
1418 * that data (such as audio or video) streams at as constant a rate as the
1419 * host controller scheduler can support.
1420 *
1421 * Completion Callbacks:
1422 *
1423 * The completion callback is made in_interrupt(), and one of the first
1424 * things that a completion handler should do is check the status field.
1425 * The status field is provided for all URBs. It is used to report
1426 * unlinked URBs, and status for all non-ISO transfers. It should not
1427 * be examined before the URB is returned to the completion handler.
1428 *
1429 * The context field is normally used to link URBs back to the relevant
1430 * driver or request state.
1431 *
1432 * When the completion callback is invoked for non-isochronous URBs, the
1433 * actual_length field tells how many bytes were transferred. This field
1434 * is updated even when the URB terminated with an error or was unlinked.
1435 *
1436 * ISO transfer status is reported in the status and actual_length fields
1437 * of the iso_frame_desc array, and the number of errors is reported in
1438 * error_count. Completion callbacks for ISO transfers will normally
1439 * (re)submit URBs to ensure a constant transfer rate.
1440 *
1441 * Note that even fields marked "public" should not be touched by the driver
1442 * when the urb is owned by the hcd, that is, since the call to
1443 * usb_submit_urb() till the entry into the completion routine.
1444 */
1445 struct urb {
1446 /* private: usb core and host controller only fields in the urb */
1447 struct kref kref; /* reference count of the URB */
1448 void *hcpriv; /* private data for host controller */
1449 atomic_t use_count; /* concurrent submissions counter */
1450 atomic_t reject; /* submissions will fail */
1451 int unlinked; /* unlink error code */
1452
1453 /* public: documented fields in the urb that can be used by drivers */
1454 struct list_head urb_list; /* list head for use by the urb's
1455 * current owner */
1456 struct list_head anchor_list; /* the URB may be anchored */
1457 struct usb_anchor *anchor;
1458 struct usb_device *dev; /* (in) pointer to associated device */
1459 struct usb_host_endpoint *ep; /* (internal) pointer to endpoint */
1460 unsigned int pipe; /* (in) pipe information */
1461 unsigned int stream_id; /* (in) stream ID */
1462 int status; /* (return) non-ISO status */
1463 unsigned int transfer_flags; /* (in) URB_SHORT_NOT_OK | ...*/
1464 void *transfer_buffer; /* (in) associated data buffer */
1465 dma_addr_t transfer_dma; /* (in) dma addr for transfer_buffer */
1466 struct scatterlist *sg; /* (in) scatter gather buffer list */
1467 int num_mapped_sgs; /* (internal) mapped sg entries */
1468 int num_sgs; /* (in) number of entries in the sg list */
1469 u32 transfer_buffer_length; /* (in) data buffer length */
1470 u32 actual_length; /* (return) actual transfer length */
1471 unsigned char *setup_packet; /* (in) setup packet (control only) */
1472 dma_addr_t setup_dma; /* (in) dma addr for setup_packet */
1473 int start_frame; /* (modify) start frame (ISO) */
1474 int number_of_packets; /* (in) number of ISO packets */
1475 int interval; /* (modify) transfer interval
1476 * (INT/ISO) */
1477 int error_count; /* (return) number of ISO errors */
1478 void *context; /* (in) context for completion */
1479 usb_complete_t complete; /* (in) completion routine */
1480 struct usb_iso_packet_descriptor iso_frame_desc[0];
1481 /* (in) ISO ONLY */
1482 };
1483
1484 /* ----------------------------------------------------------------------- */
1485
1486 /**
1487 * usb_fill_control_urb - initializes a control urb
1488 * @urb: pointer to the urb to initialize.
1489 * @dev: pointer to the struct usb_device for this urb.
1490 * @pipe: the endpoint pipe
1491 * @setup_packet: pointer to the setup_packet buffer
1492 * @transfer_buffer: pointer to the transfer buffer
1493 * @buffer_length: length of the transfer buffer
1494 * @complete_fn: pointer to the usb_complete_t function
1495 * @context: what to set the urb context to.
1496 *
1497 * Initializes a control urb with the proper information needed to submit
1498 * it to a device.
