1 /*
2 * Hash: Hash algorithms under the crypto API
3 *
4 * Copyright (c) 2008 Herbert Xu <herbert@gondor.apana.org.au>
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License as published by the Free
8 * Software Foundation; either version 2 of the License, or (at your option)
9 * any later version.
10 *
11 */
12
13 #ifndef _CRYPTO_HASH_H
14 #define _CRYPTO_HASH_H
15
16 #include <linux/crypto.h>
17
18 struct crypto_ahash;
19
20 /**
21 * DOC: Message Digest Algorithm Definitions
22 *
23 * These data structures define modular message digest algorithm
24 * implementations, managed via crypto_register_ahash(),
25 * crypto_register_shash(), crypto_unregister_ahash() and
26 * crypto_unregister_shash().
27 */
28
29 /**
30 * struct hash_alg_common - define properties of message digest
31 * @digestsize: Size of the result of the transformation. A buffer of this size
32 * must be available to the @final and @finup calls, so they can
33 * store the resulting hash into it. For various predefined sizes,
34 * search include/crypto/ using
35 * git grep _DIGEST_SIZE include/crypto.
36 * @statesize: Size of the block for partial state of the transformation. A
37 * buffer of this size must be passed to the @export function as it
38 * will save the partial state of the transformation into it. On the
39 * other side, the @import function will load the state from a
40 * buffer of this size as well.
41 * @base: Start of data structure of cipher algorithm. The common data
42 * structure of crypto_alg contains information common to all ciphers.
43 * The hash_alg_common data structure now adds the hash-specific
44 * information.
45 */
46 struct hash_alg_common {
47 unsigned int digestsize;
48 unsigned int statesize;
49
50 struct crypto_alg base;
51 };
52
53 struct ahash_request {
54 struct crypto_async_request base;
55
56 unsigned int nbytes;
57 struct scatterlist *src;
58 u8 *result;
59
60 /* This field may only be used by the ahash API code. */
61 void *priv;
62
63 void *__ctx[] CRYPTO_MINALIGN_ATTR;
64 };
65
66 /**
67 * struct ahash_alg - asynchronous message digest definition
68 * @init: Initialize the transformation context. Intended only to initialize the
69 * state of the HASH transformation at the begining. This shall fill in
70 * the internal structures used during the entire duration of the whole
71 * transformation. No data processing happens at this point.
72 * @update: Push a chunk of data into the driver for transformation. This
73 * function actually pushes blocks of data from upper layers into the
74 * driver, which then passes those to the hardware as seen fit. This
75 * function must not finalize the HASH transformation by calculating the
76 * final message digest as this only adds more data into the
77 * transformation. This function shall not modify the transformation
78 * context, as this function may be called in parallel with the same
79 * transformation object. Data processing can happen synchronously
80 * [SHASH] or asynchronously [AHASH] at this point.
81 * @final: Retrieve result from the driver. This function finalizes the
82 * transformation and retrieves the resulting hash from the driver and
83 * pushes it back to upper layers. No data processing happens at this
84 * point.
85 * @finup: Combination of @update and @final. This function is effectively a
86 * combination of @update and @final calls issued in sequence. As some
87 * hardware cannot do @update and @final separately, this callback was
88 * added to allow such hardware to be used at least by IPsec. Data
89 * processing can happen synchronously [SHASH] or asynchronously [AHASH]
90 * at this point.
91 * @digest: Combination of @init and @update and @final. This function
92 * effectively behaves as the entire chain of operations, @init,
93 * @update and @final issued in sequence. Just like @finup, this was
94 * added for hardware which cannot do even the @finup, but can only do
95 * the whole transformation in one run. Data processing can happen
96 * synchronously [SHASH] or asynchronously [AHASH] at this point.
97 * @setkey: Set optional key used by the hashing algorithm. Intended to push
98 * optional key used by the hashing algorithm from upper layers into
99 * the driver. This function can store the key in the transformation
100 * context or can outright program it into the hardware. In the former
101 * case, one must be careful to program the key into the hardware at
102 * appropriate time and one must be careful that .setkey() can be
103 * called multiple times during the existence of the transformation
104 * object. Not all hashing algorithms do implement this function as it
105 * is only needed for keyed message digests. SHAx/MDx/CRCx do NOT
106 * implement this function. HMAC(MDx)/HMAC(SHAx)/CMAC(AES) do implement
107 * this function. This function must be called before any other of the
108 * @init, @update, @final, @finup, @digest is called. No data
109 * processing happens at this point.
