1 /*
2  *  Generic process-grouping system.
3  *
4  *  Based originally on the cpuset system, extracted by Paul Menage
5  *  Copyright (C) 2006 Google, Inc
6  *
7  *  Notifications support
8  *  Copyright (C) 2009 Nokia Corporation
9  *  Author: Kirill A. Shutemov
10  *
11  *  Copyright notices from the original cpuset code:
12  *  --------------------------------------------------
13  *  Copyright (C) 2003 BULL SA.
14  *  Copyright (C) 2004-2006 Silicon Graphics, Inc.
15  *
16  *  Portions derived from Patrick Mochel's sysfs code.
17  *  sysfs is Copyright (c) 2001-3 Patrick Mochel
18  *
19  *  2003-10-10 Written by Simon Derr.
20  *  2003-10-22 Updates by Stephen Hemminger.
21  *  2004 May-July Rework by Paul Jackson.
22  *  ---------------------------------------------------
23  *
24  *  This file is subject to the terms and conditions of the GNU General Public
25  *  License.  See the file COPYING in the main directory of the Linux
26  *  distribution for more details.
27  */
28 
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30 
31 #include <linux/cgroup.h>
32 #include <linux/cred.h>
33 #include <linux/ctype.h>
34 #include <linux/errno.h>
35 #include <linux/init_task.h>
36 #include <linux/kernel.h>
37 #include <linux/list.h>
38 #include <linux/magic.h>
39 #include <linux/mm.h>
40 #include <linux/mutex.h>
41 #include <linux/mount.h>
42 #include <linux/pagemap.h>
43 #include <linux/proc_fs.h>
44 #include <linux/rcupdate.h>
45 #include <linux/sched.h>
46 #include <linux/slab.h>
47 #include <linux/spinlock.h>
48 #include <linux/percpu-rwsem.h>
49 #include <linux/string.h>
50 #include <linux/sort.h>
51 #include <linux/kmod.h>
52 #include <linux/delayacct.h>
53 #include <linux/cgroupstats.h>
54 #include <linux/hashtable.h>
55 #include <linux/pid_namespace.h>
56 #include <linux/idr.h>
57 #include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
58 #include <linux/kthread.h>
59 #include <linux/delay.h>
60 #include <linux/cpuset.h>
61 #include <linux/atomic.h>
62 
63 /*
64  * pidlists linger the following amount before being destroyed.  The goal
65  * is avoiding frequent destruction in the middle of consecutive read calls
66  * Expiring in the middle is a performance problem not a correctness one.
67  * 1 sec should be enough.
68  */
69 #define CGROUP_PIDLIST_DESTROY_DELAY	HZ
70 
71 #define CGROUP_FILE_NAME_MAX		(MAX_CGROUP_TYPE_NAMELEN +	\
72 					 MAX_CFTYPE_NAME + 2)
73 
74 /*
75  * cgroup_mutex is the master lock.  Any modification to cgroup or its
76  * hierarchy must be performed while holding it.
77  *
78  * css_set_lock protects task->cgroups pointer, the list of css_set
79  * objects, and the chain of tasks off each css_set.
80  *
81  * These locks are exported if CONFIG_PROVE_RCU so that accessors in
82  * cgroup.h can use them for lockdep annotations.
83  */
84 #ifdef CONFIG_PROVE_RCU
85 DEFINE_MUTEX(cgroup_mutex);
86 DEFINE_SPINLOCK(css_set_lock);
87 EXPORT_SYMBOL_GPL(cgroup_mutex);
88 EXPORT_SYMBOL_GPL(css_set_lock);
89 #else
90 static DEFINE_MUTEX(cgroup_mutex);
91 static DEFINE_SPINLOCK(css_set_lock);
92 #endif
93 
94 /*
95  * Protects cgroup_idr and css_idr so that IDs can be released without
96  * grabbing cgroup_mutex.
97  */
98 static DEFINE_SPINLOCK(cgroup_idr_lock);
99 
100 /*
101  * Protects cgroup_file->kn for !self csses.  It synchronizes notifications
102  * against file removal/re-creation across css hiding.
103  */
104 static DEFINE_SPINLOCK(cgroup_file_kn_lock);
105 
106 /*
107  * Protects cgroup_subsys->release_agent_path.  Modifying it also requires
108  * cgroup_mutex.  Reading requires either cgroup_mutex or this spinlock.
109  */
110 static DEFINE_SPINLOCK(release_agent_path_lock);
111 
112 struct percpu_rw_semaphore cgroup_threadgroup_rwsem;
113 
114 #define cgroup_assert_mutex_or_rcu_locked()				\
115 	RCU_LOCKDEP_WARN(!rcu_read_lock_held() &&			\
116 			   !lockdep_is_held(&cgroup_mutex),		\
117 			   "cgroup_mutex or RCU read lock required");
118 
119 /*
120  * cgroup destruction makes heavy use of work items and there can be a lot
121  * of concurrent destructions.  Use a separate workqueue so that cgroup
122  * destruction work items don't end up filling up max_active of system_wq
123  * which may lead to deadlock.
124  */
125 static struct workqueue_struct *cgroup_destroy_wq;
126 
127 /*
128  * pidlist destructions need to be flushed on cgroup destruction.  Use a
129  * separate workqueue as flush domain.
130  */
131 static struct workqueue_struct *cgroup_pidlist_destroy_wq;
132 
133 /* generate an array of cgroup subsystem pointers */
134 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
135 static struct cgroup_subsys *cgroup_subsys[] = {
136 #include <linux/cgroup_subsys.h>
137 };
138 #undef SUBSYS
139 
140 /* array of cgroup subsystem names */
141 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
142 static const char *cgroup_subsys_name[] = {
143 #include <linux/cgroup_subsys.h>
144 };
145 #undef SUBSYS
146 
147 /* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
148 #define SUBSYS(_x)								\
149 	DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key);			\
150 	DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key);			\
151 	EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key);			\
152 	EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
153 #include <linux/cgroup_subsys.h>
154 #undef SUBSYS
155 
156 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
157 static struct static_key_true *cgroup_subsys_enabled_key[] = {
158 #include <linux/cgroup_subsys.h>
159 };
160 #undef SUBSYS
161 
162 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
163 static struct static_key_true *cgroup_subsys_on_dfl_key[] = {
164 #include <linux/cgroup_subsys.h>
165 };
166 #undef SUBSYS
167 
168 /*
169  * The default hierarchy, reserved for the subsystems that are otherwise
170  * unattached - it never has more than a single cgroup, and all tasks are
171  * part of that cgroup.
172  */
173 struct cgroup_root cgrp_dfl_root;
174 EXPORT_SYMBOL_GPL(cgrp_dfl_root);
175 
176 /*
177  * The default hierarchy always exists but is hidden until mounted for the
178  * first time.  This is for backward compatibility.
179  */
180 static bool cgrp_dfl_root_visible;
181 
182 /* some controllers are not supported in the default hierarchy */
183 static unsigned long cgrp_dfl_root_inhibit_ss_mask;
184 
185 /* The list of hierarchy roots */
186 
187 static LIST_HEAD(cgroup_roots);
188 static int cgroup_root_count;
189 
190 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */
191 static DEFINE_IDR(cgroup_hierarchy_idr);
192 
193 /*
194  * Assign a monotonically increasing serial number to csses.  It guarantees
195  * cgroups with bigger numbers are newer than those with smaller numbers.
196  * Also, as csses are always appended to the parent's ->children list, it
197  * guarantees that sibling csses are always sorted in the ascending serial
198  * number order on the list.  Protected by cgroup_mutex.
199  */
200 static u64 css_serial_nr_next = 1;
201 
202 /*
203  * These bitmask flags indicate whether tasks in the fork and exit paths have
204  * fork/exit handlers to call. This avoids us having to do extra work in the
205  * fork/exit path to check which subsystems have fork/exit callbacks.
206  */
207 static unsigned long have_fork_callback __read_mostly;
208 static unsigned long have_exit_callback __read_mostly;
209 static unsigned long have_free_callback __read_mostly;
210 
211 /* Ditto for the can_fork callback. */
212 static unsigned long have_canfork_callback __read_mostly;
213 
214 static struct cftype cgroup_dfl_base_files[];
215 static struct cftype cgroup_legacy_base_files[];
216 
217 static int rebind_subsystems(struct cgroup_root *dst_root,
218 			     unsigned long ss_mask);
219 static void css_task_iter_advance(struct css_task_iter *it);
220 static int cgroup_destroy_locked(struct cgroup *cgrp);
221 static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss,
222 		      bool visible);
223 static void css_release(struct percpu_ref *ref);
224 static void kill_css(struct cgroup_subsys_state *css);
225 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
226 			      struct cgroup *cgrp, struct cftype cfts[],
227 			      bool is_add);
228 
229 /**
230  * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
231  * @ssid: subsys ID of interest
232  *
233  * cgroup_subsys_enabled() can only be used with literal subsys names which
234  * is fine for individual subsystems but unsuitable for cgroup core.  This
235  * is slower static_key_enabled() based test indexed by @ssid.
236  */
cgroup_ssid_enabled(int ssid)237 static bool cgroup_ssid_enabled(int ssid)
238 {
239 	return static_key_enabled(cgroup_subsys_enabled_key[ssid]);
240 }
241 
242 /**
243  * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
244  * @cgrp: the cgroup of interest
245  *
246  * The default hierarchy is the v2 interface of cgroup and this function
247  * can be used to test whether a cgroup is on the default hierarchy for
248  * cases where a subsystem should behave differnetly depending on the
249  * interface version.
250  *
251  * The set of behaviors which change on the default hierarchy are still
252  * being determined and the mount option is prefixed with __DEVEL__.
253  *
254  * List of changed behaviors:
255  *
256  * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
257  *   and "name" are disallowed.
258  *
259  * - When mounting an existing superblock, mount options should match.
260  *
261  * - Remount is disallowed.
262  *
263  * - rename(2) is disallowed.
264  *
265  * - "tasks" is removed.  Everything should be at process granularity.  Use
266  *   "cgroup.procs" instead.
267  *
268  * - "cgroup.procs" is not sorted.  pids will be unique unless they got
269  *   recycled inbetween reads.
270  *
271  * - "release_agent" and "notify_on_release" are removed.  Replacement
272  *   notification mechanism will be implemented.
273  *
274  * - "cgroup.clone_children" is removed.
275  *
276  * - "cgroup.subtree_populated" is available.  Its value is 0 if the cgroup
277  *   and its descendants contain no task; otherwise, 1.  The file also
278  *   generates kernfs notification which can be monitored through poll and
279  *   [di]notify when the value of the file changes.
280  *
281  * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
282  *   take masks of ancestors with non-empty cpus/mems, instead of being
283  *   moved to an ancestor.
284  *
285  * - cpuset: a task can be moved into an empty cpuset, and again it takes
286  *   masks of ancestors.
287  *
288  * - memcg: use_hierarchy is on by default and the cgroup file for the flag
289  *   is not created.
290  *
291  * - blkcg: blk-throttle becomes properly hierarchical.
292  *
293  * - debug: disallowed on the default hierarchy.
294  */
cgroup_on_dfl(const struct cgroup * cgrp)295 static bool cgroup_on_dfl(const struct cgroup *cgrp)
296 {
297 	return cgrp->root == &cgrp_dfl_root;
298 }
299 
300 /* IDR wrappers which synchronize using cgroup_idr_lock */
cgroup_idr_alloc(struct idr * idr,void * ptr,int start,int end,gfp_t gfp_mask)301 static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
302 			    gfp_t gfp_mask)
303 {
304 	int ret;
305 
306 	idr_preload(gfp_mask);
307 	spin_lock_bh(&cgroup_idr_lock);
308 	ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM);
309 	spin_unlock_bh(&cgroup_idr_lock);
310 	idr_preload_end();
311 	return ret;
312 }
313 
cgroup_idr_replace(struct idr * idr,void * ptr,int id)314 static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
315 {
316 	void *ret;
317 
318 	spin_lock_bh(&cgroup_idr_lock);
319 	ret = idr_replace(idr, ptr, id);
320 	spin_unlock_bh(&cgroup_idr_lock);
321 	return ret;
322 }
323 
cgroup_idr_remove(struct idr * idr,int id)324 static void cgroup_idr_remove(struct idr *idr, int id)
325 {
326 	spin_lock_bh(&cgroup_idr_lock);
327 	idr_remove(idr, id);
328 	spin_unlock_bh(&cgroup_idr_lock);
329 }
330 
cgroup_parent(struct cgroup * cgrp)331 static struct cgroup *cgroup_parent(struct cgroup *cgrp)
332 {
333 	struct cgroup_subsys_state *parent_css = cgrp->self.parent;
334 
335 	if (parent_css)
336 		return container_of(parent_css, struct cgroup, self);
337 	return NULL;
338 }
339 
340 /**
341  * cgroup_css - obtain a cgroup's css for the specified subsystem
342  * @cgrp: the cgroup of interest
343  * @ss: the subsystem of interest (%NULL returns @cgrp->self)
344  *
345  * Return @cgrp's css (cgroup_subsys_state) associated with @ss.  This
346  * function must be called either under cgroup_mutex or rcu_read_lock() and
347  * the caller is responsible for pinning the returned css if it wants to
348  * keep accessing it outside the said locks.  This function may return
349  * %NULL if @cgrp doesn't have @subsys_id enabled.
350  */
cgroup_css(struct cgroup * cgrp,struct cgroup_subsys * ss)351 static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
352 					      struct cgroup_subsys *ss)
353 {
354 	if (ss)
355 		return rcu_dereference_check(cgrp->subsys[ss->id],
356 					lockdep_is_held(&cgroup_mutex));
357 	else
358 		return &cgrp->self;
359 }
360 
361 /**
362  * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
363  * @cgrp: the cgroup of interest
364  * @ss: the subsystem of interest (%NULL returns @cgrp->self)
365  *
366  * Similar to cgroup_css() but returns the effective css, which is defined
367  * as the matching css of the nearest ancestor including self which has @ss
368  * enabled.  If @ss is associated with the hierarchy @cgrp is on, this
369  * function is guaranteed to return non-NULL css.
370  */
cgroup_e_css(struct cgroup * cgrp,struct cgroup_subsys * ss)371 static struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
372 						struct cgroup_subsys *ss)
373 {
374 	lockdep_assert_held(&cgroup_mutex);
375 
376 	if (!ss)
377 		return &cgrp->self;
378 
379 	if (!(cgrp->root->subsys_mask & (1 << ss->id)))
380 		return NULL;
381 
382 	/*
383 	 * This function is used while updating css associations and thus
384 	 * can't test the csses directly.  Use ->child_subsys_mask.
385 	 */
386 	while (cgroup_parent(cgrp) &&
387 	       !(cgroup_parent(cgrp)->child_subsys_mask & (1 << ss->id)))
388 		cgrp = cgroup_parent(cgrp);
389 
390 	return cgroup_css(cgrp, ss);
391 }
392 
393 /**
394  * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
395  * @cgrp: the cgroup of interest
396  * @ss: the subsystem of interest
397  *
398  * Find and get the effective css of @cgrp for @ss.  The effective css is
399  * defined as the matching css of the nearest ancestor including self which
400  * has @ss enabled.  If @ss is not mounted on the hierarchy @cgrp is on,
401  * the root css is returned, so this function always returns a valid css.
402  * The returned css must be put using css_put().
403  */
cgroup_get_e_css(struct cgroup * cgrp,struct cgroup_subsys * ss)404 struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
405 					     struct cgroup_subsys *ss)
406 {
407 	struct cgroup_subsys_state *css;
408 
409 	rcu_read_lock();
410 
411 	do {
412 		css = cgroup_css(cgrp, ss);
413 
414 		if (css && css_tryget_online(css))
415 			goto out_unlock;
416 		cgrp = cgroup_parent(cgrp);
417 	} while (cgrp);
418 
419 	css = init_css_set.subsys[ss->id];
420 	css_get(css);
421 out_unlock:
422 	rcu_read_unlock();
423 	return css;
424 }
425 
426 /* convenient tests for these bits */
cgroup_is_dead(const struct cgroup * cgrp)427 static inline bool cgroup_is_dead(const struct cgroup *cgrp)
428 {
429 	return !(cgrp->self.flags & CSS_ONLINE);
430 }
431 
cgroup_get(struct cgroup * cgrp)432 static void cgroup_get(struct cgroup *cgrp)
433 {
434 	WARN_ON_ONCE(cgroup_is_dead(cgrp));
435 	css_get(&cgrp->self);
436 }
437 
cgroup_tryget(struct cgroup * cgrp)438 static bool cgroup_tryget(struct cgroup *cgrp)
439 {
440 	return css_tryget(&cgrp->self);
441 }
442 
cgroup_put(struct cgroup * cgrp)443 static void cgroup_put(struct cgroup *cgrp)
444 {
445 	css_put(&cgrp->self);
446 }
447 
of_css(struct kernfs_open_file * of)448 struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
449 {
450 	struct cgroup *cgrp = of->kn->parent->priv;
451 	struct cftype *cft = of_cft(of);
452 
453 	/*
454 	 * This is open and unprotected implementation of cgroup_css().
455 	 * seq_css() is only called from a kernfs file operation which has
456 	 * an active reference on the file.  Because all the subsystem
457 	 * files are drained before a css is disassociated with a cgroup,
458 	 * the matching css from the cgroup's subsys table is guaranteed to
459 	 * be and stay valid until the enclosing operation is complete.
460 	 */
461 	if (cft->ss)
462 		return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
463 	else
464 		return &cgrp->self;
465 }
466 EXPORT_SYMBOL_GPL(of_css);
467 
468 /**
469  * cgroup_is_descendant - test ancestry
470  * @cgrp: the cgroup to be tested
471  * @ancestor: possible ancestor of @cgrp
472  *
473  * Test whether @cgrp is a descendant of @ancestor.  It also returns %true
474  * if @cgrp == @ancestor.  This function is safe to call as long as @cgrp
475  * and @ancestor are accessible.
476  */
cgroup_is_descendant(struct cgroup * cgrp,struct cgroup * ancestor)477 bool cgroup_is_descendant(struct cgroup *cgrp, struct cgroup *ancestor)
478 {
479 	while (cgrp) {
480 		if (cgrp == ancestor)
481 			return true;
482 		cgrp = cgroup_parent(cgrp);
483 	}
484 	return false;
485 }
486 
notify_on_release(const struct cgroup * cgrp)487 static int notify_on_release(const struct cgroup *cgrp)
488 {
489 	return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
490 }
491 
492 /**
493  * for_each_css - iterate all css's of a cgroup
494  * @css: the iteration cursor
495  * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
496  * @cgrp: the target cgroup to iterate css's of
497  *
498  * Should be called under cgroup_[tree_]mutex.
499  */
500 #define for_each_css(css, ssid, cgrp)					\
501 	for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++)	\
502 		if (!((css) = rcu_dereference_check(			\
503 				(cgrp)->subsys[(ssid)],			\
504 				lockdep_is_held(&cgroup_mutex)))) { }	\
505 		else
506 
507 /**
508  * for_each_e_css - iterate all effective css's of a cgroup
509  * @css: the iteration cursor
510  * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
511  * @cgrp: the target cgroup to iterate css's of
512  *
513  * Should be called under cgroup_[tree_]mutex.
514  */
515 #define for_each_e_css(css, ssid, cgrp)					\
516 	for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++)	\
517 		if (!((css) = cgroup_e_css(cgrp, cgroup_subsys[(ssid)]))) \
518 			;						\
519 		else
520 
521 /**
522  * for_each_subsys - iterate all enabled cgroup subsystems
523  * @ss: the iteration cursor
524  * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
525  */
526 #define for_each_subsys(ss, ssid)					\
527 	for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT &&		\
528 	     (((ss) = cgroup_subsys[ssid]) || true); (ssid)++)
529 
530 /**
531  * for_each_subsys_which - filter for_each_subsys with a bitmask
532  * @ss: the iteration cursor
533  * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
534  * @ss_maskp: a pointer to the bitmask
535  *
536  * The block will only run for cases where the ssid-th bit (1 << ssid) of
537  * mask is set to 1.
538  */
539 #define for_each_subsys_which(ss, ssid, ss_maskp)			\
540 	if (!CGROUP_SUBSYS_COUNT) /* to avoid spurious gcc warning */	\
541 		(ssid) = 0;						\
542 	else								\
543 		for_each_set_bit(ssid, ss_maskp, CGROUP_SUBSYS_COUNT)	\
544 			if (((ss) = cgroup_subsys[ssid]) && false)	\
545 				break;					\
546 			else
547 
548 /* iterate across the hierarchies */
549 #define for_each_root(root)						\
550 	list_for_each_entry((root), &cgroup_roots, root_list)
551 
552 /* iterate over child cgrps, lock should be held throughout iteration */
553 #define cgroup_for_each_live_child(child, cgrp)				\
554 	list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
555 		if (({ lockdep_assert_held(&cgroup_mutex);		\
556 		       cgroup_is_dead(child); }))			\
557 			;						\
558 		else
559 
560 static void cgroup_release_agent(struct work_struct *work);
561 static void check_for_release(struct cgroup *cgrp);
562 
563 /*
564  * A cgroup can be associated with multiple css_sets as different tasks may
565  * belong to different cgroups on different hierarchies.  In the other
566  * direction, a css_set is naturally associated with multiple cgroups.
567  * This M:N relationship is represented by the following link structure
568  * which exists for each association and allows traversing the associations
569  * from both sides.
570  */
571 struct cgrp_cset_link {
572 	/* the cgroup and css_set this link associates */
573 	struct cgroup		*cgrp;
574 	struct css_set		*cset;
575 
576 	/* list of cgrp_cset_links anchored at cgrp->cset_links */
577 	struct list_head	cset_link;
578 
579 	/* list of cgrp_cset_links anchored at css_set->cgrp_links */
580 	struct list_head	cgrp_link;
581 };
582 
583 /*
584  * The default css_set - used by init and its children prior to any
585  * hierarchies being mounted. It contains a pointer to the root state
586  * for each subsystem. Also used to anchor the list of css_sets. Not
587  * reference-counted, to improve performance when child cgroups
588  * haven't been created.
589  */
590 struct css_set init_css_set = {
591 	.refcount		= ATOMIC_INIT(1),
592 	.cgrp_links		= LIST_HEAD_INIT(init_css_set.cgrp_links),
593 	.tasks			= LIST_HEAD_INIT(init_css_set.tasks),
594 	.mg_tasks		= LIST_HEAD_INIT(init_css_set.mg_tasks),
595 	.mg_preload_node	= LIST_HEAD_INIT(init_css_set.mg_preload_node),
596 	.mg_node		= LIST_HEAD_INIT(init_css_set.mg_node),
597 	.task_iters		= LIST_HEAD_INIT(init_css_set.task_iters),
598 };
599 
600 static int css_set_count	= 1;	/* 1 for init_css_set */
601 
602 /**
603  * css_set_populated - does a css_set contain any tasks?
604  * @cset: target css_set
605  */
css_set_populated(struct css_set * cset)606 static bool css_set_populated(struct css_set *cset)
607 {
608 	lockdep_assert_held(&css_set_lock);
609 
610 	return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks);
611 }
612 
613 /**
614  * cgroup_update_populated - updated populated count of a cgroup
615  * @cgrp: the target cgroup
616  * @populated: inc or dec populated count
617  *
618  * One of the css_sets associated with @cgrp is either getting its first
619  * task or losing the last.  Update @cgrp->populated_cnt accordingly.  The
620  * count is propagated towards root so that a given cgroup's populated_cnt
621  * is zero iff the cgroup and all its descendants don't contain any tasks.
622  *
623  * @cgrp's interface file "cgroup.populated" is zero if
624  * @cgrp->populated_cnt is zero and 1 otherwise.  When @cgrp->populated_cnt
625  * changes from or to zero, userland is notified that the content of the
626  * interface file has changed.  This can be used to detect when @cgrp and
627  * its descendants become populated or empty.
628  */
cgroup_update_populated(struct cgroup * cgrp,bool populated)629 static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
630 {
631 	lockdep_assert_held(&css_set_lock);
632 
633 	do {
634 		bool trigger;
635 
636 		if (populated)
637 			trigger = !cgrp->populated_cnt++;
638 		else
639 			trigger = !--cgrp->populated_cnt;
640 
641 		if (!trigger)
642 			break;
643 
644 		check_for_release(cgrp);
645 		cgroup_file_notify(&cgrp->events_file);
646 
647 		cgrp = cgroup_parent(cgrp);
648 	} while (cgrp);
649 }
650 
651 /**
652  * css_set_update_populated - update populated state of a css_set
653  * @cset: target css_set
654  * @populated: whether @cset is populated or depopulated
655  *
656  * @cset is either getting the first task or losing the last.  Update the
657  * ->populated_cnt of all associated cgroups accordingly.
658  */
css_set_update_populated(struct css_set * cset,bool populated)659 static void css_set_update_populated(struct css_set *cset, bool populated)
660 {
661 	struct cgrp_cset_link *link;
662 
663 	lockdep_assert_held(&css_set_lock);
664 
665 	list_for_each_entry(link, &cset->cgrp_links, cgrp_link)
666 		cgroup_update_populated(link->cgrp, populated);
667 }
668 
669 /**
670  * css_set_move_task - move a task from one css_set to another
671  * @task: task being moved
672  * @from_cset: css_set @task currently belongs to (may be NULL)
673  * @to_cset: new css_set @task is being moved to (may be NULL)
674  * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks
675  *
676  * Move @task from @from_cset to @to_cset.  If @task didn't belong to any
677  * css_set, @from_cset can be NULL.  If @task is being disassociated
678  * instead of moved, @to_cset can be NULL.
679  *
680  * This function automatically handles populated_cnt updates and
681  * css_task_iter adjustments but the caller is responsible for managing
682  * @from_cset and @to_cset's reference counts.
683  */
css_set_move_task(struct task_struct * task,struct css_set * from_cset,struct css_set * to_cset,bool use_mg_tasks)684 static void css_set_move_task(struct task_struct *task,
685 			      struct css_set *from_cset, struct css_set *to_cset,
686 			      bool use_mg_tasks)
687 {
688 	lockdep_assert_held(&css_set_lock);
689 
690 	if (from_cset) {
691 		struct css_task_iter *it, *pos;
692 
693 		WARN_ON_ONCE(list_empty(&task->cg_list));
694 
695 		/*
696 		 * @task is leaving, advance task iterators which are
697 		 * pointing to it so that they can resume at the next
698 		 * position.  Advancing an iterator might remove it from
699 		 * the list, use safe walk.  See css_task_iter_advance*()
700 		 * for details.
701 		 */
702 		list_for_each_entry_safe(it, pos, &from_cset->task_iters,
703 					 iters_node)
704 			if (it->task_pos == &task->cg_list)
705 				css_task_iter_advance(it);
706 
707 		list_del_init(&task->cg_list);
708 		if (!css_set_populated(from_cset))
709 			css_set_update_populated(from_cset, false);
710 	} else {
711 		WARN_ON_ONCE(!list_empty(&task->cg_list));
712 	}
713 
714 	if (to_cset) {
715 		/*
716 		 * We are synchronized through cgroup_threadgroup_rwsem
717 		 * against PF_EXITING setting such that we can't race
718 		 * against cgroup_exit() changing the css_set to
719 		 * init_css_set and dropping the old one.
720 		 */
721 		WARN_ON_ONCE(task->flags & PF_EXITING);
722 
723 		if (!css_set_populated(to_cset))
724 			css_set_update_populated(to_cset, true);
725 		rcu_assign_pointer(task->cgroups, to_cset);
726 		list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks :
727 							     &to_cset->tasks);
728 	}
729 }
730 
731 /*
732  * hash table for cgroup groups. This improves the performance to find
733  * an existing css_set. This hash doesn't (currently) take into
734  * account cgroups in empty hierarchies.
