1 /*
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/cgroup.h>
32 #include <linux/cred.h>
33 #include <linux/ctype.h>
34 #include <linux/errno.h>
35 #include <linux/init_task.h>
36 #include <linux/kernel.h>
37 #include <linux/list.h>
38 #include <linux/magic.h>
39 #include <linux/mm.h>
40 #include <linux/mutex.h>
41 #include <linux/mount.h>
42 #include <linux/pagemap.h>
43 #include <linux/proc_fs.h>
44 #include <linux/rcupdate.h>
45 #include <linux/sched.h>
46 #include <linux/slab.h>
47 #include <linux/spinlock.h>
48 #include <linux/percpu-rwsem.h>
49 #include <linux/string.h>
50 #include <linux/sort.h>
51 #include <linux/kmod.h>
52 #include <linux/delayacct.h>
53 #include <linux/cgroupstats.h>
54 #include <linux/hashtable.h>
55 #include <linux/pid_namespace.h>
56 #include <linux/idr.h>
57 #include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
58 #include <linux/kthread.h>
59 #include <linux/delay.h>
60 #include <linux/cpuset.h>
61 #include <linux/atomic.h>
62
63 /*
64 * pidlists linger the following amount before being destroyed. The goal
65 * is avoiding frequent destruction in the middle of consecutive read calls
66 * Expiring in the middle is a performance problem not a correctness one.
67 * 1 sec should be enough.
68 */
69 #define CGROUP_PIDLIST_DESTROY_DELAY HZ
70
71 #define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \
72 MAX_CFTYPE_NAME + 2)
73
74 /*
75 * cgroup_mutex is the master lock. Any modification to cgroup or its
76 * hierarchy must be performed while holding it.
77 *
78 * css_set_lock protects task->cgroups pointer, the list of css_set
79 * objects, and the chain of tasks off each css_set.
80 *
81 * These locks are exported if CONFIG_PROVE_RCU so that accessors in
82 * cgroup.h can use them for lockdep annotations.
83 */
84 #ifdef CONFIG_PROVE_RCU
85 DEFINE_MUTEX(cgroup_mutex);
86 DEFINE_SPINLOCK(css_set_lock);
87 EXPORT_SYMBOL_GPL(cgroup_mutex);
88 EXPORT_SYMBOL_GPL(css_set_lock);
89 #else
90 static DEFINE_MUTEX(cgroup_mutex);
91 static DEFINE_SPINLOCK(css_set_lock);
92 #endif
93
94 /*
95 * Protects cgroup_idr and css_idr so that IDs can be released without
96 * grabbing cgroup_mutex.
97 */
98 static DEFINE_SPINLOCK(cgroup_idr_lock);
99
100 /*
101 * Protects cgroup_file->kn for !self csses. It synchronizes notifications
102 * against file removal/re-creation across css hiding.
103 */
104 static DEFINE_SPINLOCK(cgroup_file_kn_lock);
105
106 /*
107 * Protects cgroup_subsys->release_agent_path. Modifying it also requires
108 * cgroup_mutex. Reading requires either cgroup_mutex or this spinlock.
109 */
110 static DEFINE_SPINLOCK(release_agent_path_lock);
111
112 struct percpu_rw_semaphore cgroup_threadgroup_rwsem;
113
114 #define cgroup_assert_mutex_or_rcu_locked() \
115 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
116 !lockdep_is_held(&cgroup_mutex), \
117 "cgroup_mutex or RCU read lock required");
118
119 /*
120 * cgroup destruction makes heavy use of work items and there can be a lot
121 * of concurrent destructions. Use a separate workqueue so that cgroup
122 * destruction work items don't end up filling up max_active of system_wq
123 * which may lead to deadlock.
124 */
125 static struct workqueue_struct *cgroup_destroy_wq;
126
127 /*
128 * pidlist destructions need to be flushed on cgroup destruction. Use a
129 * separate workqueue as flush domain.
130 */
131 static struct workqueue_struct *cgroup_pidlist_destroy_wq;
132
133 /* generate an array of cgroup subsystem pointers */
134 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
135 static struct cgroup_subsys *cgroup_subsys[] = {
136 #include <linux/cgroup_subsys.h>
137 };
138 #undef SUBSYS
139
140 /* array of cgroup subsystem names */
141 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
142 static const char *cgroup_subsys_name[] = {
143 #include <linux/cgroup_subsys.h>
144 };
145 #undef SUBSYS
146
147 /* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
148 #define SUBSYS(_x) \
149 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key); \
150 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key); \
151 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key); \
152 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
153 #include <linux/cgroup_subsys.h>
154 #undef SUBSYS
155
156 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
157 static struct static_key_true *cgroup_subsys_enabled_key[] = {
158 #include <linux/cgroup_subsys.h>
159 };
160 #undef SUBSYS
161
162 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
163 static struct static_key_true *cgroup_subsys_on_dfl_key[] = {
164 #include <linux/cgroup_subsys.h>
165 };
166 #undef SUBSYS
167
168 /*
169 * The default hierarchy, reserved for the subsystems that are otherwise
170 * unattached - it never has more than a single cgroup, and all tasks are
171 * part of that cgroup.
172 */
173 struct cgroup_root cgrp_dfl_root;
174 EXPORT_SYMBOL_GPL(cgrp_dfl_root);
175
176 /*
177 * The default hierarchy always exists but is hidden until mounted for the
178 * first time. This is for backward compatibility.
179 */
180 static bool cgrp_dfl_root_visible;
181
182 /* some controllers are not supported in the default hierarchy */
183 static unsigned long cgrp_dfl_root_inhibit_ss_mask;
184
185 /* The list of hierarchy roots */
186
187 static LIST_HEAD(cgroup_roots);
188 static int cgroup_root_count;
189
190 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */
191 static DEFINE_IDR(cgroup_hierarchy_idr);
192
193 /*
194 * Assign a monotonically increasing serial number to csses. It guarantees
195 * cgroups with bigger numbers are newer than those with smaller numbers.
196 * Also, as csses are always appended to the parent's ->children list, it
197 * guarantees that sibling csses are always sorted in the ascending serial
198 * number order on the list. Protected by cgroup_mutex.
199 */
200 static u64 css_serial_nr_next = 1;
201
202 /*
203 * These bitmask flags indicate whether tasks in the fork and exit paths have
204 * fork/exit handlers to call. This avoids us having to do extra work in the
205 * fork/exit path to check which subsystems have fork/exit callbacks.
206 */
207 static unsigned long have_fork_callback __read_mostly;
208 static unsigned long have_exit_callback __read_mostly;
209 static unsigned long have_free_callback __read_mostly;
210
211 /* Ditto for the can_fork callback. */
212 static unsigned long have_canfork_callback __read_mostly;
213
214 static struct cftype cgroup_dfl_base_files[];
215 static struct cftype cgroup_legacy_base_files[];
216
217 static int rebind_subsystems(struct cgroup_root *dst_root,
218 unsigned long ss_mask);
219 static void css_task_iter_advance(struct css_task_iter *it);
220 static int cgroup_destroy_locked(struct cgroup *cgrp);
221 static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss,
222 bool visible);
223 static void css_release(struct percpu_ref *ref);
224 static void kill_css(struct cgroup_subsys_state *css);
225 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
226 struct cgroup *cgrp, struct cftype cfts[],
227 bool is_add);
228
229 /**
230 * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
231 * @ssid: subsys ID of interest
232 *
233 * cgroup_subsys_enabled() can only be used with literal subsys names which
234 * is fine for individual subsystems but unsuitable for cgroup core. This
235 * is slower static_key_enabled() based test indexed by @ssid.
236 */
cgroup_ssid_enabled(int ssid)237 static bool cgroup_ssid_enabled(int ssid)
238 {
239 return static_key_enabled(cgroup_subsys_enabled_key[ssid]);
240 }
241
242 /**
243 * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
244 * @cgrp: the cgroup of interest
245 *
246 * The default hierarchy is the v2 interface of cgroup and this function
247 * can be used to test whether a cgroup is on the default hierarchy for
248 * cases where a subsystem should behave differnetly depending on the
249 * interface version.
250 *
251 * The set of behaviors which change on the default hierarchy are still
252 * being determined and the mount option is prefixed with __DEVEL__.
253 *
254 * List of changed behaviors:
255 *
256 * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
257 * and "name" are disallowed.
258 *
259 * - When mounting an existing superblock, mount options should match.
260 *
261 * - Remount is disallowed.
262 *
263 * - rename(2) is disallowed.
264 *
265 * - "tasks" is removed. Everything should be at process granularity. Use
266 * "cgroup.procs" instead.
267 *
268 * - "cgroup.procs" is not sorted. pids will be unique unless they got
269 * recycled inbetween reads.
270 *
271 * - "release_agent" and "notify_on_release" are removed. Replacement
272 * notification mechanism will be implemented.
273 *
274 * - "cgroup.clone_children" is removed.
275 *
276 * - "cgroup.subtree_populated" is available. Its value is 0 if the cgroup
277 * and its descendants contain no task; otherwise, 1. The file also
278 * generates kernfs notification which can be monitored through poll and
279 * [di]notify when the value of the file changes.
280 *
281 * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
282 * take masks of ancestors with non-empty cpus/mems, instead of being
283 * moved to an ancestor.
284 *
285 * - cpuset: a task can be moved into an empty cpuset, and again it takes
286 * masks of ancestors.
287 *
288 * - memcg: use_hierarchy is on by default and the cgroup file for the flag
289 * is not created.
290 *
291 * - blkcg: blk-throttle becomes properly hierarchical.
292 *
293 * - debug: disallowed on the default hierarchy.
294 */
cgroup_on_dfl(const struct cgroup * cgrp)295 static bool cgroup_on_dfl(const struct cgroup *cgrp)
296 {
297 return cgrp->root == &cgrp_dfl_root;
298 }
299
300 /* IDR wrappers which synchronize using cgroup_idr_lock */
cgroup_idr_alloc(struct idr * idr,void * ptr,int start,int end,gfp_t gfp_mask)301 static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
302 gfp_t gfp_mask)
303 {
304 int ret;
305
306 idr_preload(gfp_mask);
307 spin_lock_bh(&cgroup_idr_lock);
308 ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM);
309 spin_unlock_bh(&cgroup_idr_lock);
310 idr_preload_end();
311 return ret;
312 }
313
cgroup_idr_replace(struct idr * idr,void * ptr,int id)314 static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
315 {
316 void *ret;
317
318 spin_lock_bh(&cgroup_idr_lock);
319 ret = idr_replace(idr, ptr, id);
320 spin_unlock_bh(&cgroup_idr_lock);
321 return ret;
322 }
323
cgroup_idr_remove(struct idr * idr,int id)324 static void cgroup_idr_remove(struct idr *idr, int id)
325 {
326 spin_lock_bh(&cgroup_idr_lock);
327 idr_remove(idr, id);
328 spin_unlock_bh(&cgroup_idr_lock);
329 }
330
cgroup_parent(struct cgroup * cgrp)331 static struct cgroup *cgroup_parent(struct cgroup *cgrp)
332 {
333 struct cgroup_subsys_state *parent_css = cgrp->self.parent;
334
335 if (parent_css)
336 return container_of(parent_css, struct cgroup, self);
337 return NULL;
338 }
339
340 /**
341 * cgroup_css - obtain a cgroup's css for the specified subsystem
342 * @cgrp: the cgroup of interest
343 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
344 *
345 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
346 * function must be called either under cgroup_mutex or rcu_read_lock() and
347 * the caller is responsible for pinning the returned css if it wants to
348 * keep accessing it outside the said locks. This function may return
349 * %NULL if @cgrp doesn't have @subsys_id enabled.
350 */
cgroup_css(struct cgroup * cgrp,struct cgroup_subsys * ss)351 static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
352 struct cgroup_subsys *ss)
353 {
354 if (ss)
355 return rcu_dereference_check(cgrp->subsys[ss->id],
356 lockdep_is_held(&cgroup_mutex));
357 else
358 return &cgrp->self;
359 }
360
361 /**
362 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
363 * @cgrp: the cgroup of interest
364 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
365 *
366 * Similar to cgroup_css() but returns the effective css, which is defined
367 * as the matching css of the nearest ancestor including self which has @ss
368 * enabled. If @ss is associated with the hierarchy @cgrp is on, this
369 * function is guaranteed to return non-NULL css.
370 */
cgroup_e_css(struct cgroup * cgrp,struct cgroup_subsys * ss)371 static struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
372 struct cgroup_subsys *ss)
373 {
374 lockdep_assert_held(&cgroup_mutex);
375
376 if (!ss)
377 return &cgrp->self;
378
379 if (!(cgrp->root->subsys_mask & (1 << ss->id)))
380 return NULL;
381
382 /*
383 * This function is used while updating css associations and thus
384 * can't test the csses directly. Use ->child_subsys_mask.
385 */
386 while (cgroup_parent(cgrp) &&
387 !(cgroup_parent(cgrp)->child_subsys_mask & (1 << ss->id)))
388 cgrp = cgroup_parent(cgrp);
389
390 return cgroup_css(cgrp, ss);
391 }
392
393 /**
394 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
395 * @cgrp: the cgroup of interest
396 * @ss: the subsystem of interest
397 *
398 * Find and get the effective css of @cgrp for @ss. The effective css is
399 * defined as the matching css of the nearest ancestor including self which
400 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on,
401 * the root css is returned, so this function always returns a valid css.
402 * The returned css must be put using css_put().
403 */
cgroup_get_e_css(struct cgroup * cgrp,struct cgroup_subsys * ss)404 struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
405 struct cgroup_subsys *ss)
406 {
407 struct cgroup_subsys_state *css;
408
409 rcu_read_lock();
410
411 do {
412 css = cgroup_css(cgrp, ss);
413
414 if (css && css_tryget_online(css))
415 goto out_unlock;
416 cgrp = cgroup_parent(cgrp);
417 } while (cgrp);
418
419 css = init_css_set.subsys[ss->id];
420 css_get(css);
421 out_unlock:
422 rcu_read_unlock();
423 return css;
424 }
425
426 /* convenient tests for these bits */
cgroup_is_dead(const struct cgroup * cgrp)427 static inline bool cgroup_is_dead(const struct cgroup *cgrp)
428 {
429 return !(cgrp->self.flags & CSS_ONLINE);
430 }
431
cgroup_get(struct cgroup * cgrp)432 static void cgroup_get(struct cgroup *cgrp)
433 {
434 WARN_ON_ONCE(cgroup_is_dead(cgrp));
435 css_get(&cgrp->self);
436 }
437
cgroup_tryget(struct cgroup * cgrp)438 static bool cgroup_tryget(struct cgroup *cgrp)
439 {
440 return css_tryget(&cgrp->self);
441 }
442
cgroup_put(struct cgroup * cgrp)443 static void cgroup_put(struct cgroup *cgrp)
444 {
445 css_put(&cgrp->self);
446 }
447
of_css(struct kernfs_open_file * of)448 struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
449 {
450 struct cgroup *cgrp = of->kn->parent->priv;
451 struct cftype *cft = of_cft(of);
452
453 /*
454 * This is open and unprotected implementation of cgroup_css().
455 * seq_css() is only called from a kernfs file operation which has
456 * an active reference on the file. Because all the subsystem
457 * files are drained before a css is disassociated with a cgroup,
458 * the matching css from the cgroup's subsys table is guaranteed to
459 * be and stay valid until the enclosing operation is complete.
460 */
461 if (cft->ss)
462 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
463 else
464 return &cgrp->self;
465 }
466 EXPORT_SYMBOL_GPL(of_css);
467
468 /**
469 * cgroup_is_descendant - test ancestry
470 * @cgrp: the cgroup to be tested
471 * @ancestor: possible ancestor of @cgrp
472 *
473 * Test whether @cgrp is a descendant of @ancestor. It also returns %true
474 * if @cgrp == @ancestor. This function is safe to call as long as @cgrp
475 * and @ancestor are accessible.
476 */
cgroup_is_descendant(struct cgroup * cgrp,struct cgroup * ancestor)477 bool cgroup_is_descendant(struct cgroup *cgrp, struct cgroup *ancestor)
478 {
479 while (cgrp) {
480 if (cgrp == ancestor)
481 return true;
482 cgrp = cgroup_parent(cgrp);
483 }
484 return false;
485 }
486
notify_on_release(const struct cgroup * cgrp)487 static int notify_on_release(const struct cgroup *cgrp)
488 {
489 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
490 }
491
492 /**
493 * for_each_css - iterate all css's of a cgroup
494 * @css: the iteration cursor
495 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
496 * @cgrp: the target cgroup to iterate css's of
497 *
498 * Should be called under cgroup_[tree_]mutex.
499 */
500 #define for_each_css(css, ssid, cgrp) \
501 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
502 if (!((css) = rcu_dereference_check( \
503 (cgrp)->subsys[(ssid)], \
504 lockdep_is_held(&cgroup_mutex)))) { } \
505 else
506
507 /**
508 * for_each_e_css - iterate all effective css's of a cgroup
509 * @css: the iteration cursor
510 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
511 * @cgrp: the target cgroup to iterate css's of
512 *
513 * Should be called under cgroup_[tree_]mutex.
514 */
515 #define for_each_e_css(css, ssid, cgrp) \
516 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
517 if (!((css) = cgroup_e_css(cgrp, cgroup_subsys[(ssid)]))) \
518 ; \
519 else
520
521 /**
522 * for_each_subsys - iterate all enabled cgroup subsystems
523 * @ss: the iteration cursor
524 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
525 */
526 #define for_each_subsys(ss, ssid) \
527 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT && \
528 (((ss) = cgroup_subsys[ssid]) || true); (ssid)++)
529
530 /**
531 * for_each_subsys_which - filter for_each_subsys with a bitmask
532 * @ss: the iteration cursor
533 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
534 * @ss_maskp: a pointer to the bitmask
535 *
536 * The block will only run for cases where the ssid-th bit (1 << ssid) of
537 * mask is set to 1.
538 */
539 #define for_each_subsys_which(ss, ssid, ss_maskp) \
540 if (!CGROUP_SUBSYS_COUNT) /* to avoid spurious gcc warning */ \
541 (ssid) = 0; \
542 else \
543 for_each_set_bit(ssid, ss_maskp, CGROUP_SUBSYS_COUNT) \
544 if (((ss) = cgroup_subsys[ssid]) && false) \
545 break; \
546 else
547
548 /* iterate across the hierarchies */
549 #define for_each_root(root) \
550 list_for_each_entry((root), &cgroup_roots, root_list)
551
552 /* iterate over child cgrps, lock should be held throughout iteration */
553 #define cgroup_for_each_live_child(child, cgrp) \
554 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
555 if (({ lockdep_assert_held(&cgroup_mutex); \
556 cgroup_is_dead(child); })) \
557 ; \
558 else
559
560 static void cgroup_release_agent(struct work_struct *work);
561 static void check_for_release(struct cgroup *cgrp);
562
563 /*
564 * A cgroup can be associated with multiple css_sets as different tasks may
565 * belong to different cgroups on different hierarchies. In the other
566 * direction, a css_set is naturally associated with multiple cgroups.
567 * This M:N relationship is represented by the following link structure
568 * which exists for each association and allows traversing the associations
569 * from both sides.
570 */
571 struct cgrp_cset_link {
572 /* the cgroup and css_set this link associates */
573 struct cgroup *cgrp;
574 struct css_set *cset;
575
576 /* list of cgrp_cset_links anchored at cgrp->cset_links */
577 struct list_head cset_link;
578
579 /* list of cgrp_cset_links anchored at css_set->cgrp_links */
580 struct list_head cgrp_link;
581 };
582
583 /*
584 * The default css_set - used by init and its children prior to any
585 * hierarchies being mounted. It contains a pointer to the root state
586 * for each subsystem. Also used to anchor the list of css_sets. Not
587 * reference-counted, to improve performance when child cgroups
588 * haven't been created.
589 */
590 struct css_set init_css_set = {
591 .refcount = ATOMIC_INIT(1),
592 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links),
593 .tasks = LIST_HEAD_INIT(init_css_set.tasks),
594 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks),
595 .mg_preload_node = LIST_HEAD_INIT(init_css_set.mg_preload_node),
596 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node),
597 .task_iters = LIST_HEAD_INIT(init_css_set.task_iters),
598 };
599
600 static int css_set_count = 1; /* 1 for init_css_set */
601
602 /**
603 * css_set_populated - does a css_set contain any tasks?
604 * @cset: target css_set
605 */
css_set_populated(struct css_set * cset)606 static bool css_set_populated(struct css_set *cset)
607 {
608 lockdep_assert_held(&css_set_lock);
609
610 return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks);
611 }
612
613 /**
614 * cgroup_update_populated - updated populated count of a cgroup
615 * @cgrp: the target cgroup
616 * @populated: inc or dec populated count
617 *
618 * One of the css_sets associated with @cgrp is either getting its first
619 * task or losing the last. Update @cgrp->populated_cnt accordingly. The
620 * count is propagated towards root so that a given cgroup's populated_cnt
621 * is zero iff the cgroup and all its descendants don't contain any tasks.
622 *
623 * @cgrp's interface file "cgroup.populated" is zero if
624 * @cgrp->populated_cnt is zero and 1 otherwise. When @cgrp->populated_cnt
625 * changes from or to zero, userland is notified that the content of the
626 * interface file has changed. This can be used to detect when @cgrp and
627 * its descendants become populated or empty.
628 */
cgroup_update_populated(struct cgroup * cgrp,bool populated)629 static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
630 {
631 lockdep_assert_held(&css_set_lock);
632
633 do {
634 bool trigger;
635
636 if (populated)
637 trigger = !cgrp->populated_cnt++;
638 else
639 trigger = !--cgrp->populated_cnt;
640
641 if (!trigger)
642 break;
643
644 check_for_release(cgrp);
645 cgroup_file_notify(&cgrp->events_file);
646
647 cgrp = cgroup_parent(cgrp);
648 } while (cgrp);
649 }
650
651 /**
652 * css_set_update_populated - update populated state of a css_set
653 * @cset: target css_set
654 * @populated: whether @cset is populated or depopulated
655 *
656 * @cset is either getting the first task or losing the last. Update the
657 * ->populated_cnt of all associated cgroups accordingly.
658 */
css_set_update_populated(struct css_set * cset,bool populated)659 static void css_set_update_populated(struct css_set *cset, bool populated)
660 {
661 struct cgrp_cset_link *link;
662
663 lockdep_assert_held(&css_set_lock);
664
665 list_for_each_entry(link, &cset->cgrp_links, cgrp_link)
666 cgroup_update_populated(link->cgrp, populated);
667 }
668
669 /**
670 * css_set_move_task - move a task from one css_set to another
671 * @task: task being moved
672 * @from_cset: css_set @task currently belongs to (may be NULL)
673 * @to_cset: new css_set @task is being moved to (may be NULL)
674 * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks
675 *
676 * Move @task from @from_cset to @to_cset. If @task didn't belong to any
677 * css_set, @from_cset can be NULL. If @task is being disassociated
678 * instead of moved, @to_cset can be NULL.
679 *
680 * This function automatically handles populated_cnt updates and
681 * css_task_iter adjustments but the caller is responsible for managing
682 * @from_cset and @to_cset's reference counts.
683 */
css_set_move_task(struct task_struct * task,struct css_set * from_cset,struct css_set * to_cset,bool use_mg_tasks)684 static void css_set_move_task(struct task_struct *task,
685 struct css_set *from_cset, struct css_set *to_cset,
686 bool use_mg_tasks)
687 {
688 lockdep_assert_held(&css_set_lock);
689
690 if (from_cset) {
691 struct css_task_iter *it, *pos;
692
693 WARN_ON_ONCE(list_empty(&task->cg_list));
694
695 /*
696 * @task is leaving, advance task iterators which are
697 * pointing to it so that they can resume at the next
698 * position. Advancing an iterator might remove it from
699 * the list, use safe walk. See css_task_iter_advance*()
700 * for details.
701 */
702 list_for_each_entry_safe(it, pos, &from_cset->task_iters,
703 iters_node)
704 if (it->task_pos == &task->cg_list)
705 css_task_iter_advance(it);
706
707 list_del_init(&task->cg_list);
708 if (!css_set_populated(from_cset))
709 css_set_update_populated(from_cset, false);
710 } else {
711 WARN_ON_ONCE(!list_empty(&task->cg_list));
712 }
713
714 if (to_cset) {
715 /*
716 * We are synchronized through cgroup_threadgroup_rwsem
717 * against PF_EXITING setting such that we can't race
718 * against cgroup_exit() changing the css_set to
719 * init_css_set and dropping the old one.
720 */
721 WARN_ON_ONCE(task->flags & PF_EXITING);
722
723 if (!css_set_populated(to_cset))
724 css_set_update_populated(to_cset, true);
725 rcu_assign_pointer(task->cgroups, to_cset);
726 list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks :
727 &to_cset->tasks);
728 }
729 }
730
731 /*
732 * hash table for cgroup groups. This improves the performance to find
733 * an existing css_set. This hash doesn't (currently) take into
734 * account cgroups in empty hierarchies.
735 */
736 #define CSS_SET_HASH_BITS 7
737 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
738
css_set_hash(struct cgroup_subsys_state * css[])739 static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
740 {
741 unsigned long key = 0UL;
742 struct cgroup_subsys *ss;
743 int i;
744
745 for_each_subsys(ss, i)
746 key += (unsigned long)css[i];
747 key = (key >> 16) ^ key;
748
749 return key;
750 }
751
put_css_set_locked(struct css_set * cset)752 static void put_css_set_locked(struct css_set *cset)
753 {
754 struct cgrp_cset_link *link, *tmp_link;
755 struct cgroup_subsys *ss;
756 int ssid;
757
758 lockdep_assert_held(&css_set_lock);
759
760 if (!atomic_dec_and_test(&cset->refcount))
761 return;
762
763 /* This css_set is dead. unlink it and release cgroup and css refs */
764 for_each_subsys(ss, ssid) {
765 list_del(&cset->e_cset_node[ssid]);
766 css_put(cset->subsys[ssid]);
767 }
768 hash_del(&cset->hlist);
769 css_set_count--;
770
771 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
772 list_del(&link->cset_link);
773 list_del(&link->cgrp_link);
774 if (cgroup_parent(link->cgrp))
775 cgroup_put(link->cgrp);
776 kfree(link);
777 }
778
779 kfree_rcu(cset, rcu_head);
780 }
781
put_css_set(struct css_set * cset)782 static void put_css_set(struct css_set *cset)
783 {
784 /*
785 * Ensure that the refcount doesn't hit zero while any readers
786 * can see it. Similar to atomic_dec_and_lock(), but for an
787 * rwlock
788 */
789 if (atomic_add_unless(&cset->refcount, -1, 1))
790 return;
791
792 spin_lock_bh(&css_set_lock);
793 put_css_set_locked(cset);
794 spin_unlock_bh(&css_set_lock);
795 }
796
797 /*
798 * refcounted get/put for css_set objects
799 */
get_css_set(struct css_set * cset)800 static inline void get_css_set(struct css_set *cset)
801 {
802 atomic_inc(&cset->refcount);
803 }
804
805 /**
806 * compare_css_sets - helper function for find_existing_css_set().