110 * @export: Export partial state of the transformation. This function dumps the
111 * entire state of the ongoing transformation into a provided block of
112 * data so it can be @import 'ed back later on. This is useful in case
113 * you want to save partial result of the transformation after
114 * processing certain amount of data and reload this partial result
115 * multiple times later on for multiple re-use. No data processing
116 * happens at this point.
117 * @import: Import partial state of the transformation. This function loads the
118 * entire state of the ongoing transformation from a provided block of
119 * data so the transformation can continue from this point onward. No
120 * data processing happens at this point.
121 * @halg: see struct hash_alg_common
122 */
123 struct ahash_alg {
124 int (*init)(struct ahash_request *req);
125 int (*update)(struct ahash_request *req);
126 int (*final)(struct ahash_request *req);
127 int (*finup)(struct ahash_request *req);
128 int (*digest)(struct ahash_request *req);
129 int (*export)(struct ahash_request *req, void *out);
130 int (*import)(struct ahash_request *req, const void *in);
131 int (*setkey)(struct crypto_ahash *tfm, const u8 *key,
132 unsigned int keylen);
133
134 struct hash_alg_common halg;
135 };
136
137 struct shash_desc {
138 struct crypto_shash *tfm;
139 u32 flags;
140
141 void *__ctx[] CRYPTO_MINALIGN_ATTR;
142 };
143
144 #define SHASH_DESC_ON_STACK(shash, ctx) \
145 char __##shash##_desc[sizeof(struct shash_desc) + \
146 crypto_shash_descsize(ctx)] CRYPTO_MINALIGN_ATTR; \
147 struct shash_desc *shash = (struct shash_desc *)__##shash##_desc
148
149 /**
150 * struct shash_alg - synchronous message digest definition
151 * @init: see struct ahash_alg
152 * @update: see struct ahash_alg
153 * @final: see struct ahash_alg
154 * @finup: see struct ahash_alg
155 * @digest: see struct ahash_alg
156 * @export: see struct ahash_alg
157 * @import: see struct ahash_alg
158 * @setkey: see struct ahash_alg
159 * @digestsize: see struct ahash_alg
160 * @statesize: see struct ahash_alg
161 * @descsize: Size of the operational state for the message digest. This state
162 * size is the memory size that needs to be allocated for
163 * shash_desc.__ctx
164 * @base: internally used
165 */
166 struct shash_alg {
167 int (*init)(struct shash_desc *desc);
168 int (*update)(struct shash_desc *desc, const u8 *data,
169 unsigned int len);
170 int (*final)(struct shash_desc *desc, u8 *out);
171 int (*finup)(struct shash_desc *desc, const u8 *data,
172 unsigned int len, u8 *out);
173 int (*digest)(struct shash_desc *desc, const u8 *data,
174 unsigned int len, u8 *out);
175 int (*export)(struct shash_desc *desc, void *out);
176 int (*import)(struct shash_desc *desc, const void *in);
177 int (*setkey)(struct crypto_shash *tfm, const u8 *key,
178 unsigned int keylen);
179
180 unsigned int descsize;
181
182 /* These fields must match hash_alg_common. */
183 unsigned int digestsize
184 __attribute__ ((aligned(__alignof__(struct hash_alg_common))));
185 unsigned int statesize;
186
187 struct crypto_alg base;
188 };
189
190 struct crypto_ahash {
191 int (*init)(struct ahash_request *req);
192 int (*update)(struct ahash_request *req);
193 int (*final)(struct ahash_request *req);
194 int (*finup)(struct ahash_request *req);
195 int (*digest)(struct ahash_request *req);
196 int (*export)(struct ahash_request *req, void *out);
197 int (*import)(struct ahash_request *req, const void *in);
198 int (*setkey)(struct crypto_ahash *tfm, const u8 *key,
199 unsigned int keylen);
200
201 unsigned int reqsize;
202 bool has_setkey;
203 struct crypto_tfm base;
204 };
205
206 struct crypto_shash {
207 unsigned int descsize;
208 struct crypto_tfm base;
209 };
210
211 /**
212 * DOC: Asynchronous Message Digest API
213 *
214 * The asynchronous message digest API is used with the ciphers of type
215 * CRYPTO_ALG_TYPE_AHASH (listed as type "ahash" in /proc/crypto)
216 *
217 * The asynchronous cipher operation discussion provided for the
218 * CRYPTO_ALG_TYPE_ABLKCIPHER API applies here as well.
