1 /*
2  * This program is free software; you can redistribute it and/or
3  * modify it under the terms of the GNU General Public License
4  * as published by the Free Software Foundation; either version 2
5  * of the License, or (at your option) any later version.
6  *
7  * This program is distributed in the hope that it will be useful,
8  * but WITHOUT ANY WARRANTY; without even the implied warranty of
9  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
10  * GNU General Public License for more details.
11  *
12  * You should have received a copy of the GNU General Public License
13  * along with this program; if not, write to the Free Software
14  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
15  *
16  * Copyright (C) 2000, 2001 Kanoj Sarcar
17  * Copyright (C) 2000, 2001 Ralf Baechle
18  * Copyright (C) 2000, 2001 Silicon Graphics, Inc.
19  * Copyright (C) 2000, 2001, 2003 Broadcom Corporation
20  */
21 #include <linux/cache.h>
22 #include <linux/delay.h>
23 #include <linux/init.h>
24 #include <linux/interrupt.h>
25 #include <linux/smp.h>
26 #include <linux/spinlock.h>
27 #include <linux/threads.h>
28 #include <linux/module.h>
29 #include <linux/time.h>
30 #include <linux/timex.h>
31 #include <linux/sched.h>
32 #include <linux/cpumask.h>
33 #include <linux/cpu.h>
34 #include <linux/err.h>
35 #include <linux/ftrace.h>
36 
37 #include <linux/atomic.h>
38 #include <asm/cpu.h>
39 #include <asm/processor.h>
40 #include <asm/idle.h>
41 #include <asm/r4k-timer.h>
42 #include <asm/mmu_context.h>
43 #include <asm/time.h>
44 #include <asm/setup.h>
45 
46 cpumask_t cpu_callin_map;		/* Bitmask of started secondaries */
47 
48 int __cpu_number_map[NR_CPUS];		/* Map physical to logical */
49 EXPORT_SYMBOL(__cpu_number_map);
50 
51 int __cpu_logical_map[NR_CPUS];		/* Map logical to physical */
52 EXPORT_SYMBOL(__cpu_logical_map);
53 
54 /* Number of TCs (or siblings in Intel speak) per CPU core */
55 int smp_num_siblings = 1;
56 EXPORT_SYMBOL(smp_num_siblings);
57 
58 /* representing the TCs (or siblings in Intel speak) of each logical CPU */
59 cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly;
60 EXPORT_SYMBOL(cpu_sibling_map);
61 
62 /* representing the core map of multi-core chips of each logical CPU */
63 cpumask_t cpu_core_map[NR_CPUS] __read_mostly;
64 EXPORT_SYMBOL(cpu_core_map);
65 
66 /*
67  * A logcal cpu mask containing only one VPE per core to
68  * reduce the number of IPIs on large MT systems.
69  */
70 cpumask_t cpu_foreign_map __read_mostly;
71 EXPORT_SYMBOL(cpu_foreign_map);
72 
73 /* representing cpus for which sibling maps can be computed */
74 static cpumask_t cpu_sibling_setup_map;
75 
76 /* representing cpus for which core maps can be computed */
77 static cpumask_t cpu_core_setup_map;
78 
79 cpumask_t cpu_coherent_mask;
80 
set_cpu_sibling_map(int cpu)81 static inline void set_cpu_sibling_map(int cpu)
82 {
83 	int i;
84 
85 	cpumask_set_cpu(cpu, &cpu_sibling_setup_map);
86 
87 	if (smp_num_siblings > 1) {
88 		for_each_cpu(i, &cpu_sibling_setup_map) {
89 			if (cpu_data[cpu].package == cpu_data[i].package &&
90 				    cpu_data[cpu].core == cpu_data[i].core) {
91 				cpumask_set_cpu(i, &cpu_sibling_map[cpu]);
92 				cpumask_set_cpu(cpu, &cpu_sibling_map[i]);
93 			}
94 		}
95 	} else
96 		cpumask_set_cpu(cpu, &cpu_sibling_map[cpu]);
97 }
98 
set_cpu_core_map(int cpu)99 static inline void set_cpu_core_map(int cpu)
100 {
101 	int i;
102 
103 	cpumask_set_cpu(cpu, &cpu_core_setup_map);
104 
105 	for_each_cpu(i, &cpu_core_setup_map) {
106 		if (cpu_data[cpu].package == cpu_data[i].package) {
107 			cpumask_set_cpu(i, &cpu_core_map[cpu]);
108 			cpumask_set_cpu(cpu, &cpu_core_map[i]);
109 		}
110 	}
111 }
112 
113 /*
114  * Calculate a new cpu_foreign_map mask whenever a
115  * new cpu appears or disappears.
