1 /*
2  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License, version 2, as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
17  */
18 
19 #include <linux/mman.h>
20 #include <linux/kvm_host.h>
21 #include <linux/io.h>
22 #include <linux/hugetlb.h>
23 #include <trace/events/kvm.h>
24 #include <asm/pgalloc.h>
25 #include <asm/cacheflush.h>
26 #include <asm/kvm_arm.h>
27 #include <asm/kvm_mmu.h>
28 #include <asm/kvm_mmio.h>
29 #include <asm/kvm_asm.h>
30 #include <asm/kvm_emulate.h>
31 
32 #include "trace.h"
33 
34 extern char  __hyp_idmap_text_start[], __hyp_idmap_text_end[];
35 
36 static pgd_t *boot_hyp_pgd;
37 static pgd_t *hyp_pgd;
38 static pgd_t *merged_hyp_pgd;
39 static DEFINE_MUTEX(kvm_hyp_pgd_mutex);
40 
41 static unsigned long hyp_idmap_start;
42 static unsigned long hyp_idmap_end;
43 static phys_addr_t hyp_idmap_vector;
44 
45 #define hyp_pgd_order get_order(PTRS_PER_PGD * sizeof(pgd_t))
46 
47 #define kvm_pmd_huge(_x)	(pmd_huge(_x) || pmd_trans_huge(_x))
48 #define kvm_pud_huge(_x)	pud_huge(_x)
49 
50 #define KVM_S2PTE_FLAG_IS_IOMAP		(1UL << 0)
51 #define KVM_S2_FLAG_LOGGING_ACTIVE	(1UL << 1)
52 
memslot_is_logging(struct kvm_memory_slot * memslot)53 static bool memslot_is_logging(struct kvm_memory_slot *memslot)
54 {
55 	return memslot->dirty_bitmap && !(memslot->flags & KVM_MEM_READONLY);
56 }
57 
58 /**
59  * kvm_flush_remote_tlbs() - flush all VM TLB entries for v7/8
60  * @kvm:	pointer to kvm structure.
61  *
62  * Interface to HYP function to flush all VM TLB entries
63  */
kvm_flush_remote_tlbs(struct kvm * kvm)64 void kvm_flush_remote_tlbs(struct kvm *kvm)
65 {
66 	kvm_call_hyp(__kvm_tlb_flush_vmid, kvm);
67 }
68 
kvm_tlb_flush_vmid_ipa(struct kvm * kvm,phys_addr_t ipa)69 static void kvm_tlb_flush_vmid_ipa(struct kvm *kvm, phys_addr_t ipa)
70 {
71 	/*
72 	 * This function also gets called when dealing with HYP page
73 	 * tables. As HYP doesn't have an associated struct kvm (and
74 	 * the HYP page tables are fairly static), we don't do
75 	 * anything there.
76 	 */
77 	if (kvm)
78 		kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, kvm, ipa);
79 }
80 
81 /*
82  * D-Cache management functions. They take the page table entries by
83  * value, as they are flushing the cache using the kernel mapping (or
84  * kmap on 32bit).
85  */
kvm_flush_dcache_pte(pte_t pte)86 static void kvm_flush_dcache_pte(pte_t pte)
87 {
88 	__kvm_flush_dcache_pte(pte);
89 }
90 
kvm_flush_dcache_pmd(pmd_t pmd)91 static void kvm_flush_dcache_pmd(pmd_t pmd)
92 {
93 	__kvm_flush_dcache_pmd(pmd);
94 }
95 
kvm_flush_dcache_pud(pud_t pud)96 static void kvm_flush_dcache_pud(pud_t pud)
97 {
98 	__kvm_flush_dcache_pud(pud);
99 }
100 
kvm_is_device_pfn(unsigned long pfn)101 static bool kvm_is_device_pfn(unsigned long pfn)
102 {
103 	return !pfn_valid(pfn);
104 }
105 
106 /**
107  * stage2_dissolve_pmd() - clear and flush huge PMD entry
108  * @kvm:	pointer to kvm structure.
109  * @addr:	IPA
110  * @pmd:	pmd pointer for IPA
111  *
112  * Function clears a PMD entry, flushes addr 1st and 2nd stage TLBs. Marks all
113  * pages in the range dirty.
114  */
stage2_dissolve_pmd(struct kvm * kvm,phys_addr_t addr,pmd_t * pmd)115 static void stage2_dissolve_pmd(struct kvm *kvm, phys_addr_t addr, pmd_t *pmd)
116 {
117 	if (!kvm_pmd_huge(*pmd))
118 		return;
119 
120 	pmd_clear(pmd);
121 	kvm_tlb_flush_vmid_ipa(kvm, addr);
122 	put_page(virt_to_page(pmd));
123 }
124 
mmu_topup_memory_cache(struct kvm_mmu_memory_cache * cache,int min,int max)125 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
126 				  int min, int max)
127 {
128 	void *page;
129 
130 	BUG_ON(max > KVM_NR_MEM_OBJS);
131 	if (cache->nobjs >= min)
132 		return 0;
133 	while (cache->nobjs < max) {
134 		page = (void *)__get_free_page(PGALLOC_GFP);
135 		if (!page)
136 			return -ENOMEM;
137 		cache->objects[cache->nobjs++] = page;
138 	}
139 	return 0;
140 }
141 
mmu_free_memory_cache(struct kvm_mmu_memory_cache * mc)142 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
143 {
144 	while (mc->nobjs)
145 		free_page((unsigned long)mc->objects[--mc->nobjs]);
146 }
147 
mmu_memory_cache_alloc(struct kvm_mmu_memory_cache * mc)148 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
149 {
150 	void *p;
151 
152 	BUG_ON(!mc || !mc->nobjs);
153 	p = mc->objects[--mc->nobjs];
154 	return p;
155 }
156 
clear_pgd_entry(struct kvm * kvm,pgd_t * pgd,phys_addr_t addr)157 static void clear_pgd_entry(struct kvm *kvm, pgd_t *pgd, phys_addr_t addr)
158 {
159 	pud_t *pud_table __maybe_unused = pud_offset(pgd, 0);
160 	pgd_clear(pgd);
161 	kvm_tlb_flush_vmid_ipa(kvm, addr);
162 	pud_free(NULL, pud_table);
163 	put_page(virt_to_page(pgd));
164 }
165 
clear_pud_entry(struct kvm * kvm,pud_t * pud,phys_addr_t addr)166 static void clear_pud_entry(struct kvm *kvm, pud_t *pud, phys_addr_t addr)
167 {
168 	pmd_t *pmd_table = pmd_offset(pud, 0);
169 	VM_BUG_ON(pud_huge(*pud));
170 	pud_clear(pud);
171 	kvm_tlb_flush_vmid_ipa(kvm, addr);
172 	pmd_free(NULL, pmd_table);
173 	put_page(virt_to_page(pud));
174 }
175 
clear_pmd_entry(struct kvm * kvm,pmd_t * pmd,phys_addr_t addr)176 static void clear_pmd_entry(struct kvm *kvm, pmd_t *pmd, phys_addr_t addr)
177 {
178 	pte_t *pte_table = pte_offset_kernel(pmd, 0);
179 	VM_BUG_ON(kvm_pmd_huge(*pmd));
180 	pmd_clear(pmd);
181 	kvm_tlb_flush_vmid_ipa(kvm, addr);
182 	pte_free_kernel(NULL, pte_table);
183 	put_page(virt_to_page(pmd));
184 }
185 
186 /*
187  * Unmapping vs dcache management:
188  *
189  * If a guest maps certain memory pages as uncached, all writes will
190  * bypass the data cache and go directly to RAM.  However, the CPUs
191  * can still speculate reads (not writes) and fill cache lines with
192  * data.
193  *
194  * Those cache lines will be *clean* cache lines though, so a
195  * clean+invalidate operation is equivalent to an invalidate
196  * operation, because no cache lines are marked dirty.
197  *
198  * Those clean cache lines could be filled prior to an uncached write
199  * by the guest, and the cache coherent IO subsystem would therefore
200  * end up writing old data to disk.
201  *
202  * This is why right after unmapping a page/section and invalidating
203  * the corresponding TLBs, we call kvm_flush_dcache_p*() to make sure
204  * the IO subsystem will never hit in the cache.