219 */
220
__crypto_ahash_cast(struct crypto_tfm * tfm)221 static inline struct crypto_ahash *__crypto_ahash_cast(struct crypto_tfm *tfm)
222 {
223 return container_of(tfm, struct crypto_ahash, base);
224 }
225
226 /**
227 * crypto_alloc_ahash() - allocate ahash cipher handle
228 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
229 * ahash cipher
230 * @type: specifies the type of the cipher
231 * @mask: specifies the mask for the cipher
232 *
233 * Allocate a cipher handle for an ahash. The returned struct
234 * crypto_ahash is the cipher handle that is required for any subsequent
235 * API invocation for that ahash.
236 *
237 * Return: allocated cipher handle in case of success; IS_ERR() is true in case
238 * of an error, PTR_ERR() returns the error code.
239 */
240 struct crypto_ahash *crypto_alloc_ahash(const char *alg_name, u32 type,
241 u32 mask);
242
crypto_ahash_tfm(struct crypto_ahash * tfm)243 static inline struct crypto_tfm *crypto_ahash_tfm(struct crypto_ahash *tfm)
244 {
245 return &tfm->base;
246 }
247
248 /**
249 * crypto_free_ahash() - zeroize and free the ahash handle
250 * @tfm: cipher handle to be freed
251 */
crypto_free_ahash(struct crypto_ahash * tfm)252 static inline void crypto_free_ahash(struct crypto_ahash *tfm)
253 {
254 crypto_destroy_tfm(tfm, crypto_ahash_tfm(tfm));
255 }
256
crypto_ahash_alignmask(struct crypto_ahash * tfm)257 static inline unsigned int crypto_ahash_alignmask(
258 struct crypto_ahash *tfm)
259 {
260 return crypto_tfm_alg_alignmask(crypto_ahash_tfm(tfm));
261 }
262
__crypto_hash_alg_common(struct crypto_alg * alg)263 static inline struct hash_alg_common *__crypto_hash_alg_common(
264 struct crypto_alg *alg)
265 {
266 return container_of(alg, struct hash_alg_common, base);
267 }
268
crypto_hash_alg_common(struct crypto_ahash * tfm)269 static inline struct hash_alg_common *crypto_hash_alg_common(
270 struct crypto_ahash *tfm)
271 {
272 return __crypto_hash_alg_common(crypto_ahash_tfm(tfm)->__crt_alg);
273 }
274
275 /**
276 * crypto_ahash_digestsize() - obtain message digest size
277 * @tfm: cipher handle
278 *
279 * The size for the message digest created by the message digest cipher
280 * referenced with the cipher handle is returned.
281 *
282 *
283 * Return: message digest size of cipher
284 */
crypto_ahash_digestsize(struct crypto_ahash * tfm)285 static inline unsigned int crypto_ahash_digestsize(struct crypto_ahash *tfm)
286 {
287 return crypto_hash_alg_common(tfm)->digestsize;
288 }
289
crypto_ahash_statesize(struct crypto_ahash * tfm)290 static inline unsigned int crypto_ahash_statesize(struct crypto_ahash *tfm)
291 {
292 return crypto_hash_alg_common(tfm)->statesize;
293 }
294
crypto_ahash_get_flags(struct crypto_ahash * tfm)295 static inline u32 crypto_ahash_get_flags(struct crypto_ahash *tfm)
296 {
297 return crypto_tfm_get_flags(crypto_ahash_tfm(tfm));
298 }
299
crypto_ahash_set_flags(struct crypto_ahash * tfm,u32 flags)300 static inline void crypto_ahash_set_flags(struct crypto_ahash *tfm, u32 flags)
301 {
302 crypto_tfm_set_flags(crypto_ahash_tfm(tfm), flags);
303 }
304
crypto_ahash_clear_flags(struct crypto_ahash * tfm,u32 flags)305 static inline void crypto_ahash_clear_flags(struct crypto_ahash *tfm, u32 flags)
306 {
307 crypto_tfm_clear_flags(crypto_ahash_tfm(tfm), flags);
308 }
309
310 /**
311 * crypto_ahash_reqtfm() - obtain cipher handle from request
312 * @req: asynchronous request handle that contains the reference to the ahash
313 * cipher handle
314 *
315 * Return the ahash cipher handle that is registered with the asynchronous
316 * request handle ahash_request.
