1 /*
2  * linux/mm/compaction.c
3  *
4  * Memory compaction for the reduction of external fragmentation. Note that
5  * this heavily depends upon page migration to do all the real heavy
6  * lifting
7  *
8  * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
9  */
10 #include <linux/swap.h>
11 #include <linux/migrate.h>
12 #include <linux/compaction.h>
13 #include <linux/mm_inline.h>
14 #include <linux/backing-dev.h>
15 #include <linux/sysctl.h>
16 #include <linux/sysfs.h>
17 #include <linux/balloon_compaction.h>
18 #include <linux/page-isolation.h>
19 #include <linux/kasan.h>
20 #include "internal.h"
21 
22 #ifdef CONFIG_COMPACTION
count_compact_event(enum vm_event_item item)23 static inline void count_compact_event(enum vm_event_item item)
24 {
25 	count_vm_event(item);
26 }
27 
count_compact_events(enum vm_event_item item,long delta)28 static inline void count_compact_events(enum vm_event_item item, long delta)
29 {
30 	count_vm_events(item, delta);
31 }
32 #else
33 #define count_compact_event(item) do { } while (0)
34 #define count_compact_events(item, delta) do { } while (0)
35 #endif
36 
37 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
38 #ifdef CONFIG_TRACEPOINTS
39 static const char *const compaction_status_string[] = {
40 	"deferred",
41 	"skipped",
42 	"continue",
43 	"partial",
44 	"complete",
45 	"no_suitable_page",
46 	"not_suitable_zone",
47 };
48 #endif
49 
50 #define CREATE_TRACE_POINTS
51 #include <trace/events/compaction.h>
52 
release_freepages(struct list_head * freelist)53 static unsigned long release_freepages(struct list_head *freelist)
54 {
55 	struct page *page, *next;
56 	unsigned long high_pfn = 0;
57 
58 	list_for_each_entry_safe(page, next, freelist, lru) {
59 		unsigned long pfn = page_to_pfn(page);
60 		list_del(&page->lru);
61 		__free_page(page);
62 		if (pfn > high_pfn)
63 			high_pfn = pfn;
64 	}
65 
66 	return high_pfn;
67 }
68 
map_pages(struct list_head * list)69 static void map_pages(struct list_head *list)
70 {
71 	struct page *page;
72 
73 	list_for_each_entry(page, list, lru) {
74 		arch_alloc_page(page, 0);
75 		kernel_map_pages(page, 1, 1);
76 		kasan_alloc_pages(page, 0);
77 	}
78 }
79 
migrate_async_suitable(int migratetype)80 static inline bool migrate_async_suitable(int migratetype)
81 {
82 	return is_migrate_cma(migratetype) || migratetype == MIGRATE_MOVABLE;
83 }
84 
85 /*
86  * Check that the whole (or subset of) a pageblock given by the interval of
87  * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
88  * with the migration of free compaction scanner. The scanners then need to
89  * use only pfn_valid_within() check for arches that allow holes within
90  * pageblocks.
91  *
92  * Return struct page pointer of start_pfn, or NULL if checks were not passed.
93  *
94  * It's possible on some configurations to have a setup like node0 node1 node0
95  * i.e. it's possible that all pages within a zones range of pages do not
96  * belong to a single zone. We assume that a border between node0 and node1
97  * can occur within a single pageblock, but not a node0 node1 node0
98  * interleaving within a single pageblock. It is therefore sufficient to check
99  * the first and last page of a pageblock and avoid checking each individual
100  * page in a pageblock.
101  */
pageblock_pfn_to_page(unsigned long start_pfn,unsigned long end_pfn,struct zone * zone)102 static struct page *pageblock_pfn_to_page(unsigned long start_pfn,
103 				unsigned long end_pfn, struct zone *zone)
104 {
105 	struct page *start_page;
106 	struct page *end_page;
107 
108 	/* end_pfn is one past the range we are checking */
109 	end_pfn--;
110 
111 	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
112 		return NULL;
113 
114 	start_page = pfn_to_page(start_pfn);
115 
116 	if (page_zone(start_page) != zone)
117 		return NULL;
118 
119 	end_page = pfn_to_page(end_pfn);
120 
121 	/* This gives a shorter code than deriving page_zone(end_page) */
122 	if (page_zone_id(start_page) != page_zone_id(end_page))
123 		return NULL;
124 
125 	return start_page;
126 }
127 
128 #ifdef CONFIG_COMPACTION
129 
130 /* Do not skip compaction more than 64 times */
131 #define COMPACT_MAX_DEFER_SHIFT 6
132 
133 /*
134  * Compaction is deferred when compaction fails to result in a page
135  * allocation success. 1 << compact_defer_limit compactions are skipped up
136  * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
137  */
defer_compaction(struct zone * zone,int order)138 void defer_compaction(struct zone *zone, int order)
139 {
140 	zone->compact_considered = 0;
141 	zone->compact_defer_shift++;
142 
143 	if (order < zone->compact_order_failed)
144 		zone->compact_order_failed = order;
145 
146 	if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
147 		zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
148 
149 	trace_mm_compaction_defer_compaction(zone, order);
150 }
151 
152 /* Returns true if compaction should be skipped this time */
compaction_deferred(struct zone * zone,int order)153 bool compaction_deferred(struct zone *zone, int order)
154 {
155 	unsigned long defer_limit = 1UL << zone->compact_defer_shift;
156 
157 	if (order < zone->compact_order_failed)
158 		return false;
159 
160 	/* Avoid possible overflow */
161 	if (++zone->compact_considered > defer_limit)
162 		zone->compact_considered = defer_limit;
163 
164 	if (zone->compact_considered >= defer_limit)
165 		return false;
166 
167 	trace_mm_compaction_deferred(zone, order);
168 
169 	return true;
170 }
171 
172 /*
173  * Update defer tracking counters after successful compaction of given order,
174  * which means an allocation either succeeded (alloc_success == true) or is
175  * expected to succeed.
176  */
compaction_defer_reset(struct zone * zone,int order,bool alloc_success)177 void compaction_defer_reset(struct zone *zone, int order,
178 		bool alloc_success)
179 {
180 	if (alloc_success) {
181 		zone->compact_considered = 0;
182 		zone->compact_defer_shift = 0;
183 	}
184 	if (order >= zone->compact_order_failed)
185 		zone->compact_order_failed = order + 1;
186 
187 	trace_mm_compaction_defer_reset(zone, order);
188 }
189 
190 /* Returns true if restarting compaction after many failures */
compaction_restarting(struct zone * zone,int order)191 bool compaction_restarting(struct zone *zone, int order)
192 {
193 	if (order < zone->compact_order_failed)
194 		return false;
195 
196 	return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
197 		zone->compact_considered >= 1UL << zone->compact_defer_shift;
198 }
199 
200 /* Returns true if the pageblock should be scanned for pages to isolate. */
isolation_suitable(struct compact_control * cc,struct page * page)201 static inline bool isolation_suitable(struct compact_control *cc,
202 					struct page *page)
203 {
204 	if (cc->ignore_skip_hint)
205 		return true;
206 
207 	return !get_pageblock_skip(page);
208 }
209 
210 /*
211  * This function is called to clear all cached information on pageblocks that
212  * should be skipped for page isolation when the migrate and free page scanner
213  * meet.