205  */
unmap_ptes(struct kvm * kvm,pmd_t * pmd,phys_addr_t addr,phys_addr_t end)206 static void unmap_ptes(struct kvm *kvm, pmd_t *pmd,
207 		       phys_addr_t addr, phys_addr_t end)
208 {
209 	phys_addr_t start_addr = addr;
210 	pte_t *pte, *start_pte;
211 
212 	start_pte = pte = pte_offset_kernel(pmd, addr);
213 	do {
214 		if (!pte_none(*pte)) {
215 			pte_t old_pte = *pte;
216 
217 			kvm_set_pte(pte, __pte(0));
218 			kvm_tlb_flush_vmid_ipa(kvm, addr);
219 
220 			/* No need to invalidate the cache for device mappings */
221 			if (!kvm_is_device_pfn(pte_pfn(old_pte)))
222 				kvm_flush_dcache_pte(old_pte);
223 
224 			put_page(virt_to_page(pte));
225 		}
226 	} while (pte++, addr += PAGE_SIZE, addr != end);
227 
228 	if (kvm_pte_table_empty(kvm, start_pte))
229 		clear_pmd_entry(kvm, pmd, start_addr);
230 }
231 
unmap_pmds(struct kvm * kvm,pud_t * pud,phys_addr_t addr,phys_addr_t end)232 static void unmap_pmds(struct kvm *kvm, pud_t *pud,
233 		       phys_addr_t addr, phys_addr_t end)
234 {
235 	phys_addr_t next, start_addr = addr;
236 	pmd_t *pmd, *start_pmd;
237 
238 	start_pmd = pmd = pmd_offset(pud, addr);
239 	do {
240 		next = kvm_pmd_addr_end(addr, end);
241 		if (!pmd_none(*pmd)) {
242 			if (kvm_pmd_huge(*pmd)) {
243 				pmd_t old_pmd = *pmd;
244 
245 				pmd_clear(pmd);
246 				kvm_tlb_flush_vmid_ipa(kvm, addr);
247 
248 				kvm_flush_dcache_pmd(old_pmd);
249 
250 				put_page(virt_to_page(pmd));
251 			} else {
252 				unmap_ptes(kvm, pmd, addr, next);
253 			}
254 		}
255 	} while (pmd++, addr = next, addr != end);
256 
257 	if (kvm_pmd_table_empty(kvm, start_pmd))
258 		clear_pud_entry(kvm, pud, start_addr);
259 }
260 
unmap_puds(struct kvm * kvm,pgd_t * pgd,phys_addr_t addr,phys_addr_t end)261 static void unmap_puds(struct kvm *kvm, pgd_t *pgd,
262 		       phys_addr_t addr, phys_addr_t end)
263 {
264 	phys_addr_t next, start_addr = addr;
265 	pud_t *pud, *start_pud;
266 
267 	start_pud = pud = pud_offset(pgd, addr);
268 	do {
269 		next = kvm_pud_addr_end(addr, end);
270 		if (!pud_none(*pud)) {
271 			if (pud_huge(*pud)) {
272 				pud_t old_pud = *pud;
273 
274 				pud_clear(pud);
275 				kvm_tlb_flush_vmid_ipa(kvm, addr);
276 
277 				kvm_flush_dcache_pud(old_pud);
278 
279 				put_page(virt_to_page(pud));
280 			} else {
281 				unmap_pmds(kvm, pud, addr, next);
282 			}
283 		}
284 	} while (pud++, addr = next, addr != end);
285 
286 	if (kvm_pud_table_empty(kvm, start_pud))
287 		clear_pgd_entry(kvm, pgd, start_addr);
288 }
289 
290 
unmap_range(struct kvm * kvm,pgd_t * pgdp,phys_addr_t start,u64 size)291 static void unmap_range(struct kvm *kvm, pgd_t *pgdp,
292 			phys_addr_t start, u64 size)
293 {
294 	pgd_t *pgd;
295 	phys_addr_t addr = start, end = start + size;
296 	phys_addr_t next;
297 
298 	pgd = pgdp + kvm_pgd_index(addr);
299 	do {
300 		next = kvm_pgd_addr_end(addr, end);
301 		if (!pgd_none(*pgd))
302 			unmap_puds(kvm, pgd, addr, next);
303 	} while (pgd++, addr = next, addr != end);
304 }
305 
stage2_flush_ptes(struct kvm * kvm,pmd_t * pmd,phys_addr_t addr,phys_addr_t end)306 static void stage2_flush_ptes(struct kvm *kvm, pmd_t *pmd,
307 			      phys_addr_t addr, phys_addr_t end)
308 {
309 	pte_t *pte;
310 
311 	pte = pte_offset_kernel(pmd, addr);
312 	do {
313 		if (!pte_none(*pte) && !kvm_is_device_pfn(pte_pfn(*pte)))
314 			kvm_flush_dcache_pte(*pte);
315 	} while (pte++, addr += PAGE_SIZE, addr != end);
316 }
317 
stage2_flush_pmds(struct kvm * kvm,pud_t * pud,phys_addr_t addr,phys_addr_t end)318 static void stage2_flush_pmds(struct kvm *kvm, pud_t *pud,
319 			      phys_addr_t addr, phys_addr_t end)
320 {
321 	pmd_t *pmd;
322 	phys_addr_t next;
323 
324 	pmd = pmd_offset(pud, addr);
325 	do {
326 		next = kvm_pmd_addr_end(addr, end);
327 		if (!pmd_none(*pmd)) {
328 			if (kvm_pmd_huge(*pmd))
329 				kvm_flush_dcache_pmd(*pmd);
330 			else
331 				stage2_flush_ptes(kvm, pmd, addr, next);
332 		}
333 	} while (pmd++, addr = next, addr != end);
334 }
335 
stage2_flush_puds(struct kvm * kvm,pgd_t * pgd,phys_addr_t addr,phys_addr_t end)336 static void stage2_flush_puds(struct kvm *kvm, pgd_t *pgd,
337 			      phys_addr_t addr, phys_addr_t end)
338 {
339 	pud_t *pud;
340 	phys_addr_t next;
341 
342 	pud = pud_offset(pgd, addr);
343 	do {
344 		next = kvm_pud_addr_end(addr, end);
345 		if (!pud_none(*pud)) {
346 			if (pud_huge(*pud))
347 				kvm_flush_dcache_pud(*pud);
348 			else
349 				stage2_flush_pmds(kvm, pud, addr, next);
350 		}
351 	} while (pud++, addr = next, addr != end);
352 }
353 
stage2_flush_memslot(struct kvm * kvm,struct kvm_memory_slot * memslot)354 static void stage2_flush_memslot(struct kvm *kvm,
355 				 struct kvm_memory_slot *memslot)
356 {
357 	phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
358 	phys_addr_t end = addr + PAGE_SIZE * memslot->npages;
359 	phys_addr_t next;
360 	pgd_t *pgd;
361 
362 	pgd = kvm->arch.pgd + kvm_pgd_index(addr);
363 	do {
364 		next = kvm_pgd_addr_end(addr, end);
365 		stage2_flush_puds(kvm, pgd, addr, next);
366 	} while (pgd++, addr = next, addr != end);
367 }
368 
369 /**
370  * stage2_flush_vm - Invalidate cache for pages mapped in stage 2
371  * @kvm: The struct kvm pointer
372  *
373  * Go through the stage 2 page tables and invalidate any cache lines
374  * backing memory already mapped to the VM.
375  */
stage2_flush_vm(struct kvm * kvm)376 static void stage2_flush_vm(struct kvm *kvm)
377 {
378 	struct kvm_memslots *slots;
379 	struct kvm_memory_slot *memslot;
380 	int idx;
381 
382 	idx = srcu_read_lock(&kvm->srcu);
383 	spin_lock(&kvm->mmu_lock);
384 
385 	slots = kvm_memslots(kvm);
386 	kvm_for_each_memslot(memslot, slots)
387 		stage2_flush_memslot(kvm, memslot);
388 
389 	spin_unlock(&kvm->mmu_lock);
390 	srcu_read_unlock(&kvm->srcu, idx);
391 }
392 
393 /**
394  * free_boot_hyp_pgd - free HYP boot page tables
395  *
396  * Free the HYP boot page tables. The bounce page is also freed.
397  */
free_boot_hyp_pgd(void)398 void free_boot_hyp_pgd(void)
399 {
400 	mutex_lock(&kvm_hyp_pgd_mutex);
401 
402 	if (boot_hyp_pgd) {
403 		unmap_range(NULL, boot_hyp_pgd, hyp_idmap_start, PAGE_SIZE);
404 		unmap_range(NULL, boot_hyp_pgd, TRAMPOLINE_VA, PAGE_SIZE);
405 		free_pages((unsigned long)boot_hyp_pgd, hyp_pgd_order);
406 		boot_hyp_pgd = NULL;
407 	}
408 
409 	if (hyp_pgd)
410 		unmap_range(NULL, hyp_pgd, TRAMPOLINE_VA, PAGE_SIZE);
411 
412 	mutex_unlock(&kvm_hyp_pgd_mutex);
413 }
414 
415 /**
416  * free_hyp_pgds - free Hyp-mode page tables
417  *
418  * Assumes hyp_pgd is a page table used strictly in Hyp-mode and
419  * therefore contains either mappings in the kernel memory area (above
420  * PAGE_OFFSET), or device mappings in the vmalloc range (from
421  * VMALLOC_START to VMALLOC_END).
422  *
423  * boot_hyp_pgd should only map two pages for the init code.
424  */
free_hyp_pgds(void)425 void free_hyp_pgds(void)
426 {
427 	unsigned long addr;
428 
429 	free_boot_hyp_pgd();
430 
431 	mutex_lock(&kvm_hyp_pgd_mutex);
432 
433 	if (hyp_pgd) {
434 		for (addr = PAGE_OFFSET; virt_addr_valid(addr); addr += PGDIR_SIZE)
435 			unmap_range(NULL, hyp_pgd, KERN_TO_HYP(addr), PGDIR_SIZE);
436 		for (addr = VMALLOC_START; is_vmalloc_addr((void*)addr); addr += PGDIR_SIZE)
437 			unmap_range(NULL, hyp_pgd, KERN_TO_HYP(addr), PGDIR_SIZE);
438 
439 		free_pages((unsigned long)hyp_pgd, hyp_pgd_order);
440 		hyp_pgd = NULL;
441 	}
442 	if (merged_hyp_pgd) {
443 		clear_page(merged_hyp_pgd);
444 		free_page((unsigned long)merged_hyp_pgd);
445 		merged_hyp_pgd = NULL;
446 	}
447 
448 	mutex_unlock(&kvm_hyp_pgd_mutex);
449 }
450 
create_hyp_pte_mappings(pmd_t * pmd,unsigned long start,unsigned long end,unsigned long pfn,pgprot_t prot)451 static void create_hyp_pte_mappings(pmd_t *pmd, unsigned long start,
452 				    unsigned long end, unsigned long pfn,
453 				    pgprot_t prot)
454 {
455 	pte_t *pte;
456 	unsigned long addr;
457 
458 	addr = start;
459 	do {
460 		pte = pte_offset_kernel(pmd, addr);
461 		kvm_set_pte(pte, pfn_pte(pfn, prot));
462 		get_page(virt_to_page(pte));
463 		kvm_flush_dcache_to_poc(pte, sizeof(*pte));
464 		pfn++;
465 	} while (addr += PAGE_SIZE, addr != end);
466 }
467 
create_hyp_pmd_mappings(pud_t * pud,unsigned long start,unsigned long end,unsigned long pfn,pgprot_t prot)468 static int create_hyp_pmd_mappings(pud_t *pud, unsigned long start,
469 				   unsigned long end, unsigned long pfn,
470 				   pgprot_t prot)
471 {
472 	pmd_t *pmd;
473 	pte_t *pte;
474 	unsigned long addr, next;
475 
476 	addr = start;
477 	do {
478 		pmd = pmd_offset(pud, addr);
479 
480 		BUG_ON(pmd_sect(*pmd));
481 
482 		if (pmd_none(*pmd)) {
483 			pte = pte_alloc_one_kernel(NULL, addr);
484 			if (!pte) {
485 				kvm_err("Cannot allocate Hyp pte\n");
486 				return -ENOMEM;
487 			}
488 			pmd_populate_kernel(NULL, pmd, pte);