1499 */
usb_fill_control_urb(struct urb * urb,struct usb_device * dev,unsigned int pipe,unsigned char * setup_packet,void * transfer_buffer,int buffer_length,usb_complete_t complete_fn,void * context)1500 static inline void usb_fill_control_urb(struct urb *urb,
1501 struct usb_device *dev,
1502 unsigned int pipe,
1503 unsigned char *setup_packet,
1504 void *transfer_buffer,
1505 int buffer_length,
1506 usb_complete_t complete_fn,
1507 void *context)
1508 {
1509 urb->dev = dev;
1510 urb->pipe = pipe;
1511 urb->setup_packet = setup_packet;
1512 urb->transfer_buffer = transfer_buffer;
1513 urb->transfer_buffer_length = buffer_length;
1514 urb->complete = complete_fn;
1515 urb->context = context;
1516 }
1517
1518 /**
1519 * usb_fill_bulk_urb - macro to help initialize a bulk urb
1520 * @urb: pointer to the urb to initialize.
1521 * @dev: pointer to the struct usb_device for this urb.
1522 * @pipe: the endpoint pipe
1523 * @transfer_buffer: pointer to the transfer buffer
1524 * @buffer_length: length of the transfer buffer
1525 * @complete_fn: pointer to the usb_complete_t function
1526 * @context: what to set the urb context to.
1527 *
1528 * Initializes a bulk urb with the proper information needed to submit it
1529 * to a device.
1530 */
usb_fill_bulk_urb(struct urb * urb,struct usb_device * dev,unsigned int pipe,void * transfer_buffer,int buffer_length,usb_complete_t complete_fn,void * context)1531 static inline void usb_fill_bulk_urb(struct urb *urb,
1532 struct usb_device *dev,
1533 unsigned int pipe,
1534 void *transfer_buffer,
1535 int buffer_length,
1536 usb_complete_t complete_fn,
1537 void *context)
1538 {
1539 urb->dev = dev;
1540 urb->pipe = pipe;
1541 urb->transfer_buffer = transfer_buffer;
1542 urb->transfer_buffer_length = buffer_length;
1543 urb->complete = complete_fn;
1544 urb->context = context;
1545 }
1546
1547 /**
1548 * usb_fill_int_urb - macro to help initialize a interrupt urb
1549 * @urb: pointer to the urb to initialize.
1550 * @dev: pointer to the struct usb_device for this urb.
1551 * @pipe: the endpoint pipe
1552 * @transfer_buffer: pointer to the transfer buffer
1553 * @buffer_length: length of the transfer buffer
1554 * @complete_fn: pointer to the usb_complete_t function
1555 * @context: what to set the urb context to.
1556 * @interval: what to set the urb interval to, encoded like
1557 * the endpoint descriptor's bInterval value.
1558 *
1559 * Initializes a interrupt urb with the proper information needed to submit
1560 * it to a device.
1561 *
1562 * Note that High Speed and SuperSpeed interrupt endpoints use a logarithmic
1563 * encoding of the endpoint interval, and express polling intervals in
1564 * microframes (eight per millisecond) rather than in frames (one per
1565 * millisecond).
1566 *
1567 * Wireless USB also uses the logarithmic encoding, but specifies it in units of
1568 * 128us instead of 125us. For Wireless USB devices, the interval is passed
1569 * through to the host controller, rather than being translated into microframe
1570 * units.