214  */
__reset_isolation_suitable(struct zone * zone)215 static void __reset_isolation_suitable(struct zone *zone)
216 {
217 	unsigned long start_pfn = zone->zone_start_pfn;
218 	unsigned long end_pfn = zone_end_pfn(zone);
219 	unsigned long pfn;
220 
221 	zone->compact_cached_migrate_pfn[0] = start_pfn;
222 	zone->compact_cached_migrate_pfn[1] = start_pfn;
223 	zone->compact_cached_free_pfn = end_pfn;
224 	zone->compact_blockskip_flush = false;
225 
226 	/* Walk the zone and mark every pageblock as suitable for isolation */
227 	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
228 		struct page *page;
229 
230 		cond_resched();
231 
232 		if (!pfn_valid(pfn))
233 			continue;
234 
235 		page = pfn_to_page(pfn);
236 		if (zone != page_zone(page))
237 			continue;
238 
239 		clear_pageblock_skip(page);
240 	}
241 }
242 
reset_isolation_suitable(pg_data_t * pgdat)243 void reset_isolation_suitable(pg_data_t *pgdat)
244 {
245 	int zoneid;
246 
247 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
248 		struct zone *zone = &pgdat->node_zones[zoneid];
249 		if (!populated_zone(zone))
250 			continue;
251 
252 		/* Only flush if a full compaction finished recently */
253 		if (zone->compact_blockskip_flush)
254 			__reset_isolation_suitable(zone);
255 	}
256 }
257 
258 /*
259  * If no pages were isolated then mark this pageblock to be skipped in the
260  * future. The information is later cleared by __reset_isolation_suitable().
261  */
update_pageblock_skip(struct compact_control * cc,struct page * page,unsigned long nr_isolated,bool migrate_scanner)262 static void update_pageblock_skip(struct compact_control *cc,
263 			struct page *page, unsigned long nr_isolated,
264 			bool migrate_scanner)
265 {
266 	struct zone *zone = cc->zone;
267 	unsigned long pfn;
268 
269 	if (cc->ignore_skip_hint)
270 		return;
271 
272 	if (!page)
273 		return;
274 
275 	if (nr_isolated)
276 		return;
277 
278 	set_pageblock_skip(page);
279 
280 	pfn = page_to_pfn(page);
281 
282 	/* Update where async and sync compaction should restart */
283 	if (migrate_scanner) {
284 		if (pfn > zone->compact_cached_migrate_pfn[0])
285 			zone->compact_cached_migrate_pfn[0] = pfn;
286 		if (cc->mode != MIGRATE_ASYNC &&
287 		    pfn > zone->compact_cached_migrate_pfn[1])
288 			zone->compact_cached_migrate_pfn[1] = pfn;
289 	} else {
290 		if (pfn < zone->compact_cached_free_pfn)
291 			zone->compact_cached_free_pfn = pfn;
292 	}
293 }
294 #else
isolation_suitable(struct compact_control * cc,struct page * page)295 static inline bool isolation_suitable(struct compact_control *cc,
296 					struct page *page)
297 {
298 	return true;
299 }
300 
update_pageblock_skip(struct compact_control * cc,struct page * page,unsigned long nr_isolated,bool migrate_scanner)301 static void update_pageblock_skip(struct compact_control *cc,
302 			struct page *page, unsigned long nr_isolated,
303 			bool migrate_scanner)
304 {
305 }
306 #endif /* CONFIG_COMPACTION */
307 
308 /*
309  * Compaction requires the taking of some coarse locks that are potentially
310  * very heavily contended. For async compaction, back out if the lock cannot
311  * be taken immediately. For sync compaction, spin on the lock if needed.
312  *
313  * Returns true if the lock is held
314  * Returns false if the lock is not held and compaction should abort
315  */
compact_trylock_irqsave(spinlock_t * lock,unsigned long * flags,struct compact_control * cc)316 static bool compact_trylock_irqsave(spinlock_t *lock, unsigned long *flags,
317 						struct compact_control *cc)
318 {
319 	if (cc->mode == MIGRATE_ASYNC) {
320 		if (!spin_trylock_irqsave(lock, *flags)) {
321 			cc->contended = COMPACT_CONTENDED_LOCK;
322 			return false;
323 		}
324 	} else {
325 		spin_lock_irqsave(lock, *flags);
326 	}
327 
328 	return true;
329 }
330 
331 /*
332  * Compaction requires the taking of some coarse locks that are potentially
333  * very heavily contended. The lock should be periodically unlocked to avoid
334  * having disabled IRQs for a long time, even when there is nobody waiting on
335  * the lock. It might also be that allowing the IRQs will result in
336  * need_resched() becoming true. If scheduling is needed, async compaction
337  * aborts. Sync compaction schedules.
338  * Either compaction type will also abort if a fatal signal is pending.
339  * In either case if the lock was locked, it is dropped and not regained.
340  *
341  * Returns true if compaction should abort due to fatal signal pending, or
342  *		async compaction due to need_resched()
343  * Returns false when compaction can continue (sync compaction might have
344  *		scheduled)
345  */
compact_unlock_should_abort(spinlock_t * lock,unsigned long flags,bool * locked,struct compact_control * cc)346 static bool compact_unlock_should_abort(spinlock_t *lock,
347 		unsigned long flags, bool *locked, struct compact_control *cc)
348 {
349 	if (*locked) {
350 		spin_unlock_irqrestore(lock, flags);
351 		*locked = false;
352 	}
353 
354 	if (fatal_signal_pending(current)) {
355 		cc->contended = COMPACT_CONTENDED_SCHED;
356 		return true;
357 	}
358 
359 	if (need_resched()) {
360 		if (cc->mode == MIGRATE_ASYNC) {
361 			cc->contended = COMPACT_CONTENDED_SCHED;
362 			return true;
363 		}
364 		cond_resched();
365 	}
366 
367 	return false;
368 }
369 
370 /*
371  * Aside from avoiding lock contention, compaction also periodically checks
372  * need_resched() and either schedules in sync compaction or aborts async
373  * compaction. This is similar to what compact_unlock_should_abort() does, but
374  * is used where no lock is concerned.
375  *
376  * Returns false when no scheduling was needed, or sync compaction scheduled.
377  * Returns true when async compaction should abort.
378  */
compact_should_abort(struct compact_control * cc)379 static inline bool compact_should_abort(struct compact_control *cc)
380 {
381 	/* async compaction aborts if contended */
382 	if (need_resched()) {
383 		if (cc->mode == MIGRATE_ASYNC) {
384 			cc->contended = COMPACT_CONTENDED_SCHED;
385 			return true;
386 		}
387 
388 		cond_resched();
389 	}
390 
391 	return false;
392 }
393 
394 /*
395  * Isolate free pages onto a private freelist. If @strict is true, will abort
396  * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
397  * (even though it may still end up isolating some pages).
398  */
isolate_freepages_block(struct compact_control * cc,unsigned long * start_pfn,unsigned long end_pfn,struct list_head * freelist,bool strict)399 static unsigned long isolate_freepages_block(struct compact_control *cc,
400 				unsigned long *start_pfn,
401 				unsigned long end_pfn,
402 				struct list_head *freelist,
403 				bool strict)
404 {
405 	int nr_scanned = 0, total_isolated = 0;
406 	struct page *cursor, *valid_page = NULL;
407 	unsigned long flags = 0;
408 	bool locked = false;
409 	unsigned long blockpfn = *start_pfn;
410 
411 	cursor = pfn_to_page(blockpfn);
412 
413 	/* Isolate free pages. */
414 	for (; blockpfn < end_pfn; blockpfn++, cursor++) {
415 		int isolated, i;
416 		struct page *page = cursor;
417 
418 		/*
419 		 * Periodically drop the lock (if held) regardless of its
420 		 * contention, to give chance to IRQs. Abort if fatal signal
421 		 * pending or async compaction detects need_resched()
422 		 */
423 		if (!(blockpfn % SWAP_CLUSTER_MAX)
424 		    && compact_unlock_should_abort(&cc->zone->lock, flags,
425 								&locked, cc))
426 			break;
427 
428 		nr_scanned++;
429 		if (!pfn_valid_within(blockpfn))
430 			goto isolate_fail;
431 
432 		if (!valid_page)
433 			valid_page = page;
434 		if (!PageBuddy(page))
435 			goto isolate_fail;
436 
437 		/*
438 		 * If we already hold the lock, we can skip some rechecking.
439 		 * Note that if we hold the lock now, checked_pageblock was
440 		 * already set in some previous iteration (or strict is true),
441 		 * so it is correct to skip the suitable migration target
442 		 * recheck as well.
443 		 */
444 		if (!locked) {
445 			/*
446 			 * The zone lock must be held to isolate freepages.
447 			 * Unfortunately this is a very coarse lock and can be
448 			 * heavily contended if there are parallel allocations
449 			 * or parallel compactions. For async compaction do not
450 			 * spin on the lock and we acquire the lock as late as
451 			 * possible.