735  */
736 #define CSS_SET_HASH_BITS	7
737 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
738 
css_set_hash(struct cgroup_subsys_state * css[])739 static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
740 {
741 	unsigned long key = 0UL;
742 	struct cgroup_subsys *ss;
743 	int i;
744 
745 	for_each_subsys(ss, i)
746 		key += (unsigned long)css[i];
747 	key = (key >> 16) ^ key;
748 
749 	return key;
750 }
751 
put_css_set_locked(struct css_set * cset)752 static void put_css_set_locked(struct css_set *cset)
753 {
754 	struct cgrp_cset_link *link, *tmp_link;
755 	struct cgroup_subsys *ss;
756 	int ssid;
757 
758 	lockdep_assert_held(&css_set_lock);
759 
760 	if (!atomic_dec_and_test(&cset->refcount))
761 		return;
762 
763 	/* This css_set is dead. unlink it and release cgroup and css refs */
764 	for_each_subsys(ss, ssid) {
765 		list_del(&cset->e_cset_node[ssid]);
766 		css_put(cset->subsys[ssid]);
767 	}
768 	hash_del(&cset->hlist);
769 	css_set_count--;
770 
771 	list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
772 		list_del(&link->cset_link);
773 		list_del(&link->cgrp_link);
774 		if (cgroup_parent(link->cgrp))
775 			cgroup_put(link->cgrp);
776 		kfree(link);
777 	}
778 
779 	kfree_rcu(cset, rcu_head);
780 }
781 
put_css_set(struct css_set * cset)782 static void put_css_set(struct css_set *cset)
783 {
784 	/*
785 	 * Ensure that the refcount doesn't hit zero while any readers
786 	 * can see it. Similar to atomic_dec_and_lock(), but for an
787 	 * rwlock
788 	 */
789 	if (atomic_add_unless(&cset->refcount, -1, 1))
790 		return;
791 
792 	spin_lock_bh(&css_set_lock);
793 	put_css_set_locked(cset);
794 	spin_unlock_bh(&css_set_lock);
795 }
796 
797 /*
798  * refcounted get/put for css_set objects
799  */
get_css_set(struct css_set * cset)800 static inline void get_css_set(struct css_set *cset)
801 {
802 	atomic_inc(&cset->refcount);
803 }
804 
805 /**
806  * compare_css_sets - helper function for find_existing_css_set().
807  * @cset: candidate css_set being tested
808  * @old_cset: existing css_set for a task
809  * @new_cgrp: cgroup that's being entered by the task
810  * @template: desired set of css pointers in css_set (pre-calculated)
811  *
812  * Returns true if "cset" matches "old_cset" except for the hierarchy
813  * which "new_cgrp" belongs to, for which it should match "new_cgrp".
814  */
compare_css_sets(struct css_set * cset,struct css_set * old_cset,struct cgroup * new_cgrp,struct cgroup_subsys_state * template[])815 static bool compare_css_sets(struct css_set *cset,
816 			     struct css_set *old_cset,
817 			     struct cgroup *new_cgrp,
818 			     struct cgroup_subsys_state *template[])
819 {
820 	struct list_head *l1, *l2;
821 
822 	/*
823 	 * On the default hierarchy, there can be csets which are
824 	 * associated with the same set of cgroups but different csses.
825 	 * Let's first ensure that csses match.
826 	 */
827 	if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
828 		return false;
829 
830 	/*
831 	 * Compare cgroup pointers in order to distinguish between
832 	 * different cgroups in hierarchies.  As different cgroups may
833 	 * share the same effective css, this comparison is always
834 	 * necessary.
835 	 */
836 	l1 = &cset->cgrp_links;
837 	l2 = &old_cset->cgrp_links;
838 	while (1) {
839 		struct cgrp_cset_link *link1, *link2;
840 		struct cgroup *cgrp1, *cgrp2;
841 
842 		l1 = l1->next;
843 		l2 = l2->next;
844 		/* See if we reached the end - both lists are equal length. */
845 		if (l1 == &cset->cgrp_links) {
846 			BUG_ON(l2 != &old_cset->cgrp_links);
847 			break;
848 		} else {
849 			BUG_ON(l2 == &old_cset->cgrp_links);
850 		}
851 		/* Locate the cgroups associated with these links. */
852 		link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
853 		link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
854 		cgrp1 = link1->cgrp;
855 		cgrp2 = link2->cgrp;
856 		/* Hierarchies should be linked in the same order. */
857 		BUG_ON(cgrp1->root != cgrp2->root);
858 
859 		/*
860 		 * If this hierarchy is the hierarchy of the cgroup
861 		 * that's changing, then we need to check that this
862 		 * css_set points to the new cgroup; if it's any other
863 		 * hierarchy, then this css_set should point to the
864 		 * same cgroup as the old css_set.
865 		 */
866 		if (cgrp1->root == new_cgrp->root) {
867 			if (cgrp1 != new_cgrp)
868 				return false;
869 		} else {
870 			if (cgrp1 != cgrp2)
871 				return false;
872 		}
873 	}
874 	return true;
875 }
876 
877 /**
878  * find_existing_css_set - init css array and find the matching css_set
879  * @old_cset: the css_set that we're using before the cgroup transition
880  * @cgrp: the cgroup that we're moving into
881  * @template: out param for the new set of csses, should be clear on entry
882  */
find_existing_css_set(struct css_set * old_cset,struct cgroup * cgrp,struct cgroup_subsys_state * template[])883 static struct css_set *find_existing_css_set(struct css_set *old_cset,
884 					struct cgroup *cgrp,
885 					struct cgroup_subsys_state *template[])
886 {
887 	struct cgroup_root *root = cgrp->root;
888 	struct cgroup_subsys *ss;
889 	struct css_set *cset;
890 	unsigned long key;
891 	int i;
892 
893 	/*
894 	 * Build the set of subsystem state objects that we want to see in the
895 	 * new css_set. while subsystems can change globally, the entries here
896 	 * won't change, so no need for locking.
897 	 */
898 	for_each_subsys(ss, i) {
899 		if (root->subsys_mask & (1UL << i)) {
900 			/*
901 			 * @ss is in this hierarchy, so we want the
902 			 * effective css from @cgrp.
903 			 */
904 			template[i] = cgroup_e_css(cgrp, ss);
905 		} else {
906 			/*
907 			 * @ss is not in this hierarchy, so we don't want
908 			 * to change the css.
909 			 */
910 			template[i] = old_cset->subsys[i];
911 		}
912 	}
913 
914 	key = css_set_hash(template);
915 	hash_for_each_possible(css_set_table, cset, hlist, key) {
916 		if (!compare_css_sets(cset, old_cset, cgrp, template))
917 			continue;
918 
919 		/* This css_set matches what we need */
920 		return cset;
921 	}
922 
923 	/* No existing cgroup group matched */
924 	return NULL;
925 }
926 
free_cgrp_cset_links(struct list_head * links_to_free)927 static void free_cgrp_cset_links(struct list_head *links_to_free)
928 {
929 	struct cgrp_cset_link *link, *tmp_link;
930 
931 	list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
932 		list_del(&link->cset_link);
933 		kfree(link);
934 	}
935 }
936 
937 /**
938  * allocate_cgrp_cset_links - allocate cgrp_cset_links
939  * @count: the number of links to allocate
940  * @tmp_links: list_head the allocated links are put on
941  *
942  * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
943  * through ->cset_link.  Returns 0 on success or -errno.
944  */
allocate_cgrp_cset_links(int count,struct list_head * tmp_links)945 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
946 {
947 	struct cgrp_cset_link *link;
948 	int i;
949 
950 	INIT_LIST_HEAD(tmp_links);
951 
952 	for (i = 0; i < count; i++) {
953 		link = kzalloc(sizeof(*link), GFP_KERNEL);
954 		if (!link) {
955 			free_cgrp_cset_links(tmp_links);
956 			return -ENOMEM;
957 		}
958 		list_add(&link->cset_link, tmp_links);
959 	}
960 	return 0;
961 }
962 
963 /**
964  * link_css_set - a helper function to link a css_set to a cgroup
965  * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
966  * @cset: the css_set to be linked
967  * @cgrp: the destination cgroup
968  */
link_css_set(struct list_head * tmp_links,struct css_set * cset,struct cgroup * cgrp)969 static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
970 			 struct cgroup *cgrp)
971 {
972 	struct cgrp_cset_link *link;
973 
974 	BUG_ON(list_empty(tmp_links));
975 
976 	if (cgroup_on_dfl(cgrp))
977 		cset->dfl_cgrp = cgrp;
978 
979 	link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
980 	link->cset = cset;
981 	link->cgrp = cgrp;
982 
983 	/*
984 	 * Always add links to the tail of the lists so that the lists are
985 	 * in choronological order.
986 	 */
987 	list_move_tail(&link->cset_link, &cgrp->cset_links);
988 	list_add_tail(&link->cgrp_link, &cset->cgrp_links);
989 
990 	if (cgroup_parent(cgrp))
991 		cgroup_get(cgrp);
992 }
993 
994 /**
995  * find_css_set - return a new css_set with one cgroup updated
996  * @old_cset: the baseline css_set
997  * @cgrp: the cgroup to be updated
998  *
999  * Return a new css_set that's equivalent to @old_cset, but with @cgrp
1000  * substituted into the appropriate hierarchy.
1001  */
find_css_set(struct css_set * old_cset,struct cgroup * cgrp)1002 static struct css_set *find_css_set(struct css_set *old_cset,
1003 				    struct cgroup *cgrp)
1004 {
1005 	struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
1006 	struct css_set *cset;
1007 	struct list_head tmp_links;
1008 	struct cgrp_cset_link *link;
1009 	struct cgroup_subsys *ss;
1010 	unsigned long key;
1011 	int ssid;
1012 
1013 	lockdep_assert_held(&cgroup_mutex);
1014 
1015 	/* First see if we already have a cgroup group that matches
1016 	 * the desired set */
1017 	spin_lock_bh(&css_set_lock);
1018 	cset = find_existing_css_set(old_cset, cgrp, template);
1019 	if (cset)
1020 		get_css_set(cset);
1021 	spin_unlock_bh(&css_set_lock);
1022 
1023 	if (cset)
1024 		return cset;
1025 
1026 	cset = kzalloc(sizeof(*cset), GFP_KERNEL);
1027 	if (!cset)
1028 		return NULL;
1029 
1030 	/* Allocate all the cgrp_cset_link objects that we'll need */
1031 	if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
1032 		kfree(cset);
1033 		return NULL;
1034 	}
1035 
1036 	atomic_set(&cset->refcount, 1);
1037 	INIT_LIST_HEAD(&cset->cgrp_links);
1038 	INIT_LIST_HEAD(&cset->tasks);
1039 	INIT_LIST_HEAD(&cset->mg_tasks);
1040 	INIT_LIST_HEAD(&cset->mg_preload_node);
1041 	INIT_LIST_HEAD(&cset->mg_node);
1042 	INIT_LIST_HEAD(&cset->task_iters);
1043 	INIT_HLIST_NODE(&cset->hlist);
1044 
1045 	/* Copy the set of subsystem state objects generated in
1046 	 * find_existing_css_set() */
1047 	memcpy(cset->subsys, template, sizeof(cset->subsys));
1048 
1049 	spin_lock_bh(&css_set_lock);
1050 	/* Add reference counts and links from the new css_set. */
1051 	list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
1052 		struct cgroup *c = link->cgrp;
1053 
1054 		if (c->root == cgrp->root)
1055 			c = cgrp;
1056 		link_css_set(&tmp_links, cset, c);
1057 	}
1058 
1059 	BUG_ON(!list_empty(&tmp_links));
1060 
1061 	css_set_count++;
1062 
1063 	/* Add @cset to the hash table */
1064 	key = css_set_hash(cset->subsys);
1065 	hash_add(css_set_table, &cset->hlist, key);
1066 
1067 	for_each_subsys(ss, ssid) {
1068 		struct cgroup_subsys_state *css = cset->subsys[ssid];
1069 
1070 		list_add_tail(&cset->e_cset_node[ssid],
1071 			      &css->cgroup->e_csets[ssid]);
1072 		css_get(css);
1073 	}
1074 
1075 	spin_unlock_bh(&css_set_lock);
1076 
1077 	return cset;
1078 }
1079 
cgroup_root_from_kf(struct kernfs_root * kf_root)1080 static struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
1081 {
1082 	struct cgroup *root_cgrp = kf_root->kn->priv;
1083 
1084 	return root_cgrp->root;
1085 }
1086 
cgroup_init_root_id(struct cgroup_root * root)1087 static int cgroup_init_root_id(struct cgroup_root *root)
1088 {
1089 	int id;
1090 
1091 	lockdep_assert_held(&cgroup_mutex);
1092 
1093 	id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
1094 	if (id < 0)
1095 		return id;
1096 
1097 	root->hierarchy_id = id;
1098 	return 0;
1099 }
1100 
cgroup_exit_root_id(struct cgroup_root * root)1101 static void cgroup_exit_root_id(struct cgroup_root *root)
1102 {
1103 	lockdep_assert_held(&cgroup_mutex);
1104 
1105 	if (root->hierarchy_id) {
1106 		idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
1107 		root->hierarchy_id = 0;
1108 	}
1109 }
1110 
cgroup_free_root(struct cgroup_root * root)1111 static void cgroup_free_root(struct cgroup_root *root)
1112 {
1113 	if (root) {
1114 		/* hierarchy ID should already have been released */
1115 		WARN_ON_ONCE(root->hierarchy_id);
1116 
1117 		idr_destroy(&root->cgroup_idr);
1118 		kfree(root);
1119 	}
1120 }
1121 
cgroup_destroy_root(struct cgroup_root * root)1122 static void cgroup_destroy_root(struct cgroup_root *root)
1123 {
1124 	struct cgroup *cgrp = &root->cgrp;
1125 	struct cgrp_cset_link *link, *tmp_link;
1126 
1127 	mutex_lock(&cgroup_mutex);
1128 
1129 	BUG_ON(atomic_read(&root->nr_cgrps));
1130 	BUG_ON(!list_empty(&cgrp->self.children));
1131 
1132 	/* Rebind all subsystems back to the default hierarchy */
1133 	rebind_subsystems(&cgrp_dfl_root, root->subsys_mask);
1134 
1135 	/*
1136 	 * Release all the links from cset_links to this hierarchy's
1137 	 * root cgroup
1138 	 */
1139 	spin_lock_bh(&css_set_lock);
1140 
1141 	list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1142 		list_del(&link->cset_link);
1143 		list_del(&link->cgrp_link);
1144 		kfree(link);
1145 	}
1146 
1147 	spin_unlock_bh(&css_set_lock);
1148 
1149 	if (!list_empty(&root->root_list)) {
1150 		list_del(&root->root_list);
1151 		cgroup_root_count--;
1152 	}
1153 
1154 	cgroup_exit_root_id(root);
1155 
1156 	mutex_unlock(&cgroup_mutex);
1157 
1158 	kernfs_destroy_root(root->kf_root);
1159 	cgroup_free_root(root);
1160 }
1161 
1162 /* look up cgroup associated with given css_set on the specified hierarchy */
cset_cgroup_from_root(struct css_set * cset,struct cgroup_root * root)1163 static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
1164 					    struct cgroup_root *root)
1165 {
1166 	struct cgroup *res = NULL;
1167 
1168 	lockdep_assert_held(&cgroup_mutex);
1169 	lockdep_assert_held(&css_set_lock);
1170 
1171 	if (cset == &init_css_set) {
1172 		res = &root->cgrp;
1173 	} else {
1174 		struct cgrp_cset_link *link;
1175 
1176 		list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1177 			struct cgroup *c = link->cgrp;
1178 
1179 			if (c->root == root) {
1180 				res = c;
1181 				break;
1182 			}
1183 		}
1184 	}
1185 
1186 	BUG_ON(!res);
1187 	return res;
1188 }
1189 
1190 /*
1191  * Return the cgroup for "task" from the given hierarchy. Must be
1192  * called with cgroup_mutex and css_set_lock held.
1193  */
task_cgroup_from_root(struct task_struct * task,struct cgroup_root * root)1194 static struct cgroup *task_cgroup_from_root(struct task_struct *task,
1195 					    struct cgroup_root *root)
1196 {
1197 	/*
1198 	 * No need to lock the task - since we hold cgroup_mutex the
1199 	 * task can't change groups, so the only thing that can happen
1200 	 * is that it exits and its css is set back to init_css_set.
1201 	 */
1202 	return cset_cgroup_from_root(task_css_set(task), root);
1203 }
1204 
1205 /*
1206  * A task must hold cgroup_mutex to modify cgroups.
1207  *
1208  * Any task can increment and decrement the count field without lock.
1209  * So in general, code holding cgroup_mutex can't rely on the count
1210  * field not changing.  However, if the count goes to zero, then only
1211  * cgroup_attach_task() can increment it again.  Because a count of zero
1212  * means that no tasks are currently attached, therefore there is no
1213  * way a task attached to that cgroup can fork (the other way to
1214  * increment the count).  So code holding cgroup_mutex can safely
1215  * assume that if the count is zero, it will stay zero. Similarly, if
1216  * a task holds cgroup_mutex on a cgroup with zero count, it
1217  * knows that the cgroup won't be removed, as cgroup_rmdir()
1218  * needs that mutex.
1219  *
1220  * A cgroup can only be deleted if both its 'count' of using tasks
1221  * is zero, and its list of 'children' cgroups is empty.  Since all
1222  * tasks in the system use _some_ cgroup, and since there is always at
1223  * least one task in the system (init, pid == 1), therefore, root cgroup
1224  * always has either children cgroups and/or using tasks.  So we don't
1225  * need a special hack to ensure that root cgroup cannot be deleted.
1226  *
1227  * P.S.  One more locking exception.  RCU is used to guard the
1228  * update of a tasks cgroup pointer by cgroup_attach_task()
1229  */
1230 
1231 static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
1232 static const struct file_operations proc_cgroupstats_operations;
1233 
cgroup_file_name(struct cgroup * cgrp,const struct cftype * cft,char * buf)1234 static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1235 			      char *buf)
1236 {
1237 	struct cgroup_subsys *ss = cft->ss;
1238 
1239 	if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
1240 	    !(cgrp->root->flags & CGRP_ROOT_NOPREFIX))
1241 		snprintf(buf, CGROUP_FILE_NAME_MAX, "%s.%s",
1242 			 cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name,
1243 			 cft->name);
1244 	else
1245 		strncpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1246 	return buf;
1247 }
1248 
1249 /**
1250  * cgroup_file_mode - deduce file mode of a control file
1251  * @cft: the control file in question
1252  *
1253  * S_IRUGO for read, S_IWUSR for write.
1254  */
cgroup_file_mode(const struct cftype * cft)1255 static umode_t cgroup_file_mode(const struct cftype *cft)
1256 {
1257 	umode_t mode = 0;
1258 
1259 	if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1260 		mode |= S_IRUGO;
1261 
1262 	if (cft->write_u64 || cft->write_s64 || cft->write) {
1263 		if (cft->flags & CFTYPE_WORLD_WRITABLE)
1264 			mode |= S_IWUGO;
1265 		else
1266 			mode |= S_IWUSR;
1267 	}
1268 
1269 	return mode;
1270 }
1271 
1272 /**
1273  * cgroup_calc_child_subsys_mask - calculate child_subsys_mask
1274  * @cgrp: the target cgroup
1275  * @subtree_control: the new subtree_control mask to consider
1276  *
1277  * On the default hierarchy, a subsystem may request other subsystems to be
1278  * enabled together through its ->depends_on mask.  In such cases, more
1279  * subsystems than specified in "cgroup.subtree_control" may be enabled.
1280  *
1281  * This function calculates which subsystems need to be enabled if
1282  * @subtree_control is to be applied to @cgrp.  The returned mask is always
1283  * a superset of @subtree_control and follows the usual hierarchy rules.
1284  */
cgroup_calc_child_subsys_mask(struct cgroup * cgrp,unsigned long subtree_control)1285 static unsigned long cgroup_calc_child_subsys_mask(struct cgroup *cgrp,
1286 						  unsigned long subtree_control)
1287 {
1288 	struct cgroup *parent = cgroup_parent(cgrp);
1289 	unsigned long cur_ss_mask = subtree_control;
1290 	struct cgroup_subsys *ss;
1291 	int ssid;
1292 
1293 	lockdep_assert_held(&cgroup_mutex);
1294 
1295 	if (!cgroup_on_dfl(cgrp))
1296 		return cur_ss_mask;
1297 
1298 	while (true) {
1299 		unsigned long new_ss_mask = cur_ss_mask;
1300 
1301 		for_each_subsys_which(ss, ssid, &cur_ss_mask)
1302 			new_ss_mask |= ss->depends_on;
1303 
1304 		/*
1305 		 * Mask out subsystems which aren't available.  This can
1306 		 * happen only if some depended-upon subsystems were bound
1307 		 * to non-default hierarchies.
1308 		 */
1309 		if (parent)
1310 			new_ss_mask &= parent->child_subsys_mask;
1311 		else
1312 			new_ss_mask &= cgrp->root->subsys_mask;
1313 
1314 		if (new_ss_mask == cur_ss_mask)
1315 			break;
1316 		cur_ss_mask = new_ss_mask;
1317 	}
1318 
1319 	return cur_ss_mask;
1320 }
1321 
1322 /**
1323  * cgroup_refresh_child_subsys_mask - update child_subsys_mask
1324  * @cgrp: the target cgroup
1325  *
1326  * Update @cgrp->child_subsys_mask according to the current
1327  * @cgrp->subtree_control using cgroup_calc_child_subsys_mask().
1328  */
cgroup_refresh_child_subsys_mask(struct cgroup * cgrp)1329 static void cgroup_refresh_child_subsys_mask(struct cgroup *cgrp)
1330 {
1331 	cgrp->child_subsys_mask =
1332 		cgroup_calc_child_subsys_mask(cgrp, cgrp->subtree_control);
1333 }
1334 
1335 /**
1336  * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1337  * @kn: the kernfs_node being serviced
1338  *
1339  * This helper undoes cgroup_kn_lock_live() and should be invoked before
1340  * the method finishes if locking succeeded.  Note that once this function
1341  * returns the cgroup returned by cgroup_kn_lock_live() may become
1342  * inaccessible any time.  If the caller intends to continue to access the
1343  * cgroup, it should pin it before invoking this function.
1344  */
cgroup_kn_unlock(struct kernfs_node * kn)1345 static void cgroup_kn_unlock(struct kernfs_node *kn)
1346 {
1347 	struct cgroup *cgrp;
1348 
1349 	if (kernfs_type(kn) == KERNFS_DIR)
1350 		cgrp = kn->priv;
1351 	else
1352 		cgrp = kn->parent->priv;
1353 
1354 	mutex_unlock(&cgroup_mutex);
1355 
1356 	kernfs_unbreak_active_protection(kn);
1357 	cgroup_put(cgrp);
1358 }
1359 
1360 /**
1361  * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1362  * @kn: the kernfs_node being serviced
1363  *
1364  * This helper is to be used by a cgroup kernfs method currently servicing
1365  * @kn.  It breaks the active protection, performs cgroup locking and
1366  * verifies that the associated cgroup is alive.  Returns the cgroup if
1367  * alive; otherwise, %NULL.  A successful return should be undone by a
1368  * matching cgroup_kn_unlock() invocation.
1369  *
1370  * Any cgroup kernfs method implementation which requires locking the
1371  * associated cgroup should use this helper.  It avoids nesting cgroup
1372  * locking under kernfs active protection and allows all kernfs operations
1373  * including self-removal.
1374  */
cgroup_kn_lock_live(struct kernfs_node * kn)1375 static struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn)
1376 {
1377 	struct cgroup *cgrp;
1378 
1379 	if (kernfs_type(kn) == KERNFS_DIR)
1380 		cgrp = kn->priv;
1381 	else
1382 		cgrp = kn->parent->priv;
1383 
1384 	/*
1385 	 * We're gonna grab cgroup_mutex which nests outside kernfs
1386 	 * active_ref.  cgroup liveliness check alone provides enough
1387 	 * protection against removal.  Ensure @cgrp stays accessible and
1388 	 * break the active_ref protection.
1389 	 */
1390 	if (!cgroup_tryget(cgrp))
1391 		return NULL;
1392 	kernfs_break_active_protection(kn);
1393 
1394 	mutex_lock(&cgroup_mutex);
1395 
1396 	if (!cgroup_is_dead(cgrp))
1397 		return cgrp;
1398 
1399 	cgroup_kn_unlock(kn);
1400 	return NULL;
1401 }
1402 
cgroup_rm_file(struct cgroup * cgrp,const struct cftype * cft)1403 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
1404 {
1405 	char name[CGROUP_FILE_NAME_MAX];
1406 
1407 	lockdep_assert_held(&cgroup_mutex);
1408 
1409 	if (cft->file_offset) {
1410 		struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss);
1411 		struct cgroup_file *cfile = (void *)css + cft->file_offset;
1412 
1413 		spin_lock_irq(&cgroup_file_kn_lock);
1414 		cfile->kn = NULL;
1415 		spin_unlock_irq(&cgroup_file_kn_lock);
1416 	}
1417 
1418 	kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
1419 }
1420 
1421 /**
1422  * css_clear_dir - remove subsys files in a cgroup directory
1423  * @css: taget css
1424  * @cgrp_override: specify if target cgroup is different from css->cgroup
1425  */
css_clear_dir(struct cgroup_subsys_state * css,struct cgroup * cgrp_override)1426 static void css_clear_dir(struct cgroup_subsys_state *css,
1427 			  struct cgroup *cgrp_override)
1428 {
1429 	struct cgroup *cgrp = cgrp_override ?: css->cgroup;
1430 	struct cftype *cfts;
1431 
1432 	list_for_each_entry(cfts, &css->ss->cfts, node)
1433 		cgroup_addrm_files(css, cgrp, cfts, false);
1434 }
1435 
1436 /**
1437  * css_populate_dir - create subsys files in a cgroup directory
1438  * @css: target css
1439  * @cgrp_overried: specify if target cgroup is different from css->cgroup
1440  *
1441  * On failure, no file is added.
1442  */
css_populate_dir(struct cgroup_subsys_state * css,struct cgroup * cgrp_override)1443 static int css_populate_dir(struct cgroup_subsys_state *css,
1444 			    struct cgroup *cgrp_override)
1445 {
1446 	struct cgroup *cgrp = cgrp_override ?: css->cgroup;
1447 	struct cftype *cfts, *failed_cfts;
1448 	int ret;
1449 
1450 	if (!css->ss) {
1451 		if (cgroup_on_dfl(cgrp))
1452 			cfts = cgroup_dfl_base_files;
1453 		else
1454 			cfts = cgroup_legacy_base_files;
1455 
1456 		return cgroup_addrm_files(&cgrp->self, cgrp, cfts, true);
1457 	}
1458 
1459 	list_for_each_entry(cfts, &css->ss->cfts, node) {
1460 		ret = cgroup_addrm_files(css, cgrp, cfts, true);
1461 		if (ret < 0) {
1462 			failed_cfts = cfts;
1463 			goto err;
1464 		}
1465 	}
1466 	return 0;
1467 err:
1468 	list_for_each_entry(cfts, &css->ss->cfts, node) {
1469 		if (cfts == failed_cfts)
1470 			break;
1471 		cgroup_addrm_files(css, cgrp, cfts, false);
1472 	}
1473 	return ret;
1474 }
1475 
rebind_subsystems(struct cgroup_root * dst_root,unsigned long ss_mask)1476 static int rebind_subsystems(struct cgroup_root *dst_root,
1477 			     unsigned long ss_mask)
1478 {
1479 	struct cgroup *dcgrp = &dst_root->cgrp;
1480 	struct cgroup_subsys *ss;
1481 	unsigned long tmp_ss_mask;
1482 	int ssid, i, ret;
1483 
1484 	lockdep_assert_held(&cgroup_mutex);
1485 
1486 	for_each_subsys_which(ss, ssid, &ss_mask) {
1487 		/* if @ss has non-root csses attached to it, can't move */
1488 		if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)))
1489 			return -EBUSY;
1490 
1491 		/* can't move between two non-dummy roots either */
1492 		if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
1493 			return -EBUSY;
1494 	}
1495 
1496 	/* skip creating root files on dfl_root for inhibited subsystems */
1497 	tmp_ss_mask = ss_mask;
1498 	if (dst_root == &cgrp_dfl_root)
1499 		tmp_ss_mask &= ~cgrp_dfl_root_inhibit_ss_mask;
1500 
1501 	for_each_subsys_which(ss, ssid, &tmp_ss_mask) {
1502 		struct cgroup *scgrp = &ss->root->cgrp;
1503 		int tssid;
1504 
1505 		ret = css_populate_dir(cgroup_css(scgrp, ss), dcgrp);
1506 		if (!ret)
1507 			continue;
1508 
1509 		/*
1510 		 * Rebinding back to the default root is not allowed to
1511 		 * fail.  Using both default and non-default roots should
1512 		 * be rare.  Moving subsystems back and forth even more so.
1513 		 * Just warn about it and continue.
1514 		 */
1515 		if (dst_root == &cgrp_dfl_root) {
1516 			if (cgrp_dfl_root_visible) {
1517 				pr_warn("failed to create files (%d) while rebinding 0x%lx to default root\n",
1518 					ret, ss_mask);
1519 				pr_warn("you may retry by moving them to a different hierarchy and unbinding\n");
1520 			}
1521 			continue;
1522 		}
1523 
1524 		for_each_subsys_which(ss, tssid, &tmp_ss_mask) {
1525 			if (tssid == ssid)
1526 				break;
1527 			css_clear_dir(cgroup_css(scgrp, ss), dcgrp);
1528 		}
1529 		return ret;
1530 	}
1531 
1532 	/*
1533 	 * Nothing can fail from this point on.  Remove files for the
1534 	 * removed subsystems and rebind each subsystem.
