1 /*
2  * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms of the GNU General Public License as published by the Free
6  * Software Foundation; either version 2 of the License, or (at your option)
7  * any later version.
8  *
9  * This program is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  * The full GNU General Public License is included in this distribution in the
15  * file called COPYING.
16  */
17 #ifndef LINUX_DMAENGINE_H
18 #define LINUX_DMAENGINE_H
19 
20 #include <linux/device.h>
21 #include <linux/err.h>
22 #include <linux/uio.h>
23 #include <linux/bug.h>
24 #include <linux/scatterlist.h>
25 #include <linux/bitmap.h>
26 #include <linux/types.h>
27 #include <asm/page.h>
28 
29 /**
30  * typedef dma_cookie_t - an opaque DMA cookie
31  *
32  * if dma_cookie_t is >0 it's a DMA request cookie, <0 it's an error code
33  */
34 typedef s32 dma_cookie_t;
35 #define DMA_MIN_COOKIE	1
36 
dma_submit_error(dma_cookie_t cookie)37 static inline int dma_submit_error(dma_cookie_t cookie)
38 {
39 	return cookie < 0 ? cookie : 0;
40 }
41 
42 /**
43  * enum dma_status - DMA transaction status
44  * @DMA_COMPLETE: transaction completed
45  * @DMA_IN_PROGRESS: transaction not yet processed
46  * @DMA_PAUSED: transaction is paused
47  * @DMA_ERROR: transaction failed
48  */
49 enum dma_status {
50 	DMA_COMPLETE,
51 	DMA_IN_PROGRESS,
52 	DMA_PAUSED,
53 	DMA_ERROR,
54 };
55 
56 /**
57  * enum dma_transaction_type - DMA transaction types/indexes
58  *
59  * Note: The DMA_ASYNC_TX capability is not to be set by drivers.  It is
60  * automatically set as dma devices are registered.
61  */
62 enum dma_transaction_type {
63 	DMA_MEMCPY,
64 	DMA_XOR,
65 	DMA_PQ,
66 	DMA_XOR_VAL,
67 	DMA_PQ_VAL,
68 	DMA_INTERRUPT,
69 	DMA_SG,
70 	DMA_PRIVATE,
71 	DMA_ASYNC_TX,
72 	DMA_SLAVE,
73 	DMA_CYCLIC,
74 	DMA_INTERLEAVE,
75 /* last transaction type for creation of the capabilities mask */
76 	DMA_TX_TYPE_END,
77 };
78 
79 /**
80  * enum dma_transfer_direction - dma transfer mode and direction indicator
81  * @DMA_MEM_TO_MEM: Async/Memcpy mode
82  * @DMA_MEM_TO_DEV: Slave mode & From Memory to Device
83  * @DMA_DEV_TO_MEM: Slave mode & From Device to Memory
84  * @DMA_DEV_TO_DEV: Slave mode & From Device to Device
85  */
86 enum dma_transfer_direction {
87 	DMA_MEM_TO_MEM,
88 	DMA_MEM_TO_DEV,
89 	DMA_DEV_TO_MEM,
90 	DMA_DEV_TO_DEV,
91 	DMA_TRANS_NONE,
92 };
93 
94 /**
95  * Interleaved Transfer Request
96  * ----------------------------
97  * A chunk is collection of contiguous bytes to be transfered.
98  * The gap(in bytes) between two chunks is called inter-chunk-gap(ICG).
99  * ICGs may or maynot change between chunks.
100  * A FRAME is the smallest series of contiguous {chunk,icg} pairs,
101  *  that when repeated an integral number of times, specifies the transfer.
102  * A transfer template is specification of a Frame, the number of times
103  *  it is to be repeated and other per-transfer attributes.
104  *
105  * Practically, a client driver would have ready a template for each
106  *  type of transfer it is going to need during its lifetime and
107  *  set only 'src_start' and 'dst_start' before submitting the requests.
108  *
109  *
110  *  |      Frame-1        |       Frame-2       | ~ |       Frame-'numf'  |
111  *  |====....==.===...=...|====....==.===...=...| ~ |====....==.===...=...|
112  *
113  *    ==  Chunk size
114  *    ... ICG
115  */
116 
117 /**
118  * struct data_chunk - Element of scatter-gather list that makes a frame.
119  * @size: Number of bytes to read from source.
120  *	  size_dst := fn(op, size_src), so doesn't mean much for destination.
121  * @icg: Number of bytes to jump after last src/dst address of this
122  *	 chunk and before first src/dst address for next chunk.
123  *	 Ignored for dst(assumed 0), if dst_inc is true and dst_sgl is false.
124  *	 Ignored for src(assumed 0), if src_inc is true and src_sgl is false.
125  */
126 struct data_chunk {
127 	size_t size;
128 	size_t icg;
129 };
130 
131 /**
132  * struct dma_interleaved_template - Template to convey DMAC the transfer pattern
133  *	 and attributes.
134  * @src_start: Bus address of source for the first chunk.
135  * @dst_start: Bus address of destination for the first chunk.
136  * @dir: Specifies the type of Source and Destination.
137  * @src_inc: If the source address increments after reading from it.
138  * @dst_inc: If the destination address increments after writing to it.
139  * @src_sgl: If the 'icg' of sgl[] applies to Source (scattered read).
140  *		Otherwise, source is read contiguously (icg ignored).
141  *		Ignored if src_inc is false.
142  * @dst_sgl: If the 'icg' of sgl[] applies to Destination (scattered write).
143  *		Otherwise, destination is filled contiguously (icg ignored).
144  *		Ignored if dst_inc is false.
145  * @numf: Number of frames in this template.
146  * @frame_size: Number of chunks in a frame i.e, size of sgl[].
147  * @sgl: Array of {chunk,icg} pairs that make up a frame.
148  */
149 struct dma_interleaved_template {
150 	dma_addr_t src_start;
151 	dma_addr_t dst_start;
152 	enum dma_transfer_direction dir;
153 	bool src_inc;
154 	bool dst_inc;
155 	bool src_sgl;
156 	bool dst_sgl;
157 	size_t numf;
158 	size_t frame_size;
159 	struct data_chunk sgl[0];
160 };
161 
162 /**
163  * enum dma_ctrl_flags - DMA flags to augment operation preparation,
164  *  control completion, and communicate status.