452 			 */
453 			locked = compact_trylock_irqsave(&cc->zone->lock,
454 								&flags, cc);
455 			if (!locked)
456 				break;
457 
458 			/* Recheck this is a buddy page under lock */
459 			if (!PageBuddy(page))
460 				goto isolate_fail;
461 		}
462 
463 		/* Found a free page, break it into order-0 pages */
464 		isolated = split_free_page(page);
465 		total_isolated += isolated;
466 		for (i = 0; i < isolated; i++) {
467 			list_add(&page->lru, freelist);
468 			page++;
469 		}
470 
471 		/* If a page was split, advance to the end of it */
472 		if (isolated) {
473 			cc->nr_freepages += isolated;
474 			if (!strict &&
475 				cc->nr_migratepages <= cc->nr_freepages) {
476 				blockpfn += isolated;
477 				break;
478 			}
479 
480 			blockpfn += isolated - 1;
481 			cursor += isolated - 1;
482 			continue;
483 		}
484 
485 isolate_fail:
486 		if (strict)
487 			break;
488 		else
489 			continue;
490 
491 	}
492 
493 	trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
494 					nr_scanned, total_isolated);
495 
496 	/* Record how far we have got within the block */
497 	*start_pfn = blockpfn;
498 
499 	/*
500 	 * If strict isolation is requested by CMA then check that all the
501 	 * pages requested were isolated. If there were any failures, 0 is
502 	 * returned and CMA will fail.
503 	 */
504 	if (strict && blockpfn < end_pfn)
505 		total_isolated = 0;
506 
507 	if (locked)
508 		spin_unlock_irqrestore(&cc->zone->lock, flags);
509 
510 	/* Update the pageblock-skip if the whole pageblock was scanned */
511 	if (blockpfn == end_pfn)
512 		update_pageblock_skip(cc, valid_page, total_isolated, false);
513 
514 	count_compact_events(COMPACTFREE_SCANNED, nr_scanned);
515 	if (total_isolated)
516 		count_compact_events(COMPACTISOLATED, total_isolated);
517 	return total_isolated;
518 }
519 
520 /**
521  * isolate_freepages_range() - isolate free pages.
522  * @start_pfn: The first PFN to start isolating.
523  * @end_pfn:   The one-past-last PFN.
524  *
525  * Non-free pages, invalid PFNs, or zone boundaries within the
526  * [start_pfn, end_pfn) range are considered errors, cause function to
527  * undo its actions and return zero.
528  *
529  * Otherwise, function returns one-past-the-last PFN of isolated page
530  * (which may be greater then end_pfn if end fell in a middle of
531  * a free page).
532  */
533 unsigned long
isolate_freepages_range(struct compact_control * cc,unsigned long start_pfn,unsigned long end_pfn)534 isolate_freepages_range(struct compact_control *cc,
535 			unsigned long start_pfn, unsigned long end_pfn)
536 {
537 	unsigned long isolated, pfn, block_end_pfn;
538 	LIST_HEAD(freelist);
539 
540 	pfn = start_pfn;
541 	block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
542 
543 	for (; pfn < end_pfn; pfn += isolated,
544 				block_end_pfn += pageblock_nr_pages) {
545 		/* Protect pfn from changing by isolate_freepages_block */
546 		unsigned long isolate_start_pfn = pfn;
547 
548 		block_end_pfn = min(block_end_pfn, end_pfn);
549 
550 		/*
551 		 * pfn could pass the block_end_pfn if isolated freepage
552 		 * is more than pageblock order. In this case, we adjust
553 		 * scanning range to right one.
554 		 */
555 		if (pfn >= block_end_pfn) {
556 			block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
557 			block_end_pfn = min(block_end_pfn, end_pfn);
558 		}
559 
560 		if (!pageblock_pfn_to_page(pfn, block_end_pfn, cc->zone))
561 			break;
562 
563 		isolated = isolate_freepages_block(cc, &isolate_start_pfn,
564 						block_end_pfn, &freelist, true);
565 
566 		/*
567 		 * In strict mode, isolate_freepages_block() returns 0 if
568 		 * there are any holes in the block (ie. invalid PFNs or
569 		 * non-free pages).
570 		 */
571 		if (!isolated)
572 			break;
573 
574 		/*
575 		 * If we managed to isolate pages, it is always (1 << n) *
576 		 * pageblock_nr_pages for some non-negative n.  (Max order
577 		 * page may span two pageblocks).
578 		 */
579 	}
580 
581 	/* split_free_page does not map the pages */
582 	map_pages(&freelist);
583 
584 	if (pfn < end_pfn) {
585 		/* Loop terminated early, cleanup. */
586 		release_freepages(&freelist);
587 		return 0;
588 	}
589 
590 	/* We don't use freelists for anything. */
591 	return pfn;
592 }
593 
594 /* Update the number of anon and file isolated pages in the zone */
acct_isolated(struct zone * zone,struct compact_control * cc)595 static void acct_isolated(struct zone *zone, struct compact_control *cc)
596 {
597 	struct page *page;
598 	unsigned int count[2] = { 0, };
599 
600 	if (list_empty(&cc->migratepages))
601 		return;
602 
603 	list_for_each_entry(page, &cc->migratepages, lru)
604 		count[!!page_is_file_cache(page)]++;
605 
606 	mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
607 	mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
608 }
609 
610 /* Similar to reclaim, but different enough that they don't share logic */
too_many_isolated(struct zone * zone)611 static bool too_many_isolated(struct zone *zone)
612 {
613 	unsigned long active, inactive, isolated;
614 
615 	inactive = zone_page_state(zone, NR_INACTIVE_FILE) +
616 					zone_page_state(zone, NR_INACTIVE_ANON);
617 	active = zone_page_state(zone, NR_ACTIVE_FILE) +
618 					zone_page_state(zone, NR_ACTIVE_ANON);
619 	isolated = zone_page_state(zone, NR_ISOLATED_FILE) +
620 					zone_page_state(zone, NR_ISOLATED_ANON);
621 
622 	return isolated > (inactive + active) / 2;
623 }
624 
625 /**
626  * isolate_migratepages_block() - isolate all migrate-able pages within
627  *				  a single pageblock
628  * @cc:		Compaction control structure.
629  * @low_pfn:	The first PFN to isolate
630  * @end_pfn:	The one-past-the-last PFN to isolate, within same pageblock
631  * @isolate_mode: Isolation mode to be used.
632  *
633  * Isolate all pages that can be migrated from the range specified by
634  * [low_pfn, end_pfn). The range is expected to be within same pageblock.
635  * Returns zero if there is a fatal signal pending, otherwise PFN of the
636  * first page that was not scanned (which may be both less, equal to or more
637  * than end_pfn).
638  *
639  * The pages are isolated on cc->migratepages list (not required to be empty),
640  * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field
641  * is neither read nor updated.
642  */
643 static unsigned long
isolate_migratepages_block(struct compact_control * cc,unsigned long low_pfn,unsigned long end_pfn,isolate_mode_t isolate_mode)644 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
645 			unsigned long end_pfn, isolate_mode_t isolate_mode)
646 {
647 	struct zone *zone = cc->zone;
648 	unsigned long nr_scanned = 0, nr_isolated = 0;
649 	struct list_head *migratelist = &cc->migratepages;
650 	struct lruvec *lruvec;
651 	unsigned long flags = 0;
652 	bool locked = false;
653 	struct page *page = NULL, *valid_page = NULL;
654 	unsigned long start_pfn = low_pfn;
655 
656 	/*
657 	 * Ensure that there are not too many pages isolated from the LRU
658 	 * list by either parallel reclaimers or compaction. If there are,
659 	 * delay for some time until fewer pages are isolated
660 	 */
661 	while (unlikely(too_many_isolated(zone))) {
662 		/* async migration should just abort */
663 		if (cc->mode == MIGRATE_ASYNC)
664 			return 0;
665 
666 		congestion_wait(BLK_RW_ASYNC, HZ/10);
667 
668 		if (fatal_signal_pending(current))
669 			return 0;
670 	}
671 
672 	if (compact_should_abort(cc))
673 		return 0;
674 
675 	/* Time to isolate some pages for migration */
676 	for (; low_pfn < end_pfn; low_pfn++) {
677 		/*
678 		 * Periodically drop the lock (if held) regardless of its
679 		 * contention, to give chance to IRQs. Abort async compaction
680 		 * if contended.