1571 */
usb_fill_int_urb(struct urb * urb,struct usb_device * dev,unsigned int pipe,void * transfer_buffer,int buffer_length,usb_complete_t complete_fn,void * context,int interval)1572 static inline void usb_fill_int_urb(struct urb *urb,
1573 struct usb_device *dev,
1574 unsigned int pipe,
1575 void *transfer_buffer,
1576 int buffer_length,
1577 usb_complete_t complete_fn,
1578 void *context,
1579 int interval)
1580 {
1581 urb->dev = dev;
1582 urb->pipe = pipe;
1583 urb->transfer_buffer = transfer_buffer;
1584 urb->transfer_buffer_length = buffer_length;
1585 urb->complete = complete_fn;
1586 urb->context = context;
1587
1588 if (dev->speed == USB_SPEED_HIGH || dev->speed == USB_SPEED_SUPER) {
1589 /* make sure interval is within allowed range */
1590 interval = clamp(interval, 1, 16);
1591
1592 urb->interval = 1 << (interval - 1);
1593 } else {
1594 urb->interval = interval;
1595 }
1596
1597 urb->start_frame = -1;
1598 }
1599
1600 extern void usb_init_urb(struct urb *urb);
1601 extern struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags);
1602 extern void usb_free_urb(struct urb *urb);
1603 #define usb_put_urb usb_free_urb
1604 extern struct urb *usb_get_urb(struct urb *urb);
1605 extern int usb_submit_urb(struct urb *urb, gfp_t mem_flags);
1606 extern int usb_unlink_urb(struct urb *urb);
1607 extern void usb_kill_urb(struct urb *urb);
1608 extern void usb_poison_urb(struct urb *urb);
1609 extern void usb_unpoison_urb(struct urb *urb);
1610 extern void usb_block_urb(struct urb *urb);
1611 extern void usb_kill_anchored_urbs(struct usb_anchor *anchor);
1612 extern void usb_poison_anchored_urbs(struct usb_anchor *anchor);
1613 extern void usb_unpoison_anchored_urbs(struct usb_anchor *anchor);
1614 extern void usb_unlink_anchored_urbs(struct usb_anchor *anchor);
1615 extern void usb_anchor_suspend_wakeups(struct usb_anchor *anchor);
1616 extern void usb_anchor_resume_wakeups(struct usb_anchor *anchor);
1617 extern void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor);
1618 extern void usb_unanchor_urb(struct urb *urb);
1619 extern int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor,
1620 unsigned int timeout);
1621 extern struct urb *usb_get_from_anchor(struct usb_anchor *anchor);
1622 extern void usb_scuttle_anchored_urbs(struct usb_anchor *anchor);
1623 extern int usb_anchor_empty(struct usb_anchor *anchor);
1624
1625 #define usb_unblock_urb usb_unpoison_urb
1626
1627 /**
1628 * usb_urb_dir_in - check if an URB describes an IN transfer
1629 * @urb: URB to be checked
1630 *
1631 * Return: 1 if @urb describes an IN transfer (device-to-host),
1632 * otherwise 0.
1633 */
usb_urb_dir_in(struct urb * urb)1634 static inline int usb_urb_dir_in(struct urb *urb)
1635 {
1636 return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_IN;
1637 }
1638
1639 /**
1640 * usb_urb_dir_out - check if an URB describes an OUT transfer
1641 * @urb: URB to be checked
1642 *
1643 * Return: 1 if @urb describes an OUT transfer (host-to-device),
1644 * otherwise 0.
1645 */
usb_urb_dir_out(struct urb * urb)1646 static inline int usb_urb_dir_out(struct urb *urb)
1647 {
1648 return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_OUT;
1649 }
1650
1651 void *usb_alloc_coherent(struct usb_device *dev, size_t size,
1652 gfp_t mem_flags, dma_addr_t *dma);
1653 void usb_free_coherent(struct usb_device *dev, size_t size,
1654 void *addr, dma_addr_t dma);
1655
1656 #if 0
1657 struct urb *usb_buffer_map(struct urb *urb);
1658 void usb_buffer_dmasync(struct urb *urb);
1659 void usb_buffer_unmap(struct urb *urb);
1660 #endif
1661
1662 struct scatterlist;
1663 int usb_buffer_map_sg(const struct usb_device *dev, int is_in,
1664 struct scatterlist *sg, int nents);
1665 #if 0
1666 void usb_buffer_dmasync_sg(const struct usb_device *dev, int is_in,
1667 struct scatterlist *sg, int n_hw_ents);
1668 #endif
1669 void usb_buffer_unmap_sg(const struct usb_device *dev, int is_in,
1670 struct scatterlist *sg, int n_hw_ents);
1671
1672 /*-------------------------------------------------------------------*
1673 * SYNCHRONOUS CALL SUPPORT *
1674 *-------------------------------------------------------------------*/
1675
1676 extern int usb_control_msg(struct usb_device *dev, unsigned int pipe,
1677 __u8 request, __u8 requesttype, __u16 value, __u16 index,
1678 void *data, __u16 size, int timeout);
1679 extern int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
1680 void *data, int len, int *actual_length, int timeout);
1681 extern int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
1682 void *data, int len, int *actual_length,
1683 int timeout);
1684
1685 /* wrappers around usb_control_msg() for the most common standard requests */
1686 extern int usb_get_descriptor(struct usb_device *dev, unsigned char desctype,
1687 unsigned char descindex, void *buf, int size);
1688 extern int usb_get_status(struct usb_device *dev,
1689 int type, int target, void *data);
1690 extern int usb_string(struct usb_device *dev, int index,
1691 char *buf, size_t size);
1692
1693 /* wrappers that also update important state inside usbcore */
1694 extern int usb_clear_halt(struct usb_device *dev, int pipe);
1695 extern int usb_reset_configuration(struct usb_device *dev);
1696 extern int usb_set_interface(struct usb_device *dev, int ifnum, int alternate);
1697 extern void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr);
1698
1699 /* this request isn't really synchronous, but it belongs with the others */
1700 extern int usb_driver_set_configuration(struct usb_device *udev, int config);
1701
1702 /* choose and set configuration for device */
1703 extern int usb_choose_configuration(struct usb_device *udev);
1704 extern int usb_set_configuration(struct usb_device *dev, int configuration);
1705
1706 /*
1707 * timeouts, in milliseconds, used for sending/receiving control messages
1708 * they typically complete within a few frames (msec) after they're issued
1709 * USB identifies 5 second timeouts, maybe more in a few cases, and a few
1710 * slow devices (like some MGE Ellipse UPSes) actually push that limit.