489 			get_page(virt_to_page(pmd));
490 			kvm_flush_dcache_to_poc(pmd, sizeof(*pmd));
491 		}
492 
493 		next = pmd_addr_end(addr, end);
494 
495 		create_hyp_pte_mappings(pmd, addr, next, pfn, prot);
496 		pfn += (next - addr) >> PAGE_SHIFT;
497 	} while (addr = next, addr != end);
498 
499 	return 0;
500 }
501 
create_hyp_pud_mappings(pgd_t * pgd,unsigned long start,unsigned long end,unsigned long pfn,pgprot_t prot)502 static int create_hyp_pud_mappings(pgd_t *pgd, unsigned long start,
503 				   unsigned long end, unsigned long pfn,
504 				   pgprot_t prot)
505 {
506 	pud_t *pud;
507 	pmd_t *pmd;
508 	unsigned long addr, next;
509 	int ret;
510 
511 	addr = start;
512 	do {
513 		pud = pud_offset(pgd, addr);
514 
515 		if (pud_none_or_clear_bad(pud)) {
516 			pmd = pmd_alloc_one(NULL, addr);
517 			if (!pmd) {
518 				kvm_err("Cannot allocate Hyp pmd\n");
519 				return -ENOMEM;
520 			}
521 			pud_populate(NULL, pud, pmd);
522 			get_page(virt_to_page(pud));
523 			kvm_flush_dcache_to_poc(pud, sizeof(*pud));
524 		}
525 
526 		next = pud_addr_end(addr, end);
527 		ret = create_hyp_pmd_mappings(pud, addr, next, pfn, prot);
528 		if (ret)
529 			return ret;
530 		pfn += (next - addr) >> PAGE_SHIFT;
531 	} while (addr = next, addr != end);
532 
533 	return 0;
534 }
535 
__create_hyp_mappings(pgd_t * pgdp,unsigned long start,unsigned long end,unsigned long pfn,pgprot_t prot)536 static int __create_hyp_mappings(pgd_t *pgdp,
537 				 unsigned long start, unsigned long end,
538 				 unsigned long pfn, pgprot_t prot)
539 {
540 	pgd_t *pgd;
541 	pud_t *pud;
542 	unsigned long addr, next;
543 	int err = 0;
544 
545 	mutex_lock(&kvm_hyp_pgd_mutex);
546 	addr = start & PAGE_MASK;
547 	end = PAGE_ALIGN(end);
548 	do {
549 		pgd = pgdp + pgd_index(addr);
550 
551 		if (pgd_none(*pgd)) {
552 			pud = pud_alloc_one(NULL, addr);
553 			if (!pud) {
554 				kvm_err("Cannot allocate Hyp pud\n");
555 				err = -ENOMEM;
556 				goto out;
557 			}
558 			pgd_populate(NULL, pgd, pud);
559 			get_page(virt_to_page(pgd));
560 			kvm_flush_dcache_to_poc(pgd, sizeof(*pgd));
561 		}
562 
563 		next = pgd_addr_end(addr, end);
564 		err = create_hyp_pud_mappings(pgd, addr, next, pfn, prot);
565 		if (err)
566 			goto out;
567 		pfn += (next - addr) >> PAGE_SHIFT;
568 	} while (addr = next, addr != end);
569 out:
570 	mutex_unlock(&kvm_hyp_pgd_mutex);
571 	return err;
572 }
573 
kvm_kaddr_to_phys(void * kaddr)574 static phys_addr_t kvm_kaddr_to_phys(void *kaddr)
575 {
576 	if (!is_vmalloc_addr(kaddr)) {
577 		BUG_ON(!virt_addr_valid(kaddr));
578 		return __pa(kaddr);
579 	} else {
580 		return page_to_phys(vmalloc_to_page(kaddr)) +
581 		       offset_in_page(kaddr);
582 	}
583 }
584 
585 /**
586  * create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode
587  * @from:	The virtual kernel start address of the range
588  * @to:		The virtual kernel end address of the range (exclusive)
589  *
590  * The same virtual address as the kernel virtual address is also used
591  * in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying
592  * physical pages.
593  */
create_hyp_mappings(void * from,void * to)594 int create_hyp_mappings(void *from, void *to)
595 {
596 	phys_addr_t phys_addr;
597 	unsigned long virt_addr;
598 	unsigned long start = KERN_TO_HYP((unsigned long)from);
599 	unsigned long end = KERN_TO_HYP((unsigned long)to);
600 
601 	start = start & PAGE_MASK;
602 	end = PAGE_ALIGN(end);
603 
604 	for (virt_addr = start; virt_addr < end; virt_addr += PAGE_SIZE) {
605 		int err;
606 
607 		phys_addr = kvm_kaddr_to_phys(from + virt_addr - start);
608 		err = __create_hyp_mappings(hyp_pgd, virt_addr,
609 					    virt_addr + PAGE_SIZE,
610 					    __phys_to_pfn(phys_addr),
611 					    PAGE_HYP);
612 		if (err)
613 			return err;
614 	}
615 
616 	return 0;
617 }
618 
619 /**
620  * create_hyp_io_mappings - duplicate a kernel IO mapping into Hyp mode
621  * @from:	The kernel start VA of the range
622  * @to:		The kernel end VA of the range (exclusive)
623  * @phys_addr:	The physical start address which gets mapped
624  *
625  * The resulting HYP VA is the same as the kernel VA, modulo
626  * HYP_PAGE_OFFSET.
627  */
create_hyp_io_mappings(void * from,void * to,phys_addr_t phys_addr)628 int create_hyp_io_mappings(void *from, void *to, phys_addr_t phys_addr)
629 {
630 	unsigned long start = KERN_TO_HYP((unsigned long)from);
631 	unsigned long end = KERN_TO_HYP((unsigned long)to);
632 
633 	/* Check for a valid kernel IO mapping */
634 	if (!is_vmalloc_addr(from) || !is_vmalloc_addr(to - 1))
635 		return -EINVAL;
636 
637 	return __create_hyp_mappings(hyp_pgd, start, end,
638 				     __phys_to_pfn(phys_addr), PAGE_HYP_DEVICE);
639 }
640 
641 /* Free the HW pgd, one page at a time */
kvm_free_hwpgd(void * hwpgd)642 static void kvm_free_hwpgd(void *hwpgd)
643 {
644 	free_pages_exact(hwpgd, kvm_get_hwpgd_size());
645 }
646 
647 /* Allocate the HW PGD, making sure that each page gets its own refcount */
kvm_alloc_hwpgd(void)648 static void *kvm_alloc_hwpgd(void)
649 {
650 	unsigned int size = kvm_get_hwpgd_size();
651 
652 	return alloc_pages_exact(size, GFP_KERNEL | __GFP_ZERO);
653 }
654 
655 /**
656  * kvm_alloc_stage2_pgd - allocate level-1 table for stage-2 translation.
657  * @kvm:	The KVM struct pointer for the VM.
658  *
659  * Allocates the 1st level table only of size defined by S2_PGD_ORDER (can
660  * support either full 40-bit input addresses or limited to 32-bit input
661  * addresses). Clears the allocated pages.
662  *
663  * Note we don't need locking here as this is only called when the VM is
664  * created, which can only be done once.
665  */
kvm_alloc_stage2_pgd(struct kvm * kvm)666 int kvm_alloc_stage2_pgd(struct kvm *kvm)
667 {
668 	pgd_t *pgd;
669 	void *hwpgd;
670 
671 	if (kvm->arch.pgd != NULL) {
672 		kvm_err("kvm_arch already initialized?\n");
673 		return -EINVAL;
674 	}
675 
676 	hwpgd = kvm_alloc_hwpgd();
677 	if (!hwpgd)
678 		return -ENOMEM;
679 
680 	/* When the kernel uses more levels of page tables than the
681 	 * guest, we allocate a fake PGD and pre-populate it to point
682 	 * to the next-level page table, which will be the real
683 	 * initial page table pointed to by the VTTBR.
684 	 *
685 	 * When KVM_PREALLOC_LEVEL==2, we allocate a single page for
686 	 * the PMD and the kernel will use folded pud.
687 	 * When KVM_PREALLOC_LEVEL==1, we allocate 2 consecutive PUD
688 	 * pages.
689 	 */
690 	if (KVM_PREALLOC_LEVEL > 0) {
691 		int i;
692 
693 		/*
694 		 * Allocate fake pgd for the page table manipulation macros to
695 		 * work.  This is not used by the hardware and we have no
696 		 * alignment requirement for this allocation.
697 		 */
698 		pgd = (pgd_t *)kmalloc(PTRS_PER_S2_PGD * sizeof(pgd_t),
699 				       GFP_KERNEL | __GFP_ZERO);
700 
701 		if (!pgd) {
702 			kvm_free_hwpgd(hwpgd);
703 			return -ENOMEM;
704 		}
705 
706 		/* Plug the HW PGD into the fake one. */
707 		for (i = 0; i < PTRS_PER_S2_PGD; i++) {
708 			if (KVM_PREALLOC_LEVEL == 1)
709 				pgd_populate(NULL, pgd + i,
710 					     (pud_t *)hwpgd + i * PTRS_PER_PUD);
711 			else if (KVM_PREALLOC_LEVEL == 2)
712 				pud_populate(NULL, pud_offset(pgd, 0) + i,
713 					     (pmd_t *)hwpgd + i * PTRS_PER_PMD);
714 		}
715 	} else {
716 		/*
717 		 * Allocate actual first-level Stage-2 page table used by the
718 		 * hardware for Stage-2 page table walks.
719 		 */
720 		pgd = (pgd_t *)hwpgd;
721 	}
722 
723 	kvm_clean_pgd(pgd);
724 	kvm->arch.pgd = pgd;
725 	return 0;
726 }
727 
728 /**
729  * unmap_stage2_range -- Clear stage2 page table entries to unmap a range
730  * @kvm:   The VM pointer
731  * @start: The intermediate physical base address of the range to unmap
732  * @size:  The size of the area to unmap
733  *
734  * Clear a range of stage-2 mappings, lowering the various ref-counts.  Must
735  * be called while holding mmu_lock (unless for freeing the stage2 pgd before
736  * destroying the VM), otherwise another faulting VCPU may come in and mess
737  * with things behind our backs.
738  */
unmap_stage2_range(struct kvm * kvm,phys_addr_t start,u64 size)739 static void unmap_stage2_range(struct kvm *kvm, phys_addr_t start, u64 size)
740 {
741 	unmap_range(kvm, kvm->arch.pgd, start, size);
742 }
743 
stage2_unmap_memslot(struct kvm * kvm,struct kvm_memory_slot * memslot)744 static void stage2_unmap_memslot(struct kvm *kvm,
745 				 struct kvm_memory_slot *memslot)
746 {
747 	hva_t hva = memslot->userspace_addr;
748 	phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
749 	phys_addr_t size = PAGE_SIZE * memslot->npages;
750 	hva_t reg_end = hva + size;
751 
752 	/*
753 	 * A memory region could potentially cover multiple VMAs, and any holes
754 	 * between them, so iterate over all of them to find out if we should
755 	 * unmap any of them.