681 		 */
682 		if (!(low_pfn % SWAP_CLUSTER_MAX)
683 		    && compact_unlock_should_abort(&zone->lru_lock, flags,
684 								&locked, cc))
685 			break;
686 
687 		if (!pfn_valid_within(low_pfn))
688 			continue;
689 		nr_scanned++;
690 
691 		page = pfn_to_page(low_pfn);
692 
693 		if (!valid_page)
694 			valid_page = page;
695 
696 		/*
697 		 * Skip if free. We read page order here without zone lock
698 		 * which is generally unsafe, but the race window is small and
699 		 * the worst thing that can happen is that we skip some
700 		 * potential isolation targets.
701 		 */
702 		if (PageBuddy(page)) {
703 			unsigned long freepage_order = page_order_unsafe(page);
704 
705 			/*
706 			 * Without lock, we cannot be sure that what we got is
707 			 * a valid page order. Consider only values in the
708 			 * valid order range to prevent low_pfn overflow.
709 			 */
710 			if (freepage_order > 0 && freepage_order < MAX_ORDER)
711 				low_pfn += (1UL << freepage_order) - 1;
712 			continue;
713 		}
714 
715 		/*
716 		 * Check may be lockless but that's ok as we recheck later.
717 		 * It's possible to migrate LRU pages and balloon pages
718 		 * Skip any other type of page
719 		 */
720 		if (!PageLRU(page)) {
721 			if (unlikely(balloon_page_movable(page))) {
722 				if (balloon_page_isolate(page)) {
723 					/* Successfully isolated */
724 					goto isolate_success;
725 				}
726 			}
727 			continue;
728 		}
729 
730 		/*
731 		 * PageLRU is set. lru_lock normally excludes isolation
732 		 * splitting and collapsing (collapsing has already happened
733 		 * if PageLRU is set) but the lock is not necessarily taken
734 		 * here and it is wasteful to take it just to check transhuge.
735 		 * Check TransHuge without lock and skip the whole pageblock if
736 		 * it's either a transhuge or hugetlbfs page, as calling
737 		 * compound_order() without preventing THP from splitting the
738 		 * page underneath us may return surprising results.
739 		 */
740 		if (PageTransHuge(page)) {
741 			if (!locked)
742 				low_pfn = ALIGN(low_pfn + 1,
743 						pageblock_nr_pages) - 1;
744 			else
745 				low_pfn += (1 << compound_order(page)) - 1;
746 
747 			continue;
748 		}
749 
750 		/*
751 		 * Migration will fail if an anonymous page is pinned in memory,
752 		 * so avoid taking lru_lock and isolating it unnecessarily in an
753 		 * admittedly racy check.
754 		 */
755 		if (!page_mapping(page) &&
756 		    page_count(page) > page_mapcount(page))
757 			continue;
758 
759 		/* If we already hold the lock, we can skip some rechecking */
760 		if (!locked) {
761 			locked = compact_trylock_irqsave(&zone->lru_lock,
762 								&flags, cc);
763 			if (!locked)
764 				break;
765 
766 			/* Recheck PageLRU and PageTransHuge under lock */
767 			if (!PageLRU(page))
768 				continue;
769 			if (PageTransHuge(page)) {
770 				low_pfn += (1 << compound_order(page)) - 1;
771 				continue;
772 			}
773 		}
774 
775 		lruvec = mem_cgroup_page_lruvec(page, zone);
776 
777 		/* Try isolate the page */
778 		if (__isolate_lru_page(page, isolate_mode) != 0)
779 			continue;
780 
781 		VM_BUG_ON_PAGE(PageTransCompound(page), page);
782 
783 		/* Successfully isolated */
784 		del_page_from_lru_list(page, lruvec, page_lru(page));
785 
786 isolate_success:
787 		list_add(&page->lru, migratelist);
788 		cc->nr_migratepages++;
789 		nr_isolated++;
790 
791 		/* Avoid isolating too much */
792 		if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) {
793 			++low_pfn;
794 			break;
795 		}
796 	}
797 
798 	/*
799 	 * The PageBuddy() check could have potentially brought us outside
800 	 * the range to be scanned.
801 	 */
802 	if (unlikely(low_pfn > end_pfn))
803 		low_pfn = end_pfn;
804 
805 	if (locked)
806 		spin_unlock_irqrestore(&zone->lru_lock, flags);
807 
808 	/*
809 	 * Update the pageblock-skip information and cached scanner pfn,
810 	 * if the whole pageblock was scanned without isolating any page.
811 	 */
812 	if (low_pfn == end_pfn)
813 		update_pageblock_skip(cc, valid_page, nr_isolated, true);
814 
815 	trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
816 						nr_scanned, nr_isolated);
817 
818 	count_compact_events(COMPACTMIGRATE_SCANNED, nr_scanned);
819 	if (nr_isolated)
820 		count_compact_events(COMPACTISOLATED, nr_isolated);
821 
822 	return low_pfn;
823 }
824 
825 /**
826  * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
827  * @cc:        Compaction control structure.
828  * @start_pfn: The first PFN to start isolating.
829  * @end_pfn:   The one-past-last PFN.
830  *
831  * Returns zero if isolation fails fatally due to e.g. pending signal.
832  * Otherwise, function returns one-past-the-last PFN of isolated page
833  * (which may be greater than end_pfn if end fell in a middle of a THP page).
834  */
835 unsigned long
isolate_migratepages_range(struct compact_control * cc,unsigned long start_pfn,unsigned long end_pfn)836 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
837 							unsigned long end_pfn)
838 {
839 	unsigned long pfn, block_end_pfn;
840 
841 	/* Scan block by block. First and last block may be incomplete */
842 	pfn = start_pfn;
843 	block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
844 
845 	for (; pfn < end_pfn; pfn = block_end_pfn,
846 				block_end_pfn += pageblock_nr_pages) {
847 
848 		block_end_pfn = min(block_end_pfn, end_pfn);
849 
850 		if (!pageblock_pfn_to_page(pfn, block_end_pfn, cc->zone))
851 			continue;
852 
853 		pfn = isolate_migratepages_block(cc, pfn, block_end_pfn,
854 							ISOLATE_UNEVICTABLE);
855 
856 		if (!pfn)
857 			break;
858 
859 		if (cc->nr_migratepages == COMPACT_CLUSTER_MAX)
860 			break;
861 	}
862 	acct_isolated(cc->zone, cc);
863 
864 	return pfn;
865 }
866 
867 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
868 #ifdef CONFIG_COMPACTION
869 
870 /* Returns true if the page is within a block suitable for migration to */
suitable_migration_target(struct page * page)871 static bool suitable_migration_target(struct page *page)
872 {
873 	/* If the page is a large free page, then disallow migration */
874 	if (PageBuddy(page)) {
875 		/*
876 		 * We are checking page_order without zone->lock taken. But
877 		 * the only small danger is that we skip a potentially suitable
878 		 * pageblock, so it's not worth to check order for valid range.
879 		 */
880 		if (page_order_unsafe(page) >= pageblock_order)
881 			return false;
882 	}
883 
884 	/* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
885 	if (migrate_async_suitable(get_pageblock_migratetype(page)))
886 		return true;
887 
888 	/* Otherwise skip the block */
889 	return false;
890 }
891 
892 /*
893  * Based on information in the current compact_control, find blocks
894  * suitable for isolating free pages from and then isolate them.