1535 	 */
1536 	for_each_subsys_which(ss, ssid, &ss_mask) {
1537 		struct cgroup_root *src_root = ss->root;
1538 		struct cgroup *scgrp = &src_root->cgrp;
1539 		struct cgroup_subsys_state *css = cgroup_css(scgrp, ss);
1540 		struct css_set *cset;
1541 
1542 		WARN_ON(!css || cgroup_css(dcgrp, ss));
1543 
1544 		css_clear_dir(css, NULL);
1545 
1546 		RCU_INIT_POINTER(scgrp->subsys[ssid], NULL);
1547 		rcu_assign_pointer(dcgrp->subsys[ssid], css);
1548 		ss->root = dst_root;
1549 		css->cgroup = dcgrp;
1550 
1551 		spin_lock_bh(&css_set_lock);
1552 		hash_for_each(css_set_table, i, cset, hlist)
1553 			list_move_tail(&cset->e_cset_node[ss->id],
1554 				       &dcgrp->e_csets[ss->id]);
1555 		spin_unlock_bh(&css_set_lock);
1556 
1557 		src_root->subsys_mask &= ~(1 << ssid);
1558 		scgrp->subtree_control &= ~(1 << ssid);
1559 		cgroup_refresh_child_subsys_mask(scgrp);
1560 
1561 		/* default hierarchy doesn't enable controllers by default */
1562 		dst_root->subsys_mask |= 1 << ssid;
1563 		if (dst_root == &cgrp_dfl_root) {
1564 			static_branch_enable(cgroup_subsys_on_dfl_key[ssid]);
1565 		} else {
1566 			dcgrp->subtree_control |= 1 << ssid;
1567 			cgroup_refresh_child_subsys_mask(dcgrp);
1568 			static_branch_disable(cgroup_subsys_on_dfl_key[ssid]);
1569 		}
1570 
1571 		if (ss->bind)
1572 			ss->bind(css);
1573 	}
1574 
1575 	kernfs_activate(dcgrp->kn);
1576 	return 0;
1577 }
1578 
cgroup_show_options(struct seq_file * seq,struct kernfs_root * kf_root)1579 static int cgroup_show_options(struct seq_file *seq,
1580 			       struct kernfs_root *kf_root)
1581 {
1582 	struct cgroup_root *root = cgroup_root_from_kf(kf_root);
1583 	struct cgroup_subsys *ss;
1584 	int ssid;
1585 
1586 	if (root != &cgrp_dfl_root)
1587 		for_each_subsys(ss, ssid)
1588 			if (root->subsys_mask & (1 << ssid))
1589 				seq_show_option(seq, ss->legacy_name, NULL);
1590 	if (root->flags & CGRP_ROOT_NOPREFIX)
1591 		seq_puts(seq, ",noprefix");
1592 	if (root->flags & CGRP_ROOT_XATTR)
1593 		seq_puts(seq, ",xattr");
1594 
1595 	spin_lock(&release_agent_path_lock);
1596 	if (strlen(root->release_agent_path))
1597 		seq_show_option(seq, "release_agent",
1598 				root->release_agent_path);
1599 	spin_unlock(&release_agent_path_lock);
1600 
1601 	if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags))
1602 		seq_puts(seq, ",clone_children");
1603 	if (strlen(root->name))
1604 		seq_show_option(seq, "name", root->name);
1605 	return 0;
1606 }
1607 
1608 struct cgroup_sb_opts {
1609 	unsigned long subsys_mask;
1610 	unsigned int flags;
1611 	char *release_agent;
1612 	bool cpuset_clone_children;
1613 	char *name;
1614 	/* User explicitly requested empty subsystem */
1615 	bool none;
1616 };
1617 
parse_cgroupfs_options(char * data,struct cgroup_sb_opts * opts)1618 static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
1619 {
1620 	char *token, *o = data;
1621 	bool all_ss = false, one_ss = false;
1622 	unsigned long mask = -1UL;
1623 	struct cgroup_subsys *ss;
1624 	int nr_opts = 0;
1625 	int i;
1626 
1627 #ifdef CONFIG_CPUSETS
1628 	mask = ~(1U << cpuset_cgrp_id);
1629 #endif
1630 
1631 	memset(opts, 0, sizeof(*opts));
1632 
1633 	while ((token = strsep(&o, ",")) != NULL) {
1634 		nr_opts++;
1635 
1636 		if (!*token)
1637 			return -EINVAL;
1638 		if (!strcmp(token, "none")) {
1639 			/* Explicitly have no subsystems */
1640 			opts->none = true;
1641 			continue;
1642 		}
1643 		if (!strcmp(token, "all")) {
1644 			/* Mutually exclusive option 'all' + subsystem name */
1645 			if (one_ss)
1646 				return -EINVAL;
1647 			all_ss = true;
1648 			continue;
1649 		}
1650 		if (!strcmp(token, "__DEVEL__sane_behavior")) {
1651 			opts->flags |= CGRP_ROOT_SANE_BEHAVIOR;
1652 			continue;
1653 		}
1654 		if (!strcmp(token, "noprefix")) {
1655 			opts->flags |= CGRP_ROOT_NOPREFIX;
1656 			continue;
1657 		}
1658 		if (!strcmp(token, "clone_children")) {
1659 			opts->cpuset_clone_children = true;
1660 			continue;
1661 		}
1662 		if (!strcmp(token, "xattr")) {
1663 			opts->flags |= CGRP_ROOT_XATTR;
1664 			continue;
1665 		}
1666 		if (!strncmp(token, "release_agent=", 14)) {
1667 			/* Specifying two release agents is forbidden */
1668 			if (opts->release_agent)
1669 				return -EINVAL;
1670 			opts->release_agent =
1671 				kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
1672 			if (!opts->release_agent)
1673 				return -ENOMEM;
1674 			continue;
1675 		}
1676 		if (!strncmp(token, "name=", 5)) {
1677 			const char *name = token + 5;
1678 			/* Can't specify an empty name */
1679 			if (!strlen(name))
1680 				return -EINVAL;
1681 			/* Must match [\w.-]+ */
1682 			for (i = 0; i < strlen(name); i++) {
1683 				char c = name[i];
1684 				if (isalnum(c))
1685 					continue;
1686 				if ((c == '.') || (c == '-') || (c == '_'))
1687 					continue;
1688 				return -EINVAL;
1689 			}
1690 			/* Specifying two names is forbidden */
1691 			if (opts->name)
1692 				return -EINVAL;
1693 			opts->name = kstrndup(name,
1694 					      MAX_CGROUP_ROOT_NAMELEN - 1,
1695 					      GFP_KERNEL);
1696 			if (!opts->name)
1697 				return -ENOMEM;
1698 
1699 			continue;
1700 		}
1701 
1702 		for_each_subsys(ss, i) {
1703 			if (strcmp(token, ss->legacy_name))
1704 				continue;
1705 			if (!cgroup_ssid_enabled(i))
1706 				continue;
1707 
1708 			/* Mutually exclusive option 'all' + subsystem name */
1709 			if (all_ss)
1710 				return -EINVAL;
1711 			opts->subsys_mask |= (1 << i);
1712 			one_ss = true;
1713 
1714 			break;
1715 		}
1716 		if (i == CGROUP_SUBSYS_COUNT)
1717 			return -ENOENT;
1718 	}
1719 
1720 	if (opts->flags & CGRP_ROOT_SANE_BEHAVIOR) {
1721 		pr_warn("sane_behavior: this is still under development and its behaviors will change, proceed at your own risk\n");
1722 		if (nr_opts != 1) {
1723 			pr_err("sane_behavior: no other mount options allowed\n");
1724 			return -EINVAL;
1725 		}
1726 		return 0;
1727 	}
1728 
1729 	/*
1730 	 * If the 'all' option was specified select all the subsystems,
1731 	 * otherwise if 'none', 'name=' and a subsystem name options were
1732 	 * not specified, let's default to 'all'
1733 	 */
1734 	if (all_ss || (!one_ss && !opts->none && !opts->name))
1735 		for_each_subsys(ss, i)
1736 			if (cgroup_ssid_enabled(i))
1737 				opts->subsys_mask |= (1 << i);
1738 
1739 	/*
1740 	 * We either have to specify by name or by subsystems. (So all
1741 	 * empty hierarchies must have a name).
1742 	 */
1743 	if (!opts->subsys_mask && !opts->name)
1744 		return -EINVAL;
1745 
1746 	/*
1747 	 * Option noprefix was introduced just for backward compatibility
1748 	 * with the old cpuset, so we allow noprefix only if mounting just
1749 	 * the cpuset subsystem.
1750 	 */
1751 	if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask))
1752 		return -EINVAL;
1753 
1754 	/* Can't specify "none" and some subsystems */
1755 	if (opts->subsys_mask && opts->none)
1756 		return -EINVAL;
1757 
1758 	return 0;
1759 }
1760 
cgroup_remount(struct kernfs_root * kf_root,int * flags,char * data)1761 static int cgroup_remount(struct kernfs_root *kf_root, int *flags, char *data)
1762 {
1763 	int ret = 0;
1764 	struct cgroup_root *root = cgroup_root_from_kf(kf_root);
1765 	struct cgroup_sb_opts opts;
1766 	unsigned long added_mask, removed_mask;
1767 
1768 	if (root == &cgrp_dfl_root) {
1769 		pr_err("remount is not allowed\n");
1770 		return -EINVAL;
1771 	}
1772 
1773 	mutex_lock(&cgroup_mutex);
1774 
1775 	/* See what subsystems are wanted */
1776 	ret = parse_cgroupfs_options(data, &opts);
1777 	if (ret)
1778 		goto out_unlock;
1779 
1780 	if (opts.subsys_mask != root->subsys_mask || opts.release_agent)
1781 		pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n",
1782 			task_tgid_nr(current), current->comm);
1783 
1784 	added_mask = opts.subsys_mask & ~root->subsys_mask;
1785 	removed_mask = root->subsys_mask & ~opts.subsys_mask;
1786 
1787 	/* Don't allow flags or name to change at remount */
1788 	if ((opts.flags ^ root->flags) ||
1789 	    (opts.name && strcmp(opts.name, root->name))) {
1790 		pr_err("option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"\n",
1791 		       opts.flags, opts.name ?: "", root->flags, root->name);
1792 		ret = -EINVAL;
1793 		goto out_unlock;
1794 	}
1795 
1796 	/* remounting is not allowed for populated hierarchies */
1797 	if (!list_empty(&root->cgrp.self.children)) {
1798 		ret = -EBUSY;
1799 		goto out_unlock;
1800 	}
1801 
1802 	ret = rebind_subsystems(root, added_mask);
1803 	if (ret)
1804 		goto out_unlock;
1805 
1806 	rebind_subsystems(&cgrp_dfl_root, removed_mask);
1807 
1808 	if (opts.release_agent) {
1809 		spin_lock(&release_agent_path_lock);
1810 		strcpy(root->release_agent_path, opts.release_agent);
1811 		spin_unlock(&release_agent_path_lock);
1812 	}
1813  out_unlock:
1814 	kfree(opts.release_agent);
1815 	kfree(opts.name);
1816 	mutex_unlock(&cgroup_mutex);
1817 	return ret;
1818 }
1819 
1820 /*
1821  * To reduce the fork() overhead for systems that are not actually using
1822  * their cgroups capability, we don't maintain the lists running through
1823  * each css_set to its tasks until we see the list actually used - in other
1824  * words after the first mount.
1825  */
1826 static bool use_task_css_set_links __read_mostly;
1827 
cgroup_enable_task_cg_lists(void)1828 static void cgroup_enable_task_cg_lists(void)
1829 {
1830 	struct task_struct *p, *g;
1831 
1832 	spin_lock_bh(&css_set_lock);
1833 
1834 	if (use_task_css_set_links)
1835 		goto out_unlock;
1836 
1837 	use_task_css_set_links = true;
1838 
1839 	/*
1840 	 * We need tasklist_lock because RCU is not safe against
1841 	 * while_each_thread(). Besides, a forking task that has passed
1842 	 * cgroup_post_fork() without seeing use_task_css_set_links = 1
1843 	 * is not guaranteed to have its child immediately visible in the
1844 	 * tasklist if we walk through it with RCU.
1845 	 */
1846 	read_lock(&tasklist_lock);
1847 	do_each_thread(g, p) {
1848 		WARN_ON_ONCE(!list_empty(&p->cg_list) ||
1849 			     task_css_set(p) != &init_css_set);
1850 
1851 		/*
1852 		 * We should check if the process is exiting, otherwise
1853 		 * it will race with cgroup_exit() in that the list
1854 		 * entry won't be deleted though the process has exited.
1855 		 * Do it while holding siglock so that we don't end up
1856 		 * racing against cgroup_exit().
1857 		 */
1858 		spin_lock_irq(&p->sighand->siglock);
1859 		if (!(p->flags & PF_EXITING)) {
1860 			struct css_set *cset = task_css_set(p);
1861 
1862 			if (!css_set_populated(cset))
1863 				css_set_update_populated(cset, true);
1864 			list_add_tail(&p->cg_list, &cset->tasks);
1865 			get_css_set(cset);
1866 		}
1867 		spin_unlock_irq(&p->sighand->siglock);
1868 	} while_each_thread(g, p);
1869 	read_unlock(&tasklist_lock);
1870 out_unlock:
1871 	spin_unlock_bh(&css_set_lock);
1872 }
1873 
init_cgroup_housekeeping(struct cgroup * cgrp)1874 static void init_cgroup_housekeeping(struct cgroup *cgrp)
1875 {
1876 	struct cgroup_subsys *ss;
1877 	int ssid;
1878 
1879 	INIT_LIST_HEAD(&cgrp->self.sibling);
1880 	INIT_LIST_HEAD(&cgrp->self.children);
1881 	INIT_LIST_HEAD(&cgrp->cset_links);
1882 	INIT_LIST_HEAD(&cgrp->pidlists);
1883 	mutex_init(&cgrp->pidlist_mutex);
1884 	cgrp->self.cgroup = cgrp;
1885 	cgrp->self.flags |= CSS_ONLINE;
1886 
1887 	for_each_subsys(ss, ssid)
1888 		INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
1889 
1890 	init_waitqueue_head(&cgrp->offline_waitq);
1891 	INIT_WORK(&cgrp->release_agent_work, cgroup_release_agent);
1892 }
1893 
init_cgroup_root(struct cgroup_root * root,struct cgroup_sb_opts * opts)1894 static void init_cgroup_root(struct cgroup_root *root,
1895 			     struct cgroup_sb_opts *opts)
1896 {
1897 	struct cgroup *cgrp = &root->cgrp;
1898 
1899 	INIT_LIST_HEAD(&root->root_list);
1900 	atomic_set(&root->nr_cgrps, 1);
1901 	cgrp->root = root;
1902 	init_cgroup_housekeeping(cgrp);
1903 	idr_init(&root->cgroup_idr);
1904 
1905 	root->flags = opts->flags;
1906 	if (opts->release_agent)
1907 		strcpy(root->release_agent_path, opts->release_agent);
1908 	if (opts->name)
1909 		strcpy(root->name, opts->name);
1910 	if (opts->cpuset_clone_children)
1911 		set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
1912 }
1913 
cgroup_setup_root(struct cgroup_root * root,unsigned long ss_mask)1914 static int cgroup_setup_root(struct cgroup_root *root, unsigned long ss_mask)
1915 {
1916 	LIST_HEAD(tmp_links);
1917 	struct cgroup *root_cgrp = &root->cgrp;
1918 	struct css_set *cset;
1919 	int i, ret;
1920 
1921 	lockdep_assert_held(&cgroup_mutex);
1922 
1923 	ret = cgroup_idr_alloc(&root->cgroup_idr, root_cgrp, 1, 2, GFP_KERNEL);
1924 	if (ret < 0)
1925 		goto out;
1926 	root_cgrp->id = ret;
1927 
1928 	ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release, 0,
1929 			      GFP_KERNEL);
1930 	if (ret)
1931 		goto out;
1932 
1933 	/*
1934 	 * We're accessing css_set_count without locking css_set_lock here,
1935 	 * but that's OK - it can only be increased by someone holding
1936 	 * cgroup_lock, and that's us. The worst that can happen is that we
1937 	 * have some link structures left over
1938 	 */
1939 	ret = allocate_cgrp_cset_links(css_set_count, &tmp_links);
1940 	if (ret)
1941 		goto cancel_ref;
1942 
1943 	ret = cgroup_init_root_id(root);
1944 	if (ret)
1945 		goto cancel_ref;
1946 
1947 	root->kf_root = kernfs_create_root(&cgroup_kf_syscall_ops,
1948 					   KERNFS_ROOT_CREATE_DEACTIVATED,
1949 					   root_cgrp);
1950 	if (IS_ERR(root->kf_root)) {
1951 		ret = PTR_ERR(root->kf_root);
1952 		goto exit_root_id;
1953 	}
1954 	root_cgrp->kn = root->kf_root->kn;
1955 
1956 	ret = css_populate_dir(&root_cgrp->self, NULL);
1957 	if (ret)
1958 		goto destroy_root;
1959 
1960 	ret = rebind_subsystems(root, ss_mask);
1961 	if (ret)
1962 		goto destroy_root;
1963 
1964 	/*
1965 	 * There must be no failure case after here, since rebinding takes
1966 	 * care of subsystems' refcounts, which are explicitly dropped in
1967 	 * the failure exit path.
1968 	 */
1969 	list_add(&root->root_list, &cgroup_roots);
1970 	cgroup_root_count++;
1971 
1972 	/*
1973 	 * Link the root cgroup in this hierarchy into all the css_set
1974 	 * objects.
1975 	 */
1976 	spin_lock_bh(&css_set_lock);
1977 	hash_for_each(css_set_table, i, cset, hlist) {
1978 		link_css_set(&tmp_links, cset, root_cgrp);
1979 		if (css_set_populated(cset))
1980 			cgroup_update_populated(root_cgrp, true);
1981 	}
1982 	spin_unlock_bh(&css_set_lock);
1983 
1984 	BUG_ON(!list_empty(&root_cgrp->self.children));
1985 	BUG_ON(atomic_read(&root->nr_cgrps) != 1);
1986 
1987 	kernfs_activate(root_cgrp->kn);
1988 	ret = 0;
1989 	goto out;
1990 
1991 destroy_root:
1992 	kernfs_destroy_root(root->kf_root);
1993 	root->kf_root = NULL;
1994 exit_root_id:
1995 	cgroup_exit_root_id(root);
1996 cancel_ref:
1997 	percpu_ref_exit(&root_cgrp->self.refcnt);
1998 out:
1999 	free_cgrp_cset_links(&tmp_links);
2000 	return ret;
2001 }
2002 
cgroup_mount(struct file_system_type * fs_type,int flags,const char * unused_dev_name,void * data)2003 static struct dentry *cgroup_mount(struct file_system_type *fs_type,
2004 			 int flags, const char *unused_dev_name,
2005 			 void *data)
2006 {
2007 	struct super_block *pinned_sb = NULL;
2008 	struct cgroup_subsys *ss;
2009 	struct cgroup_root *root;
2010 	struct cgroup_sb_opts opts;
2011 	struct dentry *dentry;
2012 	int ret;
2013 	int i;
2014 	bool new_sb;
2015 
2016 	/*
2017 	 * The first time anyone tries to mount a cgroup, enable the list
2018 	 * linking each css_set to its tasks and fix up all existing tasks.
2019 	 */
2020 	if (!use_task_css_set_links)
2021 		cgroup_enable_task_cg_lists();
2022 
2023 	mutex_lock(&cgroup_mutex);
2024 
2025 	/* First find the desired set of subsystems */
2026 	ret = parse_cgroupfs_options(data, &opts);
2027 	if (ret)
2028 		goto out_unlock;
2029 
2030 	/* look for a matching existing root */
2031 	if (opts.flags & CGRP_ROOT_SANE_BEHAVIOR) {
2032 		cgrp_dfl_root_visible = true;
2033 		root = &cgrp_dfl_root;
2034 		cgroup_get(&root->cgrp);
2035 		ret = 0;
2036 		goto out_unlock;
2037 	}
2038 
2039 	/*
2040 	 * Destruction of cgroup root is asynchronous, so subsystems may
2041 	 * still be dying after the previous unmount.  Let's drain the
2042 	 * dying subsystems.  We just need to ensure that the ones
2043 	 * unmounted previously finish dying and don't care about new ones
2044 	 * starting.  Testing ref liveliness is good enough.
2045 	 */
2046 	for_each_subsys(ss, i) {
2047 		if (!(opts.subsys_mask & (1 << i)) ||
2048 		    ss->root == &cgrp_dfl_root)
2049 			continue;
2050 
2051 		if (!percpu_ref_tryget_live(&ss->root->cgrp.self.refcnt)) {
2052 			mutex_unlock(&cgroup_mutex);
2053 			msleep(10);
2054 			ret = restart_syscall();
2055 			goto out_free;
2056 		}
2057 		cgroup_put(&ss->root->cgrp);
2058 	}
2059 
2060 	for_each_root(root) {
2061 		bool name_match = false;
2062 
2063 		if (root == &cgrp_dfl_root)
2064 			continue;
2065 
2066 		/*
2067 		 * If we asked for a name then it must match.  Also, if
2068 		 * name matches but sybsys_mask doesn't, we should fail.
2069 		 * Remember whether name matched.
2070 		 */
2071 		if (opts.name) {
2072 			if (strcmp(opts.name, root->name))
2073 				continue;
2074 			name_match = true;
2075 		}
2076 
2077 		/*
2078 		 * If we asked for subsystems (or explicitly for no
2079 		 * subsystems) then they must match.
2080 		 */
2081 		if ((opts.subsys_mask || opts.none) &&
2082 		    (opts.subsys_mask != root->subsys_mask)) {
2083 			if (!name_match)
2084 				continue;
2085 			ret = -EBUSY;
2086 			goto out_unlock;
2087 		}
2088 
2089 		if (root->flags ^ opts.flags)
2090 			pr_warn("new mount options do not match the existing superblock, will be ignored\n");
2091 
2092 		/*
2093 		 * We want to reuse @root whose lifetime is governed by its
2094 		 * ->cgrp.  Let's check whether @root is alive and keep it
2095 		 * that way.  As cgroup_kill_sb() can happen anytime, we
2096 		 * want to block it by pinning the sb so that @root doesn't
2097 		 * get killed before mount is complete.
2098 		 *
2099 		 * With the sb pinned, tryget_live can reliably indicate
2100 		 * whether @root can be reused.  If it's being killed,
2101 		 * drain it.  We can use wait_queue for the wait but this
2102 		 * path is super cold.  Let's just sleep a bit and retry.
2103 		 */
2104 		pinned_sb = kernfs_pin_sb(root->kf_root, NULL);
2105 		if (IS_ERR(pinned_sb) ||
2106 		    !percpu_ref_tryget_live(&root->cgrp.self.refcnt)) {
2107 			mutex_unlock(&cgroup_mutex);
2108 			if (!IS_ERR_OR_NULL(pinned_sb))
2109 				deactivate_super(pinned_sb);
2110 			msleep(10);
2111 			ret = restart_syscall();
2112 			goto out_free;
2113 		}
2114 
2115 		ret = 0;
2116 		goto out_unlock;
2117 	}
2118 
2119 	/*
2120 	 * No such thing, create a new one.  name= matching without subsys
2121 	 * specification is allowed for already existing hierarchies but we
2122 	 * can't create new one without subsys specification.
2123 	 */
2124 	if (!opts.subsys_mask && !opts.none) {
2125 		ret = -EINVAL;
2126 		goto out_unlock;
2127 	}
2128 
2129 	root = kzalloc(sizeof(*root), GFP_KERNEL);
2130 	if (!root) {
2131 		ret = -ENOMEM;
2132 		goto out_unlock;
2133 	}
2134 
2135 	init_cgroup_root(root, &opts);
2136 
2137 	ret = cgroup_setup_root(root, opts.subsys_mask);
2138 	if (ret)
2139 		cgroup_free_root(root);
2140 
2141 out_unlock:
2142 	mutex_unlock(&cgroup_mutex);
2143 out_free:
2144 	kfree(opts.release_agent);
2145 	kfree(opts.name);
2146 
2147 	if (ret)
2148 		return ERR_PTR(ret);
2149 
2150 	dentry = kernfs_mount(fs_type, flags, root->kf_root,
2151 				CGROUP_SUPER_MAGIC, &new_sb);
2152 	if (IS_ERR(dentry) || !new_sb)
2153 		cgroup_put(&root->cgrp);
2154 
2155 	/*
2156 	 * If @pinned_sb, we're reusing an existing root and holding an
2157 	 * extra ref on its sb.  Mount is complete.  Put the extra ref.
2158 	 */
2159 	if (pinned_sb) {
2160 		WARN_ON(new_sb);
2161 		deactivate_super(pinned_sb);
2162 	}
2163 
2164 	return dentry;
2165 }
2166 
cgroup_kill_sb(struct super_block * sb)2167 static void cgroup_kill_sb(struct super_block *sb)
2168 {
2169 	struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
2170 	struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2171 
2172 	/*
2173 	 * If @root doesn't have any mounts or children, start killing it.
2174 	 * This prevents new mounts by disabling percpu_ref_tryget_live().
2175 	 * cgroup_mount() may wait for @root's release.
2176 	 *
2177 	 * And don't kill the default root.
2178 	 */
2179 	if (!list_empty(&root->cgrp.self.children) ||
2180 	    root == &cgrp_dfl_root)
2181 		cgroup_put(&root->cgrp);
2182 	else
2183 		percpu_ref_kill(&root->cgrp.self.refcnt);
2184 
2185 	kernfs_kill_sb(sb);
2186 }
2187 
2188 static struct file_system_type cgroup_fs_type = {
2189 	.name = "cgroup",
2190 	.mount = cgroup_mount,
2191 	.kill_sb = cgroup_kill_sb,
2192 };
2193 
2194 /**
2195  * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
2196  * @task: target task
2197  * @buf: the buffer to write the path into
2198  * @buflen: the length of the buffer
2199  *
2200  * Determine @task's cgroup on the first (the one with the lowest non-zero
2201  * hierarchy_id) cgroup hierarchy and copy its path into @buf.  This
2202  * function grabs cgroup_mutex and shouldn't be used inside locks used by
2203  * cgroup controller callbacks.
2204  *
2205  * Return value is the same as kernfs_path().
2206  */
task_cgroup_path(struct task_struct * task,char * buf,size_t buflen)2207 char *task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
2208 {
2209 	struct cgroup_root *root;
2210 	struct cgroup *cgrp;
2211 	int hierarchy_id = 1;
2212 	char *path = NULL;
2213 
2214 	mutex_lock(&cgroup_mutex);
2215 	spin_lock_bh(&css_set_lock);
2216 
2217 	root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
2218 
2219 	if (root) {
2220 		cgrp = task_cgroup_from_root(task, root);
2221 		path = cgroup_path(cgrp, buf, buflen);
2222 	} else {
2223 		/* if no hierarchy exists, everyone is in "/" */
2224 		if (strlcpy(buf, "/", buflen) < buflen)
2225 			path = buf;
2226 	}
2227 
2228 	spin_unlock_bh(&css_set_lock);
2229 	mutex_unlock(&cgroup_mutex);
2230 	return path;
2231 }
2232 EXPORT_SYMBOL_GPL(task_cgroup_path);
2233 
2234 /* used to track tasks and other necessary states during migration */
2235 struct cgroup_taskset {
2236 	/* the src and dst cset list running through cset->mg_node */
2237 	struct list_head	src_csets;
2238 	struct list_head	dst_csets;
2239 
2240 	/* the subsys currently being processed */
2241 	int			ssid;
2242 
2243 	/*
2244 	 * Fields for cgroup_taskset_*() iteration.
2245 	 *
2246 	 * Before migration is committed, the target migration tasks are on
2247 	 * ->mg_tasks of the csets on ->src_csets.  After, on ->mg_tasks of
2248 	 * the csets on ->dst_csets.  ->csets point to either ->src_csets
2249 	 * or ->dst_csets depending on whether migration is committed.
2250 	 *
2251 	 * ->cur_csets and ->cur_task point to the current task position
2252 	 * during iteration.