756 	 *
757 	 *     +--------------------------------------------+
758 	 * +---------------+----------------+   +----------------+
759 	 * |   : VMA 1     |      VMA 2     |   |    VMA 3  :    |
760 	 * +---------------+----------------+   +----------------+
761 	 *     |               memory region                |
762 	 *     +--------------------------------------------+
763 	 */
764 	do {
765 		struct vm_area_struct *vma = find_vma(current->mm, hva);
766 		hva_t vm_start, vm_end;
767 
768 		if (!vma || vma->vm_start >= reg_end)
769 			break;
770 
771 		/*
772 		 * Take the intersection of this VMA with the memory region
773 		 */
774 		vm_start = max(hva, vma->vm_start);
775 		vm_end = min(reg_end, vma->vm_end);
776 
777 		if (!(vma->vm_flags & VM_PFNMAP)) {
778 			gpa_t gpa = addr + (vm_start - memslot->userspace_addr);
779 			unmap_stage2_range(kvm, gpa, vm_end - vm_start);
780 		}
781 		hva = vm_end;
782 	} while (hva < reg_end);
783 }
784 
785 /**
786  * stage2_unmap_vm - Unmap Stage-2 RAM mappings
787  * @kvm: The struct kvm pointer
788  *
789  * Go through the memregions and unmap any reguler RAM
790  * backing memory already mapped to the VM.
791  */
stage2_unmap_vm(struct kvm * kvm)792 void stage2_unmap_vm(struct kvm *kvm)
793 {
794 	struct kvm_memslots *slots;
795 	struct kvm_memory_slot *memslot;
796 	int idx;
797 
798 	idx = srcu_read_lock(&kvm->srcu);
799 	spin_lock(&kvm->mmu_lock);
800 
801 	slots = kvm_memslots(kvm);
802 	kvm_for_each_memslot(memslot, slots)
803 		stage2_unmap_memslot(kvm, memslot);
804 
805 	spin_unlock(&kvm->mmu_lock);
806 	srcu_read_unlock(&kvm->srcu, idx);
807 }
808 
809 /**
810  * kvm_free_stage2_pgd - free all stage-2 tables
811  * @kvm:	The KVM struct pointer for the VM.
812  *
813  * Walks the level-1 page table pointed to by kvm->arch.pgd and frees all
814  * underlying level-2 and level-3 tables before freeing the actual level-1 table
815  * and setting the struct pointer to NULL.
816  *
817  * Note we don't need locking here as this is only called when the VM is
818  * destroyed, which can only be done once.
819  */
kvm_free_stage2_pgd(struct kvm * kvm)820 void kvm_free_stage2_pgd(struct kvm *kvm)
821 {
822 	if (kvm->arch.pgd == NULL)
823 		return;
824 
825 	unmap_stage2_range(kvm, 0, KVM_PHYS_SIZE);
826 	kvm_free_hwpgd(kvm_get_hwpgd(kvm));
827 	if (KVM_PREALLOC_LEVEL > 0)
828 		kfree(kvm->arch.pgd);
829 
830 	kvm->arch.pgd = NULL;
831 }
832 
stage2_get_pud(struct kvm * kvm,struct kvm_mmu_memory_cache * cache,phys_addr_t addr)833 static pud_t *stage2_get_pud(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
834 			     phys_addr_t addr)
835 {
836 	pgd_t *pgd;
837 	pud_t *pud;
838 
839 	pgd = kvm->arch.pgd + kvm_pgd_index(addr);
840 	if (WARN_ON(pgd_none(*pgd))) {
841 		if (!cache)
842 			return NULL;
843 		pud = mmu_memory_cache_alloc(cache);
844 		pgd_populate(NULL, pgd, pud);
845 		get_page(virt_to_page(pgd));
846 	}
847 
848 	return pud_offset(pgd, addr);
849 }
850 
stage2_get_pmd(struct kvm * kvm,struct kvm_mmu_memory_cache * cache,phys_addr_t addr)851 static pmd_t *stage2_get_pmd(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
852 			     phys_addr_t addr)
853 {
854 	pud_t *pud;
855 	pmd_t *pmd;
856 
857 	pud = stage2_get_pud(kvm, cache, addr);
858 	if (pud_none(*pud)) {
859 		if (!cache)
860 			return NULL;
861 		pmd = mmu_memory_cache_alloc(cache);
862 		pud_populate(NULL, pud, pmd);
863 		get_page(virt_to_page(pud));
864 	}
865 
866 	return pmd_offset(pud, addr);
867 }
868 
stage2_set_pmd_huge(struct kvm * kvm,struct kvm_mmu_memory_cache * cache,phys_addr_t addr,const pmd_t * new_pmd)869 static int stage2_set_pmd_huge(struct kvm *kvm, struct kvm_mmu_memory_cache
870 			       *cache, phys_addr_t addr, const pmd_t *new_pmd)
871 {
872 	pmd_t *pmd, old_pmd;
873 
874 	pmd = stage2_get_pmd(kvm, cache, addr);
875 	VM_BUG_ON(!pmd);
876 
877 	/*
878 	 * Mapping in huge pages should only happen through a fault.  If a
879 	 * page is merged into a transparent huge page, the individual
880 	 * subpages of that huge page should be unmapped through MMU
881 	 * notifiers before we get here.
882 	 *
883 	 * Merging of CompoundPages is not supported; they should become
884 	 * splitting first, unmapped, merged, and mapped back in on-demand.
885 	 */
886 	VM_BUG_ON(pmd_present(*pmd) && pmd_pfn(*pmd) != pmd_pfn(*new_pmd));
887 
888 	old_pmd = *pmd;
889 	if (pmd_present(old_pmd)) {
890 		pmd_clear(pmd);
891 		kvm_tlb_flush_vmid_ipa(kvm, addr);
892 	} else {
893 		get_page(virt_to_page(pmd));
894 	}
895 
896 	kvm_set_pmd(pmd, *new_pmd);
897 	return 0;
898 }
899 
stage2_set_pte(struct kvm * kvm,struct kvm_mmu_memory_cache * cache,phys_addr_t addr,const pte_t * new_pte,unsigned long flags)900 static int stage2_set_pte(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
901 			  phys_addr_t addr, const pte_t *new_pte,
902 			  unsigned long flags)
903 {
904 	pmd_t *pmd;
905 	pte_t *pte, old_pte;
906 	bool iomap = flags & KVM_S2PTE_FLAG_IS_IOMAP;
907 	bool logging_active = flags & KVM_S2_FLAG_LOGGING_ACTIVE;
908 
909 	VM_BUG_ON(logging_active && !cache);
910 
911 	/* Create stage-2 page table mapping - Levels 0 and 1 */
912 	pmd = stage2_get_pmd(kvm, cache, addr);
913 	if (!pmd) {
914 		/*
915 		 * Ignore calls from kvm_set_spte_hva for unallocated
916 		 * address ranges.
917 		 */
918 		return 0;
919 	}
920 
921 	/*
922 	 * While dirty page logging - dissolve huge PMD, then continue on to
923 	 * allocate page.
924 	 */
925 	if (logging_active)
926 		stage2_dissolve_pmd(kvm, addr, pmd);
927 
928 	/* Create stage-2 page mappings - Level 2 */
929 	if (pmd_none(*pmd)) {
930 		if (!cache)
931 			return 0; /* ignore calls from kvm_set_spte_hva */
932 		pte = mmu_memory_cache_alloc(cache);
933 		kvm_clean_pte(pte);
934 		pmd_populate_kernel(NULL, pmd, pte);
935 		get_page(virt_to_page(pmd));
936 	}
937 
938 	pte = pte_offset_kernel(pmd, addr);
939 
940 	if (iomap && pte_present(*pte))
941 		return -EFAULT;
942 
943 	/* Create 2nd stage page table mapping - Level 3 */
944 	old_pte = *pte;
945 	if (pte_present(old_pte)) {
946 		kvm_set_pte(pte, __pte(0));
947 		kvm_tlb_flush_vmid_ipa(kvm, addr);
948 	} else {
949 		get_page(virt_to_page(pte));
950 	}
951 
952 	kvm_set_pte(pte, *new_pte);
953 	return 0;
954 }
955 
956 /**
957  * kvm_phys_addr_ioremap - map a device range to guest IPA
958  *
959  * @kvm:	The KVM pointer
960  * @guest_ipa:	The IPA at which to insert the mapping
961  * @pa:		The physical address of the device
962  * @size:	The size of the mapping
963  */
kvm_phys_addr_ioremap(struct kvm * kvm,phys_addr_t guest_ipa,phys_addr_t pa,unsigned long size,bool writable)964 int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
965 			  phys_addr_t pa, unsigned long size, bool writable)
966 {
967 	phys_addr_t addr, end;
968 	int ret = 0;
969 	unsigned long pfn;
970 	struct kvm_mmu_memory_cache cache = { 0, };
971 
972 	end = (guest_ipa + size + PAGE_SIZE - 1) & PAGE_MASK;
973 	pfn = __phys_to_pfn(pa);
974 
975 	for (addr = guest_ipa; addr < end; addr += PAGE_SIZE) {
976 		pte_t pte = pfn_pte(pfn, PAGE_S2_DEVICE);
977 
978 		if (writable)
979 			kvm_set_s2pte_writable(&pte);
980 
981 		ret = mmu_topup_memory_cache(&cache, KVM_MMU_CACHE_MIN_PAGES,
982 						KVM_NR_MEM_OBJS);
983 		if (ret)
984 			goto out;
985 		spin_lock(&kvm->mmu_lock);
986 		ret = stage2_set_pte(kvm, &cache, addr, &pte,
987 						KVM_S2PTE_FLAG_IS_IOMAP);
988 		spin_unlock(&kvm->mmu_lock);
989 		if (ret)
990 			goto out;
991 
992 		pfn++;
993 	}
994 
995 out:
996 	mmu_free_memory_cache(&cache);
997 	return ret;
998 }
999 
transparent_hugepage_adjust(pfn_t * pfnp,phys_addr_t * ipap)1000 static bool transparent_hugepage_adjust(pfn_t *pfnp, phys_addr_t *ipap)
1001 {
1002 	pfn_t pfn = *pfnp;
1003 	gfn_t gfn = *ipap >> PAGE_SHIFT;
1004 
1005 	if (PageTransCompound(pfn_to_page(pfn))) {
1006 		unsigned long mask;
1007 		/*
1008 		 * The address we faulted on is backed by a transparent huge
1009 		 * page.  However, because we map the compound huge page and
1010 		 * not the individual tail page, we need to transfer the
1011 		 * refcount to the head page.  We have to be careful that the
1012 		 * THP doesn't start to split while we are adjusting the
1013 		 * refcounts.