317 *
318 * Return: ahash cipher handle
319 */
crypto_ahash_reqtfm(struct ahash_request * req)320 static inline struct crypto_ahash *crypto_ahash_reqtfm(
321 struct ahash_request *req)
322 {
323 return __crypto_ahash_cast(req->base.tfm);
324 }
325
326 /**
327 * crypto_ahash_reqsize() - obtain size of the request data structure
328 * @tfm: cipher handle
329 *
330 * Return the size of the ahash state size. With the crypto_ahash_export
331 * function, the caller can export the state into a buffer whose size is
332 * defined with this function.
333 *
334 * Return: size of the ahash state
335 */
crypto_ahash_reqsize(struct crypto_ahash * tfm)336 static inline unsigned int crypto_ahash_reqsize(struct crypto_ahash *tfm)
337 {
338 return tfm->reqsize;
339 }
340
ahash_request_ctx(struct ahash_request * req)341 static inline void *ahash_request_ctx(struct ahash_request *req)
342 {
343 return req->__ctx;
344 }
345
346 /**
347 * crypto_ahash_setkey - set key for cipher handle
348 * @tfm: cipher handle
349 * @key: buffer holding the key
350 * @keylen: length of the key in bytes
351 *
352 * The caller provided key is set for the ahash cipher. The cipher
353 * handle must point to a keyed hash in order for this function to succeed.
354 *
355 * Return: 0 if the setting of the key was successful; < 0 if an error occurred
356 */
357 int crypto_ahash_setkey(struct crypto_ahash *tfm, const u8 *key,
358 unsigned int keylen);
359
crypto_ahash_has_setkey(struct crypto_ahash * tfm)360 static inline bool crypto_ahash_has_setkey(struct crypto_ahash *tfm)
361 {
362 return tfm->has_setkey;
363 }
364
365 /**
366 * crypto_ahash_finup() - update and finalize message digest
367 * @req: reference to the ahash_request handle that holds all information
368 * needed to perform the cipher operation
369 *
370 * This function is a "short-hand" for the function calls of
371 * crypto_ahash_update and crypto_shash_final. The parameters have the same
372 * meaning as discussed for those separate functions.
373 *
374 * Return: 0 if the message digest creation was successful; < 0 if an error
375 * occurred
376 */
377 int crypto_ahash_finup(struct ahash_request *req);
378
379 /**
380 * crypto_ahash_final() - calculate message digest
381 * @req: reference to the ahash_request handle that holds all information
382 * needed to perform the cipher operation
383 *
384 * Finalize the message digest operation and create the message digest
385 * based on all data added to the cipher handle. The message digest is placed
386 * into the output buffer registered with the ahash_request handle.
387 *
388 * Return: 0 if the message digest creation was successful; < 0 if an error
389 * occurred
390 */
391 int crypto_ahash_final(struct ahash_request *req);
392
393 /**
394 * crypto_ahash_digest() - calculate message digest for a buffer
395 * @req: reference to the ahash_request handle that holds all information
396 * needed to perform the cipher operation
397 *
398 * This function is a "short-hand" for the function calls of crypto_ahash_init,
399 * crypto_ahash_update and crypto_ahash_final. The parameters have the same
400 * meaning as discussed for those separate three functions.
401 *
402 * Return: 0 if the message digest creation was successful; < 0 if an error
403 * occurred
404 */
405 int crypto_ahash_digest(struct ahash_request *req);
406
407 /**
408 * crypto_ahash_export() - extract current message digest state
409 * @req: reference to the ahash_request handle whose state is exported
410 * @out: output buffer of sufficient size that can hold the hash state
411 *
412 * This function exports the hash state of the ahash_request handle into the
413 * caller-allocated output buffer out which must have sufficient size (e.g. by
414 * calling crypto_ahash_reqsize).