807 * @cset: candidate css_set being tested
808 * @old_cset: existing css_set for a task
809 * @new_cgrp: cgroup that's being entered by the task
810 * @template: desired set of css pointers in css_set (pre-calculated)
811 *
812 * Returns true if "cset" matches "old_cset" except for the hierarchy
813 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
814 */
compare_css_sets(struct css_set * cset,struct css_set * old_cset,struct cgroup * new_cgrp,struct cgroup_subsys_state * template[])815 static bool compare_css_sets(struct css_set *cset,
816 struct css_set *old_cset,
817 struct cgroup *new_cgrp,
818 struct cgroup_subsys_state *template[])
819 {
820 struct list_head *l1, *l2;
821
822 /*
823 * On the default hierarchy, there can be csets which are
824 * associated with the same set of cgroups but different csses.
825 * Let's first ensure that csses match.
826 */
827 if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
828 return false;
829
830 /*
831 * Compare cgroup pointers in order to distinguish between
832 * different cgroups in hierarchies. As different cgroups may
833 * share the same effective css, this comparison is always
834 * necessary.
835 */
836 l1 = &cset->cgrp_links;
837 l2 = &old_cset->cgrp_links;
838 while (1) {
839 struct cgrp_cset_link *link1, *link2;
840 struct cgroup *cgrp1, *cgrp2;
841
842 l1 = l1->next;
843 l2 = l2->next;
844 /* See if we reached the end - both lists are equal length. */
845 if (l1 == &cset->cgrp_links) {
846 BUG_ON(l2 != &old_cset->cgrp_links);
847 break;
848 } else {
849 BUG_ON(l2 == &old_cset->cgrp_links);
850 }
851 /* Locate the cgroups associated with these links. */
852 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
853 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
854 cgrp1 = link1->cgrp;
855 cgrp2 = link2->cgrp;
856 /* Hierarchies should be linked in the same order. */
857 BUG_ON(cgrp1->root != cgrp2->root);
858
859 /*
860 * If this hierarchy is the hierarchy of the cgroup
861 * that's changing, then we need to check that this
862 * css_set points to the new cgroup; if it's any other
863 * hierarchy, then this css_set should point to the
864 * same cgroup as the old css_set.
865 */
866 if (cgrp1->root == new_cgrp->root) {
867 if (cgrp1 != new_cgrp)
868 return false;
869 } else {
870 if (cgrp1 != cgrp2)
871 return false;
872 }
873 }
874 return true;
875 }
876
877 /**
878 * find_existing_css_set - init css array and find the matching css_set
879 * @old_cset: the css_set that we're using before the cgroup transition
880 * @cgrp: the cgroup that we're moving into
881 * @template: out param for the new set of csses, should be clear on entry
882 */
find_existing_css_set(struct css_set * old_cset,struct cgroup * cgrp,struct cgroup_subsys_state * template[])883 static struct css_set *find_existing_css_set(struct css_set *old_cset,
884 struct cgroup *cgrp,
885 struct cgroup_subsys_state *template[])
886 {
887 struct cgroup_root *root = cgrp->root;
888 struct cgroup_subsys *ss;
889 struct css_set *cset;
890 unsigned long key;
891 int i;
892
893 /*
894 * Build the set of subsystem state objects that we want to see in the
895 * new css_set. while subsystems can change globally, the entries here
896 * won't change, so no need for locking.
897 */
898 for_each_subsys(ss, i) {
899 if (root->subsys_mask & (1UL << i)) {
900 /*
901 * @ss is in this hierarchy, so we want the
902 * effective css from @cgrp.
903 */
904 template[i] = cgroup_e_css(cgrp, ss);
905 } else {
906 /*
907 * @ss is not in this hierarchy, so we don't want
908 * to change the css.
909 */
910 template[i] = old_cset->subsys[i];
911 }
912 }
913
914 key = css_set_hash(template);
915 hash_for_each_possible(css_set_table, cset, hlist, key) {
916 if (!compare_css_sets(cset, old_cset, cgrp, template))
917 continue;
918
919 /* This css_set matches what we need */
920 return cset;
921 }
922
923 /* No existing cgroup group matched */
924 return NULL;
925 }
926
free_cgrp_cset_links(struct list_head * links_to_free)927 static void free_cgrp_cset_links(struct list_head *links_to_free)
928 {
929 struct cgrp_cset_link *link, *tmp_link;
930
931 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
932 list_del(&link->cset_link);
933 kfree(link);
934 }
935 }
936
937 /**
938 * allocate_cgrp_cset_links - allocate cgrp_cset_links
939 * @count: the number of links to allocate
940 * @tmp_links: list_head the allocated links are put on
941 *
942 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
943 * through ->cset_link. Returns 0 on success or -errno.
944 */
allocate_cgrp_cset_links(int count,struct list_head * tmp_links)945 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
946 {
947 struct cgrp_cset_link *link;
948 int i;
949
950 INIT_LIST_HEAD(tmp_links);
951
952 for (i = 0; i < count; i++) {
953 link = kzalloc(sizeof(*link), GFP_KERNEL);
954 if (!link) {
955 free_cgrp_cset_links(tmp_links);
956 return -ENOMEM;
957 }
958 list_add(&link->cset_link, tmp_links);
959 }
960 return 0;
961 }
962
963 /**
964 * link_css_set - a helper function to link a css_set to a cgroup
965 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
966 * @cset: the css_set to be linked
967 * @cgrp: the destination cgroup
968 */
link_css_set(struct list_head * tmp_links,struct css_set * cset,struct cgroup * cgrp)969 static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
970 struct cgroup *cgrp)
971 {
972 struct cgrp_cset_link *link;
973
974 BUG_ON(list_empty(tmp_links));
975
976 if (cgroup_on_dfl(cgrp))
977 cset->dfl_cgrp = cgrp;
978
979 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
980 link->cset = cset;
981 link->cgrp = cgrp;
982
983 /*
984 * Always add links to the tail of the lists so that the lists are
985 * in choronological order.
986 */
987 list_move_tail(&link->cset_link, &cgrp->cset_links);
988 list_add_tail(&link->cgrp_link, &cset->cgrp_links);
989
990 if (cgroup_parent(cgrp))
991 cgroup_get(cgrp);
992 }
993
994 /**
995 * find_css_set - return a new css_set with one cgroup updated
996 * @old_cset: the baseline css_set
997 * @cgrp: the cgroup to be updated
998 *
999 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
1000 * substituted into the appropriate hierarchy.
1001 */
find_css_set(struct css_set * old_cset,struct cgroup * cgrp)1002 static struct css_set *find_css_set(struct css_set *old_cset,
1003 struct cgroup *cgrp)
1004 {
1005 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
1006 struct css_set *cset;
1007 struct list_head tmp_links;
1008 struct cgrp_cset_link *link;
1009 struct cgroup_subsys *ss;
1010 unsigned long key;
1011 int ssid;
1012
1013 lockdep_assert_held(&cgroup_mutex);
1014
1015 /* First see if we already have a cgroup group that matches
1016 * the desired set */
1017 spin_lock_bh(&css_set_lock);
1018 cset = find_existing_css_set(old_cset, cgrp, template);
1019 if (cset)
1020 get_css_set(cset);
1021 spin_unlock_bh(&css_set_lock);
1022
1023 if (cset)
1024 return cset;
1025
1026 cset = kzalloc(sizeof(*cset), GFP_KERNEL);
1027 if (!cset)
1028 return NULL;
1029
1030 /* Allocate all the cgrp_cset_link objects that we'll need */
1031 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
1032 kfree(cset);
1033 return NULL;
1034 }
1035
1036 atomic_set(&cset->refcount, 1);
1037 INIT_LIST_HEAD(&cset->cgrp_links);
1038 INIT_LIST_HEAD(&cset->tasks);
1039 INIT_LIST_HEAD(&cset->mg_tasks);
1040 INIT_LIST_HEAD(&cset->mg_preload_node);
1041 INIT_LIST_HEAD(&cset->mg_node);
1042 INIT_LIST_HEAD(&cset->task_iters);
1043 INIT_HLIST_NODE(&cset->hlist);
1044
1045 /* Copy the set of subsystem state objects generated in
1046 * find_existing_css_set() */
1047 memcpy(cset->subsys, template, sizeof(cset->subsys));
1048
1049 spin_lock_bh(&css_set_lock);
1050 /* Add reference counts and links from the new css_set. */
1051 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
1052 struct cgroup *c = link->cgrp;
1053
1054 if (c->root == cgrp->root)
1055 c = cgrp;
1056 link_css_set(&tmp_links, cset, c);
1057 }
1058
1059 BUG_ON(!list_empty(&tmp_links));
1060
1061 css_set_count++;
1062
1063 /* Add @cset to the hash table */
1064 key = css_set_hash(cset->subsys);
1065 hash_add(css_set_table, &cset->hlist, key);
1066
1067 for_each_subsys(ss, ssid) {
1068 struct cgroup_subsys_state *css = cset->subsys[ssid];
1069
1070 list_add_tail(&cset->e_cset_node[ssid],
1071 &css->cgroup->e_csets[ssid]);
1072 css_get(css);
1073 }
1074
1075 spin_unlock_bh(&css_set_lock);
1076
1077 return cset;
1078 }
1079
cgroup_root_from_kf(struct kernfs_root * kf_root)1080 static struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
1081 {
1082 struct cgroup *root_cgrp = kf_root->kn->priv;
1083
1084 return root_cgrp->root;
1085 }
1086
cgroup_init_root_id(struct cgroup_root * root)1087 static int cgroup_init_root_id(struct cgroup_root *root)
1088 {
1089 int id;
1090
1091 lockdep_assert_held(&cgroup_mutex);
1092
1093 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
1094 if (id < 0)
1095 return id;
1096
1097 root->hierarchy_id = id;
1098 return 0;
1099 }
1100
cgroup_exit_root_id(struct cgroup_root * root)1101 static void cgroup_exit_root_id(struct cgroup_root *root)
1102 {
1103 lockdep_assert_held(&cgroup_mutex);
1104
1105 if (root->hierarchy_id) {
1106 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
1107 root->hierarchy_id = 0;
1108 }
1109 }
1110
cgroup_free_root(struct cgroup_root * root)1111 static void cgroup_free_root(struct cgroup_root *root)
1112 {
1113 if (root) {
1114 /* hierarchy ID should already have been released */
1115 WARN_ON_ONCE(root->hierarchy_id);
1116
1117 idr_destroy(&root->cgroup_idr);
1118 kfree(root);
1119 }
1120 }
1121
cgroup_destroy_root(struct cgroup_root * root)1122 static void cgroup_destroy_root(struct cgroup_root *root)
1123 {
1124 struct cgroup *cgrp = &root->cgrp;
1125 struct cgrp_cset_link *link, *tmp_link;
1126
1127 mutex_lock(&cgroup_mutex);
1128
1129 BUG_ON(atomic_read(&root->nr_cgrps));
1130 BUG_ON(!list_empty(&cgrp->self.children));
1131
1132 /* Rebind all subsystems back to the default hierarchy */
1133 rebind_subsystems(&cgrp_dfl_root, root->subsys_mask);
1134
1135 /*
1136 * Release all the links from cset_links to this hierarchy's
1137 * root cgroup
1138 */
1139 spin_lock_bh(&css_set_lock);
1140
1141 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1142 list_del(&link->cset_link);
1143 list_del(&link->cgrp_link);
1144 kfree(link);
1145 }
1146
1147 spin_unlock_bh(&css_set_lock);
1148
1149 if (!list_empty(&root->root_list)) {
1150 list_del(&root->root_list);
1151 cgroup_root_count--;
1152 }
1153
1154 cgroup_exit_root_id(root);
1155
1156 mutex_unlock(&cgroup_mutex);
1157
1158 kernfs_destroy_root(root->kf_root);
1159 cgroup_free_root(root);
1160 }
1161
1162 /* look up cgroup associated with given css_set on the specified hierarchy */
cset_cgroup_from_root(struct css_set * cset,struct cgroup_root * root)1163 static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
1164 struct cgroup_root *root)
1165 {
1166 struct cgroup *res = NULL;
1167
1168 lockdep_assert_held(&cgroup_mutex);
1169 lockdep_assert_held(&css_set_lock);
1170
1171 if (cset == &init_css_set) {
1172 res = &root->cgrp;
1173 } else {
1174 struct cgrp_cset_link *link;
1175
1176 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1177 struct cgroup *c = link->cgrp;
1178
1179 if (c->root == root) {
1180 res = c;
1181 break;
1182 }
1183 }
1184 }
1185
1186 BUG_ON(!res);
1187 return res;
1188 }
1189
1190 /*
1191 * Return the cgroup for "task" from the given hierarchy. Must be
1192 * called with cgroup_mutex and css_set_lock held.
1193 */
task_cgroup_from_root(struct task_struct * task,struct cgroup_root * root)1194 static struct cgroup *task_cgroup_from_root(struct task_struct *task,
1195 struct cgroup_root *root)
1196 {
1197 /*
1198 * No need to lock the task - since we hold cgroup_mutex the
1199 * task can't change groups, so the only thing that can happen
1200 * is that it exits and its css is set back to init_css_set.
1201 */
1202 return cset_cgroup_from_root(task_css_set(task), root);
1203 }
1204
1205 /*
1206 * A task must hold cgroup_mutex to modify cgroups.
1207 *
1208 * Any task can increment and decrement the count field without lock.
1209 * So in general, code holding cgroup_mutex can't rely on the count
1210 * field not changing. However, if the count goes to zero, then only
1211 * cgroup_attach_task() can increment it again. Because a count of zero
1212 * means that no tasks are currently attached, therefore there is no
1213 * way a task attached to that cgroup can fork (the other way to
1214 * increment the count). So code holding cgroup_mutex can safely
1215 * assume that if the count is zero, it will stay zero. Similarly, if
1216 * a task holds cgroup_mutex on a cgroup with zero count, it
1217 * knows that the cgroup won't be removed, as cgroup_rmdir()
1218 * needs that mutex.
1219 *
1220 * A cgroup can only be deleted if both its 'count' of using tasks
1221 * is zero, and its list of 'children' cgroups is empty. Since all
1222 * tasks in the system use _some_ cgroup, and since there is always at
1223 * least one task in the system (init, pid == 1), therefore, root cgroup
1224 * always has either children cgroups and/or using tasks. So we don't
1225 * need a special hack to ensure that root cgroup cannot be deleted.
1226 *
1227 * P.S. One more locking exception. RCU is used to guard the
1228 * update of a tasks cgroup pointer by cgroup_attach_task()
1229 */
1230
1231 static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
1232 static const struct file_operations proc_cgroupstats_operations;
1233
cgroup_file_name(struct cgroup * cgrp,const struct cftype * cft,char * buf)1234 static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1235 char *buf)
1236 {
1237 struct cgroup_subsys *ss = cft->ss;
1238
1239 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
1240 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX))
1241 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s.%s",
1242 cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name,
1243 cft->name);
1244 else
1245 strncpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1246 return buf;
1247 }
1248
1249 /**
1250 * cgroup_file_mode - deduce file mode of a control file
1251 * @cft: the control file in question
1252 *
1253 * S_IRUGO for read, S_IWUSR for write.
1254 */
cgroup_file_mode(const struct cftype * cft)1255 static umode_t cgroup_file_mode(const struct cftype *cft)
1256 {
1257 umode_t mode = 0;
1258
1259 if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1260 mode |= S_IRUGO;
1261
1262 if (cft->write_u64 || cft->write_s64 || cft->write) {
1263 if (cft->flags & CFTYPE_WORLD_WRITABLE)
1264 mode |= S_IWUGO;
1265 else
1266 mode |= S_IWUSR;
1267 }
1268
1269 return mode;
1270 }
1271
1272 /**
1273 * cgroup_calc_child_subsys_mask - calculate child_subsys_mask
1274 * @cgrp: the target cgroup
1275 * @subtree_control: the new subtree_control mask to consider
1276 *
1277 * On the default hierarchy, a subsystem may request other subsystems to be
1278 * enabled together through its ->depends_on mask. In such cases, more
1279 * subsystems than specified in "cgroup.subtree_control" may be enabled.
1280 *
1281 * This function calculates which subsystems need to be enabled if
1282 * @subtree_control is to be applied to @cgrp. The returned mask is always
1283 * a superset of @subtree_control and follows the usual hierarchy rules.
1284 */
cgroup_calc_child_subsys_mask(struct cgroup * cgrp,unsigned long subtree_control)1285 static unsigned long cgroup_calc_child_subsys_mask(struct cgroup *cgrp,
1286 unsigned long subtree_control)
1287 {
1288 struct cgroup *parent = cgroup_parent(cgrp);
1289 unsigned long cur_ss_mask = subtree_control;
1290 struct cgroup_subsys *ss;
1291 int ssid;
1292
1293 lockdep_assert_held(&cgroup_mutex);
1294
1295 if (!cgroup_on_dfl(cgrp))
1296 return cur_ss_mask;
1297
1298 while (true) {
1299 unsigned long new_ss_mask = cur_ss_mask;
1300
1301 for_each_subsys_which(ss, ssid, &cur_ss_mask)
1302 new_ss_mask |= ss->depends_on;
1303
1304 /*
1305 * Mask out subsystems which aren't available. This can
1306 * happen only if some depended-upon subsystems were bound
1307 * to non-default hierarchies.
1308 */
1309 if (parent)
1310 new_ss_mask &= parent->child_subsys_mask;
1311 else
1312 new_ss_mask &= cgrp->root->subsys_mask;
1313
1314 if (new_ss_mask == cur_ss_mask)
1315 break;
1316 cur_ss_mask = new_ss_mask;
1317 }
1318
1319 return cur_ss_mask;
1320 }
1321
1322 /**
1323 * cgroup_refresh_child_subsys_mask - update child_subsys_mask
1324 * @cgrp: the target cgroup
1325 *
1326 * Update @cgrp->child_subsys_mask according to the current
1327 * @cgrp->subtree_control using cgroup_calc_child_subsys_mask().
1328 */
cgroup_refresh_child_subsys_mask(struct cgroup * cgrp)1329 static void cgroup_refresh_child_subsys_mask(struct cgroup *cgrp)
1330 {
1331 cgrp->child_subsys_mask =
1332 cgroup_calc_child_subsys_mask(cgrp, cgrp->subtree_control);
1333 }
1334
1335 /**
1336 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1337 * @kn: the kernfs_node being serviced
1338 *
1339 * This helper undoes cgroup_kn_lock_live() and should be invoked before
1340 * the method finishes if locking succeeded. Note that once this function
1341 * returns the cgroup returned by cgroup_kn_lock_live() may become
1342 * inaccessible any time. If the caller intends to continue to access the
1343 * cgroup, it should pin it before invoking this function.
1344 */
cgroup_kn_unlock(struct kernfs_node * kn)1345 static void cgroup_kn_unlock(struct kernfs_node *kn)
1346 {
1347 struct cgroup *cgrp;
1348
1349 if (kernfs_type(kn) == KERNFS_DIR)
1350 cgrp = kn->priv;
1351 else
1352 cgrp = kn->parent->priv;
1353
1354 mutex_unlock(&cgroup_mutex);
1355
1356 kernfs_unbreak_active_protection(kn);
1357 cgroup_put(cgrp);
1358 }
1359
1360 /**
1361 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1362 * @kn: the kernfs_node being serviced
1363 *
1364 * This helper is to be used by a cgroup kernfs method currently servicing
1365 * @kn. It breaks the active protection, performs cgroup locking and
1366 * verifies that the associated cgroup is alive. Returns the cgroup if
1367 * alive; otherwise, %NULL. A successful return should be undone by a
1368 * matching cgroup_kn_unlock() invocation.
1369 *
1370 * Any cgroup kernfs method implementation which requires locking the
1371 * associated cgroup should use this helper. It avoids nesting cgroup
1372 * locking under kernfs active protection and allows all kernfs operations
1373 * including self-removal.
1374 */
cgroup_kn_lock_live(struct kernfs_node * kn)1375 static struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn)
1376 {
1377 struct cgroup *cgrp;
1378
1379 if (kernfs_type(kn) == KERNFS_DIR)
1380 cgrp = kn->priv;
1381 else
1382 cgrp = kn->parent->priv;
1383
1384 /*
1385 * We're gonna grab cgroup_mutex which nests outside kernfs
1386 * active_ref. cgroup liveliness check alone provides enough
1387 * protection against removal. Ensure @cgrp stays accessible and
1388 * break the active_ref protection.
1389 */
1390 if (!cgroup_tryget(cgrp))
1391 return NULL;
1392 kernfs_break_active_protection(kn);
1393
1394 mutex_lock(&cgroup_mutex);
1395
1396 if (!cgroup_is_dead(cgrp))
1397 return cgrp;
1398
1399 cgroup_kn_unlock(kn);
1400 return NULL;
1401 }
1402
cgroup_rm_file(struct cgroup * cgrp,const struct cftype * cft)1403 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
1404 {
1405 char name[CGROUP_FILE_NAME_MAX];
1406
1407 lockdep_assert_held(&cgroup_mutex);
1408
1409 if (cft->file_offset) {
1410 struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss);
1411 struct cgroup_file *cfile = (void *)css + cft->file_offset;
1412
1413 spin_lock_irq(&cgroup_file_kn_lock);
1414 cfile->kn = NULL;
1415 spin_unlock_irq(&cgroup_file_kn_lock);
1416 }
1417
1418 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
1419 }
1420
1421 /**
1422 * css_clear_dir - remove subsys files in a cgroup directory
1423 * @css: taget css
1424 * @cgrp_override: specify if target cgroup is different from css->cgroup
1425 */
css_clear_dir(struct cgroup_subsys_state * css,struct cgroup * cgrp_override)1426 static void css_clear_dir(struct cgroup_subsys_state *css,
1427 struct cgroup *cgrp_override)
1428 {
1429 struct cgroup *cgrp = cgrp_override ?: css->cgroup;
1430 struct cftype *cfts;
1431
1432 list_for_each_entry(cfts, &css->ss->cfts, node)
1433 cgroup_addrm_files(css, cgrp, cfts, false);
1434 }
1435
1436 /**
1437 * css_populate_dir - create subsys files in a cgroup directory
1438 * @css: target css
1439 * @cgrp_overried: specify if target cgroup is different from css->cgroup
1440 *
1441 * On failure, no file is added.
1442 */
css_populate_dir(struct cgroup_subsys_state * css,struct cgroup * cgrp_override)1443 static int css_populate_dir(struct cgroup_subsys_state *css,
1444 struct cgroup *cgrp_override)
1445 {
1446 struct cgroup *cgrp = cgrp_override ?: css->cgroup;
1447 struct cftype *cfts, *failed_cfts;
1448 int ret;
1449
1450 if (!css->ss) {
1451 if (cgroup_on_dfl(cgrp))
1452 cfts = cgroup_dfl_base_files;
1453 else
1454 cfts = cgroup_legacy_base_files;
1455
1456 return cgroup_addrm_files(&cgrp->self, cgrp, cfts, true);
1457 }
1458
1459 list_for_each_entry(cfts, &css->ss->cfts, node) {
1460 ret = cgroup_addrm_files(css, cgrp, cfts, true);
1461 if (ret < 0) {
1462 failed_cfts = cfts;
1463 goto err;
1464 }
1465 }
1466 return 0;
1467 err:
1468 list_for_each_entry(cfts, &css->ss->cfts, node) {
1469 if (cfts == failed_cfts)
1470 break;
1471 cgroup_addrm_files(css, cgrp, cfts, false);
1472 }
1473 return ret;
1474 }
1475
rebind_subsystems(struct cgroup_root * dst_root,unsigned long ss_mask)1476 static int rebind_subsystems(struct cgroup_root *dst_root,
1477 unsigned long ss_mask)
1478 {
1479 struct cgroup *dcgrp = &dst_root->cgrp;
1480 struct cgroup_subsys *ss;
1481 unsigned long tmp_ss_mask;
1482 int ssid, i, ret;
1483
1484 lockdep_assert_held(&cgroup_mutex);
1485
1486 for_each_subsys_which(ss, ssid, &ss_mask) {
1487 /* if @ss has non-root csses attached to it, can't move */
1488 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)))
1489 return -EBUSY;
1490
1491 /* can't move between two non-dummy roots either */
1492 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
1493 return -EBUSY;
1494 }
1495
1496 /* skip creating root files on dfl_root for inhibited subsystems */
1497 tmp_ss_mask = ss_mask;
1498 if (dst_root == &cgrp_dfl_root)
1499 tmp_ss_mask &= ~cgrp_dfl_root_inhibit_ss_mask;
1500
1501 for_each_subsys_which(ss, ssid, &tmp_ss_mask) {
1502 struct cgroup *scgrp = &ss->root->cgrp;
1503 int tssid;
1504
1505 ret = css_populate_dir(cgroup_css(scgrp, ss), dcgrp);
1506 if (!ret)
1507 continue;
1508
1509 /*
1510 * Rebinding back to the default root is not allowed to
1511 * fail. Using both default and non-default roots should
1512 * be rare. Moving subsystems back and forth even more so.
1513 * Just warn about it and continue.
1514 */
1515 if (dst_root == &cgrp_dfl_root) {
1516 if (cgrp_dfl_root_visible) {
1517 pr_warn("failed to create files (%d) while rebinding 0x%lx to default root\n",
1518 ret, ss_mask);
1519 pr_warn("you may retry by moving them to a different hierarchy and unbinding\n");
1520 }
1521 continue;
1522 }
1523
1524 for_each_subsys_which(ss, tssid, &tmp_ss_mask) {
1525 if (tssid == ssid)
1526 break;
1527 css_clear_dir(cgroup_css(scgrp, ss), dcgrp);
1528 }
1529 return ret;
1530 }
1531
1532 /*
1533 * Nothing can fail from this point on. Remove files for the
1534 * removed subsystems and rebind each subsystem.