895  */
isolate_freepages(struct compact_control * cc)896 static void isolate_freepages(struct compact_control *cc)
897 {
898 	struct zone *zone = cc->zone;
899 	struct page *page;
900 	unsigned long block_start_pfn;	/* start of current pageblock */
901 	unsigned long isolate_start_pfn; /* exact pfn we start at */
902 	unsigned long block_end_pfn;	/* end of current pageblock */
903 	unsigned long low_pfn;	     /* lowest pfn scanner is able to scan */
904 	struct list_head *freelist = &cc->freepages;
905 
906 	/*
907 	 * Initialise the free scanner. The starting point is where we last
908 	 * successfully isolated from, zone-cached value, or the end of the
909 	 * zone when isolating for the first time. For looping we also need
910 	 * this pfn aligned down to the pageblock boundary, because we do
911 	 * block_start_pfn -= pageblock_nr_pages in the for loop.
912 	 * For ending point, take care when isolating in last pageblock of a
913 	 * a zone which ends in the middle of a pageblock.
914 	 * The low boundary is the end of the pageblock the migration scanner
915 	 * is using.
916 	 */
917 	isolate_start_pfn = cc->free_pfn;
918 	block_start_pfn = cc->free_pfn & ~(pageblock_nr_pages-1);
919 	block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
920 						zone_end_pfn(zone));
921 	low_pfn = ALIGN(cc->migrate_pfn + 1, pageblock_nr_pages);
922 
923 	/*
924 	 * Isolate free pages until enough are available to migrate the
925 	 * pages on cc->migratepages. We stop searching if the migrate
926 	 * and free page scanners meet or enough free pages are isolated.
927 	 */
928 	for (; block_start_pfn >= low_pfn &&
929 			cc->nr_migratepages > cc->nr_freepages;
930 				block_end_pfn = block_start_pfn,
931 				block_start_pfn -= pageblock_nr_pages,
932 				isolate_start_pfn = block_start_pfn) {
933 
934 		/*
935 		 * This can iterate a massively long zone without finding any
936 		 * suitable migration targets, so periodically check if we need
937 		 * to schedule, or even abort async compaction.
938 		 */
939 		if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
940 						&& compact_should_abort(cc))
941 			break;
942 
943 		page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
944 									zone);
945 		if (!page)
946 			continue;
947 
948 		/* Check the block is suitable for migration */
949 		if (!suitable_migration_target(page))
950 			continue;
951 
952 		/* If isolation recently failed, do not retry */
953 		if (!isolation_suitable(cc, page))
954 			continue;
955 
956 		/* Found a block suitable for isolating free pages from. */
957 		isolate_freepages_block(cc, &isolate_start_pfn,
958 					block_end_pfn, freelist, false);
959 
960 		/*
961 		 * Remember where the free scanner should restart next time,
962 		 * which is where isolate_freepages_block() left off.
963 		 * But if it scanned the whole pageblock, isolate_start_pfn
964 		 * now points at block_end_pfn, which is the start of the next
965 		 * pageblock.
966 		 * In that case we will however want to restart at the start
967 		 * of the previous pageblock.
968 		 */
969 		cc->free_pfn = (isolate_start_pfn < block_end_pfn) ?
970 				isolate_start_pfn :
971 				block_start_pfn - pageblock_nr_pages;
972 
973 		/*
974 		 * isolate_freepages_block() might have aborted due to async
975 		 * compaction being contended
976 		 */
977 		if (cc->contended)
978 			break;
979 	}
980 
981 	/* split_free_page does not map the pages */
982 	map_pages(freelist);
983 
984 	/*
985 	 * If we crossed the migrate scanner, we want to keep it that way
986 	 * so that compact_finished() may detect this
987 	 */
988 	if (block_start_pfn < low_pfn)
989 		cc->free_pfn = cc->migrate_pfn;
990 }
991 
992 /*
993  * This is a migrate-callback that "allocates" freepages by taking pages
994  * from the isolated freelists in the block we are migrating to.
995  */
compaction_alloc(struct page * migratepage,unsigned long data,int ** result)996 static struct page *compaction_alloc(struct page *migratepage,
997 					unsigned long data,
998 					int **result)
999 {
1000 	struct compact_control *cc = (struct compact_control *)data;
1001 	struct page *freepage;
1002 
1003 	/*
1004 	 * Isolate free pages if necessary, and if we are not aborting due to
1005 	 * contention.
1006 	 */
1007 	if (list_empty(&cc->freepages)) {
1008 		if (!cc->contended)
1009 			isolate_freepages(cc);
1010 
1011 		if (list_empty(&cc->freepages))
1012 			return NULL;
1013 	}
1014 
1015 	freepage = list_entry(cc->freepages.next, struct page, lru);
1016 	list_del(&freepage->lru);
1017 	cc->nr_freepages--;
1018 
1019 	return freepage;
1020 }
1021 
1022 /*
1023  * This is a migrate-callback that "frees" freepages back to the isolated
1024  * freelist.  All pages on the freelist are from the same zone, so there is no
1025  * special handling needed for NUMA.
1026  */
compaction_free(struct page * page,unsigned long data)1027 static void compaction_free(struct page *page, unsigned long data)
1028 {
1029 	struct compact_control *cc = (struct compact_control *)data;
1030 
1031 	list_add(&page->lru, &cc->freepages);
1032 	cc->nr_freepages++;
1033 }
1034 
1035 /* possible outcome of isolate_migratepages */
1036 typedef enum {
1037 	ISOLATE_ABORT,		/* Abort compaction now */
1038 	ISOLATE_NONE,		/* No pages isolated, continue scanning */
1039 	ISOLATE_SUCCESS,	/* Pages isolated, migrate */
1040 } isolate_migrate_t;
1041 
1042 /*
1043  * Allow userspace to control policy on scanning the unevictable LRU for
1044  * compactable pages.
1045  */
1046 int sysctl_compact_unevictable_allowed __read_mostly = 1;
1047 
1048 /*
1049  * Isolate all pages that can be migrated from the first suitable block,
1050  * starting at the block pointed to by the migrate scanner pfn within
1051  * compact_control.
1052  */
isolate_migratepages(struct zone * zone,struct compact_control * cc)1053 static isolate_migrate_t isolate_migratepages(struct zone *zone,
1054 					struct compact_control *cc)
1055 {
1056 	unsigned long low_pfn, end_pfn;
1057 	struct page *page;
1058 	const isolate_mode_t isolate_mode =
1059 		(sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1060 		(cc->mode == MIGRATE_ASYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1061 
1062 	/*
1063 	 * Start at where we last stopped, or beginning of the zone as
1064 	 * initialized by compact_zone()
1065 	 */
1066 	low_pfn = cc->migrate_pfn;
1067 
1068 	/* Only scan within a pageblock boundary */
1069 	end_pfn = ALIGN(low_pfn + 1, pageblock_nr_pages);
1070 
1071 	/*
1072 	 * Iterate over whole pageblocks until we find the first suitable.
1073 	 * Do not cross the free scanner.
1074 	 */
1075 	for (; end_pfn <= cc->free_pfn;
1076 			low_pfn = end_pfn, end_pfn += pageblock_nr_pages) {
1077 
1078 		/*
1079 		 * This can potentially iterate a massively long zone with
1080 		 * many pageblocks unsuitable, so periodically check if we
1081 		 * need to schedule, or even abort async compaction.
1082 		 */
1083 		if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
1084 						&& compact_should_abort(cc))
1085 			break;
1086 
1087 		page = pageblock_pfn_to_page(low_pfn, end_pfn, zone);
1088 		if (!page)
1089 			continue;
1090 
1091 		/* If isolation recently failed, do not retry */
1092 		if (!isolation_suitable(cc, page))
1093 			continue;
1094 
1095 		/*
1096 		 * For async compaction, also only scan in MOVABLE blocks.
1097 		 * Async compaction is optimistic to see if the minimum amount
1098 		 * of work satisfies the allocation.
1099 		 */
1100 		if (cc->mode == MIGRATE_ASYNC &&
1101 		    !migrate_async_suitable(get_pageblock_migratetype(page)))
1102 			continue;
1103 
1104 		/* Perform the isolation */
1105 		low_pfn = isolate_migratepages_block(cc, low_pfn, end_pfn,
1106 								isolate_mode);
1107 
1108 		if (!low_pfn || cc->contended) {
1109 			acct_isolated(zone, cc);
1110 			return ISOLATE_ABORT;
1111 		}
1112 
1113 		/*
1114 		 * Either we isolated something and proceed with migration. Or
1115 		 * we failed and compact_zone should decide if we should
1116 		 * continue or not.