415 *
416 * Return: 0 if the export was successful; < 0 if an error occurred
417 */
crypto_ahash_export(struct ahash_request * req,void * out)418 static inline int crypto_ahash_export(struct ahash_request *req, void *out)
419 {
420 return crypto_ahash_reqtfm(req)->export(req, out);
421 }
422
423 /**
424 * crypto_ahash_import() - import message digest state
425 * @req: reference to ahash_request handle the state is imported into
426 * @in: buffer holding the state
427 *
428 * This function imports the hash state into the ahash_request handle from the
429 * input buffer. That buffer should have been generated with the
430 * crypto_ahash_export function.
431 *
432 * Return: 0 if the import was successful; < 0 if an error occurred
433 */
crypto_ahash_import(struct ahash_request * req,const void * in)434 static inline int crypto_ahash_import(struct ahash_request *req, const void *in)
435 {
436 return crypto_ahash_reqtfm(req)->import(req, in);
437 }
438
439 /**
440 * crypto_ahash_init() - (re)initialize message digest handle
441 * @req: ahash_request handle that already is initialized with all necessary
442 * data using the ahash_request_* API functions
443 *
444 * The call (re-)initializes the message digest referenced by the ahash_request
445 * handle. Any potentially existing state created by previous operations is
446 * discarded.
447 *
448 * Return: 0 if the message digest initialization was successful; < 0 if an
449 * error occurred
450 */
crypto_ahash_init(struct ahash_request * req)451 static inline int crypto_ahash_init(struct ahash_request *req)
452 {
453 return crypto_ahash_reqtfm(req)->init(req);
454 }
455
456 /**
457 * crypto_ahash_update() - add data to message digest for processing
458 * @req: ahash_request handle that was previously initialized with the
459 * crypto_ahash_init call.
460 *
461 * Updates the message digest state of the &ahash_request handle. The input data
462 * is pointed to by the scatter/gather list registered in the &ahash_request
463 * handle
464 *
465 * Return: 0 if the message digest update was successful; < 0 if an error
466 * occurred
467 */
crypto_ahash_update(struct ahash_request * req)468 static inline int crypto_ahash_update(struct ahash_request *req)
469 {
470 return crypto_ahash_reqtfm(req)->update(req);
471 }
472
473 /**
474 * DOC: Asynchronous Hash Request Handle
475 *
476 * The &ahash_request data structure contains all pointers to data
477 * required for the asynchronous cipher operation. This includes the cipher
478 * handle (which can be used by multiple &ahash_request instances), pointer
479 * to plaintext and the message digest output buffer, asynchronous callback
480 * function, etc. It acts as a handle to the ahash_request_* API calls in a
481 * similar way as ahash handle to the crypto_ahash_* API calls.
482 */
483
484 /**
485 * ahash_request_set_tfm() - update cipher handle reference in request
486 * @req: request handle to be modified
487 * @tfm: cipher handle that shall be added to the request handle
488 *
489 * Allow the caller to replace the existing ahash handle in the request
490 * data structure with a different one.
491 */
ahash_request_set_tfm(struct ahash_request * req,struct crypto_ahash * tfm)492 static inline void ahash_request_set_tfm(struct ahash_request *req,
493 struct crypto_ahash *tfm)
494 {
495 req->base.tfm = crypto_ahash_tfm(tfm);
496 }
497
498 /**
499 * ahash_request_alloc() - allocate request data structure
500 * @tfm: cipher handle to be registered with the request
501 * @gfp: memory allocation flag that is handed to kmalloc by the API call.
502 *
503 * Allocate the request data structure that must be used with the ahash
504 * message digest API calls. During
505 * the allocation, the provided ahash handle
506 * is registered in the request data structure.
507 *
508 * Return: allocated request handle in case of success; IS_ERR() is true in case
509 * of an error, PTR_ERR() returns the error code.