1535 */
1536 for_each_subsys_which(ss, ssid, &ss_mask) {
1537 struct cgroup_root *src_root = ss->root;
1538 struct cgroup *scgrp = &src_root->cgrp;
1539 struct cgroup_subsys_state *css = cgroup_css(scgrp, ss);
1540 struct css_set *cset;
1541
1542 WARN_ON(!css || cgroup_css(dcgrp, ss));
1543
1544 css_clear_dir(css, NULL);
1545
1546 RCU_INIT_POINTER(scgrp->subsys[ssid], NULL);
1547 rcu_assign_pointer(dcgrp->subsys[ssid], css);
1548 ss->root = dst_root;
1549 css->cgroup = dcgrp;
1550
1551 spin_lock_bh(&css_set_lock);
1552 hash_for_each(css_set_table, i, cset, hlist)
1553 list_move_tail(&cset->e_cset_node[ss->id],
1554 &dcgrp->e_csets[ss->id]);
1555 spin_unlock_bh(&css_set_lock);
1556
1557 src_root->subsys_mask &= ~(1 << ssid);
1558 scgrp->subtree_control &= ~(1 << ssid);
1559 cgroup_refresh_child_subsys_mask(scgrp);
1560
1561 /* default hierarchy doesn't enable controllers by default */
1562 dst_root->subsys_mask |= 1 << ssid;
1563 if (dst_root == &cgrp_dfl_root) {
1564 static_branch_enable(cgroup_subsys_on_dfl_key[ssid]);
1565 } else {
1566 dcgrp->subtree_control |= 1 << ssid;
1567 cgroup_refresh_child_subsys_mask(dcgrp);
1568 static_branch_disable(cgroup_subsys_on_dfl_key[ssid]);
1569 }
1570
1571 if (ss->bind)
1572 ss->bind(css);
1573 }
1574
1575 kernfs_activate(dcgrp->kn);
1576 return 0;
1577 }
1578
cgroup_show_options(struct seq_file * seq,struct kernfs_root * kf_root)1579 static int cgroup_show_options(struct seq_file *seq,
1580 struct kernfs_root *kf_root)
1581 {
1582 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
1583 struct cgroup_subsys *ss;
1584 int ssid;
1585
1586 if (root != &cgrp_dfl_root)
1587 for_each_subsys(ss, ssid)
1588 if (root->subsys_mask & (1 << ssid))
1589 seq_show_option(seq, ss->legacy_name, NULL);
1590 if (root->flags & CGRP_ROOT_NOPREFIX)
1591 seq_puts(seq, ",noprefix");
1592 if (root->flags & CGRP_ROOT_XATTR)
1593 seq_puts(seq, ",xattr");
1594
1595 spin_lock(&release_agent_path_lock);
1596 if (strlen(root->release_agent_path))
1597 seq_show_option(seq, "release_agent",
1598 root->release_agent_path);
1599 spin_unlock(&release_agent_path_lock);
1600
1601 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags))
1602 seq_puts(seq, ",clone_children");
1603 if (strlen(root->name))
1604 seq_show_option(seq, "name", root->name);
1605 return 0;
1606 }
1607
1608 struct cgroup_sb_opts {
1609 unsigned long subsys_mask;
1610 unsigned int flags;
1611 char *release_agent;
1612 bool cpuset_clone_children;
1613 char *name;
1614 /* User explicitly requested empty subsystem */
1615 bool none;
1616 };
1617
parse_cgroupfs_options(char * data,struct cgroup_sb_opts * opts)1618 static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
1619 {
1620 char *token, *o = data;
1621 bool all_ss = false, one_ss = false;
1622 unsigned long mask = -1UL;
1623 struct cgroup_subsys *ss;
1624 int nr_opts = 0;
1625 int i;
1626
1627 #ifdef CONFIG_CPUSETS
1628 mask = ~(1U << cpuset_cgrp_id);
1629 #endif
1630
1631 memset(opts, 0, sizeof(*opts));
1632
1633 while ((token = strsep(&o, ",")) != NULL) {
1634 nr_opts++;
1635
1636 if (!*token)
1637 return -EINVAL;
1638 if (!strcmp(token, "none")) {
1639 /* Explicitly have no subsystems */
1640 opts->none = true;
1641 continue;
1642 }
1643 if (!strcmp(token, "all")) {
1644 /* Mutually exclusive option 'all' + subsystem name */
1645 if (one_ss)
1646 return -EINVAL;
1647 all_ss = true;
1648 continue;
1649 }
1650 if (!strcmp(token, "__DEVEL__sane_behavior")) {
1651 opts->flags |= CGRP_ROOT_SANE_BEHAVIOR;
1652 continue;
1653 }
1654 if (!strcmp(token, "noprefix")) {
1655 opts->flags |= CGRP_ROOT_NOPREFIX;
1656 continue;
1657 }
1658 if (!strcmp(token, "clone_children")) {
1659 opts->cpuset_clone_children = true;
1660 continue;
1661 }
1662 if (!strcmp(token, "xattr")) {
1663 opts->flags |= CGRP_ROOT_XATTR;
1664 continue;
1665 }
1666 if (!strncmp(token, "release_agent=", 14)) {
1667 /* Specifying two release agents is forbidden */
1668 if (opts->release_agent)
1669 return -EINVAL;
1670 opts->release_agent =
1671 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
1672 if (!opts->release_agent)
1673 return -ENOMEM;
1674 continue;
1675 }
1676 if (!strncmp(token, "name=", 5)) {
1677 const char *name = token + 5;
1678 /* Can't specify an empty name */
1679 if (!strlen(name))
1680 return -EINVAL;
1681 /* Must match [\w.-]+ */
1682 for (i = 0; i < strlen(name); i++) {
1683 char c = name[i];
1684 if (isalnum(c))
1685 continue;
1686 if ((c == '.') || (c == '-') || (c == '_'))
1687 continue;
1688 return -EINVAL;
1689 }
1690 /* Specifying two names is forbidden */
1691 if (opts->name)
1692 return -EINVAL;
1693 opts->name = kstrndup(name,
1694 MAX_CGROUP_ROOT_NAMELEN - 1,
1695 GFP_KERNEL);
1696 if (!opts->name)
1697 return -ENOMEM;
1698
1699 continue;
1700 }
1701
1702 for_each_subsys(ss, i) {
1703 if (strcmp(token, ss->legacy_name))
1704 continue;
1705 if (!cgroup_ssid_enabled(i))
1706 continue;
1707
1708 /* Mutually exclusive option 'all' + subsystem name */
1709 if (all_ss)
1710 return -EINVAL;
1711 opts->subsys_mask |= (1 << i);
1712 one_ss = true;
1713
1714 break;
1715 }
1716 if (i == CGROUP_SUBSYS_COUNT)
1717 return -ENOENT;
1718 }
1719
1720 if (opts->flags & CGRP_ROOT_SANE_BEHAVIOR) {
1721 pr_warn("sane_behavior: this is still under development and its behaviors will change, proceed at your own risk\n");
1722 if (nr_opts != 1) {
1723 pr_err("sane_behavior: no other mount options allowed\n");
1724 return -EINVAL;
1725 }
1726 return 0;
1727 }
1728
1729 /*
1730 * If the 'all' option was specified select all the subsystems,
1731 * otherwise if 'none', 'name=' and a subsystem name options were
1732 * not specified, let's default to 'all'
1733 */
1734 if (all_ss || (!one_ss && !opts->none && !opts->name))
1735 for_each_subsys(ss, i)
1736 if (cgroup_ssid_enabled(i))
1737 opts->subsys_mask |= (1 << i);
1738
1739 /*
1740 * We either have to specify by name or by subsystems. (So all
1741 * empty hierarchies must have a name).
1742 */
1743 if (!opts->subsys_mask && !opts->name)
1744 return -EINVAL;
1745
1746 /*
1747 * Option noprefix was introduced just for backward compatibility
1748 * with the old cpuset, so we allow noprefix only if mounting just
1749 * the cpuset subsystem.
1750 */
1751 if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask))
1752 return -EINVAL;
1753
1754 /* Can't specify "none" and some subsystems */
1755 if (opts->subsys_mask && opts->none)
1756 return -EINVAL;
1757
1758 return 0;
1759 }
1760
cgroup_remount(struct kernfs_root * kf_root,int * flags,char * data)1761 static int cgroup_remount(struct kernfs_root *kf_root, int *flags, char *data)
1762 {
1763 int ret = 0;
1764 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
1765 struct cgroup_sb_opts opts;
1766 unsigned long added_mask, removed_mask;
1767
1768 if (root == &cgrp_dfl_root) {
1769 pr_err("remount is not allowed\n");
1770 return -EINVAL;
1771 }
1772
1773 mutex_lock(&cgroup_mutex);
1774
1775 /* See what subsystems are wanted */
1776 ret = parse_cgroupfs_options(data, &opts);
1777 if (ret)
1778 goto out_unlock;
1779
1780 if (opts.subsys_mask != root->subsys_mask || opts.release_agent)
1781 pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n",
1782 task_tgid_nr(current), current->comm);
1783
1784 added_mask = opts.subsys_mask & ~root->subsys_mask;
1785 removed_mask = root->subsys_mask & ~opts.subsys_mask;
1786
1787 /* Don't allow flags or name to change at remount */
1788 if ((opts.flags ^ root->flags) ||
1789 (opts.name && strcmp(opts.name, root->name))) {
1790 pr_err("option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"\n",
1791 opts.flags, opts.name ?: "", root->flags, root->name);
1792 ret = -EINVAL;
1793 goto out_unlock;
1794 }
1795
1796 /* remounting is not allowed for populated hierarchies */
1797 if (!list_empty(&root->cgrp.self.children)) {
1798 ret = -EBUSY;
1799 goto out_unlock;
1800 }
1801
1802 ret = rebind_subsystems(root, added_mask);
1803 if (ret)
1804 goto out_unlock;
1805
1806 rebind_subsystems(&cgrp_dfl_root, removed_mask);
1807
1808 if (opts.release_agent) {
1809 spin_lock(&release_agent_path_lock);
1810 strcpy(root->release_agent_path, opts.release_agent);
1811 spin_unlock(&release_agent_path_lock);
1812 }
1813 out_unlock:
1814 kfree(opts.release_agent);
1815 kfree(opts.name);
1816 mutex_unlock(&cgroup_mutex);
1817 return ret;
1818 }
1819
1820 /*
1821 * To reduce the fork() overhead for systems that are not actually using
1822 * their cgroups capability, we don't maintain the lists running through
1823 * each css_set to its tasks until we see the list actually used - in other
1824 * words after the first mount.
1825 */
1826 static bool use_task_css_set_links __read_mostly;
1827
cgroup_enable_task_cg_lists(void)1828 static void cgroup_enable_task_cg_lists(void)
1829 {
1830 struct task_struct *p, *g;
1831
1832 spin_lock_bh(&css_set_lock);
1833
1834 if (use_task_css_set_links)
1835 goto out_unlock;
1836
1837 use_task_css_set_links = true;
1838
1839 /*
1840 * We need tasklist_lock because RCU is not safe against
1841 * while_each_thread(). Besides, a forking task that has passed
1842 * cgroup_post_fork() without seeing use_task_css_set_links = 1
1843 * is not guaranteed to have its child immediately visible in the
1844 * tasklist if we walk through it with RCU.
1845 */
1846 read_lock(&tasklist_lock);
1847 do_each_thread(g, p) {
1848 WARN_ON_ONCE(!list_empty(&p->cg_list) ||
1849 task_css_set(p) != &init_css_set);
1850
1851 /*
1852 * We should check if the process is exiting, otherwise
1853 * it will race with cgroup_exit() in that the list
1854 * entry won't be deleted though the process has exited.
1855 * Do it while holding siglock so that we don't end up
1856 * racing against cgroup_exit().
1857 */
1858 spin_lock_irq(&p->sighand->siglock);
1859 if (!(p->flags & PF_EXITING)) {
1860 struct css_set *cset = task_css_set(p);
1861
1862 if (!css_set_populated(cset))
1863 css_set_update_populated(cset, true);
1864 list_add_tail(&p->cg_list, &cset->tasks);
1865 get_css_set(cset);
1866 }
1867 spin_unlock_irq(&p->sighand->siglock);
1868 } while_each_thread(g, p);
1869 read_unlock(&tasklist_lock);
1870 out_unlock:
1871 spin_unlock_bh(&css_set_lock);
1872 }
1873
init_cgroup_housekeeping(struct cgroup * cgrp)1874 static void init_cgroup_housekeeping(struct cgroup *cgrp)
1875 {
1876 struct cgroup_subsys *ss;
1877 int ssid;
1878
1879 INIT_LIST_HEAD(&cgrp->self.sibling);
1880 INIT_LIST_HEAD(&cgrp->self.children);
1881 INIT_LIST_HEAD(&cgrp->cset_links);
1882 INIT_LIST_HEAD(&cgrp->pidlists);
1883 mutex_init(&cgrp->pidlist_mutex);
1884 cgrp->self.cgroup = cgrp;
1885 cgrp->self.flags |= CSS_ONLINE;
1886
1887 for_each_subsys(ss, ssid)
1888 INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
1889
1890 init_waitqueue_head(&cgrp->offline_waitq);
1891 INIT_WORK(&cgrp->release_agent_work, cgroup_release_agent);
1892 }
1893
init_cgroup_root(struct cgroup_root * root,struct cgroup_sb_opts * opts)1894 static void init_cgroup_root(struct cgroup_root *root,
1895 struct cgroup_sb_opts *opts)
1896 {
1897 struct cgroup *cgrp = &root->cgrp;
1898
1899 INIT_LIST_HEAD(&root->root_list);
1900 atomic_set(&root->nr_cgrps, 1);
1901 cgrp->root = root;
1902 init_cgroup_housekeeping(cgrp);
1903 idr_init(&root->cgroup_idr);
1904
1905 root->flags = opts->flags;
1906 if (opts->release_agent)
1907 strcpy(root->release_agent_path, opts->release_agent);
1908 if (opts->name)
1909 strcpy(root->name, opts->name);
1910 if (opts->cpuset_clone_children)
1911 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
1912 }
1913
cgroup_setup_root(struct cgroup_root * root,unsigned long ss_mask)1914 static int cgroup_setup_root(struct cgroup_root *root, unsigned long ss_mask)
1915 {
1916 LIST_HEAD(tmp_links);
1917 struct cgroup *root_cgrp = &root->cgrp;
1918 struct css_set *cset;
1919 int i, ret;
1920
1921 lockdep_assert_held(&cgroup_mutex);
1922
1923 ret = cgroup_idr_alloc(&root->cgroup_idr, root_cgrp, 1, 2, GFP_KERNEL);
1924 if (ret < 0)
1925 goto out;
1926 root_cgrp->id = ret;
1927
1928 ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release, 0,
1929 GFP_KERNEL);
1930 if (ret)
1931 goto out;
1932
1933 /*
1934 * We're accessing css_set_count without locking css_set_lock here,
1935 * but that's OK - it can only be increased by someone holding
1936 * cgroup_lock, and that's us. The worst that can happen is that we
1937 * have some link structures left over
1938 */
1939 ret = allocate_cgrp_cset_links(css_set_count, &tmp_links);
1940 if (ret)
1941 goto cancel_ref;
1942
1943 ret = cgroup_init_root_id(root);
1944 if (ret)
1945 goto cancel_ref;
1946
1947 root->kf_root = kernfs_create_root(&cgroup_kf_syscall_ops,
1948 KERNFS_ROOT_CREATE_DEACTIVATED,
1949 root_cgrp);
1950 if (IS_ERR(root->kf_root)) {
1951 ret = PTR_ERR(root->kf_root);
1952 goto exit_root_id;
1953 }
1954 root_cgrp->kn = root->kf_root->kn;
1955
1956 ret = css_populate_dir(&root_cgrp->self, NULL);
1957 if (ret)
1958 goto destroy_root;
1959
1960 ret = rebind_subsystems(root, ss_mask);
1961 if (ret)
1962 goto destroy_root;
1963
1964 /*
1965 * There must be no failure case after here, since rebinding takes
1966 * care of subsystems' refcounts, which are explicitly dropped in
1967 * the failure exit path.
1968 */
1969 list_add(&root->root_list, &cgroup_roots);
1970 cgroup_root_count++;
1971
1972 /*
1973 * Link the root cgroup in this hierarchy into all the css_set
1974 * objects.
1975 */
1976 spin_lock_bh(&css_set_lock);
1977 hash_for_each(css_set_table, i, cset, hlist) {
1978 link_css_set(&tmp_links, cset, root_cgrp);
1979 if (css_set_populated(cset))
1980 cgroup_update_populated(root_cgrp, true);
1981 }
1982 spin_unlock_bh(&css_set_lock);
1983
1984 BUG_ON(!list_empty(&root_cgrp->self.children));
1985 BUG_ON(atomic_read(&root->nr_cgrps) != 1);
1986
1987 kernfs_activate(root_cgrp->kn);
1988 ret = 0;
1989 goto out;
1990
1991 destroy_root:
1992 kernfs_destroy_root(root->kf_root);
1993 root->kf_root = NULL;
1994 exit_root_id:
1995 cgroup_exit_root_id(root);
1996 cancel_ref:
1997 percpu_ref_exit(&root_cgrp->self.refcnt);
1998 out:
1999 free_cgrp_cset_links(&tmp_links);
2000 return ret;
2001 }
2002
cgroup_mount(struct file_system_type * fs_type,int flags,const char * unused_dev_name,void * data)2003 static struct dentry *cgroup_mount(struct file_system_type *fs_type,
2004 int flags, const char *unused_dev_name,
2005 void *data)
2006 {
2007 struct super_block *pinned_sb = NULL;
2008 struct cgroup_subsys *ss;
2009 struct cgroup_root *root;
2010 struct cgroup_sb_opts opts;
2011 struct dentry *dentry;
2012 int ret;
2013 int i;
2014 bool new_sb;
2015
2016 /*
2017 * The first time anyone tries to mount a cgroup, enable the list
2018 * linking each css_set to its tasks and fix up all existing tasks.
2019 */
2020 if (!use_task_css_set_links)
2021 cgroup_enable_task_cg_lists();
2022
2023 mutex_lock(&cgroup_mutex);
2024
2025 /* First find the desired set of subsystems */
2026 ret = parse_cgroupfs_options(data, &opts);
2027 if (ret)
2028 goto out_unlock;
2029
2030 /* look for a matching existing root */
2031 if (opts.flags & CGRP_ROOT_SANE_BEHAVIOR) {
2032 cgrp_dfl_root_visible = true;
2033 root = &cgrp_dfl_root;
2034 cgroup_get(&root->cgrp);
2035 ret = 0;
2036 goto out_unlock;
2037 }
2038
2039 /*
2040 * Destruction of cgroup root is asynchronous, so subsystems may
2041 * still be dying after the previous unmount. Let's drain the
2042 * dying subsystems. We just need to ensure that the ones
2043 * unmounted previously finish dying and don't care about new ones
2044 * starting. Testing ref liveliness is good enough.
2045 */
2046 for_each_subsys(ss, i) {
2047 if (!(opts.subsys_mask & (1 << i)) ||
2048 ss->root == &cgrp_dfl_root)
2049 continue;
2050
2051 if (!percpu_ref_tryget_live(&ss->root->cgrp.self.refcnt)) {
2052 mutex_unlock(&cgroup_mutex);
2053 msleep(10);
2054 ret = restart_syscall();
2055 goto out_free;
2056 }
2057 cgroup_put(&ss->root->cgrp);
2058 }
2059
2060 for_each_root(root) {
2061 bool name_match = false;
2062
2063 if (root == &cgrp_dfl_root)
2064 continue;
2065
2066 /*
2067 * If we asked for a name then it must match. Also, if
2068 * name matches but sybsys_mask doesn't, we should fail.
2069 * Remember whether name matched.
2070 */
2071 if (opts.name) {
2072 if (strcmp(opts.name, root->name))
2073 continue;
2074 name_match = true;
2075 }
2076
2077 /*
2078 * If we asked for subsystems (or explicitly for no
2079 * subsystems) then they must match.
2080 */
2081 if ((opts.subsys_mask || opts.none) &&
2082 (opts.subsys_mask != root->subsys_mask)) {
2083 if (!name_match)
2084 continue;
2085 ret = -EBUSY;
2086 goto out_unlock;
2087 }
2088
2089 if (root->flags ^ opts.flags)
2090 pr_warn("new mount options do not match the existing superblock, will be ignored\n");
2091
2092 /*
2093 * We want to reuse @root whose lifetime is governed by its
2094 * ->cgrp. Let's check whether @root is alive and keep it
2095 * that way. As cgroup_kill_sb() can happen anytime, we
2096 * want to block it by pinning the sb so that @root doesn't
2097 * get killed before mount is complete.
2098 *
2099 * With the sb pinned, tryget_live can reliably indicate
2100 * whether @root can be reused. If it's being killed,
2101 * drain it. We can use wait_queue for the wait but this
2102 * path is super cold. Let's just sleep a bit and retry.
2103 */
2104 pinned_sb = kernfs_pin_sb(root->kf_root, NULL);
2105 if (IS_ERR(pinned_sb) ||
2106 !percpu_ref_tryget_live(&root->cgrp.self.refcnt)) {
2107 mutex_unlock(&cgroup_mutex);
2108 if (!IS_ERR_OR_NULL(pinned_sb))
2109 deactivate_super(pinned_sb);
2110 msleep(10);
2111 ret = restart_syscall();
2112 goto out_free;
2113 }
2114
2115 ret = 0;
2116 goto out_unlock;
2117 }
2118
2119 /*
2120 * No such thing, create a new one. name= matching without subsys
2121 * specification is allowed for already existing hierarchies but we
2122 * can't create new one without subsys specification.
2123 */
2124 if (!opts.subsys_mask && !opts.none) {
2125 ret = -EINVAL;
2126 goto out_unlock;
2127 }
2128
2129 root = kzalloc(sizeof(*root), GFP_KERNEL);
2130 if (!root) {
2131 ret = -ENOMEM;
2132 goto out_unlock;
2133 }
2134
2135 init_cgroup_root(root, &opts);
2136
2137 ret = cgroup_setup_root(root, opts.subsys_mask);
2138 if (ret)
2139 cgroup_free_root(root);
2140
2141 out_unlock:
2142 mutex_unlock(&cgroup_mutex);
2143 out_free:
2144 kfree(opts.release_agent);
2145 kfree(opts.name);
2146
2147 if (ret)
2148 return ERR_PTR(ret);
2149
2150 dentry = kernfs_mount(fs_type, flags, root->kf_root,
2151 CGROUP_SUPER_MAGIC, &new_sb);
2152 if (IS_ERR(dentry) || !new_sb)
2153 cgroup_put(&root->cgrp);
2154
2155 /*
2156 * If @pinned_sb, we're reusing an existing root and holding an
2157 * extra ref on its sb. Mount is complete. Put the extra ref.
2158 */
2159 if (pinned_sb) {
2160 WARN_ON(new_sb);
2161 deactivate_super(pinned_sb);
2162 }
2163
2164 return dentry;
2165 }
2166
cgroup_kill_sb(struct super_block * sb)2167 static void cgroup_kill_sb(struct super_block *sb)
2168 {
2169 struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
2170 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2171
2172 /*
2173 * If @root doesn't have any mounts or children, start killing it.
2174 * This prevents new mounts by disabling percpu_ref_tryget_live().
2175 * cgroup_mount() may wait for @root's release.
2176 *
2177 * And don't kill the default root.
2178 */
2179 if (!list_empty(&root->cgrp.self.children) ||
2180 root == &cgrp_dfl_root)
2181 cgroup_put(&root->cgrp);
2182 else
2183 percpu_ref_kill(&root->cgrp.self.refcnt);
2184
2185 kernfs_kill_sb(sb);
2186 }
2187
2188 static struct file_system_type cgroup_fs_type = {
2189 .name = "cgroup",
2190 .mount = cgroup_mount,
2191 .kill_sb = cgroup_kill_sb,
2192 };
2193
2194 /**
2195 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
2196 * @task: target task
2197 * @buf: the buffer to write the path into
2198 * @buflen: the length of the buffer
2199 *
2200 * Determine @task's cgroup on the first (the one with the lowest non-zero
2201 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
2202 * function grabs cgroup_mutex and shouldn't be used inside locks used by
2203 * cgroup controller callbacks.
2204 *
2205 * Return value is the same as kernfs_path().
2206 */
task_cgroup_path(struct task_struct * task,char * buf,size_t buflen)2207 char *task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
2208 {
2209 struct cgroup_root *root;
2210 struct cgroup *cgrp;
2211 int hierarchy_id = 1;
2212 char *path = NULL;
2213
2214 mutex_lock(&cgroup_mutex);
2215 spin_lock_bh(&css_set_lock);
2216
2217 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
2218
2219 if (root) {
2220 cgrp = task_cgroup_from_root(task, root);
2221 path = cgroup_path(cgrp, buf, buflen);
2222 } else {
2223 /* if no hierarchy exists, everyone is in "/" */
2224 if (strlcpy(buf, "/", buflen) < buflen)
2225 path = buf;
2226 }
2227
2228 spin_unlock_bh(&css_set_lock);
2229 mutex_unlock(&cgroup_mutex);
2230 return path;
2231 }
2232 EXPORT_SYMBOL_GPL(task_cgroup_path);
2233
2234 /* used to track tasks and other necessary states during migration */
2235 struct cgroup_taskset {
2236 /* the src and dst cset list running through cset->mg_node */
2237 struct list_head src_csets;
2238 struct list_head dst_csets;
2239
2240 /* the subsys currently being processed */
2241 int ssid;
2242
2243 /*
2244 * Fields for cgroup_taskset_*() iteration.
2245 *
2246 * Before migration is committed, the target migration tasks are on
2247 * ->mg_tasks of the csets on ->src_csets. After, on ->mg_tasks of
2248 * the csets on ->dst_csets. ->csets point to either ->src_csets
2249 * or ->dst_csets depending on whether migration is committed.
2250 *
2251 * ->cur_csets and ->cur_task point to the current task position
2252 * during iteration.
2253 */
2254 struct list_head *csets;
2255 struct css_set *cur_cset;
2256 struct task_struct *cur_task;
2257 };
2258
2259 #define CGROUP_TASKSET_INIT(tset) (struct cgroup_taskset){ \
2260 .src_csets = LIST_HEAD_INIT(tset.src_csets), \
2261 .dst_csets = LIST_HEAD_INIT(tset.dst_csets), \
2262 .csets = &tset.src_csets, \
2263 }
2264
2265 /**
2266 * cgroup_taskset_add - try to add a migration target task to a taskset
2267 * @task: target task
2268 * @tset: target taskset
2269 *
2270 * Add @task, which is a migration target, to @tset. This function becomes
2271 * noop if @task doesn't need to be migrated. @task's css_set should have
2272 * been added as a migration source and @task->cg_list will be moved from
2273 * the css_set's tasks list to mg_tasks one.