165  * @DMA_PREP_INTERRUPT - trigger an interrupt (callback) upon completion of
166  *  this transaction
167  * @DMA_CTRL_ACK - if clear, the descriptor cannot be reused until the client
168  *  acknowledges receipt, i.e. has has a chance to establish any dependency
169  *  chains
170  * @DMA_PREP_PQ_DISABLE_P - prevent generation of P while generating Q
171  * @DMA_PREP_PQ_DISABLE_Q - prevent generation of Q while generating P
172  * @DMA_PREP_CONTINUE - indicate to a driver that it is reusing buffers as
173  *  sources that were the result of a previous operation, in the case of a PQ
174  *  operation it continues the calculation with new sources
175  * @DMA_PREP_FENCE - tell the driver that subsequent operations depend
176  *  on the result of this operation
177  */
178 enum dma_ctrl_flags {
179 	DMA_PREP_INTERRUPT = (1 << 0),
180 	DMA_CTRL_ACK = (1 << 1),
181 	DMA_PREP_PQ_DISABLE_P = (1 << 2),
182 	DMA_PREP_PQ_DISABLE_Q = (1 << 3),
183 	DMA_PREP_CONTINUE = (1 << 4),
184 	DMA_PREP_FENCE = (1 << 5),
185 };
186 
187 /**
188  * enum sum_check_bits - bit position of pq_check_flags
189  */
190 enum sum_check_bits {
191 	SUM_CHECK_P = 0,
192 	SUM_CHECK_Q = 1,
193 };
194 
195 /**
196  * enum pq_check_flags - result of async_{xor,pq}_zero_sum operations
197  * @SUM_CHECK_P_RESULT - 1 if xor zero sum error, 0 otherwise
198  * @SUM_CHECK_Q_RESULT - 1 if reed-solomon zero sum error, 0 otherwise
199  */
200 enum sum_check_flags {
201 	SUM_CHECK_P_RESULT = (1 << SUM_CHECK_P),
202 	SUM_CHECK_Q_RESULT = (1 << SUM_CHECK_Q),
203 };
204 
205 
206 /**
207  * dma_cap_mask_t - capabilities bitmap modeled after cpumask_t.
208  * See linux/cpumask.h
209  */
210 typedef struct { DECLARE_BITMAP(bits, DMA_TX_TYPE_END); } dma_cap_mask_t;
211 
212 /**
213  * struct dma_chan_percpu - the per-CPU part of struct dma_chan
214  * @memcpy_count: transaction counter
215  * @bytes_transferred: byte counter
216  */
217 
218 struct dma_chan_percpu {
219 	/* stats */
220 	unsigned long memcpy_count;
221 	unsigned long bytes_transferred;
222 };
223 
224 /**
225  * struct dma_chan - devices supply DMA channels, clients use them
226  * @device: ptr to the dma device who supplies this channel, always !%NULL
227  * @cookie: last cookie value returned to client
228  * @completed_cookie: last completed cookie for this channel
229  * @chan_id: channel ID for sysfs
230  * @dev: class device for sysfs
231  * @device_node: used to add this to the device chan list
232  * @local: per-cpu pointer to a struct dma_chan_percpu
233  * @client_count: how many clients are using this channel
234  * @table_count: number of appearances in the mem-to-mem allocation table
235  * @private: private data for certain client-channel associations
236  */
237 struct dma_chan {
238 	struct dma_device *device;
239 	dma_cookie_t cookie;
240 	dma_cookie_t completed_cookie;
241 
242 	/* sysfs */
243 	int chan_id;
244 	struct dma_chan_dev *dev;
245 
246 	struct list_head device_node;
247 	struct dma_chan_percpu __percpu *local;
248 	int client_count;
249 	int table_count;
250 	void *private;
251 };
252 
253 /**
254  * struct dma_chan_dev - relate sysfs device node to backing channel device
255  * @chan: driver channel device
256  * @device: sysfs device
257  * @dev_id: parent dma_device dev_id
258  * @idr_ref: reference count to gate release of dma_device dev_id
259  */
260 struct dma_chan_dev {
261 	struct dma_chan *chan;
262 	struct device device;
263 	int dev_id;
264 	atomic_t *idr_ref;
265 };
266 
267 /**
268  * enum dma_slave_buswidth - defines bus width of the DMA slave
269  * device, source or target buses
270  */
271 enum dma_slave_buswidth {
272 	DMA_SLAVE_BUSWIDTH_UNDEFINED = 0,
273 	DMA_SLAVE_BUSWIDTH_1_BYTE = 1,
274 	DMA_SLAVE_BUSWIDTH_2_BYTES = 2,
275 	DMA_SLAVE_BUSWIDTH_3_BYTES = 3,
276 	DMA_SLAVE_BUSWIDTH_4_BYTES = 4,
277 	DMA_SLAVE_BUSWIDTH_8_BYTES = 8,
278 	DMA_SLAVE_BUSWIDTH_16_BYTES = 16,
279 	DMA_SLAVE_BUSWIDTH_32_BYTES = 32,
280 	DMA_SLAVE_BUSWIDTH_64_BYTES = 64,
281 };
282 
283 /**
284  * struct dma_slave_config - dma slave channel runtime config
285  * @direction: whether the data shall go in or out on this slave
286  * channel, right now. DMA_MEM_TO_DEV and DMA_DEV_TO_MEM are
287  * legal values. DEPRECATED, drivers should use the direction argument
288  * to the device_prep_slave_sg and device_prep_dma_cyclic functions or
289  * the dir field in the dma_interleaved_template structure.
290  * @src_addr: this is the physical address where DMA slave data
291  * should be read (RX), if the source is memory this argument is
292  * ignored.
293  * @dst_addr: this is the physical address where DMA slave data
294  * should be written (TX), if the source is memory this argument
295  * is ignored.
296  * @src_addr_width: this is the width in bytes of the source (RX)
297  * register where DMA data shall be read. If the source
298  * is memory this may be ignored depending on architecture.
299  * Legal values: 1, 2, 4, 8.
300  * @dst_addr_width: same as src_addr_width but for destination
301  * target (TX) mutatis mutandis.