1014 		 *
1015 		 * We are sure this doesn't happen, because mmu_notifier_retry
1016 		 * was successful and we are holding the mmu_lock, so if this
1017 		 * THP is trying to split, it will be blocked in the mmu
1018 		 * notifier before touching any of the pages, specifically
1019 		 * before being able to call __split_huge_page_refcount().
1020 		 *
1021 		 * We can therefore safely transfer the refcount from PG_tail
1022 		 * to PG_head and switch the pfn from a tail page to the head
1023 		 * page accordingly.
1024 		 */
1025 		mask = PTRS_PER_PMD - 1;
1026 		VM_BUG_ON((gfn & mask) != (pfn & mask));
1027 		if (pfn & mask) {
1028 			*ipap &= PMD_MASK;
1029 			kvm_release_pfn_clean(pfn);
1030 			pfn &= ~mask;
1031 			kvm_get_pfn(pfn);
1032 			*pfnp = pfn;
1033 		}
1034 
1035 		return true;
1036 	}
1037 
1038 	return false;
1039 }
1040 
kvm_is_write_fault(struct kvm_vcpu * vcpu)1041 static bool kvm_is_write_fault(struct kvm_vcpu *vcpu)
1042 {
1043 	if (kvm_vcpu_trap_is_iabt(vcpu))
1044 		return false;
1045 
1046 	return kvm_vcpu_dabt_iswrite(vcpu);
1047 }
1048 
1049 /**
1050  * stage2_wp_ptes - write protect PMD range
1051  * @pmd:	pointer to pmd entry
1052  * @addr:	range start address
1053  * @end:	range end address
1054  */
stage2_wp_ptes(pmd_t * pmd,phys_addr_t addr,phys_addr_t end)1055 static void stage2_wp_ptes(pmd_t *pmd, phys_addr_t addr, phys_addr_t end)
1056 {
1057 	pte_t *pte;
1058 
1059 	pte = pte_offset_kernel(pmd, addr);
1060 	do {
1061 		if (!pte_none(*pte)) {
1062 			if (!kvm_s2pte_readonly(pte))
1063 				kvm_set_s2pte_readonly(pte);
1064 		}
1065 	} while (pte++, addr += PAGE_SIZE, addr != end);
1066 }
1067 
1068 /**
1069  * stage2_wp_pmds - write protect PUD range
1070  * @pud:	pointer to pud entry
1071  * @addr:	range start address
1072  * @end:	range end address
1073  */
stage2_wp_pmds(pud_t * pud,phys_addr_t addr,phys_addr_t end)1074 static void stage2_wp_pmds(pud_t *pud, phys_addr_t addr, phys_addr_t end)
1075 {
1076 	pmd_t *pmd;
1077 	phys_addr_t next;
1078 
1079 	pmd = pmd_offset(pud, addr);
1080 
1081 	do {
1082 		next = kvm_pmd_addr_end(addr, end);
1083 		if (!pmd_none(*pmd)) {
1084 			if (kvm_pmd_huge(*pmd)) {
1085 				if (!kvm_s2pmd_readonly(pmd))
1086 					kvm_set_s2pmd_readonly(pmd);
1087 			} else {
1088 				stage2_wp_ptes(pmd, addr, next);
1089 			}
1090 		}
1091 	} while (pmd++, addr = next, addr != end);
1092 }
1093 
1094 /**
1095   * stage2_wp_puds - write protect PGD range
1096   * @pgd:	pointer to pgd entry
1097   * @addr:	range start address
1098   * @end:	range end address
1099   *
1100   * Process PUD entries, for a huge PUD we cause a panic.
1101   */
stage2_wp_puds(pgd_t * pgd,phys_addr_t addr,phys_addr_t end)1102 static void  stage2_wp_puds(pgd_t *pgd, phys_addr_t addr, phys_addr_t end)
1103 {
1104 	pud_t *pud;
1105 	phys_addr_t next;
1106 
1107 	pud = pud_offset(pgd, addr);
1108 	do {
1109 		next = kvm_pud_addr_end(addr, end);
1110 		if (!pud_none(*pud)) {
1111 			/* TODO:PUD not supported, revisit later if supported */
1112 			BUG_ON(kvm_pud_huge(*pud));
1113 			stage2_wp_pmds(pud, addr, next);
1114 		}
1115 	} while (pud++, addr = next, addr != end);
1116 }
1117 
1118 /**
1119  * stage2_wp_range() - write protect stage2 memory region range
1120  * @kvm:	The KVM pointer
1121  * @addr:	Start address of range
1122  * @end:	End address of range
1123  */
stage2_wp_range(struct kvm * kvm,phys_addr_t addr,phys_addr_t end)1124 static void stage2_wp_range(struct kvm *kvm, phys_addr_t addr, phys_addr_t end)
1125 {
1126 	pgd_t *pgd;
1127 	phys_addr_t next;
1128 
1129 	pgd = kvm->arch.pgd + kvm_pgd_index(addr);
1130 	do {
1131 		/*
1132 		 * Release kvm_mmu_lock periodically if the memory region is
1133 		 * large. Otherwise, we may see kernel panics with
1134 		 * CONFIG_DETECT_HUNG_TASK, CONFIG_LOCKUP_DETECTOR,
1135 		 * CONFIG_LOCKDEP. Additionally, holding the lock too long
1136 		 * will also starve other vCPUs.
1137 		 */
1138 		if (need_resched() || spin_needbreak(&kvm->mmu_lock))
1139 			cond_resched_lock(&kvm->mmu_lock);
1140 
1141 		next = kvm_pgd_addr_end(addr, end);
1142 		if (pgd_present(*pgd))
1143 			stage2_wp_puds(pgd, addr, next);
1144 	} while (pgd++, addr = next, addr != end);
1145 }
1146 
1147 /**
1148  * kvm_mmu_wp_memory_region() - write protect stage 2 entries for memory slot
1149  * @kvm:	The KVM pointer
1150  * @slot:	The memory slot to write protect
1151  *
1152  * Called to start logging dirty pages after memory region
1153  * KVM_MEM_LOG_DIRTY_PAGES operation is called. After this function returns
1154  * all present PMD and PTEs are write protected in the memory region.
1155  * Afterwards read of dirty page log can be called.
1156  *
1157  * Acquires kvm_mmu_lock. Called with kvm->slots_lock mutex acquired,
1158  * serializing operations for VM memory regions.
1159  */
kvm_mmu_wp_memory_region(struct kvm * kvm,int slot)1160 void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot)
1161 {
1162 	struct kvm_memory_slot *memslot = id_to_memslot(kvm->memslots, slot);
1163 	phys_addr_t start = memslot->base_gfn << PAGE_SHIFT;
1164 	phys_addr_t end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT;
1165 
1166 	spin_lock(&kvm->mmu_lock);
1167 	stage2_wp_range(kvm, start, end);
1168 	spin_unlock(&kvm->mmu_lock);
1169 	kvm_flush_remote_tlbs(kvm);
1170 }
1171 
1172 /**
1173  * kvm_mmu_write_protect_pt_masked() - write protect dirty pages
1174  * @kvm:	The KVM pointer
1175  * @slot:	The memory slot associated with mask
1176  * @gfn_offset:	The gfn offset in memory slot
1177  * @mask:	The mask of dirty pages at offset 'gfn_offset' in this memory
1178  *		slot to be write protected
1179  *
1180  * Walks bits set in mask write protects the associated pte's. Caller must
1181  * acquire kvm_mmu_lock.
1182  */
kvm_mmu_write_protect_pt_masked(struct kvm * kvm,struct kvm_memory_slot * slot,gfn_t gfn_offset,unsigned long mask)1183 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1184 		struct kvm_memory_slot *slot,
1185 		gfn_t gfn_offset, unsigned long mask)
1186 {
1187 	phys_addr_t base_gfn = slot->base_gfn + gfn_offset;
1188 	phys_addr_t start = (base_gfn +  __ffs(mask)) << PAGE_SHIFT;
1189 	phys_addr_t end = (base_gfn + __fls(mask) + 1) << PAGE_SHIFT;
1190 
1191 	stage2_wp_range(kvm, start, end);
1192 }
1193 
1194 /*
1195  * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1196  * dirty pages.
1197  *
1198  * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1199  * enable dirty logging for them.
1200  */
kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm * kvm,struct kvm_memory_slot * slot,gfn_t gfn_offset,unsigned long mask)1201 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1202 		struct kvm_memory_slot *slot,
1203 		gfn_t gfn_offset, unsigned long mask)
1204 {
1205 	kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1206 }
1207 
coherent_cache_guest_page(struct kvm_vcpu * vcpu,pfn_t pfn,unsigned long size,bool uncached)1208 static void coherent_cache_guest_page(struct kvm_vcpu *vcpu, pfn_t pfn,
1209 				      unsigned long size, bool uncached)
1210 {
1211 	__coherent_cache_guest_page(vcpu, pfn, size, uncached);
1212 }
1213 
user_mem_abort(struct kvm_vcpu * vcpu,phys_addr_t fault_ipa,struct kvm_memory_slot * memslot,unsigned long hva,unsigned long fault_status)1214 static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
1215 			  struct kvm_memory_slot *memslot, unsigned long hva,
1216 			  unsigned long fault_status)
1217 {
1218 	int ret;
1219 	bool write_fault, writable, hugetlb = false, force_pte = false;
1220 	unsigned long mmu_seq;
1221 	gfn_t gfn = fault_ipa >> PAGE_SHIFT;
1222 	struct kvm *kvm = vcpu->kvm;
1223 	struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
1224 	struct vm_area_struct *vma;
1225 	pfn_t pfn;
1226 	pgprot_t mem_type = PAGE_S2;
1227 	bool fault_ipa_uncached;
1228 	bool logging_active = memslot_is_logging(memslot);
1229 	unsigned long flags = 0;
1230 
1231 	write_fault = kvm_is_write_fault(vcpu);
1232 	if (fault_status == FSC_PERM && !write_fault) {
1233 		kvm_err("Unexpected L2 read permission error\n");
1234 		return -EFAULT;
1235 	}
1236 
1237 	/* Let's check if we will get back a huge page backed by hugetlbfs */
1238 	down_read(&current->mm->mmap_sem);
1239 	vma = find_vma_intersection(current->mm, hva, hva + 1);
1240 	if (unlikely(!vma)) {
1241 		kvm_err("Failed to find VMA for hva 0x%lx\n", hva);
1242 		up_read(&current->mm->mmap_sem);
1243 		return -EFAULT;
1244 	}
1245 
1246 	if (is_vm_hugetlb_page(vma) && !logging_active) {
1247 		hugetlb = true;
1248 		gfn = (fault_ipa & PMD_MASK) >> PAGE_SHIFT;
1249 	} else {
1250 		/*
1251 		 * Pages belonging to memslots that don't have the same
1252 		 * alignment for userspace and IPA cannot be mapped using
1253 		 * block descriptors even if the pages belong to a THP for
1254 		 * the process, because the stage-2 block descriptor will
1255 		 * cover more than a single THP and we loose atomicity for
1256 		 * unmapping, updates, and splits of the THP or other pages
1257 		 * in the stage-2 block range.