2253 	 */
2254 	struct list_head	*csets;
2255 	struct css_set		*cur_cset;
2256 	struct task_struct	*cur_task;
2257 };
2258 
2259 #define CGROUP_TASKSET_INIT(tset)	(struct cgroup_taskset){	\
2260 	.src_csets		= LIST_HEAD_INIT(tset.src_csets),	\
2261 	.dst_csets		= LIST_HEAD_INIT(tset.dst_csets),	\
2262 	.csets			= &tset.src_csets,			\
2263 }
2264 
2265 /**
2266  * cgroup_taskset_add - try to add a migration target task to a taskset
2267  * @task: target task
2268  * @tset: target taskset
2269  *
2270  * Add @task, which is a migration target, to @tset.  This function becomes
2271  * noop if @task doesn't need to be migrated.  @task's css_set should have
2272  * been added as a migration source and @task->cg_list will be moved from
2273  * the css_set's tasks list to mg_tasks one.
2274  */
cgroup_taskset_add(struct task_struct * task,struct cgroup_taskset * tset)2275 static void cgroup_taskset_add(struct task_struct *task,
2276 			       struct cgroup_taskset *tset)
2277 {
2278 	struct css_set *cset;
2279 
2280 	lockdep_assert_held(&css_set_lock);
2281 
2282 	/* @task either already exited or can't exit until the end */
2283 	if (task->flags & PF_EXITING)
2284 		return;
2285 
2286 	/* leave @task alone if post_fork() hasn't linked it yet */
2287 	if (list_empty(&task->cg_list))
2288 		return;
2289 
2290 	cset = task_css_set(task);
2291 	if (!cset->mg_src_cgrp)
2292 		return;
2293 
2294 	list_move_tail(&task->cg_list, &cset->mg_tasks);
2295 	if (list_empty(&cset->mg_node))
2296 		list_add_tail(&cset->mg_node, &tset->src_csets);
2297 	if (list_empty(&cset->mg_dst_cset->mg_node))
2298 		list_move_tail(&cset->mg_dst_cset->mg_node,
2299 			       &tset->dst_csets);
2300 }
2301 
2302 /**
2303  * cgroup_taskset_first - reset taskset and return the first task
2304  * @tset: taskset of interest
2305  * @dst_cssp: output variable for the destination css
2306  *
2307  * @tset iteration is initialized and the first task is returned.
2308  */
cgroup_taskset_first(struct cgroup_taskset * tset,struct cgroup_subsys_state ** dst_cssp)2309 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset,
2310 					 struct cgroup_subsys_state **dst_cssp)
2311 {
2312 	tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
2313 	tset->cur_task = NULL;
2314 
2315 	return cgroup_taskset_next(tset, dst_cssp);
2316 }
2317 
2318 /**
2319  * cgroup_taskset_next - iterate to the next task in taskset
2320  * @tset: taskset of interest
2321  * @dst_cssp: output variable for the destination css
2322  *
2323  * Return the next task in @tset.  Iteration must have been initialized
2324  * with cgroup_taskset_first().
2325  */
cgroup_taskset_next(struct cgroup_taskset * tset,struct cgroup_subsys_state ** dst_cssp)2326 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset,
2327 					struct cgroup_subsys_state **dst_cssp)
2328 {
2329 	struct css_set *cset = tset->cur_cset;
2330 	struct task_struct *task = tset->cur_task;
2331 
2332 	while (&cset->mg_node != tset->csets) {
2333 		if (!task)
2334 			task = list_first_entry(&cset->mg_tasks,
2335 						struct task_struct, cg_list);
2336 		else
2337 			task = list_next_entry(task, cg_list);
2338 
2339 		if (&task->cg_list != &cset->mg_tasks) {
2340 			tset->cur_cset = cset;
2341 			tset->cur_task = task;
2342 
2343 			/*
2344 			 * This function may be called both before and
2345 			 * after cgroup_taskset_migrate().  The two cases
2346 			 * can be distinguished by looking at whether @cset
2347 			 * has its ->mg_dst_cset set.
2348 			 */
2349 			if (cset->mg_dst_cset)
2350 				*dst_cssp = cset->mg_dst_cset->subsys[tset->ssid];
2351 			else
2352 				*dst_cssp = cset->subsys[tset->ssid];
2353 
2354 			return task;
2355 		}
2356 
2357 		cset = list_next_entry(cset, mg_node);
2358 		task = NULL;
2359 	}
2360 
2361 	return NULL;
2362 }
2363 
2364 /**
2365  * cgroup_taskset_migrate - migrate a taskset to a cgroup
2366  * @tset: taget taskset
2367  * @dst_cgrp: destination cgroup
2368  *
2369  * Migrate tasks in @tset to @dst_cgrp.  This function fails iff one of the
2370  * ->can_attach callbacks fails and guarantees that either all or none of
2371  * the tasks in @tset are migrated.  @tset is consumed regardless of
2372  * success.
2373  */
cgroup_taskset_migrate(struct cgroup_taskset * tset,struct cgroup * dst_cgrp)2374 static int cgroup_taskset_migrate(struct cgroup_taskset *tset,
2375 				  struct cgroup *dst_cgrp)
2376 {
2377 	struct cgroup_subsys_state *css, *failed_css = NULL;
2378 	struct task_struct *task, *tmp_task;
2379 	struct css_set *cset, *tmp_cset;
2380 	int i, ret;
2381 
2382 	/* methods shouldn't be called if no task is actually migrating */
2383 	if (list_empty(&tset->src_csets))
2384 		return 0;
2385 
2386 	/* check that we can legitimately attach to the cgroup */
2387 	for_each_e_css(css, i, dst_cgrp) {
2388 		if (css->ss->can_attach) {
2389 			tset->ssid = i;
2390 			ret = css->ss->can_attach(tset);
2391 			if (ret) {
2392 				failed_css = css;
2393 				goto out_cancel_attach;
2394 			}
2395 		}
2396 	}
2397 
2398 	/*
2399 	 * Now that we're guaranteed success, proceed to move all tasks to
2400 	 * the new cgroup.  There are no failure cases after here, so this
2401 	 * is the commit point.
2402 	 */
2403 	spin_lock_bh(&css_set_lock);
2404 	list_for_each_entry(cset, &tset->src_csets, mg_node) {
2405 		list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) {
2406 			struct css_set *from_cset = task_css_set(task);
2407 			struct css_set *to_cset = cset->mg_dst_cset;
2408 
2409 			get_css_set(to_cset);
2410 			css_set_move_task(task, from_cset, to_cset, true);
2411 			put_css_set_locked(from_cset);
2412 		}
2413 	}
2414 	spin_unlock_bh(&css_set_lock);
2415 
2416 	/*
2417 	 * Migration is committed, all target tasks are now on dst_csets.
2418 	 * Nothing is sensitive to fork() after this point.  Notify
2419 	 * controllers that migration is complete.
2420 	 */
2421 	tset->csets = &tset->dst_csets;
2422 
2423 	for_each_e_css(css, i, dst_cgrp) {
2424 		if (css->ss->attach) {
2425 			tset->ssid = i;
2426 			css->ss->attach(tset);
2427 		}
2428 	}
2429 
2430 	ret = 0;
2431 	goto out_release_tset;
2432 
2433 out_cancel_attach:
2434 	for_each_e_css(css, i, dst_cgrp) {
2435 		if (css == failed_css)
2436 			break;
2437 		if (css->ss->cancel_attach) {
2438 			tset->ssid = i;
2439 			css->ss->cancel_attach(tset);
2440 		}
2441 	}
2442 out_release_tset:
2443 	spin_lock_bh(&css_set_lock);
2444 	list_splice_init(&tset->dst_csets, &tset->src_csets);
2445 	list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) {
2446 		list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
2447 		list_del_init(&cset->mg_node);
2448 	}
2449 	spin_unlock_bh(&css_set_lock);
2450 	return ret;
2451 }
2452 
2453 /**
2454  * cgroup_migrate_finish - cleanup after attach
2455  * @preloaded_csets: list of preloaded css_sets
2456  *
2457  * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst().  See
2458  * those functions for details.
2459  */
cgroup_migrate_finish(struct list_head * preloaded_csets)2460 static void cgroup_migrate_finish(struct list_head *preloaded_csets)
2461 {
2462 	struct css_set *cset, *tmp_cset;
2463 
2464 	lockdep_assert_held(&cgroup_mutex);
2465 
2466 	spin_lock_bh(&css_set_lock);
2467 	list_for_each_entry_safe(cset, tmp_cset, preloaded_csets, mg_preload_node) {
2468 		cset->mg_src_cgrp = NULL;
2469 		cset->mg_dst_cset = NULL;
2470 		list_del_init(&cset->mg_preload_node);
2471 		put_css_set_locked(cset);
2472 	}
2473 	spin_unlock_bh(&css_set_lock);
2474 }
2475 
2476 /**
2477  * cgroup_migrate_add_src - add a migration source css_set
2478  * @src_cset: the source css_set to add
2479  * @dst_cgrp: the destination cgroup
2480  * @preloaded_csets: list of preloaded css_sets
2481  *
2482  * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp.  Pin
2483  * @src_cset and add it to @preloaded_csets, which should later be cleaned
2484  * up by cgroup_migrate_finish().
2485  *
2486  * This function may be called without holding cgroup_threadgroup_rwsem
2487  * even if the target is a process.  Threads may be created and destroyed
2488  * but as long as cgroup_mutex is not dropped, no new css_set can be put
2489  * into play and the preloaded css_sets are guaranteed to cover all
2490  * migrations.
2491  */
cgroup_migrate_add_src(struct css_set * src_cset,struct cgroup * dst_cgrp,struct list_head * preloaded_csets)2492 static void cgroup_migrate_add_src(struct css_set *src_cset,
2493 				   struct cgroup *dst_cgrp,
2494 				   struct list_head *preloaded_csets)
2495 {
2496 	struct cgroup *src_cgrp;
2497 
2498 	lockdep_assert_held(&cgroup_mutex);
2499 	lockdep_assert_held(&css_set_lock);
2500 
2501 	/*
2502 	 * If ->dead, @src_set is associated with one or more dead cgroups
2503 	 * and doesn't contain any migratable tasks.  Ignore it early so
2504 	 * that the rest of migration path doesn't get confused by it.
2505 	 */
2506 	if (src_cset->dead)
2507 		return;
2508 
2509 	src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2510 
2511 	if (!list_empty(&src_cset->mg_preload_node))
2512 		return;
2513 
2514 	WARN_ON(src_cset->mg_src_cgrp);
2515 	WARN_ON(!list_empty(&src_cset->mg_tasks));
2516 	WARN_ON(!list_empty(&src_cset->mg_node));
2517 
2518 	src_cset->mg_src_cgrp = src_cgrp;
2519 	get_css_set(src_cset);
2520 	list_add(&src_cset->mg_preload_node, preloaded_csets);
2521 }
2522 
2523 /**
2524  * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
2525  * @dst_cgrp: the destination cgroup (may be %NULL)
2526  * @preloaded_csets: list of preloaded source css_sets
2527  *
2528  * Tasks are about to be moved to @dst_cgrp and all the source css_sets
2529  * have been preloaded to @preloaded_csets.  This function looks up and
2530  * pins all destination css_sets, links each to its source, and append them
2531  * to @preloaded_csets.  If @dst_cgrp is %NULL, the destination of each
2532  * source css_set is assumed to be its cgroup on the default hierarchy.
2533  *
2534  * This function must be called after cgroup_migrate_add_src() has been
2535  * called on each migration source css_set.  After migration is performed
2536  * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2537  * @preloaded_csets.
2538  */
cgroup_migrate_prepare_dst(struct cgroup * dst_cgrp,struct list_head * preloaded_csets)2539 static int cgroup_migrate_prepare_dst(struct cgroup *dst_cgrp,
2540 				      struct list_head *preloaded_csets)
2541 {
2542 	LIST_HEAD(csets);
2543 	struct css_set *src_cset, *tmp_cset;
2544 
2545 	lockdep_assert_held(&cgroup_mutex);
2546 
2547 	/*
2548 	 * Except for the root, child_subsys_mask must be zero for a cgroup
2549 	 * with tasks so that child cgroups don't compete against tasks.
2550 	 */
2551 	if (dst_cgrp && cgroup_on_dfl(dst_cgrp) && cgroup_parent(dst_cgrp) &&
2552 	    dst_cgrp->child_subsys_mask)
2553 		return -EBUSY;
2554 
2555 	/* look up the dst cset for each src cset and link it to src */
2556 	list_for_each_entry_safe(src_cset, tmp_cset, preloaded_csets, mg_preload_node) {
2557 		struct css_set *dst_cset;
2558 
2559 		dst_cset = find_css_set(src_cset,
2560 					dst_cgrp ?: src_cset->dfl_cgrp);
2561 		if (!dst_cset)
2562 			goto err;
2563 
2564 		WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
2565 
2566 		/*
2567 		 * If src cset equals dst, it's noop.  Drop the src.
2568 		 * cgroup_migrate() will skip the cset too.  Note that we
2569 		 * can't handle src == dst as some nodes are used by both.
2570 		 */
2571 		if (src_cset == dst_cset) {
2572 			src_cset->mg_src_cgrp = NULL;
2573 			list_del_init(&src_cset->mg_preload_node);
2574 			put_css_set(src_cset);
2575 			put_css_set(dst_cset);
2576 			continue;
2577 		}
2578 
2579 		src_cset->mg_dst_cset = dst_cset;
2580 
2581 		if (list_empty(&dst_cset->mg_preload_node))
2582 			list_add(&dst_cset->mg_preload_node, &csets);
2583 		else
2584 			put_css_set(dst_cset);
2585 	}
2586 
2587 	list_splice_tail(&csets, preloaded_csets);
2588 	return 0;
2589 err:
2590 	cgroup_migrate_finish(&csets);
2591 	return -ENOMEM;
2592 }
2593 
2594 /**
2595  * cgroup_migrate - migrate a process or task to a cgroup
2596  * @leader: the leader of the process or the task to migrate
2597  * @threadgroup: whether @leader points to the whole process or a single task
2598  * @cgrp: the destination cgroup
2599  *
2600  * Migrate a process or task denoted by @leader to @cgrp.  If migrating a
2601  * process, the caller must be holding cgroup_threadgroup_rwsem.  The
2602  * caller is also responsible for invoking cgroup_migrate_add_src() and
2603  * cgroup_migrate_prepare_dst() on the targets before invoking this
2604  * function and following up with cgroup_migrate_finish().
2605  *
2606  * As long as a controller's ->can_attach() doesn't fail, this function is
2607  * guaranteed to succeed.  This means that, excluding ->can_attach()
2608  * failure, when migrating multiple targets, the success or failure can be
2609  * decided for all targets by invoking group_migrate_prepare_dst() before
2610  * actually starting migrating.
2611  */
cgroup_migrate(struct task_struct * leader,bool threadgroup,struct cgroup * cgrp)2612 static int cgroup_migrate(struct task_struct *leader, bool threadgroup,
2613 			  struct cgroup *cgrp)
2614 {
2615 	struct cgroup_taskset tset = CGROUP_TASKSET_INIT(tset);
2616 	struct task_struct *task;
2617 
2618 	/*
2619 	 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2620 	 * already PF_EXITING could be freed from underneath us unless we
2621 	 * take an rcu_read_lock.
2622 	 */
2623 	spin_lock_bh(&css_set_lock);
2624 	rcu_read_lock();
2625 	task = leader;
2626 	do {
2627 		cgroup_taskset_add(task, &tset);
2628 		if (!threadgroup)
2629 			break;
2630 	} while_each_thread(leader, task);
2631 	rcu_read_unlock();
2632 	spin_unlock_bh(&css_set_lock);
2633 
2634 	return cgroup_taskset_migrate(&tset, cgrp);
2635 }
2636 
2637 /**
2638  * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2639  * @dst_cgrp: the cgroup to attach to
2640  * @leader: the task or the leader of the threadgroup to be attached
2641  * @threadgroup: attach the whole threadgroup?
2642  *
2643  * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
2644  */
cgroup_attach_task(struct cgroup * dst_cgrp,struct task_struct * leader,bool threadgroup)2645 static int cgroup_attach_task(struct cgroup *dst_cgrp,
2646 			      struct task_struct *leader, bool threadgroup)
2647 {
2648 	LIST_HEAD(preloaded_csets);
2649 	struct task_struct *task;
2650 	int ret;
2651 
2652 	/* look up all src csets */
2653 	spin_lock_bh(&css_set_lock);
2654 	rcu_read_lock();
2655 	task = leader;
2656 	do {
2657 		cgroup_migrate_add_src(task_css_set(task), dst_cgrp,
2658 				       &preloaded_csets);
2659 		if (!threadgroup)
2660 			break;
2661 	} while_each_thread(leader, task);
2662 	rcu_read_unlock();
2663 	spin_unlock_bh(&css_set_lock);
2664 
2665 	/* prepare dst csets and commit */
2666 	ret = cgroup_migrate_prepare_dst(dst_cgrp, &preloaded_csets);
2667 	if (!ret)
2668 		ret = cgroup_migrate(leader, threadgroup, dst_cgrp);
2669 
2670 	cgroup_migrate_finish(&preloaded_csets);
2671 	return ret;
2672 }
2673 
cgroup_procs_write_permission(struct task_struct * task,struct cgroup * dst_cgrp,struct kernfs_open_file * of)2674 static int cgroup_procs_write_permission(struct task_struct *task,
2675 					 struct cgroup *dst_cgrp,
2676 					 struct kernfs_open_file *of)
2677 {
2678 	const struct cred *cred = current_cred();
2679 	const struct cred *tcred = get_task_cred(task);
2680 	int ret = 0;
2681 
2682 	/*
2683 	 * even if we're attaching all tasks in the thread group, we only
2684 	 * need to check permissions on one of them.
2685 	 */
2686 	if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
2687 	    !uid_eq(cred->euid, tcred->uid) &&
2688 	    !uid_eq(cred->euid, tcred->suid))
2689 		ret = -EACCES;
2690 
2691 	if (!ret && cgroup_on_dfl(dst_cgrp)) {
2692 		struct super_block *sb = of->file->f_path.dentry->d_sb;
2693 		struct cgroup *cgrp;
2694 		struct inode *inode;
2695 
2696 		spin_lock_bh(&css_set_lock);
2697 		cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
2698 		spin_unlock_bh(&css_set_lock);
2699 
2700 		while (!cgroup_is_descendant(dst_cgrp, cgrp))
2701 			cgrp = cgroup_parent(cgrp);
2702 
2703 		ret = -ENOMEM;
2704 		inode = kernfs_get_inode(sb, cgrp->procs_file.kn);
2705 		if (inode) {
2706 			ret = inode_permission(inode, MAY_WRITE);
2707 			iput(inode);
2708 		}
2709 	}
2710 
2711 	put_cred(tcred);
2712 	return ret;
2713 }
2714 
2715 /*
2716  * Find the task_struct of the task to attach by vpid and pass it along to the
2717  * function to attach either it or all tasks in its threadgroup. Will lock
2718  * cgroup_mutex and threadgroup.
2719  */
__cgroup_procs_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off,bool threadgroup)2720 static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf,
2721 				    size_t nbytes, loff_t off, bool threadgroup)
2722 {
2723 	struct task_struct *tsk;
2724 	struct cgroup_subsys *ss;
2725 	struct cgroup *cgrp;
2726 	pid_t pid;
2727 	int ssid, ret;
2728 
2729 	if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2730 		return -EINVAL;
2731 
2732 	cgrp = cgroup_kn_lock_live(of->kn);
2733 	if (!cgrp)
2734 		return -ENODEV;
2735 
2736 	percpu_down_write(&cgroup_threadgroup_rwsem);
2737 	rcu_read_lock();
2738 	if (pid) {
2739 		tsk = find_task_by_vpid(pid);
2740 		if (!tsk) {
2741 			ret = -ESRCH;
2742 			goto out_unlock_rcu;
2743 		}
2744 	} else {
2745 		tsk = current;
2746 	}
2747 
2748 	if (threadgroup)
2749 		tsk = tsk->group_leader;
2750 
2751 	/*
2752 	 * Workqueue threads may acquire PF_NO_SETAFFINITY and become
2753 	 * trapped in a cpuset, or RT worker may be born in a cgroup
2754 	 * with no rt_runtime allocated.  Just say no.
2755 	 */
2756 	if (tsk == kthreadd_task || (tsk->flags & PF_NO_SETAFFINITY)) {
2757 		ret = -EINVAL;
2758 		goto out_unlock_rcu;
2759 	}
2760 
2761 	get_task_struct(tsk);
2762 	rcu_read_unlock();
2763 
2764 	ret = cgroup_procs_write_permission(tsk, cgrp, of);
2765 	if (!ret)
2766 		ret = cgroup_attach_task(cgrp, tsk, threadgroup);
2767 
2768 	put_task_struct(tsk);
2769 	goto out_unlock_threadgroup;
2770 
2771 out_unlock_rcu:
2772 	rcu_read_unlock();
2773 out_unlock_threadgroup:
2774 	percpu_up_write(&cgroup_threadgroup_rwsem);
2775 	for_each_subsys(ss, ssid)
2776 		if (ss->post_attach)
2777 			ss->post_attach();
2778 	cgroup_kn_unlock(of->kn);
2779 	return ret ?: nbytes;
2780 }
2781 
2782 /**
2783  * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
2784  * @from: attach to all cgroups of a given task
2785  * @tsk: the task to be attached
2786  */
cgroup_attach_task_all(struct task_struct * from,struct task_struct * tsk)2787 int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
2788 {
2789 	struct cgroup_root *root;
2790 	int retval = 0;
2791 
2792 	mutex_lock(&cgroup_mutex);
2793 	for_each_root(root) {
2794 		struct cgroup *from_cgrp;
2795 
2796 		if (root == &cgrp_dfl_root)
2797 			continue;
2798 
2799 		spin_lock_bh(&css_set_lock);
2800 		from_cgrp = task_cgroup_from_root(from, root);
2801 		spin_unlock_bh(&css_set_lock);
2802 
2803 		retval = cgroup_attach_task(from_cgrp, tsk, false);
2804 		if (retval)
2805 			break;
2806 	}
2807 	mutex_unlock(&cgroup_mutex);
2808 
2809 	return retval;
2810 }
2811 EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
2812 
cgroup_tasks_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)2813 static ssize_t cgroup_tasks_write(struct kernfs_open_file *of,
2814 				  char *buf, size_t nbytes, loff_t off)
2815 {
2816 	return __cgroup_procs_write(of, buf, nbytes, off, false);
2817 }
2818 
cgroup_procs_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)2819 static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
2820 				  char *buf, size_t nbytes, loff_t off)
2821 {
2822 	return __cgroup_procs_write(of, buf, nbytes, off, true);
2823 }
2824 
cgroup_release_agent_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)2825 static ssize_t cgroup_release_agent_write(struct kernfs_open_file *of,
2826 					  char *buf, size_t nbytes, loff_t off)
2827 {
2828 	struct cgroup *cgrp;
2829 
2830 	BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
2831 
2832 	cgrp = cgroup_kn_lock_live(of->kn);
2833 	if (!cgrp)
2834 		return -ENODEV;
2835 	spin_lock(&release_agent_path_lock);
2836 	strlcpy(cgrp->root->release_agent_path, strstrip(buf),
2837 		sizeof(cgrp->root->release_agent_path));
2838 	spin_unlock(&release_agent_path_lock);
2839 	cgroup_kn_unlock(of->kn);
2840 	return nbytes;
2841 }
2842 
cgroup_release_agent_show(struct seq_file * seq,void * v)2843 static int cgroup_release_agent_show(struct seq_file *seq, void *v)
2844 {
2845 	struct cgroup *cgrp = seq_css(seq)->cgroup;
2846 
2847 	spin_lock(&release_agent_path_lock);
2848 	seq_puts(seq, cgrp->root->release_agent_path);
2849 	spin_unlock(&release_agent_path_lock);
2850 	seq_putc(seq, '\n');
2851 	return 0;
2852 }
2853 
cgroup_sane_behavior_show(struct seq_file * seq,void * v)2854 static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)
2855 {
2856 	seq_puts(seq, "0\n");
2857 	return 0;
2858 }
2859 
cgroup_print_ss_mask(struct seq_file * seq,unsigned long ss_mask)2860 static void cgroup_print_ss_mask(struct seq_file *seq, unsigned long ss_mask)
2861 {
2862 	struct cgroup_subsys *ss;
2863 	bool printed = false;
2864 	int ssid;
2865 
2866 	for_each_subsys_which(ss, ssid, &ss_mask) {
2867 		if (printed)
2868 			seq_putc(seq, ' ');
2869 		seq_printf(seq, "%s", ss->name);
2870 		printed = true;
2871 	}
2872 	if (printed)
2873 		seq_putc(seq, '\n');
2874 }
2875 
2876 /* show controllers which are currently attached to the default hierarchy */
cgroup_root_controllers_show(struct seq_file * seq,void * v)2877 static int cgroup_root_controllers_show(struct seq_file *seq, void *v)
2878 {
2879 	struct cgroup *cgrp = seq_css(seq)->cgroup;
2880 
2881 	cgroup_print_ss_mask(seq, cgrp->root->subsys_mask &
2882 			     ~cgrp_dfl_root_inhibit_ss_mask);
2883 	return 0;
2884 }
2885 
2886 /* show controllers which are enabled from the parent */
cgroup_controllers_show(struct seq_file * seq,void * v)2887 static int cgroup_controllers_show(struct seq_file *seq, void *v)
2888 {
2889 	struct cgroup *cgrp = seq_css(seq)->cgroup;
2890 
2891 	cgroup_print_ss_mask(seq, cgroup_parent(cgrp)->subtree_control);
2892 	return 0;
2893 }
2894 
2895 /* show controllers which are enabled for a given cgroup's children */
cgroup_subtree_control_show(struct seq_file * seq,void * v)2896 static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
2897 {
2898 	struct cgroup *cgrp = seq_css(seq)->cgroup;
2899 
2900 	cgroup_print_ss_mask(seq, cgrp->subtree_control);
2901 	return 0;
2902 }
2903 
2904 /**
2905  * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
2906  * @cgrp: root of the subtree to update csses for
2907  *
2908  * @cgrp's child_subsys_mask has changed and its subtree's (self excluded)
2909  * css associations need to be updated accordingly.  This function looks up
2910  * all css_sets which are attached to the subtree, creates the matching
2911  * updated css_sets and migrates the tasks to the new ones.
2912  */
cgroup_update_dfl_csses(struct cgroup * cgrp)2913 static int cgroup_update_dfl_csses(struct cgroup *cgrp)
2914 {
2915 	LIST_HEAD(preloaded_csets);
2916 	struct cgroup_taskset tset = CGROUP_TASKSET_INIT(tset);
2917 	struct cgroup_subsys_state *css;
2918 	struct css_set *src_cset;
2919 	int ret;
2920 
2921 	lockdep_assert_held(&cgroup_mutex);
2922 
2923 	percpu_down_write(&cgroup_threadgroup_rwsem);
2924 
2925 	/* look up all csses currently attached to @cgrp's subtree */
2926 	spin_lock_bh(&css_set_lock);
2927 	css_for_each_descendant_pre(css, cgroup_css(cgrp, NULL)) {
2928 		struct cgrp_cset_link *link;
2929 
2930 		/* self is not affected by child_subsys_mask change */
2931 		if (css->cgroup == cgrp)
2932 			continue;
2933 
2934 		list_for_each_entry(link, &css->cgroup->cset_links, cset_link)
2935 			cgroup_migrate_add_src(link->cset, cgrp,
2936 					       &preloaded_csets);
2937 	}
2938 	spin_unlock_bh(&css_set_lock);
2939 
2940 	/* NULL dst indicates self on default hierarchy */
2941 	ret = cgroup_migrate_prepare_dst(NULL, &preloaded_csets);
2942 	if (ret)
2943 		goto out_finish;
2944 
2945 	spin_lock_bh(&css_set_lock);
2946 	list_for_each_entry(src_cset, &preloaded_csets, mg_preload_node) {
2947 		struct task_struct *task, *ntask;
2948 
2949 		/* src_csets precede dst_csets, break on the first dst_cset */
2950 		if (!src_cset->mg_src_cgrp)
2951 			break;
2952 
2953 		/* all tasks in src_csets need to be migrated */
2954 		list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list)
2955 			cgroup_taskset_add(task, &tset);
2956 	}
2957 	spin_unlock_bh(&css_set_lock);
2958 
2959 	ret = cgroup_taskset_migrate(&tset, cgrp);
2960 out_finish:
2961 	cgroup_migrate_finish(&preloaded_csets);
2962 	percpu_up_write(&cgroup_threadgroup_rwsem);
2963 	return ret;
2964 }
2965 
2966 /* change the enabled child controllers for a cgroup in the default hierarchy */
cgroup_subtree_control_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)2967 static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
2968 					    char *buf, size_t nbytes,
2969 					    loff_t off)
2970 {
2971 	unsigned long enable = 0, disable = 0;
2972 	unsigned long css_enable, css_disable, old_sc, new_sc, old_ss, new_ss;
2973 	struct cgroup *cgrp, *child;
2974 	struct cgroup_subsys *ss;
2975 	char *tok;
2976 	int ssid, ret;
2977 
2978 	/*
2979 	 * Parse input - space separated list of subsystem names prefixed
2980 	 * with either + or -.