1711 */
1712 #define USB_CTRL_GET_TIMEOUT 5000
1713 #define USB_CTRL_SET_TIMEOUT 5000
1714
1715
1716 /**
1717 * struct usb_sg_request - support for scatter/gather I/O
1718 * @status: zero indicates success, else negative errno
1719 * @bytes: counts bytes transferred.
1720 *
1721 * These requests are initialized using usb_sg_init(), and then are used
1722 * as request handles passed to usb_sg_wait() or usb_sg_cancel(). Most
1723 * members of the request object aren't for driver access.
1724 *
1725 * The status and bytecount values are valid only after usb_sg_wait()
1726 * returns. If the status is zero, then the bytecount matches the total
1727 * from the request.
1728 *
1729 * After an error completion, drivers may need to clear a halt condition
1730 * on the endpoint.
1731 */
1732 struct usb_sg_request {
1733 int status;
1734 size_t bytes;
1735
1736 /* private:
1737 * members below are private to usbcore,
1738 * and are not provided for driver access!
1739 */
1740 spinlock_t lock;
1741
1742 struct usb_device *dev;
1743 int pipe;
1744
1745 int entries;
1746 struct urb **urbs;
1747
1748 int count;
1749 struct completion complete;
1750 };
1751
1752 int usb_sg_init(
1753 struct usb_sg_request *io,
1754 struct usb_device *dev,
1755 unsigned pipe,
1756 unsigned period,
1757 struct scatterlist *sg,
1758 int nents,
1759 size_t length,
1760 gfp_t mem_flags
1761 );
1762 void usb_sg_cancel(struct usb_sg_request *io);
1763 void usb_sg_wait(struct usb_sg_request *io);
1764
1765
1766 /* ----------------------------------------------------------------------- */
1767
1768 /*
1769 * For various legacy reasons, Linux has a small cookie that's paired with
1770 * a struct usb_device to identify an endpoint queue. Queue characteristics
1771 * are defined by the endpoint's descriptor. This cookie is called a "pipe",
1772 * an unsigned int encoded as:
1773 *
1774 * - direction: bit 7 (0 = Host-to-Device [Out],
1775 * 1 = Device-to-Host [In] ...
1776 * like endpoint bEndpointAddress)
1777 * - device address: bits 8-14 ... bit positions known to uhci-hcd
1778 * - endpoint: bits 15-18 ... bit positions known to uhci-hcd
1779 * - pipe type: bits 30-31 (00 = isochronous, 01 = interrupt,
1780 * 10 = control, 11 = bulk)
1781 *
1782 * Given the device address and endpoint descriptor, pipes are redundant.