1258 		 */
1259 		if ((memslot->userspace_addr & ~PMD_MASK) !=
1260 		    ((memslot->base_gfn << PAGE_SHIFT) & ~PMD_MASK))
1261 			force_pte = true;
1262 	}
1263 	up_read(&current->mm->mmap_sem);
1264 
1265 	/* We need minimum second+third level pages */
1266 	ret = mmu_topup_memory_cache(memcache, KVM_MMU_CACHE_MIN_PAGES,
1267 				     KVM_NR_MEM_OBJS);
1268 	if (ret)
1269 		return ret;
1270 
1271 	mmu_seq = vcpu->kvm->mmu_notifier_seq;
1272 	/*
1273 	 * Ensure the read of mmu_notifier_seq happens before we call
1274 	 * gfn_to_pfn_prot (which calls get_user_pages), so that we don't risk
1275 	 * the page we just got a reference to gets unmapped before we have a
1276 	 * chance to grab the mmu_lock, which ensure that if the page gets
1277 	 * unmapped afterwards, the call to kvm_unmap_hva will take it away
1278 	 * from us again properly. This smp_rmb() interacts with the smp_wmb()
1279 	 * in kvm_mmu_notifier_invalidate_<page|range_end>.
1280 	 */
1281 	smp_rmb();
1282 
1283 	pfn = gfn_to_pfn_prot(kvm, gfn, write_fault, &writable);
1284 	if (is_error_pfn(pfn))
1285 		return -EFAULT;
1286 
1287 	if (kvm_is_device_pfn(pfn)) {
1288 		mem_type = PAGE_S2_DEVICE;
1289 		flags |= KVM_S2PTE_FLAG_IS_IOMAP;
1290 	} else if (logging_active) {
1291 		/*
1292 		 * Faults on pages in a memslot with logging enabled
1293 		 * should not be mapped with huge pages (it introduces churn
1294 		 * and performance degradation), so force a pte mapping.
1295 		 */
1296 		force_pte = true;
1297 		flags |= KVM_S2_FLAG_LOGGING_ACTIVE;
1298 
1299 		/*
1300 		 * Only actually map the page as writable if this was a write
1301 		 * fault.
1302 		 */
1303 		if (!write_fault)
1304 			writable = false;
1305 	}
1306 
1307 	spin_lock(&kvm->mmu_lock);
1308 	if (mmu_notifier_retry(kvm, mmu_seq))
1309 		goto out_unlock;
1310 
1311 	if (!hugetlb && !force_pte)
1312 		hugetlb = transparent_hugepage_adjust(&pfn, &fault_ipa);
1313 
1314 	fault_ipa_uncached = memslot->flags & KVM_MEMSLOT_INCOHERENT;
1315 
1316 	if (hugetlb) {
1317 		pmd_t new_pmd = pfn_pmd(pfn, mem_type);
1318 		new_pmd = pmd_mkhuge(new_pmd);
1319 		if (writable) {
1320 			kvm_set_s2pmd_writable(&new_pmd);
1321 			kvm_set_pfn_dirty(pfn);
1322 		}
1323 		coherent_cache_guest_page(vcpu, pfn, PMD_SIZE, fault_ipa_uncached);
1324 		ret = stage2_set_pmd_huge(kvm, memcache, fault_ipa, &new_pmd);
1325 	} else {
1326 		pte_t new_pte = pfn_pte(pfn, mem_type);
1327 
1328 		if (writable) {
1329 			kvm_set_s2pte_writable(&new_pte);
1330 			kvm_set_pfn_dirty(pfn);
1331 			mark_page_dirty(kvm, gfn);
1332 		}
1333 		coherent_cache_guest_page(vcpu, pfn, PAGE_SIZE, fault_ipa_uncached);
1334 		ret = stage2_set_pte(kvm, memcache, fault_ipa, &new_pte, flags);
1335 	}
1336 
1337 out_unlock:
1338 	spin_unlock(&kvm->mmu_lock);
1339 	kvm_set_pfn_accessed(pfn);
1340 	kvm_release_pfn_clean(pfn);
1341 	return ret;
1342 }
1343 
1344 /*
1345  * Resolve the access fault by making the page young again.
1346  * Note that because the faulting entry is guaranteed not to be
1347  * cached in the TLB, we don't need to invalidate anything.
1348  */
handle_access_fault(struct kvm_vcpu * vcpu,phys_addr_t fault_ipa)1349 static void handle_access_fault(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa)
1350 {
1351 	pmd_t *pmd;
1352 	pte_t *pte;
1353 	pfn_t pfn;
1354 	bool pfn_valid = false;
1355 
1356 	trace_kvm_access_fault(fault_ipa);
1357 
1358 	spin_lock(&vcpu->kvm->mmu_lock);
1359 
1360 	pmd = stage2_get_pmd(vcpu->kvm, NULL, fault_ipa);
1361 	if (!pmd || pmd_none(*pmd))	/* Nothing there */
1362 		goto out;
1363 
1364 	if (kvm_pmd_huge(*pmd)) {	/* THP, HugeTLB */
1365 		*pmd = pmd_mkyoung(*pmd);
1366 		pfn = pmd_pfn(*pmd);
1367 		pfn_valid = true;
1368 		goto out;
1369 	}
1370 
1371 	pte = pte_offset_kernel(pmd, fault_ipa);
1372 	if (pte_none(*pte))		/* Nothing there either */
1373 		goto out;
1374 
1375 	*pte = pte_mkyoung(*pte);	/* Just a page... */
1376 	pfn = pte_pfn(*pte);
1377 	pfn_valid = true;
1378 out:
1379 	spin_unlock(&vcpu->kvm->mmu_lock);
1380 	if (pfn_valid)
1381 		kvm_set_pfn_accessed(pfn);
1382 }
1383 
1384 /**
1385  * kvm_handle_guest_abort - handles all 2nd stage aborts
1386  * @vcpu:	the VCPU pointer
1387  * @run:	the kvm_run structure
1388  *
1389  * Any abort that gets to the host is almost guaranteed to be caused by a
1390  * missing second stage translation table entry, which can mean that either the
1391  * guest simply needs more memory and we must allocate an appropriate page or it
1392  * can mean that the guest tried to access I/O memory, which is emulated by user
1393  * space. The distinction is based on the IPA causing the fault and whether this
1394  * memory region has been registered as standard RAM by user space.
1395  */
kvm_handle_guest_abort(struct kvm_vcpu * vcpu,struct kvm_run * run)1396 int kvm_handle_guest_abort(struct kvm_vcpu *vcpu, struct kvm_run *run)
1397 {
1398 	unsigned long fault_status;
1399 	phys_addr_t fault_ipa;
1400 	struct kvm_memory_slot *memslot;
1401 	unsigned long hva;
1402 	bool is_iabt, write_fault, writable;
1403 	gfn_t gfn;
1404 	int ret, idx;
1405 
1406 	is_iabt = kvm_vcpu_trap_is_iabt(vcpu);
1407 	fault_ipa = kvm_vcpu_get_fault_ipa(vcpu);
1408 
1409 	trace_kvm_guest_fault(*vcpu_pc(vcpu), kvm_vcpu_get_hsr(vcpu),
1410 			      kvm_vcpu_get_hfar(vcpu), fault_ipa);
1411 
1412 	/* Check the stage-2 fault is trans. fault or write fault */
1413 	fault_status = kvm_vcpu_trap_get_fault_type(vcpu);
1414 	if (fault_status != FSC_FAULT && fault_status != FSC_PERM &&
1415 	    fault_status != FSC_ACCESS) {
1416 		kvm_err("Unsupported FSC: EC=%#x xFSC=%#lx ESR_EL2=%#lx\n",
1417 			kvm_vcpu_trap_get_class(vcpu),
1418 			(unsigned long)kvm_vcpu_trap_get_fault(vcpu),
1419 			(unsigned long)kvm_vcpu_get_hsr(vcpu));
1420 		return -EFAULT;
1421 	}
1422 
1423 	idx = srcu_read_lock(&vcpu->kvm->srcu);
1424 
1425 	gfn = fault_ipa >> PAGE_SHIFT;
1426 	memslot = gfn_to_memslot(vcpu->kvm, gfn);
1427 	hva = gfn_to_hva_memslot_prot(memslot, gfn, &writable);
1428 	write_fault = kvm_is_write_fault(vcpu);
1429 	if (kvm_is_error_hva(hva) || (write_fault && !writable)) {
1430 		if (is_iabt) {
1431 			/* Prefetch Abort on I/O address */
1432 			kvm_inject_pabt(vcpu, kvm_vcpu_get_hfar(vcpu));
1433 			ret = 1;
1434 			goto out_unlock;
1435 		}
1436 
1437 		/*
1438 		 * The IPA is reported as [MAX:12], so we need to
1439 		 * complement it with the bottom 12 bits from the
1440 		 * faulting VA. This is always 12 bits, irrespective
1441 		 * of the page size.