1117 		 */
1118 		break;
1119 	}
1120 
1121 	acct_isolated(zone, cc);
1122 	/*
1123 	 * Record where migration scanner will be restarted. If we end up in
1124 	 * the same pageblock as the free scanner, make the scanners fully
1125 	 * meet so that compact_finished() terminates compaction.
1126 	 */
1127 	cc->migrate_pfn = (end_pfn <= cc->free_pfn) ? low_pfn : cc->free_pfn;
1128 
1129 	return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1130 }
1131 
__compact_finished(struct zone * zone,struct compact_control * cc,const int migratetype)1132 static int __compact_finished(struct zone *zone, struct compact_control *cc,
1133 			    const int migratetype)
1134 {
1135 	unsigned int order;
1136 	unsigned long watermark;
1137 
1138 	if (cc->contended || fatal_signal_pending(current))
1139 		return COMPACT_PARTIAL;
1140 
1141 	/* Compaction run completes if the migrate and free scanner meet */
1142 	if (cc->free_pfn <= cc->migrate_pfn) {
1143 		/* Let the next compaction start anew. */
1144 		zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
1145 		zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
1146 		zone->compact_cached_free_pfn = zone_end_pfn(zone);
1147 
1148 		/*
1149 		 * Mark that the PG_migrate_skip information should be cleared
1150 		 * by kswapd when it goes to sleep. kswapd does not set the
1151 		 * flag itself as the decision to be clear should be directly
1152 		 * based on an allocation request.
1153 		 */
1154 		if (!current_is_kswapd())
1155 			zone->compact_blockskip_flush = true;
1156 
1157 		return COMPACT_COMPLETE;
1158 	}
1159 
1160 	/*
1161 	 * order == -1 is expected when compacting via
1162 	 * /proc/sys/vm/compact_memory
1163 	 */
1164 	if (cc->order == -1)
1165 		return COMPACT_CONTINUE;
1166 
1167 	/* Compaction run is not finished if the watermark is not met */
1168 	watermark = low_wmark_pages(zone);
1169 
1170 	if (!zone_watermark_ok(zone, cc->order, watermark, cc->classzone_idx,
1171 							cc->alloc_flags))
1172 		return COMPACT_CONTINUE;
1173 
1174 	/* Direct compactor: Is a suitable page free? */
1175 	for (order = cc->order; order < MAX_ORDER; order++) {
1176 		struct free_area *area = &zone->free_area[order];
1177 		bool can_steal;
1178 
1179 		/* Job done if page is free of the right migratetype */
1180 		if (!list_empty(&area->free_list[migratetype]))
1181 			return COMPACT_PARTIAL;
1182 
1183 #ifdef CONFIG_CMA
1184 		/* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
1185 		if (migratetype == MIGRATE_MOVABLE &&
1186 			!list_empty(&area->free_list[MIGRATE_CMA]))
1187 			return COMPACT_PARTIAL;
1188 #endif
1189 		/*
1190 		 * Job done if allocation would steal freepages from
1191 		 * other migratetype buddy lists.
1192 		 */
1193 		if (find_suitable_fallback(area, order, migratetype,
1194 						true, &can_steal) != -1)
1195 			return COMPACT_PARTIAL;
1196 	}
1197 
1198 	return COMPACT_NO_SUITABLE_PAGE;
1199 }
1200 
compact_finished(struct zone * zone,struct compact_control * cc,const int migratetype)1201 static int compact_finished(struct zone *zone, struct compact_control *cc,
1202 			    const int migratetype)
1203 {
1204 	int ret;
1205 
1206 	ret = __compact_finished(zone, cc, migratetype);
1207 	trace_mm_compaction_finished(zone, cc->order, ret);
1208 	if (ret == COMPACT_NO_SUITABLE_PAGE)
1209 		ret = COMPACT_CONTINUE;
1210 
1211 	return ret;
1212 }
1213 
1214 /*
1215  * compaction_suitable: Is this suitable to run compaction on this zone now?
1216  * Returns
1217  *   COMPACT_SKIPPED  - If there are too few free pages for compaction
1218  *   COMPACT_PARTIAL  - If the allocation would succeed without compaction
1219  *   COMPACT_CONTINUE - If compaction should run now
1220  */
__compaction_suitable(struct zone * zone,int order,int alloc_flags,int classzone_idx)1221 static unsigned long __compaction_suitable(struct zone *zone, int order,
1222 					int alloc_flags, int classzone_idx)
1223 {
1224 	int fragindex;
1225 	unsigned long watermark;
1226 
1227 	/*
1228 	 * order == -1 is expected when compacting via
1229 	 * /proc/sys/vm/compact_memory
1230 	 */
1231 	if (order == -1)
1232 		return COMPACT_CONTINUE;
1233 
1234 	watermark = low_wmark_pages(zone);
1235 	/*
1236 	 * If watermarks for high-order allocation are already met, there
1237 	 * should be no need for compaction at all.
1238 	 */
1239 	if (zone_watermark_ok(zone, order, watermark, classzone_idx,
1240 								alloc_flags))
1241 		return COMPACT_PARTIAL;
1242 
1243 	/*
1244 	 * Watermarks for order-0 must be met for compaction. Note the 2UL.
1245 	 * This is because during migration, copies of pages need to be
1246 	 * allocated and for a short time, the footprint is higher
1247 	 */
1248 	watermark += (2UL << order);
1249 	if (!zone_watermark_ok(zone, 0, watermark, classzone_idx, alloc_flags))
1250 		return COMPACT_SKIPPED;
1251 
1252 	/*
1253 	 * fragmentation index determines if allocation failures are due to
1254 	 * low memory or external fragmentation
1255 	 *
1256 	 * index of -1000 would imply allocations might succeed depending on
1257 	 * watermarks, but we already failed the high-order watermark check
1258 	 * index towards 0 implies failure is due to lack of memory
1259 	 * index towards 1000 implies failure is due to fragmentation
1260 	 *
1261 	 * Only compact if a failure would be due to fragmentation.
1262 	 */
1263 	fragindex = fragmentation_index(zone, order);
1264 	if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
1265 		return COMPACT_NOT_SUITABLE_ZONE;
1266 
1267 	return COMPACT_CONTINUE;
1268 }
1269 
compaction_suitable(struct zone * zone,int order,int alloc_flags,int classzone_idx)1270 unsigned long compaction_suitable(struct zone *zone, int order,
1271 					int alloc_flags, int classzone_idx)
1272 {
1273 	unsigned long ret;
1274 
1275 	ret = __compaction_suitable(zone, order, alloc_flags, classzone_idx);
1276 	trace_mm_compaction_suitable(zone, order, ret);
1277 	if (ret == COMPACT_NOT_SUITABLE_ZONE)
1278 		ret = COMPACT_SKIPPED;
1279 
1280 	return ret;
1281 }
1282 
compact_zone(struct zone * zone,struct compact_control * cc)1283 static int compact_zone(struct zone *zone, struct compact_control *cc)
1284 {
1285 	int ret;
1286 	unsigned long start_pfn = zone->zone_start_pfn;
1287 	unsigned long end_pfn = zone_end_pfn(zone);
1288 	const int migratetype = gfpflags_to_migratetype(cc->gfp_mask);
1289 	const bool sync = cc->mode != MIGRATE_ASYNC;
1290 	unsigned long last_migrated_pfn = 0;
1291 
1292 	ret = compaction_suitable(zone, cc->order, cc->alloc_flags,
1293 							cc->classzone_idx);
1294 	switch (ret) {
1295 	case COMPACT_PARTIAL:
1296 	case COMPACT_SKIPPED:
1297 		/* Compaction is likely to fail */
1298 		return ret;
1299 	case COMPACT_CONTINUE:
1300 		/* Fall through to compaction */
1301 		;
1302 	}
1303 
1304 	/*
1305 	 * Clear pageblock skip if there were failures recently and compaction
1306 	 * is about to be retried after being deferred. kswapd does not do
1307 	 * this reset as it'll reset the cached information when going to sleep.