302  * @src_maxburst: the maximum number of words (note: words, as in
303  * units of the src_addr_width member, not bytes) that can be sent
304  * in one burst to the device. Typically something like half the
305  * FIFO depth on I/O peripherals so you don't overflow it. This
306  * may or may not be applicable on memory sources.
307  * @dst_maxburst: same as src_maxburst but for destination target
308  * mutatis mutandis.
309  * @device_fc: Flow Controller Settings. Only valid for slave channels. Fill
310  * with 'true' if peripheral should be flow controller. Direction will be
311  * selected at Runtime.
312  * @slave_id: Slave requester id. Only valid for slave channels. The dma
313  * slave peripheral will have unique id as dma requester which need to be
314  * pass as slave config.
315  *
316  * This struct is passed in as configuration data to a DMA engine
317  * in order to set up a certain channel for DMA transport at runtime.
318  * The DMA device/engine has to provide support for an additional
319  * callback in the dma_device structure, device_config and this struct
320  * will then be passed in as an argument to the function.
321  *
322  * The rationale for adding configuration information to this struct is as
323  * follows: if it is likely that more than one DMA slave controllers in
324  * the world will support the configuration option, then make it generic.
325  * If not: if it is fixed so that it be sent in static from the platform
326  * data, then prefer to do that.
327  */
328 struct dma_slave_config {
329 	enum dma_transfer_direction direction;
330 	dma_addr_t src_addr;
331 	dma_addr_t dst_addr;
332 	enum dma_slave_buswidth src_addr_width;
333 	enum dma_slave_buswidth dst_addr_width;
334 	u32 src_maxburst;
335 	u32 dst_maxburst;
336 	bool device_fc;
337 	unsigned int slave_id;
338 };
339 
340 /**
341  * enum dma_residue_granularity - Granularity of the reported transfer residue
342  * @DMA_RESIDUE_GRANULARITY_DESCRIPTOR: Residue reporting is not support. The
343  *  DMA channel is only able to tell whether a descriptor has been completed or
344  *  not, which means residue reporting is not supported by this channel. The
345  *  residue field of the dma_tx_state field will always be 0.
346  * @DMA_RESIDUE_GRANULARITY_SEGMENT: Residue is updated after each successfully
347  *  completed segment of the transfer (For cyclic transfers this is after each
348  *  period). This is typically implemented by having the hardware generate an
349  *  interrupt after each transferred segment and then the drivers updates the
350  *  outstanding residue by the size of the segment. Another possibility is if
351  *  the hardware supports scatter-gather and the segment descriptor has a field
352  *  which gets set after the segment has been completed. The driver then counts
353  *  the number of segments without the flag set to compute the residue.
354  * @DMA_RESIDUE_GRANULARITY_BURST: Residue is updated after each transferred
355  *  burst. This is typically only supported if the hardware has a progress
356  *  register of some sort (E.g. a register with the current read/write address
357  *  or a register with the amount of bursts/beats/bytes that have been
358  *  transferred or still need to be transferred).
359  */
360 enum dma_residue_granularity {
361 	DMA_RESIDUE_GRANULARITY_DESCRIPTOR = 0,
362 	DMA_RESIDUE_GRANULARITY_SEGMENT = 1,
363 	DMA_RESIDUE_GRANULARITY_BURST = 2,
364 };
365 
366 /* struct dma_slave_caps - expose capabilities of a slave channel only
367  *
368  * @src_addr_widths: bit mask of src addr widths the channel supports
369  * @dst_addr_widths: bit mask of dstn addr widths the channel supports
370  * @directions: bit mask of slave direction the channel supported
371  * 	since the enum dma_transfer_direction is not defined as bits for each
372  * 	type of direction, the dma controller should fill (1 << <TYPE>) and same
373  * 	should be checked by controller as well
374  * @cmd_pause: true, if pause and thereby resume is supported
375  * @cmd_terminate: true, if terminate cmd is supported
376  * @residue_granularity: granularity of the reported transfer residue
377  */
378 struct dma_slave_caps {
379 	u32 src_addr_widths;
380 	u32 dst_addr_widths;
381 	u32 directions;
382 	bool cmd_pause;
383 	bool cmd_terminate;
384 	enum dma_residue_granularity residue_granularity;
385 };
386 
dma_chan_name(struct dma_chan * chan)387 static inline const char *dma_chan_name(struct dma_chan *chan)
388 {
389 	return dev_name(&chan->dev->device);
390 }
391 
392 void dma_chan_cleanup(struct kref *kref);
393 
394 /**
395  * typedef dma_filter_fn - callback filter for dma_request_channel
396  * @chan: channel to be reviewed
397  * @filter_param: opaque parameter passed through dma_request_channel
398  *
399  * When this optional parameter is specified in a call to dma_request_channel a
400  * suitable channel is passed to this routine for further dispositioning before
401  * being returned.  Where 'suitable' indicates a non-busy channel that
402  * satisfies the given capability mask.  It returns 'true' to indicate that the
403  * channel is suitable.