2274 */
cgroup_taskset_add(struct task_struct * task,struct cgroup_taskset * tset)2275 static void cgroup_taskset_add(struct task_struct *task,
2276 struct cgroup_taskset *tset)
2277 {
2278 struct css_set *cset;
2279
2280 lockdep_assert_held(&css_set_lock);
2281
2282 /* @task either already exited or can't exit until the end */
2283 if (task->flags & PF_EXITING)
2284 return;
2285
2286 /* leave @task alone if post_fork() hasn't linked it yet */
2287 if (list_empty(&task->cg_list))
2288 return;
2289
2290 cset = task_css_set(task);
2291 if (!cset->mg_src_cgrp)
2292 return;
2293
2294 list_move_tail(&task->cg_list, &cset->mg_tasks);
2295 if (list_empty(&cset->mg_node))
2296 list_add_tail(&cset->mg_node, &tset->src_csets);
2297 if (list_empty(&cset->mg_dst_cset->mg_node))
2298 list_move_tail(&cset->mg_dst_cset->mg_node,
2299 &tset->dst_csets);
2300 }
2301
2302 /**
2303 * cgroup_taskset_first - reset taskset and return the first task
2304 * @tset: taskset of interest
2305 * @dst_cssp: output variable for the destination css
2306 *
2307 * @tset iteration is initialized and the first task is returned.
2308 */
cgroup_taskset_first(struct cgroup_taskset * tset,struct cgroup_subsys_state ** dst_cssp)2309 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset,
2310 struct cgroup_subsys_state **dst_cssp)
2311 {
2312 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
2313 tset->cur_task = NULL;
2314
2315 return cgroup_taskset_next(tset, dst_cssp);
2316 }
2317
2318 /**
2319 * cgroup_taskset_next - iterate to the next task in taskset
2320 * @tset: taskset of interest
2321 * @dst_cssp: output variable for the destination css
2322 *
2323 * Return the next task in @tset. Iteration must have been initialized
2324 * with cgroup_taskset_first().
2325 */
cgroup_taskset_next(struct cgroup_taskset * tset,struct cgroup_subsys_state ** dst_cssp)2326 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset,
2327 struct cgroup_subsys_state **dst_cssp)
2328 {
2329 struct css_set *cset = tset->cur_cset;
2330 struct task_struct *task = tset->cur_task;
2331
2332 while (&cset->mg_node != tset->csets) {
2333 if (!task)
2334 task = list_first_entry(&cset->mg_tasks,
2335 struct task_struct, cg_list);
2336 else
2337 task = list_next_entry(task, cg_list);
2338
2339 if (&task->cg_list != &cset->mg_tasks) {
2340 tset->cur_cset = cset;
2341 tset->cur_task = task;
2342
2343 /*
2344 * This function may be called both before and
2345 * after cgroup_taskset_migrate(). The two cases
2346 * can be distinguished by looking at whether @cset
2347 * has its ->mg_dst_cset set.
2348 */
2349 if (cset->mg_dst_cset)
2350 *dst_cssp = cset->mg_dst_cset->subsys[tset->ssid];
2351 else
2352 *dst_cssp = cset->subsys[tset->ssid];
2353
2354 return task;
2355 }
2356
2357 cset = list_next_entry(cset, mg_node);
2358 task = NULL;
2359 }
2360
2361 return NULL;
2362 }
2363
2364 /**
2365 * cgroup_taskset_migrate - migrate a taskset to a cgroup
2366 * @tset: taget taskset
2367 * @dst_cgrp: destination cgroup
2368 *
2369 * Migrate tasks in @tset to @dst_cgrp. This function fails iff one of the
2370 * ->can_attach callbacks fails and guarantees that either all or none of
2371 * the tasks in @tset are migrated. @tset is consumed regardless of
2372 * success.
2373 */
cgroup_taskset_migrate(struct cgroup_taskset * tset,struct cgroup * dst_cgrp)2374 static int cgroup_taskset_migrate(struct cgroup_taskset *tset,
2375 struct cgroup *dst_cgrp)
2376 {
2377 struct cgroup_subsys_state *css, *failed_css = NULL;
2378 struct task_struct *task, *tmp_task;
2379 struct css_set *cset, *tmp_cset;
2380 int i, ret;
2381
2382 /* methods shouldn't be called if no task is actually migrating */
2383 if (list_empty(&tset->src_csets))
2384 return 0;
2385
2386 /* check that we can legitimately attach to the cgroup */
2387 for_each_e_css(css, i, dst_cgrp) {
2388 if (css->ss->can_attach) {
2389 tset->ssid = i;
2390 ret = css->ss->can_attach(tset);
2391 if (ret) {
2392 failed_css = css;
2393 goto out_cancel_attach;
2394 }
2395 }
2396 }
2397
2398 /*
2399 * Now that we're guaranteed success, proceed to move all tasks to
2400 * the new cgroup. There are no failure cases after here, so this
2401 * is the commit point.
2402 */
2403 spin_lock_bh(&css_set_lock);
2404 list_for_each_entry(cset, &tset->src_csets, mg_node) {
2405 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) {
2406 struct css_set *from_cset = task_css_set(task);
2407 struct css_set *to_cset = cset->mg_dst_cset;
2408
2409 get_css_set(to_cset);
2410 css_set_move_task(task, from_cset, to_cset, true);
2411 put_css_set_locked(from_cset);
2412 }
2413 }
2414 spin_unlock_bh(&css_set_lock);
2415
2416 /*
2417 * Migration is committed, all target tasks are now on dst_csets.
2418 * Nothing is sensitive to fork() after this point. Notify
2419 * controllers that migration is complete.
2420 */
2421 tset->csets = &tset->dst_csets;
2422
2423 for_each_e_css(css, i, dst_cgrp) {
2424 if (css->ss->attach) {
2425 tset->ssid = i;
2426 css->ss->attach(tset);
2427 }
2428 }
2429
2430 ret = 0;
2431 goto out_release_tset;
2432
2433 out_cancel_attach:
2434 for_each_e_css(css, i, dst_cgrp) {
2435 if (css == failed_css)
2436 break;
2437 if (css->ss->cancel_attach) {
2438 tset->ssid = i;
2439 css->ss->cancel_attach(tset);
2440 }
2441 }
2442 out_release_tset:
2443 spin_lock_bh(&css_set_lock);
2444 list_splice_init(&tset->dst_csets, &tset->src_csets);
2445 list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) {
2446 list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
2447 list_del_init(&cset->mg_node);
2448 }
2449 spin_unlock_bh(&css_set_lock);
2450 return ret;
2451 }
2452
2453 /**
2454 * cgroup_migrate_finish - cleanup after attach
2455 * @preloaded_csets: list of preloaded css_sets
2456 *
2457 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See
2458 * those functions for details.
2459 */
cgroup_migrate_finish(struct list_head * preloaded_csets)2460 static void cgroup_migrate_finish(struct list_head *preloaded_csets)
2461 {
2462 struct css_set *cset, *tmp_cset;
2463
2464 lockdep_assert_held(&cgroup_mutex);
2465
2466 spin_lock_bh(&css_set_lock);
2467 list_for_each_entry_safe(cset, tmp_cset, preloaded_csets, mg_preload_node) {
2468 cset->mg_src_cgrp = NULL;
2469 cset->mg_dst_cset = NULL;
2470 list_del_init(&cset->mg_preload_node);
2471 put_css_set_locked(cset);
2472 }
2473 spin_unlock_bh(&css_set_lock);
2474 }
2475
2476 /**
2477 * cgroup_migrate_add_src - add a migration source css_set
2478 * @src_cset: the source css_set to add
2479 * @dst_cgrp: the destination cgroup
2480 * @preloaded_csets: list of preloaded css_sets
2481 *
2482 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin
2483 * @src_cset and add it to @preloaded_csets, which should later be cleaned
2484 * up by cgroup_migrate_finish().
2485 *
2486 * This function may be called without holding cgroup_threadgroup_rwsem
2487 * even if the target is a process. Threads may be created and destroyed
2488 * but as long as cgroup_mutex is not dropped, no new css_set can be put
2489 * into play and the preloaded css_sets are guaranteed to cover all
2490 * migrations.
2491 */
cgroup_migrate_add_src(struct css_set * src_cset,struct cgroup * dst_cgrp,struct list_head * preloaded_csets)2492 static void cgroup_migrate_add_src(struct css_set *src_cset,
2493 struct cgroup *dst_cgrp,
2494 struct list_head *preloaded_csets)
2495 {
2496 struct cgroup *src_cgrp;
2497
2498 lockdep_assert_held(&cgroup_mutex);
2499 lockdep_assert_held(&css_set_lock);
2500
2501 /*
2502 * If ->dead, @src_set is associated with one or more dead cgroups
2503 * and doesn't contain any migratable tasks. Ignore it early so
2504 * that the rest of migration path doesn't get confused by it.
2505 */
2506 if (src_cset->dead)
2507 return;
2508
2509 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2510
2511 if (!list_empty(&src_cset->mg_preload_node))
2512 return;
2513
2514 WARN_ON(src_cset->mg_src_cgrp);
2515 WARN_ON(!list_empty(&src_cset->mg_tasks));
2516 WARN_ON(!list_empty(&src_cset->mg_node));
2517
2518 src_cset->mg_src_cgrp = src_cgrp;
2519 get_css_set(src_cset);
2520 list_add(&src_cset->mg_preload_node, preloaded_csets);
2521 }
2522
2523 /**
2524 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
2525 * @dst_cgrp: the destination cgroup (may be %NULL)
2526 * @preloaded_csets: list of preloaded source css_sets
2527 *
2528 * Tasks are about to be moved to @dst_cgrp and all the source css_sets
2529 * have been preloaded to @preloaded_csets. This function looks up and
2530 * pins all destination css_sets, links each to its source, and append them
2531 * to @preloaded_csets. If @dst_cgrp is %NULL, the destination of each
2532 * source css_set is assumed to be its cgroup on the default hierarchy.
2533 *
2534 * This function must be called after cgroup_migrate_add_src() has been
2535 * called on each migration source css_set. After migration is performed
2536 * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2537 * @preloaded_csets.
2538 */
cgroup_migrate_prepare_dst(struct cgroup * dst_cgrp,struct list_head * preloaded_csets)2539 static int cgroup_migrate_prepare_dst(struct cgroup *dst_cgrp,
2540 struct list_head *preloaded_csets)
2541 {
2542 LIST_HEAD(csets);
2543 struct css_set *src_cset, *tmp_cset;
2544
2545 lockdep_assert_held(&cgroup_mutex);
2546
2547 /*
2548 * Except for the root, child_subsys_mask must be zero for a cgroup
2549 * with tasks so that child cgroups don't compete against tasks.
2550 */
2551 if (dst_cgrp && cgroup_on_dfl(dst_cgrp) && cgroup_parent(dst_cgrp) &&
2552 dst_cgrp->child_subsys_mask)
2553 return -EBUSY;
2554
2555 /* look up the dst cset for each src cset and link it to src */
2556 list_for_each_entry_safe(src_cset, tmp_cset, preloaded_csets, mg_preload_node) {
2557 struct css_set *dst_cset;
2558
2559 dst_cset = find_css_set(src_cset,
2560 dst_cgrp ?: src_cset->dfl_cgrp);
2561 if (!dst_cset)
2562 goto err;
2563
2564 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
2565
2566 /*
2567 * If src cset equals dst, it's noop. Drop the src.
2568 * cgroup_migrate() will skip the cset too. Note that we
2569 * can't handle src == dst as some nodes are used by both.
2570 */
2571 if (src_cset == dst_cset) {
2572 src_cset->mg_src_cgrp = NULL;
2573 list_del_init(&src_cset->mg_preload_node);
2574 put_css_set(src_cset);
2575 put_css_set(dst_cset);
2576 continue;
2577 }
2578
2579 src_cset->mg_dst_cset = dst_cset;
2580
2581 if (list_empty(&dst_cset->mg_preload_node))
2582 list_add(&dst_cset->mg_preload_node, &csets);
2583 else
2584 put_css_set(dst_cset);
2585 }
2586
2587 list_splice_tail(&csets, preloaded_csets);
2588 return 0;
2589 err:
2590 cgroup_migrate_finish(&csets);
2591 return -ENOMEM;
2592 }
2593
2594 /**
2595 * cgroup_migrate - migrate a process or task to a cgroup
2596 * @leader: the leader of the process or the task to migrate
2597 * @threadgroup: whether @leader points to the whole process or a single task
2598 * @cgrp: the destination cgroup
2599 *
2600 * Migrate a process or task denoted by @leader to @cgrp. If migrating a
2601 * process, the caller must be holding cgroup_threadgroup_rwsem. The
2602 * caller is also responsible for invoking cgroup_migrate_add_src() and
2603 * cgroup_migrate_prepare_dst() on the targets before invoking this
2604 * function and following up with cgroup_migrate_finish().
2605 *
2606 * As long as a controller's ->can_attach() doesn't fail, this function is
2607 * guaranteed to succeed. This means that, excluding ->can_attach()
2608 * failure, when migrating multiple targets, the success or failure can be
2609 * decided for all targets by invoking group_migrate_prepare_dst() before
2610 * actually starting migrating.
2611 */
cgroup_migrate(struct task_struct * leader,bool threadgroup,struct cgroup * cgrp)2612 static int cgroup_migrate(struct task_struct *leader, bool threadgroup,
2613 struct cgroup *cgrp)
2614 {
2615 struct cgroup_taskset tset = CGROUP_TASKSET_INIT(tset);
2616 struct task_struct *task;
2617
2618 /*
2619 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2620 * already PF_EXITING could be freed from underneath us unless we
2621 * take an rcu_read_lock.
2622 */
2623 spin_lock_bh(&css_set_lock);
2624 rcu_read_lock();
2625 task = leader;
2626 do {
2627 cgroup_taskset_add(task, &tset);
2628 if (!threadgroup)
2629 break;
2630 } while_each_thread(leader, task);
2631 rcu_read_unlock();
2632 spin_unlock_bh(&css_set_lock);
2633
2634 return cgroup_taskset_migrate(&tset, cgrp);
2635 }
2636
2637 /**
2638 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2639 * @dst_cgrp: the cgroup to attach to
2640 * @leader: the task or the leader of the threadgroup to be attached
2641 * @threadgroup: attach the whole threadgroup?
2642 *
2643 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
2644 */
cgroup_attach_task(struct cgroup * dst_cgrp,struct task_struct * leader,bool threadgroup)2645 static int cgroup_attach_task(struct cgroup *dst_cgrp,
2646 struct task_struct *leader, bool threadgroup)
2647 {
2648 LIST_HEAD(preloaded_csets);
2649 struct task_struct *task;
2650 int ret;
2651
2652 /* look up all src csets */
2653 spin_lock_bh(&css_set_lock);
2654 rcu_read_lock();
2655 task = leader;
2656 do {
2657 cgroup_migrate_add_src(task_css_set(task), dst_cgrp,
2658 &preloaded_csets);
2659 if (!threadgroup)
2660 break;
2661 } while_each_thread(leader, task);
2662 rcu_read_unlock();
2663 spin_unlock_bh(&css_set_lock);
2664
2665 /* prepare dst csets and commit */
2666 ret = cgroup_migrate_prepare_dst(dst_cgrp, &preloaded_csets);
2667 if (!ret)
2668 ret = cgroup_migrate(leader, threadgroup, dst_cgrp);
2669
2670 cgroup_migrate_finish(&preloaded_csets);
2671 return ret;
2672 }
2673
cgroup_procs_write_permission(struct task_struct * task,struct cgroup * dst_cgrp,struct kernfs_open_file * of)2674 static int cgroup_procs_write_permission(struct task_struct *task,
2675 struct cgroup *dst_cgrp,
2676 struct kernfs_open_file *of)
2677 {
2678 const struct cred *cred = current_cred();
2679 const struct cred *tcred = get_task_cred(task);
2680 int ret = 0;
2681
2682 /*
2683 * even if we're attaching all tasks in the thread group, we only
2684 * need to check permissions on one of them.
2685 */
2686 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
2687 !uid_eq(cred->euid, tcred->uid) &&
2688 !uid_eq(cred->euid, tcred->suid))
2689 ret = -EACCES;
2690
2691 if (!ret && cgroup_on_dfl(dst_cgrp)) {
2692 struct super_block *sb = of->file->f_path.dentry->d_sb;
2693 struct cgroup *cgrp;
2694 struct inode *inode;
2695
2696 spin_lock_bh(&css_set_lock);
2697 cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
2698 spin_unlock_bh(&css_set_lock);
2699
2700 while (!cgroup_is_descendant(dst_cgrp, cgrp))
2701 cgrp = cgroup_parent(cgrp);
2702
2703 ret = -ENOMEM;
2704 inode = kernfs_get_inode(sb, cgrp->procs_file.kn);
2705 if (inode) {
2706 ret = inode_permission(inode, MAY_WRITE);
2707 iput(inode);
2708 }
2709 }
2710
2711 put_cred(tcred);
2712 return ret;
2713 }
2714
2715 /*
2716 * Find the task_struct of the task to attach by vpid and pass it along to the
2717 * function to attach either it or all tasks in its threadgroup. Will lock
2718 * cgroup_mutex and threadgroup.
2719 */
__cgroup_procs_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off,bool threadgroup)2720 static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf,
2721 size_t nbytes, loff_t off, bool threadgroup)
2722 {
2723 struct task_struct *tsk;
2724 struct cgroup_subsys *ss;
2725 struct cgroup *cgrp;
2726 pid_t pid;
2727 int ssid, ret;
2728
2729 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2730 return -EINVAL;
2731
2732 cgrp = cgroup_kn_lock_live(of->kn);
2733 if (!cgrp)
2734 return -ENODEV;
2735
2736 percpu_down_write(&cgroup_threadgroup_rwsem);
2737 rcu_read_lock();
2738 if (pid) {
2739 tsk = find_task_by_vpid(pid);
2740 if (!tsk) {
2741 ret = -ESRCH;
2742 goto out_unlock_rcu;
2743 }
2744 } else {
2745 tsk = current;
2746 }
2747
2748 if (threadgroup)
2749 tsk = tsk->group_leader;
2750
2751 /*
2752 * Workqueue threads may acquire PF_NO_SETAFFINITY and become
2753 * trapped in a cpuset, or RT worker may be born in a cgroup
2754 * with no rt_runtime allocated. Just say no.
2755 */
2756 if (tsk == kthreadd_task || (tsk->flags & PF_NO_SETAFFINITY)) {
2757 ret = -EINVAL;
2758 goto out_unlock_rcu;
2759 }
2760
2761 get_task_struct(tsk);
2762 rcu_read_unlock();
2763
2764 ret = cgroup_procs_write_permission(tsk, cgrp, of);
2765 if (!ret)
2766 ret = cgroup_attach_task(cgrp, tsk, threadgroup);
2767
2768 put_task_struct(tsk);
2769 goto out_unlock_threadgroup;
2770
2771 out_unlock_rcu:
2772 rcu_read_unlock();
2773 out_unlock_threadgroup:
2774 percpu_up_write(&cgroup_threadgroup_rwsem);
2775 for_each_subsys(ss, ssid)
2776 if (ss->post_attach)
2777 ss->post_attach();
2778 cgroup_kn_unlock(of->kn);
2779 return ret ?: nbytes;
2780 }
2781
2782 /**
2783 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
2784 * @from: attach to all cgroups of a given task
2785 * @tsk: the task to be attached
2786 */
cgroup_attach_task_all(struct task_struct * from,struct task_struct * tsk)2787 int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
2788 {
2789 struct cgroup_root *root;
2790 int retval = 0;
2791
2792 mutex_lock(&cgroup_mutex);
2793 for_each_root(root) {
2794 struct cgroup *from_cgrp;
2795
2796 if (root == &cgrp_dfl_root)
2797 continue;
2798
2799 spin_lock_bh(&css_set_lock);
2800 from_cgrp = task_cgroup_from_root(from, root);
2801 spin_unlock_bh(&css_set_lock);
2802
2803 retval = cgroup_attach_task(from_cgrp, tsk, false);
2804 if (retval)
2805 break;
2806 }
2807 mutex_unlock(&cgroup_mutex);
2808
2809 return retval;
2810 }
2811 EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
2812
cgroup_tasks_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)2813 static ssize_t cgroup_tasks_write(struct kernfs_open_file *of,
2814 char *buf, size_t nbytes, loff_t off)
2815 {
2816 return __cgroup_procs_write(of, buf, nbytes, off, false);
2817 }
2818
cgroup_procs_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)2819 static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
2820 char *buf, size_t nbytes, loff_t off)
2821 {
2822 return __cgroup_procs_write(of, buf, nbytes, off, true);
2823 }
2824
cgroup_release_agent_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)2825 static ssize_t cgroup_release_agent_write(struct kernfs_open_file *of,
2826 char *buf, size_t nbytes, loff_t off)
2827 {
2828 struct cgroup *cgrp;
2829
2830 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
2831
2832 cgrp = cgroup_kn_lock_live(of->kn);
2833 if (!cgrp)
2834 return -ENODEV;
2835 spin_lock(&release_agent_path_lock);
2836 strlcpy(cgrp->root->release_agent_path, strstrip(buf),
2837 sizeof(cgrp->root->release_agent_path));
2838 spin_unlock(&release_agent_path_lock);
2839 cgroup_kn_unlock(of->kn);
2840 return nbytes;
2841 }
2842
cgroup_release_agent_show(struct seq_file * seq,void * v)2843 static int cgroup_release_agent_show(struct seq_file *seq, void *v)
2844 {
2845 struct cgroup *cgrp = seq_css(seq)->cgroup;
2846
2847 spin_lock(&release_agent_path_lock);
2848 seq_puts(seq, cgrp->root->release_agent_path);
2849 spin_unlock(&release_agent_path_lock);
2850 seq_putc(seq, '\n');
2851 return 0;
2852 }
2853
cgroup_sane_behavior_show(struct seq_file * seq,void * v)2854 static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)
2855 {
2856 seq_puts(seq, "0\n");
2857 return 0;
2858 }
2859
cgroup_print_ss_mask(struct seq_file * seq,unsigned long ss_mask)2860 static void cgroup_print_ss_mask(struct seq_file *seq, unsigned long ss_mask)
2861 {
2862 struct cgroup_subsys *ss;
2863 bool printed = false;
2864 int ssid;
2865
2866 for_each_subsys_which(ss, ssid, &ss_mask) {
2867 if (printed)
2868 seq_putc(seq, ' ');
2869 seq_printf(seq, "%s", ss->name);
2870 printed = true;
2871 }
2872 if (printed)
2873 seq_putc(seq, '\n');
2874 }
2875
2876 /* show controllers which are currently attached to the default hierarchy */
cgroup_root_controllers_show(struct seq_file * seq,void * v)2877 static int cgroup_root_controllers_show(struct seq_file *seq, void *v)
2878 {
2879 struct cgroup *cgrp = seq_css(seq)->cgroup;
2880
2881 cgroup_print_ss_mask(seq, cgrp->root->subsys_mask &
2882 ~cgrp_dfl_root_inhibit_ss_mask);
2883 return 0;
2884 }
2885
2886 /* show controllers which are enabled from the parent */
cgroup_controllers_show(struct seq_file * seq,void * v)2887 static int cgroup_controllers_show(struct seq_file *seq, void *v)
2888 {
2889 struct cgroup *cgrp = seq_css(seq)->cgroup;
2890
2891 cgroup_print_ss_mask(seq, cgroup_parent(cgrp)->subtree_control);
2892 return 0;
2893 }
2894
2895 /* show controllers which are enabled for a given cgroup's children */
cgroup_subtree_control_show(struct seq_file * seq,void * v)2896 static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
2897 {
2898 struct cgroup *cgrp = seq_css(seq)->cgroup;
2899
2900 cgroup_print_ss_mask(seq, cgrp->subtree_control);
2901 return 0;
2902 }
2903
2904 /**
2905 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
2906 * @cgrp: root of the subtree to update csses for
2907 *
2908 * @cgrp's child_subsys_mask has changed and its subtree's (self excluded)
2909 * css associations need to be updated accordingly. This function looks up
2910 * all css_sets which are attached to the subtree, creates the matching
2911 * updated css_sets and migrates the tasks to the new ones.
2912 */
cgroup_update_dfl_csses(struct cgroup * cgrp)2913 static int cgroup_update_dfl_csses(struct cgroup *cgrp)
2914 {
2915 LIST_HEAD(preloaded_csets);
2916 struct cgroup_taskset tset = CGROUP_TASKSET_INIT(tset);
2917 struct cgroup_subsys_state *css;
2918 struct css_set *src_cset;
2919 int ret;
2920
2921 lockdep_assert_held(&cgroup_mutex);
2922
2923 percpu_down_write(&cgroup_threadgroup_rwsem);
2924
2925 /* look up all csses currently attached to @cgrp's subtree */
2926 spin_lock_bh(&css_set_lock);
2927 css_for_each_descendant_pre(css, cgroup_css(cgrp, NULL)) {
2928 struct cgrp_cset_link *link;
2929
2930 /* self is not affected by child_subsys_mask change */
2931 if (css->cgroup == cgrp)
2932 continue;
2933
2934 list_for_each_entry(link, &css->cgroup->cset_links, cset_link)
2935 cgroup_migrate_add_src(link->cset, cgrp,
2936 &preloaded_csets);
2937 }
2938 spin_unlock_bh(&css_set_lock);
2939
2940 /* NULL dst indicates self on default hierarchy */
2941 ret = cgroup_migrate_prepare_dst(NULL, &preloaded_csets);
2942 if (ret)
2943 goto out_finish;
2944
2945 spin_lock_bh(&css_set_lock);
2946 list_for_each_entry(src_cset, &preloaded_csets, mg_preload_node) {
2947 struct task_struct *task, *ntask;
2948
2949 /* src_csets precede dst_csets, break on the first dst_cset */
2950 if (!src_cset->mg_src_cgrp)
2951 break;
2952
2953 /* all tasks in src_csets need to be migrated */
2954 list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list)
2955 cgroup_taskset_add(task, &tset);
2956 }
2957 spin_unlock_bh(&css_set_lock);
2958
2959 ret = cgroup_taskset_migrate(&tset, cgrp);
2960 out_finish:
2961 cgroup_migrate_finish(&preloaded_csets);
2962 percpu_up_write(&cgroup_threadgroup_rwsem);
2963 return ret;
2964 }
2965
2966 /* change the enabled child controllers for a cgroup in the default hierarchy */
cgroup_subtree_control_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)2967 static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
2968 char *buf, size_t nbytes,
2969 loff_t off)
2970 {
2971 unsigned long enable = 0, disable = 0;
2972 unsigned long css_enable, css_disable, old_sc, new_sc, old_ss, new_ss;
2973 struct cgroup *cgrp, *child;
2974 struct cgroup_subsys *ss;
2975 char *tok;
2976 int ssid, ret;
2977
2978 /*
2979 * Parse input - space separated list of subsystem names prefixed
2980 * with either + or -.