1308 	 */
1309 	if (compaction_restarting(zone, cc->order) && !current_is_kswapd())
1310 		__reset_isolation_suitable(zone);
1311 
1312 	/*
1313 	 * Setup to move all movable pages to the end of the zone. Used cached
1314 	 * information on where the scanners should start but check that it
1315 	 * is initialised by ensuring the values are within zone boundaries.
1316 	 */
1317 	cc->migrate_pfn = zone->compact_cached_migrate_pfn[sync];
1318 	cc->free_pfn = zone->compact_cached_free_pfn;
1319 	if (cc->free_pfn < start_pfn || cc->free_pfn > end_pfn) {
1320 		cc->free_pfn = end_pfn & ~(pageblock_nr_pages-1);
1321 		zone->compact_cached_free_pfn = cc->free_pfn;
1322 	}
1323 	if (cc->migrate_pfn < start_pfn || cc->migrate_pfn > end_pfn) {
1324 		cc->migrate_pfn = start_pfn;
1325 		zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
1326 		zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
1327 	}
1328 
1329 	trace_mm_compaction_begin(start_pfn, cc->migrate_pfn,
1330 				cc->free_pfn, end_pfn, sync);
1331 
1332 	migrate_prep_local();
1333 
1334 	while ((ret = compact_finished(zone, cc, migratetype)) ==
1335 						COMPACT_CONTINUE) {
1336 		int err;
1337 		unsigned long isolate_start_pfn = cc->migrate_pfn;
1338 
1339 		switch (isolate_migratepages(zone, cc)) {
1340 		case ISOLATE_ABORT:
1341 			ret = COMPACT_PARTIAL;
1342 			putback_movable_pages(&cc->migratepages);
1343 			cc->nr_migratepages = 0;
1344 			goto out;
1345 		case ISOLATE_NONE:
1346 			/*
1347 			 * We haven't isolated and migrated anything, but
1348 			 * there might still be unflushed migrations from
1349 			 * previous cc->order aligned block.
1350 			 */
1351 			goto check_drain;
1352 		case ISOLATE_SUCCESS:
1353 			;
1354 		}
1355 
1356 		err = migrate_pages(&cc->migratepages, compaction_alloc,
1357 				compaction_free, (unsigned long)cc, cc->mode,
1358 				MR_COMPACTION);
1359 
1360 		trace_mm_compaction_migratepages(cc->nr_migratepages, err,
1361 							&cc->migratepages);
1362 
1363 		/* All pages were either migrated or will be released */
1364 		cc->nr_migratepages = 0;
1365 		if (err) {
1366 			putback_movable_pages(&cc->migratepages);
1367 			/*
1368 			 * migrate_pages() may return -ENOMEM when scanners meet
1369 			 * and we want compact_finished() to detect it
1370 			 */
1371 			if (err == -ENOMEM && cc->free_pfn > cc->migrate_pfn) {
1372 				ret = COMPACT_PARTIAL;
1373 				goto out;
1374 			}
1375 		}
1376 
1377 		/*
1378 		 * Record where we could have freed pages by migration and not
1379 		 * yet flushed them to buddy allocator. We use the pfn that
1380 		 * isolate_migratepages() started from in this loop iteration
1381 		 * - this is the lowest page that could have been isolated and
1382 		 * then freed by migration.
1383 		 */
1384 		if (!last_migrated_pfn)
1385 			last_migrated_pfn = isolate_start_pfn;
1386 
1387 check_drain:
1388 		/*
1389 		 * Has the migration scanner moved away from the previous
1390 		 * cc->order aligned block where we migrated from? If yes,
1391 		 * flush the pages that were freed, so that they can merge and
1392 		 * compact_finished() can detect immediately if allocation
1393 		 * would succeed.
1394 		 */
1395 		if (cc->order > 0 && last_migrated_pfn) {
1396 			int cpu;
1397 			unsigned long current_block_start =
1398 				cc->migrate_pfn & ~((1UL << cc->order) - 1);
1399 
1400 			if (last_migrated_pfn < current_block_start) {
1401 				cpu = get_cpu();
1402 				lru_add_drain_cpu(cpu);
1403 				drain_local_pages(zone);
1404 				put_cpu();
1405 				/* No more flushing until we migrate again */
1406 				last_migrated_pfn = 0;
1407 			}
1408 		}
1409 
1410 	}
1411 
1412 out:
1413 	/*
1414 	 * Release free pages and update where the free scanner should restart,
1415 	 * so we don't leave any returned pages behind in the next attempt.
1416 	 */
1417 	if (cc->nr_freepages > 0) {
1418 		unsigned long free_pfn = release_freepages(&cc->freepages);
1419 
1420 		cc->nr_freepages = 0;
1421 		VM_BUG_ON(free_pfn == 0);
1422 		/* The cached pfn is always the first in a pageblock */
1423 		free_pfn &= ~(pageblock_nr_pages-1);
1424 		/*
1425 		 * Only go back, not forward. The cached pfn might have been
1426 		 * already reset to zone end in compact_finished()
1427 		 */
1428 		if (free_pfn > zone->compact_cached_free_pfn)
1429 			zone->compact_cached_free_pfn = free_pfn;
1430 	}
1431 
1432 	trace_mm_compaction_end(start_pfn, cc->migrate_pfn,
1433 				cc->free_pfn, end_pfn, sync, ret);
1434 
1435 	return ret;
1436 }
1437 
compact_zone_order(struct zone * zone,int order,gfp_t gfp_mask,enum migrate_mode mode,int * contended,int alloc_flags,int classzone_idx)1438 static unsigned long compact_zone_order(struct zone *zone, int order,
1439 		gfp_t gfp_mask, enum migrate_mode mode, int *contended,
1440 		int alloc_flags, int classzone_idx)
1441 {
1442 	unsigned long ret;
1443 	struct compact_control cc = {
1444 		.nr_freepages = 0,
1445 		.nr_migratepages = 0,
1446 		.order = order,
1447 		.gfp_mask = gfp_mask,
1448 		.zone = zone,
1449 		.mode = mode,
1450 		.alloc_flags = alloc_flags,
1451 		.classzone_idx = classzone_idx,
1452 	};
1453 	INIT_LIST_HEAD(&cc.freepages);
1454 	INIT_LIST_HEAD(&cc.migratepages);
1455 
1456 	ret = compact_zone(zone, &cc);
1457 
1458 	VM_BUG_ON(!list_empty(&cc.freepages));
1459 	VM_BUG_ON(!list_empty(&cc.migratepages));
1460 
1461 	*contended = cc.contended;
1462 	return ret;
1463 }
1464 
1465 int sysctl_extfrag_threshold = 500;
1466 
1467 /**
1468  * try_to_compact_pages - Direct compact to satisfy a high-order allocation
1469  * @gfp_mask: The GFP mask of the current allocation
1470  * @order: The order of the current allocation
1471  * @alloc_flags: The allocation flags of the current allocation
1472  * @ac: The context of current allocation
1473  * @mode: The migration mode for async, sync light, or sync migration
1474  * @contended: Return value that determines if compaction was aborted due to
1475  *	       need_resched() or lock contention
1476  *
1477  * This is the main entry point for direct page compaction.