1783 */
1784
1785 /* NOTE: these are not the standard USB_ENDPOINT_XFER_* values!! */
1786 /* (yet ... they're the values used by usbfs) */
1787 #define PIPE_ISOCHRONOUS 0
1788 #define PIPE_INTERRUPT 1
1789 #define PIPE_CONTROL 2
1790 #define PIPE_BULK 3
1791
1792 #define usb_pipein(pipe) ((pipe) & USB_DIR_IN)
1793 #define usb_pipeout(pipe) (!usb_pipein(pipe))
1794
1795 #define usb_pipedevice(pipe) (((pipe) >> 8) & 0x7f)
1796 #define usb_pipeendpoint(pipe) (((pipe) >> 15) & 0xf)
1797
1798 #define usb_pipetype(pipe) (((pipe) >> 30) & 3)
1799 #define usb_pipeisoc(pipe) (usb_pipetype((pipe)) == PIPE_ISOCHRONOUS)
1800 #define usb_pipeint(pipe) (usb_pipetype((pipe)) == PIPE_INTERRUPT)
1801 #define usb_pipecontrol(pipe) (usb_pipetype((pipe)) == PIPE_CONTROL)
1802 #define usb_pipebulk(pipe) (usb_pipetype((pipe)) == PIPE_BULK)
1803
__create_pipe(struct usb_device * dev,unsigned int endpoint)1804 static inline unsigned int __create_pipe(struct usb_device *dev,
1805 unsigned int endpoint)
1806 {
1807 return (dev->devnum << 8) | (endpoint << 15);
1808 }
1809
1810 /* Create various pipes... */
1811 #define usb_sndctrlpipe(dev, endpoint) \
1812 ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint))
1813 #define usb_rcvctrlpipe(dev, endpoint) \
1814 ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1815 #define usb_sndisocpipe(dev, endpoint) \
1816 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint))
1817 #define usb_rcvisocpipe(dev, endpoint) \
1818 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1819 #define usb_sndbulkpipe(dev, endpoint) \
1820 ((PIPE_BULK << 30) | __create_pipe(dev, endpoint))
1821 #define usb_rcvbulkpipe(dev, endpoint) \
1822 ((PIPE_BULK << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1823 #define usb_sndintpipe(dev, endpoint) \
1824 ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint))
1825 #define usb_rcvintpipe(dev, endpoint) \
1826 ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1827
1828 static inline struct usb_host_endpoint *
usb_pipe_endpoint(struct usb_device * dev,unsigned int pipe)1829 usb_pipe_endpoint(struct usb_device *dev, unsigned int pipe)
1830 {
1831 struct usb_host_endpoint **eps;
1832 eps = usb_pipein(pipe) ? dev->ep_in : dev->ep_out;
1833 return eps[usb_pipeendpoint(pipe)];
1834 }
1835
1836 /*-------------------------------------------------------------------------*/
1837
1838 static inline __u16
usb_maxpacket(struct usb_device * udev,int pipe,int is_out)1839 usb_maxpacket(struct usb_device *udev, int pipe, int is_out)
1840 {
1841 struct usb_host_endpoint *ep;
1842 unsigned epnum = usb_pipeendpoint(pipe);
1843
1844 if (is_out) {
1845 WARN_ON(usb_pipein(pipe));
1846 ep = udev->ep_out[epnum];
1847 } else {
1848 WARN_ON(usb_pipeout(pipe));
1849 ep = udev->ep_in[epnum];
1850 }
1851 if (!ep)
1852 return 0;
1853
1854 /* NOTE: only 0x07ff bits are for packet size... */
1855 return usb_endpoint_maxp(&ep->desc);
1856 }
1857
1858 /* ----------------------------------------------------------------------- */
1859
1860 /* translate USB error codes to codes user space understands */
usb_translate_errors(int error_code)1861 static inline int usb_translate_errors(int error_code)
1862 {
1863 switch (error_code) {
1864 case 0:
1865 case -ENOMEM:
1866 case -ENODEV:
1867 case -EOPNOTSUPP:
1868 return error_code;
1869 default:
1870 return -EIO;
1871 }
1872 }
1873
1874 /* Events from the usb core */
1875 #define USB_DEVICE_ADD 0x0001
1876 #define USB_DEVICE_REMOVE 0x0002
1877 #define USB_BUS_ADD 0x0003
1878 #define USB_BUS_REMOVE 0x0004
1879 extern void usb_register_notify(struct notifier_block *nb);
1880 extern void usb_unregister_notify(struct notifier_block *nb);
1881
1882 /* debugfs stuff */
1883 extern struct dentry *usb_debug_root;
1884
1885 /* LED triggers */
1886 enum usb_led_event {
1887 USB_LED_EVENT_HOST = 0,
1888 USB_LED_EVENT_GADGET = 1,
1889 };
1890
1891 #ifdef CONFIG_USB_LED_TRIG
1892 extern void usb_led_activity(enum usb_led_event ev);
1893 #else
usb_led_activity(enum usb_led_event ev)1894 static inline void usb_led_activity(enum usb_led_event ev) {}
1895 #endif
1896
1897 #endif /* __KERNEL__ */
1898
1899 #endif
1900