404  */
405 typedef bool (*dma_filter_fn)(struct dma_chan *chan, void *filter_param);
406 
407 typedef void (*dma_async_tx_callback)(void *dma_async_param);
408 
409 struct dmaengine_unmap_data {
410 	u8 map_cnt;
411 	u8 to_cnt;
412 	u8 from_cnt;
413 	u8 bidi_cnt;
414 	struct device *dev;
415 	struct kref kref;
416 	size_t len;
417 	dma_addr_t addr[0];
418 };
419 
420 /**
421  * struct dma_async_tx_descriptor - async transaction descriptor
422  * ---dma generic offload fields---
423  * @cookie: tracking cookie for this transaction, set to -EBUSY if
424  *	this tx is sitting on a dependency list
425  * @flags: flags to augment operation preparation, control completion, and
426  * 	communicate status
427  * @phys: physical address of the descriptor
428  * @chan: target channel for this operation
429  * @tx_submit: accept the descriptor, assign ordered cookie and mark the
430  * descriptor pending. To be pushed on .issue_pending() call
431  * @callback: routine to call after this operation is complete
432  * @callback_param: general parameter to pass to the callback routine
433  * ---async_tx api specific fields---
434  * @next: at completion submit this descriptor
435  * @parent: pointer to the next level up in the dependency chain
436  * @lock: protect the parent and next pointers
437  */
438 struct dma_async_tx_descriptor {
439 	dma_cookie_t cookie;
440 	enum dma_ctrl_flags flags; /* not a 'long' to pack with cookie */
441 	dma_addr_t phys;
442 	struct dma_chan *chan;
443 	dma_cookie_t (*tx_submit)(struct dma_async_tx_descriptor *tx);
444 	dma_async_tx_callback callback;
445 	void *callback_param;
446 	struct dmaengine_unmap_data *unmap;
447 #ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
448 	struct dma_async_tx_descriptor *next;
449 	struct dma_async_tx_descriptor *parent;
450 	spinlock_t lock;
451 #endif
452 };
453 
454 #ifdef CONFIG_DMA_ENGINE
dma_set_unmap(struct dma_async_tx_descriptor * tx,struct dmaengine_unmap_data * unmap)455 static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx,
456 				 struct dmaengine_unmap_data *unmap)
457 {
458 	kref_get(&unmap->kref);
459 	tx->unmap = unmap;
460 }
461 
462 struct dmaengine_unmap_data *
463 dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags);
464 void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap);
465 #else
dma_set_unmap(struct dma_async_tx_descriptor * tx,struct dmaengine_unmap_data * unmap)466 static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx,
467 				 struct dmaengine_unmap_data *unmap)
468 {
469 }
470 static inline struct dmaengine_unmap_data *
dmaengine_get_unmap_data(struct device * dev,int nr,gfp_t flags)471 dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags)
472 {
473 	return NULL;
474 }
dmaengine_unmap_put(struct dmaengine_unmap_data * unmap)475 static inline void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap)
476 {
477 }
478 #endif
479 
dma_descriptor_unmap(struct dma_async_tx_descriptor * tx)480 static inline void dma_descriptor_unmap(struct dma_async_tx_descriptor *tx)
481 {
482 	if (tx->unmap) {
483 		dmaengine_unmap_put(tx->unmap);
484 		tx->unmap = NULL;
485 	}
486 }
487 
488 #ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
txd_lock(struct dma_async_tx_descriptor * txd)489 static inline void txd_lock(struct dma_async_tx_descriptor *txd)
490 {
491 }
txd_unlock(struct dma_async_tx_descriptor * txd)492 static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
493 {
494 }
txd_chain(struct dma_async_tx_descriptor * txd,struct dma_async_tx_descriptor * next)495 static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
496 {
497 	BUG();
498 }
txd_clear_parent(struct dma_async_tx_descriptor * txd)499 static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
500 {
501 }
txd_clear_next(struct dma_async_tx_descriptor * txd)502 static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
503 {
504 }
txd_next(struct dma_async_tx_descriptor * txd)505 static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
506 {
507 	return NULL;
508 }
txd_parent(struct dma_async_tx_descriptor * txd)509 static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
510 {
511 	return NULL;
512 }
513 
514 #else
txd_lock(struct dma_async_tx_descriptor * txd)515 static inline void txd_lock(struct dma_async_tx_descriptor *txd)
516 {
517 	spin_lock_bh(&txd->lock);
518 }
txd_unlock(struct dma_async_tx_descriptor * txd)519 static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
520 {
521 	spin_unlock_bh(&txd->lock);
522 }
txd_chain(struct dma_async_tx_descriptor * txd,struct dma_async_tx_descriptor * next)523 static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
524 {
525 	txd->next = next;
526 	next->parent = txd;
527 }
txd_clear_parent(struct dma_async_tx_descriptor * txd)528 static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
529 {
530 	txd->parent = NULL;
531 }
txd_clear_next(struct dma_async_tx_descriptor * txd)532 static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
533 {
534 	txd->next = NULL;
535 }
txd_parent(struct dma_async_tx_descriptor * txd)536 static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
537 {
538 	return txd->parent;
539 }
txd_next(struct dma_async_tx_descriptor * txd)540 static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
541 {
542 	return txd->next;
543 }
544 #endif
545 
546 /**
547  * struct dma_tx_state - filled in to report the status of
548  * a transfer.
549  * @last: last completed DMA cookie
550  * @used: last issued DMA cookie (i.e. the one in progress)
551  * @residue: the remaining number of bytes left to transmit
552  *	on the selected transfer for states DMA_IN_PROGRESS and
553  *	DMA_PAUSED if this is implemented in the driver, else 0
554  */
555 struct dma_tx_state {
556 	dma_cookie_t last;
557 	dma_cookie_t used;
558 	u32 residue;
559 };
560 
561 /**
562  * struct dma_device - info on the entity supplying DMA services
563  * @chancnt: how many DMA channels are supported
564  * @privatecnt: how many DMA channels are requested by dma_request_channel
565  * @channels: the list of struct dma_chan
566  * @global_node: list_head for global dma_device_list
567  * @cap_mask: one or more dma_capability flags
568  * @max_xor: maximum number of xor sources, 0 if no capability
569  * @max_pq: maximum number of PQ sources and PQ-continue capability
570  * @copy_align: alignment shift for memcpy operations
571  * @xor_align: alignment shift for xor operations
572  * @pq_align: alignment shift for pq operations
573  * @dev_id: unique device ID
574  * @dev: struct device reference for dma mapping api
575  * @src_addr_widths: bit mask of src addr widths the device supports
576  * @dst_addr_widths: bit mask of dst addr widths the device supports
577  * @directions: bit mask of slave direction the device supports since
578  * 	the enum dma_transfer_direction is not defined as bits for
579  * 	each type of direction, the dma controller should fill (1 <<
580  * 	<TYPE>) and same should be checked by controller as well
581  * @residue_granularity: granularity of the transfer residue reported
582  *	by tx_status
583  * @device_alloc_chan_resources: allocate resources and return the
584  *	number of allocated descriptors
585  * @device_free_chan_resources: release DMA channel's resources
586  * @device_prep_dma_memcpy: prepares a memcpy operation
587  * @device_prep_dma_xor: prepares a xor operation
588  * @device_prep_dma_xor_val: prepares a xor validation operation
589  * @device_prep_dma_pq: prepares a pq operation
590  * @device_prep_dma_pq_val: prepares a pqzero_sum operation
591  * @device_prep_dma_interrupt: prepares an end of chain interrupt operation
592  * @device_prep_slave_sg: prepares a slave dma operation
593  * @device_prep_dma_cyclic: prepare a cyclic dma operation suitable for audio.