2981 */
2982 buf = strstrip(buf);
2983 while ((tok = strsep(&buf, " "))) {
2984 unsigned long tmp_ss_mask = ~cgrp_dfl_root_inhibit_ss_mask;
2985
2986 if (tok[0] == '\0')
2987 continue;
2988 for_each_subsys_which(ss, ssid, &tmp_ss_mask) {
2989 if (!cgroup_ssid_enabled(ssid) ||
2990 strcmp(tok + 1, ss->name))
2991 continue;
2992
2993 if (*tok == '+') {
2994 enable |= 1 << ssid;
2995 disable &= ~(1 << ssid);
2996 } else if (*tok == '-') {
2997 disable |= 1 << ssid;
2998 enable &= ~(1 << ssid);
2999 } else {
3000 return -EINVAL;
3001 }
3002 break;
3003 }
3004 if (ssid == CGROUP_SUBSYS_COUNT)
3005 return -EINVAL;
3006 }
3007
3008 cgrp = cgroup_kn_lock_live(of->kn);
3009 if (!cgrp)
3010 return -ENODEV;
3011
3012 for_each_subsys(ss, ssid) {
3013 if (enable & (1 << ssid)) {
3014 if (cgrp->subtree_control & (1 << ssid)) {
3015 enable &= ~(1 << ssid);
3016 continue;
3017 }
3018
3019 /* unavailable or not enabled on the parent? */
3020 if (!(cgrp_dfl_root.subsys_mask & (1 << ssid)) ||
3021 (cgroup_parent(cgrp) &&
3022 !(cgroup_parent(cgrp)->subtree_control & (1 << ssid)))) {
3023 ret = -ENOENT;
3024 goto out_unlock;
3025 }
3026 } else if (disable & (1 << ssid)) {
3027 if (!(cgrp->subtree_control & (1 << ssid))) {
3028 disable &= ~(1 << ssid);
3029 continue;
3030 }
3031
3032 /* a child has it enabled? */
3033 cgroup_for_each_live_child(child, cgrp) {
3034 if (child->subtree_control & (1 << ssid)) {
3035 ret = -EBUSY;
3036 goto out_unlock;
3037 }
3038 }
3039 }
3040 }
3041
3042 if (!enable && !disable) {
3043 ret = 0;
3044 goto out_unlock;
3045 }
3046
3047 /*
3048 * Except for the root, subtree_control must be zero for a cgroup
3049 * with tasks so that child cgroups don't compete against tasks.
3050 */
3051 if (enable && cgroup_parent(cgrp) && !list_empty(&cgrp->cset_links)) {
3052 ret = -EBUSY;
3053 goto out_unlock;
3054 }
3055
3056 /*
3057 * Update subsys masks and calculate what needs to be done. More
3058 * subsystems than specified may need to be enabled or disabled
3059 * depending on subsystem dependencies.
3060 */
3061 old_sc = cgrp->subtree_control;
3062 old_ss = cgrp->child_subsys_mask;
3063 new_sc = (old_sc | enable) & ~disable;
3064 new_ss = cgroup_calc_child_subsys_mask(cgrp, new_sc);
3065
3066 css_enable = ~old_ss & new_ss;
3067 css_disable = old_ss & ~new_ss;
3068 enable |= css_enable;
3069 disable |= css_disable;
3070
3071 /*
3072 * Because css offlining is asynchronous, userland might try to
3073 * re-enable the same controller while the previous instance is
3074 * still around. In such cases, wait till it's gone using
3075 * offline_waitq.
3076 */
3077 for_each_subsys_which(ss, ssid, &css_enable) {
3078 cgroup_for_each_live_child(child, cgrp) {
3079 DEFINE_WAIT(wait);
3080
3081 if (!cgroup_css(child, ss))
3082 continue;
3083
3084 cgroup_get(child);
3085 prepare_to_wait(&child->offline_waitq, &wait,
3086 TASK_UNINTERRUPTIBLE);
3087 cgroup_kn_unlock(of->kn);
3088 schedule();
3089 finish_wait(&child->offline_waitq, &wait);
3090 cgroup_put(child);
3091
3092 return restart_syscall();
3093 }
3094 }
3095
3096 cgrp->subtree_control = new_sc;
3097 cgrp->child_subsys_mask = new_ss;
3098
3099 /*
3100 * Create new csses or make the existing ones visible. A css is
3101 * created invisible if it's being implicitly enabled through
3102 * dependency. An invisible css is made visible when the userland
3103 * explicitly enables it.
3104 */
3105 for_each_subsys(ss, ssid) {
3106 if (!(enable & (1 << ssid)))
3107 continue;
3108
3109 cgroup_for_each_live_child(child, cgrp) {
3110 if (css_enable & (1 << ssid))
3111 ret = create_css(child, ss,
3112 cgrp->subtree_control & (1 << ssid));
3113 else
3114 ret = css_populate_dir(cgroup_css(child, ss),
3115 NULL);
3116 if (ret)
3117 goto err_undo_css;
3118 }
3119 }
3120
3121 /*
3122 * At this point, cgroup_e_css() results reflect the new csses
3123 * making the following cgroup_update_dfl_csses() properly update
3124 * css associations of all tasks in the subtree.
3125 */
3126 ret = cgroup_update_dfl_csses(cgrp);
3127 if (ret)
3128 goto err_undo_css;
3129
3130 /*
3131 * All tasks are migrated out of disabled csses. Kill or hide
3132 * them. A css is hidden when the userland requests it to be
3133 * disabled while other subsystems are still depending on it. The
3134 * css must not actively control resources and be in the vanilla
3135 * state if it's made visible again later. Controllers which may
3136 * be depended upon should provide ->css_reset() for this purpose.
3137 */
3138 for_each_subsys(ss, ssid) {
3139 if (!(disable & (1 << ssid)))
3140 continue;
3141
3142 cgroup_for_each_live_child(child, cgrp) {
3143 struct cgroup_subsys_state *css = cgroup_css(child, ss);
3144
3145 if (css_disable & (1 << ssid)) {
3146 kill_css(css);
3147 } else {
3148 css_clear_dir(css, NULL);
3149 if (ss->css_reset)
3150 ss->css_reset(css);
3151 }
3152 }
3153 }
3154
3155 /*
3156 * The effective csses of all the descendants (excluding @cgrp) may
3157 * have changed. Subsystems can optionally subscribe to this event
3158 * by implementing ->css_e_css_changed() which is invoked if any of
3159 * the effective csses seen from the css's cgroup may have changed.
3160 */
3161 for_each_subsys(ss, ssid) {
3162 struct cgroup_subsys_state *this_css = cgroup_css(cgrp, ss);
3163 struct cgroup_subsys_state *css;
3164
3165 if (!ss->css_e_css_changed || !this_css)
3166 continue;
3167
3168 css_for_each_descendant_pre(css, this_css)
3169 if (css != this_css)
3170 ss->css_e_css_changed(css);
3171 }
3172
3173 kernfs_activate(cgrp->kn);
3174 ret = 0;
3175 out_unlock:
3176 cgroup_kn_unlock(of->kn);
3177 return ret ?: nbytes;
3178
3179 err_undo_css:
3180 cgrp->subtree_control = old_sc;
3181 cgrp->child_subsys_mask = old_ss;
3182
3183 for_each_subsys(ss, ssid) {
3184 if (!(enable & (1 << ssid)))
3185 continue;
3186
3187 cgroup_for_each_live_child(child, cgrp) {
3188 struct cgroup_subsys_state *css = cgroup_css(child, ss);
3189
3190 if (!css)
3191 continue;
3192
3193 if (css_enable & (1 << ssid))
3194 kill_css(css);
3195 else
3196 css_clear_dir(css, NULL);
3197 }
3198 }
3199 goto out_unlock;
3200 }
3201
cgroup_events_show(struct seq_file * seq,void * v)3202 static int cgroup_events_show(struct seq_file *seq, void *v)
3203 {
3204 seq_printf(seq, "populated %d\n",
3205 cgroup_is_populated(seq_css(seq)->cgroup));
3206 return 0;
3207 }
3208
cgroup_file_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3209 static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
3210 size_t nbytes, loff_t off)
3211 {
3212 struct cgroup *cgrp = of->kn->parent->priv;
3213 struct cftype *cft = of->kn->priv;
3214 struct cgroup_subsys_state *css;
3215 int ret;
3216
3217 if (cft->write)
3218 return cft->write(of, buf, nbytes, off);
3219
3220 /*
3221 * kernfs guarantees that a file isn't deleted with operations in
3222 * flight, which means that the matching css is and stays alive and
3223 * doesn't need to be pinned. The RCU locking is not necessary
3224 * either. It's just for the convenience of using cgroup_css().
3225 */
3226 rcu_read_lock();
3227 css = cgroup_css(cgrp, cft->ss);
3228 rcu_read_unlock();
3229
3230 if (cft->write_u64) {
3231 unsigned long long v;
3232 ret = kstrtoull(buf, 0, &v);
3233 if (!ret)
3234 ret = cft->write_u64(css, cft, v);
3235 } else if (cft->write_s64) {
3236 long long v;
3237 ret = kstrtoll(buf, 0, &v);
3238 if (!ret)
3239 ret = cft->write_s64(css, cft, v);
3240 } else {
3241 ret = -EINVAL;
3242 }
3243
3244 return ret ?: nbytes;
3245 }
3246
cgroup_seqfile_start(struct seq_file * seq,loff_t * ppos)3247 static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
3248 {
3249 return seq_cft(seq)->seq_start(seq, ppos);
3250 }
3251
cgroup_seqfile_next(struct seq_file * seq,void * v,loff_t * ppos)3252 static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
3253 {
3254 return seq_cft(seq)->seq_next(seq, v, ppos);
3255 }
3256
cgroup_seqfile_stop(struct seq_file * seq,void * v)3257 static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
3258 {
3259 seq_cft(seq)->seq_stop(seq, v);
3260 }
3261
cgroup_seqfile_show(struct seq_file * m,void * arg)3262 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
3263 {
3264 struct cftype *cft = seq_cft(m);
3265 struct cgroup_subsys_state *css = seq_css(m);
3266
3267 if (cft->seq_show)
3268 return cft->seq_show(m, arg);
3269
3270 if (cft->read_u64)
3271 seq_printf(m, "%llu\n", cft->read_u64(css, cft));
3272 else if (cft->read_s64)
3273 seq_printf(m, "%lld\n", cft->read_s64(css, cft));
3274 else
3275 return -EINVAL;
3276 return 0;
3277 }
3278
3279 static struct kernfs_ops cgroup_kf_single_ops = {
3280 .atomic_write_len = PAGE_SIZE,
3281 .write = cgroup_file_write,
3282 .seq_show = cgroup_seqfile_show,
3283 };
3284
3285 static struct kernfs_ops cgroup_kf_ops = {
3286 .atomic_write_len = PAGE_SIZE,
3287 .write = cgroup_file_write,
3288 .seq_start = cgroup_seqfile_start,
3289 .seq_next = cgroup_seqfile_next,
3290 .seq_stop = cgroup_seqfile_stop,
3291 .seq_show = cgroup_seqfile_show,
3292 };
3293
3294 /*
3295 * cgroup_rename - Only allow simple rename of directories in place.
3296 */
cgroup_rename(struct kernfs_node * kn,struct kernfs_node * new_parent,const char * new_name_str)3297 static int cgroup_rename(struct kernfs_node *kn, struct kernfs_node *new_parent,
3298 const char *new_name_str)
3299 {
3300 struct cgroup *cgrp = kn->priv;
3301 int ret;
3302
3303 if (kernfs_type(kn) != KERNFS_DIR)
3304 return -ENOTDIR;
3305 if (kn->parent != new_parent)
3306 return -EIO;
3307
3308 /*
3309 * This isn't a proper migration and its usefulness is very
3310 * limited. Disallow on the default hierarchy.
3311 */
3312 if (cgroup_on_dfl(cgrp))
3313 return -EPERM;
3314
3315 /*
3316 * We're gonna grab cgroup_mutex which nests outside kernfs
3317 * active_ref. kernfs_rename() doesn't require active_ref
3318 * protection. Break them before grabbing cgroup_mutex.
3319 */
3320 kernfs_break_active_protection(new_parent);
3321 kernfs_break_active_protection(kn);
3322
3323 mutex_lock(&cgroup_mutex);
3324
3325 ret = kernfs_rename(kn, new_parent, new_name_str);
3326
3327 mutex_unlock(&cgroup_mutex);
3328
3329 kernfs_unbreak_active_protection(kn);
3330 kernfs_unbreak_active_protection(new_parent);
3331 return ret;
3332 }
3333
3334 /* set uid and gid of cgroup dirs and files to that of the creator */
cgroup_kn_set_ugid(struct kernfs_node * kn)3335 static int cgroup_kn_set_ugid(struct kernfs_node *kn)
3336 {
3337 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
3338 .ia_uid = current_fsuid(),
3339 .ia_gid = current_fsgid(), };
3340
3341 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
3342 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
3343 return 0;
3344
3345 return kernfs_setattr(kn, &iattr);
3346 }
3347
cgroup_add_file(struct cgroup_subsys_state * css,struct cgroup * cgrp,struct cftype * cft)3348 static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp,
3349 struct cftype *cft)
3350 {
3351 char name[CGROUP_FILE_NAME_MAX];
3352 struct kernfs_node *kn;
3353 struct lock_class_key *key = NULL;
3354 int ret;
3355
3356 #ifdef CONFIG_DEBUG_LOCK_ALLOC
3357 key = &cft->lockdep_key;
3358 #endif
3359 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
3360 cgroup_file_mode(cft), 0, cft->kf_ops, cft,
3361 NULL, key);
3362 if (IS_ERR(kn))
3363 return PTR_ERR(kn);
3364
3365 ret = cgroup_kn_set_ugid(kn);
3366 if (ret) {
3367 kernfs_remove(kn);
3368 return ret;
3369 }
3370
3371 if (cft->file_offset) {
3372 struct cgroup_file *cfile = (void *)css + cft->file_offset;
3373
3374 spin_lock_irq(&cgroup_file_kn_lock);
3375 cfile->kn = kn;
3376 spin_unlock_irq(&cgroup_file_kn_lock);
3377 }
3378
3379 return 0;
3380 }
3381
3382 /**
3383 * cgroup_addrm_files - add or remove files to a cgroup directory
3384 * @css: the target css
3385 * @cgrp: the target cgroup (usually css->cgroup)
3386 * @cfts: array of cftypes to be added
3387 * @is_add: whether to add or remove
3388 *
3389 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
3390 * For removals, this function never fails.
3391 */
cgroup_addrm_files(struct cgroup_subsys_state * css,struct cgroup * cgrp,struct cftype cfts[],bool is_add)3392 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
3393 struct cgroup *cgrp, struct cftype cfts[],
3394 bool is_add)
3395 {
3396 struct cftype *cft, *cft_end = NULL;
3397 int ret;
3398
3399 lockdep_assert_held(&cgroup_mutex);
3400
3401 restart:
3402 for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) {
3403 /* does cft->flags tell us to skip this file on @cgrp? */
3404 if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
3405 continue;
3406 if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
3407 continue;
3408 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
3409 continue;
3410 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
3411 continue;
3412
3413 if (is_add) {
3414 ret = cgroup_add_file(css, cgrp, cft);
3415 if (ret) {
3416 pr_warn("%s: failed to add %s, err=%d\n",
3417 __func__, cft->name, ret);
3418 cft_end = cft;
3419 is_add = false;
3420 goto restart;
3421 }
3422 } else {
3423 cgroup_rm_file(cgrp, cft);
3424 }
3425 }
3426 return 0;
3427 }
3428
cgroup_apply_cftypes(struct cftype * cfts,bool is_add)3429 static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
3430 {
3431 LIST_HEAD(pending);
3432 struct cgroup_subsys *ss = cfts[0].ss;
3433 struct cgroup *root = &ss->root->cgrp;
3434 struct cgroup_subsys_state *css;
3435 int ret = 0;
3436
3437 lockdep_assert_held(&cgroup_mutex);
3438
3439 /* add/rm files for all cgroups created before */
3440 css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
3441 struct cgroup *cgrp = css->cgroup;
3442
3443 if (cgroup_is_dead(cgrp))
3444 continue;
3445
3446 ret = cgroup_addrm_files(css, cgrp, cfts, is_add);
3447 if (ret)
3448 break;
3449 }
3450
3451 if (is_add && !ret)
3452 kernfs_activate(root->kn);
3453 return ret;
3454 }
3455
cgroup_exit_cftypes(struct cftype * cfts)3456 static void cgroup_exit_cftypes(struct cftype *cfts)
3457 {
3458 struct cftype *cft;
3459
3460 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3461 /* free copy for custom atomic_write_len, see init_cftypes() */
3462 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
3463 kfree(cft->kf_ops);
3464 cft->kf_ops = NULL;
3465 cft->ss = NULL;
3466
3467 /* revert flags set by cgroup core while adding @cfts */
3468 cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL);
3469 }
3470 }
3471
cgroup_init_cftypes(struct cgroup_subsys * ss,struct cftype * cfts)3472 static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3473 {
3474 struct cftype *cft;
3475
3476 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3477 struct kernfs_ops *kf_ops;
3478
3479 WARN_ON(cft->ss || cft->kf_ops);
3480
3481 if (cft->seq_start)
3482 kf_ops = &cgroup_kf_ops;
3483 else
3484 kf_ops = &cgroup_kf_single_ops;
3485
3486 /*
3487 * Ugh... if @cft wants a custom max_write_len, we need to
3488 * make a copy of kf_ops to set its atomic_write_len.
3489 */
3490 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
3491 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
3492 if (!kf_ops) {
3493 cgroup_exit_cftypes(cfts);
3494 return -ENOMEM;
3495 }
3496 kf_ops->atomic_write_len = cft->max_write_len;
3497 }
3498
3499 cft->kf_ops = kf_ops;
3500 cft->ss = ss;
3501 }
3502
3503 return 0;
3504 }
3505
cgroup_rm_cftypes_locked(struct cftype * cfts)3506 static int cgroup_rm_cftypes_locked(struct cftype *cfts)
3507 {
3508 lockdep_assert_held(&cgroup_mutex);
3509
3510 if (!cfts || !cfts[0].ss)
3511 return -ENOENT;
3512
3513 list_del(&cfts->node);
3514 cgroup_apply_cftypes(cfts, false);
3515 cgroup_exit_cftypes(cfts);
3516 return 0;
3517 }
3518
3519 /**
3520 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
3521 * @cfts: zero-length name terminated array of cftypes
3522 *
3523 * Unregister @cfts. Files described by @cfts are removed from all
3524 * existing cgroups and all future cgroups won't have them either. This
3525 * function can be called anytime whether @cfts' subsys is attached or not.
3526 *
3527 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
3528 * registered.
3529 */
cgroup_rm_cftypes(struct cftype * cfts)3530 int cgroup_rm_cftypes(struct cftype *cfts)
3531 {
3532 int ret;
3533
3534 mutex_lock(&cgroup_mutex);
3535 ret = cgroup_rm_cftypes_locked(cfts);
3536 mutex_unlock(&cgroup_mutex);
3537 return ret;
3538 }
3539
3540 /**
3541 * cgroup_add_cftypes - add an array of cftypes to a subsystem
3542 * @ss: target cgroup subsystem
3543 * @cfts: zero-length name terminated array of cftypes
3544 *
3545 * Register @cfts to @ss. Files described by @cfts are created for all
3546 * existing cgroups to which @ss is attached and all future cgroups will
3547 * have them too. This function can be called anytime whether @ss is
3548 * attached or not.
3549 *
3550 * Returns 0 on successful registration, -errno on failure. Note that this
3551 * function currently returns 0 as long as @cfts registration is successful
3552 * even if some file creation attempts on existing cgroups fail.
3553 */
cgroup_add_cftypes(struct cgroup_subsys * ss,struct cftype * cfts)3554 static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3555 {
3556 int ret;
3557
3558 if (!cgroup_ssid_enabled(ss->id))
3559 return 0;
3560
3561 if (!cfts || cfts[0].name[0] == '\0')
3562 return 0;
3563
3564 ret = cgroup_init_cftypes(ss, cfts);
3565 if (ret)
3566 return ret;
3567
3568 mutex_lock(&cgroup_mutex);
3569
3570 list_add_tail(&cfts->node, &ss->cfts);
3571 ret = cgroup_apply_cftypes(cfts, true);
3572 if (ret)
3573 cgroup_rm_cftypes_locked(cfts);
3574
3575 mutex_unlock(&cgroup_mutex);
3576 return ret;
3577 }
3578
3579 /**
3580 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
3581 * @ss: target cgroup subsystem
3582 * @cfts: zero-length name terminated array of cftypes
3583 *
3584 * Similar to cgroup_add_cftypes() but the added files are only used for
3585 * the default hierarchy.
3586 */
cgroup_add_dfl_cftypes(struct cgroup_subsys * ss,struct cftype * cfts)3587 int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3588 {
3589 struct cftype *cft;
3590
3591 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
3592 cft->flags |= __CFTYPE_ONLY_ON_DFL;
3593 return cgroup_add_cftypes(ss, cfts);
3594 }
3595
3596 /**
3597 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
3598 * @ss: target cgroup subsystem
3599 * @cfts: zero-length name terminated array of cftypes
3600 *
3601 * Similar to cgroup_add_cftypes() but the added files are only used for
3602 * the legacy hierarchies.
3603 */
cgroup_add_legacy_cftypes(struct cgroup_subsys * ss,struct cftype * cfts)3604 int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3605 {
3606 struct cftype *cft;
3607
3608 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
3609 cft->flags |= __CFTYPE_NOT_ON_DFL;
3610 return cgroup_add_cftypes(ss, cfts);
3611 }
3612
3613 /**
3614 * cgroup_file_notify - generate a file modified event for a cgroup_file
3615 * @cfile: target cgroup_file
3616 *
3617 * @cfile must have been obtained by setting cftype->file_offset.
3618 */
cgroup_file_notify(struct cgroup_file * cfile)3619 void cgroup_file_notify(struct cgroup_file *cfile)
3620 {
3621 unsigned long flags;
3622
3623 spin_lock_irqsave(&cgroup_file_kn_lock, flags);
3624 if (cfile->kn)
3625 kernfs_notify(cfile->kn);
3626 spin_unlock_irqrestore(&cgroup_file_kn_lock, flags);
3627 }
3628
3629 /**
3630 * cgroup_task_count - count the number of tasks in a cgroup.
3631 * @cgrp: the cgroup in question
3632 *
3633 * Return the number of tasks in the cgroup.
3634 */
cgroup_task_count(const struct cgroup * cgrp)3635 static int cgroup_task_count(const struct cgroup *cgrp)
3636 {
3637 int count = 0;
3638 struct cgrp_cset_link *link;
3639
3640 spin_lock_bh(&css_set_lock);
3641 list_for_each_entry(link, &cgrp->cset_links, cset_link)
3642 count += atomic_read(&link->cset->refcount);
3643 spin_unlock_bh(&css_set_lock);
3644 return count;
3645 }
3646
3647 /**
3648 * css_next_child - find the next child of a given css
3649 * @pos: the current position (%NULL to initiate traversal)
3650 * @parent: css whose children to walk
3651 *
3652 * This function returns the next child of @parent and should be called
3653 * under either cgroup_mutex or RCU read lock. The only requirement is
3654 * that @parent and @pos are accessible. The next sibling is guaranteed to
3655 * be returned regardless of their states.
3656 *
3657 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3658 * css which finished ->css_online() is guaranteed to be visible in the
3659 * future iterations and will stay visible until the last reference is put.
3660 * A css which hasn't finished ->css_online() or already finished
3661 * ->css_offline() may show up during traversal. It's each subsystem's
3662 * responsibility to synchronize against on/offlining.
3663 */
css_next_child(struct cgroup_subsys_state * pos,struct cgroup_subsys_state * parent)3664 struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
3665 struct cgroup_subsys_state *parent)
3666 {
3667 struct cgroup_subsys_state *next;
3668
3669 cgroup_assert_mutex_or_rcu_locked();
3670
3671 /*
3672 * @pos could already have been unlinked from the sibling list.
3673 * Once a cgroup is removed, its ->sibling.next is no longer
3674 * updated when its next sibling changes. CSS_RELEASED is set when
3675 * @pos is taken off list, at which time its next pointer is valid,
3676 * and, as releases are serialized, the one pointed to by the next
3677 * pointer is guaranteed to not have started release yet. This
3678 * implies that if we observe !CSS_RELEASED on @pos in this RCU
3679 * critical section, the one pointed to by its next pointer is
3680 * guaranteed to not have finished its RCU grace period even if we
3681 * have dropped rcu_read_lock() inbetween iterations.
3682 *
3683 * If @pos has CSS_RELEASED set, its next pointer can't be
3684 * dereferenced; however, as each css is given a monotonically
3685 * increasing unique serial number and always appended to the
3686 * sibling list, the next one can be found by walking the parent's
3687 * children until the first css with higher serial number than
3688 * @pos's. While this path can be slower, it happens iff iteration
3689 * races against release and the race window is very small.
3690 */
3691 if (!pos) {
3692 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
3693 } else if (likely(!(pos->flags & CSS_RELEASED))) {
3694 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
3695 } else {
3696 list_for_each_entry_rcu(next, &parent->children, sibling)
3697 if (next->serial_nr > pos->serial_nr)
3698 break;
3699 }
3700
3701 /*
3702 * @next, if not pointing to the head, can be dereferenced and is
3703 * the next sibling.
3704 */
3705 if (&next->sibling != &parent->children)
3706 return next;
3707 return NULL;
3708 }
3709
3710 /**
3711 * css_next_descendant_pre - find the next descendant for pre-order walk
3712 * @pos: the current position (%NULL to initiate traversal)
3713 * @root: css whose descendants to walk
3714 *
3715 * To be used by css_for_each_descendant_pre(). Find the next descendant
3716 * to visit for pre-order traversal of @root's descendants. @root is
3717 * included in the iteration and the first node to be visited.
3718 *
3719 * While this function requires cgroup_mutex or RCU read locking, it
3720 * doesn't require the whole traversal to be contained in a single critical
3721 * section. This function will return the correct next descendant as long
3722 * as both @pos and @root are accessible and @pos is a descendant of @root.
3723 *
3724 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3725 * css which finished ->css_online() is guaranteed to be visible in the
3726 * future iterations and will stay visible until the last reference is put.
3727 * A css which hasn't finished ->css_online() or already finished
3728 * ->css_offline() may show up during traversal. It's each subsystem's
3729 * responsibility to synchronize against on/offlining.