116  */
calculate_cpu_foreign_map(void)117 static inline void calculate_cpu_foreign_map(void)
118 {
119 	int i, k, core_present;
120 	cpumask_t temp_foreign_map;
121 
122 	/* Re-calculate the mask */
123 	cpumask_clear(&temp_foreign_map);
124 	for_each_online_cpu(i) {
125 		core_present = 0;
126 		for_each_cpu(k, &temp_foreign_map)
127 			if (cpu_data[i].package == cpu_data[k].package &&
128 			    cpu_data[i].core == cpu_data[k].core)
129 				core_present = 1;
130 		if (!core_present)
131 			cpumask_set_cpu(i, &temp_foreign_map);
132 	}
133 
134 	cpumask_copy(&cpu_foreign_map, &temp_foreign_map);
135 }
136 
137 struct plat_smp_ops *mp_ops;
138 EXPORT_SYMBOL(mp_ops);
139 
register_smp_ops(struct plat_smp_ops * ops)140 void register_smp_ops(struct plat_smp_ops *ops)
141 {
142 	if (mp_ops)
143 		printk(KERN_WARNING "Overriding previously set SMP ops\n");
144 
145 	mp_ops = ops;
146 }
147 
148 /*
149  * First C code run on the secondary CPUs after being started up by
150  * the master.
151  */
start_secondary(void)152 asmlinkage void start_secondary(void)
153 {
154 	unsigned int cpu;
155 
156 	cpu_probe();
157 	per_cpu_trap_init(false);
158 	mips_clockevent_init();
159 	mp_ops->init_secondary();
160 	cpu_report();
161 
162 	/*
163 	 * XXX parity protection should be folded in here when it's converted
164 	 * to an option instead of something based on .cputype
165 	 */
166 
167 	calibrate_delay();
168 	preempt_disable();
169 	cpu = smp_processor_id();
170 	cpu_data[cpu].udelay_val = loops_per_jiffy;
171 
172 	cpumask_set_cpu(cpu, &cpu_coherent_mask);
173 	notify_cpu_starting(cpu);
174 
175 	set_cpu_online(cpu, true);
176 
177 	set_cpu_sibling_map(cpu);
178 	set_cpu_core_map(cpu);
179 
180 	calculate_cpu_foreign_map();
181 
182 	cpumask_set_cpu(cpu, &cpu_callin_map);
183 
184 	synchronise_count_slave(cpu);
185 
186 	/*
187 	 * irq will be enabled in ->smp_finish(), enabling it too early
188 	 * is dangerous.
189 	 */
190 	WARN_ON_ONCE(!irqs_disabled());
191 	mp_ops->smp_finish();
192 
193 	cpu_startup_entry(CPUHP_ONLINE);
194 }
195 
196 /*
197  * Call into both interrupt handlers, as we share the IPI for them
198  */
smp_call_function_interrupt(void)199 void __irq_entry smp_call_function_interrupt(void)
200 {
201 	irq_enter();
202 	generic_smp_call_function_interrupt();
203 	irq_exit();
204 }
205 
stop_this_cpu(void * dummy)206 static void stop_this_cpu(void *dummy)
207 {
208 	/*
209 	 * Remove this CPU. Be a bit slow here and
210 	 * set the bits for every online CPU so we don't miss
211 	 * any IPI whilst taking this VPE down.
212 	 */
213 
214 	cpumask_copy(&cpu_foreign_map, cpu_online_mask);
215 
216 	/* Make it visible to every other CPU */
217 	smp_mb();
218 
219 	set_cpu_online(smp_processor_id(), false);
220 	calculate_cpu_foreign_map();
221 	local_irq_disable();
222 	while (1);
223 }
224 
smp_send_stop(void)225 void smp_send_stop(void)
226 {
227 	smp_call_function(stop_this_cpu, NULL, 0);
228 }
229 
smp_cpus_done(unsigned int max_cpus)230 void __init smp_cpus_done(unsigned int max_cpus)
231 {
232 }
233 
234 /* called from main before smp_init() */
smp_prepare_cpus(unsigned int max_cpus)235 void __init smp_prepare_cpus(unsigned int max_cpus)
236 {
237 	init_new_context(current, &init_mm);
238 	current_thread_info()->cpu = 0;
239 	mp_ops->prepare_cpus(max_cpus);
240 	set_cpu_sibling_map(0);
241 	set_cpu_core_map(0);
242 	calculate_cpu_foreign_map();
243 #ifndef CONFIG_HOTPLUG_CPU
244 	init_cpu_present(cpu_possible_mask);
245 #endif
246 	cpumask_copy(&cpu_coherent_mask, cpu_possible_mask);
247 }
248 
249 /* preload SMP state for boot cpu */
smp_prepare_boot_cpu(void)250 void smp_prepare_boot_cpu(void)
251 {
252 	set_cpu_possible(0, true);
253 	set_cpu_online(0, true);
254 	cpumask_set_cpu(0, &cpu_callin_map);
255 }
256 
__cpu_up(unsigned int cpu,struct task_struct * tidle)257 int __cpu_up(unsigned int cpu, struct task_struct *tidle)
258 {
259 	mp_ops->boot_secondary(cpu, tidle);
260 
261 	/*
262 	 * Trust is futile.  We should really have timeouts ...