594  *	The function takes a buffer of size buf_len. The callback function will
595  *	be called after period_len bytes have been transferred.
596  * @device_prep_interleaved_dma: Transfer expression in a generic way.
597  * @device_config: Pushes a new configuration to a channel, return 0 or an error
598  *	code
599  * @device_pause: Pauses any transfer happening on a channel. Returns
600  *	0 or an error code
601  * @device_resume: Resumes any transfer on a channel previously
602  *	paused. Returns 0 or an error code
603  * @device_terminate_all: Aborts all transfers on a channel. Returns 0
604  *	or an error code
605  * @device_tx_status: poll for transaction completion, the optional
606  *	txstate parameter can be supplied with a pointer to get a
607  *	struct with auxiliary transfer status information, otherwise the call
608  *	will just return a simple status code
609  * @device_issue_pending: push pending transactions to hardware
610  */
611 struct dma_device {
612 
613 	unsigned int chancnt;
614 	unsigned int privatecnt;
615 	struct list_head channels;
616 	struct list_head global_node;
617 	dma_cap_mask_t  cap_mask;
618 	unsigned short max_xor;
619 	unsigned short max_pq;
620 	u8 copy_align;
621 	u8 xor_align;
622 	u8 pq_align;
623 	#define DMA_HAS_PQ_CONTINUE (1 << 15)
624 
625 	int dev_id;
626 	struct device *dev;
627 
628 	u32 src_addr_widths;
629 	u32 dst_addr_widths;
630 	u32 directions;
631 	enum dma_residue_granularity residue_granularity;
632 
633 	int (*device_alloc_chan_resources)(struct dma_chan *chan);
634 	void (*device_free_chan_resources)(struct dma_chan *chan);
635 
636 	struct dma_async_tx_descriptor *(*device_prep_dma_memcpy)(
637 		struct dma_chan *chan, dma_addr_t dst, dma_addr_t src,
638 		size_t len, unsigned long flags);
639 	struct dma_async_tx_descriptor *(*device_prep_dma_xor)(
640 		struct dma_chan *chan, dma_addr_t dst, dma_addr_t *src,
641 		unsigned int src_cnt, size_t len, unsigned long flags);
642 	struct dma_async_tx_descriptor *(*device_prep_dma_xor_val)(
643 		struct dma_chan *chan, dma_addr_t *src,	unsigned int src_cnt,
644 		size_t len, enum sum_check_flags *result, unsigned long flags);
645 	struct dma_async_tx_descriptor *(*device_prep_dma_pq)(
646 		struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src,
647 		unsigned int src_cnt, const unsigned char *scf,
648 		size_t len, unsigned long flags);
649 	struct dma_async_tx_descriptor *(*device_prep_dma_pq_val)(
650 		struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src,
651 		unsigned int src_cnt, const unsigned char *scf, size_t len,
652 		enum sum_check_flags *pqres, unsigned long flags);
653 	struct dma_async_tx_descriptor *(*device_prep_dma_interrupt)(
654 		struct dma_chan *chan, unsigned long flags);
655 	struct dma_async_tx_descriptor *(*device_prep_dma_sg)(
656 		struct dma_chan *chan,
657 		struct scatterlist *dst_sg, unsigned int dst_nents,
658 		struct scatterlist *src_sg, unsigned int src_nents,
659 		unsigned long flags);
660 
661 	struct dma_async_tx_descriptor *(*device_prep_slave_sg)(
662 		struct dma_chan *chan, struct scatterlist *sgl,
663 		unsigned int sg_len, enum dma_transfer_direction direction,
664 		unsigned long flags, void *context);
665 	struct dma_async_tx_descriptor *(*device_prep_dma_cyclic)(
666 		struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
667 		size_t period_len, enum dma_transfer_direction direction,
668 		unsigned long flags);
669 	struct dma_async_tx_descriptor *(*device_prep_interleaved_dma)(
670 		struct dma_chan *chan, struct dma_interleaved_template *xt,
671 		unsigned long flags);
672 
673 	int (*device_config)(struct dma_chan *chan,
674 			     struct dma_slave_config *config);
675 	int (*device_pause)(struct dma_chan *chan);
676 	int (*device_resume)(struct dma_chan *chan);
677 	int (*device_terminate_all)(struct dma_chan *chan);
678 
679 	enum dma_status (*device_tx_status)(struct dma_chan *chan,
680 					    dma_cookie_t cookie,
681 					    struct dma_tx_state *txstate);
682 	void (*device_issue_pending)(struct dma_chan *chan);
683 };
684 
dmaengine_slave_config(struct dma_chan * chan,struct dma_slave_config * config)685 static inline int dmaengine_slave_config(struct dma_chan *chan,
686 					  struct dma_slave_config *config)
687 {
688 	if (chan->device->device_config)
689 		return chan->device->device_config(chan, config);
690 
691 	return -ENOSYS;
692 }
693 
is_slave_direction(enum dma_transfer_direction direction)694 static inline bool is_slave_direction(enum dma_transfer_direction direction)
695 {
696 	return (direction == DMA_MEM_TO_DEV) || (direction == DMA_DEV_TO_MEM);
697 }
698 
dmaengine_prep_slave_single(struct dma_chan * chan,dma_addr_t buf,size_t len,enum dma_transfer_direction dir,unsigned long flags)699 static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_single(
700 	struct dma_chan *chan, dma_addr_t buf, size_t len,
701 	enum dma_transfer_direction dir, unsigned long flags)
702 {
703 	struct scatterlist sg;
704 	sg_init_table(&sg, 1);
705 	sg_dma_address(&sg) = buf;
706 	sg_dma_len(&sg) = len;
707 
708 	return chan->device->device_prep_slave_sg(chan, &sg, 1,