3730 */
3731 struct cgroup_subsys_state *
css_next_descendant_pre(struct cgroup_subsys_state * pos,struct cgroup_subsys_state * root)3732 css_next_descendant_pre(struct cgroup_subsys_state *pos,
3733 struct cgroup_subsys_state *root)
3734 {
3735 struct cgroup_subsys_state *next;
3736
3737 cgroup_assert_mutex_or_rcu_locked();
3738
3739 /* if first iteration, visit @root */
3740 if (!pos)
3741 return root;
3742
3743 /* visit the first child if exists */
3744 next = css_next_child(NULL, pos);
3745 if (next)
3746 return next;
3747
3748 /* no child, visit my or the closest ancestor's next sibling */
3749 while (pos != root) {
3750 next = css_next_child(pos, pos->parent);
3751 if (next)
3752 return next;
3753 pos = pos->parent;
3754 }
3755
3756 return NULL;
3757 }
3758
3759 /**
3760 * css_rightmost_descendant - return the rightmost descendant of a css
3761 * @pos: css of interest
3762 *
3763 * Return the rightmost descendant of @pos. If there's no descendant, @pos
3764 * is returned. This can be used during pre-order traversal to skip
3765 * subtree of @pos.
3766 *
3767 * While this function requires cgroup_mutex or RCU read locking, it
3768 * doesn't require the whole traversal to be contained in a single critical
3769 * section. This function will return the correct rightmost descendant as
3770 * long as @pos is accessible.
3771 */
3772 struct cgroup_subsys_state *
css_rightmost_descendant(struct cgroup_subsys_state * pos)3773 css_rightmost_descendant(struct cgroup_subsys_state *pos)
3774 {
3775 struct cgroup_subsys_state *last, *tmp;
3776
3777 cgroup_assert_mutex_or_rcu_locked();
3778
3779 do {
3780 last = pos;
3781 /* ->prev isn't RCU safe, walk ->next till the end */
3782 pos = NULL;
3783 css_for_each_child(tmp, last)
3784 pos = tmp;
3785 } while (pos);
3786
3787 return last;
3788 }
3789
3790 static struct cgroup_subsys_state *
css_leftmost_descendant(struct cgroup_subsys_state * pos)3791 css_leftmost_descendant(struct cgroup_subsys_state *pos)
3792 {
3793 struct cgroup_subsys_state *last;
3794
3795 do {
3796 last = pos;
3797 pos = css_next_child(NULL, pos);
3798 } while (pos);
3799
3800 return last;
3801 }
3802
3803 /**
3804 * css_next_descendant_post - find the next descendant for post-order walk
3805 * @pos: the current position (%NULL to initiate traversal)
3806 * @root: css whose descendants to walk
3807 *
3808 * To be used by css_for_each_descendant_post(). Find the next descendant
3809 * to visit for post-order traversal of @root's descendants. @root is
3810 * included in the iteration and the last node to be visited.
3811 *
3812 * While this function requires cgroup_mutex or RCU read locking, it
3813 * doesn't require the whole traversal to be contained in a single critical
3814 * section. This function will return the correct next descendant as long
3815 * as both @pos and @cgroup are accessible and @pos is a descendant of
3816 * @cgroup.
3817 *
3818 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3819 * css which finished ->css_online() is guaranteed to be visible in the
3820 * future iterations and will stay visible until the last reference is put.
3821 * A css which hasn't finished ->css_online() or already finished
3822 * ->css_offline() may show up during traversal. It's each subsystem's
3823 * responsibility to synchronize against on/offlining.
3824 */
3825 struct cgroup_subsys_state *
css_next_descendant_post(struct cgroup_subsys_state * pos,struct cgroup_subsys_state * root)3826 css_next_descendant_post(struct cgroup_subsys_state *pos,
3827 struct cgroup_subsys_state *root)
3828 {
3829 struct cgroup_subsys_state *next;
3830
3831 cgroup_assert_mutex_or_rcu_locked();
3832
3833 /* if first iteration, visit leftmost descendant which may be @root */
3834 if (!pos)
3835 return css_leftmost_descendant(root);
3836
3837 /* if we visited @root, we're done */
3838 if (pos == root)
3839 return NULL;
3840
3841 /* if there's an unvisited sibling, visit its leftmost descendant */
3842 next = css_next_child(pos, pos->parent);
3843 if (next)
3844 return css_leftmost_descendant(next);
3845
3846 /* no sibling left, visit parent */
3847 return pos->parent;
3848 }
3849
3850 /**
3851 * css_has_online_children - does a css have online children
3852 * @css: the target css
3853 *
3854 * Returns %true if @css has any online children; otherwise, %false. This
3855 * function can be called from any context but the caller is responsible
3856 * for synchronizing against on/offlining as necessary.
3857 */
css_has_online_children(struct cgroup_subsys_state * css)3858 bool css_has_online_children(struct cgroup_subsys_state *css)
3859 {
3860 struct cgroup_subsys_state *child;
3861 bool ret = false;
3862
3863 rcu_read_lock();
3864 css_for_each_child(child, css) {
3865 if (child->flags & CSS_ONLINE) {
3866 ret = true;
3867 break;
3868 }
3869 }
3870 rcu_read_unlock();
3871 return ret;
3872 }
3873
3874 /**
3875 * css_task_iter_advance_css_set - advance a task itererator to the next css_set
3876 * @it: the iterator to advance
3877 *
3878 * Advance @it to the next css_set to walk.
3879 */
css_task_iter_advance_css_set(struct css_task_iter * it)3880 static void css_task_iter_advance_css_set(struct css_task_iter *it)
3881 {
3882 struct list_head *l = it->cset_pos;
3883 struct cgrp_cset_link *link;
3884 struct css_set *cset;
3885
3886 lockdep_assert_held(&css_set_lock);
3887
3888 /* Advance to the next non-empty css_set */
3889 do {
3890 l = l->next;
3891 if (l == it->cset_head) {
3892 it->cset_pos = NULL;
3893 it->task_pos = NULL;
3894 return;
3895 }
3896
3897 if (it->ss) {
3898 cset = container_of(l, struct css_set,
3899 e_cset_node[it->ss->id]);
3900 } else {
3901 link = list_entry(l, struct cgrp_cset_link, cset_link);
3902 cset = link->cset;
3903 }
3904 } while (!css_set_populated(cset));
3905
3906 it->cset_pos = l;
3907
3908 if (!list_empty(&cset->tasks))
3909 it->task_pos = cset->tasks.next;
3910 else
3911 it->task_pos = cset->mg_tasks.next;
3912
3913 it->tasks_head = &cset->tasks;
3914 it->mg_tasks_head = &cset->mg_tasks;
3915
3916 /*
3917 * We don't keep css_sets locked across iteration steps and thus
3918 * need to take steps to ensure that iteration can be resumed after
3919 * the lock is re-acquired. Iteration is performed at two levels -
3920 * css_sets and tasks in them.
3921 *
3922 * Once created, a css_set never leaves its cgroup lists, so a
3923 * pinned css_set is guaranteed to stay put and we can resume
3924 * iteration afterwards.
3925 *
3926 * Tasks may leave @cset across iteration steps. This is resolved
3927 * by registering each iterator with the css_set currently being
3928 * walked and making css_set_move_task() advance iterators whose
3929 * next task is leaving.
3930 */
3931 if (it->cur_cset) {
3932 list_del(&it->iters_node);
3933 put_css_set_locked(it->cur_cset);
3934 }
3935 get_css_set(cset);
3936 it->cur_cset = cset;
3937 list_add(&it->iters_node, &cset->task_iters);
3938 }
3939
css_task_iter_advance(struct css_task_iter * it)3940 static void css_task_iter_advance(struct css_task_iter *it)
3941 {
3942 struct list_head *l = it->task_pos;
3943
3944 lockdep_assert_held(&css_set_lock);
3945 WARN_ON_ONCE(!l);
3946
3947 /*
3948 * Advance iterator to find next entry. cset->tasks is consumed
3949 * first and then ->mg_tasks. After ->mg_tasks, we move onto the
3950 * next cset.
3951 */
3952 l = l->next;
3953
3954 if (l == it->tasks_head)
3955 l = it->mg_tasks_head->next;
3956
3957 if (l == it->mg_tasks_head)
3958 css_task_iter_advance_css_set(it);
3959 else
3960 it->task_pos = l;
3961 }
3962
3963 /**
3964 * css_task_iter_start - initiate task iteration
3965 * @css: the css to walk tasks of
3966 * @it: the task iterator to use
3967 *
3968 * Initiate iteration through the tasks of @css. The caller can call
3969 * css_task_iter_next() to walk through the tasks until the function
3970 * returns NULL. On completion of iteration, css_task_iter_end() must be
3971 * called.
3972 */
css_task_iter_start(struct cgroup_subsys_state * css,struct css_task_iter * it)3973 void css_task_iter_start(struct cgroup_subsys_state *css,
3974 struct css_task_iter *it)
3975 {
3976 /* no one should try to iterate before mounting cgroups */
3977 WARN_ON_ONCE(!use_task_css_set_links);
3978
3979 memset(it, 0, sizeof(*it));
3980
3981 spin_lock_bh(&css_set_lock);
3982
3983 it->ss = css->ss;
3984
3985 if (it->ss)
3986 it->cset_pos = &css->cgroup->e_csets[css->ss->id];
3987 else
3988 it->cset_pos = &css->cgroup->cset_links;
3989
3990 it->cset_head = it->cset_pos;
3991
3992 css_task_iter_advance_css_set(it);
3993
3994 spin_unlock_bh(&css_set_lock);
3995 }
3996
3997 /**
3998 * css_task_iter_next - return the next task for the iterator
3999 * @it: the task iterator being iterated
4000 *
4001 * The "next" function for task iteration. @it should have been
4002 * initialized via css_task_iter_start(). Returns NULL when the iteration
4003 * reaches the end.
4004 */
css_task_iter_next(struct css_task_iter * it)4005 struct task_struct *css_task_iter_next(struct css_task_iter *it)
4006 {
4007 if (it->cur_task) {
4008 put_task_struct(it->cur_task);
4009 it->cur_task = NULL;
4010 }
4011
4012 spin_lock_bh(&css_set_lock);
4013
4014 if (it->task_pos) {
4015 it->cur_task = list_entry(it->task_pos, struct task_struct,
4016 cg_list);
4017 get_task_struct(it->cur_task);
4018 css_task_iter_advance(it);
4019 }
4020
4021 spin_unlock_bh(&css_set_lock);
4022
4023 return it->cur_task;
4024 }
4025
4026 /**
4027 * css_task_iter_end - finish task iteration
4028 * @it: the task iterator to finish
4029 *
4030 * Finish task iteration started by css_task_iter_start().
4031 */
css_task_iter_end(struct css_task_iter * it)4032 void css_task_iter_end(struct css_task_iter *it)
4033 {
4034 if (it->cur_cset) {
4035 spin_lock_bh(&css_set_lock);
4036 list_del(&it->iters_node);
4037 put_css_set_locked(it->cur_cset);
4038 spin_unlock_bh(&css_set_lock);
4039 }
4040
4041 if (it->cur_task)
4042 put_task_struct(it->cur_task);
4043 }
4044
4045 /**
4046 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
4047 * @to: cgroup to which the tasks will be moved
4048 * @from: cgroup in which the tasks currently reside
4049 *
4050 * Locking rules between cgroup_post_fork() and the migration path
4051 * guarantee that, if a task is forking while being migrated, the new child
4052 * is guaranteed to be either visible in the source cgroup after the
4053 * parent's migration is complete or put into the target cgroup. No task
4054 * can slip out of migration through forking.
4055 */
cgroup_transfer_tasks(struct cgroup * to,struct cgroup * from)4056 int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
4057 {
4058 LIST_HEAD(preloaded_csets);
4059 struct cgrp_cset_link *link;
4060 struct css_task_iter it;
4061 struct task_struct *task;
4062 int ret;
4063
4064 mutex_lock(&cgroup_mutex);
4065
4066 /* all tasks in @from are being moved, all csets are source */
4067 spin_lock_bh(&css_set_lock);
4068 list_for_each_entry(link, &from->cset_links, cset_link)
4069 cgroup_migrate_add_src(link->cset, to, &preloaded_csets);
4070 spin_unlock_bh(&css_set_lock);
4071
4072 ret = cgroup_migrate_prepare_dst(to, &preloaded_csets);
4073 if (ret)
4074 goto out_err;
4075
4076 /*
4077 * Migrate tasks one-by-one until @form is empty. This fails iff
4078 * ->can_attach() fails.
4079 */
4080 do {
4081 css_task_iter_start(&from->self, &it);
4082 task = css_task_iter_next(&it);
4083 if (task)
4084 get_task_struct(task);
4085 css_task_iter_end(&it);
4086
4087 if (task) {
4088 ret = cgroup_migrate(task, false, to);
4089 put_task_struct(task);
4090 }
4091 } while (task && !ret);
4092 out_err:
4093 cgroup_migrate_finish(&preloaded_csets);
4094 mutex_unlock(&cgroup_mutex);
4095 return ret;
4096 }
4097
4098 /*
4099 * Stuff for reading the 'tasks'/'procs' files.
4100 *
4101 * Reading this file can return large amounts of data if a cgroup has
4102 * *lots* of attached tasks. So it may need several calls to read(),
4103 * but we cannot guarantee that the information we produce is correct
4104 * unless we produce it entirely atomically.
4105 *
4106 */
4107
4108 /* which pidlist file are we talking about? */
4109 enum cgroup_filetype {
4110 CGROUP_FILE_PROCS,
4111 CGROUP_FILE_TASKS,
4112 };
4113
4114 /*
4115 * A pidlist is a list of pids that virtually represents the contents of one
4116 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
4117 * a pair (one each for procs, tasks) for each pid namespace that's relevant
4118 * to the cgroup.
4119 */
4120 struct cgroup_pidlist {
4121 /*
4122 * used to find which pidlist is wanted. doesn't change as long as
4123 * this particular list stays in the list.
4124 */
4125 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
4126 /* array of xids */
4127 pid_t *list;
4128 /* how many elements the above list has */
4129 int length;
4130 /* each of these stored in a list by its cgroup */
4131 struct list_head links;
4132 /* pointer to the cgroup we belong to, for list removal purposes */
4133 struct cgroup *owner;
4134 /* for delayed destruction */
4135 struct delayed_work destroy_dwork;
4136 };
4137
4138 /*
4139 * The following two functions "fix" the issue where there are more pids
4140 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
4141 * TODO: replace with a kernel-wide solution to this problem
4142 */
4143 #define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
pidlist_allocate(int count)4144 static void *pidlist_allocate(int count)
4145 {
4146 if (PIDLIST_TOO_LARGE(count))
4147 return vmalloc(count * sizeof(pid_t));
4148 else
4149 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
4150 }
4151
pidlist_free(void * p)4152 static void pidlist_free(void *p)
4153 {
4154 kvfree(p);
4155 }
4156
4157 /*
4158 * Used to destroy all pidlists lingering waiting for destroy timer. None
4159 * should be left afterwards.
4160 */
cgroup_pidlist_destroy_all(struct cgroup * cgrp)4161 static void cgroup_pidlist_destroy_all(struct cgroup *cgrp)
4162 {
4163 struct cgroup_pidlist *l, *tmp_l;
4164
4165 mutex_lock(&cgrp->pidlist_mutex);
4166 list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
4167 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
4168 mutex_unlock(&cgrp->pidlist_mutex);
4169
4170 flush_workqueue(cgroup_pidlist_destroy_wq);
4171 BUG_ON(!list_empty(&cgrp->pidlists));
4172 }
4173
cgroup_pidlist_destroy_work_fn(struct work_struct * work)4174 static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
4175 {
4176 struct delayed_work *dwork = to_delayed_work(work);
4177 struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist,
4178 destroy_dwork);
4179 struct cgroup_pidlist *tofree = NULL;
4180
4181 mutex_lock(&l->owner->pidlist_mutex);
4182
4183 /*
4184 * Destroy iff we didn't get queued again. The state won't change
4185 * as destroy_dwork can only be queued while locked.
4186 */
4187 if (!delayed_work_pending(dwork)) {
4188 list_del(&l->links);
4189 pidlist_free(l->list);
4190 put_pid_ns(l->key.ns);
4191 tofree = l;
4192 }
4193
4194 mutex_unlock(&l->owner->pidlist_mutex);
4195 kfree(tofree);
4196 }
4197
4198 /*
4199 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
4200 * Returns the number of unique elements.
4201 */
pidlist_uniq(pid_t * list,int length)4202 static int pidlist_uniq(pid_t *list, int length)
4203 {
4204 int src, dest = 1;
4205
4206 /*
4207 * we presume the 0th element is unique, so i starts at 1. trivial
4208 * edge cases first; no work needs to be done for either
4209 */
4210 if (length == 0 || length == 1)
4211 return length;
4212 /* src and dest walk down the list; dest counts unique elements */
4213 for (src = 1; src < length; src++) {
4214 /* find next unique element */
4215 while (list[src] == list[src-1]) {
4216 src++;
4217 if (src == length)
4218 goto after;
4219 }
4220 /* dest always points to where the next unique element goes */
4221 list[dest] = list[src];
4222 dest++;
4223 }
4224 after:
4225 return dest;
4226 }
4227
4228 /*
4229 * The two pid files - task and cgroup.procs - guaranteed that the result
4230 * is sorted, which forced this whole pidlist fiasco. As pid order is
4231 * different per namespace, each namespace needs differently sorted list,
4232 * making it impossible to use, for example, single rbtree of member tasks
4233 * sorted by task pointer. As pidlists can be fairly large, allocating one
4234 * per open file is dangerous, so cgroup had to implement shared pool of
4235 * pidlists keyed by cgroup and namespace.
4236 *
4237 * All this extra complexity was caused by the original implementation
4238 * committing to an entirely unnecessary property. In the long term, we
4239 * want to do away with it. Explicitly scramble sort order if on the
4240 * default hierarchy so that no such expectation exists in the new
4241 * interface.
4242 *
4243 * Scrambling is done by swapping every two consecutive bits, which is
4244 * non-identity one-to-one mapping which disturbs sort order sufficiently.
4245 */
pid_fry(pid_t pid)4246 static pid_t pid_fry(pid_t pid)
4247 {
4248 unsigned a = pid & 0x55555555;
4249 unsigned b = pid & 0xAAAAAAAA;
4250
4251 return (a << 1) | (b >> 1);
4252 }
4253
cgroup_pid_fry(struct cgroup * cgrp,pid_t pid)4254 static pid_t cgroup_pid_fry(struct cgroup *cgrp, pid_t pid)
4255 {
4256 if (cgroup_on_dfl(cgrp))
4257 return pid_fry(pid);
4258 else
4259 return pid;
4260 }
4261
cmppid(const void * a,const void * b)4262 static int cmppid(const void *a, const void *b)
4263 {
4264 return *(pid_t *)a - *(pid_t *)b;
4265 }
4266
fried_cmppid(const void * a,const void * b)4267 static int fried_cmppid(const void *a, const void *b)
4268 {
4269 return pid_fry(*(pid_t *)a) - pid_fry(*(pid_t *)b);
4270 }
4271
cgroup_pidlist_find(struct cgroup * cgrp,enum cgroup_filetype type)4272 static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
4273 enum cgroup_filetype type)
4274 {
4275 struct cgroup_pidlist *l;
4276 /* don't need task_nsproxy() if we're looking at ourself */
4277 struct pid_namespace *ns = task_active_pid_ns(current);
4278
4279 lockdep_assert_held(&cgrp->pidlist_mutex);
4280
4281 list_for_each_entry(l, &cgrp->pidlists, links)
4282 if (l->key.type == type && l->key.ns == ns)
4283 return l;
4284 return NULL;
4285 }
4286
4287 /*
4288 * find the appropriate pidlist for our purpose (given procs vs tasks)
4289 * returns with the lock on that pidlist already held, and takes care
4290 * of the use count, or returns NULL with no locks held if we're out of
4291 * memory.
4292 */
cgroup_pidlist_find_create(struct cgroup * cgrp,enum cgroup_filetype type)4293 static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp,
4294 enum cgroup_filetype type)
4295 {
4296 struct cgroup_pidlist *l;
4297
4298 lockdep_assert_held(&cgrp->pidlist_mutex);
4299
4300 l = cgroup_pidlist_find(cgrp, type);
4301 if (l)
4302 return l;
4303
4304 /* entry not found; create a new one */
4305 l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
4306 if (!l)
4307 return l;
4308
4309 INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
4310 l->key.type = type;
4311 /* don't need task_nsproxy() if we're looking at ourself */
4312 l->key.ns = get_pid_ns(task_active_pid_ns(current));
4313 l->owner = cgrp;
4314 list_add(&l->links, &cgrp->pidlists);
4315 return l;
4316 }
4317
4318 /*
4319 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
4320 */
pidlist_array_load(struct cgroup * cgrp,enum cgroup_filetype type,struct cgroup_pidlist ** lp)4321 static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
4322 struct cgroup_pidlist **lp)
4323 {
4324 pid_t *array;
4325 int length;
4326 int pid, n = 0; /* used for populating the array */
4327 struct css_task_iter it;
4328 struct task_struct *tsk;
4329 struct cgroup_pidlist *l;
4330
4331 lockdep_assert_held(&cgrp->pidlist_mutex);
4332
4333 /*
4334 * If cgroup gets more users after we read count, we won't have
4335 * enough space - tough. This race is indistinguishable to the
4336 * caller from the case that the additional cgroup users didn't
4337 * show up until sometime later on.
4338 */
4339 length = cgroup_task_count(cgrp);
4340 array = pidlist_allocate(length);
4341 if (!array)
4342 return -ENOMEM;
4343 /* now, populate the array */
4344 css_task_iter_start(&cgrp->self, &it);
4345 while ((tsk = css_task_iter_next(&it))) {
4346 if (unlikely(n == length))
4347 break;
4348 /* get tgid or pid for procs or tasks file respectively */
4349 if (type == CGROUP_FILE_PROCS)
4350 pid = task_tgid_vnr(tsk);
4351 else
4352 pid = task_pid_vnr(tsk);
4353 if (pid > 0) /* make sure to only use valid results */
4354 array[n++] = pid;
4355 }
4356 css_task_iter_end(&it);
4357 length = n;
4358 /* now sort & (if procs) strip out duplicates */
4359 if (cgroup_on_dfl(cgrp))
4360 sort(array, length, sizeof(pid_t), fried_cmppid, NULL);
4361 else
4362 sort(array, length, sizeof(pid_t), cmppid, NULL);
4363 if (type == CGROUP_FILE_PROCS)
4364 length = pidlist_uniq(array, length);
4365
4366 l = cgroup_pidlist_find_create(cgrp, type);
4367 if (!l) {
4368 pidlist_free(array);
4369 return -ENOMEM;
4370 }
4371
4372 /* store array, freeing old if necessary */
4373 pidlist_free(l->list);
4374 l->list = array;
4375 l->length = length;
4376 *lp = l;
4377 return 0;
4378 }
4379
4380 /**
4381 * cgroupstats_build - build and fill cgroupstats
4382 * @stats: cgroupstats to fill information into
4383 * @dentry: A dentry entry belonging to the cgroup for which stats have
4384 * been requested.
4385 *
4386 * Build and fill cgroupstats so that taskstats can export it to user
4387 * space.
4388 */
cgroupstats_build(struct cgroupstats * stats,struct dentry * dentry)4389 int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
4390 {
4391 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
4392 struct cgroup *cgrp;
4393 struct css_task_iter it;
4394 struct task_struct *tsk;
4395
4396 /* it should be kernfs_node belonging to cgroupfs and is a directory */
4397 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
4398 kernfs_type(kn) != KERNFS_DIR)
4399 return -EINVAL;
4400
4401 mutex_lock(&cgroup_mutex);
4402
4403 /*
4404 * We aren't being called from kernfs and there's no guarantee on
4405 * @kn->priv's validity. For this and css_tryget_online_from_dir(),
4406 * @kn->priv is RCU safe. Let's do the RCU dancing.
4407 */
4408 rcu_read_lock();
4409 cgrp = rcu_dereference(kn->priv);
4410 if (!cgrp || cgroup_is_dead(cgrp)) {
4411 rcu_read_unlock();
4412 mutex_unlock(&cgroup_mutex);
4413 return -ENOENT;
4414 }
4415 rcu_read_unlock();
4416
4417 css_task_iter_start(&cgrp->self, &it);
4418 while ((tsk = css_task_iter_next(&it))) {
4419 switch (tsk->state) {
4420 case TASK_RUNNING:
4421 stats->nr_running++;
4422 break;
4423 case TASK_INTERRUPTIBLE:
4424 stats->nr_sleeping++;
4425 break;
4426 case TASK_UNINTERRUPTIBLE:
4427 stats->nr_uninterruptible++;
4428 break;
4429 case TASK_STOPPED:
4430 stats->nr_stopped++;
4431 break;
4432 default:
4433 if (delayacct_is_task_waiting_on_io(tsk))
4434 stats->nr_io_wait++;
4435 break;
4436 }
4437 }
4438 css_task_iter_end(&it);
4439
4440 mutex_unlock(&cgroup_mutex);
4441 return 0;
4442 }
4443
4444
4445 /*
4446 * seq_file methods for the tasks/procs files. The seq_file position is the
4447 * next pid to display; the seq_file iterator is a pointer to the pid
4448 * in the cgroup->l->list array.
4449 */
4450
cgroup_pidlist_start(struct seq_file * s,loff_t * pos)4451 static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
4452 {
4453 /*
4454 * Initially we receive a position value that corresponds to
4455 * one more than the last pid shown (or 0 on the first call or
4456 * after a seek to the start). Use a binary-search to find the
4457 * next pid to display, if any
4458 */
4459 struct kernfs_open_file *of = s->private;
4460 struct cgroup *cgrp = seq_css(s)->cgroup;
4461 struct cgroup_pidlist *l;
4462 enum cgroup_filetype type = seq_cft(s)->private;
4463 int index = 0, pid = *pos;
4464 int *iter, ret;
4465
4466 mutex_lock(&cgrp->pidlist_mutex);
4467
4468 /*
4469 * !NULL @of->priv indicates that this isn't the first start()
4470 * after open. If the matching pidlist is around, we can use that.
4471 * Look for it. Note that @of->priv can't be used directly. It
4472 * could already have been destroyed.
4473 */
4474 if (of->priv)
4475 of->priv = cgroup_pidlist_find(cgrp, type);
4476
4477 /*
4478 * Either this is the first start() after open or the matching
4479 * pidlist has been destroyed inbetween. Create a new one.