2981 	 */
2982 	buf = strstrip(buf);
2983 	while ((tok = strsep(&buf, " "))) {
2984 		unsigned long tmp_ss_mask = ~cgrp_dfl_root_inhibit_ss_mask;
2985 
2986 		if (tok[0] == '\0')
2987 			continue;
2988 		for_each_subsys_which(ss, ssid, &tmp_ss_mask) {
2989 			if (!cgroup_ssid_enabled(ssid) ||
2990 			    strcmp(tok + 1, ss->name))
2991 				continue;
2992 
2993 			if (*tok == '+') {
2994 				enable |= 1 << ssid;
2995 				disable &= ~(1 << ssid);
2996 			} else if (*tok == '-') {
2997 				disable |= 1 << ssid;
2998 				enable &= ~(1 << ssid);
2999 			} else {
3000 				return -EINVAL;
3001 			}
3002 			break;
3003 		}
3004 		if (ssid == CGROUP_SUBSYS_COUNT)
3005 			return -EINVAL;
3006 	}
3007 
3008 	cgrp = cgroup_kn_lock_live(of->kn);
3009 	if (!cgrp)
3010 		return -ENODEV;
3011 
3012 	for_each_subsys(ss, ssid) {
3013 		if (enable & (1 << ssid)) {
3014 			if (cgrp->subtree_control & (1 << ssid)) {
3015 				enable &= ~(1 << ssid);
3016 				continue;
3017 			}
3018 
3019 			/* unavailable or not enabled on the parent? */
3020 			if (!(cgrp_dfl_root.subsys_mask & (1 << ssid)) ||
3021 			    (cgroup_parent(cgrp) &&
3022 			     !(cgroup_parent(cgrp)->subtree_control & (1 << ssid)))) {
3023 				ret = -ENOENT;
3024 				goto out_unlock;
3025 			}
3026 		} else if (disable & (1 << ssid)) {
3027 			if (!(cgrp->subtree_control & (1 << ssid))) {
3028 				disable &= ~(1 << ssid);
3029 				continue;
3030 			}
3031 
3032 			/* a child has it enabled? */
3033 			cgroup_for_each_live_child(child, cgrp) {
3034 				if (child->subtree_control & (1 << ssid)) {
3035 					ret = -EBUSY;
3036 					goto out_unlock;
3037 				}
3038 			}
3039 		}
3040 	}
3041 
3042 	if (!enable && !disable) {
3043 		ret = 0;
3044 		goto out_unlock;
3045 	}
3046 
3047 	/*
3048 	 * Except for the root, subtree_control must be zero for a cgroup
3049 	 * with tasks so that child cgroups don't compete against tasks.
3050 	 */
3051 	if (enable && cgroup_parent(cgrp) && !list_empty(&cgrp->cset_links)) {
3052 		ret = -EBUSY;
3053 		goto out_unlock;
3054 	}
3055 
3056 	/*
3057 	 * Update subsys masks and calculate what needs to be done.  More
3058 	 * subsystems than specified may need to be enabled or disabled
3059 	 * depending on subsystem dependencies.
3060 	 */
3061 	old_sc = cgrp->subtree_control;
3062 	old_ss = cgrp->child_subsys_mask;
3063 	new_sc = (old_sc | enable) & ~disable;
3064 	new_ss = cgroup_calc_child_subsys_mask(cgrp, new_sc);
3065 
3066 	css_enable = ~old_ss & new_ss;
3067 	css_disable = old_ss & ~new_ss;
3068 	enable |= css_enable;
3069 	disable |= css_disable;
3070 
3071 	/*
3072 	 * Because css offlining is asynchronous, userland might try to
3073 	 * re-enable the same controller while the previous instance is
3074 	 * still around.  In such cases, wait till it's gone using
3075 	 * offline_waitq.
3076 	 */
3077 	for_each_subsys_which(ss, ssid, &css_enable) {
3078 		cgroup_for_each_live_child(child, cgrp) {
3079 			DEFINE_WAIT(wait);
3080 
3081 			if (!cgroup_css(child, ss))
3082 				continue;
3083 
3084 			cgroup_get(child);
3085 			prepare_to_wait(&child->offline_waitq, &wait,
3086 					TASK_UNINTERRUPTIBLE);
3087 			cgroup_kn_unlock(of->kn);
3088 			schedule();
3089 			finish_wait(&child->offline_waitq, &wait);
3090 			cgroup_put(child);
3091 
3092 			return restart_syscall();
3093 		}
3094 	}
3095 
3096 	cgrp->subtree_control = new_sc;
3097 	cgrp->child_subsys_mask = new_ss;
3098 
3099 	/*
3100 	 * Create new csses or make the existing ones visible.  A css is
3101 	 * created invisible if it's being implicitly enabled through
3102 	 * dependency.  An invisible css is made visible when the userland
3103 	 * explicitly enables it.
3104 	 */
3105 	for_each_subsys(ss, ssid) {
3106 		if (!(enable & (1 << ssid)))
3107 			continue;
3108 
3109 		cgroup_for_each_live_child(child, cgrp) {
3110 			if (css_enable & (1 << ssid))
3111 				ret = create_css(child, ss,
3112 					cgrp->subtree_control & (1 << ssid));
3113 			else
3114 				ret = css_populate_dir(cgroup_css(child, ss),
3115 						       NULL);
3116 			if (ret)
3117 				goto err_undo_css;
3118 		}
3119 	}
3120 
3121 	/*
3122 	 * At this point, cgroup_e_css() results reflect the new csses
3123 	 * making the following cgroup_update_dfl_csses() properly update
3124 	 * css associations of all tasks in the subtree.
3125 	 */
3126 	ret = cgroup_update_dfl_csses(cgrp);
3127 	if (ret)
3128 		goto err_undo_css;
3129 
3130 	/*
3131 	 * All tasks are migrated out of disabled csses.  Kill or hide
3132 	 * them.  A css is hidden when the userland requests it to be
3133 	 * disabled while other subsystems are still depending on it.  The
3134 	 * css must not actively control resources and be in the vanilla
3135 	 * state if it's made visible again later.  Controllers which may
3136 	 * be depended upon should provide ->css_reset() for this purpose.
3137 	 */
3138 	for_each_subsys(ss, ssid) {
3139 		if (!(disable & (1 << ssid)))
3140 			continue;
3141 
3142 		cgroup_for_each_live_child(child, cgrp) {
3143 			struct cgroup_subsys_state *css = cgroup_css(child, ss);
3144 
3145 			if (css_disable & (1 << ssid)) {
3146 				kill_css(css);
3147 			} else {
3148 				css_clear_dir(css, NULL);
3149 				if (ss->css_reset)
3150 					ss->css_reset(css);
3151 			}
3152 		}
3153 	}
3154 
3155 	/*
3156 	 * The effective csses of all the descendants (excluding @cgrp) may
3157 	 * have changed.  Subsystems can optionally subscribe to this event
3158 	 * by implementing ->css_e_css_changed() which is invoked if any of
3159 	 * the effective csses seen from the css's cgroup may have changed.
3160 	 */
3161 	for_each_subsys(ss, ssid) {
3162 		struct cgroup_subsys_state *this_css = cgroup_css(cgrp, ss);
3163 		struct cgroup_subsys_state *css;
3164 
3165 		if (!ss->css_e_css_changed || !this_css)
3166 			continue;
3167 
3168 		css_for_each_descendant_pre(css, this_css)
3169 			if (css != this_css)
3170 				ss->css_e_css_changed(css);
3171 	}
3172 
3173 	kernfs_activate(cgrp->kn);
3174 	ret = 0;
3175 out_unlock:
3176 	cgroup_kn_unlock(of->kn);
3177 	return ret ?: nbytes;
3178 
3179 err_undo_css:
3180 	cgrp->subtree_control = old_sc;
3181 	cgrp->child_subsys_mask = old_ss;
3182 
3183 	for_each_subsys(ss, ssid) {
3184 		if (!(enable & (1 << ssid)))
3185 			continue;
3186 
3187 		cgroup_for_each_live_child(child, cgrp) {
3188 			struct cgroup_subsys_state *css = cgroup_css(child, ss);
3189 
3190 			if (!css)
3191 				continue;
3192 
3193 			if (css_enable & (1 << ssid))
3194 				kill_css(css);
3195 			else
3196 				css_clear_dir(css, NULL);
3197 		}
3198 	}
3199 	goto out_unlock;
3200 }
3201 
cgroup_events_show(struct seq_file * seq,void * v)3202 static int cgroup_events_show(struct seq_file *seq, void *v)
3203 {
3204 	seq_printf(seq, "populated %d\n",
3205 		   cgroup_is_populated(seq_css(seq)->cgroup));
3206 	return 0;
3207 }
3208 
cgroup_file_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3209 static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
3210 				 size_t nbytes, loff_t off)
3211 {
3212 	struct cgroup *cgrp = of->kn->parent->priv;
3213 	struct cftype *cft = of->kn->priv;
3214 	struct cgroup_subsys_state *css;
3215 	int ret;
3216 
3217 	if (cft->write)
3218 		return cft->write(of, buf, nbytes, off);
3219 
3220 	/*
3221 	 * kernfs guarantees that a file isn't deleted with operations in
3222 	 * flight, which means that the matching css is and stays alive and
3223 	 * doesn't need to be pinned.  The RCU locking is not necessary
3224 	 * either.  It's just for the convenience of using cgroup_css().
3225 	 */
3226 	rcu_read_lock();
3227 	css = cgroup_css(cgrp, cft->ss);
3228 	rcu_read_unlock();
3229 
3230 	if (cft->write_u64) {
3231 		unsigned long long v;
3232 		ret = kstrtoull(buf, 0, &v);
3233 		if (!ret)
3234 			ret = cft->write_u64(css, cft, v);
3235 	} else if (cft->write_s64) {
3236 		long long v;
3237 		ret = kstrtoll(buf, 0, &v);
3238 		if (!ret)
3239 			ret = cft->write_s64(css, cft, v);
3240 	} else {
3241 		ret = -EINVAL;
3242 	}
3243 
3244 	return ret ?: nbytes;
3245 }
3246 
cgroup_seqfile_start(struct seq_file * seq,loff_t * ppos)3247 static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
3248 {
3249 	return seq_cft(seq)->seq_start(seq, ppos);
3250 }
3251 
cgroup_seqfile_next(struct seq_file * seq,void * v,loff_t * ppos)3252 static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
3253 {
3254 	return seq_cft(seq)->seq_next(seq, v, ppos);
3255 }
3256 
cgroup_seqfile_stop(struct seq_file * seq,void * v)3257 static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
3258 {
3259 	seq_cft(seq)->seq_stop(seq, v);
3260 }
3261 
cgroup_seqfile_show(struct seq_file * m,void * arg)3262 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
3263 {
3264 	struct cftype *cft = seq_cft(m);
3265 	struct cgroup_subsys_state *css = seq_css(m);
3266 
3267 	if (cft->seq_show)
3268 		return cft->seq_show(m, arg);
3269 
3270 	if (cft->read_u64)
3271 		seq_printf(m, "%llu\n", cft->read_u64(css, cft));
3272 	else if (cft->read_s64)
3273 		seq_printf(m, "%lld\n", cft->read_s64(css, cft));
3274 	else
3275 		return -EINVAL;
3276 	return 0;
3277 }
3278 
3279 static struct kernfs_ops cgroup_kf_single_ops = {
3280 	.atomic_write_len	= PAGE_SIZE,
3281 	.write			= cgroup_file_write,
3282 	.seq_show		= cgroup_seqfile_show,
3283 };
3284 
3285 static struct kernfs_ops cgroup_kf_ops = {
3286 	.atomic_write_len	= PAGE_SIZE,
3287 	.write			= cgroup_file_write,
3288 	.seq_start		= cgroup_seqfile_start,
3289 	.seq_next		= cgroup_seqfile_next,
3290 	.seq_stop		= cgroup_seqfile_stop,
3291 	.seq_show		= cgroup_seqfile_show,
3292 };
3293 
3294 /*
3295  * cgroup_rename - Only allow simple rename of directories in place.
3296  */
cgroup_rename(struct kernfs_node * kn,struct kernfs_node * new_parent,const char * new_name_str)3297 static int cgroup_rename(struct kernfs_node *kn, struct kernfs_node *new_parent,
3298 			 const char *new_name_str)
3299 {
3300 	struct cgroup *cgrp = kn->priv;
3301 	int ret;
3302 
3303 	if (kernfs_type(kn) != KERNFS_DIR)
3304 		return -ENOTDIR;
3305 	if (kn->parent != new_parent)
3306 		return -EIO;
3307 
3308 	/*
3309 	 * This isn't a proper migration and its usefulness is very
3310 	 * limited.  Disallow on the default hierarchy.
3311 	 */
3312 	if (cgroup_on_dfl(cgrp))
3313 		return -EPERM;
3314 
3315 	/*
3316 	 * We're gonna grab cgroup_mutex which nests outside kernfs
3317 	 * active_ref.  kernfs_rename() doesn't require active_ref
3318 	 * protection.  Break them before grabbing cgroup_mutex.
3319 	 */
3320 	kernfs_break_active_protection(new_parent);
3321 	kernfs_break_active_protection(kn);
3322 
3323 	mutex_lock(&cgroup_mutex);
3324 
3325 	ret = kernfs_rename(kn, new_parent, new_name_str);
3326 
3327 	mutex_unlock(&cgroup_mutex);
3328 
3329 	kernfs_unbreak_active_protection(kn);
3330 	kernfs_unbreak_active_protection(new_parent);
3331 	return ret;
3332 }
3333 
3334 /* set uid and gid of cgroup dirs and files to that of the creator */
cgroup_kn_set_ugid(struct kernfs_node * kn)3335 static int cgroup_kn_set_ugid(struct kernfs_node *kn)
3336 {
3337 	struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
3338 			       .ia_uid = current_fsuid(),
3339 			       .ia_gid = current_fsgid(), };
3340 
3341 	if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
3342 	    gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
3343 		return 0;
3344 
3345 	return kernfs_setattr(kn, &iattr);
3346 }
3347 
cgroup_add_file(struct cgroup_subsys_state * css,struct cgroup * cgrp,struct cftype * cft)3348 static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp,
3349 			   struct cftype *cft)
3350 {
3351 	char name[CGROUP_FILE_NAME_MAX];
3352 	struct kernfs_node *kn;
3353 	struct lock_class_key *key = NULL;
3354 	int ret;
3355 
3356 #ifdef CONFIG_DEBUG_LOCK_ALLOC
3357 	key = &cft->lockdep_key;
3358 #endif
3359 	kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
3360 				  cgroup_file_mode(cft), 0, cft->kf_ops, cft,
3361 				  NULL, key);
3362 	if (IS_ERR(kn))
3363 		return PTR_ERR(kn);
3364 
3365 	ret = cgroup_kn_set_ugid(kn);
3366 	if (ret) {
3367 		kernfs_remove(kn);
3368 		return ret;
3369 	}
3370 
3371 	if (cft->file_offset) {
3372 		struct cgroup_file *cfile = (void *)css + cft->file_offset;
3373 
3374 		spin_lock_irq(&cgroup_file_kn_lock);
3375 		cfile->kn = kn;
3376 		spin_unlock_irq(&cgroup_file_kn_lock);
3377 	}
3378 
3379 	return 0;
3380 }
3381 
3382 /**
3383  * cgroup_addrm_files - add or remove files to a cgroup directory
3384  * @css: the target css
3385  * @cgrp: the target cgroup (usually css->cgroup)
3386  * @cfts: array of cftypes to be added
3387  * @is_add: whether to add or remove
3388  *
3389  * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
3390  * For removals, this function never fails.
3391  */
cgroup_addrm_files(struct cgroup_subsys_state * css,struct cgroup * cgrp,struct cftype cfts[],bool is_add)3392 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
3393 			      struct cgroup *cgrp, struct cftype cfts[],
3394 			      bool is_add)
3395 {
3396 	struct cftype *cft, *cft_end = NULL;
3397 	int ret;
3398 
3399 	lockdep_assert_held(&cgroup_mutex);
3400 
3401 restart:
3402 	for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) {
3403 		/* does cft->flags tell us to skip this file on @cgrp? */
3404 		if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
3405 			continue;
3406 		if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
3407 			continue;
3408 		if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
3409 			continue;
3410 		if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
3411 			continue;
3412 
3413 		if (is_add) {
3414 			ret = cgroup_add_file(css, cgrp, cft);
3415 			if (ret) {
3416 				pr_warn("%s: failed to add %s, err=%d\n",
3417 					__func__, cft->name, ret);
3418 				cft_end = cft;
3419 				is_add = false;
3420 				goto restart;
3421 			}
3422 		} else {
3423 			cgroup_rm_file(cgrp, cft);
3424 		}
3425 	}
3426 	return 0;
3427 }
3428 
cgroup_apply_cftypes(struct cftype * cfts,bool is_add)3429 static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
3430 {
3431 	LIST_HEAD(pending);
3432 	struct cgroup_subsys *ss = cfts[0].ss;
3433 	struct cgroup *root = &ss->root->cgrp;
3434 	struct cgroup_subsys_state *css;
3435 	int ret = 0;
3436 
3437 	lockdep_assert_held(&cgroup_mutex);
3438 
3439 	/* add/rm files for all cgroups created before */
3440 	css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
3441 		struct cgroup *cgrp = css->cgroup;
3442 
3443 		if (cgroup_is_dead(cgrp))
3444 			continue;
3445 
3446 		ret = cgroup_addrm_files(css, cgrp, cfts, is_add);
3447 		if (ret)
3448 			break;
3449 	}
3450 
3451 	if (is_add && !ret)
3452 		kernfs_activate(root->kn);
3453 	return ret;
3454 }
3455 
cgroup_exit_cftypes(struct cftype * cfts)3456 static void cgroup_exit_cftypes(struct cftype *cfts)
3457 {
3458 	struct cftype *cft;
3459 
3460 	for (cft = cfts; cft->name[0] != '\0'; cft++) {
3461 		/* free copy for custom atomic_write_len, see init_cftypes() */
3462 		if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
3463 			kfree(cft->kf_ops);
3464 		cft->kf_ops = NULL;
3465 		cft->ss = NULL;
3466 
3467 		/* revert flags set by cgroup core while adding @cfts */
3468 		cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL);
3469 	}
3470 }
3471 
cgroup_init_cftypes(struct cgroup_subsys * ss,struct cftype * cfts)3472 static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3473 {
3474 	struct cftype *cft;
3475 
3476 	for (cft = cfts; cft->name[0] != '\0'; cft++) {
3477 		struct kernfs_ops *kf_ops;
3478 
3479 		WARN_ON(cft->ss || cft->kf_ops);
3480 
3481 		if (cft->seq_start)
3482 			kf_ops = &cgroup_kf_ops;
3483 		else
3484 			kf_ops = &cgroup_kf_single_ops;
3485 
3486 		/*
3487 		 * Ugh... if @cft wants a custom max_write_len, we need to
3488 		 * make a copy of kf_ops to set its atomic_write_len.
3489 		 */
3490 		if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
3491 			kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
3492 			if (!kf_ops) {
3493 				cgroup_exit_cftypes(cfts);
3494 				return -ENOMEM;
3495 			}
3496 			kf_ops->atomic_write_len = cft->max_write_len;
3497 		}
3498 
3499 		cft->kf_ops = kf_ops;
3500 		cft->ss = ss;
3501 	}
3502 
3503 	return 0;
3504 }
3505 
cgroup_rm_cftypes_locked(struct cftype * cfts)3506 static int cgroup_rm_cftypes_locked(struct cftype *cfts)
3507 {
3508 	lockdep_assert_held(&cgroup_mutex);
3509 
3510 	if (!cfts || !cfts[0].ss)
3511 		return -ENOENT;
3512 
3513 	list_del(&cfts->node);
3514 	cgroup_apply_cftypes(cfts, false);
3515 	cgroup_exit_cftypes(cfts);
3516 	return 0;
3517 }
3518 
3519 /**
3520  * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
3521  * @cfts: zero-length name terminated array of cftypes
3522  *
3523  * Unregister @cfts.  Files described by @cfts are removed from all
3524  * existing cgroups and all future cgroups won't have them either.  This
3525  * function can be called anytime whether @cfts' subsys is attached or not.
3526  *
3527  * Returns 0 on successful unregistration, -ENOENT if @cfts is not
3528  * registered.
3529  */
cgroup_rm_cftypes(struct cftype * cfts)3530 int cgroup_rm_cftypes(struct cftype *cfts)
3531 {
3532 	int ret;
3533 
3534 	mutex_lock(&cgroup_mutex);
3535 	ret = cgroup_rm_cftypes_locked(cfts);
3536 	mutex_unlock(&cgroup_mutex);
3537 	return ret;
3538 }
3539 
3540 /**
3541  * cgroup_add_cftypes - add an array of cftypes to a subsystem
3542  * @ss: target cgroup subsystem
3543  * @cfts: zero-length name terminated array of cftypes
3544  *
3545  * Register @cfts to @ss.  Files described by @cfts are created for all
3546  * existing cgroups to which @ss is attached and all future cgroups will
3547  * have them too.  This function can be called anytime whether @ss is
3548  * attached or not.
3549  *
3550  * Returns 0 on successful registration, -errno on failure.  Note that this
3551  * function currently returns 0 as long as @cfts registration is successful
3552  * even if some file creation attempts on existing cgroups fail.
3553  */
cgroup_add_cftypes(struct cgroup_subsys * ss,struct cftype * cfts)3554 static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3555 {
3556 	int ret;
3557 
3558 	if (!cgroup_ssid_enabled(ss->id))
3559 		return 0;
3560 
3561 	if (!cfts || cfts[0].name[0] == '\0')
3562 		return 0;
3563 
3564 	ret = cgroup_init_cftypes(ss, cfts);
3565 	if (ret)
3566 		return ret;
3567 
3568 	mutex_lock(&cgroup_mutex);
3569 
3570 	list_add_tail(&cfts->node, &ss->cfts);
3571 	ret = cgroup_apply_cftypes(cfts, true);
3572 	if (ret)
3573 		cgroup_rm_cftypes_locked(cfts);
3574 
3575 	mutex_unlock(&cgroup_mutex);
3576 	return ret;
3577 }
3578 
3579 /**
3580  * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
3581  * @ss: target cgroup subsystem
3582  * @cfts: zero-length name terminated array of cftypes
3583  *
3584  * Similar to cgroup_add_cftypes() but the added files are only used for
3585  * the default hierarchy.
3586  */
cgroup_add_dfl_cftypes(struct cgroup_subsys * ss,struct cftype * cfts)3587 int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3588 {
3589 	struct cftype *cft;
3590 
3591 	for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
3592 		cft->flags |= __CFTYPE_ONLY_ON_DFL;
3593 	return cgroup_add_cftypes(ss, cfts);
3594 }
3595 
3596 /**
3597  * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
3598  * @ss: target cgroup subsystem
3599  * @cfts: zero-length name terminated array of cftypes
3600  *
3601  * Similar to cgroup_add_cftypes() but the added files are only used for
3602  * the legacy hierarchies.
3603  */
cgroup_add_legacy_cftypes(struct cgroup_subsys * ss,struct cftype * cfts)3604 int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3605 {
3606 	struct cftype *cft;
3607 
3608 	for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
3609 		cft->flags |= __CFTYPE_NOT_ON_DFL;
3610 	return cgroup_add_cftypes(ss, cfts);
3611 }
3612 
3613 /**
3614  * cgroup_file_notify - generate a file modified event for a cgroup_file
3615  * @cfile: target cgroup_file
3616  *
3617  * @cfile must have been obtained by setting cftype->file_offset.
3618  */
cgroup_file_notify(struct cgroup_file * cfile)3619 void cgroup_file_notify(struct cgroup_file *cfile)
3620 {
3621 	unsigned long flags;
3622 
3623 	spin_lock_irqsave(&cgroup_file_kn_lock, flags);
3624 	if (cfile->kn)
3625 		kernfs_notify(cfile->kn);
3626 	spin_unlock_irqrestore(&cgroup_file_kn_lock, flags);
3627 }
3628 
3629 /**
3630  * cgroup_task_count - count the number of tasks in a cgroup.
3631  * @cgrp: the cgroup in question
3632  *
3633  * Return the number of tasks in the cgroup.
3634  */
cgroup_task_count(const struct cgroup * cgrp)3635 static int cgroup_task_count(const struct cgroup *cgrp)
3636 {
3637 	int count = 0;
3638 	struct cgrp_cset_link *link;
3639 
3640 	spin_lock_bh(&css_set_lock);
3641 	list_for_each_entry(link, &cgrp->cset_links, cset_link)
3642 		count += atomic_read(&link->cset->refcount);
3643 	spin_unlock_bh(&css_set_lock);
3644 	return count;
3645 }
3646 
3647 /**
3648  * css_next_child - find the next child of a given css
3649  * @pos: the current position (%NULL to initiate traversal)
3650  * @parent: css whose children to walk
3651  *
3652  * This function returns the next child of @parent and should be called
3653  * under either cgroup_mutex or RCU read lock.  The only requirement is
3654  * that @parent and @pos are accessible.  The next sibling is guaranteed to
3655  * be returned regardless of their states.
3656  *
3657  * If a subsystem synchronizes ->css_online() and the start of iteration, a
3658  * css which finished ->css_online() is guaranteed to be visible in the
3659  * future iterations and will stay visible until the last reference is put.
3660  * A css which hasn't finished ->css_online() or already finished
3661  * ->css_offline() may show up during traversal.  It's each subsystem's
3662  * responsibility to synchronize against on/offlining.
3663  */
css_next_child(struct cgroup_subsys_state * pos,struct cgroup_subsys_state * parent)3664 struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
3665 					   struct cgroup_subsys_state *parent)
3666 {
3667 	struct cgroup_subsys_state *next;
3668 
3669 	cgroup_assert_mutex_or_rcu_locked();
3670 
3671 	/*
3672 	 * @pos could already have been unlinked from the sibling list.
3673 	 * Once a cgroup is removed, its ->sibling.next is no longer
3674 	 * updated when its next sibling changes.  CSS_RELEASED is set when
3675 	 * @pos is taken off list, at which time its next pointer is valid,
3676 	 * and, as releases are serialized, the one pointed to by the next
3677 	 * pointer is guaranteed to not have started release yet.  This
3678 	 * implies that if we observe !CSS_RELEASED on @pos in this RCU
3679 	 * critical section, the one pointed to by its next pointer is
3680 	 * guaranteed to not have finished its RCU grace period even if we
3681 	 * have dropped rcu_read_lock() inbetween iterations.
3682 	 *
3683 	 * If @pos has CSS_RELEASED set, its next pointer can't be
3684 	 * dereferenced; however, as each css is given a monotonically
3685 	 * increasing unique serial number and always appended to the
3686 	 * sibling list, the next one can be found by walking the parent's
3687 	 * children until the first css with higher serial number than
3688 	 * @pos's.  While this path can be slower, it happens iff iteration
3689 	 * races against release and the race window is very small.
3690 	 */
3691 	if (!pos) {
3692 		next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
3693 	} else if (likely(!(pos->flags & CSS_RELEASED))) {
3694 		next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
3695 	} else {
3696 		list_for_each_entry_rcu(next, &parent->children, sibling)
3697 			if (next->serial_nr > pos->serial_nr)
3698 				break;
3699 	}
3700 
3701 	/*
3702 	 * @next, if not pointing to the head, can be dereferenced and is
3703 	 * the next sibling.
3704 	 */
3705 	if (&next->sibling != &parent->children)
3706 		return next;
3707 	return NULL;
3708 }
3709 
3710 /**
3711  * css_next_descendant_pre - find the next descendant for pre-order walk
3712  * @pos: the current position (%NULL to initiate traversal)
3713  * @root: css whose descendants to walk
3714  *
3715  * To be used by css_for_each_descendant_pre().  Find the next descendant
3716  * to visit for pre-order traversal of @root's descendants.  @root is
3717  * included in the iteration and the first node to be visited.
3718  *
3719  * While this function requires cgroup_mutex or RCU read locking, it
3720  * doesn't require the whole traversal to be contained in a single critical
3721  * section.  This function will return the correct next descendant as long
3722  * as both @pos and @root are accessible and @pos is a descendant of @root.
3723  *
3724  * If a subsystem synchronizes ->css_online() and the start of iteration, a
3725  * css which finished ->css_online() is guaranteed to be visible in the
3726  * future iterations and will stay visible until the last reference is put.
3727  * A css which hasn't finished ->css_online() or already finished
3728  * ->css_offline() may show up during traversal.  It's each subsystem's
3729  * responsibility to synchronize against on/offlining.