1478  */
try_to_compact_pages(gfp_t gfp_mask,unsigned int order,int alloc_flags,const struct alloc_context * ac,enum migrate_mode mode,int * contended)1479 unsigned long try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
1480 			int alloc_flags, const struct alloc_context *ac,
1481 			enum migrate_mode mode, int *contended)
1482 {
1483 	int may_enter_fs = gfp_mask & __GFP_FS;
1484 	int may_perform_io = gfp_mask & __GFP_IO;
1485 	struct zoneref *z;
1486 	struct zone *zone;
1487 	int rc = COMPACT_DEFERRED;
1488 	int all_zones_contended = COMPACT_CONTENDED_LOCK; /* init for &= op */
1489 
1490 	*contended = COMPACT_CONTENDED_NONE;
1491 
1492 	/* Check if the GFP flags allow compaction */
1493 	if (!order || !may_enter_fs || !may_perform_io)
1494 		return COMPACT_SKIPPED;
1495 
1496 	trace_mm_compaction_try_to_compact_pages(order, gfp_mask, mode);
1497 
1498 	/* Compact each zone in the list */
1499 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
1500 								ac->nodemask) {
1501 		int status;
1502 		int zone_contended;
1503 
1504 		if (compaction_deferred(zone, order))
1505 			continue;
1506 
1507 		status = compact_zone_order(zone, order, gfp_mask, mode,
1508 				&zone_contended, alloc_flags,
1509 				ac->classzone_idx);
1510 		rc = max(status, rc);
1511 		/*
1512 		 * It takes at least one zone that wasn't lock contended
1513 		 * to clear all_zones_contended.
1514 		 */
1515 		all_zones_contended &= zone_contended;
1516 
1517 		/* If a normal allocation would succeed, stop compacting */
1518 		if (zone_watermark_ok(zone, order, low_wmark_pages(zone),
1519 					ac->classzone_idx, alloc_flags)) {
1520 			/*
1521 			 * We think the allocation will succeed in this zone,
1522 			 * but it is not certain, hence the false. The caller
1523 			 * will repeat this with true if allocation indeed
1524 			 * succeeds in this zone.
1525 			 */
1526 			compaction_defer_reset(zone, order, false);
1527 			/*
1528 			 * It is possible that async compaction aborted due to
1529 			 * need_resched() and the watermarks were ok thanks to
1530 			 * somebody else freeing memory. The allocation can
1531 			 * however still fail so we better signal the
1532 			 * need_resched() contention anyway (this will not
1533 			 * prevent the allocation attempt).
1534 			 */
1535 			if (zone_contended == COMPACT_CONTENDED_SCHED)
1536 				*contended = COMPACT_CONTENDED_SCHED;
1537 
1538 			goto break_loop;
1539 		}
1540 
1541 		if (mode != MIGRATE_ASYNC && status == COMPACT_COMPLETE) {
1542 			/*
1543 			 * We think that allocation won't succeed in this zone
1544 			 * so we defer compaction there. If it ends up
1545 			 * succeeding after all, it will be reset.
1546 			 */
1547 			defer_compaction(zone, order);
1548 		}
1549 
1550 		/*
1551 		 * We might have stopped compacting due to need_resched() in
1552 		 * async compaction, or due to a fatal signal detected. In that
1553 		 * case do not try further zones and signal need_resched()
1554 		 * contention.
1555 		 */
1556 		if ((zone_contended == COMPACT_CONTENDED_SCHED)
1557 					|| fatal_signal_pending(current)) {
1558 			*contended = COMPACT_CONTENDED_SCHED;
1559 			goto break_loop;
1560 		}
1561 
1562 		continue;
1563 break_loop:
1564 		/*
1565 		 * We might not have tried all the zones, so  be conservative
1566 		 * and assume they are not all lock contended.
1567 		 */
1568 		all_zones_contended = 0;
1569 		break;
1570 	}
1571 
1572 	/*
1573 	 * If at least one zone wasn't deferred or skipped, we report if all
1574 	 * zones that were tried were lock contended.
1575 	 */
1576 	if (rc > COMPACT_SKIPPED && all_zones_contended)
1577 		*contended = COMPACT_CONTENDED_LOCK;
1578 
1579 	return rc;
1580 }
1581 
1582 
1583 /* Compact all zones within a node */
__compact_pgdat(pg_data_t * pgdat,struct compact_control * cc)1584 static void __compact_pgdat(pg_data_t *pgdat, struct compact_control *cc)
1585 {
1586 	int zoneid;
1587 	struct zone *zone;
1588 
1589 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
1590 
1591 		zone = &pgdat->node_zones[zoneid];
1592 		if (!populated_zone(zone))
1593 			continue;
1594 
1595 		cc->nr_freepages = 0;
1596 		cc->nr_migratepages = 0;
1597 		cc->zone = zone;
1598 		INIT_LIST_HEAD(&cc->freepages);
1599 		INIT_LIST_HEAD(&cc->migratepages);
1600 
1601 		/*
1602 		 * When called via /proc/sys/vm/compact_memory
1603 		 * this makes sure we compact the whole zone regardless of
1604 		 * cached scanner positions.
1605 		 */
1606 		if (cc->order == -1)
1607 			__reset_isolation_suitable(zone);
1608 
1609 		if (cc->order == -1 || !compaction_deferred(zone, cc->order))
1610 			compact_zone(zone, cc);
1611 
1612 		if (cc->order > 0) {
1613 			if (zone_watermark_ok(zone, cc->order,
1614 						low_wmark_pages(zone), 0, 0))
1615 				compaction_defer_reset(zone, cc->order, false);
1616 		}
1617 
1618 		VM_BUG_ON(!list_empty(&cc->freepages));
1619 		VM_BUG_ON(!list_empty(&cc->migratepages));
1620 	}
1621 }
1622 
compact_pgdat(pg_data_t * pgdat,int order)1623 void compact_pgdat(pg_data_t *pgdat, int order)
1624 {
1625 	struct compact_control cc = {
1626 		.order = order,
1627 		.mode = MIGRATE_ASYNC,
1628 	};
1629 
1630 	if (!order)
1631 		return;
1632 
1633 	__compact_pgdat(pgdat, &cc);
1634 }
1635 
compact_node(int nid)1636 static void compact_node(int nid)
1637 {
1638 	struct compact_control cc = {
1639 		.order = -1,
1640 		.mode = MIGRATE_SYNC,
1641 		.ignore_skip_hint = true,
1642 	};
1643 
1644 	__compact_pgdat(NODE_DATA(nid), &cc);
1645 }
1646 
1647 /* Compact all nodes in the system */
compact_nodes(void)1648 static void compact_nodes(void)
1649 {
1650 	int nid;
1651 
1652 	/* Flush pending updates to the LRU lists */
1653 	lru_add_drain_all();
1654 
1655 	for_each_online_node(nid)
1656 		compact_node(nid);
1657 }
1658 
1659 /* The written value is actually unused, all memory is compacted */
1660 int sysctl_compact_memory;
1661 
1662 /* This is the entry point for compacting all nodes via /proc/sys/vm */
sysctl_compaction_handler(struct ctl_table * table,int write,void __user * buffer,size_t * length,loff_t * ppos)1663 int sysctl_compaction_handler(struct ctl_table *table, int write,
1664 			void __user *buffer, size_t *length, loff_t *ppos)
1665 {
1666 	if (write)
1667 		compact_nodes();
1668 
1669 	return 0;
1670 }
1671 
sysctl_extfrag_handler(struct ctl_table * table,int write,void __user * buffer,size_t * length,loff_t * ppos)1672 int sysctl_extfrag_handler(struct ctl_table *table, int write,
1673 			void __user *buffer, size_t *length, loff_t *ppos)
1674 {
1675 	proc_dointvec_minmax(table, write, buffer, length, ppos);
1676 
1677 	return 0;
1678 }
1679 
1680 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
sysfs_compact_node(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1681 static ssize_t sysfs_compact_node(struct device *dev,
1682 			struct device_attribute *attr,
1683 			const char *buf, size_t count)
1684 {
1685 	int nid = dev->id;
1686 
1687 	if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
1688 		/* Flush pending updates to the LRU lists */
1689 		lru_add_drain_all();
1690 
1691 		compact_node(nid);
1692 	}
1693 
1694 	return count;
1695 }
1696 static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
1697 
compaction_register_node(struct node * node)1698 int compaction_register_node(struct node *node)
1699 {
1700 	return device_create_file(&node->dev, &dev_attr_compact);
1701 }
1702 
compaction_unregister_node(struct node * node)1703 void compaction_unregister_node(struct node *node)
1704 {
1705 	return device_remove_file(&node->dev, &dev_attr_compact);
1706 }
1707 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
1708 
1709 #endif /* CONFIG_COMPACTION */
1710