4480 */
4481 if (!of->priv) {
4482 ret = pidlist_array_load(cgrp, type,
4483 (struct cgroup_pidlist **)&of->priv);
4484 if (ret)
4485 return ERR_PTR(ret);
4486 }
4487 l = of->priv;
4488
4489 if (pid) {
4490 int end = l->length;
4491
4492 while (index < end) {
4493 int mid = (index + end) / 2;
4494 if (cgroup_pid_fry(cgrp, l->list[mid]) == pid) {
4495 index = mid;
4496 break;
4497 } else if (cgroup_pid_fry(cgrp, l->list[mid]) <= pid)
4498 index = mid + 1;
4499 else
4500 end = mid;
4501 }
4502 }
4503 /* If we're off the end of the array, we're done */
4504 if (index >= l->length)
4505 return NULL;
4506 /* Update the abstract position to be the actual pid that we found */
4507 iter = l->list + index;
4508 *pos = cgroup_pid_fry(cgrp, *iter);
4509 return iter;
4510 }
4511
cgroup_pidlist_stop(struct seq_file * s,void * v)4512 static void cgroup_pidlist_stop(struct seq_file *s, void *v)
4513 {
4514 struct kernfs_open_file *of = s->private;
4515 struct cgroup_pidlist *l = of->priv;
4516
4517 if (l)
4518 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork,
4519 CGROUP_PIDLIST_DESTROY_DELAY);
4520 mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);
4521 }
4522
cgroup_pidlist_next(struct seq_file * s,void * v,loff_t * pos)4523 static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
4524 {
4525 struct kernfs_open_file *of = s->private;
4526 struct cgroup_pidlist *l = of->priv;
4527 pid_t *p = v;
4528 pid_t *end = l->list + l->length;
4529 /*
4530 * Advance to the next pid in the array. If this goes off the
4531 * end, we're done
4532 */
4533 p++;
4534 if (p >= end) {
4535 return NULL;
4536 } else {
4537 *pos = cgroup_pid_fry(seq_css(s)->cgroup, *p);
4538 return p;
4539 }
4540 }
4541
cgroup_pidlist_show(struct seq_file * s,void * v)4542 static int cgroup_pidlist_show(struct seq_file *s, void *v)
4543 {
4544 seq_printf(s, "%d\n", *(int *)v);
4545
4546 return 0;
4547 }
4548
cgroup_read_notify_on_release(struct cgroup_subsys_state * css,struct cftype * cft)4549 static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
4550 struct cftype *cft)
4551 {
4552 return notify_on_release(css->cgroup);
4553 }
4554
cgroup_write_notify_on_release(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)4555 static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
4556 struct cftype *cft, u64 val)
4557 {
4558 if (val)
4559 set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
4560 else
4561 clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
4562 return 0;
4563 }
4564
cgroup_clone_children_read(struct cgroup_subsys_state * css,struct cftype * cft)4565 static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
4566 struct cftype *cft)
4567 {
4568 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
4569 }
4570
cgroup_clone_children_write(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)4571 static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
4572 struct cftype *cft, u64 val)
4573 {
4574 if (val)
4575 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
4576 else
4577 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
4578 return 0;
4579 }
4580
4581 /* cgroup core interface files for the default hierarchy */
4582 static struct cftype cgroup_dfl_base_files[] = {
4583 {
4584 .name = "cgroup.procs",
4585 .file_offset = offsetof(struct cgroup, procs_file),
4586 .seq_start = cgroup_pidlist_start,
4587 .seq_next = cgroup_pidlist_next,
4588 .seq_stop = cgroup_pidlist_stop,
4589 .seq_show = cgroup_pidlist_show,
4590 .private = CGROUP_FILE_PROCS,
4591 .write = cgroup_procs_write,
4592 },
4593 {
4594 .name = "cgroup.controllers",
4595 .flags = CFTYPE_ONLY_ON_ROOT,
4596 .seq_show = cgroup_root_controllers_show,
4597 },
4598 {
4599 .name = "cgroup.controllers",
4600 .flags = CFTYPE_NOT_ON_ROOT,
4601 .seq_show = cgroup_controllers_show,
4602 },
4603 {
4604 .name = "cgroup.subtree_control",
4605 .seq_show = cgroup_subtree_control_show,
4606 .write = cgroup_subtree_control_write,
4607 },
4608 {
4609 .name = "cgroup.events",
4610 .flags = CFTYPE_NOT_ON_ROOT,
4611 .file_offset = offsetof(struct cgroup, events_file),
4612 .seq_show = cgroup_events_show,
4613 },
4614 { } /* terminate */
4615 };
4616
4617 /* cgroup core interface files for the legacy hierarchies */
4618 static struct cftype cgroup_legacy_base_files[] = {
4619 {
4620 .name = "cgroup.procs",
4621 .seq_start = cgroup_pidlist_start,
4622 .seq_next = cgroup_pidlist_next,
4623 .seq_stop = cgroup_pidlist_stop,
4624 .seq_show = cgroup_pidlist_show,
4625 .private = CGROUP_FILE_PROCS,
4626 .write = cgroup_procs_write,
4627 },
4628 {
4629 .name = "cgroup.clone_children",
4630 .read_u64 = cgroup_clone_children_read,
4631 .write_u64 = cgroup_clone_children_write,
4632 },
4633 {
4634 .name = "cgroup.sane_behavior",
4635 .flags = CFTYPE_ONLY_ON_ROOT,
4636 .seq_show = cgroup_sane_behavior_show,
4637 },
4638 {
4639 .name = "tasks",
4640 .seq_start = cgroup_pidlist_start,
4641 .seq_next = cgroup_pidlist_next,
4642 .seq_stop = cgroup_pidlist_stop,
4643 .seq_show = cgroup_pidlist_show,
4644 .private = CGROUP_FILE_TASKS,
4645 .write = cgroup_tasks_write,
4646 },
4647 {
4648 .name = "notify_on_release",
4649 .read_u64 = cgroup_read_notify_on_release,
4650 .write_u64 = cgroup_write_notify_on_release,
4651 },
4652 {
4653 .name = "release_agent",
4654 .flags = CFTYPE_ONLY_ON_ROOT,
4655 .seq_show = cgroup_release_agent_show,
4656 .write = cgroup_release_agent_write,
4657 .max_write_len = PATH_MAX - 1,
4658 },
4659 { } /* terminate */
4660 };
4661
4662 /*
4663 * css destruction is four-stage process.
4664 *
4665 * 1. Destruction starts. Killing of the percpu_ref is initiated.
4666 * Implemented in kill_css().
4667 *
4668 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
4669 * and thus css_tryget_online() is guaranteed to fail, the css can be
4670 * offlined by invoking offline_css(). After offlining, the base ref is
4671 * put. Implemented in css_killed_work_fn().
4672 *
4673 * 3. When the percpu_ref reaches zero, the only possible remaining
4674 * accessors are inside RCU read sections. css_release() schedules the
4675 * RCU callback.
4676 *
4677 * 4. After the grace period, the css can be freed. Implemented in
4678 * css_free_work_fn().
4679 *
4680 * It is actually hairier because both step 2 and 4 require process context
4681 * and thus involve punting to css->destroy_work adding two additional
4682 * steps to the already complex sequence.
4683 */
css_free_work_fn(struct work_struct * work)4684 static void css_free_work_fn(struct work_struct *work)
4685 {
4686 struct cgroup_subsys_state *css =
4687 container_of(work, struct cgroup_subsys_state, destroy_work);
4688 struct cgroup_subsys *ss = css->ss;
4689 struct cgroup *cgrp = css->cgroup;
4690
4691 percpu_ref_exit(&css->refcnt);
4692
4693 if (ss) {
4694 /* css free path */
4695 struct cgroup_subsys_state *parent = css->parent;
4696 int id = css->id;
4697
4698 ss->css_free(css);
4699 cgroup_idr_remove(&ss->css_idr, id);
4700 cgroup_put(cgrp);
4701
4702 if (parent)
4703 css_put(parent);
4704 } else {
4705 /* cgroup free path */
4706 atomic_dec(&cgrp->root->nr_cgrps);
4707 cgroup_pidlist_destroy_all(cgrp);
4708 cancel_work_sync(&cgrp->release_agent_work);
4709
4710 if (cgroup_parent(cgrp)) {
4711 /*
4712 * We get a ref to the parent, and put the ref when
4713 * this cgroup is being freed, so it's guaranteed
4714 * that the parent won't be destroyed before its
4715 * children.
4716 */
4717 cgroup_put(cgroup_parent(cgrp));
4718 kernfs_put(cgrp->kn);
4719 kfree(cgrp);
4720 } else {
4721 /*
4722 * This is root cgroup's refcnt reaching zero,
4723 * which indicates that the root should be
4724 * released.
4725 */
4726 cgroup_destroy_root(cgrp->root);
4727 }
4728 }
4729 }
4730
css_free_rcu_fn(struct rcu_head * rcu_head)4731 static void css_free_rcu_fn(struct rcu_head *rcu_head)
4732 {
4733 struct cgroup_subsys_state *css =
4734 container_of(rcu_head, struct cgroup_subsys_state, rcu_head);
4735
4736 INIT_WORK(&css->destroy_work, css_free_work_fn);
4737 queue_work(cgroup_destroy_wq, &css->destroy_work);
4738 }
4739
css_release_work_fn(struct work_struct * work)4740 static void css_release_work_fn(struct work_struct *work)
4741 {
4742 struct cgroup_subsys_state *css =
4743 container_of(work, struct cgroup_subsys_state, destroy_work);
4744 struct cgroup_subsys *ss = css->ss;
4745 struct cgroup *cgrp = css->cgroup;
4746
4747 mutex_lock(&cgroup_mutex);
4748
4749 css->flags |= CSS_RELEASED;
4750 list_del_rcu(&css->sibling);
4751
4752 if (ss) {
4753 /* css release path */
4754 cgroup_idr_replace(&ss->css_idr, NULL, css->id);
4755 if (ss->css_released)
4756 ss->css_released(css);
4757 } else {
4758 /* cgroup release path */
4759 cgroup_idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
4760 cgrp->id = -1;
4761
4762 /*
4763 * There are two control paths which try to determine
4764 * cgroup from dentry without going through kernfs -
4765 * cgroupstats_build() and css_tryget_online_from_dir().
4766 * Those are supported by RCU protecting clearing of
4767 * cgrp->kn->priv backpointer.
4768 */
4769 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv, NULL);
4770 }
4771
4772 mutex_unlock(&cgroup_mutex);
4773
4774 call_rcu(&css->rcu_head, css_free_rcu_fn);
4775 }
4776
css_release(struct percpu_ref * ref)4777 static void css_release(struct percpu_ref *ref)
4778 {
4779 struct cgroup_subsys_state *css =
4780 container_of(ref, struct cgroup_subsys_state, refcnt);
4781
4782 INIT_WORK(&css->destroy_work, css_release_work_fn);
4783 queue_work(cgroup_destroy_wq, &css->destroy_work);
4784 }
4785
init_and_link_css(struct cgroup_subsys_state * css,struct cgroup_subsys * ss,struct cgroup * cgrp)4786 static void init_and_link_css(struct cgroup_subsys_state *css,
4787 struct cgroup_subsys *ss, struct cgroup *cgrp)
4788 {
4789 lockdep_assert_held(&cgroup_mutex);
4790
4791 cgroup_get(cgrp);
4792
4793 memset(css, 0, sizeof(*css));
4794 css->cgroup = cgrp;
4795 css->ss = ss;
4796 INIT_LIST_HEAD(&css->sibling);
4797 INIT_LIST_HEAD(&css->children);
4798 css->serial_nr = css_serial_nr_next++;
4799 atomic_set(&css->online_cnt, 0);
4800
4801 if (cgroup_parent(cgrp)) {
4802 css->parent = cgroup_css(cgroup_parent(cgrp), ss);
4803 css_get(css->parent);
4804 }
4805
4806 BUG_ON(cgroup_css(cgrp, ss));
4807 }
4808
4809 /* invoke ->css_online() on a new CSS and mark it online if successful */
online_css(struct cgroup_subsys_state * css)4810 static int online_css(struct cgroup_subsys_state *css)
4811 {
4812 struct cgroup_subsys *ss = css->ss;
4813 int ret = 0;
4814
4815 lockdep_assert_held(&cgroup_mutex);
4816
4817 if (ss->css_online)
4818 ret = ss->css_online(css);
4819 if (!ret) {
4820 css->flags |= CSS_ONLINE;
4821 rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
4822
4823 atomic_inc(&css->online_cnt);
4824 if (css->parent)
4825 atomic_inc(&css->parent->online_cnt);
4826 }
4827 return ret;
4828 }
4829
4830 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */
offline_css(struct cgroup_subsys_state * css)4831 static void offline_css(struct cgroup_subsys_state *css)
4832 {
4833 struct cgroup_subsys *ss = css->ss;
4834
4835 lockdep_assert_held(&cgroup_mutex);
4836
4837 if (!(css->flags & CSS_ONLINE))
4838 return;
4839
4840 if (ss->css_offline)
4841 ss->css_offline(css);
4842
4843 css->flags &= ~CSS_ONLINE;
4844 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
4845
4846 wake_up_all(&css->cgroup->offline_waitq);
4847 }
4848
4849 /**
4850 * create_css - create a cgroup_subsys_state
4851 * @cgrp: the cgroup new css will be associated with
4852 * @ss: the subsys of new css
4853 * @visible: whether to create control knobs for the new css or not
4854 *
4855 * Create a new css associated with @cgrp - @ss pair. On success, the new
4856 * css is online and installed in @cgrp with all interface files created if
4857 * @visible. Returns 0 on success, -errno on failure.
4858 */
create_css(struct cgroup * cgrp,struct cgroup_subsys * ss,bool visible)4859 static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss,
4860 bool visible)
4861 {
4862 struct cgroup *parent = cgroup_parent(cgrp);
4863 struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
4864 struct cgroup_subsys_state *css;
4865 int err;
4866
4867 lockdep_assert_held(&cgroup_mutex);
4868
4869 css = ss->css_alloc(parent_css);
4870 if (IS_ERR(css))
4871 return PTR_ERR(css);
4872
4873 init_and_link_css(css, ss, cgrp);
4874
4875 err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
4876 if (err)
4877 goto err_free_css;
4878
4879 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL);
4880 if (err < 0)
4881 goto err_free_percpu_ref;
4882 css->id = err;
4883
4884 if (visible) {
4885 err = css_populate_dir(css, NULL);
4886 if (err)
4887 goto err_free_id;
4888 }
4889
4890 /* @css is ready to be brought online now, make it visible */
4891 list_add_tail_rcu(&css->sibling, &parent_css->children);
4892 cgroup_idr_replace(&ss->css_idr, css, css->id);
4893
4894 err = online_css(css);
4895 if (err)
4896 goto err_list_del;
4897
4898 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
4899 cgroup_parent(parent)) {
4900 pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
4901 current->comm, current->pid, ss->name);
4902 if (!strcmp(ss->name, "memory"))
4903 pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n");
4904 ss->warned_broken_hierarchy = true;
4905 }
4906
4907 return 0;
4908
4909 err_list_del:
4910 list_del_rcu(&css->sibling);
4911 css_clear_dir(css, NULL);
4912 err_free_id:
4913 cgroup_idr_remove(&ss->css_idr, css->id);
4914 err_free_percpu_ref:
4915 percpu_ref_exit(&css->refcnt);
4916 err_free_css:
4917 call_rcu(&css->rcu_head, css_free_rcu_fn);
4918 return err;
4919 }
4920
cgroup_mkdir(struct kernfs_node * parent_kn,const char * name,umode_t mode)4921 static int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name,
4922 umode_t mode)
4923 {
4924 struct cgroup *parent, *cgrp;
4925 struct cgroup_root *root;
4926 struct cgroup_subsys *ss;
4927 struct kernfs_node *kn;
4928 int ssid, ret;
4929
4930 /* Do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable.
4931 */
4932 if (strchr(name, '\n'))
4933 return -EINVAL;
4934
4935 parent = cgroup_kn_lock_live(parent_kn);
4936 if (!parent)
4937 return -ENODEV;
4938 root = parent->root;
4939
4940 /* allocate the cgroup and its ID, 0 is reserved for the root */
4941 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
4942 if (!cgrp) {
4943 ret = -ENOMEM;
4944 goto out_unlock;
4945 }
4946
4947 ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
4948 if (ret)
4949 goto out_free_cgrp;
4950
4951 /*
4952 * Temporarily set the pointer to NULL, so idr_find() won't return
4953 * a half-baked cgroup.
4954 */
4955 cgrp->id = cgroup_idr_alloc(&root->cgroup_idr, NULL, 2, 0, GFP_KERNEL);
4956 if (cgrp->id < 0) {
4957 ret = -ENOMEM;
4958 goto out_cancel_ref;
4959 }
4960
4961 init_cgroup_housekeeping(cgrp);
4962
4963 cgrp->self.parent = &parent->self;
4964 cgrp->root = root;
4965
4966 if (notify_on_release(parent))
4967 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
4968
4969 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
4970 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
4971
4972 /* create the directory */
4973 kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
4974 if (IS_ERR(kn)) {
4975 ret = PTR_ERR(kn);
4976 goto out_free_id;
4977 }
4978 cgrp->kn = kn;
4979
4980 /*
4981 * This extra ref will be put in cgroup_free_fn() and guarantees
4982 * that @cgrp->kn is always accessible.
4983 */
4984 kernfs_get(kn);
4985
4986 cgrp->self.serial_nr = css_serial_nr_next++;
4987
4988 /* allocation complete, commit to creation */
4989 list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
4990 atomic_inc(&root->nr_cgrps);
4991 cgroup_get(parent);
4992
4993 /*
4994 * @cgrp is now fully operational. If something fails after this
4995 * point, it'll be released via the normal destruction path.
4996 */
4997 cgroup_idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
4998
4999 ret = cgroup_kn_set_ugid(kn);
5000 if (ret)
5001 goto out_destroy;
5002
5003 ret = css_populate_dir(&cgrp->self, NULL);
5004 if (ret)
5005 goto out_destroy;
5006
5007 /* let's create and online css's */
5008 for_each_subsys(ss, ssid) {
5009 if (parent->child_subsys_mask & (1 << ssid)) {
5010 ret = create_css(cgrp, ss,
5011 parent->subtree_control & (1 << ssid));
5012 if (ret)
5013 goto out_destroy;
5014 }
5015 }
5016
5017 /*
5018 * On the default hierarchy, a child doesn't automatically inherit
5019 * subtree_control from the parent. Each is configured manually.
5020 */
5021 if (!cgroup_on_dfl(cgrp)) {
5022 cgrp->subtree_control = parent->subtree_control;
5023 cgroup_refresh_child_subsys_mask(cgrp);
5024 }
5025
5026 kernfs_activate(kn);
5027
5028 ret = 0;
5029 goto out_unlock;
5030
5031 out_free_id:
5032 cgroup_idr_remove(&root->cgroup_idr, cgrp->id);
5033 out_cancel_ref:
5034 percpu_ref_exit(&cgrp->self.refcnt);
5035 out_free_cgrp:
5036 kfree(cgrp);
5037 out_unlock:
5038 cgroup_kn_unlock(parent_kn);
5039 return ret;
5040
5041 out_destroy:
5042 cgroup_destroy_locked(cgrp);
5043 goto out_unlock;
5044 }
5045
5046 /*
5047 * This is called when the refcnt of a css is confirmed to be killed.
5048 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to
5049 * initate destruction and put the css ref from kill_css().
5050 */
css_killed_work_fn(struct work_struct * work)5051 static void css_killed_work_fn(struct work_struct *work)
5052 {
5053 struct cgroup_subsys_state *css =
5054 container_of(work, struct cgroup_subsys_state, destroy_work);
5055
5056 mutex_lock(&cgroup_mutex);
5057
5058 do {
5059 offline_css(css);
5060 css_put(css);
5061 /* @css can't go away while we're holding cgroup_mutex */
5062 css = css->parent;
5063 } while (css && atomic_dec_and_test(&css->online_cnt));
5064
5065 mutex_unlock(&cgroup_mutex);
5066 }
5067
5068 /* css kill confirmation processing requires process context, bounce */
css_killed_ref_fn(struct percpu_ref * ref)5069 static void css_killed_ref_fn(struct percpu_ref *ref)
5070 {
5071 struct cgroup_subsys_state *css =
5072 container_of(ref, struct cgroup_subsys_state, refcnt);
5073
5074 if (atomic_dec_and_test(&css->online_cnt)) {
5075 INIT_WORK(&css->destroy_work, css_killed_work_fn);
5076 queue_work(cgroup_destroy_wq, &css->destroy_work);
5077 }
5078 }
5079
5080 /**
5081 * kill_css - destroy a css
5082 * @css: css to destroy
5083 *
5084 * This function initiates destruction of @css by removing cgroup interface
5085 * files and putting its base reference. ->css_offline() will be invoked
5086 * asynchronously once css_tryget_online() is guaranteed to fail and when
5087 * the reference count reaches zero, @css will be released.
5088 */
kill_css(struct cgroup_subsys_state * css)5089 static void kill_css(struct cgroup_subsys_state *css)
5090 {
5091 lockdep_assert_held(&cgroup_mutex);
5092
5093 /*
5094 * This must happen before css is disassociated with its cgroup.
5095 * See seq_css() for details.
5096 */
5097 css_clear_dir(css, NULL);
5098
5099 /*
5100 * Killing would put the base ref, but we need to keep it alive
5101 * until after ->css_offline().
5102 */
5103 css_get(css);
5104
5105 /*
5106 * cgroup core guarantees that, by the time ->css_offline() is
5107 * invoked, no new css reference will be given out via
5108 * css_tryget_online(). We can't simply call percpu_ref_kill() and
5109 * proceed to offlining css's because percpu_ref_kill() doesn't
5110 * guarantee that the ref is seen as killed on all CPUs on return.
5111 *
5112 * Use percpu_ref_kill_and_confirm() to get notifications as each
5113 * css is confirmed to be seen as killed on all CPUs.
5114 */
5115 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
5116 }
5117
5118 /**
5119 * cgroup_destroy_locked - the first stage of cgroup destruction
5120 * @cgrp: cgroup to be destroyed
5121 *
5122 * css's make use of percpu refcnts whose killing latency shouldn't be
5123 * exposed to userland and are RCU protected. Also, cgroup core needs to
5124 * guarantee that css_tryget_online() won't succeed by the time
5125 * ->css_offline() is invoked. To satisfy all the requirements,
5126 * destruction is implemented in the following two steps.
5127 *
5128 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
5129 * userland visible parts and start killing the percpu refcnts of
5130 * css's. Set up so that the next stage will be kicked off once all
5131 * the percpu refcnts are confirmed to be killed.
5132 *
5133 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
5134 * rest of destruction. Once all cgroup references are gone, the
5135 * cgroup is RCU-freed.
5136 *
5137 * This function implements s1. After this step, @cgrp is gone as far as
5138 * the userland is concerned and a new cgroup with the same name may be
5139 * created. As cgroup doesn't care about the names internally, this
5140 * doesn't cause any problem.
5141 */
cgroup_destroy_locked(struct cgroup * cgrp)5142 static int cgroup_destroy_locked(struct cgroup *cgrp)
5143 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
5144 {
5145 struct cgroup_subsys_state *css;
5146 struct cgrp_cset_link *link;
5147 int ssid;
5148
5149 lockdep_assert_held(&cgroup_mutex);
5150
5151 /*
5152 * Only migration can raise populated from zero and we're already
5153 * holding cgroup_mutex.
5154 */
5155 if (cgroup_is_populated(cgrp))
5156 return -EBUSY;
5157
5158 /*
5159 * Make sure there's no live children. We can't test emptiness of
5160 * ->self.children as dead children linger on it while being
5161 * drained; otherwise, "rmdir parent/child parent" may fail.
5162 */
5163 if (css_has_online_children(&cgrp->self))
5164 return -EBUSY;
5165
5166 /*
5167 * Mark @cgrp and the associated csets dead. The former prevents
5168 * further task migration and child creation by disabling
5169 * cgroup_lock_live_group(). The latter makes the csets ignored by
5170 * the migration path.
5171 */
5172 cgrp->self.flags &= ~CSS_ONLINE;
5173
5174 spin_lock_bh(&css_set_lock);
5175 list_for_each_entry(link, &cgrp->cset_links, cset_link)
5176 link->cset->dead = true;
5177 spin_unlock_bh(&css_set_lock);
5178
5179 /* initiate massacre of all css's */
5180 for_each_css(css, ssid, cgrp)
5181 kill_css(css);
5182
5183 /*
5184 * Remove @cgrp directory along with the base files. @cgrp has an
5185 * extra ref on its kn.
5186 */
5187 kernfs_remove(cgrp->kn);
5188
5189 check_for_release(cgroup_parent(cgrp));
5190
5191 /* put the base reference */
5192 percpu_ref_kill(&cgrp->self.refcnt);
5193
5194 return 0;
5195 };
5196
cgroup_rmdir(struct kernfs_node * kn)5197 static int cgroup_rmdir(struct kernfs_node *kn)
5198 {
5199 struct cgroup *cgrp;
5200 int ret = 0;
5201
5202 cgrp = cgroup_kn_lock_live(kn);
5203 if (!cgrp)
5204 return 0;
5205
5206 ret = cgroup_destroy_locked(cgrp);
5207
5208 cgroup_kn_unlock(kn);
5209 return ret;
5210 }
5211
5212 static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
5213 .remount_fs = cgroup_remount,
5214 .show_options = cgroup_show_options,
5215 .mkdir = cgroup_mkdir,
5216 .rmdir = cgroup_rmdir,
5217 .rename = cgroup_rename,
5218 };
5219
cgroup_init_subsys(struct cgroup_subsys * ss,bool early)5220 static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
5221 {
5222 struct cgroup_subsys_state *css;
5223
5224 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
5225
5226 mutex_lock(&cgroup_mutex);
5227
5228 idr_init(&ss->css_idr);
5229 INIT_LIST_HEAD(&ss->cfts);
5230
5231 /* Create the root cgroup state for this subsystem */
5232 ss->root = &cgrp_dfl_root;
5233 css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss));
5234 /* We don't handle early failures gracefully */
5235 BUG_ON(IS_ERR(css));
5236 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
5237
5238 /*
5239 * Root csses are never destroyed and we can't initialize
5240 * percpu_ref during early init. Disable refcnting.
5241 */
5242 css->flags |= CSS_NO_REF;
5243
5244 if (early) {
5245 /* allocation can't be done safely during early init */
5246 css->id = 1;
5247 } else {
5248 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
5249 BUG_ON(css->id < 0);
5250 }
5251
5252 /* Update the init_css_set to contain a subsys
5253 * pointer to this state - since the subsystem is
5254 * newly registered, all tasks and hence the
5255 * init_css_set is in the subsystem's root cgroup. */
5256 init_css_set.subsys[ss->id] = css;
5257
5258 have_fork_callback |= (bool)ss->fork << ss->id;
5259 have_exit_callback |= (bool)ss->exit << ss->id;
5260 have_free_callback |= (bool)ss->free << ss->id;
5261 have_canfork_callback |= (bool)ss->can_fork << ss->id;
5262
5263 /* At system boot, before all subsystems have been
5264 * registered, no tasks have been forked, so we don't
5265 * need to invoke fork callbacks here. */
5266 BUG_ON(!list_empty(&init_task.tasks));
5267
5268 BUG_ON(online_css(css));
5269
5270 mutex_unlock(&cgroup_mutex);
5271 }
5272
5273 /**
5274 * cgroup_init_early - cgroup initialization at system boot
5275 *
5276 * Initialize cgroups at system boot, and initialize any
5277 * subsystems that request early init.