263 	 */
264 	while (!cpumask_test_cpu(cpu, &cpu_callin_map)) {
265 		udelay(100);
266 		schedule();
267 	}
268 
269 	synchronise_count_master(cpu);
270 	return 0;
271 }
272 
273 /* Not really SMP stuff ... */
setup_profiling_timer(unsigned int multiplier)274 int setup_profiling_timer(unsigned int multiplier)
275 {
276 	return 0;
277 }
278 
flush_tlb_all_ipi(void * info)279 static void flush_tlb_all_ipi(void *info)
280 {
281 	local_flush_tlb_all();
282 }
283 
flush_tlb_all(void)284 void flush_tlb_all(void)
285 {
286 	on_each_cpu(flush_tlb_all_ipi, NULL, 1);
287 }
288 
flush_tlb_mm_ipi(void * mm)289 static void flush_tlb_mm_ipi(void *mm)
290 {
291 	local_flush_tlb_mm((struct mm_struct *)mm);
292 }
293 
294 /*
295  * Special Variant of smp_call_function for use by TLB functions:
296  *
297  *  o No return value
298  *  o collapses to normal function call on UP kernels
299  *  o collapses to normal function call on systems with a single shared
300  *    primary cache.
301  */
smp_on_other_tlbs(void (* func)(void * info),void * info)302 static inline void smp_on_other_tlbs(void (*func) (void *info), void *info)
303 {
304 	smp_call_function(func, info, 1);
305 }
306 
smp_on_each_tlb(void (* func)(void * info),void * info)307 static inline void smp_on_each_tlb(void (*func) (void *info), void *info)
308 {
309 	preempt_disable();
310 
311 	smp_on_other_tlbs(func, info);
312 	func(info);
313 
314 	preempt_enable();
315 }
316 
317 /*
318  * The following tlb flush calls are invoked when old translations are
319  * being torn down, or pte attributes are changing. For single threaded
320  * address spaces, a new context is obtained on the current cpu, and tlb
321  * context on other cpus are invalidated to force a new context allocation
322  * at switch_mm time, should the mm ever be used on other cpus. For
323  * multithreaded address spaces, intercpu interrupts have to be sent.
324  * Another case where intercpu interrupts are required is when the target
325  * mm might be active on another cpu (eg debuggers doing the flushes on
326  * behalf of debugees, kswapd stealing pages from another process etc).
327  * Kanoj 07/00.
328  */
329 
flush_tlb_mm(struct mm_struct * mm)330 void flush_tlb_mm(struct mm_struct *mm)
331 {
332 	preempt_disable();
333 
334 	if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
335 		smp_on_other_tlbs(flush_tlb_mm_ipi, mm);
336 	} else {
337 		unsigned int cpu;
338 
339 		for_each_online_cpu(cpu) {
340 			if (cpu != smp_processor_id() && cpu_context(cpu, mm))
341 				cpu_context(cpu, mm) = 0;
342 		}
343 	}
344 	local_flush_tlb_mm(mm);
345 
346 	preempt_enable();
347 }
348 
349 struct flush_tlb_data {
350 	struct vm_area_struct *vma;
351 	unsigned long addr1;
352 	unsigned long addr2;
353 };
354 
flush_tlb_range_ipi(void * info)355 static void flush_tlb_range_ipi(void *info)
356 {
357 	struct flush_tlb_data *fd = info;
358 
359 	local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2);
360 }
361 
flush_tlb_range(struct vm_area_struct * vma,unsigned long start,unsigned long end)362 void flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
363 {
364 	struct mm_struct *mm = vma->vm_mm;
365 
366 	preempt_disable();
367 	if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
368 		struct flush_tlb_data fd = {
369 			.vma = vma,
370 			.addr1 = start,
371 			.addr2 = end,
372 		};
373 
374 		smp_on_other_tlbs(flush_tlb_range_ipi, &fd);
375 	} else {
376 		unsigned int cpu;
377 
378 		for_each_online_cpu(cpu) {
379 			if (cpu != smp_processor_id() && cpu_context(cpu, mm))