1442 		 */
1443 		fault_ipa |= kvm_vcpu_get_hfar(vcpu) & ((1 << 12) - 1);
1444 		ret = io_mem_abort(vcpu, run, fault_ipa);
1445 		goto out_unlock;
1446 	}
1447 
1448 	/* Userspace should not be able to register out-of-bounds IPAs */
1449 	VM_BUG_ON(fault_ipa >= KVM_PHYS_SIZE);
1450 
1451 	if (fault_status == FSC_ACCESS) {
1452 		handle_access_fault(vcpu, fault_ipa);
1453 		ret = 1;
1454 		goto out_unlock;
1455 	}
1456 
1457 	ret = user_mem_abort(vcpu, fault_ipa, memslot, hva, fault_status);
1458 	if (ret == 0)
1459 		ret = 1;
1460 out_unlock:
1461 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
1462 	return ret;
1463 }
1464 
handle_hva_to_gpa(struct kvm * kvm,unsigned long start,unsigned long end,int (* handler)(struct kvm * kvm,gpa_t gpa,void * data),void * data)1465 static int handle_hva_to_gpa(struct kvm *kvm,
1466 			     unsigned long start,
1467 			     unsigned long end,
1468 			     int (*handler)(struct kvm *kvm,
1469 					    gpa_t gpa, void *data),
1470 			     void *data)
1471 {
1472 	struct kvm_memslots *slots;
1473 	struct kvm_memory_slot *memslot;
1474 	int ret = 0;
1475 
1476 	slots = kvm_memslots(kvm);
1477 
1478 	/* we only care about the pages that the guest sees */
1479 	kvm_for_each_memslot(memslot, slots) {
1480 		unsigned long hva_start, hva_end;
1481 		gfn_t gfn, gfn_end;
1482 
1483 		hva_start = max(start, memslot->userspace_addr);
1484 		hva_end = min(end, memslot->userspace_addr +
1485 					(memslot->npages << PAGE_SHIFT));
1486 		if (hva_start >= hva_end)
1487 			continue;
1488 
1489 		/*
1490 		 * {gfn(page) | page intersects with [hva_start, hva_end)} =
1491 		 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1492 		 */
1493 		gfn = hva_to_gfn_memslot(hva_start, memslot);
1494 		gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1495 
1496 		for (; gfn < gfn_end; ++gfn) {
1497 			gpa_t gpa = gfn << PAGE_SHIFT;
1498 			ret |= handler(kvm, gpa, data);
1499 		}
1500 	}
1501 
1502 	return ret;
1503 }
1504 
kvm_unmap_hva_handler(struct kvm * kvm,gpa_t gpa,void * data)1505 static int kvm_unmap_hva_handler(struct kvm *kvm, gpa_t gpa, void *data)
1506 {
1507 	unmap_stage2_range(kvm, gpa, PAGE_SIZE);
1508 	return 0;
1509 }
1510 
kvm_unmap_hva(struct kvm * kvm,unsigned long hva)1511 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1512 {
1513 	unsigned long end = hva + PAGE_SIZE;
1514 
1515 	if (!kvm->arch.pgd)
1516 		return 0;
1517 
1518 	trace_kvm_unmap_hva(hva);
1519 	handle_hva_to_gpa(kvm, hva, end, &kvm_unmap_hva_handler, NULL);
1520 	return 0;
1521 }
1522 
kvm_unmap_hva_range(struct kvm * kvm,unsigned long start,unsigned long end)1523 int kvm_unmap_hva_range(struct kvm *kvm,
1524 			unsigned long start, unsigned long end)
1525 {
1526 	if (!kvm->arch.pgd)
1527 		return 0;
1528 
1529 	trace_kvm_unmap_hva_range(start, end);
1530 	handle_hva_to_gpa(kvm, start, end, &kvm_unmap_hva_handler, NULL);
1531 	return 0;
1532 }
1533 
kvm_set_spte_handler(struct kvm * kvm,gpa_t gpa,void * data)1534 static int kvm_set_spte_handler(struct kvm *kvm, gpa_t gpa, void *data)
1535 {
1536 	pte_t *pte = (pte_t *)data;
1537 
1538 	/*
1539 	 * We can always call stage2_set_pte with KVM_S2PTE_FLAG_LOGGING_ACTIVE
1540 	 * flag clear because MMU notifiers will have unmapped a huge PMD before
1541 	 * calling ->change_pte() (which in turn calls kvm_set_spte_hva()) and
1542 	 * therefore stage2_set_pte() never needs to clear out a huge PMD
1543 	 * through this calling path.
1544 	 */
1545 	stage2_set_pte(kvm, NULL, gpa, pte, 0);
1546 	return 0;
1547 }
1548 
1549 
kvm_set_spte_hva(struct kvm * kvm,unsigned long hva,pte_t pte)1550 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1551 {
1552 	unsigned long end = hva + PAGE_SIZE;
1553 	pte_t stage2_pte;
1554 
1555 	if (!kvm->arch.pgd)
1556 		return;
1557 
1558 	trace_kvm_set_spte_hva(hva);
1559 	stage2_pte = pfn_pte(pte_pfn(pte), PAGE_S2);
1560 	handle_hva_to_gpa(kvm, hva, end, &kvm_set_spte_handler, &stage2_pte);
1561 }
1562 
kvm_age_hva_handler(struct kvm * kvm,gpa_t gpa,void * data)1563 static int kvm_age_hva_handler(struct kvm *kvm, gpa_t gpa, void *data)
1564 {
1565 	pmd_t *pmd;
1566 	pte_t *pte;
1567 
1568 	pmd = stage2_get_pmd(kvm, NULL, gpa);
1569 	if (!pmd || pmd_none(*pmd))	/* Nothing there */
1570 		return 0;
1571 
1572 	if (kvm_pmd_huge(*pmd)) {	/* THP, HugeTLB */
1573 		if (pmd_young(*pmd)) {
1574 			*pmd = pmd_mkold(*pmd);
1575 			return 1;
1576 		}
1577 
1578 		return 0;
1579 	}
1580 
1581 	pte = pte_offset_kernel(pmd, gpa);
1582 	if (pte_none(*pte))
1583 		return 0;
1584 
1585 	if (pte_young(*pte)) {
1586 		*pte = pte_mkold(*pte);	/* Just a page... */
1587 		return 1;
1588 	}
1589 
1590 	return 0;
1591 }
1592 
kvm_test_age_hva_handler(struct kvm * kvm,gpa_t gpa,void * data)1593 static int kvm_test_age_hva_handler(struct kvm *kvm, gpa_t gpa, void *data)
1594 {
1595 	pmd_t *pmd;
1596 	pte_t *pte;
1597 
1598 	pmd = stage2_get_pmd(kvm, NULL, gpa);
1599 	if (!pmd || pmd_none(*pmd))	/* Nothing there */
1600 		return 0;
1601 
1602 	if (kvm_pmd_huge(*pmd))		/* THP, HugeTLB */
1603 		return pmd_young(*pmd);
1604 
1605 	pte = pte_offset_kernel(pmd, gpa);
1606 	if (!pte_none(*pte))		/* Just a page... */
1607 		return pte_young(*pte);
1608 
1609 	return 0;
1610 }
1611 
kvm_age_hva(struct kvm * kvm,unsigned long start,unsigned long end)1612 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
1613 {
1614 	trace_kvm_age_hva(start, end);
1615 	return handle_hva_to_gpa(kvm, start, end, kvm_age_hva_handler, NULL);
1616 }
1617 
kvm_test_age_hva(struct kvm * kvm,unsigned long hva)1618 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1619 {
1620 	trace_kvm_test_age_hva(hva);
1621 	return handle_hva_to_gpa(kvm, hva, hva, kvm_test_age_hva_handler, NULL);
1622 }
1623 
kvm_mmu_free_memory_caches(struct kvm_vcpu * vcpu)1624 void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu)
1625 {
1626 	mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
1627 }
1628 
kvm_mmu_get_httbr(void)1629 phys_addr_t kvm_mmu_get_httbr(void)
1630 {
1631 	if (__kvm_cpu_uses_extended_idmap())
1632 		return virt_to_phys(merged_hyp_pgd);
1633 	else
1634 		return virt_to_phys(hyp_pgd);
1635 }
1636 
kvm_mmu_get_boot_httbr(void)1637 phys_addr_t kvm_mmu_get_boot_httbr(void)
1638 {
1639 	if (__kvm_cpu_uses_extended_idmap())
1640 		return virt_to_phys(merged_hyp_pgd);
1641 	else
1642 		return virt_to_phys(boot_hyp_pgd);
1643 }
1644 
kvm_get_idmap_vector(void)1645 phys_addr_t kvm_get_idmap_vector(void)
1646 {
1647 	return hyp_idmap_vector;
1648 }
1649 
kvm_mmu_init(void)1650 int kvm_mmu_init(void)
1651 {
1652 	int err;
1653 
1654 	hyp_idmap_start = kvm_virt_to_phys(__hyp_idmap_text_start);
1655 	hyp_idmap_end = kvm_virt_to_phys(__hyp_idmap_text_end);
1656 	hyp_idmap_vector = kvm_virt_to_phys(__kvm_hyp_init);
1657 
1658 	/*
1659 	 * We rely on the linker script to ensure at build time that the HYP
1660 	 * init code does not cross a page boundary.
1661 	 */
1662 	BUG_ON((hyp_idmap_start ^ (hyp_idmap_end - 1)) & PAGE_MASK);
1663 
1664 	hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, hyp_pgd_order);
1665 	boot_hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, hyp_pgd_order);
1666 
1667 	if (!hyp_pgd || !boot_hyp_pgd) {
1668 		kvm_err("Hyp mode PGD not allocated\n");
1669 		err = -ENOMEM;
1670 		goto out;
1671 	}
1672 
1673 	/* Create the idmap in the boot page tables */
1674 	err = 	__create_hyp_mappings(boot_hyp_pgd,
1675 				      hyp_idmap_start, hyp_idmap_end,
1676 				      __phys_to_pfn(hyp_idmap_start),
1677 				      PAGE_HYP);
1678 
1679 	if (err) {
1680 		kvm_err("Failed to idmap %lx-%lx\n",
1681 			hyp_idmap_start, hyp_idmap_end);
1682 		goto out;
1683 	}
1684 
1685 	if (__kvm_cpu_uses_extended_idmap()) {
1686 		merged_hyp_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
1687 		if (!merged_hyp_pgd) {
1688 			kvm_err("Failed to allocate extra HYP pgd\n");
1689 			goto out;
1690 		}
1691 		__kvm_extend_hypmap(boot_hyp_pgd, hyp_pgd, merged_hyp_pgd,
1692 				    hyp_idmap_start);
1693 		return 0;
1694 	}
1695 
1696 	/* Map the very same page at the trampoline VA */
1697 	err = 	__create_hyp_mappings(boot_hyp_pgd,
1698 				      TRAMPOLINE_VA, TRAMPOLINE_VA + PAGE_SIZE,
1699 				      __phys_to_pfn(hyp_idmap_start),
1700 				      PAGE_HYP);
1701 	if (err) {
1702 		kvm_err("Failed to map trampoline @%lx into boot HYP pgd\n",
1703 			TRAMPOLINE_VA);
1704 		goto out;
1705 	}
1706 
1707 	/* Map the same page again into the runtime page tables */
1708 	err = 	__create_hyp_mappings(hyp_pgd,
1709 				      TRAMPOLINE_VA, TRAMPOLINE_VA + PAGE_SIZE,
1710 				      __phys_to_pfn(hyp_idmap_start),
1711 				      PAGE_HYP);
1712 	if (err) {
1713 		kvm_err("Failed to map trampoline @%lx into runtime HYP pgd\n",
1714 			TRAMPOLINE_VA);
1715 		goto out;
1716 	}
1717 
1718 	return 0;
1719 out:
1720 	free_hyp_pgds();
1721 	return err;
1722 }
1723 
kvm_arch_commit_memory_region(struct kvm * kvm,struct kvm_userspace_memory_region * mem,const struct kvm_memory_slot * old,enum kvm_mr_change change)1724 void kvm_arch_commit_memory_region(struct kvm *kvm,
1725 				   struct kvm_userspace_memory_region *mem,
1726 				   const struct kvm_memory_slot *old,
1727 				   enum kvm_mr_change change)
1728 {
1729 	/*
1730 	 * At this point memslot has been committed and there is an
1731 	 * allocated dirty_bitmap[], dirty pages will be be tracked while the
1732 	 * memory slot is write protected.