510 */
ahash_request_alloc(struct crypto_ahash * tfm,gfp_t gfp)511 static inline struct ahash_request *ahash_request_alloc(
512 struct crypto_ahash *tfm, gfp_t gfp)
513 {
514 struct ahash_request *req;
515
516 req = kmalloc(sizeof(struct ahash_request) +
517 crypto_ahash_reqsize(tfm), gfp);
518
519 if (likely(req))
520 ahash_request_set_tfm(req, tfm);
521
522 return req;
523 }
524
525 /**
526 * ahash_request_free() - zeroize and free the request data structure
527 * @req: request data structure cipher handle to be freed
528 */
ahash_request_free(struct ahash_request * req)529 static inline void ahash_request_free(struct ahash_request *req)
530 {
531 kzfree(req);
532 }
533
ahash_request_cast(struct crypto_async_request * req)534 static inline struct ahash_request *ahash_request_cast(
535 struct crypto_async_request *req)
536 {
537 return container_of(req, struct ahash_request, base);
538 }
539
540 /**
541 * ahash_request_set_callback() - set asynchronous callback function
542 * @req: request handle
543 * @flags: specify zero or an ORing of the flags
544 * CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and
545 * increase the wait queue beyond the initial maximum size;
546 * CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep
547 * @compl: callback function pointer to be registered with the request handle
548 * @data: The data pointer refers to memory that is not used by the kernel
549 * crypto API, but provided to the callback function for it to use. Here,
550 * the caller can provide a reference to memory the callback function can
551 * operate on. As the callback function is invoked asynchronously to the
552 * related functionality, it may need to access data structures of the
553 * related functionality which can be referenced using this pointer. The
554 * callback function can access the memory via the "data" field in the
555 * &crypto_async_request data structure provided to the callback function.
556 *
557 * This function allows setting the callback function that is triggered once
558 * the cipher operation completes.
559 *
560 * The callback function is registered with the &ahash_request handle and
561 * must comply with the following template
562 *
563 * void callback_function(struct crypto_async_request *req, int error)
564 */
ahash_request_set_callback(struct ahash_request * req,u32 flags,crypto_completion_t compl,void * data)565 static inline void ahash_request_set_callback(struct ahash_request *req,
566 u32 flags,
567 crypto_completion_t compl,
568 void *data)
569 {
570 req->base.complete = compl;
571 req->base.data = data;
572 req->base.flags = flags;
573 }
574
575 /**
576 * ahash_request_set_crypt() - set data buffers
577 * @req: ahash_request handle to be updated
578 * @src: source scatter/gather list
579 * @result: buffer that is filled with the message digest -- the caller must
580 * ensure that the buffer has sufficient space by, for example, calling
581 * crypto_ahash_digestsize()
582 * @nbytes: number of bytes to process from the source scatter/gather list
583 *
584 * By using this call, the caller references the source scatter/gather list.
585 * The source scatter/gather list points to the data the message digest is to
586 * be calculated for.
587 */
ahash_request_set_crypt(struct ahash_request * req,struct scatterlist * src,u8 * result,unsigned int nbytes)588 static inline void ahash_request_set_crypt(struct ahash_request *req,
589 struct scatterlist *src, u8 *result,
590 unsigned int nbytes)
591 {
592 req->src = src;
593 req->nbytes = nbytes;
594 req->result = result;
595 }
596
597 /**
598 * DOC: Synchronous Message Digest API
599 *
600 * The synchronous message digest API is used with the ciphers of type
601 * CRYPTO_ALG_TYPE_SHASH (listed as type "shash" in /proc/crypto)
602 *
603 * The message digest API is able to maintain state information for the
604 * caller.
605 *
606 * The synchronous message digest API can store user-related context in in its
607 * shash_desc request data structure.
608 */
609
610 /**
611 * crypto_alloc_shash() - allocate message digest handle
612 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
613 * message digest cipher
614 * @type: specifies the type of the cipher
615 * @mask: specifies the mask for the cipher
616 *
617 * Allocate a cipher handle for a message digest. The returned &struct
618 * crypto_shash is the cipher handle that is required for any subsequent
619 * API invocation for that message digest.
620 *
621 * Return: allocated cipher handle in case of success; IS_ERR() is true in case
622 * of an error, PTR_ERR() returns the error code.
623 */
624 struct crypto_shash *crypto_alloc_shash(const char *alg_name, u32 type,
625 u32 mask);
626
crypto_shash_tfm(struct crypto_shash * tfm)627 static inline struct crypto_tfm *crypto_shash_tfm(struct crypto_shash *tfm)
628 {
629 return &tfm->base;
630 }
631
632 /**
633 * crypto_free_shash() - zeroize and free the message digest handle
634 * @tfm: cipher handle to be freed
635 */
crypto_free_shash(struct crypto_shash * tfm)636 static inline void crypto_free_shash(struct crypto_shash *tfm)
637 {
638 crypto_destroy_tfm(tfm, crypto_shash_tfm(tfm));
639 }
640
crypto_shash_alignmask(struct crypto_shash * tfm)641 static inline unsigned int crypto_shash_alignmask(
642 struct crypto_shash *tfm)
643 {
644 return crypto_tfm_alg_alignmask(crypto_shash_tfm(tfm));
645 }
646
647 /**
648 * crypto_shash_blocksize() - obtain block size for cipher
649 * @tfm: cipher handle
650 *
651 * The block size for the message digest cipher referenced with the cipher
652 * handle is returned.