380 				cpu_context(cpu, mm) = 0;
381 		}
382 	}
383 	local_flush_tlb_range(vma, start, end);
384 	preempt_enable();
385 }
386 
flush_tlb_kernel_range_ipi(void * info)387 static void flush_tlb_kernel_range_ipi(void *info)
388 {
389 	struct flush_tlb_data *fd = info;
390 
391 	local_flush_tlb_kernel_range(fd->addr1, fd->addr2);
392 }
393 
flush_tlb_kernel_range(unsigned long start,unsigned long end)394 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
395 {
396 	struct flush_tlb_data fd = {
397 		.addr1 = start,
398 		.addr2 = end,
399 	};
400 
401 	on_each_cpu(flush_tlb_kernel_range_ipi, &fd, 1);
402 }
403 
flush_tlb_page_ipi(void * info)404 static void flush_tlb_page_ipi(void *info)
405 {
406 	struct flush_tlb_data *fd = info;
407 
408 	local_flush_tlb_page(fd->vma, fd->addr1);
409 }
410 
flush_tlb_page(struct vm_area_struct * vma,unsigned long page)411 void flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
412 {
413 	preempt_disable();
414 	if ((atomic_read(&vma->vm_mm->mm_users) != 1) || (current->mm != vma->vm_mm)) {
415 		struct flush_tlb_data fd = {
416 			.vma = vma,
417 			.addr1 = page,
418 		};
419 
420 		smp_on_other_tlbs(flush_tlb_page_ipi, &fd);
421 	} else {
422 		unsigned int cpu;
423 
424 		for_each_online_cpu(cpu) {
425 			if (cpu != smp_processor_id() && cpu_context(cpu, vma->vm_mm))
426 				cpu_context(cpu, vma->vm_mm) = 0;
427 		}
428 	}
429 	local_flush_tlb_page(vma, page);
430 	preempt_enable();
431 }
432 
flush_tlb_one_ipi(void * info)433 static void flush_tlb_one_ipi(void *info)
434 {
435 	unsigned long vaddr = (unsigned long) info;
436 
437 	local_flush_tlb_one(vaddr);
438 }
439 
flush_tlb_one(unsigned long vaddr)440 void flush_tlb_one(unsigned long vaddr)
441 {
442 	smp_on_each_tlb(flush_tlb_one_ipi, (void *) vaddr);
443 }
444 
445 EXPORT_SYMBOL(flush_tlb_page);
446 EXPORT_SYMBOL(flush_tlb_one);
447 
448 #if defined(CONFIG_KEXEC)
449 void (*dump_ipi_function_ptr)(void *) = NULL;
dump_send_ipi(void (* dump_ipi_callback)(void *))450 void dump_send_ipi(void (*dump_ipi_callback)(void *))
451 {
452 	int i;
453 	int cpu = smp_processor_id();
454 
455 	dump_ipi_function_ptr = dump_ipi_callback;
456 	smp_mb();
457 	for_each_online_cpu(i)
458 		if (i != cpu)
459 			mp_ops->send_ipi_single(i, SMP_DUMP);
460 
461 }
462 EXPORT_SYMBOL(dump_send_ipi);
463 #endif
464 
465 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
466 
467 static DEFINE_PER_CPU(atomic_t, tick_broadcast_count);
468 static DEFINE_PER_CPU(struct call_single_data, tick_broadcast_csd);
469 
tick_broadcast(const struct cpumask * mask)470 void tick_broadcast(const struct cpumask *mask)
471 {
472 	atomic_t *count;
473 	struct call_single_data *csd;
474 	int cpu;
475 
476 	for_each_cpu(cpu, mask) {
477 		count = &per_cpu(tick_broadcast_count, cpu);
478 		csd = &per_cpu(tick_broadcast_csd, cpu);
479 
480 		if (atomic_inc_return(count) == 1)
481 			smp_call_function_single_async(cpu, csd);
482 	}
483 }
484 
tick_broadcast_callee(void * info)485 static void tick_broadcast_callee(void *info)
486 {
487 	int cpu = smp_processor_id();
488 	tick_receive_broadcast();
489 	atomic_set(&per_cpu(tick_broadcast_count, cpu), 0);
490 }
491 
tick_broadcast_init(void)492 static int __init tick_broadcast_init(void)
493 {
494 	struct call_single_data *csd;
495 	int cpu;
496 
497 	for (cpu = 0; cpu < NR_CPUS; cpu++) {
498 		csd = &per_cpu(tick_broadcast_csd, cpu);
499 		csd->func = tick_broadcast_callee;
500 	}
501 
502 	return 0;
503 }
504 early_initcall(tick_broadcast_init);
505 
506 #endif /* CONFIG_GENERIC_CLOCKEVENTS_BROADCAST */
507