709 						  dir, flags, NULL);
710 }
711 
dmaengine_prep_slave_sg(struct dma_chan * chan,struct scatterlist * sgl,unsigned int sg_len,enum dma_transfer_direction dir,unsigned long flags)712 static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_sg(
713 	struct dma_chan *chan, struct scatterlist *sgl,	unsigned int sg_len,
714 	enum dma_transfer_direction dir, unsigned long flags)
715 {
716 	return chan->device->device_prep_slave_sg(chan, sgl, sg_len,
717 						  dir, flags, NULL);
718 }
719 
720 #ifdef CONFIG_RAPIDIO_DMA_ENGINE
721 struct rio_dma_ext;
dmaengine_prep_rio_sg(struct dma_chan * chan,struct scatterlist * sgl,unsigned int sg_len,enum dma_transfer_direction dir,unsigned long flags,struct rio_dma_ext * rio_ext)722 static inline struct dma_async_tx_descriptor *dmaengine_prep_rio_sg(
723 	struct dma_chan *chan, struct scatterlist *sgl,	unsigned int sg_len,
724 	enum dma_transfer_direction dir, unsigned long flags,
725 	struct rio_dma_ext *rio_ext)
726 {
727 	return chan->device->device_prep_slave_sg(chan, sgl, sg_len,
728 						  dir, flags, rio_ext);
729 }
730 #endif
731 
dmaengine_prep_dma_cyclic(struct dma_chan * chan,dma_addr_t buf_addr,size_t buf_len,size_t period_len,enum dma_transfer_direction dir,unsigned long flags)732 static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_cyclic(
733 		struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
734 		size_t period_len, enum dma_transfer_direction dir,
735 		unsigned long flags)
736 {
737 	return chan->device->device_prep_dma_cyclic(chan, buf_addr, buf_len,
738 						period_len, dir, flags);
739 }
740 
dmaengine_prep_interleaved_dma(struct dma_chan * chan,struct dma_interleaved_template * xt,unsigned long flags)741 static inline struct dma_async_tx_descriptor *dmaengine_prep_interleaved_dma(
742 		struct dma_chan *chan, struct dma_interleaved_template *xt,
743 		unsigned long flags)
744 {
745 	return chan->device->device_prep_interleaved_dma(chan, xt, flags);
746 }
747 
dmaengine_prep_dma_sg(struct dma_chan * chan,struct scatterlist * dst_sg,unsigned int dst_nents,struct scatterlist * src_sg,unsigned int src_nents,unsigned long flags)748 static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_sg(
749 		struct dma_chan *chan,
750 		struct scatterlist *dst_sg, unsigned int dst_nents,
751 		struct scatterlist *src_sg, unsigned int src_nents,
752 		unsigned long flags)
753 {
754 	return chan->device->device_prep_dma_sg(chan, dst_sg, dst_nents,
755 			src_sg, src_nents, flags);
756 }
757 
dmaengine_terminate_all(struct dma_chan * chan)758 static inline int dmaengine_terminate_all(struct dma_chan *chan)
759 {
760 	if (chan->device->device_terminate_all)
761 		return chan->device->device_terminate_all(chan);
762 
763 	return -ENOSYS;
764 }
765 
dmaengine_pause(struct dma_chan * chan)766 static inline int dmaengine_pause(struct dma_chan *chan)
767 {
768 	if (chan->device->device_pause)
769 		return chan->device->device_pause(chan);
770 
771 	return -ENOSYS;
772 }
773 
dmaengine_resume(struct dma_chan * chan)774 static inline int dmaengine_resume(struct dma_chan *chan)
775 {
776 	if (chan->device->device_resume)
777 		return chan->device->device_resume(chan);
778 
779 	return -ENOSYS;
780 }
781 
dmaengine_tx_status(struct dma_chan * chan,dma_cookie_t cookie,struct dma_tx_state * state)782 static inline enum dma_status dmaengine_tx_status(struct dma_chan *chan,
783 	dma_cookie_t cookie, struct dma_tx_state *state)
784 {
785 	return chan->device->device_tx_status(chan, cookie, state);
786 }
787 
dmaengine_submit(struct dma_async_tx_descriptor * desc)788 static inline dma_cookie_t dmaengine_submit(struct dma_async_tx_descriptor *desc)
789 {
790 	return desc->tx_submit(desc);
791 }
792 
dmaengine_check_align(u8 align,size_t off1,size_t off2,size_t len)793 static inline bool dmaengine_check_align(u8 align, size_t off1, size_t off2, size_t len)
794 {
795 	size_t mask;
796 
797 	if (!align)
798 		return true;
799 	mask = (1 << align) - 1;
800 	if (mask & (off1 | off2 | len))
801 		return false;
802 	return true;
803 }
804 
is_dma_copy_aligned(struct dma_device * dev,size_t off1,size_t off2,size_t len)805 static inline bool is_dma_copy_aligned(struct dma_device *dev, size_t off1,
806 				       size_t off2, size_t len)
807 {
808 	return dmaengine_check_align(dev->copy_align, off1, off2, len);
809 }
810 
is_dma_xor_aligned(struct dma_device * dev,size_t off1,size_t off2,size_t len)811 static inline bool is_dma_xor_aligned(struct dma_device *dev, size_t off1,
812 				      size_t off2, size_t len)
813 {
814 	return dmaengine_check_align(dev->xor_align, off1, off2, len);
815 }
816 
is_dma_pq_aligned(struct dma_device * dev,size_t off1,size_t off2,size_t len)817 static inline bool is_dma_pq_aligned(struct dma_device *dev, size_t off1,
818 				     size_t off2, size_t len)
819 {
820 	return dmaengine_check_align(dev->pq_align, off1, off2, len);
821 }
822 
823 static inline void
dma_set_maxpq(struct dma_device * dma,int maxpq,int has_pq_continue)824 dma_set_maxpq(struct dma_device *dma, int maxpq, int has_pq_continue)
825 {
826 	dma->max_pq = maxpq;
827 	if (has_pq_continue)