5278 */
cgroup_init_early(void)5279 int __init cgroup_init_early(void)
5280 {
5281 static struct cgroup_sb_opts __initdata opts;
5282 struct cgroup_subsys *ss;
5283 int i;
5284
5285 init_cgroup_root(&cgrp_dfl_root, &opts);
5286 cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
5287
5288 RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
5289
5290 for_each_subsys(ss, i) {
5291 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
5292 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p name:id=%d:%s\n",
5293 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
5294 ss->id, ss->name);
5295 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
5296 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
5297
5298 ss->id = i;
5299 ss->name = cgroup_subsys_name[i];
5300 if (!ss->legacy_name)
5301 ss->legacy_name = cgroup_subsys_name[i];
5302
5303 if (ss->early_init)
5304 cgroup_init_subsys(ss, true);
5305 }
5306 return 0;
5307 }
5308
5309 static unsigned long cgroup_disable_mask __initdata;
5310
5311 /**
5312 * cgroup_init - cgroup initialization
5313 *
5314 * Register cgroup filesystem and /proc file, and initialize
5315 * any subsystems that didn't request early init.
5316 */
cgroup_init(void)5317 int __init cgroup_init(void)
5318 {
5319 struct cgroup_subsys *ss;
5320 unsigned long key;
5321 int ssid;
5322
5323 BUG_ON(percpu_init_rwsem(&cgroup_threadgroup_rwsem));
5324 BUG_ON(cgroup_init_cftypes(NULL, cgroup_dfl_base_files));
5325 BUG_ON(cgroup_init_cftypes(NULL, cgroup_legacy_base_files));
5326
5327 mutex_lock(&cgroup_mutex);
5328
5329 /* Add init_css_set to the hash table */
5330 key = css_set_hash(init_css_set.subsys);
5331 hash_add(css_set_table, &init_css_set.hlist, key);
5332
5333 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
5334
5335 mutex_unlock(&cgroup_mutex);
5336
5337 for_each_subsys(ss, ssid) {
5338 if (ss->early_init) {
5339 struct cgroup_subsys_state *css =
5340 init_css_set.subsys[ss->id];
5341
5342 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
5343 GFP_KERNEL);
5344 BUG_ON(css->id < 0);
5345 } else {
5346 cgroup_init_subsys(ss, false);
5347 }
5348
5349 list_add_tail(&init_css_set.e_cset_node[ssid],
5350 &cgrp_dfl_root.cgrp.e_csets[ssid]);
5351
5352 /*
5353 * Setting dfl_root subsys_mask needs to consider the
5354 * disabled flag and cftype registration needs kmalloc,
5355 * both of which aren't available during early_init.
5356 */
5357 if (cgroup_disable_mask & (1 << ssid)) {
5358 static_branch_disable(cgroup_subsys_enabled_key[ssid]);
5359 printk(KERN_INFO "Disabling %s control group subsystem\n",
5360 ss->name);
5361 continue;
5362 }
5363
5364 cgrp_dfl_root.subsys_mask |= 1 << ss->id;
5365
5366 if (!ss->dfl_cftypes)
5367 cgrp_dfl_root_inhibit_ss_mask |= 1 << ss->id;
5368
5369 if (ss->dfl_cftypes == ss->legacy_cftypes) {
5370 WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
5371 } else {
5372 WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
5373 WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
5374 }
5375
5376 if (ss->bind)
5377 ss->bind(init_css_set.subsys[ssid]);
5378 }
5379
5380 WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup"));
5381 WARN_ON(register_filesystem(&cgroup_fs_type));
5382 WARN_ON(!proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations));
5383
5384 return 0;
5385 }
5386
cgroup_wq_init(void)5387 static int __init cgroup_wq_init(void)
5388 {
5389 /*
5390 * There isn't much point in executing destruction path in
5391 * parallel. Good chunk is serialized with cgroup_mutex anyway.
5392 * Use 1 for @max_active.
5393 *
5394 * We would prefer to do this in cgroup_init() above, but that
5395 * is called before init_workqueues(): so leave this until after.
5396 */
5397 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
5398 BUG_ON(!cgroup_destroy_wq);
5399
5400 /*
5401 * Used to destroy pidlists and separate to serve as flush domain.
5402 * Cap @max_active to 1 too.
5403 */
5404 cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy",
5405 0, 1);
5406 BUG_ON(!cgroup_pidlist_destroy_wq);
5407
5408 return 0;
5409 }
5410 core_initcall(cgroup_wq_init);
5411
5412 /*
5413 * proc_cgroup_show()
5414 * - Print task's cgroup paths into seq_file, one line for each hierarchy
5415 * - Used for /proc/<pid>/cgroup.
5416 */
proc_cgroup_show(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * tsk)5417 int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
5418 struct pid *pid, struct task_struct *tsk)
5419 {
5420 char *buf, *path;
5421 int retval;
5422 struct cgroup_root *root;
5423
5424 retval = -ENOMEM;
5425 buf = kmalloc(PATH_MAX, GFP_KERNEL);
5426 if (!buf)
5427 goto out;
5428
5429 mutex_lock(&cgroup_mutex);
5430 spin_lock_bh(&css_set_lock);
5431
5432 for_each_root(root) {
5433 struct cgroup_subsys *ss;
5434 struct cgroup *cgrp;
5435 int ssid, count = 0;
5436
5437 if (root == &cgrp_dfl_root && !cgrp_dfl_root_visible)
5438 continue;
5439
5440 seq_printf(m, "%d:", root->hierarchy_id);
5441 if (root != &cgrp_dfl_root)
5442 for_each_subsys(ss, ssid)
5443 if (root->subsys_mask & (1 << ssid))
5444 seq_printf(m, "%s%s", count++ ? "," : "",
5445 ss->legacy_name);
5446 if (strlen(root->name))
5447 seq_printf(m, "%sname=%s", count ? "," : "",
5448 root->name);
5449 seq_putc(m, ':');
5450
5451 cgrp = task_cgroup_from_root(tsk, root);
5452
5453 /*
5454 * On traditional hierarchies, all zombie tasks show up as
5455 * belonging to the root cgroup. On the default hierarchy,
5456 * while a zombie doesn't show up in "cgroup.procs" and
5457 * thus can't be migrated, its /proc/PID/cgroup keeps
5458 * reporting the cgroup it belonged to before exiting. If
5459 * the cgroup is removed before the zombie is reaped,
5460 * " (deleted)" is appended to the cgroup path.
5461 */
5462 if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) {
5463 path = cgroup_path(cgrp, buf, PATH_MAX);
5464 if (!path) {
5465 retval = -ENAMETOOLONG;
5466 goto out_unlock;
5467 }
5468 } else {
5469 path = "/";
5470 }
5471
5472 seq_puts(m, path);
5473
5474 if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp))
5475 seq_puts(m, " (deleted)\n");
5476 else
5477 seq_putc(m, '\n');
5478 }
5479
5480 retval = 0;
5481 out_unlock:
5482 spin_unlock_bh(&css_set_lock);
5483 mutex_unlock(&cgroup_mutex);
5484 kfree(buf);
5485 out:
5486 return retval;
5487 }
5488
5489 /* Display information about each subsystem and each hierarchy */
proc_cgroupstats_show(struct seq_file * m,void * v)5490 static int proc_cgroupstats_show(struct seq_file *m, void *v)
5491 {
5492 struct cgroup_subsys *ss;
5493 int i;
5494
5495 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
5496 /*
5497 * ideally we don't want subsystems moving around while we do this.
5498 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
5499 * subsys/hierarchy state.
5500 */
5501 mutex_lock(&cgroup_mutex);
5502
5503 for_each_subsys(ss, i)
5504 seq_printf(m, "%s\t%d\t%d\t%d\n",
5505 ss->legacy_name, ss->root->hierarchy_id,
5506 atomic_read(&ss->root->nr_cgrps),
5507 cgroup_ssid_enabled(i));
5508
5509 mutex_unlock(&cgroup_mutex);
5510 return 0;
5511 }
5512
cgroupstats_open(struct inode * inode,struct file * file)5513 static int cgroupstats_open(struct inode *inode, struct file *file)
5514 {
5515 return single_open(file, proc_cgroupstats_show, NULL);
5516 }
5517
5518 static const struct file_operations proc_cgroupstats_operations = {
5519 .open = cgroupstats_open,
5520 .read = seq_read,
5521 .llseek = seq_lseek,
5522 .release = single_release,
5523 };
5524
subsys_canfork_priv_p(void * ss_priv[CGROUP_CANFORK_COUNT],int i)5525 static void **subsys_canfork_priv_p(void *ss_priv[CGROUP_CANFORK_COUNT], int i)
5526 {
5527 if (CGROUP_CANFORK_START <= i && i < CGROUP_CANFORK_END)
5528 return &ss_priv[i - CGROUP_CANFORK_START];
5529 return NULL;
5530 }
5531
subsys_canfork_priv(void * ss_priv[CGROUP_CANFORK_COUNT],int i)5532 static void *subsys_canfork_priv(void *ss_priv[CGROUP_CANFORK_COUNT], int i)
5533 {
5534 void **private = subsys_canfork_priv_p(ss_priv, i);
5535 return private ? *private : NULL;
5536 }
5537
5538 /**
5539 * cgroup_fork - initialize cgroup related fields during copy_process()
5540 * @child: pointer to task_struct of forking parent process.
5541 *
5542 * A task is associated with the init_css_set until cgroup_post_fork()
5543 * attaches it to the parent's css_set. Empty cg_list indicates that
5544 * @child isn't holding reference to its css_set.
5545 */
cgroup_fork(struct task_struct * child)5546 void cgroup_fork(struct task_struct *child)
5547 {
5548 RCU_INIT_POINTER(child->cgroups, &init_css_set);
5549 INIT_LIST_HEAD(&child->cg_list);
5550 }
5551
5552 /**
5553 * cgroup_can_fork - called on a new task before the process is exposed
5554 * @child: the task in question.
5555 *
5556 * This calls the subsystem can_fork() callbacks. If the can_fork() callback
5557 * returns an error, the fork aborts with that error code. This allows for
5558 * a cgroup subsystem to conditionally allow or deny new forks.
5559 */
cgroup_can_fork(struct task_struct * child,void * ss_priv[CGROUP_CANFORK_COUNT])5560 int cgroup_can_fork(struct task_struct *child,
5561 void *ss_priv[CGROUP_CANFORK_COUNT])
5562 {
5563 struct cgroup_subsys *ss;
5564 int i, j, ret;
5565
5566 for_each_subsys_which(ss, i, &have_canfork_callback) {
5567 ret = ss->can_fork(child, subsys_canfork_priv_p(ss_priv, i));
5568 if (ret)
5569 goto out_revert;
5570 }
5571
5572 return 0;
5573
5574 out_revert:
5575 for_each_subsys(ss, j) {
5576 if (j >= i)
5577 break;
5578 if (ss->cancel_fork)
5579 ss->cancel_fork(child, subsys_canfork_priv(ss_priv, j));
5580 }
5581
5582 return ret;
5583 }
5584
5585 /**
5586 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
5587 * @child: the task in question
5588 *
5589 * This calls the cancel_fork() callbacks if a fork failed *after*
5590 * cgroup_can_fork() succeded.
5591 */
cgroup_cancel_fork(struct task_struct * child,void * ss_priv[CGROUP_CANFORK_COUNT])5592 void cgroup_cancel_fork(struct task_struct *child,
5593 void *ss_priv[CGROUP_CANFORK_COUNT])
5594 {
5595 struct cgroup_subsys *ss;
5596 int i;
5597
5598 for_each_subsys(ss, i)
5599 if (ss->cancel_fork)
5600 ss->cancel_fork(child, subsys_canfork_priv(ss_priv, i));
5601 }
5602
5603 /**
5604 * cgroup_post_fork - called on a new task after adding it to the task list
5605 * @child: the task in question
5606 *
5607 * Adds the task to the list running through its css_set if necessary and
5608 * call the subsystem fork() callbacks. Has to be after the task is
5609 * visible on the task list in case we race with the first call to
5610 * cgroup_task_iter_start() - to guarantee that the new task ends up on its
5611 * list.
5612 */
cgroup_post_fork(struct task_struct * child,void * old_ss_priv[CGROUP_CANFORK_COUNT])5613 void cgroup_post_fork(struct task_struct *child,
5614 void *old_ss_priv[CGROUP_CANFORK_COUNT])
5615 {
5616 struct cgroup_subsys *ss;
5617 int i;
5618
5619 /*
5620 * This may race against cgroup_enable_task_cg_lists(). As that
5621 * function sets use_task_css_set_links before grabbing
5622 * tasklist_lock and we just went through tasklist_lock to add
5623 * @child, it's guaranteed that either we see the set
5624 * use_task_css_set_links or cgroup_enable_task_cg_lists() sees
5625 * @child during its iteration.
5626 *
5627 * If we won the race, @child is associated with %current's
5628 * css_set. Grabbing css_set_lock guarantees both that the
5629 * association is stable, and, on completion of the parent's
5630 * migration, @child is visible in the source of migration or
5631 * already in the destination cgroup. This guarantee is necessary
5632 * when implementing operations which need to migrate all tasks of
5633 * a cgroup to another.
5634 *
5635 * Note that if we lose to cgroup_enable_task_cg_lists(), @child
5636 * will remain in init_css_set. This is safe because all tasks are
5637 * in the init_css_set before cg_links is enabled and there's no
5638 * operation which transfers all tasks out of init_css_set.
5639 */
5640 if (use_task_css_set_links) {
5641 struct css_set *cset;
5642
5643 spin_lock_bh(&css_set_lock);
5644 cset = task_css_set(current);
5645 if (list_empty(&child->cg_list)) {
5646 get_css_set(cset);
5647 css_set_move_task(child, NULL, cset, false);
5648 }
5649 spin_unlock_bh(&css_set_lock);
5650 }
5651
5652 /*
5653 * Call ss->fork(). This must happen after @child is linked on
5654 * css_set; otherwise, @child might change state between ->fork()
5655 * and addition to css_set.
5656 */
5657 for_each_subsys_which(ss, i, &have_fork_callback)
5658 ss->fork(child, subsys_canfork_priv(old_ss_priv, i));
5659 }
5660
5661 /**
5662 * cgroup_exit - detach cgroup from exiting task
5663 * @tsk: pointer to task_struct of exiting process
5664 *
5665 * Description: Detach cgroup from @tsk and release it.
5666 *
5667 * Note that cgroups marked notify_on_release force every task in
5668 * them to take the global cgroup_mutex mutex when exiting.
5669 * This could impact scaling on very large systems. Be reluctant to
5670 * use notify_on_release cgroups where very high task exit scaling
5671 * is required on large systems.
5672 *
5673 * We set the exiting tasks cgroup to the root cgroup (top_cgroup). We
5674 * call cgroup_exit() while the task is still competent to handle
5675 * notify_on_release(), then leave the task attached to the root cgroup in
5676 * each hierarchy for the remainder of its exit. No need to bother with
5677 * init_css_set refcnting. init_css_set never goes away and we can't race
5678 * with migration path - PF_EXITING is visible to migration path.
5679 */
cgroup_exit(struct task_struct * tsk)5680 void cgroup_exit(struct task_struct *tsk)
5681 {
5682 struct cgroup_subsys *ss;
5683 struct css_set *cset;
5684 int i;
5685
5686 /*
5687 * Unlink from @tsk from its css_set. As migration path can't race
5688 * with us, we can check css_set and cg_list without synchronization.
5689 */
5690 cset = task_css_set(tsk);
5691
5692 if (!list_empty(&tsk->cg_list)) {
5693 spin_lock_bh(&css_set_lock);
5694 css_set_move_task(tsk, cset, NULL, false);
5695 spin_unlock_bh(&css_set_lock);
5696 } else {
5697 get_css_set(cset);
5698 }
5699
5700 /* see cgroup_post_fork() for details */
5701 for_each_subsys_which(ss, i, &have_exit_callback)
5702 ss->exit(tsk);
5703 }
5704
cgroup_free(struct task_struct * task)5705 void cgroup_free(struct task_struct *task)
5706 {
5707 struct css_set *cset = task_css_set(task);
5708 struct cgroup_subsys *ss;
5709 int ssid;
5710
5711 for_each_subsys_which(ss, ssid, &have_free_callback)
5712 ss->free(task);
5713
5714 put_css_set(cset);
5715 }
5716
check_for_release(struct cgroup * cgrp)5717 static void check_for_release(struct cgroup *cgrp)
5718 {
5719 if (notify_on_release(cgrp) && !cgroup_is_populated(cgrp) &&
5720 !css_has_online_children(&cgrp->self) && !cgroup_is_dead(cgrp))
5721 schedule_work(&cgrp->release_agent_work);
5722 }
5723
5724 /*
5725 * Notify userspace when a cgroup is released, by running the
5726 * configured release agent with the name of the cgroup (path
5727 * relative to the root of cgroup file system) as the argument.
5728 *
5729 * Most likely, this user command will try to rmdir this cgroup.
5730 *
5731 * This races with the possibility that some other task will be
5732 * attached to this cgroup before it is removed, or that some other
5733 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
5734 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
5735 * unused, and this cgroup will be reprieved from its death sentence,
5736 * to continue to serve a useful existence. Next time it's released,
5737 * we will get notified again, if it still has 'notify_on_release' set.
5738 *
5739 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
5740 * means only wait until the task is successfully execve()'d. The
5741 * separate release agent task is forked by call_usermodehelper(),
5742 * then control in this thread returns here, without waiting for the
5743 * release agent task. We don't bother to wait because the caller of
5744 * this routine has no use for the exit status of the release agent
5745 * task, so no sense holding our caller up for that.
5746 */
cgroup_release_agent(struct work_struct * work)5747 static void cgroup_release_agent(struct work_struct *work)
5748 {
5749 struct cgroup *cgrp =
5750 container_of(work, struct cgroup, release_agent_work);
5751 char *pathbuf = NULL, *agentbuf = NULL, *path;
5752 char *argv[3], *envp[3];
5753
5754 mutex_lock(&cgroup_mutex);
5755
5756 pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
5757 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
5758 if (!pathbuf || !agentbuf)
5759 goto out;
5760
5761 path = cgroup_path(cgrp, pathbuf, PATH_MAX);
5762 if (!path)
5763 goto out;
5764
5765 argv[0] = agentbuf;
5766 argv[1] = path;
5767 argv[2] = NULL;
5768
5769 /* minimal command environment */
5770 envp[0] = "HOME=/";
5771 envp[1] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
5772 envp[2] = NULL;
5773
5774 mutex_unlock(&cgroup_mutex);
5775 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
5776 goto out_free;
5777 out:
5778 mutex_unlock(&cgroup_mutex);
5779 out_free:
5780 kfree(agentbuf);
5781 kfree(pathbuf);
5782 }
5783
cgroup_disable(char * str)5784 static int __init cgroup_disable(char *str)
5785 {
5786 struct cgroup_subsys *ss;
5787 char *token;
5788 int i;
5789
5790 while ((token = strsep(&str, ",")) != NULL) {
5791 if (!*token)
5792 continue;
5793
5794 for_each_subsys(ss, i) {
5795 if (strcmp(token, ss->name) &&
5796 strcmp(token, ss->legacy_name))
5797 continue;
5798 cgroup_disable_mask |= 1 << i;
5799 }
5800 }
5801 return 1;
5802 }
5803 __setup("cgroup_disable=", cgroup_disable);
5804
5805 /**
5806 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
5807 * @dentry: directory dentry of interest
5808 * @ss: subsystem of interest
5809 *
5810 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
5811 * to get the corresponding css and return it. If such css doesn't exist
5812 * or can't be pinned, an ERR_PTR value is returned.
5813 */
css_tryget_online_from_dir(struct dentry * dentry,struct cgroup_subsys * ss)5814 struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
5815 struct cgroup_subsys *ss)
5816 {
5817 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
5818 struct cgroup_subsys_state *css = NULL;
5819 struct cgroup *cgrp;
5820
5821 /* is @dentry a cgroup dir? */
5822 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
5823 kernfs_type(kn) != KERNFS_DIR)
5824 return ERR_PTR(-EBADF);
5825
5826 rcu_read_lock();
5827
5828 /*
5829 * This path doesn't originate from kernfs and @kn could already
5830 * have been or be removed at any point. @kn->priv is RCU
5831 * protected for this access. See css_release_work_fn() for details.
5832 */
5833 cgrp = rcu_dereference(kn->priv);
5834 if (cgrp)
5835 css = cgroup_css(cgrp, ss);
5836
5837 if (!css || !css_tryget_online(css))
5838 css = ERR_PTR(-ENOENT);
5839
5840 rcu_read_unlock();
5841 return css;
5842 }
5843
5844 /**
5845 * css_from_id - lookup css by id
5846 * @id: the cgroup id
5847 * @ss: cgroup subsys to be looked into
5848 *
5849 * Returns the css if there's valid one with @id, otherwise returns NULL.
5850 * Should be called under rcu_read_lock().
5851 */
css_from_id(int id,struct cgroup_subsys * ss)5852 struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
5853 {
5854 WARN_ON_ONCE(!rcu_read_lock_held());
5855 return id > 0 ? idr_find(&ss->css_idr, id) : NULL;
5856 }
5857
5858 #ifdef CONFIG_CGROUP_DEBUG
5859 static struct cgroup_subsys_state *
debug_css_alloc(struct cgroup_subsys_state * parent_css)5860 debug_css_alloc(struct cgroup_subsys_state *parent_css)
5861 {
5862 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
5863
5864 if (!css)
5865 return ERR_PTR(-ENOMEM);
5866
5867 return css;
5868 }
5869
debug_css_free(struct cgroup_subsys_state * css)5870 static void debug_css_free(struct cgroup_subsys_state *css)
5871 {
5872 kfree(css);
5873 }
5874
debug_taskcount_read(struct cgroup_subsys_state * css,struct cftype * cft)5875 static u64 debug_taskcount_read(struct cgroup_subsys_state *css,
5876 struct cftype *cft)
5877 {
5878 return cgroup_task_count(css->cgroup);
5879 }
5880
current_css_set_read(struct cgroup_subsys_state * css,struct cftype * cft)5881 static u64 current_css_set_read(struct cgroup_subsys_state *css,
5882 struct cftype *cft)
5883 {
5884 return (u64)(unsigned long)current->cgroups;
5885 }
5886
current_css_set_refcount_read(struct cgroup_subsys_state * css,struct cftype * cft)5887 static u64 current_css_set_refcount_read(struct cgroup_subsys_state *css,
5888 struct cftype *cft)
5889 {
5890 u64 count;
5891
5892 rcu_read_lock();
5893 count = atomic_read(&task_css_set(current)->refcount);
5894 rcu_read_unlock();
5895 return count;
5896 }
5897
current_css_set_cg_links_read(struct seq_file * seq,void * v)5898 static int current_css_set_cg_links_read(struct seq_file *seq, void *v)
5899 {
5900 struct cgrp_cset_link *link;
5901 struct css_set *cset;
5902 char *name_buf;
5903
5904 name_buf = kmalloc(NAME_MAX + 1, GFP_KERNEL);
5905 if (!name_buf)
5906 return -ENOMEM;
5907
5908 spin_lock_bh(&css_set_lock);
5909 rcu_read_lock();
5910 cset = rcu_dereference(current->cgroups);
5911 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
5912 struct cgroup *c = link->cgrp;
5913
5914 cgroup_name(c, name_buf, NAME_MAX + 1);
5915 seq_printf(seq, "Root %d group %s\n",
5916 c->root->hierarchy_id, name_buf);
5917 }
5918 rcu_read_unlock();
5919 spin_unlock_bh(&css_set_lock);
5920 kfree(name_buf);
5921 return 0;
5922 }
5923
5924 #define MAX_TASKS_SHOWN_PER_CSS 25
cgroup_css_links_read(struct seq_file * seq,void * v)5925 static int cgroup_css_links_read(struct seq_file *seq, void *v)
5926 {
5927 struct cgroup_subsys_state *css = seq_css(seq);
5928 struct cgrp_cset_link *link;
5929
5930 spin_lock_bh(&css_set_lock);
5931 list_for_each_entry(link, &css->cgroup->cset_links, cset_link) {
5932 struct css_set *cset = link->cset;
5933 struct task_struct *task;
5934 int count = 0;
5935
5936 seq_printf(seq, "css_set %p\n", cset);
5937
5938 list_for_each_entry(task, &cset->tasks, cg_list) {
5939 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
5940 goto overflow;
5941 seq_printf(seq, " task %d\n", task_pid_vnr(task));
5942 }
5943
5944 list_for_each_entry(task, &cset->mg_tasks, cg_list) {
5945 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
5946 goto overflow;
5947 seq_printf(seq, " task %d\n", task_pid_vnr(task));
5948 }
5949 continue;
5950 overflow:
5951 seq_puts(seq, " ...\n");
5952 }
5953 spin_unlock_bh(&css_set_lock);
5954 return 0;
5955 }
5956
releasable_read(struct cgroup_subsys_state * css,struct cftype * cft)5957 static u64 releasable_read(struct cgroup_subsys_state *css, struct cftype *cft)
5958 {
5959 return (!cgroup_is_populated(css->cgroup) &&
5960 !css_has_online_children(&css->cgroup->self));
5961 }
5962
5963 static struct cftype debug_files[] = {
5964 {
5965 .name = "taskcount",
5966 .read_u64 = debug_taskcount_read,
5967 },
5968
5969 {
5970 .name = "current_css_set",
5971 .read_u64 = current_css_set_read,
5972 },
5973
5974 {
5975 .name = "current_css_set_refcount",
5976 .read_u64 = current_css_set_refcount_read,
5977 },
5978
5979 {
5980 .name = "current_css_set_cg_links",
5981 .seq_show = current_css_set_cg_links_read,
5982 },
5983
5984 {
5985 .name = "cgroup_css_links",
5986 .seq_show = cgroup_css_links_read,
5987 },
5988
5989 {
5990 .name = "releasable",
5991 .read_u64 = releasable_read,
5992 },
5993
5994 { } /* terminate */
5995 };
5996
5997 struct cgroup_subsys debug_cgrp_subsys = {
5998 .css_alloc = debug_css_alloc,
5999 .css_free = debug_css_free,
6000 .legacy_cftypes = debug_files,
6001 };
6002 #endif /* CONFIG_CGROUP_DEBUG */
6003