3730  */
3731 struct cgroup_subsys_state *
css_next_descendant_pre(struct cgroup_subsys_state * pos,struct cgroup_subsys_state * root)3732 css_next_descendant_pre(struct cgroup_subsys_state *pos,
3733 			struct cgroup_subsys_state *root)
3734 {
3735 	struct cgroup_subsys_state *next;
3736 
3737 	cgroup_assert_mutex_or_rcu_locked();
3738 
3739 	/* if first iteration, visit @root */
3740 	if (!pos)
3741 		return root;
3742 
3743 	/* visit the first child if exists */
3744 	next = css_next_child(NULL, pos);
3745 	if (next)
3746 		return next;
3747 
3748 	/* no child, visit my or the closest ancestor's next sibling */
3749 	while (pos != root) {
3750 		next = css_next_child(pos, pos->parent);
3751 		if (next)
3752 			return next;
3753 		pos = pos->parent;
3754 	}
3755 
3756 	return NULL;
3757 }
3758 
3759 /**
3760  * css_rightmost_descendant - return the rightmost descendant of a css
3761  * @pos: css of interest
3762  *
3763  * Return the rightmost descendant of @pos.  If there's no descendant, @pos
3764  * is returned.  This can be used during pre-order traversal to skip
3765  * subtree of @pos.
3766  *
3767  * While this function requires cgroup_mutex or RCU read locking, it
3768  * doesn't require the whole traversal to be contained in a single critical
3769  * section.  This function will return the correct rightmost descendant as
3770  * long as @pos is accessible.
3771  */
3772 struct cgroup_subsys_state *
css_rightmost_descendant(struct cgroup_subsys_state * pos)3773 css_rightmost_descendant(struct cgroup_subsys_state *pos)
3774 {
3775 	struct cgroup_subsys_state *last, *tmp;
3776 
3777 	cgroup_assert_mutex_or_rcu_locked();
3778 
3779 	do {
3780 		last = pos;
3781 		/* ->prev isn't RCU safe, walk ->next till the end */
3782 		pos = NULL;
3783 		css_for_each_child(tmp, last)
3784 			pos = tmp;
3785 	} while (pos);
3786 
3787 	return last;
3788 }
3789 
3790 static struct cgroup_subsys_state *
css_leftmost_descendant(struct cgroup_subsys_state * pos)3791 css_leftmost_descendant(struct cgroup_subsys_state *pos)
3792 {
3793 	struct cgroup_subsys_state *last;
3794 
3795 	do {
3796 		last = pos;
3797 		pos = css_next_child(NULL, pos);
3798 	} while (pos);
3799 
3800 	return last;
3801 }
3802 
3803 /**
3804  * css_next_descendant_post - find the next descendant for post-order walk
3805  * @pos: the current position (%NULL to initiate traversal)
3806  * @root: css whose descendants to walk
3807  *
3808  * To be used by css_for_each_descendant_post().  Find the next descendant
3809  * to visit for post-order traversal of @root's descendants.  @root is
3810  * included in the iteration and the last node to be visited.
3811  *
3812  * While this function requires cgroup_mutex or RCU read locking, it
3813  * doesn't require the whole traversal to be contained in a single critical
3814  * section.  This function will return the correct next descendant as long
3815  * as both @pos and @cgroup are accessible and @pos is a descendant of
3816  * @cgroup.
3817  *
3818  * If a subsystem synchronizes ->css_online() and the start of iteration, a
3819  * css which finished ->css_online() is guaranteed to be visible in the
3820  * future iterations and will stay visible until the last reference is put.
3821  * A css which hasn't finished ->css_online() or already finished
3822  * ->css_offline() may show up during traversal.  It's each subsystem's
3823  * responsibility to synchronize against on/offlining.
3824  */
3825 struct cgroup_subsys_state *
css_next_descendant_post(struct cgroup_subsys_state * pos,struct cgroup_subsys_state * root)3826 css_next_descendant_post(struct cgroup_subsys_state *pos,
3827 			 struct cgroup_subsys_state *root)
3828 {
3829 	struct cgroup_subsys_state *next;
3830 
3831 	cgroup_assert_mutex_or_rcu_locked();
3832 
3833 	/* if first iteration, visit leftmost descendant which may be @root */
3834 	if (!pos)
3835 		return css_leftmost_descendant(root);
3836 
3837 	/* if we visited @root, we're done */
3838 	if (pos == root)
3839 		return NULL;
3840 
3841 	/* if there's an unvisited sibling, visit its leftmost descendant */
3842 	next = css_next_child(pos, pos->parent);
3843 	if (next)
3844 		return css_leftmost_descendant(next);
3845 
3846 	/* no sibling left, visit parent */
3847 	return pos->parent;
3848 }
3849 
3850 /**
3851  * css_has_online_children - does a css have online children
3852  * @css: the target css
3853  *
3854  * Returns %true if @css has any online children; otherwise, %false.  This
3855  * function can be called from any context but the caller is responsible
3856  * for synchronizing against on/offlining as necessary.
3857  */
css_has_online_children(struct cgroup_subsys_state * css)3858 bool css_has_online_children(struct cgroup_subsys_state *css)
3859 {
3860 	struct cgroup_subsys_state *child;
3861 	bool ret = false;
3862 
3863 	rcu_read_lock();
3864 	css_for_each_child(child, css) {
3865 		if (child->flags & CSS_ONLINE) {
3866 			ret = true;
3867 			break;
3868 		}
3869 	}
3870 	rcu_read_unlock();
3871 	return ret;
3872 }
3873 
3874 /**
3875  * css_task_iter_advance_css_set - advance a task itererator to the next css_set
3876  * @it: the iterator to advance
3877  *
3878  * Advance @it to the next css_set to walk.
3879  */
css_task_iter_advance_css_set(struct css_task_iter * it)3880 static void css_task_iter_advance_css_set(struct css_task_iter *it)
3881 {
3882 	struct list_head *l = it->cset_pos;
3883 	struct cgrp_cset_link *link;
3884 	struct css_set *cset;
3885 
3886 	lockdep_assert_held(&css_set_lock);
3887 
3888 	/* Advance to the next non-empty css_set */
3889 	do {
3890 		l = l->next;
3891 		if (l == it->cset_head) {
3892 			it->cset_pos = NULL;
3893 			it->task_pos = NULL;
3894 			return;
3895 		}
3896 
3897 		if (it->ss) {
3898 			cset = container_of(l, struct css_set,
3899 					    e_cset_node[it->ss->id]);
3900 		} else {
3901 			link = list_entry(l, struct cgrp_cset_link, cset_link);
3902 			cset = link->cset;
3903 		}
3904 	} while (!css_set_populated(cset));
3905 
3906 	it->cset_pos = l;
3907 
3908 	if (!list_empty(&cset->tasks))
3909 		it->task_pos = cset->tasks.next;
3910 	else
3911 		it->task_pos = cset->mg_tasks.next;
3912 
3913 	it->tasks_head = &cset->tasks;
3914 	it->mg_tasks_head = &cset->mg_tasks;
3915 
3916 	/*
3917 	 * We don't keep css_sets locked across iteration steps and thus
3918 	 * need to take steps to ensure that iteration can be resumed after
3919 	 * the lock is re-acquired.  Iteration is performed at two levels -
3920 	 * css_sets and tasks in them.
3921 	 *
3922 	 * Once created, a css_set never leaves its cgroup lists, so a
3923 	 * pinned css_set is guaranteed to stay put and we can resume
3924 	 * iteration afterwards.
3925 	 *
3926 	 * Tasks may leave @cset across iteration steps.  This is resolved
3927 	 * by registering each iterator with the css_set currently being
3928 	 * walked and making css_set_move_task() advance iterators whose
3929 	 * next task is leaving.
3930 	 */
3931 	if (it->cur_cset) {
3932 		list_del(&it->iters_node);
3933 		put_css_set_locked(it->cur_cset);
3934 	}
3935 	get_css_set(cset);
3936 	it->cur_cset = cset;
3937 	list_add(&it->iters_node, &cset->task_iters);
3938 }
3939 
css_task_iter_advance(struct css_task_iter * it)3940 static void css_task_iter_advance(struct css_task_iter *it)
3941 {
3942 	struct list_head *l = it->task_pos;
3943 
3944 	lockdep_assert_held(&css_set_lock);
3945 	WARN_ON_ONCE(!l);
3946 
3947 	/*
3948 	 * Advance iterator to find next entry.  cset->tasks is consumed
3949 	 * first and then ->mg_tasks.  After ->mg_tasks, we move onto the
3950 	 * next cset.
3951 	 */
3952 	l = l->next;
3953 
3954 	if (l == it->tasks_head)
3955 		l = it->mg_tasks_head->next;
3956 
3957 	if (l == it->mg_tasks_head)
3958 		css_task_iter_advance_css_set(it);
3959 	else
3960 		it->task_pos = l;
3961 }
3962 
3963 /**
3964  * css_task_iter_start - initiate task iteration
3965  * @css: the css to walk tasks of
3966  * @it: the task iterator to use
3967  *
3968  * Initiate iteration through the tasks of @css.  The caller can call
3969  * css_task_iter_next() to walk through the tasks until the function
3970  * returns NULL.  On completion of iteration, css_task_iter_end() must be
3971  * called.
3972  */
css_task_iter_start(struct cgroup_subsys_state * css,struct css_task_iter * it)3973 void css_task_iter_start(struct cgroup_subsys_state *css,
3974 			 struct css_task_iter *it)
3975 {
3976 	/* no one should try to iterate before mounting cgroups */
3977 	WARN_ON_ONCE(!use_task_css_set_links);
3978 
3979 	memset(it, 0, sizeof(*it));
3980 
3981 	spin_lock_bh(&css_set_lock);
3982 
3983 	it->ss = css->ss;
3984 
3985 	if (it->ss)
3986 		it->cset_pos = &css->cgroup->e_csets[css->ss->id];
3987 	else
3988 		it->cset_pos = &css->cgroup->cset_links;
3989 
3990 	it->cset_head = it->cset_pos;
3991 
3992 	css_task_iter_advance_css_set(it);
3993 
3994 	spin_unlock_bh(&css_set_lock);
3995 }
3996 
3997 /**
3998  * css_task_iter_next - return the next task for the iterator
3999  * @it: the task iterator being iterated
4000  *
4001  * The "next" function for task iteration.  @it should have been
4002  * initialized via css_task_iter_start().  Returns NULL when the iteration
4003  * reaches the end.
4004  */
css_task_iter_next(struct css_task_iter * it)4005 struct task_struct *css_task_iter_next(struct css_task_iter *it)
4006 {
4007 	if (it->cur_task) {
4008 		put_task_struct(it->cur_task);
4009 		it->cur_task = NULL;
4010 	}
4011 
4012 	spin_lock_bh(&css_set_lock);
4013 
4014 	if (it->task_pos) {
4015 		it->cur_task = list_entry(it->task_pos, struct task_struct,
4016 					  cg_list);
4017 		get_task_struct(it->cur_task);
4018 		css_task_iter_advance(it);
4019 	}
4020 
4021 	spin_unlock_bh(&css_set_lock);
4022 
4023 	return it->cur_task;
4024 }
4025 
4026 /**
4027  * css_task_iter_end - finish task iteration
4028  * @it: the task iterator to finish
4029  *
4030  * Finish task iteration started by css_task_iter_start().
4031  */
css_task_iter_end(struct css_task_iter * it)4032 void css_task_iter_end(struct css_task_iter *it)
4033 {
4034 	if (it->cur_cset) {
4035 		spin_lock_bh(&css_set_lock);
4036 		list_del(&it->iters_node);
4037 		put_css_set_locked(it->cur_cset);
4038 		spin_unlock_bh(&css_set_lock);
4039 	}
4040 
4041 	if (it->cur_task)
4042 		put_task_struct(it->cur_task);
4043 }
4044 
4045 /**
4046  * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
4047  * @to: cgroup to which the tasks will be moved
4048  * @from: cgroup in which the tasks currently reside
4049  *
4050  * Locking rules between cgroup_post_fork() and the migration path
4051  * guarantee that, if a task is forking while being migrated, the new child
4052  * is guaranteed to be either visible in the source cgroup after the
4053  * parent's migration is complete or put into the target cgroup.  No task
4054  * can slip out of migration through forking.
4055  */
cgroup_transfer_tasks(struct cgroup * to,struct cgroup * from)4056 int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
4057 {
4058 	LIST_HEAD(preloaded_csets);
4059 	struct cgrp_cset_link *link;
4060 	struct css_task_iter it;
4061 	struct task_struct *task;
4062 	int ret;
4063 
4064 	mutex_lock(&cgroup_mutex);
4065 
4066 	/* all tasks in @from are being moved, all csets are source */
4067 	spin_lock_bh(&css_set_lock);
4068 	list_for_each_entry(link, &from->cset_links, cset_link)
4069 		cgroup_migrate_add_src(link->cset, to, &preloaded_csets);
4070 	spin_unlock_bh(&css_set_lock);
4071 
4072 	ret = cgroup_migrate_prepare_dst(to, &preloaded_csets);
4073 	if (ret)
4074 		goto out_err;
4075 
4076 	/*
4077 	 * Migrate tasks one-by-one until @form is empty.  This fails iff
4078 	 * ->can_attach() fails.
4079 	 */
4080 	do {
4081 		css_task_iter_start(&from->self, &it);
4082 		task = css_task_iter_next(&it);
4083 		if (task)
4084 			get_task_struct(task);
4085 		css_task_iter_end(&it);
4086 
4087 		if (task) {
4088 			ret = cgroup_migrate(task, false, to);
4089 			put_task_struct(task);
4090 		}
4091 	} while (task && !ret);
4092 out_err:
4093 	cgroup_migrate_finish(&preloaded_csets);
4094 	mutex_unlock(&cgroup_mutex);
4095 	return ret;
4096 }
4097 
4098 /*
4099  * Stuff for reading the 'tasks'/'procs' files.
4100  *
4101  * Reading this file can return large amounts of data if a cgroup has
4102  * *lots* of attached tasks. So it may need several calls to read(),
4103  * but we cannot guarantee that the information we produce is correct
4104  * unless we produce it entirely atomically.
4105  *
4106  */
4107 
4108 /* which pidlist file are we talking about? */
4109 enum cgroup_filetype {
4110 	CGROUP_FILE_PROCS,
4111 	CGROUP_FILE_TASKS,
4112 };
4113 
4114 /*
4115  * A pidlist is a list of pids that virtually represents the contents of one
4116  * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
4117  * a pair (one each for procs, tasks) for each pid namespace that's relevant
4118  * to the cgroup.
4119  */
4120 struct cgroup_pidlist {
4121 	/*
4122 	 * used to find which pidlist is wanted. doesn't change as long as
4123 	 * this particular list stays in the list.
4124 	*/
4125 	struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
4126 	/* array of xids */
4127 	pid_t *list;
4128 	/* how many elements the above list has */
4129 	int length;
4130 	/* each of these stored in a list by its cgroup */
4131 	struct list_head links;
4132 	/* pointer to the cgroup we belong to, for list removal purposes */
4133 	struct cgroup *owner;
4134 	/* for delayed destruction */
4135 	struct delayed_work destroy_dwork;
4136 };
4137 
4138 /*
4139  * The following two functions "fix" the issue where there are more pids
4140  * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
4141  * TODO: replace with a kernel-wide solution to this problem
4142  */
4143 #define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
pidlist_allocate(int count)4144 static void *pidlist_allocate(int count)
4145 {
4146 	if (PIDLIST_TOO_LARGE(count))
4147 		return vmalloc(count * sizeof(pid_t));
4148 	else
4149 		return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
4150 }
4151 
pidlist_free(void * p)4152 static void pidlist_free(void *p)
4153 {
4154 	kvfree(p);
4155 }
4156 
4157 /*
4158  * Used to destroy all pidlists lingering waiting for destroy timer.  None
4159  * should be left afterwards.
4160  */
cgroup_pidlist_destroy_all(struct cgroup * cgrp)4161 static void cgroup_pidlist_destroy_all(struct cgroup *cgrp)
4162 {
4163 	struct cgroup_pidlist *l, *tmp_l;
4164 
4165 	mutex_lock(&cgrp->pidlist_mutex);
4166 	list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
4167 		mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
4168 	mutex_unlock(&cgrp->pidlist_mutex);
4169 
4170 	flush_workqueue(cgroup_pidlist_destroy_wq);
4171 	BUG_ON(!list_empty(&cgrp->pidlists));
4172 }
4173 
cgroup_pidlist_destroy_work_fn(struct work_struct * work)4174 static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
4175 {
4176 	struct delayed_work *dwork = to_delayed_work(work);
4177 	struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist,
4178 						destroy_dwork);
4179 	struct cgroup_pidlist *tofree = NULL;
4180 
4181 	mutex_lock(&l->owner->pidlist_mutex);
4182 
4183 	/*
4184 	 * Destroy iff we didn't get queued again.  The state won't change
4185 	 * as destroy_dwork can only be queued while locked.
4186 	 */
4187 	if (!delayed_work_pending(dwork)) {
4188 		list_del(&l->links);
4189 		pidlist_free(l->list);
4190 		put_pid_ns(l->key.ns);
4191 		tofree = l;
4192 	}
4193 
4194 	mutex_unlock(&l->owner->pidlist_mutex);
4195 	kfree(tofree);
4196 }
4197 
4198 /*
4199  * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
4200  * Returns the number of unique elements.
4201  */
pidlist_uniq(pid_t * list,int length)4202 static int pidlist_uniq(pid_t *list, int length)
4203 {
4204 	int src, dest = 1;
4205 
4206 	/*
4207 	 * we presume the 0th element is unique, so i starts at 1. trivial
4208 	 * edge cases first; no work needs to be done for either
4209 	 */
4210 	if (length == 0 || length == 1)
4211 		return length;
4212 	/* src and dest walk down the list; dest counts unique elements */
4213 	for (src = 1; src < length; src++) {
4214 		/* find next unique element */
4215 		while (list[src] == list[src-1]) {
4216 			src++;
4217 			if (src == length)
4218 				goto after;
4219 		}
4220 		/* dest always points to where the next unique element goes */
4221 		list[dest] = list[src];
4222 		dest++;
4223 	}
4224 after:
4225 	return dest;
4226 }
4227 
4228 /*
4229  * The two pid files - task and cgroup.procs - guaranteed that the result
4230  * is sorted, which forced this whole pidlist fiasco.  As pid order is
4231  * different per namespace, each namespace needs differently sorted list,
4232  * making it impossible to use, for example, single rbtree of member tasks
4233  * sorted by task pointer.  As pidlists can be fairly large, allocating one
4234  * per open file is dangerous, so cgroup had to implement shared pool of
4235  * pidlists keyed by cgroup and namespace.
4236  *
4237  * All this extra complexity was caused by the original implementation
4238  * committing to an entirely unnecessary property.  In the long term, we
4239  * want to do away with it.  Explicitly scramble sort order if on the
4240  * default hierarchy so that no such expectation exists in the new
4241  * interface.
4242  *
4243  * Scrambling is done by swapping every two consecutive bits, which is
4244  * non-identity one-to-one mapping which disturbs sort order sufficiently.
4245  */
pid_fry(pid_t pid)4246 static pid_t pid_fry(pid_t pid)
4247 {
4248 	unsigned a = pid & 0x55555555;
4249 	unsigned b = pid & 0xAAAAAAAA;
4250 
4251 	return (a << 1) | (b >> 1);
4252 }
4253 
cgroup_pid_fry(struct cgroup * cgrp,pid_t pid)4254 static pid_t cgroup_pid_fry(struct cgroup *cgrp, pid_t pid)
4255 {
4256 	if (cgroup_on_dfl(cgrp))
4257 		return pid_fry(pid);
4258 	else
4259 		return pid;
4260 }
4261 
cmppid(const void * a,const void * b)4262 static int cmppid(const void *a, const void *b)
4263 {
4264 	return *(pid_t *)a - *(pid_t *)b;
4265 }
4266 
fried_cmppid(const void * a,const void * b)4267 static int fried_cmppid(const void *a, const void *b)
4268 {
4269 	return pid_fry(*(pid_t *)a) - pid_fry(*(pid_t *)b);
4270 }
4271 
cgroup_pidlist_find(struct cgroup * cgrp,enum cgroup_filetype type)4272 static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
4273 						  enum cgroup_filetype type)
4274 {
4275 	struct cgroup_pidlist *l;
4276 	/* don't need task_nsproxy() if we're looking at ourself */
4277 	struct pid_namespace *ns = task_active_pid_ns(current);
4278 
4279 	lockdep_assert_held(&cgrp->pidlist_mutex);
4280 
4281 	list_for_each_entry(l, &cgrp->pidlists, links)
4282 		if (l->key.type == type && l->key.ns == ns)
4283 			return l;
4284 	return NULL;
4285 }
4286 
4287 /*
4288  * find the appropriate pidlist for our purpose (given procs vs tasks)
4289  * returns with the lock on that pidlist already held, and takes care
4290  * of the use count, or returns NULL with no locks held if we're out of
4291  * memory.
4292  */
cgroup_pidlist_find_create(struct cgroup * cgrp,enum cgroup_filetype type)4293 static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp,
4294 						enum cgroup_filetype type)
4295 {
4296 	struct cgroup_pidlist *l;
4297 
4298 	lockdep_assert_held(&cgrp->pidlist_mutex);
4299 
4300 	l = cgroup_pidlist_find(cgrp, type);
4301 	if (l)
4302 		return l;
4303 
4304 	/* entry not found; create a new one */
4305 	l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
4306 	if (!l)
4307 		return l;
4308 
4309 	INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
4310 	l->key.type = type;
4311 	/* don't need task_nsproxy() if we're looking at ourself */
4312 	l->key.ns = get_pid_ns(task_active_pid_ns(current));
4313 	l->owner = cgrp;
4314 	list_add(&l->links, &cgrp->pidlists);
4315 	return l;
4316 }
4317 
4318 /*
4319  * Load a cgroup's pidarray with either procs' tgids or tasks' pids
4320  */
pidlist_array_load(struct cgroup * cgrp,enum cgroup_filetype type,struct cgroup_pidlist ** lp)4321 static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
4322 			      struct cgroup_pidlist **lp)
4323 {
4324 	pid_t *array;
4325 	int length;
4326 	int pid, n = 0; /* used for populating the array */
4327 	struct css_task_iter it;
4328 	struct task_struct *tsk;
4329 	struct cgroup_pidlist *l;
4330 
4331 	lockdep_assert_held(&cgrp->pidlist_mutex);
4332 
4333 	/*
4334 	 * If cgroup gets more users after we read count, we won't have
4335 	 * enough space - tough.  This race is indistinguishable to the
4336 	 * caller from the case that the additional cgroup users didn't
4337 	 * show up until sometime later on.
4338 	 */
4339 	length = cgroup_task_count(cgrp);
4340 	array = pidlist_allocate(length);
4341 	if (!array)
4342 		return -ENOMEM;
4343 	/* now, populate the array */
4344 	css_task_iter_start(&cgrp->self, &it);
4345 	while ((tsk = css_task_iter_next(&it))) {
4346 		if (unlikely(n == length))
4347 			break;
4348 		/* get tgid or pid for procs or tasks file respectively */
4349 		if (type == CGROUP_FILE_PROCS)
4350 			pid = task_tgid_vnr(tsk);
4351 		else
4352 			pid = task_pid_vnr(tsk);
4353 		if (pid > 0) /* make sure to only use valid results */
4354 			array[n++] = pid;
4355 	}
4356 	css_task_iter_end(&it);
4357 	length = n;
4358 	/* now sort & (if procs) strip out duplicates */
4359 	if (cgroup_on_dfl(cgrp))
4360 		sort(array, length, sizeof(pid_t), fried_cmppid, NULL);
4361 	else
4362 		sort(array, length, sizeof(pid_t), cmppid, NULL);
4363 	if (type == CGROUP_FILE_PROCS)
4364 		length = pidlist_uniq(array, length);
4365 
4366 	l = cgroup_pidlist_find_create(cgrp, type);
4367 	if (!l) {
4368 		pidlist_free(array);
4369 		return -ENOMEM;
4370 	}
4371 
4372 	/* store array, freeing old if necessary */
4373 	pidlist_free(l->list);
4374 	l->list = array;
4375 	l->length = length;
4376 	*lp = l;
4377 	return 0;
4378 }
4379 
4380 /**
4381  * cgroupstats_build - build and fill cgroupstats
4382  * @stats: cgroupstats to fill information into
4383  * @dentry: A dentry entry belonging to the cgroup for which stats have
4384  * been requested.
4385  *
4386  * Build and fill cgroupstats so that taskstats can export it to user
4387  * space.
4388  */
cgroupstats_build(struct cgroupstats * stats,struct dentry * dentry)4389 int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
4390 {
4391 	struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
4392 	struct cgroup *cgrp;
4393 	struct css_task_iter it;
4394 	struct task_struct *tsk;
4395 
4396 	/* it should be kernfs_node belonging to cgroupfs and is a directory */
4397 	if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
4398 	    kernfs_type(kn) != KERNFS_DIR)
4399 		return -EINVAL;
4400 
4401 	mutex_lock(&cgroup_mutex);
4402 
4403 	/*
4404 	 * We aren't being called from kernfs and there's no guarantee on
4405 	 * @kn->priv's validity.  For this and css_tryget_online_from_dir(),
4406 	 * @kn->priv is RCU safe.  Let's do the RCU dancing.
4407 	 */
4408 	rcu_read_lock();
4409 	cgrp = rcu_dereference(kn->priv);
4410 	if (!cgrp || cgroup_is_dead(cgrp)) {
4411 		rcu_read_unlock();
4412 		mutex_unlock(&cgroup_mutex);
4413 		return -ENOENT;
4414 	}
4415 	rcu_read_unlock();
4416 
4417 	css_task_iter_start(&cgrp->self, &it);
4418 	while ((tsk = css_task_iter_next(&it))) {
4419 		switch (tsk->state) {
4420 		case TASK_RUNNING:
4421 			stats->nr_running++;
4422 			break;
4423 		case TASK_INTERRUPTIBLE:
4424 			stats->nr_sleeping++;
4425 			break;
4426 		case TASK_UNINTERRUPTIBLE:
4427 			stats->nr_uninterruptible++;
4428 			break;
4429 		case TASK_STOPPED:
4430 			stats->nr_stopped++;
4431 			break;
4432 		default:
4433 			if (delayacct_is_task_waiting_on_io(tsk))
4434 				stats->nr_io_wait++;
4435 			break;
4436 		}
4437 	}
4438 	css_task_iter_end(&it);
4439 
4440 	mutex_unlock(&cgroup_mutex);
4441 	return 0;
4442 }
4443 
4444 
4445 /*
4446  * seq_file methods for the tasks/procs files. The seq_file position is the
4447  * next pid to display; the seq_file iterator is a pointer to the pid
4448  * in the cgroup->l->list array.
4449  */
4450 
cgroup_pidlist_start(struct seq_file * s,loff_t * pos)4451 static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
4452 {
4453 	/*
4454 	 * Initially we receive a position value that corresponds to
4455 	 * one more than the last pid shown (or 0 on the first call or
4456 	 * after a seek to the start). Use a binary-search to find the
4457 	 * next pid to display, if any
4458 	 */
4459 	struct kernfs_open_file *of = s->private;
4460 	struct cgroup *cgrp = seq_css(s)->cgroup;
4461 	struct cgroup_pidlist *l;
4462 	enum cgroup_filetype type = seq_cft(s)->private;
4463 	int index = 0, pid = *pos;
4464 	int *iter, ret;
4465 
4466 	mutex_lock(&cgrp->pidlist_mutex);
4467 
4468 	/*
4469 	 * !NULL @of->priv indicates that this isn't the first start()
4470 	 * after open.  If the matching pidlist is around, we can use that.
4471 	 * Look for it.  Note that @of->priv can't be used directly.  It
4472 	 * could already have been destroyed.
4473 	 */
4474 	if (of->priv)
4475 		of->priv = cgroup_pidlist_find(cgrp, type);
4476 
4477 	/*
4478 	 * Either this is the first start() after open or the matching
4479 	 * pidlist has been destroyed inbetween.  Create a new one.