1733 	 */
1734 	if (change != KVM_MR_DELETE && mem->flags & KVM_MEM_LOG_DIRTY_PAGES)
1735 		kvm_mmu_wp_memory_region(kvm, mem->slot);
1736 }
1737 
kvm_arch_prepare_memory_region(struct kvm * kvm,struct kvm_memory_slot * memslot,struct kvm_userspace_memory_region * mem,enum kvm_mr_change change)1738 int kvm_arch_prepare_memory_region(struct kvm *kvm,
1739 				   struct kvm_memory_slot *memslot,
1740 				   struct kvm_userspace_memory_region *mem,
1741 				   enum kvm_mr_change change)
1742 {
1743 	hva_t hva = mem->userspace_addr;
1744 	hva_t reg_end = hva + mem->memory_size;
1745 	bool writable = !(mem->flags & KVM_MEM_READONLY);
1746 	int ret = 0;
1747 
1748 	if (change != KVM_MR_CREATE && change != KVM_MR_MOVE &&
1749 			change != KVM_MR_FLAGS_ONLY)
1750 		return 0;
1751 
1752 	/*
1753 	 * Prevent userspace from creating a memory region outside of the IPA
1754 	 * space addressable by the KVM guest IPA space.
1755 	 */
1756 	if (memslot->base_gfn + memslot->npages >=
1757 	    (KVM_PHYS_SIZE >> PAGE_SHIFT))
1758 		return -EFAULT;
1759 
1760 	/*
1761 	 * A memory region could potentially cover multiple VMAs, and any holes
1762 	 * between them, so iterate over all of them to find out if we can map
1763 	 * any of them right now.
1764 	 *
1765 	 *     +--------------------------------------------+
1766 	 * +---------------+----------------+   +----------------+
1767 	 * |   : VMA 1     |      VMA 2     |   |    VMA 3  :    |
1768 	 * +---------------+----------------+   +----------------+
1769 	 *     |               memory region                |
1770 	 *     +--------------------------------------------+
1771 	 */
1772 	do {
1773 		struct vm_area_struct *vma = find_vma(current->mm, hva);
1774 		hva_t vm_start, vm_end;
1775 
1776 		if (!vma || vma->vm_start >= reg_end)
1777 			break;
1778 
1779 		/*
1780 		 * Mapping a read-only VMA is only allowed if the
1781 		 * memory region is configured as read-only.
1782 		 */
1783 		if (writable && !(vma->vm_flags & VM_WRITE)) {
1784 			ret = -EPERM;
1785 			break;
1786 		}
1787 
1788 		/*
1789 		 * Take the intersection of this VMA with the memory region
1790 		 */
1791 		vm_start = max(hva, vma->vm_start);
1792 		vm_end = min(reg_end, vma->vm_end);
1793 
1794 		if (vma->vm_flags & VM_PFNMAP) {
1795 			gpa_t gpa = mem->guest_phys_addr +
1796 				    (vm_start - mem->userspace_addr);
1797 			phys_addr_t pa;
1798 
1799 			pa = (phys_addr_t)vma->vm_pgoff << PAGE_SHIFT;
1800 			pa += vm_start - vma->vm_start;
1801 
1802 			/* IO region dirty page logging not allowed */
1803 			if (memslot->flags & KVM_MEM_LOG_DIRTY_PAGES)
1804 				return -EINVAL;
1805 
1806 			ret = kvm_phys_addr_ioremap(kvm, gpa, pa,
1807 						    vm_end - vm_start,
1808 						    writable);
1809 			if (ret)
1810 				break;
1811 		}
1812 		hva = vm_end;
1813 	} while (hva < reg_end);
1814 
1815 	if (change == KVM_MR_FLAGS_ONLY)
1816 		return ret;
1817 
1818 	spin_lock(&kvm->mmu_lock);
1819 	if (ret)
1820 		unmap_stage2_range(kvm, mem->guest_phys_addr, mem->memory_size);
1821 	else
1822 		stage2_flush_memslot(kvm, memslot);
1823 	spin_unlock(&kvm->mmu_lock);
1824 	return ret;
1825 }
1826 
kvm_arch_free_memslot(struct kvm * kvm,struct kvm_memory_slot * free,struct kvm_memory_slot * dont)1827 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
1828 			   struct kvm_memory_slot *dont)
1829 {
1830 }
1831 
kvm_arch_create_memslot(struct kvm * kvm,struct kvm_memory_slot * slot,unsigned long npages)1832 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
1833 			    unsigned long npages)
1834 {
1835 	/*
1836 	 * Readonly memslots are not incoherent with the caches by definition,
1837 	 * but in practice, they are used mostly to emulate ROMs or NOR flashes
1838 	 * that the guest may consider devices and hence map as uncached.
1839 	 * To prevent incoherency issues in these cases, tag all readonly
1840 	 * regions as incoherent.
1841 	 */
1842 	if (slot->flags & KVM_MEM_READONLY)
1843 		slot->flags |= KVM_MEMSLOT_INCOHERENT;
1844 	return 0;
1845 }
1846 
kvm_arch_memslots_updated(struct kvm * kvm)1847 void kvm_arch_memslots_updated(struct kvm *kvm)
1848 {
1849 }
1850 
kvm_arch_flush_shadow_all(struct kvm * kvm)1851 void kvm_arch_flush_shadow_all(struct kvm *kvm)
1852 {
1853 }
1854 
kvm_arch_flush_shadow_memslot(struct kvm * kvm,struct kvm_memory_slot * slot)1855 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
1856 				   struct kvm_memory_slot *slot)
1857 {
1858 	gpa_t gpa = slot->base_gfn << PAGE_SHIFT;
1859 	phys_addr_t size = slot->npages << PAGE_SHIFT;
1860 
1861 	spin_lock(&kvm->mmu_lock);
1862 	unmap_stage2_range(kvm, gpa, size);
1863 	spin_unlock(&kvm->mmu_lock);
1864 }
1865 
1866 /*
1867  * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
1868  *
1869  * Main problems:
1870  * - S/W ops are local to a CPU (not broadcast)
1871  * - We have line migration behind our back (speculation)
1872  * - System caches don't support S/W at all (damn!)
1873  *
1874  * In the face of the above, the best we can do is to try and convert
1875  * S/W ops to VA ops. Because the guest is not allowed to infer the
1876  * S/W to PA mapping, it can only use S/W to nuke the whole cache,
1877  * which is a rather good thing for us.
1878  *
1879  * Also, it is only used when turning caches on/off ("The expected
1880  * usage of the cache maintenance instructions that operate by set/way
1881  * is associated with the cache maintenance instructions associated
1882  * with the powerdown and powerup of caches, if this is required by
1883  * the implementation.").
1884  *
1885  * We use the following policy:
1886  *
1887  * - If we trap a S/W operation, we enable VM trapping to detect
1888  *   caches being turned on/off, and do a full clean.
1889  *
1890  * - We flush the caches on both caches being turned on and off.
1891  *
1892  * - Once the caches are enabled, we stop trapping VM ops.
1893  */
kvm_set_way_flush(struct kvm_vcpu * vcpu)1894 void kvm_set_way_flush(struct kvm_vcpu *vcpu)
1895 {
1896 	unsigned long hcr = vcpu_get_hcr(vcpu);
1897 
1898 	/*
1899 	 * If this is the first time we do a S/W operation
1900 	 * (i.e. HCR_TVM not set) flush the whole memory, and set the
1901 	 * VM trapping.
1902 	 *
1903 	 * Otherwise, rely on the VM trapping to wait for the MMU +
1904 	 * Caches to be turned off. At that point, we'll be able to
1905 	 * clean the caches again.
1906 	 */
1907 	if (!(hcr & HCR_TVM)) {
1908 		trace_kvm_set_way_flush(*vcpu_pc(vcpu),
1909 					vcpu_has_cache_enabled(vcpu));
1910 		stage2_flush_vm(vcpu->kvm);
1911 		vcpu_set_hcr(vcpu, hcr | HCR_TVM);
1912 	}
1913 }
1914 
kvm_toggle_cache(struct kvm_vcpu * vcpu,bool was_enabled)1915 void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled)
1916 {
1917 	bool now_enabled = vcpu_has_cache_enabled(vcpu);
1918 
1919 	/*
1920 	 * If switching the MMU+caches on, need to invalidate the caches.
1921 	 * If switching it off, need to clean the caches.
1922 	 * Clean + invalidate does the trick always.
1923 	 */
1924 	if (now_enabled != was_enabled)
1925 		stage2_flush_vm(vcpu->kvm);
1926 
1927 	/* Caches are now on, stop trapping VM ops (until a S/W op) */
1928 	if (now_enabled)
1929 		vcpu_set_hcr(vcpu, vcpu_get_hcr(vcpu) & ~HCR_TVM);
1930 
1931 	trace_kvm_toggle_cache(*vcpu_pc(vcpu), was_enabled, now_enabled);
1932 }
1933