653 *
654 * Return: block size of cipher
655 */
crypto_shash_blocksize(struct crypto_shash * tfm)656 static inline unsigned int crypto_shash_blocksize(struct crypto_shash *tfm)
657 {
658 return crypto_tfm_alg_blocksize(crypto_shash_tfm(tfm));
659 }
660
__crypto_shash_alg(struct crypto_alg * alg)661 static inline struct shash_alg *__crypto_shash_alg(struct crypto_alg *alg)
662 {
663 return container_of(alg, struct shash_alg, base);
664 }
665
crypto_shash_alg(struct crypto_shash * tfm)666 static inline struct shash_alg *crypto_shash_alg(struct crypto_shash *tfm)
667 {
668 return __crypto_shash_alg(crypto_shash_tfm(tfm)->__crt_alg);
669 }
670
671 /**
672 * crypto_shash_digestsize() - obtain message digest size
673 * @tfm: cipher handle
674 *
675 * The size for the message digest created by the message digest cipher
676 * referenced with the cipher handle is returned.
677 *
678 * Return: digest size of cipher
679 */
crypto_shash_digestsize(struct crypto_shash * tfm)680 static inline unsigned int crypto_shash_digestsize(struct crypto_shash *tfm)
681 {
682 return crypto_shash_alg(tfm)->digestsize;
683 }
684
crypto_shash_statesize(struct crypto_shash * tfm)685 static inline unsigned int crypto_shash_statesize(struct crypto_shash *tfm)
686 {
687 return crypto_shash_alg(tfm)->statesize;
688 }
689
crypto_shash_get_flags(struct crypto_shash * tfm)690 static inline u32 crypto_shash_get_flags(struct crypto_shash *tfm)
691 {
692 return crypto_tfm_get_flags(crypto_shash_tfm(tfm));
693 }
694
crypto_shash_set_flags(struct crypto_shash * tfm,u32 flags)695 static inline void crypto_shash_set_flags(struct crypto_shash *tfm, u32 flags)
696 {
697 crypto_tfm_set_flags(crypto_shash_tfm(tfm), flags);
698 }
699
crypto_shash_clear_flags(struct crypto_shash * tfm,u32 flags)700 static inline void crypto_shash_clear_flags(struct crypto_shash *tfm, u32 flags)
701 {
702 crypto_tfm_clear_flags(crypto_shash_tfm(tfm), flags);
703 }
704
705 /**
706 * crypto_shash_descsize() - obtain the operational state size
707 * @tfm: cipher handle
708 *
709 * The size of the operational state the cipher needs during operation is
710 * returned for the hash referenced with the cipher handle. This size is
711 * required to calculate the memory requirements to allow the caller allocating
712 * sufficient memory for operational state.
713 *
714 * The operational state is defined with struct shash_desc where the size of
715 * that data structure is to be calculated as
716 * sizeof(struct shash_desc) + crypto_shash_descsize(alg)
717 *
718 * Return: size of the operational state
719 */
crypto_shash_descsize(struct crypto_shash * tfm)720 static inline unsigned int crypto_shash_descsize(struct crypto_shash *tfm)
721 {
722 return tfm->descsize;
723 }
724
shash_desc_ctx(struct shash_desc * desc)725 static inline void *shash_desc_ctx(struct shash_desc *desc)
726 {
727 return desc->__ctx;
728 }
729
730 /**
731 * crypto_shash_setkey() - set key for message digest
732 * @tfm: cipher handle
733 * @key: buffer holding the key
734 * @keylen: length of the key in bytes
735 *
736 * The caller provided key is set for the keyed message digest cipher. The
737 * cipher handle must point to a keyed message digest cipher in order for this
738 * function to succeed.