4480 	 */
4481 	if (!of->priv) {
4482 		ret = pidlist_array_load(cgrp, type,
4483 					 (struct cgroup_pidlist **)&of->priv);
4484 		if (ret)
4485 			return ERR_PTR(ret);
4486 	}
4487 	l = of->priv;
4488 
4489 	if (pid) {
4490 		int end = l->length;
4491 
4492 		while (index < end) {
4493 			int mid = (index + end) / 2;
4494 			if (cgroup_pid_fry(cgrp, l->list[mid]) == pid) {
4495 				index = mid;
4496 				break;
4497 			} else if (cgroup_pid_fry(cgrp, l->list[mid]) <= pid)
4498 				index = mid + 1;
4499 			else
4500 				end = mid;
4501 		}
4502 	}
4503 	/* If we're off the end of the array, we're done */
4504 	if (index >= l->length)
4505 		return NULL;
4506 	/* Update the abstract position to be the actual pid that we found */
4507 	iter = l->list + index;
4508 	*pos = cgroup_pid_fry(cgrp, *iter);
4509 	return iter;
4510 }
4511 
cgroup_pidlist_stop(struct seq_file * s,void * v)4512 static void cgroup_pidlist_stop(struct seq_file *s, void *v)
4513 {
4514 	struct kernfs_open_file *of = s->private;
4515 	struct cgroup_pidlist *l = of->priv;
4516 
4517 	if (l)
4518 		mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork,
4519 				 CGROUP_PIDLIST_DESTROY_DELAY);
4520 	mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);
4521 }
4522 
cgroup_pidlist_next(struct seq_file * s,void * v,loff_t * pos)4523 static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
4524 {
4525 	struct kernfs_open_file *of = s->private;
4526 	struct cgroup_pidlist *l = of->priv;
4527 	pid_t *p = v;
4528 	pid_t *end = l->list + l->length;
4529 	/*
4530 	 * Advance to the next pid in the array. If this goes off the
4531 	 * end, we're done
4532 	 */
4533 	p++;
4534 	if (p >= end) {
4535 		return NULL;
4536 	} else {
4537 		*pos = cgroup_pid_fry(seq_css(s)->cgroup, *p);
4538 		return p;
4539 	}
4540 }
4541 
cgroup_pidlist_show(struct seq_file * s,void * v)4542 static int cgroup_pidlist_show(struct seq_file *s, void *v)
4543 {
4544 	seq_printf(s, "%d\n", *(int *)v);
4545 
4546 	return 0;
4547 }
4548 
cgroup_read_notify_on_release(struct cgroup_subsys_state * css,struct cftype * cft)4549 static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
4550 					 struct cftype *cft)
4551 {
4552 	return notify_on_release(css->cgroup);
4553 }
4554 
cgroup_write_notify_on_release(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)4555 static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
4556 					  struct cftype *cft, u64 val)
4557 {
4558 	if (val)
4559 		set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
4560 	else
4561 		clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
4562 	return 0;
4563 }
4564 
cgroup_clone_children_read(struct cgroup_subsys_state * css,struct cftype * cft)4565 static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
4566 				      struct cftype *cft)
4567 {
4568 	return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
4569 }
4570 
cgroup_clone_children_write(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)4571 static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
4572 				       struct cftype *cft, u64 val)
4573 {
4574 	if (val)
4575 		set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
4576 	else
4577 		clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
4578 	return 0;
4579 }
4580 
4581 /* cgroup core interface files for the default hierarchy */
4582 static struct cftype cgroup_dfl_base_files[] = {
4583 	{
4584 		.name = "cgroup.procs",
4585 		.file_offset = offsetof(struct cgroup, procs_file),
4586 		.seq_start = cgroup_pidlist_start,
4587 		.seq_next = cgroup_pidlist_next,
4588 		.seq_stop = cgroup_pidlist_stop,
4589 		.seq_show = cgroup_pidlist_show,
4590 		.private = CGROUP_FILE_PROCS,
4591 		.write = cgroup_procs_write,
4592 	},
4593 	{
4594 		.name = "cgroup.controllers",
4595 		.flags = CFTYPE_ONLY_ON_ROOT,
4596 		.seq_show = cgroup_root_controllers_show,
4597 	},
4598 	{
4599 		.name = "cgroup.controllers",
4600 		.flags = CFTYPE_NOT_ON_ROOT,
4601 		.seq_show = cgroup_controllers_show,
4602 	},
4603 	{
4604 		.name = "cgroup.subtree_control",
4605 		.seq_show = cgroup_subtree_control_show,
4606 		.write = cgroup_subtree_control_write,
4607 	},
4608 	{
4609 		.name = "cgroup.events",
4610 		.flags = CFTYPE_NOT_ON_ROOT,
4611 		.file_offset = offsetof(struct cgroup, events_file),
4612 		.seq_show = cgroup_events_show,
4613 	},
4614 	{ }	/* terminate */
4615 };
4616 
4617 /* cgroup core interface files for the legacy hierarchies */
4618 static struct cftype cgroup_legacy_base_files[] = {
4619 	{
4620 		.name = "cgroup.procs",
4621 		.seq_start = cgroup_pidlist_start,
4622 		.seq_next = cgroup_pidlist_next,
4623 		.seq_stop = cgroup_pidlist_stop,
4624 		.seq_show = cgroup_pidlist_show,
4625 		.private = CGROUP_FILE_PROCS,
4626 		.write = cgroup_procs_write,
4627 	},
4628 	{
4629 		.name = "cgroup.clone_children",
4630 		.read_u64 = cgroup_clone_children_read,
4631 		.write_u64 = cgroup_clone_children_write,
4632 	},
4633 	{
4634 		.name = "cgroup.sane_behavior",
4635 		.flags = CFTYPE_ONLY_ON_ROOT,
4636 		.seq_show = cgroup_sane_behavior_show,
4637 	},
4638 	{
4639 		.name = "tasks",
4640 		.seq_start = cgroup_pidlist_start,
4641 		.seq_next = cgroup_pidlist_next,
4642 		.seq_stop = cgroup_pidlist_stop,
4643 		.seq_show = cgroup_pidlist_show,
4644 		.private = CGROUP_FILE_TASKS,
4645 		.write = cgroup_tasks_write,
4646 	},
4647 	{
4648 		.name = "notify_on_release",
4649 		.read_u64 = cgroup_read_notify_on_release,
4650 		.write_u64 = cgroup_write_notify_on_release,
4651 	},
4652 	{
4653 		.name = "release_agent",
4654 		.flags = CFTYPE_ONLY_ON_ROOT,
4655 		.seq_show = cgroup_release_agent_show,
4656 		.write = cgroup_release_agent_write,
4657 		.max_write_len = PATH_MAX - 1,
4658 	},
4659 	{ }	/* terminate */
4660 };
4661 
4662 /*
4663  * css destruction is four-stage process.
4664  *
4665  * 1. Destruction starts.  Killing of the percpu_ref is initiated.
4666  *    Implemented in kill_css().
4667  *
4668  * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
4669  *    and thus css_tryget_online() is guaranteed to fail, the css can be
4670  *    offlined by invoking offline_css().  After offlining, the base ref is
4671  *    put.  Implemented in css_killed_work_fn().
4672  *
4673  * 3. When the percpu_ref reaches zero, the only possible remaining
4674  *    accessors are inside RCU read sections.  css_release() schedules the
4675  *    RCU callback.
4676  *
4677  * 4. After the grace period, the css can be freed.  Implemented in
4678  *    css_free_work_fn().
4679  *
4680  * It is actually hairier because both step 2 and 4 require process context
4681  * and thus involve punting to css->destroy_work adding two additional
4682  * steps to the already complex sequence.
4683  */
css_free_work_fn(struct work_struct * work)4684 static void css_free_work_fn(struct work_struct *work)
4685 {
4686 	struct cgroup_subsys_state *css =
4687 		container_of(work, struct cgroup_subsys_state, destroy_work);
4688 	struct cgroup_subsys *ss = css->ss;
4689 	struct cgroup *cgrp = css->cgroup;
4690 
4691 	percpu_ref_exit(&css->refcnt);
4692 
4693 	if (ss) {
4694 		/* css free path */
4695 		struct cgroup_subsys_state *parent = css->parent;
4696 		int id = css->id;
4697 
4698 		ss->css_free(css);
4699 		cgroup_idr_remove(&ss->css_idr, id);
4700 		cgroup_put(cgrp);
4701 
4702 		if (parent)
4703 			css_put(parent);
4704 	} else {
4705 		/* cgroup free path */
4706 		atomic_dec(&cgrp->root->nr_cgrps);
4707 		cgroup_pidlist_destroy_all(cgrp);
4708 		cancel_work_sync(&cgrp->release_agent_work);
4709 
4710 		if (cgroup_parent(cgrp)) {
4711 			/*
4712 			 * We get a ref to the parent, and put the ref when
4713 			 * this cgroup is being freed, so it's guaranteed
4714 			 * that the parent won't be destroyed before its
4715 			 * children.
4716 			 */
4717 			cgroup_put(cgroup_parent(cgrp));
4718 			kernfs_put(cgrp->kn);
4719 			kfree(cgrp);
4720 		} else {
4721 			/*
4722 			 * This is root cgroup's refcnt reaching zero,
4723 			 * which indicates that the root should be
4724 			 * released.
4725 			 */
4726 			cgroup_destroy_root(cgrp->root);
4727 		}
4728 	}
4729 }
4730 
css_free_rcu_fn(struct rcu_head * rcu_head)4731 static void css_free_rcu_fn(struct rcu_head *rcu_head)
4732 {
4733 	struct cgroup_subsys_state *css =
4734 		container_of(rcu_head, struct cgroup_subsys_state, rcu_head);
4735 
4736 	INIT_WORK(&css->destroy_work, css_free_work_fn);
4737 	queue_work(cgroup_destroy_wq, &css->destroy_work);
4738 }
4739 
css_release_work_fn(struct work_struct * work)4740 static void css_release_work_fn(struct work_struct *work)
4741 {
4742 	struct cgroup_subsys_state *css =
4743 		container_of(work, struct cgroup_subsys_state, destroy_work);
4744 	struct cgroup_subsys *ss = css->ss;
4745 	struct cgroup *cgrp = css->cgroup;
4746 
4747 	mutex_lock(&cgroup_mutex);
4748 
4749 	css->flags |= CSS_RELEASED;
4750 	list_del_rcu(&css->sibling);
4751 
4752 	if (ss) {
4753 		/* css release path */
4754 		cgroup_idr_replace(&ss->css_idr, NULL, css->id);
4755 		if (ss->css_released)
4756 			ss->css_released(css);
4757 	} else {
4758 		/* cgroup release path */
4759 		cgroup_idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
4760 		cgrp->id = -1;
4761 
4762 		/*
4763 		 * There are two control paths which try to determine
4764 		 * cgroup from dentry without going through kernfs -
4765 		 * cgroupstats_build() and css_tryget_online_from_dir().
4766 		 * Those are supported by RCU protecting clearing of
4767 		 * cgrp->kn->priv backpointer.
4768 		 */
4769 		RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv, NULL);
4770 	}
4771 
4772 	mutex_unlock(&cgroup_mutex);
4773 
4774 	call_rcu(&css->rcu_head, css_free_rcu_fn);
4775 }
4776 
css_release(struct percpu_ref * ref)4777 static void css_release(struct percpu_ref *ref)
4778 {
4779 	struct cgroup_subsys_state *css =
4780 		container_of(ref, struct cgroup_subsys_state, refcnt);
4781 
4782 	INIT_WORK(&css->destroy_work, css_release_work_fn);
4783 	queue_work(cgroup_destroy_wq, &css->destroy_work);
4784 }
4785 
init_and_link_css(struct cgroup_subsys_state * css,struct cgroup_subsys * ss,struct cgroup * cgrp)4786 static void init_and_link_css(struct cgroup_subsys_state *css,
4787 			      struct cgroup_subsys *ss, struct cgroup *cgrp)
4788 {
4789 	lockdep_assert_held(&cgroup_mutex);
4790 
4791 	cgroup_get(cgrp);
4792 
4793 	memset(css, 0, sizeof(*css));
4794 	css->cgroup = cgrp;
4795 	css->ss = ss;
4796 	INIT_LIST_HEAD(&css->sibling);
4797 	INIT_LIST_HEAD(&css->children);
4798 	css->serial_nr = css_serial_nr_next++;
4799 	atomic_set(&css->online_cnt, 0);
4800 
4801 	if (cgroup_parent(cgrp)) {
4802 		css->parent = cgroup_css(cgroup_parent(cgrp), ss);
4803 		css_get(css->parent);
4804 	}
4805 
4806 	BUG_ON(cgroup_css(cgrp, ss));
4807 }
4808 
4809 /* invoke ->css_online() on a new CSS and mark it online if successful */
online_css(struct cgroup_subsys_state * css)4810 static int online_css(struct cgroup_subsys_state *css)
4811 {
4812 	struct cgroup_subsys *ss = css->ss;
4813 	int ret = 0;
4814 
4815 	lockdep_assert_held(&cgroup_mutex);
4816 
4817 	if (ss->css_online)
4818 		ret = ss->css_online(css);
4819 	if (!ret) {
4820 		css->flags |= CSS_ONLINE;
4821 		rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
4822 
4823 		atomic_inc(&css->online_cnt);
4824 		if (css->parent)
4825 			atomic_inc(&css->parent->online_cnt);
4826 	}
4827 	return ret;
4828 }
4829 
4830 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */
offline_css(struct cgroup_subsys_state * css)4831 static void offline_css(struct cgroup_subsys_state *css)
4832 {
4833 	struct cgroup_subsys *ss = css->ss;
4834 
4835 	lockdep_assert_held(&cgroup_mutex);
4836 
4837 	if (!(css->flags & CSS_ONLINE))
4838 		return;
4839 
4840 	if (ss->css_offline)
4841 		ss->css_offline(css);
4842 
4843 	css->flags &= ~CSS_ONLINE;
4844 	RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
4845 
4846 	wake_up_all(&css->cgroup->offline_waitq);
4847 }
4848 
4849 /**
4850  * create_css - create a cgroup_subsys_state
4851  * @cgrp: the cgroup new css will be associated with
4852  * @ss: the subsys of new css
4853  * @visible: whether to create control knobs for the new css or not
4854  *
4855  * Create a new css associated with @cgrp - @ss pair.  On success, the new
4856  * css is online and installed in @cgrp with all interface files created if
4857  * @visible.  Returns 0 on success, -errno on failure.
4858  */
create_css(struct cgroup * cgrp,struct cgroup_subsys * ss,bool visible)4859 static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss,
4860 		      bool visible)
4861 {
4862 	struct cgroup *parent = cgroup_parent(cgrp);
4863 	struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
4864 	struct cgroup_subsys_state *css;
4865 	int err;
4866 
4867 	lockdep_assert_held(&cgroup_mutex);
4868 
4869 	css = ss->css_alloc(parent_css);
4870 	if (IS_ERR(css))
4871 		return PTR_ERR(css);
4872 
4873 	init_and_link_css(css, ss, cgrp);
4874 
4875 	err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
4876 	if (err)
4877 		goto err_free_css;
4878 
4879 	err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL);
4880 	if (err < 0)
4881 		goto err_free_percpu_ref;
4882 	css->id = err;
4883 
4884 	if (visible) {
4885 		err = css_populate_dir(css, NULL);
4886 		if (err)
4887 			goto err_free_id;
4888 	}
4889 
4890 	/* @css is ready to be brought online now, make it visible */
4891 	list_add_tail_rcu(&css->sibling, &parent_css->children);
4892 	cgroup_idr_replace(&ss->css_idr, css, css->id);
4893 
4894 	err = online_css(css);
4895 	if (err)
4896 		goto err_list_del;
4897 
4898 	if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
4899 	    cgroup_parent(parent)) {
4900 		pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
4901 			current->comm, current->pid, ss->name);
4902 		if (!strcmp(ss->name, "memory"))
4903 			pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n");
4904 		ss->warned_broken_hierarchy = true;
4905 	}
4906 
4907 	return 0;
4908 
4909 err_list_del:
4910 	list_del_rcu(&css->sibling);
4911 	css_clear_dir(css, NULL);
4912 err_free_id:
4913 	cgroup_idr_remove(&ss->css_idr, css->id);
4914 err_free_percpu_ref:
4915 	percpu_ref_exit(&css->refcnt);
4916 err_free_css:
4917 	call_rcu(&css->rcu_head, css_free_rcu_fn);
4918 	return err;
4919 }
4920 
cgroup_mkdir(struct kernfs_node * parent_kn,const char * name,umode_t mode)4921 static int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name,
4922 			umode_t mode)
4923 {
4924 	struct cgroup *parent, *cgrp;
4925 	struct cgroup_root *root;
4926 	struct cgroup_subsys *ss;
4927 	struct kernfs_node *kn;
4928 	int ssid, ret;
4929 
4930 	/* Do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable.
4931 	 */
4932 	if (strchr(name, '\n'))
4933 		return -EINVAL;
4934 
4935 	parent = cgroup_kn_lock_live(parent_kn);
4936 	if (!parent)
4937 		return -ENODEV;
4938 	root = parent->root;
4939 
4940 	/* allocate the cgroup and its ID, 0 is reserved for the root */
4941 	cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
4942 	if (!cgrp) {
4943 		ret = -ENOMEM;
4944 		goto out_unlock;
4945 	}
4946 
4947 	ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
4948 	if (ret)
4949 		goto out_free_cgrp;
4950 
4951 	/*
4952 	 * Temporarily set the pointer to NULL, so idr_find() won't return
4953 	 * a half-baked cgroup.
4954 	 */
4955 	cgrp->id = cgroup_idr_alloc(&root->cgroup_idr, NULL, 2, 0, GFP_KERNEL);
4956 	if (cgrp->id < 0) {
4957 		ret = -ENOMEM;
4958 		goto out_cancel_ref;
4959 	}
4960 
4961 	init_cgroup_housekeeping(cgrp);
4962 
4963 	cgrp->self.parent = &parent->self;
4964 	cgrp->root = root;
4965 
4966 	if (notify_on_release(parent))
4967 		set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
4968 
4969 	if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
4970 		set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
4971 
4972 	/* create the directory */
4973 	kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
4974 	if (IS_ERR(kn)) {
4975 		ret = PTR_ERR(kn);
4976 		goto out_free_id;
4977 	}
4978 	cgrp->kn = kn;
4979 
4980 	/*
4981 	 * This extra ref will be put in cgroup_free_fn() and guarantees
4982 	 * that @cgrp->kn is always accessible.
4983 	 */
4984 	kernfs_get(kn);
4985 
4986 	cgrp->self.serial_nr = css_serial_nr_next++;
4987 
4988 	/* allocation complete, commit to creation */
4989 	list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
4990 	atomic_inc(&root->nr_cgrps);
4991 	cgroup_get(parent);
4992 
4993 	/*
4994 	 * @cgrp is now fully operational.  If something fails after this
4995 	 * point, it'll be released via the normal destruction path.
4996 	 */
4997 	cgroup_idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
4998 
4999 	ret = cgroup_kn_set_ugid(kn);
5000 	if (ret)
5001 		goto out_destroy;
5002 
5003 	ret = css_populate_dir(&cgrp->self, NULL);
5004 	if (ret)
5005 		goto out_destroy;
5006 
5007 	/* let's create and online css's */
5008 	for_each_subsys(ss, ssid) {
5009 		if (parent->child_subsys_mask & (1 << ssid)) {
5010 			ret = create_css(cgrp, ss,
5011 					 parent->subtree_control & (1 << ssid));
5012 			if (ret)
5013 				goto out_destroy;
5014 		}
5015 	}
5016 
5017 	/*
5018 	 * On the default hierarchy, a child doesn't automatically inherit
5019 	 * subtree_control from the parent.  Each is configured manually.
5020 	 */
5021 	if (!cgroup_on_dfl(cgrp)) {
5022 		cgrp->subtree_control = parent->subtree_control;
5023 		cgroup_refresh_child_subsys_mask(cgrp);
5024 	}
5025 
5026 	kernfs_activate(kn);
5027 
5028 	ret = 0;
5029 	goto out_unlock;
5030 
5031 out_free_id:
5032 	cgroup_idr_remove(&root->cgroup_idr, cgrp->id);
5033 out_cancel_ref:
5034 	percpu_ref_exit(&cgrp->self.refcnt);
5035 out_free_cgrp:
5036 	kfree(cgrp);
5037 out_unlock:
5038 	cgroup_kn_unlock(parent_kn);
5039 	return ret;
5040 
5041 out_destroy:
5042 	cgroup_destroy_locked(cgrp);
5043 	goto out_unlock;
5044 }
5045 
5046 /*
5047  * This is called when the refcnt of a css is confirmed to be killed.
5048  * css_tryget_online() is now guaranteed to fail.  Tell the subsystem to
5049  * initate destruction and put the css ref from kill_css().
5050  */
css_killed_work_fn(struct work_struct * work)5051 static void css_killed_work_fn(struct work_struct *work)
5052 {
5053 	struct cgroup_subsys_state *css =
5054 		container_of(work, struct cgroup_subsys_state, destroy_work);
5055 
5056 	mutex_lock(&cgroup_mutex);
5057 
5058 	do {
5059 		offline_css(css);
5060 		css_put(css);
5061 		/* @css can't go away while we're holding cgroup_mutex */
5062 		css = css->parent;
5063 	} while (css && atomic_dec_and_test(&css->online_cnt));
5064 
5065 	mutex_unlock(&cgroup_mutex);
5066 }
5067 
5068 /* css kill confirmation processing requires process context, bounce */
css_killed_ref_fn(struct percpu_ref * ref)5069 static void css_killed_ref_fn(struct percpu_ref *ref)
5070 {
5071 	struct cgroup_subsys_state *css =
5072 		container_of(ref, struct cgroup_subsys_state, refcnt);
5073 
5074 	if (atomic_dec_and_test(&css->online_cnt)) {
5075 		INIT_WORK(&css->destroy_work, css_killed_work_fn);
5076 		queue_work(cgroup_destroy_wq, &css->destroy_work);
5077 	}
5078 }
5079 
5080 /**
5081  * kill_css - destroy a css
5082  * @css: css to destroy
5083  *
5084  * This function initiates destruction of @css by removing cgroup interface
5085  * files and putting its base reference.  ->css_offline() will be invoked
5086  * asynchronously once css_tryget_online() is guaranteed to fail and when
5087  * the reference count reaches zero, @css will be released.
5088  */
kill_css(struct cgroup_subsys_state * css)5089 static void kill_css(struct cgroup_subsys_state *css)
5090 {
5091 	lockdep_assert_held(&cgroup_mutex);
5092 
5093 	/*
5094 	 * This must happen before css is disassociated with its cgroup.
5095 	 * See seq_css() for details.
5096 	 */
5097 	css_clear_dir(css, NULL);
5098 
5099 	/*
5100 	 * Killing would put the base ref, but we need to keep it alive
5101 	 * until after ->css_offline().
5102 	 */
5103 	css_get(css);
5104 
5105 	/*
5106 	 * cgroup core guarantees that, by the time ->css_offline() is
5107 	 * invoked, no new css reference will be given out via
5108 	 * css_tryget_online().  We can't simply call percpu_ref_kill() and
5109 	 * proceed to offlining css's because percpu_ref_kill() doesn't
5110 	 * guarantee that the ref is seen as killed on all CPUs on return.
5111 	 *
5112 	 * Use percpu_ref_kill_and_confirm() to get notifications as each
5113 	 * css is confirmed to be seen as killed on all CPUs.
5114 	 */
5115 	percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
5116 }
5117 
5118 /**
5119  * cgroup_destroy_locked - the first stage of cgroup destruction
5120  * @cgrp: cgroup to be destroyed
5121  *
5122  * css's make use of percpu refcnts whose killing latency shouldn't be
5123  * exposed to userland and are RCU protected.  Also, cgroup core needs to
5124  * guarantee that css_tryget_online() won't succeed by the time
5125  * ->css_offline() is invoked.  To satisfy all the requirements,
5126  * destruction is implemented in the following two steps.
5127  *
5128  * s1. Verify @cgrp can be destroyed and mark it dying.  Remove all
5129  *     userland visible parts and start killing the percpu refcnts of
5130  *     css's.  Set up so that the next stage will be kicked off once all
5131  *     the percpu refcnts are confirmed to be killed.
5132  *
5133  * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
5134  *     rest of destruction.  Once all cgroup references are gone, the
5135  *     cgroup is RCU-freed.
5136  *
5137  * This function implements s1.  After this step, @cgrp is gone as far as
5138  * the userland is concerned and a new cgroup with the same name may be
5139  * created.  As cgroup doesn't care about the names internally, this
5140  * doesn't cause any problem.
5141  */
cgroup_destroy_locked(struct cgroup * cgrp)5142 static int cgroup_destroy_locked(struct cgroup *cgrp)
5143 	__releases(&cgroup_mutex) __acquires(&cgroup_mutex)
5144 {
5145 	struct cgroup_subsys_state *css;
5146 	struct cgrp_cset_link *link;
5147 	int ssid;
5148 
5149 	lockdep_assert_held(&cgroup_mutex);
5150 
5151 	/*
5152 	 * Only migration can raise populated from zero and we're already
5153 	 * holding cgroup_mutex.
5154 	 */
5155 	if (cgroup_is_populated(cgrp))
5156 		return -EBUSY;
5157 
5158 	/*
5159 	 * Make sure there's no live children.  We can't test emptiness of
5160 	 * ->self.children as dead children linger on it while being
5161 	 * drained; otherwise, "rmdir parent/child parent" may fail.
5162 	 */
5163 	if (css_has_online_children(&cgrp->self))
5164 		return -EBUSY;
5165 
5166 	/*
5167 	 * Mark @cgrp and the associated csets dead.  The former prevents
5168 	 * further task migration and child creation by disabling
5169 	 * cgroup_lock_live_group().  The latter makes the csets ignored by
5170 	 * the migration path.
5171 	 */
5172 	cgrp->self.flags &= ~CSS_ONLINE;
5173 
5174 	spin_lock_bh(&css_set_lock);
5175 	list_for_each_entry(link, &cgrp->cset_links, cset_link)
5176 		link->cset->dead = true;
5177 	spin_unlock_bh(&css_set_lock);
5178 
5179 	/* initiate massacre of all css's */
5180 	for_each_css(css, ssid, cgrp)
5181 		kill_css(css);
5182 
5183 	/*
5184 	 * Remove @cgrp directory along with the base files.  @cgrp has an
5185 	 * extra ref on its kn.
5186 	 */
5187 	kernfs_remove(cgrp->kn);
5188 
5189 	check_for_release(cgroup_parent(cgrp));
5190 
5191 	/* put the base reference */
5192 	percpu_ref_kill(&cgrp->self.refcnt);
5193 
5194 	return 0;
5195 };
5196 
cgroup_rmdir(struct kernfs_node * kn)5197 static int cgroup_rmdir(struct kernfs_node *kn)
5198 {
5199 	struct cgroup *cgrp;
5200 	int ret = 0;
5201 
5202 	cgrp = cgroup_kn_lock_live(kn);
5203 	if (!cgrp)
5204 		return 0;
5205 
5206 	ret = cgroup_destroy_locked(cgrp);
5207 
5208 	cgroup_kn_unlock(kn);
5209 	return ret;
5210 }
5211 
5212 static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
5213 	.remount_fs		= cgroup_remount,
5214 	.show_options		= cgroup_show_options,
5215 	.mkdir			= cgroup_mkdir,
5216 	.rmdir			= cgroup_rmdir,
5217 	.rename			= cgroup_rename,
5218 };
5219 
cgroup_init_subsys(struct cgroup_subsys * ss,bool early)5220 static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
5221 {
5222 	struct cgroup_subsys_state *css;
5223 
5224 	printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
5225 
5226 	mutex_lock(&cgroup_mutex);
5227 
5228 	idr_init(&ss->css_idr);
5229 	INIT_LIST_HEAD(&ss->cfts);
5230 
5231 	/* Create the root cgroup state for this subsystem */
5232 	ss->root = &cgrp_dfl_root;
5233 	css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss));
5234 	/* We don't handle early failures gracefully */
5235 	BUG_ON(IS_ERR(css));
5236 	init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
5237 
5238 	/*
5239 	 * Root csses are never destroyed and we can't initialize
5240 	 * percpu_ref during early init.  Disable refcnting.
5241 	 */
5242 	css->flags |= CSS_NO_REF;
5243 
5244 	if (early) {
5245 		/* allocation can't be done safely during early init */
5246 		css->id = 1;
5247 	} else {
5248 		css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
5249 		BUG_ON(css->id < 0);
5250 	}
5251 
5252 	/* Update the init_css_set to contain a subsys
5253 	 * pointer to this state - since the subsystem is
5254 	 * newly registered, all tasks and hence the
5255 	 * init_css_set is in the subsystem's root cgroup. */
5256 	init_css_set.subsys[ss->id] = css;
5257 
5258 	have_fork_callback |= (bool)ss->fork << ss->id;
5259 	have_exit_callback |= (bool)ss->exit << ss->id;
5260 	have_free_callback |= (bool)ss->free << ss->id;
5261 	have_canfork_callback |= (bool)ss->can_fork << ss->id;
5262 
5263 	/* At system boot, before all subsystems have been
5264 	 * registered, no tasks have been forked, so we don't
5265 	 * need to invoke fork callbacks here. */
5266 	BUG_ON(!list_empty(&init_task.tasks));
5267 
5268 	BUG_ON(online_css(css));
5269 
5270 	mutex_unlock(&cgroup_mutex);
5271 }
5272 
5273 /**
5274  * cgroup_init_early - cgroup initialization at system boot
5275  *
5276  * Initialize cgroups at system boot, and initialize any
5277  * subsystems that request early init.