828 		dma->max_pq |= DMA_HAS_PQ_CONTINUE;
829 }
830 
dmaf_continue(enum dma_ctrl_flags flags)831 static inline bool dmaf_continue(enum dma_ctrl_flags flags)
832 {
833 	return (flags & DMA_PREP_CONTINUE) == DMA_PREP_CONTINUE;
834 }
835 
dmaf_p_disabled_continue(enum dma_ctrl_flags flags)836 static inline bool dmaf_p_disabled_continue(enum dma_ctrl_flags flags)
837 {
838 	enum dma_ctrl_flags mask = DMA_PREP_CONTINUE | DMA_PREP_PQ_DISABLE_P;
839 
840 	return (flags & mask) == mask;
841 }
842 
dma_dev_has_pq_continue(struct dma_device * dma)843 static inline bool dma_dev_has_pq_continue(struct dma_device *dma)
844 {
845 	return (dma->max_pq & DMA_HAS_PQ_CONTINUE) == DMA_HAS_PQ_CONTINUE;
846 }
847 
dma_dev_to_maxpq(struct dma_device * dma)848 static inline unsigned short dma_dev_to_maxpq(struct dma_device *dma)
849 {
850 	return dma->max_pq & ~DMA_HAS_PQ_CONTINUE;
851 }
852 
853 /* dma_maxpq - reduce maxpq in the face of continued operations
854  * @dma - dma device with PQ capability
855  * @flags - to check if DMA_PREP_CONTINUE and DMA_PREP_PQ_DISABLE_P are set
856  *
857  * When an engine does not support native continuation we need 3 extra
858  * source slots to reuse P and Q with the following coefficients:
859  * 1/ {00} * P : remove P from Q', but use it as a source for P'
860  * 2/ {01} * Q : use Q to continue Q' calculation
861  * 3/ {00} * Q : subtract Q from P' to cancel (2)
862  *
863  * In the case where P is disabled we only need 1 extra source:
864  * 1/ {01} * Q : use Q to continue Q' calculation
865  */
dma_maxpq(struct dma_device * dma,enum dma_ctrl_flags flags)866 static inline int dma_maxpq(struct dma_device *dma, enum dma_ctrl_flags flags)
867 {
868 	if (dma_dev_has_pq_continue(dma) || !dmaf_continue(flags))
869 		return dma_dev_to_maxpq(dma);
870 	else if (dmaf_p_disabled_continue(flags))
871 		return dma_dev_to_maxpq(dma) - 1;
872 	else if (dmaf_continue(flags))
873 		return dma_dev_to_maxpq(dma) - 3;
874 	BUG();
875 }
876 
877 /* --- public DMA engine API --- */
878 
879 #ifdef CONFIG_DMA_ENGINE
880 void dmaengine_get(void);
881 void dmaengine_put(void);
882 #else
dmaengine_get(void)883 static inline void dmaengine_get(void)
884 {
885 }
dmaengine_put(void)886 static inline void dmaengine_put(void)
887 {
888 }
889 #endif
890 
891 #ifdef CONFIG_ASYNC_TX_DMA
892 #define async_dmaengine_get()	dmaengine_get()
893 #define async_dmaengine_put()	dmaengine_put()
894 #ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
895 #define async_dma_find_channel(type) dma_find_channel(DMA_ASYNC_TX)
896 #else
897 #define async_dma_find_channel(type) dma_find_channel(type)
898 #endif /* CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH */
899 #else
async_dmaengine_get(void)900 static inline void async_dmaengine_get(void)
901 {
902 }
async_dmaengine_put(void)903 static inline void async_dmaengine_put(void)
904 {
905 }
906 static inline struct dma_chan *
async_dma_find_channel(enum dma_transaction_type type)907 async_dma_find_channel(enum dma_transaction_type type)
908 {
909 	return NULL;
910 }
911 #endif /* CONFIG_ASYNC_TX_DMA */
912 void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx,
913 				  struct dma_chan *chan);
914 
async_tx_ack(struct dma_async_tx_descriptor * tx)915 static inline void async_tx_ack(struct dma_async_tx_descriptor *tx)
916 {
917 	tx->flags |= DMA_CTRL_ACK;
918 }
919 
async_tx_clear_ack(struct dma_async_tx_descriptor * tx)920 static inline void async_tx_clear_ack(struct dma_async_tx_descriptor *tx)
921 {
922 	tx->flags &= ~DMA_CTRL_ACK;
923 }
924 
async_tx_test_ack(struct dma_async_tx_descriptor * tx)925 static inline bool async_tx_test_ack(struct dma_async_tx_descriptor *tx)
926 {
927 	return (tx->flags & DMA_CTRL_ACK) == DMA_CTRL_ACK;
928 }
929 
930 #define dma_cap_set(tx, mask) __dma_cap_set((tx), &(mask))
931 static inline void
__dma_cap_set(enum dma_transaction_type tx_type,dma_cap_mask_t * dstp)932 __dma_cap_set(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
933 {
934 	set_bit(tx_type, dstp->bits);
935 }
936 
937 #define dma_cap_clear(tx, mask) __dma_cap_clear((tx), &(mask))
938 static inline void
__dma_cap_clear(enum dma_transaction_type tx_type,dma_cap_mask_t * dstp)939 __dma_cap_clear(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
940 {
941 	clear_bit(tx_type, dstp->bits);
942 }
943 
944 #define dma_cap_zero(mask) __dma_cap_zero(&(mask))
__dma_cap_zero(dma_cap_mask_t * dstp)945 static inline void __dma_cap_zero(dma_cap_mask_t *dstp)
946 {
947 	bitmap_zero(dstp->bits, DMA_TX_TYPE_END);
948 }
949 
950 #define dma_has_cap(tx, mask) __dma_has_cap((tx), &(mask))
951 static inline int
__dma_has_cap(enum dma_transaction_type tx_type,dma_cap_mask_t * srcp)952 __dma_has_cap(enum dma_transaction_type tx_type, dma_cap_mask_t *srcp)
953 {
954 	return test_bit(tx_type, srcp->bits);
955 }
956 
957 #define for_each_dma_cap_mask(cap, mask) \
958 	for_each_set_bit(cap, mask.bits, DMA_TX_TYPE_END)
959 
960 /**
961  * dma_async_issue_pending - flush pending transactions to HW
962  * @chan: target DMA channel
963  *
964  * This allows drivers to push copies to HW in batches,
965  * reducing MMIO writes where possible.