739 *
740 * Return: 0 if the setting of the key was successful; < 0 if an error occurred
741 */
742 int crypto_shash_setkey(struct crypto_shash *tfm, const u8 *key,
743 unsigned int keylen);
744
745 /**
746 * crypto_shash_digest() - calculate message digest for buffer
747 * @desc: see crypto_shash_final()
748 * @data: see crypto_shash_update()
749 * @len: see crypto_shash_update()
750 * @out: see crypto_shash_final()
751 *
752 * This function is a "short-hand" for the function calls of crypto_shash_init,
753 * crypto_shash_update and crypto_shash_final. The parameters have the same
754 * meaning as discussed for those separate three functions.
755 *
756 * Return: 0 if the message digest creation was successful; < 0 if an error
757 * occurred
758 */
759 int crypto_shash_digest(struct shash_desc *desc, const u8 *data,
760 unsigned int len, u8 *out);
761
762 /**
763 * crypto_shash_export() - extract operational state for message digest
764 * @desc: reference to the operational state handle whose state is exported
765 * @out: output buffer of sufficient size that can hold the hash state
766 *
767 * This function exports the hash state of the operational state handle into the
768 * caller-allocated output buffer out which must have sufficient size (e.g. by
769 * calling crypto_shash_descsize).
770 *
771 * Return: 0 if the export creation was successful; < 0 if an error occurred
772 */
crypto_shash_export(struct shash_desc * desc,void * out)773 static inline int crypto_shash_export(struct shash_desc *desc, void *out)
774 {
775 return crypto_shash_alg(desc->tfm)->export(desc, out);
776 }
777
778 /**
779 * crypto_shash_import() - import operational state
780 * @desc: reference to the operational state handle the state imported into
781 * @in: buffer holding the state
782 *
783 * This function imports the hash state into the operational state handle from
784 * the input buffer. That buffer should have been generated with the
785 * crypto_ahash_export function.
786 *
787 * Return: 0 if the import was successful; < 0 if an error occurred
788 */
crypto_shash_import(struct shash_desc * desc,const void * in)789 static inline int crypto_shash_import(struct shash_desc *desc, const void *in)
790 {
791 return crypto_shash_alg(desc->tfm)->import(desc, in);
792 }
793
794 /**
795 * crypto_shash_init() - (re)initialize message digest
796 * @desc: operational state handle that is already filled
797 *
798 * The call (re-)initializes the message digest referenced by the
799 * operational state handle. Any potentially existing state created by
800 * previous operations is discarded.
801 *
802 * Return: 0 if the message digest initialization was successful; < 0 if an
803 * error occurred
804 */
crypto_shash_init(struct shash_desc * desc)805 static inline int crypto_shash_init(struct shash_desc *desc)
806 {
807 return crypto_shash_alg(desc->tfm)->init(desc);
808 }
809
810 /**
811 * crypto_shash_update() - add data to message digest for processing
812 * @desc: operational state handle that is already initialized
813 * @data: input data to be added to the message digest
814 * @len: length of the input data
815 *
816 * Updates the message digest state of the operational state handle.
817 *
818 * Return: 0 if the message digest update was successful; < 0 if an error
819 * occurred
820 */
821 int crypto_shash_update(struct shash_desc *desc, const u8 *data,
822 unsigned int len);
823
824 /**
825 * crypto_shash_final() - calculate message digest
826 * @desc: operational state handle that is already filled with data
827 * @out: output buffer filled with the message digest
828 *
829 * Finalize the message digest operation and create the message digest
830 * based on all data added to the cipher handle. The message digest is placed
831 * into the output buffer. The caller must ensure that the output buffer is
832 * large enough by using crypto_shash_digestsize.
833 *
834 * Return: 0 if the message digest creation was successful; < 0 if an error
835 * occurred
836 */
837 int crypto_shash_final(struct shash_desc *desc, u8 *out);
838
839 /**
840 * crypto_shash_finup() - calculate message digest of buffer
841 * @desc: see crypto_shash_final()
842 * @data: see crypto_shash_update()
843 * @len: see crypto_shash_update()
844 * @out: see crypto_shash_final()
845 *
846 * This function is a "short-hand" for the function calls of
847 * crypto_shash_update and crypto_shash_final. The parameters have the same
848 * meaning as discussed for those separate functions.
849 *
850 * Return: 0 if the message digest creation was successful; < 0 if an error
851 * occurred
852 */
853 int crypto_shash_finup(struct shash_desc *desc, const u8 *data,
854 unsigned int len, u8 *out);
855
856 #endif /* _CRYPTO_HASH_H */
857