5278  */
cgroup_init_early(void)5279 int __init cgroup_init_early(void)
5280 {
5281 	static struct cgroup_sb_opts __initdata opts;
5282 	struct cgroup_subsys *ss;
5283 	int i;
5284 
5285 	init_cgroup_root(&cgrp_dfl_root, &opts);
5286 	cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
5287 
5288 	RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
5289 
5290 	for_each_subsys(ss, i) {
5291 		WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
5292 		     "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p name:id=%d:%s\n",
5293 		     i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
5294 		     ss->id, ss->name);
5295 		WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
5296 		     "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
5297 
5298 		ss->id = i;
5299 		ss->name = cgroup_subsys_name[i];
5300 		if (!ss->legacy_name)
5301 			ss->legacy_name = cgroup_subsys_name[i];
5302 
5303 		if (ss->early_init)
5304 			cgroup_init_subsys(ss, true);
5305 	}
5306 	return 0;
5307 }
5308 
5309 static unsigned long cgroup_disable_mask __initdata;
5310 
5311 /**
5312  * cgroup_init - cgroup initialization
5313  *
5314  * Register cgroup filesystem and /proc file, and initialize
5315  * any subsystems that didn't request early init.
5316  */
cgroup_init(void)5317 int __init cgroup_init(void)
5318 {
5319 	struct cgroup_subsys *ss;
5320 	unsigned long key;
5321 	int ssid;
5322 
5323 	BUG_ON(percpu_init_rwsem(&cgroup_threadgroup_rwsem));
5324 	BUG_ON(cgroup_init_cftypes(NULL, cgroup_dfl_base_files));
5325 	BUG_ON(cgroup_init_cftypes(NULL, cgroup_legacy_base_files));
5326 
5327 	mutex_lock(&cgroup_mutex);
5328 
5329 	/* Add init_css_set to the hash table */
5330 	key = css_set_hash(init_css_set.subsys);
5331 	hash_add(css_set_table, &init_css_set.hlist, key);
5332 
5333 	BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
5334 
5335 	mutex_unlock(&cgroup_mutex);
5336 
5337 	for_each_subsys(ss, ssid) {
5338 		if (ss->early_init) {
5339 			struct cgroup_subsys_state *css =
5340 				init_css_set.subsys[ss->id];
5341 
5342 			css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
5343 						   GFP_KERNEL);
5344 			BUG_ON(css->id < 0);
5345 		} else {
5346 			cgroup_init_subsys(ss, false);
5347 		}
5348 
5349 		list_add_tail(&init_css_set.e_cset_node[ssid],
5350 			      &cgrp_dfl_root.cgrp.e_csets[ssid]);
5351 
5352 		/*
5353 		 * Setting dfl_root subsys_mask needs to consider the
5354 		 * disabled flag and cftype registration needs kmalloc,
5355 		 * both of which aren't available during early_init.
5356 		 */
5357 		if (cgroup_disable_mask & (1 << ssid)) {
5358 			static_branch_disable(cgroup_subsys_enabled_key[ssid]);
5359 			printk(KERN_INFO "Disabling %s control group subsystem\n",
5360 			       ss->name);
5361 			continue;
5362 		}
5363 
5364 		cgrp_dfl_root.subsys_mask |= 1 << ss->id;
5365 
5366 		if (!ss->dfl_cftypes)
5367 			cgrp_dfl_root_inhibit_ss_mask |= 1 << ss->id;
5368 
5369 		if (ss->dfl_cftypes == ss->legacy_cftypes) {
5370 			WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
5371 		} else {
5372 			WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
5373 			WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
5374 		}
5375 
5376 		if (ss->bind)
5377 			ss->bind(init_css_set.subsys[ssid]);
5378 	}
5379 
5380 	WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup"));
5381 	WARN_ON(register_filesystem(&cgroup_fs_type));
5382 	WARN_ON(!proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations));
5383 
5384 	return 0;
5385 }
5386 
cgroup_wq_init(void)5387 static int __init cgroup_wq_init(void)
5388 {
5389 	/*
5390 	 * There isn't much point in executing destruction path in
5391 	 * parallel.  Good chunk is serialized with cgroup_mutex anyway.
5392 	 * Use 1 for @max_active.
5393 	 *
5394 	 * We would prefer to do this in cgroup_init() above, but that
5395 	 * is called before init_workqueues(): so leave this until after.
5396 	 */
5397 	cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
5398 	BUG_ON(!cgroup_destroy_wq);
5399 
5400 	/*
5401 	 * Used to destroy pidlists and separate to serve as flush domain.
5402 	 * Cap @max_active to 1 too.
5403 	 */
5404 	cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy",
5405 						    0, 1);
5406 	BUG_ON(!cgroup_pidlist_destroy_wq);
5407 
5408 	return 0;
5409 }
5410 core_initcall(cgroup_wq_init);
5411 
5412 /*
5413  * proc_cgroup_show()
5414  *  - Print task's cgroup paths into seq_file, one line for each hierarchy
5415  *  - Used for /proc/<pid>/cgroup.
5416  */
proc_cgroup_show(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * tsk)5417 int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
5418 		     struct pid *pid, struct task_struct *tsk)
5419 {
5420 	char *buf, *path;
5421 	int retval;
5422 	struct cgroup_root *root;
5423 
5424 	retval = -ENOMEM;
5425 	buf = kmalloc(PATH_MAX, GFP_KERNEL);
5426 	if (!buf)
5427 		goto out;
5428 
5429 	mutex_lock(&cgroup_mutex);
5430 	spin_lock_bh(&css_set_lock);
5431 
5432 	for_each_root(root) {
5433 		struct cgroup_subsys *ss;
5434 		struct cgroup *cgrp;
5435 		int ssid, count = 0;
5436 
5437 		if (root == &cgrp_dfl_root && !cgrp_dfl_root_visible)
5438 			continue;
5439 
5440 		seq_printf(m, "%d:", root->hierarchy_id);
5441 		if (root != &cgrp_dfl_root)
5442 			for_each_subsys(ss, ssid)
5443 				if (root->subsys_mask & (1 << ssid))
5444 					seq_printf(m, "%s%s", count++ ? "," : "",
5445 						   ss->legacy_name);
5446 		if (strlen(root->name))
5447 			seq_printf(m, "%sname=%s", count ? "," : "",
5448 				   root->name);
5449 		seq_putc(m, ':');
5450 
5451 		cgrp = task_cgroup_from_root(tsk, root);
5452 
5453 		/*
5454 		 * On traditional hierarchies, all zombie tasks show up as
5455 		 * belonging to the root cgroup.  On the default hierarchy,
5456 		 * while a zombie doesn't show up in "cgroup.procs" and
5457 		 * thus can't be migrated, its /proc/PID/cgroup keeps
5458 		 * reporting the cgroup it belonged to before exiting.  If
5459 		 * the cgroup is removed before the zombie is reaped,
5460 		 * " (deleted)" is appended to the cgroup path.
5461 		 */
5462 		if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) {
5463 			path = cgroup_path(cgrp, buf, PATH_MAX);
5464 			if (!path) {
5465 				retval = -ENAMETOOLONG;
5466 				goto out_unlock;
5467 			}
5468 		} else {
5469 			path = "/";
5470 		}
5471 
5472 		seq_puts(m, path);
5473 
5474 		if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp))
5475 			seq_puts(m, " (deleted)\n");
5476 		else
5477 			seq_putc(m, '\n');
5478 	}
5479 
5480 	retval = 0;
5481 out_unlock:
5482 	spin_unlock_bh(&css_set_lock);
5483 	mutex_unlock(&cgroup_mutex);
5484 	kfree(buf);
5485 out:
5486 	return retval;
5487 }
5488 
5489 /* Display information about each subsystem and each hierarchy */
proc_cgroupstats_show(struct seq_file * m,void * v)5490 static int proc_cgroupstats_show(struct seq_file *m, void *v)
5491 {
5492 	struct cgroup_subsys *ss;
5493 	int i;
5494 
5495 	seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
5496 	/*
5497 	 * ideally we don't want subsystems moving around while we do this.
5498 	 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
5499 	 * subsys/hierarchy state.
5500 	 */
5501 	mutex_lock(&cgroup_mutex);
5502 
5503 	for_each_subsys(ss, i)
5504 		seq_printf(m, "%s\t%d\t%d\t%d\n",
5505 			   ss->legacy_name, ss->root->hierarchy_id,
5506 			   atomic_read(&ss->root->nr_cgrps),
5507 			   cgroup_ssid_enabled(i));
5508 
5509 	mutex_unlock(&cgroup_mutex);
5510 	return 0;
5511 }
5512 
cgroupstats_open(struct inode * inode,struct file * file)5513 static int cgroupstats_open(struct inode *inode, struct file *file)
5514 {
5515 	return single_open(file, proc_cgroupstats_show, NULL);
5516 }
5517 
5518 static const struct file_operations proc_cgroupstats_operations = {
5519 	.open = cgroupstats_open,
5520 	.read = seq_read,
5521 	.llseek = seq_lseek,
5522 	.release = single_release,
5523 };
5524 
subsys_canfork_priv_p(void * ss_priv[CGROUP_CANFORK_COUNT],int i)5525 static void **subsys_canfork_priv_p(void *ss_priv[CGROUP_CANFORK_COUNT], int i)
5526 {
5527 	if (CGROUP_CANFORK_START <= i && i < CGROUP_CANFORK_END)
5528 		return &ss_priv[i - CGROUP_CANFORK_START];
5529 	return NULL;
5530 }
5531 
subsys_canfork_priv(void * ss_priv[CGROUP_CANFORK_COUNT],int i)5532 static void *subsys_canfork_priv(void *ss_priv[CGROUP_CANFORK_COUNT], int i)
5533 {
5534 	void **private = subsys_canfork_priv_p(ss_priv, i);
5535 	return private ? *private : NULL;
5536 }
5537 
5538 /**
5539  * cgroup_fork - initialize cgroup related fields during copy_process()
5540  * @child: pointer to task_struct of forking parent process.
5541  *
5542  * A task is associated with the init_css_set until cgroup_post_fork()
5543  * attaches it to the parent's css_set.  Empty cg_list indicates that
5544  * @child isn't holding reference to its css_set.
5545  */
cgroup_fork(struct task_struct * child)5546 void cgroup_fork(struct task_struct *child)
5547 {
5548 	RCU_INIT_POINTER(child->cgroups, &init_css_set);
5549 	INIT_LIST_HEAD(&child->cg_list);
5550 }
5551 
5552 /**
5553  * cgroup_can_fork - called on a new task before the process is exposed
5554  * @child: the task in question.
5555  *
5556  * This calls the subsystem can_fork() callbacks. If the can_fork() callback
5557  * returns an error, the fork aborts with that error code. This allows for
5558  * a cgroup subsystem to conditionally allow or deny new forks.
5559  */
cgroup_can_fork(struct task_struct * child,void * ss_priv[CGROUP_CANFORK_COUNT])5560 int cgroup_can_fork(struct task_struct *child,
5561 		    void *ss_priv[CGROUP_CANFORK_COUNT])
5562 {
5563 	struct cgroup_subsys *ss;
5564 	int i, j, ret;
5565 
5566 	for_each_subsys_which(ss, i, &have_canfork_callback) {
5567 		ret = ss->can_fork(child, subsys_canfork_priv_p(ss_priv, i));
5568 		if (ret)
5569 			goto out_revert;
5570 	}
5571 
5572 	return 0;
5573 
5574 out_revert:
5575 	for_each_subsys(ss, j) {
5576 		if (j >= i)
5577 			break;
5578 		if (ss->cancel_fork)
5579 			ss->cancel_fork(child, subsys_canfork_priv(ss_priv, j));
5580 	}
5581 
5582 	return ret;
5583 }
5584 
5585 /**
5586  * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
5587  * @child: the task in question
5588  *
5589  * This calls the cancel_fork() callbacks if a fork failed *after*
5590  * cgroup_can_fork() succeded.
5591  */
cgroup_cancel_fork(struct task_struct * child,void * ss_priv[CGROUP_CANFORK_COUNT])5592 void cgroup_cancel_fork(struct task_struct *child,
5593 			void *ss_priv[CGROUP_CANFORK_COUNT])
5594 {
5595 	struct cgroup_subsys *ss;
5596 	int i;
5597 
5598 	for_each_subsys(ss, i)
5599 		if (ss->cancel_fork)
5600 			ss->cancel_fork(child, subsys_canfork_priv(ss_priv, i));
5601 }
5602 
5603 /**
5604  * cgroup_post_fork - called on a new task after adding it to the task list
5605  * @child: the task in question
5606  *
5607  * Adds the task to the list running through its css_set if necessary and
5608  * call the subsystem fork() callbacks.  Has to be after the task is
5609  * visible on the task list in case we race with the first call to
5610  * cgroup_task_iter_start() - to guarantee that the new task ends up on its
5611  * list.
5612  */
cgroup_post_fork(struct task_struct * child,void * old_ss_priv[CGROUP_CANFORK_COUNT])5613 void cgroup_post_fork(struct task_struct *child,
5614 		      void *old_ss_priv[CGROUP_CANFORK_COUNT])
5615 {
5616 	struct cgroup_subsys *ss;
5617 	int i;
5618 
5619 	/*
5620 	 * This may race against cgroup_enable_task_cg_lists().  As that
5621 	 * function sets use_task_css_set_links before grabbing
5622 	 * tasklist_lock and we just went through tasklist_lock to add
5623 	 * @child, it's guaranteed that either we see the set
5624 	 * use_task_css_set_links or cgroup_enable_task_cg_lists() sees
5625 	 * @child during its iteration.
5626 	 *
5627 	 * If we won the race, @child is associated with %current's
5628 	 * css_set.  Grabbing css_set_lock guarantees both that the
5629 	 * association is stable, and, on completion of the parent's
5630 	 * migration, @child is visible in the source of migration or
5631 	 * already in the destination cgroup.  This guarantee is necessary
5632 	 * when implementing operations which need to migrate all tasks of
5633 	 * a cgroup to another.
5634 	 *
5635 	 * Note that if we lose to cgroup_enable_task_cg_lists(), @child
5636 	 * will remain in init_css_set.  This is safe because all tasks are
5637 	 * in the init_css_set before cg_links is enabled and there's no
5638 	 * operation which transfers all tasks out of init_css_set.
5639 	 */
5640 	if (use_task_css_set_links) {
5641 		struct css_set *cset;
5642 
5643 		spin_lock_bh(&css_set_lock);
5644 		cset = task_css_set(current);
5645 		if (list_empty(&child->cg_list)) {
5646 			get_css_set(cset);
5647 			css_set_move_task(child, NULL, cset, false);
5648 		}
5649 		spin_unlock_bh(&css_set_lock);
5650 	}
5651 
5652 	/*
5653 	 * Call ss->fork().  This must happen after @child is linked on
5654 	 * css_set; otherwise, @child might change state between ->fork()
5655 	 * and addition to css_set.
5656 	 */
5657 	for_each_subsys_which(ss, i, &have_fork_callback)
5658 		ss->fork(child, subsys_canfork_priv(old_ss_priv, i));
5659 }
5660 
5661 /**
5662  * cgroup_exit - detach cgroup from exiting task
5663  * @tsk: pointer to task_struct of exiting process
5664  *
5665  * Description: Detach cgroup from @tsk and release it.
5666  *
5667  * Note that cgroups marked notify_on_release force every task in
5668  * them to take the global cgroup_mutex mutex when exiting.
5669  * This could impact scaling on very large systems.  Be reluctant to
5670  * use notify_on_release cgroups where very high task exit scaling
5671  * is required on large systems.
5672  *
5673  * We set the exiting tasks cgroup to the root cgroup (top_cgroup).  We
5674  * call cgroup_exit() while the task is still competent to handle
5675  * notify_on_release(), then leave the task attached to the root cgroup in
5676  * each hierarchy for the remainder of its exit.  No need to bother with
5677  * init_css_set refcnting.  init_css_set never goes away and we can't race
5678  * with migration path - PF_EXITING is visible to migration path.
5679  */
cgroup_exit(struct task_struct * tsk)5680 void cgroup_exit(struct task_struct *tsk)
5681 {
5682 	struct cgroup_subsys *ss;
5683 	struct css_set *cset;
5684 	int i;
5685 
5686 	/*
5687 	 * Unlink from @tsk from its css_set.  As migration path can't race
5688 	 * with us, we can check css_set and cg_list without synchronization.
5689 	 */
5690 	cset = task_css_set(tsk);
5691 
5692 	if (!list_empty(&tsk->cg_list)) {
5693 		spin_lock_bh(&css_set_lock);
5694 		css_set_move_task(tsk, cset, NULL, false);
5695 		spin_unlock_bh(&css_set_lock);
5696 	} else {
5697 		get_css_set(cset);
5698 	}
5699 
5700 	/* see cgroup_post_fork() for details */
5701 	for_each_subsys_which(ss, i, &have_exit_callback)
5702 		ss->exit(tsk);
5703 }
5704 
cgroup_free(struct task_struct * task)5705 void cgroup_free(struct task_struct *task)
5706 {
5707 	struct css_set *cset = task_css_set(task);
5708 	struct cgroup_subsys *ss;
5709 	int ssid;
5710 
5711 	for_each_subsys_which(ss, ssid, &have_free_callback)
5712 		ss->free(task);
5713 
5714 	put_css_set(cset);
5715 }
5716 
check_for_release(struct cgroup * cgrp)5717 static void check_for_release(struct cgroup *cgrp)
5718 {
5719 	if (notify_on_release(cgrp) && !cgroup_is_populated(cgrp) &&
5720 	    !css_has_online_children(&cgrp->self) && !cgroup_is_dead(cgrp))
5721 		schedule_work(&cgrp->release_agent_work);
5722 }
5723 
5724 /*
5725  * Notify userspace when a cgroup is released, by running the
5726  * configured release agent with the name of the cgroup (path
5727  * relative to the root of cgroup file system) as the argument.
5728  *
5729  * Most likely, this user command will try to rmdir this cgroup.
5730  *
5731  * This races with the possibility that some other task will be
5732  * attached to this cgroup before it is removed, or that some other
5733  * user task will 'mkdir' a child cgroup of this cgroup.  That's ok.
5734  * The presumed 'rmdir' will fail quietly if this cgroup is no longer
5735  * unused, and this cgroup will be reprieved from its death sentence,
5736  * to continue to serve a useful existence.  Next time it's released,
5737  * we will get notified again, if it still has 'notify_on_release' set.
5738  *
5739  * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
5740  * means only wait until the task is successfully execve()'d.  The
5741  * separate release agent task is forked by call_usermodehelper(),
5742  * then control in this thread returns here, without waiting for the
5743  * release agent task.  We don't bother to wait because the caller of
5744  * this routine has no use for the exit status of the release agent
5745  * task, so no sense holding our caller up for that.
5746  */
cgroup_release_agent(struct work_struct * work)5747 static void cgroup_release_agent(struct work_struct *work)
5748 {
5749 	struct cgroup *cgrp =
5750 		container_of(work, struct cgroup, release_agent_work);
5751 	char *pathbuf = NULL, *agentbuf = NULL, *path;
5752 	char *argv[3], *envp[3];
5753 
5754 	mutex_lock(&cgroup_mutex);
5755 
5756 	pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
5757 	agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
5758 	if (!pathbuf || !agentbuf)
5759 		goto out;
5760 
5761 	path = cgroup_path(cgrp, pathbuf, PATH_MAX);
5762 	if (!path)
5763 		goto out;
5764 
5765 	argv[0] = agentbuf;
5766 	argv[1] = path;
5767 	argv[2] = NULL;
5768 
5769 	/* minimal command environment */
5770 	envp[0] = "HOME=/";
5771 	envp[1] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
5772 	envp[2] = NULL;
5773 
5774 	mutex_unlock(&cgroup_mutex);
5775 	call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
5776 	goto out_free;
5777 out:
5778 	mutex_unlock(&cgroup_mutex);
5779 out_free:
5780 	kfree(agentbuf);
5781 	kfree(pathbuf);
5782 }
5783 
cgroup_disable(char * str)5784 static int __init cgroup_disable(char *str)
5785 {
5786 	struct cgroup_subsys *ss;
5787 	char *token;
5788 	int i;
5789 
5790 	while ((token = strsep(&str, ",")) != NULL) {
5791 		if (!*token)
5792 			continue;
5793 
5794 		for_each_subsys(ss, i) {
5795 			if (strcmp(token, ss->name) &&
5796 			    strcmp(token, ss->legacy_name))
5797 				continue;
5798 			cgroup_disable_mask |= 1 << i;
5799 		}
5800 	}
5801 	return 1;
5802 }
5803 __setup("cgroup_disable=", cgroup_disable);
5804 
5805 /**
5806  * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
5807  * @dentry: directory dentry of interest
5808  * @ss: subsystem of interest
5809  *
5810  * If @dentry is a directory for a cgroup which has @ss enabled on it, try
5811  * to get the corresponding css and return it.  If such css doesn't exist
5812  * or can't be pinned, an ERR_PTR value is returned.
5813  */
css_tryget_online_from_dir(struct dentry * dentry,struct cgroup_subsys * ss)5814 struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
5815 						       struct cgroup_subsys *ss)
5816 {
5817 	struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
5818 	struct cgroup_subsys_state *css = NULL;
5819 	struct cgroup *cgrp;
5820 
5821 	/* is @dentry a cgroup dir? */
5822 	if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
5823 	    kernfs_type(kn) != KERNFS_DIR)
5824 		return ERR_PTR(-EBADF);
5825 
5826 	rcu_read_lock();
5827 
5828 	/*
5829 	 * This path doesn't originate from kernfs and @kn could already
5830 	 * have been or be removed at any point.  @kn->priv is RCU
5831 	 * protected for this access.  See css_release_work_fn() for details.
5832 	 */
5833 	cgrp = rcu_dereference(kn->priv);
5834 	if (cgrp)
5835 		css = cgroup_css(cgrp, ss);
5836 
5837 	if (!css || !css_tryget_online(css))
5838 		css = ERR_PTR(-ENOENT);
5839 
5840 	rcu_read_unlock();
5841 	return css;
5842 }
5843 
5844 /**
5845  * css_from_id - lookup css by id
5846  * @id: the cgroup id
5847  * @ss: cgroup subsys to be looked into
5848  *
5849  * Returns the css if there's valid one with @id, otherwise returns NULL.
5850  * Should be called under rcu_read_lock().
5851  */
css_from_id(int id,struct cgroup_subsys * ss)5852 struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
5853 {
5854 	WARN_ON_ONCE(!rcu_read_lock_held());
5855 	return id > 0 ? idr_find(&ss->css_idr, id) : NULL;
5856 }
5857 
5858 #ifdef CONFIG_CGROUP_DEBUG
5859 static struct cgroup_subsys_state *
debug_css_alloc(struct cgroup_subsys_state * parent_css)5860 debug_css_alloc(struct cgroup_subsys_state *parent_css)
5861 {
5862 	struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
5863 
5864 	if (!css)
5865 		return ERR_PTR(-ENOMEM);
5866 
5867 	return css;
5868 }
5869 
debug_css_free(struct cgroup_subsys_state * css)5870 static void debug_css_free(struct cgroup_subsys_state *css)
5871 {
5872 	kfree(css);
5873 }
5874 
debug_taskcount_read(struct cgroup_subsys_state * css,struct cftype * cft)5875 static u64 debug_taskcount_read(struct cgroup_subsys_state *css,
5876 				struct cftype *cft)
5877 {
5878 	return cgroup_task_count(css->cgroup);
5879 }
5880 
current_css_set_read(struct cgroup_subsys_state * css,struct cftype * cft)5881 static u64 current_css_set_read(struct cgroup_subsys_state *css,
5882 				struct cftype *cft)
5883 {
5884 	return (u64)(unsigned long)current->cgroups;
5885 }
5886 
current_css_set_refcount_read(struct cgroup_subsys_state * css,struct cftype * cft)5887 static u64 current_css_set_refcount_read(struct cgroup_subsys_state *css,
5888 					 struct cftype *cft)
5889 {
5890 	u64 count;
5891 
5892 	rcu_read_lock();
5893 	count = atomic_read(&task_css_set(current)->refcount);
5894 	rcu_read_unlock();
5895 	return count;
5896 }
5897 
current_css_set_cg_links_read(struct seq_file * seq,void * v)5898 static int current_css_set_cg_links_read(struct seq_file *seq, void *v)
5899 {
5900 	struct cgrp_cset_link *link;
5901 	struct css_set *cset;
5902 	char *name_buf;
5903 
5904 	name_buf = kmalloc(NAME_MAX + 1, GFP_KERNEL);
5905 	if (!name_buf)
5906 		return -ENOMEM;
5907 
5908 	spin_lock_bh(&css_set_lock);
5909 	rcu_read_lock();
5910 	cset = rcu_dereference(current->cgroups);
5911 	list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
5912 		struct cgroup *c = link->cgrp;
5913 
5914 		cgroup_name(c, name_buf, NAME_MAX + 1);
5915 		seq_printf(seq, "Root %d group %s\n",
5916 			   c->root->hierarchy_id, name_buf);
5917 	}
5918 	rcu_read_unlock();
5919 	spin_unlock_bh(&css_set_lock);
5920 	kfree(name_buf);
5921 	return 0;
5922 }
5923 
5924 #define MAX_TASKS_SHOWN_PER_CSS 25
cgroup_css_links_read(struct seq_file * seq,void * v)5925 static int cgroup_css_links_read(struct seq_file *seq, void *v)
5926 {
5927 	struct cgroup_subsys_state *css = seq_css(seq);
5928 	struct cgrp_cset_link *link;
5929 
5930 	spin_lock_bh(&css_set_lock);
5931 	list_for_each_entry(link, &css->cgroup->cset_links, cset_link) {
5932 		struct css_set *cset = link->cset;
5933 		struct task_struct *task;
5934 		int count = 0;
5935 
5936 		seq_printf(seq, "css_set %p\n", cset);
5937 
5938 		list_for_each_entry(task, &cset->tasks, cg_list) {
5939 			if (count++ > MAX_TASKS_SHOWN_PER_CSS)
5940 				goto overflow;
5941 			seq_printf(seq, "  task %d\n", task_pid_vnr(task));
5942 		}
5943 
5944 		list_for_each_entry(task, &cset->mg_tasks, cg_list) {
5945 			if (count++ > MAX_TASKS_SHOWN_PER_CSS)
5946 				goto overflow;
5947 			seq_printf(seq, "  task %d\n", task_pid_vnr(task));
5948 		}
5949 		continue;
5950 	overflow:
5951 		seq_puts(seq, "  ...\n");
5952 	}
5953 	spin_unlock_bh(&css_set_lock);
5954 	return 0;
5955 }
5956 
releasable_read(struct cgroup_subsys_state * css,struct cftype * cft)5957 static u64 releasable_read(struct cgroup_subsys_state *css, struct cftype *cft)
5958 {
5959 	return (!cgroup_is_populated(css->cgroup) &&
5960 		!css_has_online_children(&css->cgroup->self));
5961 }
5962 
5963 static struct cftype debug_files[] =  {
5964 	{
5965 		.name = "taskcount",
5966 		.read_u64 = debug_taskcount_read,
5967 	},
5968 
5969 	{
5970 		.name = "current_css_set",
5971 		.read_u64 = current_css_set_read,
5972 	},
5973 
5974 	{
5975 		.name = "current_css_set_refcount",
5976 		.read_u64 = current_css_set_refcount_read,
5977 	},
5978 
5979 	{
5980 		.name = "current_css_set_cg_links",
5981 		.seq_show = current_css_set_cg_links_read,
5982 	},
5983 
5984 	{
5985 		.name = "cgroup_css_links",
5986 		.seq_show = cgroup_css_links_read,
5987 	},
5988 
5989 	{
5990 		.name = "releasable",
5991 		.read_u64 = releasable_read,
5992 	},
5993 
5994 	{ }	/* terminate */
5995 };
5996 
5997 struct cgroup_subsys debug_cgrp_subsys = {
5998 	.css_alloc = debug_css_alloc,
5999 	.css_free = debug_css_free,
6000 	.legacy_cftypes = debug_files,
6001 };
6002 #endif /* CONFIG_CGROUP_DEBUG */
6003