966  */
dma_async_issue_pending(struct dma_chan * chan)967 static inline void dma_async_issue_pending(struct dma_chan *chan)
968 {
969 	chan->device->device_issue_pending(chan);
970 }
971 
972 /**
973  * dma_async_is_tx_complete - poll for transaction completion
974  * @chan: DMA channel
975  * @cookie: transaction identifier to check status of
976  * @last: returns last completed cookie, can be NULL
977  * @used: returns last issued cookie, can be NULL
978  *
979  * If @last and @used are passed in, upon return they reflect the driver
980  * internal state and can be used with dma_async_is_complete() to check
981  * the status of multiple cookies without re-checking hardware state.
982  */
dma_async_is_tx_complete(struct dma_chan * chan,dma_cookie_t cookie,dma_cookie_t * last,dma_cookie_t * used)983 static inline enum dma_status dma_async_is_tx_complete(struct dma_chan *chan,
984 	dma_cookie_t cookie, dma_cookie_t *last, dma_cookie_t *used)
985 {
986 	struct dma_tx_state state;
987 	enum dma_status status;
988 
989 	status = chan->device->device_tx_status(chan, cookie, &state);
990 	if (last)
991 		*last = state.last;
992 	if (used)
993 		*used = state.used;
994 	return status;
995 }
996 
997 /**
998  * dma_async_is_complete - test a cookie against chan state
999  * @cookie: transaction identifier to test status of
1000  * @last_complete: last know completed transaction
1001  * @last_used: last cookie value handed out
1002  *
1003  * dma_async_is_complete() is used in dma_async_is_tx_complete()
1004  * the test logic is separated for lightweight testing of multiple cookies
1005  */
dma_async_is_complete(dma_cookie_t cookie,dma_cookie_t last_complete,dma_cookie_t last_used)1006 static inline enum dma_status dma_async_is_complete(dma_cookie_t cookie,
1007 			dma_cookie_t last_complete, dma_cookie_t last_used)
1008 {
1009 	if (last_complete <= last_used) {
1010 		if ((cookie <= last_complete) || (cookie > last_used))
1011 			return DMA_COMPLETE;
1012 	} else {
1013 		if ((cookie <= last_complete) && (cookie > last_used))
1014 			return DMA_COMPLETE;
1015 	}
1016 	return DMA_IN_PROGRESS;
1017 }
1018 
1019 static inline void
dma_set_tx_state(struct dma_tx_state * st,dma_cookie_t last,dma_cookie_t used,u32 residue)1020 dma_set_tx_state(struct dma_tx_state *st, dma_cookie_t last, dma_cookie_t used, u32 residue)
1021 {
1022 	if (st) {
1023 		st->last = last;
1024 		st->used = used;
1025 		st->residue = residue;
1026 	}
1027 }
1028 
1029 #ifdef CONFIG_DMA_ENGINE
1030 struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type);
1031 enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie);
1032 enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx);
1033 void dma_issue_pending_all(void);
1034 struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
1035 					dma_filter_fn fn, void *fn_param);
1036 struct dma_chan *dma_request_slave_channel_reason(struct device *dev,
1037 						  const char *name);
1038 struct dma_chan *dma_request_slave_channel(struct device *dev, const char *name);
1039 void dma_release_channel(struct dma_chan *chan);
1040 int dma_get_slave_caps(struct dma_chan *chan, struct dma_slave_caps *caps);
1041 #else
dma_find_channel(enum dma_transaction_type tx_type)1042 static inline struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type)
1043 {
1044 	return NULL;
1045 }
dma_sync_wait(struct dma_chan * chan,dma_cookie_t cookie)1046 static inline enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie)
1047 {
1048 	return DMA_COMPLETE;
1049 }
dma_wait_for_async_tx(struct dma_async_tx_descriptor * tx)1050 static inline enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx)
1051 {
1052 	return DMA_COMPLETE;
1053 }
dma_issue_pending_all(void)1054 static inline void dma_issue_pending_all(void)
1055 {
1056 }
__dma_request_channel(const dma_cap_mask_t * mask,dma_filter_fn fn,void * fn_param)1057 static inline struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
1058 					      dma_filter_fn fn, void *fn_param)
1059 {
1060 	return NULL;
1061 }
dma_request_slave_channel_reason(struct device * dev,const char * name)1062 static inline struct dma_chan *dma_request_slave_channel_reason(
1063 					struct device *dev, const char *name)
1064 {
1065 	return ERR_PTR(-ENODEV);
1066 }
dma_request_slave_channel(struct device * dev,const char * name)1067 static inline struct dma_chan *dma_request_slave_channel(struct device *dev,
1068 							 const char *name)
1069 {
1070 	return NULL;
1071 }
dma_release_channel(struct dma_chan * chan)1072 static inline void dma_release_channel(struct dma_chan *chan)
1073 {
1074 }
dma_get_slave_caps(struct dma_chan * chan,struct dma_slave_caps * caps)1075 static inline int dma_get_slave_caps(struct dma_chan *chan,
1076 				     struct dma_slave_caps *caps)
1077 {
1078 	return -ENXIO;
1079 }
1080 #endif
1081 
1082 /* --- DMA device --- */
1083 
1084 int dma_async_device_register(struct dma_device *device);
1085 void dma_async_device_unregister(struct dma_device *device);
1086 void dma_run_dependencies(struct dma_async_tx_descriptor *tx);
1087 struct dma_chan *dma_get_slave_channel(struct dma_chan *chan);
1088 struct dma_chan *dma_get_any_slave_channel(struct dma_device *device);
1089 #define dma_request_channel(mask, x, y) __dma_request_channel(&(mask), x, y)
1090 #define dma_request_slave_channel_compat(mask, x, y, dev, name) \
1091 	__dma_request_slave_channel_compat(&(mask), x, y, dev, name)
1092 
1093 static inline struct dma_chan
__dma_request_slave_channel_compat(const dma_cap_mask_t * mask,dma_filter_fn fn,void * fn_param,struct device * dev,char * name)1094 *__dma_request_slave_channel_compat(const dma_cap_mask_t *mask,
1095 				  dma_filter_fn fn, void *fn_param,
1096 				  struct device *dev, char *name)
1097 {
1098 	struct dma_chan *chan;
1099 
1100 	chan = dma_request_slave_channel(dev, name);
1101 	if (chan)
1102 		return chan;
1103 
1104 	return __dma_request_channel(mask, fn, fn_param);
1105 }
1106 #endif /* DMAENGINE_H */
1107